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Abstract
This thesis is concerned with approximations of certain M(t)/G(t)/n(t)/n(t) + q queueing
systems. More specifically, we are interested in such systems under very general conditions
such as time-varying demand and capacity, and high utilization, including occasional over-
saturation. Conditions such as these cannot be addressed with existing methodologies.

We focus on M(t)/G(t)/n(t)/n(t) + q systems that can be approximated fairly well
by M(t)/E&(t)/n(t)/n(t) + q systems. The latter have a large number of system states,
that increase with the system parameters k, n, q and the utilization ratio, and involve
complicated state transition probabilities. We propose numerical methods to solve the
corresponding Chapman-Kolmogorov equations, exactly and approximately

We first describe the exact solution technique of M(t)/Ek(t)/n(t)/n(t) + q queueing
systems. Then, we develop two heuristic solution techniques of M(t)/E&(t)/ndt)/n(t) + q
queueing systems, and provide the corresponding complete state descriptions. We compare
the exact and approximate results to validate our heuristics and to select the heuristic
that best approximates the exact results in steady-state and under stationary conditions.
We also propose two algorithms to vary the number of servers in the system, since many
real-life problems involve such changes in response to variations in demand. Further results
using our ELC heuristic show that our practical approach behaves well under nonstationary
conditions, including varying capacity, and during the transient period to steady-state.

We conclude that our heuristic approach is an excellent alternative for studying and ana-
lyzing M(t)/E&(t)/n(t)/n(t)+q models and, as a by-product, many M(t)/G(t)/n(t)/n(t) +q
systems that arise in practice.

Finally, we present an application of the M(t)/E&(t)/n(t)/n(t) + q queueing model in
the context of Air Traffic Management. This model appears to be a reasonable appioach
to estimating delays and congestion in an en-route sector in the air traffic system and can

be used as an important building block in developing an analytical mo(Iel of the entire Air
Traffic Management system.

Thesis Supervisor: Anmedeo R. Odoni
Title: T. Wilson Professor of Aeronautics and Astronautics and Civil and Environ-
mental Engineering
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Chapter 1

Introduction

1.1 Motivation and Objective

The motivation for this thesis is our desire to study, at least approximately, the

behavior of certain M(t)/G(t)/n(t)/n(t) + q queueing systems under very general

conditions, including dynamic demand and capacity and periods when the utilization

rate exceeds 1. This is not possible with the existing state of the art. While the

M(t)/G(t)/n system has been the focus of many studies, it still remains largely

intractable. Many efforts have been devoted to obtaining approximations for the

distribution of waiting times, the number of customers in the system, the queue length

and busy periods. A thorough literature review of results for A(t)/G(t)/n(t)/n(t) +q

queueing systems, with special emphasis on systems with Erlangian distribution for

the service times, is presented in Chapter 2. In our discussion of previous work in

Queueing Theory, we also cover approaches for the analysis of the transient period

and of systems with dynamic parameters.

In this research, we shall concentrate on M(t)/G(t)/n(t)/n(t) + q systems which

can be approximated reasonably well by M(t)/E&(t)/n(t)/n(t) + q systems and will

develop numerical approaches for solving such queues under general dynanlic (not

steady state) conditions. While the queueing systems with Erlangian distributions of

service times are considered "easy" in Queueing Theory, it turns out that, in practice,

many difficulties arise because of (1) the very large number of system states that may

17



be present with increasing Erlang order and increasing numbers of customers and

servers and (2) the complex state transition probabilities that one has to consider.

Our general strategy will be to describe the exact solution technique of

M(t)/E&(t)/n(t)/n(t) + q systems that contains a complete description of the sys-

tem states in the M(t)/E(t)k/n(t)/n(t) + q system and to develop heuristic solution

techniques for these systems that approximate the results obtained using the exact

solution technique. The results obtained using the exact solution technique will be

used to validate those obtained using our heuristic solution techniques. From this

validation, we will select the heuristic solution technique that approximates best the

exact results. We shall also develop two heuristic approaches to account for systems

in which the number of servers changes over time. The importance of the feature

of variable number of servers stems from its applicability: real-life problems involve

variations in capacity in response to fluctuations in demand.

We will show that the heuristic of choice provides a computationally efficient and

tractable way for approximating the exact, dynamic M(t)/Ek(t)/n(t)/n(t) +q system

and, by implication, many M(t)/G(t)/n(t)/n(t) + q queueing systems which arise in

practice.

We are also interested in the application of this system to Air Traffic Management.

Therefore, a practical by-product of our work is the use cf the Ai(t)/E&(t)/n/n + q

queueing model, with variable number of servers, as a reasonably good model to

estimate delays and congestion in an en-route sector in the air traffic system.

1.2 Organization and Outline

The organization and outline of this thesis is as follows. In Chapter 2, we lpresent an

extensive survey of the literature available for Ai(t)/G(t)/n/n + q queueing systems,

with particular emphasis on the case of systems with Erlangian service time distribu-

tions. We also cover various results for the analysis of the transient lperiod, as well as

various techniques for solving systems with nonstationary parameters. Most results

in the available literature are concerned with steady-state solutions. We have identi-
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fied various trends in research interests in Queueing Theory in this respect, between

the late 1960's and the present. From the literature review, we conclude that few

techniques can be used in modeling multi-server systems with general service times.

This is especially true in the case of time-varying demand and capacity and periods

when the system is over-saturated.

Chapter 3 addresses exact and heuristic solution techniques for the

A(t)/Ek(t)/n(t)/n(t)+q queueing system. This finite-capacity queueing system with

time-varying Poisson arrivals and Erlangian service time distribution can be repre-

sented by a set of states for which we can write the Chapman-Kolmogorov equations.

We present first the exact approach and describe the complexity of the state tran-

sitions. Then, we derive two heuristic solution techniques that simplify significantly

the transitions among states. The fundamental idea in our heuristic approaches is

the combination of multiple states in the exact representation into a single state in

the approximate representation. What differentiates our two heuristic solution tech-

niques is the algorithm to compute the state transition probabilities. In order to

evaluate the performance of our heuristics, we describe several performance measures

of interest, including aggregate probabilities and queue statistics.

Two other algorithms, one for the exact the other for the heuristic, to solve systems

with a variable number of servers are developed in Chapter 3. The algorithms map

the states of the system before the number of servers changes to the states in the

modified system. The importance of those two algorithms is their wide applicability

as many realistic problems involve time-varying capacities in response to changes in

demand.

Chapter 4 validaLe<: our heuristic solution techniques in steady-state and under

stationary conditions. We solve numerically the Chapman-Kolmogorov equations for

both the exact and heuristic solution techniques and compare the results obtained.

The comparison of the exact and approximate results has two objectives: validate the

accuracy of the heuristics and select the heuristic of choice. The validation consists of

a large set of conditions with a wide range of system parameters. We conclude that

the heuristic ELC (Equally Likely Combinations) provides an excellent approximation
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to the exact results: 100% of the results using ELC are within 3% of the exact results

and 95% are within 1%; the approximate results are computed up to 3 orders of

magnitude faster than the exact results; and, larger systems that are impossible to

solve with the exact solution technique, can be solved quickly using the heuristic

solution technique.

In Chapter 4, we further analyze the performance of ELC under time-varying

conditions and study the transient behavior of the M(t)/E&(t)/n/n + q model using

both the exact and ELC solution techniques. The evidence in Chapter 4 suggests that

our practical approach pecforms very well under the above circumstances. The results

of the examples with variable number of servers show that the algorithms proposed

capture reasonably well, at least intuitively, the system dynamics when the capacity

of the model is either increased or reduced.

Chapter 5 describes the implementation of the solution techniques presented in

Chapter 3 and includes a case study of an en-route sector in the Air Traffic Sys-

tem. The case study uses an M(t)/E 3 (t)/n(t)/n(t) + q queueing system to model

the en-route sector and presents several scenarios with different demand and ca-

pacity patterns, including a baseline case with actual arrival data for a particu-

lar sector. We present this example to illustrate the potential applications of the

M(t)/E&(t)In(t)/n(t) + q queueing systems in modeling and analyzing some hypo-

thetical questions about en-route sectors. The analysis shows that our model can

be of great help in evaluating and planning daily en-route sector operations, and in

assisting air traffic managers and administrators in developing strategies and policies

to guarantee a satisfactory level of service and an acceptable workload for air traffic

controllers.

Finally, Chapter 6 summarizes the conclusions and contributions of our research

and briefly describes possible areas of future research.

We conclude this introduction with a remark found in Malone's thesis [27] that

applies completely to the motivation and concerns of our work:

C'oncern for developing models to ?nderstand and analyze complex real-world

dynamic systems motivates this research. Contributions are of both a quantita-
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tive and qualitative nature. Quantitatively, this research develops fast, accurate

approximation methods for dynamic queueing systems of significant practical

importance. These approximations are flexible and accurate, and it is hoped

that they will be used as tools in future analyses. Qualitatively, we hope that the

resulting improved understanding of complex dynamic queueing system behav-

ior will provide rules of thumb to help planners and operators of facilities with

strongly time-dependent demand and capacity to make better facility manage-

ment decisions.
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Chapter 2

Literature Review

The objective of this thesis is to study in detail the M(t)/E1(t)/n/n + q queueing

system and to find exact and approximate solution techniques for such systems. We

are also interested in the application of this system to Air Traffic Management. The

aim of this Chapter is to present background material relevant to our research.

Our research was driven by the usefulness of the M(t)/G(t)/n/n + q systems to

model en-route sectors in the U. S. airspace, and possibly, to model independent

runway systems in airports. The practical applications we are interested in include

very general conditions: a wide range of utilization ratios, even over-saturated for

some periods of time; variable capacity and demand; and multi-server systems. In

this literature review we show that it has proven to be very difficult to solve, even

approximately, such systems. This situation motivated us to analyze the behavior

of certain M(t)/G(t)/n/n + q systems that can be approximated reasonably well by

M(t)IE(t)/n/n + q systems and to develop numerical approaches for solving such

systems under very general dynamic conditions.

Therefore, we have undertaken the task of reviewing methodologies to solve or

approximate M(t)/G(t)/n/n + q queueing systems, with particular emphasis on the

case of Erlangian service times. The scope of our review also includes various method-

ologies to approximate time-dependent systems and several results for the analysis of

the transient behavior of queueing systems.

The organization of this chapter is as follows. We have classified the literature
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reviewed into five main groups. The first group presents research on the

M(t)/Ek(t)/n/n + q queueing system, with either stationary or nonstationary pa-

rameters (see Table 2.1). This group is subdivided into sections for exact and ap-

proximate solutions. The second group presents methodologies to approximate the

M(t)/G(t)/n/n + q queueing systems, with constant or time-dependent parameters

(see Table 2.2). This group is subdivided into three sections depending on the ap-

proach used to approximate the M(t)/G(t)/n/n + q model under both stationary and

nonstationary conditions. The third group shows results for the transient period of

queueing systems, from start until the system achieves steady-state (see Table 2.3).

Exact and approximate solution techniques for time-dependent queueing systems are

presented in group four (see Table 2.4).

Tables 2.1 through 2.4 summarize the four groups described above. We now

describe some of the symbols in Tables 2.1, 2.2, 2.3 and 2.4. In the column Objective,

P. means distribution of customers in the system, V refers to the expected waiting

time in the system, L is the mean queue length, P(Delay) is the probability of

delay, Pi refers for the probability of i customers in the system, r is the system time

constant (time to reach steady-state), and "statistics" means that the objective was

to obtain queue statistics, such as the mean number of customers in the queue, mean

waiting time, etc.. In the column Parameters, we specify the particular conditions

assumed, and if not specified, we assume p < 1, and any values for k (in Erlang

distributions) and n. Under the column Approach, "Algebraic" means that the

authors used algebraic manipulations to obtain their solutions; M/(D, G)/(1, n) refers

to the M/D/i, M/G/1, M/D/n and/or A/G/n; and, "moments of G" indicates that

the author used moments of the general distribution of service times in the queue. The

rest of the symbols are self-explanatory. In Tables 2.1 through 2.4, we can observe the

different trends of research and their evolution from the mid 1960's until the present.

We will elaborate on these trends of research after we discuss the results found in the

literature.

The last group of results presented in this chapter covers applications of queueing

theory, as well as other methodologies to the modeling of different parts of the Air

24



Results for M/E/n/n + q Queueing Systems

t~3
C~1

Solution Type Objective Parameters Approach Author, Year
Exact Pn,9 Stationary, Algebraic Shapiro, 196

state description q = o, k = 2
PnStationary, Algebraic Mayhugh & Mco

state description q = 1968
1%,9 Stationary, Numerical Murray & Keltn

state description q < o, n = 2 1988
P, Number of States, Nonstationary, q < co, Numerical Lee, 1997

state description k = 3 (solution), p> I
Approximate W Stationary, Use known results of Maakoe, 197

q = oo M / q = M()(1,kn) systems
I',,NStationary, q < o, Laplace Transform, Smith, 1987

k = 13 ,p2>3 1 residual time

0i

0

U,

tO

o



Table 2.2: Approximate Results for M/G/n/n + q Queueing Systems

Objective Parameters Approach Author, Year
Pn Nonstationary, Numerical, interpolate results Koopman, 1972

q < oo, p > 1, n = 1 of M/(M, D)/1/1+ q systems

P Nonstationary, Numerical, interpolate results Odoni & Kivestu
q < oo, p > 1 of M/(M, D)/n/n + q systems 1976

Pn Nonstationary, Numerical, interpolate results Kivestu, 1976
q < oo, p> 1 of M/(M, D)/n/n + q systems

W Stationary, Use W of M/(M, D)/n/n + q Cosmetatos, 1976
q = oo systems and moments of G

W Stationary, Use W of M/(M, D)/n/n + q Takahashi, 1977
q = oc systems and moments of G

V Stationary, Use W of Boxma, Cohen
q = oc M/(M, D, G)/(1,n)/(1, n) +q & Huffels,

systems and moments of G 1979

P. Stationary, Laplace Transform, residual time, Hokstad, 1978
q = oo, q < oo use results of M/G/(1, oo) systems

P. Stationary, Residual time, use results Tijms, van Hoorn &
q = oo, q < oo of M/G/(1,oo) systems Federgruen, 1981

Lq Stationary, Laplace Transform, residual time, Ma & Mark,
L _q = oo use results of M/G/(1, oo) systems 1995

W, Stationary, Residual time Nozaki & Ross
P(Delay) q < oo J1978

P, JStationary, Laplace Transform, Miyazawa, 1986
i = n,..., <q q <c residual time

P Stationary, Diffusion algorithm Kimura, 1983
q = 00

P, Stationary, Diffusion algorithm Yao, 1985
____q = oo and Hokstad's results

P Stationary, Use PASTA, conservation Kimura, 1996
q < oo law and approximation of W

Table 2.3: Some Transient Results for Queues Using Numerical Solution Techniques

System Objective Parameters Author, Year
M/G/1/1 + q P, Nonstationary, Koopman

q<Ifo 1972
M/(G, E&)/1/1 + q P'., Nonstationary, Kivestu

r q <co 1976
M/M/1/1 + q P'0, Stationary, Odoni & Roth,

_________r qccco 1981

Al/NI/n/n + q P',, Stationary, Kelton & Law
_____________initial conditions q C cc 1985

M/E&/n/n + q P'., Stationary, Murray & Kelton
__________ initial conditions q < cc, n = 2 1988
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Table 2.4: Some Results for Time-Dependent Queueing Systems

Approach System Objective Author, Year
Diffusion M/G/1/1 + q P. Newell, 1968
algorithm Various Survey Kleinrock, 1975
Numerical M/G/1/1 + q Pn Koopman, 1972

solution M/G/n/n + q P. Odoni & Kivestu, 1976

M/Ea/1/1 +q P., Kivestu, 1976
DELAYS

M/G/1/oo P. Malone, 1995
M/E 3,k)/n/n + q P., Lee, 1997

number of states
Stationary M(t)/M/n/oo Statistics Green & Kolesar, 1991

approximation M(t)/(M,G)/n/oo Statistics Whitt, 1991
M(t)/M/n/oo Statistics Green & Kolesar, 1993

Behavior M/G/n/oo Asymptotic Heyman & Whitt,
analysis behavior, stability 1984

M(t)/M/n/oo Degree of Green, Kolesar,
I , nonstationarity Svoronos, 1991

Traffic System. Most of the work has focussed on airport-related congestion. Less

effort has been dedicated to understanding and modeling of congestion in the en-route

sectors of the airspace. The lack of work addressing en-route congestion and delays

played an important role in the motivation of our research.

We finish this chapter with a summary of the results reviewed. This summary

includes a time-line of the results presented in this Chapter and of the leads we follow

in our research.

2.1 Previous Results on M(t)/Ek(t)/n/n+q Queue-

ing Systems

Many methodologies have been used to analyze the stationary and nonstationary

M/G/n system. As obtaining an exact solution for such systems has proven to

be mathematically intractable, most of the work has been focussed on obtaining

approximations for the distribution of customers in the system and in the queue, the

expected waiting time and the expected length of the queue. One special case for

which exact solutions have been obtained, under steady-state and for the transient
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period to reach steady-state, is when the distribution of service times is Erlangian

(see Kleinrock [17]). Although, there have not been obtained closed-form solutions

for systems with Erlangiani service time distributions. In Sections 2.1.1 and 2.1.2,

we present exact and approximate solution techniques for the A(t)/E(t)/n/n + q

queueing systenna, respectively.

2.1.1 Exact Solutions to M(t)/E&(t)/n/n + q Queueing Syse

tems

In this Section, we present the available exact results for the AJ/Ek/nin + q queue.

Shapiro [40] and Mayhugh and McCormick [28] generate an exact solution to station-

ary M/Ek/n systems with unlimited queue size (q = oo) by exploring the fact that the

Erlang distribution of order k is a sum of k independent exponentially distributed

random variables. Thus, a customer would need to clear k stages of exponential

service before leaving the service facility. Using the method of stages (see Gross

and Harris [8] or Kleinrock [17]), they fully characterized the system by writing the

Chapman-Kolmogorov equations with all possible state transitions. As the Erlang

order and the number of servers increase, the number of system equations grows

rapidly.

Due to computer limitations, Shapiro in 1966 and Mayhugh and McCormick in

1968, solved the system equations by using algebraic manipulations that differ on

a case by case basis. In both articles the system is solved in steady state and for

unlimited queue size. Shapiro solved a special case with k = 2 and proposed a state

description with two elements: the first element indicates the number of customers in

the system and the second element indicates the number of customers in the second

stage of service. Mayhugh and McCormick generalized Shapiro's results for any Erlang

order k. Their state description consists of a (k + 1)-tuple with the first element

indicating the number of customers in the system and the subsequent k elements

indicating the number of customers in the first through Ikes stage of service. Neither

Shapiro nor Mayhugh and McCormick provide closed-form solutions to the systems.
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Rather, they only presented the ordinary differential equations describing the system

and a method for solving the equations. The importance of Shapiro's and Mayhugh

and McCormick's solutions is that they proved that a solution to the Mi/Ek/n system

exists and it is unique. An important contribution of their results is that the state

description allows us to solve numerically systems with stationary and nonstationary

parameters.

In 1988, Murray and Kelton 1301 solved the M/Ek/2/2 + q, with q large enough to

effectively have an infinite capacity system, using a more detailed state description.

In this case, the state is described by a two-element vector indicating the number

of stages remaining in Server 1 and the total number of stages remaining in the

system, including the customers waiting in the queue. Murray and Kelton differentiate

between Server 1 and Server 2, and Server 1 is occupied first if both servers are

idle. The transitions between states become rather complicated and it is difficult

to extend their solution technique to more than 2 servers. A second consequence of

differentiating among servers is that the number of states increases considerably, even

for a small number of servers.

Much more recently, and unaware of the state descriptions proposed by Shapiro

and Mayhugh and McCormick, Lee [21J in 1997 suggested a (k+ 1)-tuple state descrip-

tion that varies slightly from that of Mayhugh and McCormick. The main differences

between those two state descriptions are that (z) Lee's state elements indicate the

number of stages remaining in the facility instead of the number of stages already

cleared, as in Mayhugh and McCormick; and, that (ii) Lee's state description indi-

cates the number of customers waiting in the queue while Mayhugh and McCormick's

indicates the number of customers in the system, including those being served. Both

state descriptions are equivalent and generate the same number of states to represent

the system.

Lee solved numerically a finite capacity AM/E 3/n/n + 3 system allowing him to

analyze the system under stationary or nonstationary parameters with no restrictions

in the utilization factor. lie proved that the total number of states in the system (T's),
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and Chapman-Kolmogorov equations to solve, is given by

= n+k)+ ( n+k -1)21Ts =+q +(2.1)

for any value of k, n and queue capacity q. The solution presented by Lee is only

for the case when k = 3 and q = 3, although his state description and proof for the

total number of states in the system are valid for any Erlang order k and any queue

capacity q.

We generalized Lee's solution technique for any Erlang order k. A reason for

using Lee's approach is that his methodology to obtain the state transitions in the

system is clear. We present his methodology in Sections 3.1.2 and 3.1.3 for the general

M(t)/E&(t)/n/n + q model.

An advantage of using numerical solution techniques, as used by Lee andI us,

over the solution techniques presented by Shapiro and Mayhugh and McCormick,

is that we can analyze the system during the transient period to reach steady-state

and under steady-state conditions, with constant or time-dependent parameters. The

approaches by Shapiro and Mayhugh and McCormick are more complex both analyt-

ically and computationally, and can only be used under steady-state conditions and

with stationary parameters.

Although many researchers have investigated the AI(t)/E(t)/n/n + q queueing

model in general, we are unaware if any researcher has been able to provide closed-

form expressions to solve such system.

2.1.2 Approximate Solutions of M/E/n/n+q Queueing Sys-

tems

Approximate solutions for the M/E&/n/n +q queues have been presented by Maaloe

[25] and Smith [42]. Maaloe, in 1973, obtained two heuristic formulae for the mean

waiting time in queue, with unlimited queueing capacity and stationary parameters.

His approximations are for steady-state. The first approximation uses the mean
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waiting time of the M/Ek/1 queue with an arrival rate of ( 9 ) of the arrival rate of

the multi-server queue, i.e., AEk,I ,n and the approximate mean waiting time is

given by

WEagn= -WE1 I -(2-2)
n

Maaloe showed that this approximation is very good for k = 1, the exponential case,

when the utilization ratio tends to 1. Clearly, this approximation is poor when p is

small and n is large since the probability that all servers are busy decreases as p tends

to 0.

Maaloe's second approximation requires the mean waiting times of the M/EI/ 1,

M/M/l and Al/Al/n queues, for which exact results are known. Maaloe intuitively

argues that

WEa1n = WE#,l (2.3)

is a better approximation for the mean waiting time than Equation 2.2, and that the

use of ,,compensates for the low traffic intensity. This is because the ratio ^', is

a function of p. We compare the approximation of Equation 2.3 with those suggested

by Cosmetatos [4J and Boxma et al. [3], and present sonic numerical examples in

Section 2.2.1 below.

An alternative way to solve the M/Ekin system approximately was presented by

Smith [42J. Smith, in 1987, proposed an algorithm to compute the distribution of the

number of customers in the system which turns out to be a direct implementation

of Hokstad's [11] approximation for the special case of an Erlangian distribution of

service times. The solutions obtained are only for steady-state and for a reduced set

of values for the Erlang order: k = 1, 2, 3 and oo (in his examples, he assumed that

k = 100 is large enough to approximate kc = oo). Smith does not provide any new

insight into queueing theory developments and only presents a case study validating

Hokstad's results with Erlangian service time distributions.
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2.2 Previous Results on M(t)/G(t)/n/n + q Queue-

ing Systems

In this Section we present several techniques used to approximate general

M(t)/G(t)/n/n+q systems. We can classify the different methodologies in three main

categories: approximations using known results of M/M/n and M/D/n systems;

approximations using the residual time in service of customers in the system; and,

approximations using diffusion algorithms.

2.2.1 Approximations Using Results for Systems with Ex-

ponential and Deterministic Service Times

The first approach approximates M(t)/G(t)/n/n + q systems by using known results

for A(t)/G(t)/1, M(t)/M(t)/n or M(t)/D(t)/n systems, or a combination of them.

We present results approximating the distribution of customers in the system, as well

as some results approximating particular queue statistics of the A(t)/G(t)/n/n + q

system.

Approximating the Distribution of Customers in the System

Along these lines, Koopman [20] and Odoni and Kivestu [36] suggested that for most

applications the general service time distribution has a coefficient of variation some-

where in-between those of an exponential distribution and a deterministic distribu-

tion. Koopman, in 1972, analyzed the single server queue. Odoni and Kivestu in

1976 extended Koopman's work to multi-server systems. The Chapman-Kolmogorov

equations describing the behavior of an M(t)/M(t)/n system were solved using a

Runge-Kutta method; they also solved numerically the differential equations for the

M(t)/D(t)/n system. Thc results for AM!(t)/M'I(t)/n and AM!(t)/D(t)/n systems prO-

vide the upper and lower bounds, respectively, for many M(t)/G(t)/n queues. Odoni

and Kivestu used a weighting formula to compute their results for A!(t)/G(t)/n sys-

tems. Kivestu [16] suggests that an alternative to interpolation is to use Erlang service
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time distributions for M(t)/G(t)/n systems.

The importance of this body of work is that analyses can be done for the transient

periods as well as for steady state. It also allows study of systems with nonstationary

parameters. (Koopman presented an example with periodic service and arrival rates).

Although queues are assumed to have finite capacity, the systems can be effectively

infinite capacity if the queue size is large enough. The numerical approach allows

analysis of queues with utilization ratios larger than one, a fact that is important

because in many applications the system becomes over-saturated for some periods of

time.

Approximating the Mean Waiting Time

In 1976, Cosmetatos [4] noted once again, that the mean waiting time in a system with

general service time distribution, with coefficient of variation in the range 0 C, 1,

lies between the mean waiting times of the A/M/n and A/D/n models with the

same parameters. He used exact values for the waiting times of A/A/n systems

and approximations for the mean waiting time of M/D/n systems, along with the

first and second moments of the service distribution, to generate the AI/G/n results.

The weighting function for combining the results of Al/A/n and M/DIn systems

is derived from the similarities between such systems and the M/G/n queue, and is

given by

=VG,n M,m + (1 -- )2IVDn7(2.4)

where v-2 = (#2 - #2)/#2; and 0, #2 are the first and second moments, respectively, of

the general service time distribution. Cosmetatos' results apply only in steady-state,

for stationary systems with infinite capacity. Numerical results show that Cosmetatos'

results are better than Maaloe's results7 mainly in low traffic intensities (see Table 2.5

below).

Takahashi [44J in 1977 proposed an approximation that used the first and ath"

moment of the service distribution instead of first and second moments. He argued

that the second moment "is not suitable for estimating the mean waiting time of
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a multi-channel queueing system," and showed numerically that his results provide

good approximations in low traffic intensities. His approach is somewhat different

from that of Maaloe and Cosmetatos because he approximates the mean waiting time

of the M/G/n system with an expression that is a function of a and the mean waiting

time of the MID/n model, and a is obtained from an expression depending on the

mean waiting times of both M/D/n and MMI/n queues.

Boxina, Cohen and Huffels [3J in 1979 used Cosmetatos' idea of a weighting func-

tion in their approximation of the mean waiting time in an A/G/n system. Boxma

et al. defined two quantities: "cooperation coefficient" and "normed cooperation co-

efficient," and used them to capture the measure of cooperation amo'ig servers in tile

system. The cooperation coefficient CGG in an A/G/n queue is given by

CG,n = " ; F1, 1(2.5)

VG,

and the normed cooperation coefficient NG,n in an M/G/n system is

NGn GMn(2.6)
CG,n

The cooperation among servers refers to the difference between having multiple single-

server systems, each of them with its own individual waiting queue, or having a multi-

server system with a common waiting queue for all servers. In the former case, when

a server becomes free, it may remain idle while there may be customers waiting in

the individual queue of a busy server. Therefore, there is an advantage to having a

multiple-server system since the expected waiting time in the queue may be smaller,

especially with low utilization ratios. Boxma et al. used a weighting function similar

to Equation 2.4 to approximate NG,n- Then, using Equations 2.5 and 2.6 with the

approximate value of NG,n, Boxma et al. give the following approximation of the

mean waiting time:

WGn= Wu" AG,l - (2.7)
NG,n WM,I

If we let PNG = 1, we can obtain the same approximation for the mean waiting time
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Table 2.5: Exact vs. Approximations of the Mean Waiting Time in an M/E 4/3
System

p WG,n (Exact) Maaloe (%) Cosmetatos (%) Boxma et al. (%)
0.1 0.00103 -16.85 2.18 -0.02
0.4 0.0536 -8.49 -0.37 -0.69
0.6 0.194 -4.71 -0.61 -0.66
0.8 0.688 -1.99 -0.40 -0.39
0.9 1.72 -0.92 -0.21 -0.20

suggested by Maalse [25] for the M/Ek/n queue. Note that Maaloees approximation,

Equation 2.3, assumes that the cooperation among servers is always the same, even

at low traffic intensities.

In Table 2.5 we compare the exact mean waiting time in the A/E 4 /3 system with

the approximations of Maaloe, Cosmetatos and Boxma et al., for various utilization

ratios. Columns 3 through 5 show the relative percentage errors. The values in Ta-

ble 2.5 were obtained from Boxma et al. [3]. The exact results taken from Hillier

and Lo [10], and double-checked using the exact solution technique described in Sec-

tion 3.1.3. Notice that the Cosmetatos and Boxma et al. approximations perform

significantly better than Maaloe's with low traffic intensities. Maaloe's approxima-

tion does not include the first and second moments of the service time distribution,

and as expected, the performance of the approximation with low utilization ratios is

poor because the "cooperation" among servers is not taken into account. Cosmetatos

approximation improves over Maaloe's over all utilization ratios but Boxma et al.'s

provides even better results for low utilization ratios.

These approximations are all heuristic nature and it is difficult to evaluate exactly

the reasons of improvement of one over the other. We can see that these efforts to

improve the approximations of the mean waiting time in the system take the form

of adding more quantities like the moments of the service time distribution and the

cooperation coefficients among servers, but no formal methodology has really been

developed along these lines. All approximations of the mean waiting time presented

in this section apply under stationary conditions and in steady-state.
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2.2.2 Approximations Using Residual Times of Customers

in the System

We present in this section two different approaches used to approximate M/G/n

systems using residual times. The first approach described is divided into two sections,

depending on the number of customers present in the system, and uses known results

for systems with infinite number of servers and single-server systems. The second

approach obtains approximations for limited queue size systems.

Using Results for A/G/oo and Al/GIl Queueing Systems

The first approach uses residual times of customers in the system to approximate

AI/G/n queues and separates the analysis of the queue into two parts. Then, results

for the A/G/oo and M/Gi systems are used in the approximation. Ilokstad [11],

Tijms, Van Hoorn and Federgruen [45] and, more recently, Ma and Mark [24] used

this technique to derive their approximations. The analysis of the MI/G/n system is

split into two parts. When the number of customers present in the system is below a

certain threshold, the queue is assumed to behave like an M/G/oo. Once the number

of customers is above the threshold, the system is analyzed as an Al/Gil system

with the mean service time scaled by the number of servers. The results presented

below are for steady state of systems with stationary parameters and infinite queue

size. The threshold for using MI/G/oo or M/G/l results differentiates the various

approaches.

Hokstad, in 1978, considered that the M/Gin queue behaves as an Al/G/oo queue

if the number of customers in the system m is less than the number of servers n, i.e.,

when m < n. For mn > n, the results used are those of an Al/G/l queue with the

modified service time. He used the Laplace transform of the service time (listribuition

and the probabilities for the remaining times in service for all custoniers in the system

to derive his approximations. He obtained an approximate distribution of customers

in the system. Hokstad also extended his results to the finite queue size case and

provided an expression for the total waiting time in queue.
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In 1981, Tijms et al. proposed three different approximations for the M/G/n

queue in steady-state and under stationary conditions. They used the PASTA result

(see Wolff [48]) and a recursive approach to generate the distribution for the number

of customers in the system (m) in all three approximations. As a general approach for

their approximations, at every epoch of service completion, they obtain the residual

life for the smallest service time of the customers being served either using the results

of an M/G/oo or M/G/1 queue. The first two approximations consider the same

threshold as Hokstad in splitting the analysis of the queue, i.e., when m < n or

m > n. The only difference between those two approximations is that the second one

simplifies one term inside of the recursion formula. The third approximation considers

a special case for the situation when a customer leaves the system leaving all but one

servers busy, i.e., only n - 1 servers occupied, while all servers were busy when the

leaving customer was in service. In the third approximation, Tijms et al. attempt

to capture the transition from all servers busy to having at least one server idle with

a variable threshold. Ma and Mark in 1995 followed the intuition from Tijms et al.

that a variable threshold may provide a more accurate approximation.

Ma and Mark showed that their approximation, with the variable threshold, gen-

erated better results for low utilization r-Atios and for a large number of servers. Ma

and Mark obtained the distribution of customers in the system, using the z-Transform

approach, with the distribution of residual time in service and the distribution of the

interdeparture time. They claim that the threshold for deciding which assumption to

use depends on the number of servers, the utilization factor and the service distribu-

tion as those quantities determine the traffic intensity of the system. If the threshold

is considered equal to n - 1, where n is the number of servers in the system, Ma

and Mark's results are exactly the same as those obtained by Tijms et al.'s first ap-

proximation. In the same article, Ma and Mark suggested that smaller systems, with

the same utilization factor and same service distribution, can be used to approximate

the mean queue length of larger systems. The problem is that they did not show

a methodology to obtain the function relating both systems. They only provided

certain characteristics for such functions and an example.
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Table 2.6: Exact vs. Approximations of the Mean Queue Length for an M/G/30
Queue

p L, (Exact) Tijms et al. Ma and Mark Miyazawa
0.10 5.325x 10-21 8.8427x 10-21 5.158 x10-21 5.518x 10-2r
0.30 1.626x 10" 3.807x 10~" 1.533 x 10-8 2.113 x 10-8
0.50 9.433x 10- 2.007x10-3 9.892x 10-4 1.279 x 10-3
0.70 0.4158 0.6072 0.4369 0.4675
0.90 29.16 31.02 28.98 28.57
0.95 101.3 102.5 101.1 98.44

Aoroximations for Systems with Finite Queue Capacity

In a different approach to obtain steady-state approximations for stationary systems,

Nozaki and Ross [33] and Miyazawa [29] used only the residual tine and the service

time distribution, along with the distribution of the number of customers in the

system. Nozaki and Ross in 1978 and Miyazawa in 1986 assumed a finite queue

capacity and allowed for over-saturated systems to be analyzed. Their numerical

results compared favorably with those obtained by Maaloe, Hokstad and Tijms et al.

The results from Nozaki and Ross and Miyazawa can be extended to infinite queue

capacity. Miyazawa's results are better in lower traffic intensities than Tijms et al.'s

results, as seen in Table 2.6.

Table 2.6 shows some examples comparing results for the mean queue length ob-

tained by Tijms et al., Ma and Mark and Miyazawa, for an A/G/30 queue with

Hyperexponential service time distribution. The values presented in Table 2.6 were

taken from Ma and Mark [24], with the exact values computed by them. No infor-

mation was presented on the technique used to calculate the exact results. In this

reduced set of examples, we can see that there have been improvements in the approx-

imations to handle lower traffic intensities and large number of servers, e.g. n = 30.

Ma and Mark's results are better approximations titan Miyazawa's and Tijms et al.'s

results.
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2.2.3 Diffusion Approximations of M/G/n Queueing Sys-

tems

A third approach to approximate stationary M/G/n systems in steady-state is by

using diffusion approximations: a discrete queueing process, in this case the number

of custoi'ers in the system, is approximated by a continuous diffusion process, e.g.,

{X(t)IX(t) _> 0}. Kimura [13] and Yao [49] used this approach in their approxima-

tions.

Kimura in 1983, formulated a diffusion process approximating the number of cus-

tomers in the system. The formulation assumes the infinitesimal mean and variance

in the diffusion process as piecewise continuous functions. The model assumes that

interdeparture times are independent, identically distributed random variables ob-

tained from the service time distribution. Interdeparture intervals are independent of

each other only when there are customers in the system. Otherwise, no departures

can occur. Kimura assumed that when the process reaches zero, it stays there for an

exponentially distributed time. We can see that a diffusion approximation tends to

improve for high utilization ratios as the system will be in a busy period most of the

time.

Kimura's approximation was improved in 1985 by Yao. He modified the boundary

conditions and used Hokstad's result to simplify the diffusion process equations. The

objective in Yao's modification is to obtain a diffusion approximation with better

results in low traffic intensities. Both, Kimura and Yao, integrate the pdf of the

diffusion process to obtain the distribution of customers in the system. In Table 2.7,

we present results for an M/E 2/10 queue using Kimura's and Yao's approximations.

The results were taken from Yao [49], with the exact values based on the tables of

Hillier and Lo [10]. We compared the exact results with the values obtained using

the algorithm in Section 3.1.3. Notice that Yao's approximation performs better tha

Kimura's approximations in lower traffic intensities.

The last approach for approximating M/G/n systems, presented in this Section,

which we were unable to include in any of the other categories, is described as follows.
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Table 2.7: Exact vs. Approximations of the Delay Probability and Mean Number of
Customers in the System for an M/E2/10 Queue

Kimura [14], in 1996, presented a transform-free approximation for the stationary

M/G/n/n + q system in steady-state. He obtained the probability of saturation Pn+q

using the PASTA result and a conservation law: the average rate of accepted arrivals

is equal to the average departure rate, not including lost customers, i.e.,

A(1 - Pn+q) = pE[min (m, n)], (2.8)

where m is the number of customers in the system. Kimura defined inq and rn.as the

number of customers in an M/G/n/n + q and M/G/n/oo system, respectively, and

obtained his approximation for the distribution of customers in the system assuming

that m, is related to m, by truncating and renormalizing the distribution of ma,.

He suggested the conditioning approximation

P(mn=j) P(mc= j)

P(mq < n + q) P(m,<zn<+nq)
(2.9)

to generate his results. He extended his results to infinite capacity systems. One

disadvantage in Kimura's approximation is that the distribution of customers in the

system is a function of the mean waiting time in the system, which needs to be
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pJ P(Delay), L (Exact) Yao-Kimura
0.10 0.11200x 10- 0.11921 x10-6  0.00306 x10-6

1.0 1.0 1.012
0.30 0.11368 x 10-2  0.11479x 10-2 0.025187x 10-2

3.0 3.0 3.008

0.50 0.0351 0.0359 0.0218
5.029 5.028 5.015

0.70 0.2166 0.2215 0.1955
7.407 7.394 7.267

0.90 0.6624 0.6686 0.6598
13.576 13.521 13.144

0.99 0.9627 0.9637 0.9631
81.547 81.458 80.937

j = 0,---, n+ q- 1I



Table 2.8: Exact vs. Approximations of the Mean Queue Length for an M/E 3 /3/3+10
Queue

approximated as well. The advantage is that his approximation can be implemented

relatively easier than previous approximations. In Table 2.8, we present numerical

results for the mean queue length Lq in an M/E 3/3/3+ 10 queue with approximations

of Kimura, Miyazawa, Nozaki and Ross, and our approximation using Heuristic 2,

ELC, in Chapter 3. The exact results were obtained with the exact solution technique

described in Section 3.1.3, and the results for Kimura, Miyazawa and Nozaki and Ross

were taken from a table in Kimura [14]. Kimura used Boxma et al. approximations

in obtaining his results. Notice that in general, the results are stably accurate except

for Nozaki and Ross which becomes extremely poor as p increases. We included our

ELC approximation to compare its performance with previous results, and to indicate

that it compares favorably with those.

2.3 Research on the Transient Behavior of Some

Queueing Systems

Queueing theory has focussed mainly on steady-state operations, when the effects of

the initial conditions have faded out. Such analysis of systems may be inappropriate in

many applied situations where the operations show periodic cycles or where operations

finish at some point in time. A more appropriate analysis of such systems would be

transient, where the system's operations are described for a fixed, finite amount of

time and takes into account the initial conditions.

Our next step is to review results on transient analysis of queueing systems, with

either stationary or nonstationary parameters. The solution techniques presented by
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p L, (Exact) ELC Kimura Miyazawa N-R
0.3 0.02202 0.0218410.02193 0.0200110.02001
0.6 0.36752 0.36655 0.36348 0.35322 0.34017
0.9 J 2.74400 2.74405 2.70929 2.76944 0.84588



Koopman [20], Odoni and Kivestu [36] and Lee [21] allow for transient analysis of

the queueing systems studied. Numerical solutions of exact systems provide results

at each instant of time, with constant or dynamic parameters. With constant param-

eters, this approach helps to determine the time to reach steady-state, if it exists. In

many real-life applications, we observe dynamic patterns of demand and service rates

and it is important to investigate if the systems ever achieve steady-state or reach

some equilibrium stage before the demand or service change, e.g., the hourly demand

at an airport or en-route sector.

In the queueing literature, there are few papers addressing the transient phase of

queueing systems. Kivestu [16], in 1976, investigated the behavior of the transient

period of MIM/1 to understand that of an M/G/1 system. Along this line of research,

Odoni and Rotih [37] presented a detailed analysis of the transient behavior of single

server queueing systems and tried to determine the time to reach steady state. They

proved empirically that the time to steady state is dominated by an exponential factor

with a time constant, defined as the relaxation time. This time constant is a function

of the utilization factor among other parameters. Their analysis included infinite

capacity, single server systems with stationary arrival and service rates.

In Section 2.1.1, we discussed the approach used by Murray and Kelton [30]. They

presented a different transient analysis of the M/Ek/2 system. Their objective was

to determine the effect of initial conditions on the transient behavior of the system,

through the use of simulation techniques. Similarly, Kelton and Law [12] carried out

a numerical examination to understand how the choice of initial conditions affects

the convergence of expected delays to their steady-state values in A/A/n systeis

with stationary parameters. Kelton and Law also discussed the implications of their

results for the initialization of steady-state simulations.

Transient results are difficult to obtain and are available only for a restricted class

of models, e.g., those that can be solved numerically. Many results of queueing sys-

tems involve transforms that are difficult and complicated to invert making it (lifficuilt

or impossible to track the transients. Other results are expressed through complex

functions that are difficult to evaluate for the transient period. Therefore, analysis of
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transients in queueing systems are not obtainable in many solution techniques.

2.4 Results on Queueing Systems with Nonsta-

tionary Parameters

The overwhelming majority of queueing papers to date has been dedicated to sys-

tem with stationary parameters, as seen from the set of results presented inl this

Chapter, while many of the most interesting queueing problems in practice involve

nonstationary parameters. In the queueing literature, we find two different principal

approaches to solving time-dependent systems: numerical methods and stationary ap-

proximations of time-varying systems. We address both approaches and cite relevant

methodologies in the two sections below.

An alternative methodology to approximate nonstationary systems was presented

by Newell [31] in 1968. He used a diffusion algorithm similar to the one used by

Kimura [13] and Yao [49], discussed in the previous section, but allowed for time-

varying infinitesimal mean and variance. Newell used the diffusion approximation to

analyze the behavior of single-server systems with slowly increasing arrival rate, which

become over-saturated over a period of time (rush hour). Kleinrock [18] presents a

detailed survey on diffusion approximations for systems with stationary and nonsta-

tionary parameters.

Another type of approach in studying nonstationary queueing systems includes

asymptotic behavior analysis. For example, Heyman and Whitt [9], in 1984, analyzed

the asymptotic behavior of queues with time-dependent arrival rates and presented

some definitions of stability for systems with periodic and non-periodic arrival rates.

An application of Heyman and Whitt's results is the study of dynamic steady-state

associated with systems with periodic arrival rates.

Green, Kolesar and Svoronos [7] in 1991 also investigated numerically the behavior

of multi-server systems with sinusoidal Poisson input. Grecn et al. showed that if

systems that are even modestly nonstationary (e.g., the amplitude of the variability
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arrival rate is 10% of its average) are approximated with stationary models, the

expected delays can be "seriously" underestimated. The importance of Green et

al.'s findings is that, in most cases, the nonstationarity of queueing systems cannot

be safely ignored without obtaining misleading results. Therefore, it is important

to develop accurate (exact or approximate) solution techniques for time-dependent

queueing systems.

2.4.1 Numerical Methods for Systems with Dynamic Pa-

rameters

Some of the results presented in this Chapter were obtained using numerical solu-

tion techniques. For example, Koopman [20], Odoni and Kivestu [36] and Lee [21],

among others, solved numerically the ordinary differential equations of single- and

multi-server systems with Exponential, Deterministic and Erlangian service time dis-

tributions. Although numerical solutions may be computationally expensive, they

provide a reliable analysis of time-dependent queueing systems. Therefore, an inter-

est in reducing the computational work involved in this type of approach has been

the focus of many researchers.

In 1976, Kivestu [16] developed an algorithm (DELAYS) to approximate the

M(t)/Ek(t)/1/1 + q system. His approach uses a set of differential equations similar

to those of an M(t)/D(t)/1 queue, but the epochs at which the system is solved are

scaled by a constant factor f. The epochs td, d = 0,1,..., are the times at which

customers depart the system. In an A(t)/D(t)/1 system, there is a departure every

units of time. Therefore, Kivestu solved the modified differential equations ev-

ery A units of time. The constant factor f depends on the time constants of the

M/i and M/D/i stationary systems to reach steady state, e.g.,

f-TAq,/,, /_ k + 1
TA,=I)= - . (2.10)
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Notice that the modified epoch length is bounded above and below by

1 2
< td - td- 1 5 (.1

p(td) p(td)

for values of k = 1 to k = oo. The intuition is that scaling the epochs compensates for

the time it takes a stationary M/E,/l system to reach the same state as a stationary

M/D/1 system. Even though Kivestu solves the equations using the modified epochs,

he obtains the probability of j arrivals to the system using the original epoch length,

i.e., O units of time.

The modified system of equations is considerably smaller than the system of equa-

tions for an M(t)/Ek(t)/1/1 + q queue. In particular, there are 100 x (1 - f)% fewer

equations to solve. Also, notice that the modified time increment td - td-_ lies in-

between the epoch lengths of the Deterministic and the Exponential service time

distributions, as suggested in Koopman and Odoni and Kivestu.

More recently, in 1995, Malone [27] presented an approximation for the

M(t)/G(t)/1 systems which does not assume any particular form of the service time

distribution. The number of arrivals during the time a customer is in service is in-

dependent of the customer being served. Malone assumes that customer departures

occur at td, d = 0, 1,..., the pseudo-departure epochs, which allowed her to obtain the

arrival rate just after a pseudo-departure epoch: A(td). She obtained a set of differ-

ential equations, exactly like those for an M/G/1 system, except that the probability

for the number of arrivals during an interdeparture time has an explicit dependence

on time. This dependence on time is reflected in the arrival rate A(td) and in the

service time distribution at td.

An important contribution of Malone's approximation is that it works with any

distribution of service time, and is not restricted to only Erlangian distributions, as

Kivestu's approach. She validated her results with an extensive set of examples with

various service time distributions for which exact or approximate solutions exist.
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2.4.2 Stationary Approximations of Dynamic Systems

Several techniques use steady-state results of stationary systems to approximate solu-

tions of nonstationary systems. Some of those techniques are the Pointwise Stationary

Approximation, the Average Stationary Approximation, the long-run stationary ap-

proximation and the Modified-Offered-Load approximation.

The Pointwise Stationary Approximation (PSA) is a simple-to-use approximation

since it only requires the steady-state expressions for systems with stationary param-

eters. PSA computes the approximations of long-run average performance measures

with the arrival rate that corresponds to each point in time, i.e., we evaluate perfor-

mance measures of systems in dynamic steady-state using the existing closed-form

formulae of stationary systems, with arrival rate A = A(t) at time t.

Green and Kolesar [5] in 1991 empirically proved that the PSA is an upper bound

for the results in M(t)/M/n systems with sinusoidal arrival rates. In Table 2.9 we

present some examples comparing stationary, exact and PSA results. Stationary

results are obtained by using the average arrival rate over the entire period using the

stationary M/M/n model. The results presented in Table 2.9 were extracted from

Green and Kolesar [5]. The exact delays resulted from numerical integration of the

Chapman-Kolmogorov equations of the system. As shown in Table 2.9, there are cases

in which PSA does not provide an accurate approximation. Green and Kolesar proved

with examples that as the frequency of events increases, the performance of PSA also

improves. Green and Kolesar presented a sensitivity analysis of the accuracy of PSA

as the number of servers, and the arrival and service rates vary. They observed that

(1) as p increases, with a low service rate p, PSA deteriorates in performance; (2) as

p increases, PSA improves its performance even for high utilization ratios; and, (3)

PSA outperforms the stationary approximation as the number of servers increases.

Whitt [46] also in 1991 proved that PSA is asymptotically correct as the arrival and

service rates increase, while the traffic intensity remains constant. Whitt suggested

that an intermediate approximation, the Average Stationary Approximation (ASA)

may be useful for the analysis of AI(t)/G/n systems. The ASA method uses averages
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Table 2.9: Comparing Exact Results with Stationary
M(t)/M/n Queue with Relative Amplitude = ' = 1 (A
arrival rate)

and PSA Results for an
= amplitude of sinusoidal

of arrival and service rates in an interval of time, and obtains results also using the

steady-state expressions for systems with stationary parameters. The length of the

time interval is proportional to the mean service time. For example, if the utilization

ratio exceeds one for a short period of time, but the time-averaged utilization ratio

remains under one, then ASA can be used while PSA cannot. The PSA method

cannot be used when the traffic intensity is close to one or above it because closed-

form expressions for stationary systems do not exist. The difficulty of extending the

use of PSA and ASA to the M(t)/EK(t)/n or M(t)/E(t)/n/n + q systems is the

lack of closed-form formulae to use at every integration step. An extension of PSA is

the Simple Peak Hour Approximation (SPHA). SPHA uses the average arrival rates

during the peak hour and obtains the expected peak hour expected delay, expected

queue length and delay probability. The SPHA was presented in 1993 by Green and

Kolesar [6].
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A =6,py= 2
n P(Delay) (Exact) Stationary PSA

E[Delay] (Exact)_11_1_ 1
6 0.4851 0.0991 0.5446

0.2539 0.0165 -

9 0.0860 0.0040 0.0888
0.0125 0.0003 0.0132

12 0.0084 0.0001 0.0087
0.0007 0.0000 0.0007

A=1,p= 0.2

n P(Delay) (Exact) Stationary PSA
E[DelayJ (Exact)__ __1

9 0.1214 0.0805 0.2298
0.1740 0.1006 0.5962

12 0.0149 0.0059 0.0365
0.0122 0.0042 0.0373



2.5 Application of Queueing Systems in Air Traf-

fic Management

In this Section, we describe models developed to measure capacity and delays in the

airports and en-route sectors of the Air Traffic System. We classify the models by

the methodology used in analyzing the models: analytical or simulation.

Even though we do not address simulation-based results in our research, we list

and describe briefly existing models that use simulations. We also present a few

analytical models that do not include the use of queueing theory but are relevant to

the application discussed in Chapter 5.

The discussion of the models below is a summary from the NASA/AATT report

presented by Odoni et al. [35], with the exception of the descriptions of LMINET and

the enhanced AND model.

2.5.1 Analytical Models

Two types of models using analytical methods to obtain results are described in

this Section. We have those focussed on airport capacities and those dedicated to

computing delays.

Airport Capacity Models

We begin by describing two airport capacity models: the FAA Airfield Capacity

Model, and the LMI Runway Capacity Model. The FAA model calculates the ca-

pacity of a runway system with continuous demand. It models a system of runway

configurations, from single-runway operations up to four active runways, for a total

of 15 different configurations. The FAA model assumes that each of the 15 configu-

rations can be viewed as a combination of four basic configurations: single-runway,

closely-spaced parallel runways, intermediate-spaced parallel runways and intersect-

ing runways. For each runway configuration, the model computes the "all arrivals"

capacity, the "all departures" capacity and the capacity of mixing arrivals andl de-

48



partures without reducing the arrival capacity. Once the above capacities have been

calculated, the model interpolates to obtain runway capacities with different mixtures

of arrivals and departures.

The FAA model implicitly assumes that taxiways and gates do not affect consider-

ably the airfield capacity. This model can be used in policy-level analysis with quick

approximate estimates of airfield capacities with varied parameters. A weakness of

the model resides in the logic used to insert departures between arrivals on a runway

causing misleading estimates when the number of arrivals is similar to the number of

departures.

The Logistics Management Institute (LMI) Runway Capacity Model attempts to

account for the stochasticity of airport operations by using normal random variables

to model input variables such as approach speed and runway occupancy time. The

model uses a "controller-based" point of view in spacing aircraft in the approach

path. An important result in the model is the "runway capacity curve," including

four basic points: "all arrivals," i.e., the runway is dedicated exclusively for arriving

aircraft; "freely inserted departures," with the same number of arrivals as in "all

arrivals" but some departures are inserted in-between arrivals; "alternating arrivals

and departures," with an equal mix of arrivals and departures; and, "all departures,"

for a runway dedicated to departures only. Other arrival and departure mixes can

be obtained by interpolating the points above. At this point, the LMI model is in

its development stage and only obtains capacities for single-runway airports and add

some ad hoc extensions to model multi-runway airports.

As suggested in [35J, a mixture of the LMI Runway Capacity Model and the

FAA Airfield Capacity Model, including the logic used in the LMI model with the

multiple-runway configurations in the FA A model, "could be a very useful tool that

would provide instantaneous estimates of runway system capacity with limited data

requirements."
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Delay Models

The analytical models presented in this Section use queueing systems to estimate

delays at airports and en-route sectors in the air traffic system. The first using

queueing models to investigate delays and saturation probabilities at airports was

that of by Koopman [20], discussed in Section 2.2.1. Koopman presented several

interesting example for JFK and La Guardia airports in New York with different

capacities and computed the expected delays at the airports. Odoni and Kivestu [36]
presented a handbook for estimating the average daily minutes of delay at major

airports. The handbook contains several demand profiles that can be matched with

the actual demand profile of an airport to estimate the total daily delay minutes.

The DELAYS algorithm, developed by Kivestu [16], computes the average delay

for all operations in a runway without differentiating between arrivals and departures.

DELAYS can be used for policy-oriented studies for obtaining approximate delay costs

and compare the performance of different alternatives to improve or expand airports,

or assess the efficiency in managing the existing demand at a particular airport.

DELAYS is also used as the queueing engine in computing delays at airports in the

Approximate Network Delays (AND) model. The AND model consists of a network

of airports, which are represented as interconnected queues. AND's objective is to

analyze the impact of changes in airline schedules, traffic volume and airport capacity

on flight delays on a national or regional basis. AND requires as input the capacity

and demand profiles, which are given in hourly data that can vary from hour to hour.

It also needs the flight schedule between all airports to be modeled and the detailed

itineraries of the aircraft performing the scheduled flights. The current version of

AND includes the 58 busiest airports in the United States. The output provided

by AND are the hourly expected queue length at each airport, the hourly expected

waiting time per operation at each airlport, the total delay suffered by aircraft during

the entire period of interest at each airport, and the fraction of aircraft delayed more

than certain amount of time at each airport. The statistics above are computed with

the probability vector P(i, t, kc), which is the probability that i aircraft will be in
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queue at time t in airport k.

The AND model does not account for congestion in en-route sectors. Some of

the assumptions in the model are as follows: the airports (queues) are "weakly" con-

nected, which means that no airport receives more than approximately 25% of its

flights from any other single airport (which is true for practically all major commer-

cial airports in the world); the operations are not distinguished as by arrivals and

departures and aircraft are served in a first-come-first-served discipline, but the vari-

ations in the traffic mix can be adjusted in the hourly capacity at each airport. AND

also assumes "that the delay suffered by each airport operation is equal to the ex-

pected value of the delay at the time when that operation is scheduled to take place."

A key feature of AND is the propagation of delays through the network of airports.

A detailed description of AND is presented in Malone [26J and [27].

In a parallel research project to the one presented in this thesis, an enhanced

version of AND has been started. The enhanced AND model includes several en-

route sectors that are modeled as multi-server queues. At this point, the enhanced

AND model is in its initial stage of development. Two of the fundamental problems

to overcome are the limited queue size in the en-route sectors and the rejection and

re-routing of aircraft that intend to cross highly congested en-route sectors.

LMI has also developed a queueing network model (LMINET) for the United

States airspace. LMINET models flights among a set of airports that traverse en-route

sectors. The inputs to the model are the sequencing of en-route sectors, the airport

capacities (given by the LMI Runway Capacity Model), schedules of arrivals and

departures of its airports and weather information. The current LMINET models 64

of the busiest airports in the United States. The sectors are assumed to be rectangular

square with roughly 120 miles on a side. Highly congested sectors are divided in

subsectors to facilitate the queueing calculations. The sector division is performed

empirically to reduce the substantial delays in the sector.

The development of the enhanced AND model and LMINET has been done si-

multaneously, with constant interactions between the MIT and the LMI research

groups. For example, we influenced the modeling of the LJMINET en-sectors with
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an MIEk/n/n + q queueing system instead of an M/D/n/n + q queueing system;

the enhanced AND model uses the same rectangular sectors and subsectors used

in LMINET, and follow the same trajectories between airports. Currently, LMI is

trying to implement M/lE/1 queues to model their airports, following the same ap-

proach used in AND. Two important differences between the enhanced AND model

and LMINET are that LMINET does not propagate delays and LMINET does not

provide flight and airframe specific information. LMINET computes only hourly ag-

gregate statistics for airports and en-route sectors. When LMINET reports large

delays and high congestion at airports, the flight schedules are modified in a similar

method as the FAA's current practice: scheduled aircraft departures to congested

airports are delayed. Aircraft that already departed to the congested airport cannot

be delayed, and flights coming from airports other than the 64 modeled by LMINET

cannot be delayed either. A description of the latest version of LMINET is presented

in Lee et al. [23].

2.5.2 Simulation Models

We classify the simulation models presented in this Section by the type of simulation

used: deterministic, node-link (N-L) and 3-Dimensional (3D) simulations. The only

model using deterministic simulation is the National Airspace System Performance

Capability (NASPAC) model. NASPAC objectives are to obtain statistical reports of

delays and flow rates. It was first conceived to undergo studies of strategic analysis

of national airport investments but has evolved to provide analysis of tactical nature.

NASPAC models airport runways and terminal and en-route airspace and uses as

input the flight schedules and the constant airport capacities. It is a low-level-of-detail

simulation model. One important feature is the itinerary generator. The itinerary

generator infers the flight legs a particular aircraft follows through out the day. On the

other side, NASPAC has long turn around times, is expensive and has questionable

validity (mainly due to the constant airport capacity assumption). It's use requires

extensive training and is labor intensive.

52



Node-Link Simulation Models

Node-link simulation models discretize airports and airspace into nodes and links.

Conflicts occur when two or more aircraft try to move to a node using the same link.

The conflicts are resolved by delaying one or more aircraft at a node according to a

pre-programmed strategy. Three models use N-L simulation: The Airport Machine,

SIMMOD and FLOWSIM.

The Airport Machine simulates in detail runways, taxiways and apron areas in

airports. The model covers all aircraft from a few minutes before landing until a

few minutes after take-off. It measures the flows and throughput capacities on the

airfield per unit of time, and provides the delays incurred at each airfield facility.

The Airport Machine relies on high-level-of-detail network representation of airfields

where planes move along the network of links and nodes. One assumption is that

take-off operations are independent from the route that the aircraft will follow after

take-off. The model simulates one airport at a time. The Airport Machine can be

used for design-level studies and to evaluate airport capacity and delays. In order to

use the model, the user needs to undergo a significant amount of training and it is

also considered labor intensive.

SIMMOD can be used with multiple airports at a time. The objective is to mea-

sure aircraft travel times, flows and throughput capacities. SIMMOD uses Dijkstra's

shortest path algorithm to determine aircraft paths when they are not pre-specified

by the user. Aircraft moves along a pre-specified high-level-of-detail network with

also specified "rules of the road." It has many options for simulating probabilistic

events and provides highly detailed output statistics. Although the user interface

is poor. SIMMOD requires considerable training, the (expert) user must also be

knowledgeable in ATM concepts and procedures, and it is labor intensive.

The Airport Machine and SIMMOD are widely used. The former is less labor

intensive than the latter. In order to choose either simulation model, there are few

trade-offs to consider in the decision: cost, quality of user interface, and model features

and flexibility.
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In FLOWSIM, the objective is to obtain delays and "ripple" effects induced by

capacity constraints. Such constraints are given by the airport capacities since en-

route sectors are assumed to have unlimited capacity. The delays are calculated

using airport capacity models and the miles-in-trail restrictions. FLOWSIM mod-

els airport runways and terminal and en-route airspace. In this model, aircraft fly

through pre-specified flight plans. FLOWSIM is the first prototype and is still un-

der development. The current version is simple and allows for some user interaction.

Comparing FLOWSIM and NASPAC, both model the same areas of the ATM system

but FLOWSIM is faster in operation than NASPAC.

Three-Dimensional Simulation Models

In this type of simulation models, aircraft are allowed to fly 3D routes in the airspace

with either pre-specified flight plans or flight paths that are derived from solving

aircraft dynamic equations. In the latter case, aircraft dynamic equations are solved

to simulate aircraft performance, causing actual flight plans to vary from the original

flight plans specified by the user. When airplanes are on the airport surface, the

simulation becomes two-dimensional. We present four models using 3D simulation:

TAAM, HERMES, TMAC and ASCENT.

The Total Airspace and Airport Modeler (TAAM) is a very comprehensive simu-

lation model: covers the complete gate-to-gate ATM process in detail. It can be used

as a planning tool or to conduct analysis and feasibility studies of ATM concepts.

TAAM is a high-level-of-detail model which requires an extensive training and it is

labor intensive. It provides many options and flexibility and has an excellent inter-

active graphic user interface. TAAM cannot model dynamically special airspace use

or hazardous weather, and it may not resolve all conflicts encountered. TAAM is the

most fully featured ATM simulation tool, including dynamic re-routing of airplanes,

but it is considerably expensive.

SIMMOD and TA AM are also competitors. Again, it is important to evaluate the

trade-offs for each model, as described in the preceding section, to wisely select the

use of any of them. Along with The Airport Machine and SiMMOD, TA AM is also
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a widely used simulation tool.

Another 3D simulation model is the HEuristic Runway Movement Event Simula-

tion (HERMES). The objective in HERMES is to evaluate parallel runway capacities

and operations, and provides average delays of aircraft using the runways. The model

is tailored specifically to represent the operations of London Heathrow and London

Gatwick airports. Real flight data is used in the model and it yields accurate results.

It has not been used widely because it is difficult to generalize to any other airport.

HERMES is labor intensive and requires an expert user.

TMAC objective is to determine conflicts and delays in the ATM system. It does

not have the capability to resolve the conflicts. A nice feature of the model is that

captures uncertainties of the trajectories, very useful in analyzing concepts such as

Free-Flight. The en-route sectors in the model are assumed to have infinite capacity.

TMAC is a high-level-of-detail, complex multi-element simulation model, which is

intended to solve specific problems. It is not used as a generic modeling tool.

Finally, the last model presented in this review is ASCENT. ASCENT evaluates

system-wide impact of new procedures, technologies and improved infrastructure. It

covers all activities in the ATM process: airports, strategies (ground holds), weather,

and en-route airspace, among others. The main focus of the model is in the terminal

area operations. ASCENT is easy to use and allows for user interaction with a good

graphical user interface. This model is recent and has not been validated adequately

yet.

ASCENT, TMAC, NASPAC and FLOWSIM can be used to simulate airport

runways and airspace. NASPAC and FLOWSIM are simpler to use than ASCENT

and TMAC, which are still in early stages of development. NASPAC is the more

mature model and is followed by FLOWSIM (which is also a prototype).

An advantage of 3D simulation models over N-L simulation models is the flexibility

provided in analyzing aircraft in the airspace. N-L cannot be used to simulate the

effects of implementing Free-Flight.
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2.6 Summary

In the previous sections, we have identified and reviewed trends in the research of

multi-server queueing systems, with both stationary and nonstationary parameters.

We summarize the results presented in Table 2.10. The purpose of this Table is to

illustrate the shifts in emphasis over the years. As seen in Table 2.10, early work

was focussed on finding exact solutions to the M/E/n models (late 1960's) through

solving a large number of equations.

The next trend of research focussed on approximations to the more general A'/G/n

queue. Most developments in this respect took place in the 1970's and 1980's. In-

terest ingly, many of the approximate solutions to systems with general service time

distributions used the Erlang distribution as an example in their numerical results.

This suggests that M/Ek/n/n + q systems may be used to approximate reasonably

well certain M/G/n/n + q systems. The validation approach used by several au-

thors included the numerical comparison of their results with the well known results

for MI/M/n and MI/D/n queues, as well as with previous work in the same area.

The approximations to M/G/n systems presented, and the improvements suggested

by some authors to previous results, are of a heuristic nature. Consequently, it is

difficult to validate the techniques used to obtain the approximations as no theoreti-

cal methodologies were used. In some cases, extra parameters were added intuitively,

showing certain degree of improvement when comparing the new results with lprevious

ones.

Most of the results presented in this review are concerned with steady-state solu-

tions. Interest in the analysis of the transient behavior of queues grew in the early

1980's. With more computing power, larger and more complex systems could be

considered. Even though there was an early interest in analyzing time-dependent

systems, it was not until the late 1980's and 1990's that more technioues were (level-

oped to approximate such systems.

The analysis presented in this Chapter confirms that few techniques can be used

in modeling the type of applications that motivated our research. Those app~lications
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Table 2.10: Literature Review Summary

57

Year M/Ek/n M/G/n Transient Dynamic
1966 Shapiro _1

1968 Mayhugh & Newell
______ McCormick _________

1972 Mcormick _ Koopman Koopman Koopman

1973 Maale

1976 Odoni & Kivestu, Kivestu Odoni & Kivestu,
Kivestu, Cosmetatos Kivestu

1977 Takahashi

1978 Nozaki & Ross,
Hokstad

1979 Boxma, Cohen
& Huffels

1981 TUms, van Hoorn Odoni & Roth
& Federgruen

1983 Kimura

1984 Heyman & Whitt

1985 Yao Kelton & Law

1986 Miyazawa

1987 Smith _I

1988 Murray & Kelton Murray & Kelton

1991 Green, Kolesar &
Svoronos, Green

1993 _ _ & Kolesar, Whitt

1993 Green & Kolesar
1995 Ma & Mark Malone

1996 Kimura

1997 Lee

1998 Escobar, Odoni Escobar, Odoni Escobar, Odoni
& Roth & Roth & Roth



require a wide range of utilization ratios, even over-saturated for some periods of time;

variable capacity and demand; and multi-server systems. For example, Lee's results,

that were motivated by our research, have been used to approximate the ATM ap-

plications of interest. The problem with Lee's approach is that it is computationally

expensive. Other examples include the simulation models described in Section 2.5.

Such models are even more computationally expensive and implementation requires

considerable training and expert users. A disadvantage of using simulation neth-

ods over analytical ones is that many experiments need to be performed to obtain

meaningful results.

We have followed some of the leads that were suggested in the analysis of queue-

ing systems. From earlier work in M(t)/E(t)/n/n + q queues, we used the method

of stages to propose a new state description and suggested a heuristic technique to

reduce the number of Chapman-Kolmogorov equations to solve. The numerical so-

lution technique used to solve the reduced set of ordinary differential equations was

influenced by the results of Koopman, Odoni and Kivestu and Malone. We also pro-

vided a time-varying solution of the Chapman-Kolmogorov equations, as Koopman,

Odoni and Kivestu and Malone did as well. With our heuristic, we can also perform

a transient analysis similar to the one presented by Odoni and Roth to determille the

time-constants of M(t)/Ek(t)/n/n + q models.

In the following chapters, we describe thoroughly our approach in obtaining exact

and approximate solutions of M(t)/Ek(t)/n/n + q queueing systems. We will also see

that our heuristic performs well under nonstationary conditions and various utilization

ratios allowing us to use it with the applications that motivated our work.
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Chapter 3

The M(t)/Ek(t)/n and

M(t)/Ek(t)/n/n + q Queueing Systems

In this Chapter, we describe in detail how to obtain exact solutions for the

M(t)/Et(t)/n and M(t)/E,(t)/n/n + q queueing systems. We also introduce four

heuristic techniques which simplify greatly the solution complexity.

We start by describing the method of stages used to represent the Erlang dis-

tribution in the M(t)/E,(t)/1 system to enable solution of such systems. Then, we

extend this approach to the case of multiple servers with limited and unlimited queue

size. Finally, we address the case with variable number of servers. Note that all the

results in this chapter apply under both stationary and non-stationary conditions,

unless otherwise specified.

3.1 M(t)/Ek(t)/n and M(t)/Ek(t)/n/n + q Solutions

Systems with Poisson arrivals and Erlangian service time distributions can be char-

acterize by a finite-state Markov process and a set of transitions among the states.

In the following sections, we provide the state description for single- and multi-server

systems with Erlangian distributions for the service time.
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3.1.1 State Description for Single-Server Systems

In the M(t)/Ek(t)/1 queue, the service time can be interpreted as each customer

needing to complete k independent, exponentially distributed sequential stages before

leaving the service facility. Thus, each customer can be considered as a package of k

tasks to be performed by the service facility. The service rate for each stage is kp(t),

with a corresponding expected time of du per stage. The expected service time for

completing all stages is01.
The usefulness of this approach is that we can derive a state transition diagram

with independent, exponentially distributed transitions that completely describes the

queue. Due to the memoryless property of Poisson processes, in any time increment

dt, the state can change only as indicated in the diagram. In the A(t)/E(t)/1

system, the states are defined fully by the total number of stages (or tasks) remaining

in the system to be completed for all customers. Figure 3-1 shows the state transition

diagram for this queue. For clarity, the time dependence has been omitted in the

figure. Additional details are available in [17].

Figure 3-1: M(t)/Ek(t)/l Queue

Using Figure 3-1, we can derive the Chapman-Kolmogorov equations describing

the behavior of the number of stages and, therefore, the number of customers in the

system over time. If the Chapman-Kolmogorov equations can be solved, performance

measures such as queue length and expected waiting time can be obtained.

3.1.2 State Description for Multi-Server Systems

If the system has multiple servers, more information is mieeded to characterize comi-

pletely the system state. The total number of stages is not sufficient to describe the

state of the system because, for a particular number of stages, the distribution of
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such stages among the servers may not be unique. In this section, we illustrate this

complication in greater detail, specify additional information required and show how

to obtain the exact state probabilities. We also introduce two heuristic approaches

to obtain the probability distribution of the number of customers in the system.

The information needed to describe the states in a multiple server queue with

exponential interarrival times and Erlangian service times, is the following:

* Number of uncompleted stages in the system

e Number of customers in service and in the queue

* Distribution of uncompleted stages among the busy servers

There are at least three ways to describe the states in the A(t)/E(t)/n queue.

First, let the system state be of the form (Xi, X2,a...,e,aq) where x indicates the

number of uncompleted stages at server i, 1 C i < n, and aq indicates the number

of customers waiting for service in the queue. This enumeration is a finest grain

description for the system state. Because of the extremely large number of states,

qn t , this description is not considered further in our work.

The second way to describe the states is the one suggested by Shapiro [401 and

Mayhugh and McCormick [28J, and similarly by Lee [21J (see Section 2.1.1 for specific

differences among their state descriptions). We follow Lee's state description in our

discussion. He proposed a (k + 1)-tuple state description of the form

(ak, ak..I, ..., a,, aq) where a, indicates the number of servers with i stages remaining

(i.e., ak servers have k stages to complete, ak- servers have k - 1 stages to complete

and so on), for 1 C i < k, and aq indicates the number of customers in the queue

waiting for service. We shall refer to this as Description 1.

Using Description 1, for a system wvith n servers and no customers waiting for

service, i.e., Uq = 0, the number m of customers in the system (all of them being

served) is given by

mn = xi a1
i=1

where m < n. The number of idle servers is given by n - m. If a, > 0, the number
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of customers in the system (either being served or waiting for service) is m = n + a,,

since
k

a, = n

and m > n. The total number of stages left in the system, i, can be obtained from

the following formula
k

I = 13aii +a,k.
i=1

We now present an alternative state description, Description 2, that yields a more

compact representation. Define the state by a three element descriptor (, I, r),

where I is the number of stages remaining from all customers in the system, m is the

number of customers in the system and r is the pattern identifier needed when (I,m)

is not enough to fully specify the state. The number of busy servers is given by the

minimum of the number of customers in the system, M, and the number of servers,

n. To better explain the situation of multiple patterns for a given combination of I

and in, consider the following example:

Let the state of the system be (11, 5, r) in an M/E 3/5/5+q queue (see Figure 3-2).

Thus, 11 uncompleted stages from 5 customers are distributed among the 5 available

servers. This can occur in one of three ways, shown by the patterns (a), (b) and (c)

of Figure 3-2. The number of shaded circles in each row in the figure denotes the

number of uncompleted stages at a particular server. For example, pattern (a) has

one server with three stages remaining to be completed and four servers with two

stages remaining.

000 000 oo
000 000 000 l = I Istages remaining00 000 000 =

00 00 QQ0 Q r =a.b.c

(a) (b) (c)

Figure 3-2: Alternative patterns for the state (11,5, r) in a AM/Ea/5 Queue

In order to use Description 2, we need an algorithm to generate all possib!e pat-

terns (and, thus, values of r) for the reduced state vector (I,m). Such an algorithm
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is provided below.

The two representations, Description 1 and Description 2, are equivalent. For

example, state (1, 4,0,0) of Description 1 corresponds to state (11,5, a) of Description

2, as shown in Figure 3-2. The disadvantage of Description 1 is that for larger

Erlang orders, the (k + 1)-tuple state description becomes long and complicated.

An advantage of Description 1 is that the Chapman-Kolmogorov equations can be

written quickly in a more systematic way than when Description 2 is used. The major

disadvantage of Description 2 is that, as the Erlang order and the number of servers

increase, the number of possible patterns for a particular (l,m) combination also

increases rapidly. The advantage of Description 2, is that it leads to the derivation

of the heuristics presented in Section 3.1.4. These derivations are shown in Sections

3.1.3 and 3.1.4.

Algorithm: Pattern Generator

This algorithm generates all patterns associated with specific values of I and m in

Description 2. It works by assigning uncompleted stages to servers in a left justified,

top justified manner such that each busy server has at least one uncompleted stage,

and no servers have more than k stages.

To understand how the algorithm works, refer to Figure 3-3. Each pattern is

a matrix of circles, with n rows and k columns, where the uncompleted stages are

denoted by shaded circles as in figures 3-2 and 3-3. If there are fewer than n customers

in the system, m < n (thus, m busy servers), then the bottom n - m rows contain

only empty circles (the servers are idle). The rest of the servers will be assigned stages

(the circles will be filled) according to the algorithm below.

The algorithm is as follows:

* Input data: I, m, ni, kc

* IF mc<n

* THEN last ni - m rows are not used (idle servers)

* IF m> n

* THEN draw pattern for I = I - k(m - ni) uncompleted stages, FLAG ON
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oo.oTlss ...s0: : : n-m

Figure 3-3: The n x k matrix of circles of a pattern when m < n

* stagesleft = 1, column = k

* k"^ COLUMN: minimum and maximum stages this pass

* smin[column] = minimum number of stages in column k

* smax[column] = maximum number of stages in column k

* stagesleft = stagesleft - smin[column]

* FOR stages[column] = smin[column] TO smax[colunj

o column = column - 1

o (k - 1)s' COLUMN: minimum and maximum stages this pass

o smin[column] = minimum number of stages in column k - 1

o smax[column] = maximum number of stages in column k - 1

o stagesleft = stagesleft - smin[column]

o FOR stages(column] = smin[column] TO smax[column]

o column = column - 1

o (k - 2 )nd TO 2"id COLUMNS: Nested loops as (k - 1)" COLUMN loop

* 1" COLUMN: No loop here since all stages left should be the same

as the number of busy servers

* stages[coluinj = stagesleft

* PRINT PATTERN LOOP

* column = column + 1

o stagesleft = stagesleft + smax[columnj + I

o column = column + 1

o stagesleft = stagesleft + smax[columnj + 1
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o column = column + 1

* stagesleft = stagesleft + snax[column] + I

* IF m > n

* THEN identify pattern obtained with original state (l,m), FLAG OFF

* END

The PRINT PATTERN LOOP has the following steps:

* FOR row = 1 TO min{m,n}

o FOR col = ITO k

o IF stages[col] > row

o THEN use location (row,col)

o ELSE do not use location (row,col)

* END

In the first loop of the algorithm, when column = k, the minimum and maximum

number of uncompleted stages is given by

smin[column] = max{O, stagesleft - (column - 1)p}

smax[columnj = min p,
IIcolumn - 1

where p = min{m, n} indicates the number of busy servers. For the remaining k - 2

loops in the algorithm, for 2 < column < k - 1, the minimum and maximum values

are

smin[column] = max{stages[column + 11, stagesleft - (column - 1)p}

S smax[columnj = mi p t lef

3.1.3 Exact Solution Technique

In this section, using Description 1, we derive the equations needed to obtain the

state probabilities of the M(t)/E&(t)/n and M(t)/Ei(t)/n/n + q systems. Let S0

be the array containing the state probabilities when m < n, and let So(a&, ... , a1)
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be the probability of state (at, ...,a1,0) for which EU1 ai < n. Let Qo be the state

probability array of states (at, ..., a1,0) when it a1 = n, and m = n, with the state

probabilities specified with Qo(at, ..., ai).

Similarly, let Q, be the state probability arrays for the case in which aq > 07

and let Q,(ak, ..., ai) be the state probabilities of state (at, ... ,a,, s) when there are

s customers waiting for service in the queue. The total number of customers in the

system in this case is n + s. If the system has infinite queue size, then 1 C s < oo. If

the queue size is limited, 1 < s < q, where q is the maximum number of customers

that can wait for service.

For the case in which the queue size is limited, the array Qq has the state probabil-

ities Qq(at, ..., a1) when there are n + q customers in the system. We have specifically

identified the arrays Qo, Q, and Qq because the transitions between states are dif-

ferent for the elements in each of these arrays.

Total Number of States

The arrays So and Q, (for 0 C s < q) are very sparse because most of their elements

do not represent states in the queueing system. The total number of states in the

limited queue size system that need to be considered is given by Equation 2.1, and is

repeated below:

n~k n+ k-1
Ts = + q (3.1)

n n

Note that the first term indicates the number of states when the queue is empty,

and the second term indicates the number of states for the customers waiting in the

queue. Table 3.1 shows various combinations of k, n and q, and their corresponding

number of states which increase with the order of max{(n+gq)!, q(n +k - 1)!}. Notice

that as the Erlang order, the number of servers and/or the size of the queue increase,

the number of states in the system grows rapidly.
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Table 3.1: Number of states for various k, n and q

State-to-state Transitions

A transition between states occurs due to a stage completion or an arrival of a new

customer to the system. The stage completion rate is kp(t) and the arrival rate

is given by A(t). Table 3.2 shows the transitions for each type of state and their

corresponding state-to-state transition rates.

As mentioned earlier, the multidimensional arrays So, Qo, Q, and Q, are very

sparse. The number of elements in each k-dimensional array is (n + 1)', for a total

of (q + 2)(n + 1)k elements in all arrays, where only Ts elements (see Equation 3.1)

are non-zero. The zero elements in the arrays represent the probabilities of the states

that are impossible to reach due to the boundary conditions. Therefore, the a priori

probabilities of such states are zero. As a result, the transitions to the zero probability

states can be omitted in Table 3.2. The states with zero probability are described as

follows.

Array So represents states in which there are less than n customers in the system,

m < n, and only m servers are busy. Therefore, in array So, the states with index

sum greater than n - 1, E a > n - 1, and a, $ 0 have zero probability since there

are only 0 to n - 1 customers in service (and in the system) and no customers in the

queue. On the other hand, arrays Q, for 0 < s < q, represent the states in which

there are n + s customers in the system and all n servers are busy. Th'zs, the elements

in Q, representing states with index sum different from n , Ea $ n, and a, $ S

must equal zero and occur with zero probability. Therefore, transitions to and from
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k n q Number of States
4 3 1 55
5 5 5 882
3 15 5 1,496
4 15 5 7,956
5 15 5 34,884
3 50 25 56,576
4 50 25 901,901



Table 3.2: State-to-State Transitions for the Exact Solution Technique

From State In To State In With Rate

(at, ... ,ai,0) So (at + 1,a_ -, ... ,a 1 ,0) So A(t) if m < n - 1

(at + 1,ai,..., a,0) Qo A(t) if m = n -1

(at - lati + 1,at-2,...,a,0) So atkp(t)

(ak, akI - 1,ak-2 +1, ... ,aI,0) So at_ ikp(t)

(ak, ... , a, - 1, ai_1 + 1, ... ,ai, 0) So aikp(t) for i =k..2

(at,ata_i,..., ai - 1,0) so aikp(t)

(at, ... ,ai,O) Qo (ak, ... ,ai,1) Qi A(t)

(ak, ..., a - 1, a.-I + 1,...,a1 ,,0) Qo aikp(t) for i = k...2

(ak, ak_ -, ... , a, - 1,0) So aIkp(t)

(a, ... , a,, s) Q,(a ,a 1, ...,a, s + 1) Q+i A(t)

(1 <; s < q) (ak,., ai -- 1, aj_ I + 1, ..., , s) Q, aikp(t) for i = k ... 2

(ak + 1, ak_ , ..., 7a,-- 1, s - 1) Qs, a Ikp(t)

(ak, ... , a,, q) Q, (ak,.. ai - 1, ai_ I + 1 ,,a, q) Q, ajkp(t) for i' = k ... 2

(q < oo) (aL. + I, ak_ 1, ... , a , q- 1) Q,_- a 1kp(t)
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states with zero probability do not occur. For example, the probability of entering a

state in Qo with index sum Q_, ai = n - 1 is exactly zero because the number of

customers in the system is defined to be n and, therefore, the number of servers in

use must be exactly n and not n - 1.

Chapman-Kolmogorov Equations

The state transitions specified in Table 3.2 lead directly to the Chapman-Kolmogorov

equations for the M(t)/Ek(t)/n and M(t)/Ek(t)/n/n + q systems. The equations for

solving the state probabilities are divided into five cases. First, when

a, = m < n - 1, the equations are

So(ak,...,aI)(t) = -(A(t)+mkp(t))So(ak, ..., a1 )(t) (3.2)

+A(t)So(a -1, ..., a,)(M
2

+ Z(a + 1)kp(t)So(ak,o..., a, + 1, a.. --- 1, ... , ai)(t)
i=k

+(ak + 1)kp(t)So(ak, ak_1 ,..., a, + 1)(t).

Second, when E,= ,a = m = n - 1, they are given by

SO(ak, ...,al)(t) = -(A(t)+ mkp(t))So(ak, ..., a,)(t) (3.3)

+A(t)So(ak - 1,..., al)(t)
2

+ Z(a + 1)kp(t)So(ak, ... , a, + 1, ai_ - 1, ... , a1 )(t)
i=k

+(ak + 1)kp(t)Qo(aka, ak1, ... , a, + 1)(t)

and
k

So~s,..,ai)t) 0if Z a # m, whereO 5m5n - 1. (3.4)
t=1

Once the number of customers equals the number of servers, mn = n, the equations

are

Qo(ak, ..., ai)(t) = -(A(t) + nkp(t))Qo(ak, ..., ai)(t) (3.5)
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+A(t)So(ak - 1,...,ai)(t)
2

+ jE(aj + 1)ki(t)Qo(a,...,aj + I, aj,_ - 1, ...,a)(t)
i=k

+(ak + 1)kp(t)Q(aaa..i,...,ai + 1)(t)

and
k

Qo(a,.a)(t)=O if ja,$0n. (3.6)

The equations of the state probabilities when there are customers waiting for service,

m > n, are given by

(a, ... , a) = -(A(t) +nkp(t))Q,(ak, ... ,a1 )(t) (3.7)

+A(t)Qs,(ak,-..., a)(t)
2

+ jE(aj + 1)kp(t)Q,(ai, ... , a, + 1, ai 1 -- 1, ... , a)(t)
i=k

+(ak + l)kp(t)Qs, 1 (ak - l, a_.,...,a1 + 1)(t)

and
k

Q,(ak, ..., ai)(t) = 0 if 3 a1  i, (3.8)
i=I

where 1 < s < q, with q = oo if the queue size is unlimited. Finally, if q < oo, then

the following set of equations are needed when the number of customers in the system

is m = n + q:

Qq(ak, ..., ai)(t) = -nkp(t)Q,(ak,...,ai)(t) (3.9)

+A(t)Q,_.l(aL., ... , a, )(0)
2

+ ~s+ 1)kp(t)Q(a, ..., a, + l, a._.1 - 1 .,ai)t
i=k

and

Qq(ak, ... , a1 )(t) = 0 if 2 a1 $ ni. (3.10)
i=1

Even though the Chapman-Kolmogorov equations are relatively straight forward

to write from the state-to-state transitions, the number of equations to solve can lbe
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extremely large.

A detailed example of the M/E 4 /3/4 queueing system is presented in Appendix A.

In this Appendix, we show the state transition diagram and derive the state-to-state

transitions with their corresponding probabilities. We strongly recommend that the

reader consult Appendix A bef9re proceeding to the following section in order to

appreciate the complexity of the state transitions even for such a small system as the

MI/E4 /3/4 queue.

In Section 4.1, numerous examples of numerical solutions of Equations 3.2 through

3.10 are presented. The software used to solve numerically the state probabilities is

described in Section 5.1.2.

3.1.4 Heuristic Solution Techniques

As seen in the previous section and in Appendix A, solving the M/E£/n/n + q queue-

ing system may involve a large number of equations and very complicated state-to-

state transitions. Such a large system of equations may require a long computational

run to obtain a solution and, in some cases, it may even be too large to solve using

currently available software and hardware. Because of this, we have developed two

heuristics to reduce the number of simultaneous differential equations to solve. As

a result, we are able to accurately solve large systems much faster, allowing solution

of systems with numerous independent queues or even networks of queues (intercon-

nected queues).

The two heuristics developed are described below. Both heuristics use Descrip-

tion 2, with states of the form (1, m, r), where 1 is the total number of stages remaining

in the system, m is the number of customers in the system and r is the lpattern iden-

tilier in case (I, m) is not unique.

Combination of States into a Single State

The basic idea in the heuristics is to reduce the number of equations by combining

each collection of states (I, m, r) into a single state (I, mn). This means that we shall
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not specify a unique state for every different pattern with the same (1, in).

When combining the multiple states into a single one, we modify also the transi-

tions among states. Two possible transitions can occur when a customer completes

a stage. If the stage completed was the last one needed for a customer to exit the

service facility, the customer leaves the system and the system moves to a state with

one customer less and one stage less to complete. The second type of transition is

when a customer completes one stage of service but the customer remains inl service.

In this case, the system changes to a state with one stage less but with the same

number of customers. Let the rates at which these transitions occur be a1,.,kI(t) and

#,,kp(t), respectively, where the subscript 1, m indicates the state from which the

transition originates.

The algorithm utilized to make the transformation from states (1, in, r) to state

(1, m) is what differentiates the two heuristics, an(d the difference resides in the as-

sumptions made to obtain the transition probabilities am and /31,,n. Let P be the

array containing the state probabilities, and let P,,, be the state probability of state

(1, m). As in the exact solution technique, the state probability array P is also very

sparse.

Heuristic 1: Equally Likely Patterns (ELP)

The primary assumption in this heuristic is that all pattelns, r, in states (1, in, r) are

equally likely. Under this assumption, the state transition probabilities are as follows:

Suppose the system is in state (1, n). Let V be the set of all pattern identifiers

that satisfy i and m, and let d be the total number of identifiers; let s 10 be the number

of servers with only one stage remaining in pattern i; and let a1,1 be the transition

probability to a state with I - 1 stages and mn - 1 customers. (In the example of

Figure 3-2, V = {a, b, c}, s , = 0, sl = 1 and s1, = 2.) Hence,

a1rnm = A Z stu, (3.11)

where p = min{mn,n} indicates the number of busy servers, is the transition p~roba-
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bility of moving from state (1, m) to state (I - 1, m - 1).

The transition probability from state (1, m) to state (I - 1, m) is then given by

#M = 1 - at,,(3.12)

where both states have the same number of customers. The procedure for deriving

the transition probabilities atm and #km, under Heuristic 1, is presented with an

example in Appendix A.

Heuristic 2: Equally Likely Combinations (ELC)

For each pattern in state (1, m), we can count the number of different combinations

of stages remaining in the servers. The number of combinations in pattern i is given

by

C p. (3.13)
Pi!P2---Pz!

where p = min{m, n} is the number of busy servers, x is the number of different

combinations of stages in the servers, and pi denotes the number of servers with equal

number of uncompleted stages, and j = 1, 2, ..., x. The total number of combinations

for a particular state is given by

Ctotai = : C. (3.14)
iEVD

(In the example of Figure 3-2, in pattern (a), x = 2 and C. = 5; in pattern (b),

x = 3 and Cb = 30; and in pattern (c), x = 2 and Ce = 10.)

The fundamental assumption in this heuristic is that all the possible combinations

of uncompleted stages in the servers, C'total, are equally likely. Under this assumption,

the transition probability to a state with one fewer customer is then given by

1
pC'mo=ai siuCD (3.15)

and flr,m is again as defined in Equation (3.12). An example deriving the transition
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probabilities a,,m and #3 ,m, using Heuristic 2, is also presented in Appendix A.

Total Number of States

If the system has unlimited queue space, there are an infinite number of states. To

avoid an unstable queue, in this case we need to satisfy the relationship

A(t)
P n(t)

For either heuristic, the reduced number of states and their transitions can be

shown in a diagram. Figure 3-4 shows the state-transition diagram for the

M(t)/Ej(t)/n/n + q queue. For ease of reading, the time dependence has been omit-

ted. In the top rows of the figure, we show the values of the number of customers, in;

the values for the number of uncompleted stages, 1, are shown inside the ovals.

Every customer that enters the system provides k stages to be completed before

he/she leaves the service facility (see Figure 3-4). Therefore, we need to keep track

of the number of servers in use to determine the service rate at which the system op-

erates. We must separate the analysis into two sections: when m < i, the "growing"

section, and when m > n, the "queueing" section. Note the growing and queueing

sections in Figure 3-4. In this growing section the number of states increases each

time a new customer arrives at the system and enters one of the available servers.

When the (n + 1)'" customer arrives at the system, the queueing section starts. All

servers (n total) remain busy when i or more customers are present in the systemi.

In the former case, the number of states with exactly m customers in the system

and n servers occupied, is given by m(k - 1) + 1, and the total number of states in

the growing section (imp to nt customers present) is

Sc = Z[m(k - 1)+ 1J = (kc- )1 +1) +rni+ 1. (3.16)

Every space for a customer waiting in queue provides n~k - 1) + 1 states to thme

queucing section and to the system.
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Figure 3-4: M(t)/Ek(t)/n Queue

With q < oo, the number of states in the queueing section is

SQ = q[n(k - 1) + 1], (3.17)

and the total number of states in system is represented by

(3-18)SS = SG + SQ

Ss = (k -- 1)[f(71+qn]+q+n+1.
1 21

Notice that the number of states is of the order max{kn 2 , knq}, generally much

smaller than the number of states in the exact solution. As in the exact solution

technique, this number depends on the number of servers, the Erlang order and the

size of the queue.
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Table 3.3: State-to-State Transitions for the Heuristic Solution Techniques

State-to-State Transitions

In both heuristics, we need only to evaluate the state-to-state transition probabilities

UI,m and #,mn for the states in the growing section. This section of states includes the

column of states where the number of customers is equal to the number of servers in

the system. Each column of states in the queueing section has the same state-to-state

transition probabilities ar,m and #i,m as the column that has exactly in customers

and n servers occupied. This is because the distribution of stages remaining in the

queue (waiting to enter a server) does not affect the stage distribution for customers

in service. The only difference occurs in the (n + q)lh column where transitions to

and from the right do not occur since no more than n + q customers are allowed in

the system.

As in the exact solution technique, state transitions occur when a customer arrives

to the system (rate A(t)) or when a service stage is completed (rate kp(t)). Table 3.3

summarizes the state-to-state transitions for the reduced number of states.

The total number of elements in the three-dimensional state probability array P is
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kn(n+q) 2, and only Ss elements (see Equation 3.18) are non-zero. The zero elements

represent the probabilities of the states that cannot be reached due to the boundary

conditions, thus, the a priori probabilities of those states are zero. Therefore, the

transitions described in Table 3.3 are not present in all states since the transitions

to the zero probability states can be omitted. The states with zero probability are

described as follows.

The states with I > km when only m customers are present have probability

zero since it is not possible to have more than k stages per customer in the system.

Similarly, states with 1 < m, if m < n, or with I < n + ik, if there are i customers

in the queue, have probability zero because it is not possible to have less than one

uncompleted stage per customer in service and less than k uncompleted stages per

customer in the queue. Hence, transitions to and from states with zero probability do

not occur. Figure 3-4 shows all the states that do not have zero a priori probability.

For example, in Figure 3-4, in the column with 2 customers, we cannot enter a state

with only one uncompleted stage, 1 = 1, at the bottom of the column since we would

have only one uncompleted stage for two customers. Note, as well, that a transition

from a state with I = 2k + 1 to a state with I = 2k, with 2 customers, at the top of

the column, cannot occur since we would have more than 2k uncompleted stages for

only two customers. Therefore, the states (1,2) and (2k + 1,2) from the examples

above, are not present in Figure 3-4.

Chapman-Kolmogorov Equations

Now, we can write the Chapman-Kolmogorov equations for both queues Ai(t)/Ek(t)/n

and M(t)/Ek(t)/n/n + q. Equations 3.19 through 3.25 represent the dynamics of the

growing section. We first show the equations when the number of customers mn is less

than the number of servers in the system, m < nt:

Po,o(t) = -A(Q)Po,o(t) (3.19)

+k p(t )P1 , (t )
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Pmik,m(t) = -(A(t) + mkp(t))Pkm(t)

+Amkm+I(t)Pm+init)

+aynk+I,M+ I(m + 1)kpL(t)Pmk+llrm+l(t)

= 1, 2,..., (n - 1)

Prnk-x,m(t) = -(A(t) + mkp(t))Pnk-x,m(t)

+A(t)PmI-k-,I(t)

+amk-+,mmkp(t)Pi+mk-t+,m(t)

+amk-x+l,m+l (m + 1)kpz(t)Pyk -x+ I m + I(t)

for x = 1),

x = 1, 2,7.,( 1)(k - 1),

Pmk-y,m(t) = (3.22)-(A(t) + mkp(t))Pnk-y,m(t)+

+#m3yn-y+ l,mmykp(t)Pmnk-y+ I m~t

+ami-Y+I,mn+(m + 1 )kp (t) Pmnk- y+ I mn+it

for M = 1,2, ... , (n - 1),

y = (m - 1)(k- 1) + 1,(m-1)(k-1)+2,...,in(k-1),

and m is the number of customers in the system.

When the number of customers equals the number of servers in the system, in = ,

the equations are

Pk,n(t) = -(A(t) + nkp(t))Pnk,n(t) (3.23)
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+ A(t) P(n -Iyk~n_- (t)

+af(n - )k+1, nnkpi(t)Pnk+l,n+l(t)

t) = -(A(t) + nkp(t))Pnk-.,n(t)

+A(t)P(n-)k,n-l(t)

+Onk-.+I,nnkip(t )Pnk-.+ I,n M

+a(n-I)k-z+1,nnkp(t)Pk-x+l,n+t (t)]

x =1, 2, ... , (n - 1)(k - 1),where

Pnk-y,n)=

(3.24)

(3.25)-(A(t) + nkp(t))Pnk-,,(t)

+#3 nk-y+1,nnkp(t)Pnk-y+I,n(t)

where y = (n - 1)(k - 1) + 1, (n - 1)(k - 1) + 2,1..., n(k - 1).

Equations 3.26 through 3.28 capture the dynamics of the queueing section when

the queue size is unlimited, q = oo. The equations are given by

Pmk,m(t) - -(A(t) + nkIp(t))Pmk,m(t)

+A(t)Pnk-k,m-I M)

+(n--=)k+l,nnkp(t)Pmk+I m+ (t)

m=(n + 1), (n + 2), ..., (n + q - 1),7

Pnk-x,m(t) - -(A(t) + nkp(t))Pmk-.r,m(t)

+A(t)Pmk-k-x,m-l(t)

79

for

(3.26)

(3.27)



+/?nk-x+i,nnkp(t)Pyn-x+i,m(t)

+a(n-I)k-x+i,nnkp(t)Pmk-r+i,m+ i(t)

m (n + 1), (n + 2), ... , (n + 

X = ... , (n - 1)(k - 1),

for

Pmnk-y,m(t) - (3.28)-(A(t) + nkp(t))Pmk-y,m(t)

+A(t)Pmk - k-y,m_(t)s-IM

+#nk-y+l,nnzkp(t)Pmi,-y+l,mI(t)

for m = (n + 1), (n + 2),..., (n + q - 1),

y = (n - 1)(k - 1) + 1, (n - 1)(k - 1) + 2,..., n(k - 1).

In the case with limited size queue, q < oo, Equations 3.29 to 3.30 are needed.

The equations for the states when there are n + q customers in the system are:

P(n+q)k,n+q(t) =

P(n+q)k-x,n+q(t) =

-nk p(t )P(n+,)k,n.+,(t )

+A(t)P(ni+g- )k~n+q- I(t)

-nkp(t)P(n+q)k-x,n+q(t)

+A(t)P(n+q- )k-x,n+q-I(t)

+/ink-r+ I ,nnk/ (t)P(n+q)k -x+I,n+q(t)

= l.2,...,n(k - 1).

P,,.(t) = 0

And finally,
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for values (1, m) not included in Equations 3.19 to 3.30.

In Section 4.1, numerous examples with solutions of the above equations are pre-

sented and compared to solutions of Equations 3.2 to 3.10 of the exact model. The

software used to solve numerically the state probabilities is described in Section 5.1.2.

Appendix A illustrates graphically the mechanics involved in applying both the exact

and heuristic solution techniques to the M/E 4 /3/4 queueing system. Included are

figures and explanations of all possible transitions and computations of associated a's

and O's. The reader is urged to review this appendix.

3.2 Performance Measures of Interest

After solving the Chapman-Kolmogorov equations and obtaining the state transition

probabilities for all states (ak, ... , al, a,), of the exact solution technique, and all states

(1, m), of the heuristic solution techniques, the results can be processed to calculate the

probability distribution for the number of customers m in the system. The occupancy

probabilities for the exact solution technique are given by

Pm(t){ rva=EmSo(ak ... , a1)(t) 0 <in<n (3.32)
EVaEM Qm(a,.., al)(t) n < m<q

where M is the set of indices a, that satisfy E_1 a3 = in. In the case of the heuristic

solution technique, the occupancy probabilities are calculated as follows:

PMIM( = {) 0 <in n(3.33)
f=n+(m-n)k PInT m5

The occupancy probabilities are used to obtain performance measures of interest that

are classified into two categories: aggregate probabilities, and expected values. All

the performance measures described below, with the exception of those based on

Little's Formula, are valid for steady-state as well as transient conditions with either

stationary or non-stationary parameters.
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3.2.1 Aggregate Probabilities

Besides the probability distribution of customers in the system, we are interested in

the following aggregate probabilities:

1. Probability of entering the queue: This is defined as the probability of a cus-

tomer arriving to a finite capacity system when there are between n and n+q- 1

customers present in the system. If there are already n + q customers in the

system, the arriving customer is rejected (or diverted) and does not enter the

queue. The probability is obtained by

n+q-I

P(Queueing)(t)E= Pm(t).
m=n

2. Probability of a saturated queue: This is defined as the probability of having

exactly n + q customers in a finite capacity system when a new customer arrives.

No more customers can enter the queue. The probability is given by:

P(Saturated)(t) = Pn+q(t).

These two probabilities will be used in the applications in Chapter 5.

3.2.2 Expected Values

Using the occupancy probabilities of Section 3.2, we can also calculate the expected

number of busy servers at time t. This quantity is important to determine the work-

load of the system, and is given by

E[Busy](t) = 5 mPm(t) + n (5 Pm(QJ (3.34)
\=0 =n+I

From the point of view of an observer of the system, the expected instantaneous
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delay of a customer that enters the queue at time t is given by

E[Delay](t) = (t) E(i + 1)P+(t)). (3.35)

We shall refer to this expected delay as expected virtual delay. In this formula, we

only consider the customers that enter the queue because the amount of delay for the

diverted or rejected customers is not known. This means that a customer entering

the system where there are already n + i customers, 0 < i q - 1, has an expected

virtual delay of 4(i + 1) units of time.

We are also interested in the following quantities under constant demand and

constant service rate:

* L = steady-state expected number of customers in the system;

* Lq = steady-state expected number of customers in the queue;

* W = steady-state expected time in the system, including service time; and,

* Wq = steady-state expected waiting time in the queue,

For an infinite capacity system, the system and queue statistics can be obtained using

Little's Formula:
L

and
L

q =A'

where

L = Z mP,
vn=O

L,= >i (in - n)Pm,

A is the arrival rate to the system, and Pm is the steady-state probability of having

m of customers in the system.
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If the queue has finite capacity,

n+q

L E= mP. (3.36)
,n=O

and
n+q

Lq =Z1(m - n)P,m. (3.37)
in = n

Since the queue size is limited, the effective arrival rate to the system is given by

A' = A(1 - Pn+q).

rhen, using Little's Formula with the effective arrival rate A', we obtain the expected

waiting times in the system and in the queue, reslpectively, as follows:

L
= A

Lq

The perforlnance measures defined in this section are use1d in the validation of the

heuristic solution techniques in Section 4.1, as iwell as in the application presentled in

Section 5.2.

3.3 Heuristic Solution for Systems with Variable

Number of Servers

Most results in queueing theory applied to practical problens analyze systems wit Ih

constant number of servers and assume that the capacity of the systems is time-

invariant. A more realistic scenario is that service facilities experience 11luctiat ions

on the number of servers, and thus, causing the system capacity to increase or to

(decrease, due to variations in (deman(I, server failures and system maintenance among

many factors. For examlple, real-life lprohlems in which we use (queueing results and

experience a variable number of servers could lbe a lbank or an airline counter, where
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the number of tellers may vary during the day according to the expected demand (e.g.,

lunch time, airplane departures or arrivals); another example could be the number

of tollbooths opened in a highway or the lines of traffic dedicated to one direction

or the other, depending on the rush hour or the traffic characteristics; and air traffic

operations (e.g., in airports or en-route sectors) where the number of active runways

or the number of air traffic controllers depends on the time of the day, on the weather

or even on the types of aircraft requesting service. This is the motivation for solving

systems with variable number of servers.

Therefore, in this Section we examine a variant of the A!(t)/Ek(t)/n/n+q queueing

system which includes a time-dependent number of servers: n(t). We present two

heuristic approaches: one each for the exact and ELP solution techniques presented

in Section 3.1.

The following assumptions are required for both algorithms:

1. If a server is to be closed, it is equally likely to be any one of themu: idle/busy

status is not taken into account.

2. When a new server is opened and there are customers waiting for service, the

first customer in queue enters the server.

3. Servers are closed or opened one at a time. The heuristic may be repeated

iteratively, however, to obtain the desired number of servers opened or closed

in any particular time period.

4. If the server closed is serving a customer, we ignore that customer from the

instant the server is closed. The customer eventually leaves the systen.

5. Changes in the number of servers do not occur frequently.

Assumptions 1 through 3 are self-explanatory and relate to the operation of the

heuristics at the time the number of servers in the system changes. Assumption

4 is a simplifying assumption and deserves particular attention. If Assumption 4

is not used, we would need to consider the customer being served by the closed

server when obtaining the distribution of customers in the system, as wiell as when
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evaluating any performance measure of interest. If Assumption 5 is in effect, the

number of customers "ignored" due to changes in the number of servers is small

and their statistics can be safely neglected. Therefore, Assumptions 4 and 5 muist

be used together. Assumption 5 is a realistic assumption because in most practical

applications, the number of servers do not change often. In the long-run, after the

transients disappear, the system behaves as if the original number of servers would

have been always the same as the number of servers in the modified system.

Both heuristics map the original state probability arrays into corresponding new

state probability arrays. The mapping distribates the state probabilities of the orig-

inal system, at the time the number of servers changes, into the initial probabiilities

for the modified system. If a server is closed, the mapping is made so that the system

moves front a state with 1 stages remaining and it servers to a state with I - c stages

remaining and n - 1 servers where 0 K c K k is the number of stages remaining in

the closed server. On the other hand, if a server is opened, the mapping is imade so

that the system moves front a state with I stages remaining and n servers to a state

with I stages remaining and n + 1 servers. The probabilities of change between states

in the original and modified systems are described in the algorithms below.

Heuristic 3: Variable i in the Exact Solution Technique

This heuristic maps the state probabilities from the old to tine new systems whnen

using the exact solution technique. We start by defining the state probability arrays

for both systems. Let P,te 8i(a, ..., a,, aq) be the probability of state (ak, ... , a i, aq)

in the original state probability arrays; let Ptares2(ak,..., aaq) be tle probability of

state (ak,..., a1, aq) in tie modified state probabiliity arrays ; and let nI and b112lie tie

number of servers in the original and modified systems, reslpectively. The algorithlm

followed by Heuristic 3 is given below:

* Input data: ni1,vn2 , kc, q, Pstatesi (ak, ... , a1 , aq)

* Initialize PartesC2(ak, ... , a1 , aq) to zero for all states (aAg,..., a1 , aq)

* IF ni > nt2 THEN

oFORc=OTOc=n -1 DO
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o Generate all states (a,..., a1,10) for which F, ai = c

o For each state:

*FORi=1 TOi=kDO

t>IF ai > 0 THEN

Pstates2(ak, ... , ai - 1,...,ai,0) =

2LPaatesI(a, ... , a,, 0) + Ptates2(a,...,fa -1, ... ,a,, 0)

* For the idle servers (a, = 0):

Psiates2(a,...,aI,O) =

" Palates1I(aa, ... , aI,10) + Pstes2(a, ... , a 1,0)

o FOR c=it TO c = n1 +q DO

o Generate all states (a, ... , ai,a,) for which Z ai = nI and a, = c - ni

o For each state:

*FORi=1TOi=kDO

c>IF a, >0 THEN

Pstates2(aki,..., a, - l,..., ai, a) =

a-Pates(a ta, ... , aq, a) -+ P ates 2(ak, ..., - 1, ...,auaq)

* IF "I < n2 THEN

o FOR c=0 TO c=i -1 DO

o Generate all states (at, ..., a,0) for which V_ a, = c

o For each state:

Psates2(ak, ... , ai, 0) = Pstatesi (ak, ... , a,, 0)

o FOR c = ni TO c =it + q DO

o Generate all states (ak, ..., a[, a,) for which i_, a, = ni, and aq = C - 111

o For each state:

Pataes2(aLk +i 1, ..., ai, a, -- 1) = Pstates i(a&, ... , ai, aq)

* END

For example, if we have an M(t)/Ea(t)/4/4 +q queueing system and it cihanges to

an M(t)/E 3 (t)/3/3 + q qucueing system, the probability of being ini state (1, 1, 2,0)

when the system is modified is divided into the new states (0,1,2,0), (1,0,2,0) and
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1 1(1, 1,1, 0), with the ratios , and j, respectively, given by the probabilities of

changing to those states, as shown in Figure 3-5.

State (1,1,2,0)
Go0
000
000
000

1/4 1/2
1/4

000 000
000 000
000 000

State (0,1,2,0) 000 State(i,1,1,0)
000

State (1,0,2,0)

Figure 3-5: Mapping state (1, 1,2,0) in AI(t)/E 3(t)/4/4 + q into states (0,1,2,0),
(1, 0, 2,0) and (1, 1,1,0) in A()/E 3 (t)/3/3+ q

In the case that we modify an M(t)/E 3 (t)/4/4 + q (ueneing system by increasing

the num)er of servers, i.e., to an M(t)/E(t)/5/5+q queueing system, the probabilitv

of being in state (2,1,1,1) in the original system is assigned completely to slate

(3, 1,1,0) in the modified system.

Heuristic 4: n-Variable in the Heuristic Solution Techniques

We now introduce the heuristic to map the original and modified systems wheiii the

number of servers is changed. We define the state probabilities as follows. Let

Psiatesi (I, i) be the probability of state (1, i) in the original state prolbability arrays;

let Potates2(I, in) be the probability of state (1, in) in the nmodilied state probalbility

arrays ; and let ni andl n2 be the numlber of servers in the original and modified

systems, respectively. Heuristic 4 has the following algorithm:

* Input data: n1 , n2, kc, q, P8101e 51(I, in)

* Initialize Petates2(I, mi) to zero for all states (I, mn)

* Let .stagcsl = stages2 = 0
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* IF n > n2 THEN

o Pslates2(0,0) = Pstates 1(0,0)

oFOR c=1 TO c=n DO

o stagesl = c * k

o FOR j =OTO j =c*(k- 1) DO

* Generate patterns for state (stages 1 - j, c) with n1 and k

* Obtain the probability for each pattern (P,a) using ELP of ELC

* For each pattern:

>FORi=lTOi=cDO

* Remove row i in pattern

* stages2 = stages left in remaining rows of pattern

* C2 = c - 1

* P.,,,e2(stagcs2, c2) =

AIPldte.I (stagcs1, c) * P,5 t + Pstale.2(stages2 ,c 2)

r> IF c1 <it, THEN

Pte 2(stages1, c1) =

stalP,.st,( stagcsi, C) * pat + Psaates2(stgesl, C)

o FOR c = n, + 1 TO c = ni + q DO

o stagesl = c * k

ow = c - nI

o FORJ =0TOJ =n, *(k - 1) DO

* Generate patterns tor state (stages1 - w * k - j,n) with ni and k

* Obtain the probability for each pattern (Ppat) using ELP of ELC

* For each pattern:

t> FOR i= 1TO i= n1 DO

* Remove row i in pattern

* stages2 = (stages left in remaining rows of lpattern) + wn * k

e c2 = c - 1

* Pstates2( stages2, c2) =

$Ptatesi (stages 1, c) * P,. + Pseaee 82(sta ges2 ,c 2 )
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* IFni <n2THEN

oFORc=lTOc=n DO

o stagesl = c * k

oFORj =0 TOj= c * (k - 1) DO

* Pstates2(stages1 - j, c) = Pstates1(stages1 - j, c)

o FOR c=n +1 TO c=n,+q DO

o stagesl = c * k

o FORJ =0TO j = n, * (k - 1) DO

* Pstates2(stagesl - j, c) = Ptatesi (stages 1 - j, c)

*END

Let us use again the example used for Heuristic 3. If we are in state (8, 4) in an

A!(t)/Ea(t)/4/4 + q queueing system and the number of servers is reduced to 3, the

probability of being in the state (8, 4) must map into states (7, 3), (6, 3) and (5, 3)

in the M(t)/E(t)/3/3 + q model, as shown in Figure 3-6. Note that state (8, 4) has

possible patterns (a), (b) and (c), in the original system. For example, pattern (b)

maps to all three states in the new model in the following way: if the server with

three remaining stages is closed, 4 of the probability of being in the old state (8, 4)

is assigned to the new state (5,3); if either one of the two servers with two stages

remaining is closed, j of the probability of being in the old state (8, 4) is assigned2

to the new state (6,3); if the server with one remaining stage is closed, of the
"I

probability of being in the old state (8, 4) is assigned to the new state (7,3).

If the number of servers is increased by one, the states in the original system map

into exactly the same state in the modified system. For example, the probability of

state (11,5) in system M(t)/Ea(t)/4/4+ q is assigned only to state (11, 5) in system

M(Q)/Ea(t)/5/5 + q.

In general, if we have two systems with the same Erlang order kc and the same

queue size q, but with different number of servers, the set of states in the system

with fewer servers is a subset of the set of states of the larger system. If the number

of servers is decreased, the states in the larger system all map into the states in the
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Figure 3-6: Mapping state (8,4) in AI(t)/E 3 (t)/4/4 + q into states (7, 3), (6, 3) and
(5, 3) in M(t)/E 3 (t)/3/3 + q

smaller system, i.e., every state probability in the smaller system is initialized with

state probabilities of one or more states in the larger system. If the number of servers

is increased, the states in the smaller system do not all map into the larger system.

Therefore, those states that are not mapped from a smaller system are initialized

with probability zero.

To understand this situation, consider the mapping of the M(t)/E 3 (t)/4/4 + 3

system to the M(t)/Ea(t)/5/5 + 3. The system with n = 4 has 80 states while the

system with n = 5 has 119 in the exact solution. For example, the probability of

state (0, 0, 5, 0) in the AI(t)/E 3 (t)/5/5 + 3 system cannot be initialized with the state

probabilities of the original system; instead, it is initialized with probability zero.

Using the heuristic solution, the system with n = 4 has 52 states and the one with

n = 5 has 69 states. In this case, the probability of state (5, 5) in the new system

cannot be initialized with state probabilities in the smaller system and is initialized

with zero probability.

When mapping a smaller system into a larger system using the heuristic solution,

another interesting situation occurs. Even though a state may be initialized from
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the corresponding state in the smaller system, not all the patterns in the new state

can be mapped from the patterns in the original state, but they are all initialized.

For example, the state (10,5) in the M(t)/E 3 (t)/4/4 + 3 queue has two patterns;

the state (10,5) in the M(t)/E 3 (t)/5/5 + 3 model has three different patterns. As

seen in Figure 3-7, the two patterns in the original state map only into patterns (b)

and (c) in the new one. Notice that the customer waiting for service in the queue in

the original model has already entered a server in the modified system (patterns (b)

and (c)). When we initialize state (10,5) in the AI(t)/E 3 (t)/5/5 + 3 model, we are

initializing all patterns even though we have not mapped pattern (a). Because of the

nature of the heuristic solution technique, we cannot differentiate the probabilities

for each pattern individually. Therefore, we cannot choose to avoid initializing the

unmapped patterns as the entire state is initialized as a whole.

State (10,5) Cusia'nein queue

Gooo ooo0

000 000 0 M/E/4/4+3 System
ooo ooo

(a) (b)(c

000 000 000 M/E3 /5/5+3 System

Figure 3-7: Initializing state (10, 5)

In Chapter 4, we implement both algorithms under stationary and nonstationary

conditions. In the case of stationary parameters, we compare implementation results
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of both algorithms with the corresponding systems with a fixed number of servers,

given that all systems have reached steady-state.
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Chapter 4

Validation of the Heuristics

In this Chapter, we examine the performance of two heuristics introduced in Chap-

ter 3. The primary validation consists of comparing steady-state numerical results

obtained using the exact solution technique with those from Heuristics 1 and 2, under

stationary conditions. An extensive collection of models, with varied parameters, is

examined. We will show that Heuristic 2, Equally Likely Combinations (ELC), pro-

vides an excellent approximation to the exact results. As ELC requires the solution

of fewer equations than the exact method, we will show that results are obtained

much faster, and that larger models than currently solvable using the exact solution

technique can be solved using ELC.

As a secondary study, we examine the accuracy of the transient behavior generated

using the ELC solution technique for models with both stationary and nonstationary

parameters. Finally, we examine performance of Heuristics 3 and 4 described at the

end of Chapter 3 for systems with variable number of servers. We will see that ELC

approximates well the exact results of the M(t)/E-(t)/n/n + q queueing system for

all cases described above.

4.1 Validation: Stationary Conditions

We begin by describing the methodology used to compare the heuristic solution tech-

niques to the exact solution technique. Using the equations developed in Chapter 3
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for both the exact and heuristic solution techniques, we run an extensive set of ex-

periments and compare directly the results of all three cases: Exact, Equally Likely

Patterns (ELP) and Equally Likely Combinations (ELC).

Note that it is not possible to solve numerically an infinite number of Chapman-

Kolmogorov equations. In order to obtain a finite number of Chapman-Kolmogorov

equations we must limit the number of customers that enter the queue. This means

that in all cases we solve the M(t)/Ek(t)/n/n + q queue, q < oo, where q is the

maximum number of customers waiting for service. In practice, if q is sufficiently large

and p < 1, the M(t)/Ek(t)/n/n + q queue will provide an acceptable approximation

to the A(t)/Ek(t)/n queue. Included in the experiments are many examples with

effectively infinite capacity.

A total of 510 experiments are presented here, which correspond to 170 different

models solved using each solution technique (Exact, ELC and ELP). The models

were selected to cover a wide range of system parameters. We include large and

small systems in terms of both the number of servers, n, and the length of queue,

q; large and small Erlang orders k to provide multiple distribution shapes for the

service times; and a range of utilization ratios p including under- and over-saturated

systems. As will be seen, the ELC solution technique performs extremely well for all

parameters used.

We compare several measures of performance generated through use of these tech-

niques. Using the occupancy probabilities defined in Section 3.2 we have calculated

performance measures to extend the comparison to both aggregate probabilities and

queue statistics.

Let us define an epoch as the basic unit of time used for observing model behavior.

Both arrival and service rates are defined per unit of time and system performance is

reported at the end of each epoch. For example, the service rate used in all models in

this section is p = 6 per epoch. Therefore, we expect that a continuously busy server

processes an average of 6 customers per epoch. All results presented here are for

steady-state behavior. We assume that the models have effectively achieved steady-

state when the state probabilities are constant, up to 6 decimal places, for at least 5
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contiguous epochs. All systems start empty and idle.

Occupancy Probabilities

The following 11 examples illustrate that both heuristic solution techniques can pro-

vide accurate values of the steady-state occupancy probabilities. The first set of

examples uses the M/E 3/5/5 + 5 queueing system. Figure 4-1 compares the three

-EM

USF

Lba

E4L

ILEL

Masof CammIn buyfle

Figure 4-1: A/E 3/5/5
(c) p = 1.2

+ 5 queueing system with (a) p = 0.5, (b) p = 0.9 and

solution techniques (exact, ELP and ELC) with p = 0.5, 0.9 and 1.2. In all three

plots in Figure 4-1, the only heuristic noticeable different from the exact curve is the

ELP. These examrnles have a small Erlang order, a small number of servers and a

very capacitated queue. The purpose of presenting this set of three examples is to

illustrate the performance of the heuristic solution techniques in approximating the

exact results for a small system, in terms of n and q, with various utilization ratios.
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Figure 4-2: M/E 4 /15/15 + 30 queueing system with p = 0.5, 0.9, 0.99 and 1.2

The second set of examples illustrates the system AI/E.1/15/15 + 30. Figure 4-

2 shows the results for four different utilization ratios, p = 0.5, 0.9, 0.99 and 1.2,

using the exact, ELP and ELC approaches. in this Figure, parts (a) and (b), the

curve of the heuristic technique ELP is the only one noticeable different from the

exact values. Notice that in this set of examples with larger queue size and more

servers in the system, the heuristics follow very closely the results obtained in the

exact solution. Our next example, with the M/E 5/3/3 + 100 queue, is presented to

compare the exact results with those obtained using the heuristic solution techniques

for a system with a very large quece and a high utilization ratio, p = 0.9. Figure 4-3

illustrates the occupancy probabilities for this example.

The last example, the M/E 20/3/3 + 10 system, is presented in Figure 4-4. The

purpose of presenting this example is to show that even for large k the steady-state

occupancy probabilities are approximated well by the heuristic solution techniques.

Figure 4-4 shows results for three utilization ratios, p = 0.5, 0.9 and 1.2. Note that

both ELP and ELC curves are noticeably different than the exact curve in parts (b)
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Figure 4-3: AI/E 5/3/3 + 100 queueing system with p = 0.9

and (c) of Figure 4-4.

In all examples presented, the occupancy probabilities generated by the three

solution techniques are extremely similar, showing that the heuristicS may very well

be used to solve the queueing models. Also from the examples above, we can see that

even as the parameters are changed, the performance of the heuristics remains very

good in approximating the exact results. There is no evidence that the performance

of the heuristics will worsen for any particular change in the parameters.

The number of epochs required to reach steady-state in each of the 11 examples

presented is given in Table 4.1. Notice that as the utilization ratio approaches 1,

the number of epochs to reach steady-state increases, but when the queue is over-

saturated, p > 1, the number of epochs is reduced; this may be because the system

saturates faster and diverts traffic due to a limited queue size; thus, the probability

of a saturated queue reaches its steady-state value in less time.

Aggregate Performance Measures

The Tables presented in this section illustrate the accuracy of both heuristic solution

techniques for several additional performance measures. We have selected five ag-

gregate performance measures to use in comparing the 170 models that provide the

foundation for this validation study:

* Expected queue length, Lq

" Expected virtual delay, E[Delay]
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Figure 4-4: A/E 20/3/3 + 10 queueing system with (a) p = 0.5, (b) p = 0.9 and
(c) p = 1.2

* Expected waiting time in the system, WV

* Expected number of customers in the system, L

* Expected number of busy servers, E[Busy]

All of these statistics are defined in Section 3.2. Tables 4.2 through 4.36 show the

results for the above statistics and are discussed below. All the Tables have the

following format: columns 1 to 4 define the model for which the results are presented

(k, n, q and p); columns 5 to 7 indicate the numerical results for the Particular

performance measure for the three solution techniques (exact, ELP and ELC); and,

columns 8 and 9 indicates the percentage differeiice between the heuristic solutions

an(I the exact solution, using the formula

%Difcrncc= 10 ~ Exact - Heuristic
Exact
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Table 4.1: Number of Epochs to Reach Steady-State

System Utilization ratio Exact ELC ELP

A/E 3/5/5+5 0.5 3 3 3
0.9 4 4 4
1.2 4 4 4

AI/E.1/15/15+ 30 0.5 2 2 2
0.9 12 12 12

0.99 24 24 24
1.2 9 9 9

AI/E5/3/3+ 100 0.9 100 99 99

M/E 20/3/3 + 10 0.5 3 3 3
0.9 17 17 16
1.2 15 15 15

where Exact is the value in Column 5 and Heuristic is replaced by the value of ELP

or of ELC in column 6 or 7, respectively.

Values for the expected queue length are presented in Tables 4.2 to 4.8. Notice

that using Heuristic 2, ELC, Lq is always within 3% of the exact solution. In most

of the examples using Heuristic 1, ELP, L, is within 4% of its exact value. Note,

however, that there are sporadic cases in which the ELP error is as high as 16%. As

can be seen in the Tables, even though both ELC and ELP generally provide accurate

approximations of the exact model's behavior, ELC provides more consistent and, in

most cases, more accurate results than ELP.

Tables 4.9 through 4.15 show results for the expected virtual delay. Similarly to

the results for Lq, the ELC approach provides a better approximation yielding valies

always within 2% of the exact value. As before, nost ELP values are good, within

5%, but there are some cases for which ELP values differ dramatically from the exact.
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Table 4.2: Expected Queue Length, Part 1

k n q p Number of Customers % Difference
Exact] ELP ELC ELP] ELC

3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3

3
3
3
3
3
3
3
3
3
3
3

3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3

5

5

5
5
5
5
5
5
5S
5
5

I -T

1
1
1
10
10
10
10
25
25
25
25
50
50
50
50

100
100
100
100

5
5
5

15
15
15
15
50
50
50
50

0.50
0.90
1.20
0.50
0.90
0.99'
1.20
0.50,
0.90
0.99'
1.20
0.50
0.90
0.99
1.20
0.50
0.90
0.99
1.20

0.50
0.90
1.20
0.50
0.90
0.99
1.20
0.50
0.90
0.99
1.20

I it I

0.0554
0.2034
0.3178
0.1669
2.7443
4.1709
6.9587
0.1670
4.5286

10.8896
21.4770

0.1670
4.9247

20.9389
46.4603

0.1670
4.9404

36.6405
96.4603

0.0905
1.2756
2.7011
0.0950
3.3799
6.2569
11.5533
0.0950
4.6153

20.6813
46.3898

0.0562
0.2039
0.3176
0.1707
2.7571
4.1840
6.9714
0.1708
4.5437

10.9052
21.4902

0.1708
4.9401

20.9446
46.4736

0.1708
4.9558

36.5621
96.4735

0.0940
1.2899
2.7186
0.0986
3.4008
6.2798
11.5759
0.0986
4.6395

20.7102
46.4128

0.0549
0.2024
0.3167
0.1662
2.7441
4.1728
6.9651
0.1663
4.5263
10.8911
21.4844
0.1663
4.9218

20.9287
46.4677

0.1663
4.9375

36.5438
96.4676

0.0901
1.2782
2.7096
0.0945
3.3792
6.2603

11.5639
0.0945
4.6139

20.6854
46.4009
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-1.50
-0.21
0.06

-2.30
-0.46
-0.31
-0.18
-2.30
-0.33
-0.14
-0.06
-2.30
-0.31
-0.03
-0.03
-2.30
-0.31
0.21
-0.01

-3.89
-1.12
-0.65
-3.85
-0.62
-0.37
-0.20
-3.85
-0.52
-0.14
-0.05

0.85
0.49
0.34
0.38
0.01
-0.05
-0.09
0.38
0.05

-0.01
-0.03
0.38
0.06
0.05

-0.02
0.38
0.06
0.26

-0.01

0.45
-0.21
-0.32
0.52
0.02

-0.05
-0.09
0.52
0.03

-0.02
-0.02
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Table 4.3: Expected Queue Length, Part 2

k n q p Number of Customers % Difference
Exact ELP ELC ELP ELC

3
3
3
3

3
3
3
3V|
3 |
3
3

3
3
3
3
3
3

3
3
3

10
10
10
10

15
15
15
15
15
15
15

18
18
18
18
18
18

50
50
50

5
5
5
5

5
5
5

30
30
30
30

3
3
3

10
10
10

25
25
25

0.50
0.90
1.00
1.20

0.50
0.90
1.20
0.50
0.90
0.99
1.20

0.50
0.90
1.20
0.50
0.90
1.20

0.50
0.90
1.20

0.0262
1.0374
1.5626
2.5646

0.0085
0.8885
2.4832
0.0090
3.5290
12.0455
26.1836

0.0036
0.4196
1.1510
0.0047
1.7838
6.5804

0.0000
2.0619

20.8700

0.0284
1.0569
1.5851
2.5909

0.0096
0.9088
2.5130
0.0102
3.5720

12.1059
26.2436

0.0041
0.4288
1.1626
0.0054
1.8208
6.6387

0.0000
2.1123

20.9933

0.0261
1.0412
1.5696
2.5767

0.0084
0.8923
2.4965
0.0089
3.5269
12.0526
26.2050

0.0035
0.4209
1.1562
0.0046
1.7869
6.6021

0.0000
2.0604

20.9074

-8.30
-1.88
-1.44
-1.03

-13.11
-2.29
-1.20

-13.11
-1.22
-0.50
-0.23

-15.64
-2.19
-1.01

-15.99
-2.07
-0.89

0.00
-2.44
-0.59

0.72
-0.37
-0.45
-0.47

0.94
-0.43
-0.54
1.00
0.06

-0.06
-0.08

1.12
-0.31
-0.46
1.28

-0.17
-0.33

0.00
0.07

-0.18
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Table 4.4: Expected Queue Length, Part 3

k n q p Number of Customers % Difference
EireIExact JIELP TIELC ELP |IELC

4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4

4
4
4
4
4
4
4
4
4
4
4

3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3

5S
5S
5

5S
5S
5
5
5
5S
5
5

1
1
1

10
10
10
10
25
25
25
25
50
50
50
50

100
100
100
100

5
5
5
15
15
15
15
50
50
50
50

0.50
0.90
1.20
0.50
0.90
0.99
1.20
0.50
0.90
0.99
1.20
0.50
0.90
0.99
1.20
0.50
0.90
0.99
1.20

0.50
0.90
1.20
0.50
0.90
0.99
1.20
0.50
0.90
0.99,
1.20

0.0544
0.2013
0.3159
0.1582
2.6948
4.1728
7.0486
0.1582
4.3189

10.8558
21.6514
0.1582
4.6289

20.7597
46.6410
0.1582
4.6384

35.9004
96.6410

0.0869
1.2660
2.7239
0.0906
3.2856
6.2569
11.6835
0.0906
4.3419
20.5118
46.5606

0.0551
0.2017
0.3155
0.1625
2.7114
4.1896
7.0642
0.1626
4.3391
10.8760
21.6671
0.1626
4.6496

20.7660
46.6567
0.1626
4.6592

35.8090
96.6567

0.0907
1.2828
2.7450
0.0944
3.3093
6.2819

11.7079
0.0944
4.3690

20.5445
46.5852

0.0535
0.1996
0.3139
0.1571
2.6942
4.1762
7.0599
0.1572
4.3150
10.8585
21.6641

0.1572
4.6241

20.7453
46.6538

0.1572
4.6336

35.7839
96.6538

0.0862
1.2706
2.7391
0.0897
3.2844
6.2628
11.7020
0.0897
4.3384

20.5185
46.5798

-1.42
-0.18
0.12
-2.74
-0.62
-0.40
-0.22
-2.74
-0.47
-0.19
-0.07
-2.74
-0.45
-0.03
-0.03
-2.74
-0.45
0.25
-0.02

-4.31
-1.33
-0.77
-4.28
-0.72
-0.40
-0.21
-4.28
-0.62
-0.16
-0.05

1.55
0.86
0.60
0.68
0.02
-0.08
-0.16
0.68
0.09
-0.02
-0.06
0.68
0.10
0.07
-0.03
0.68
0.10
0.32
-0.01

0.82
-0.36
-0.56
0.91
0.04
-0.10
-0.16
0.91
0.08

-0.03
-0.04
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Table 4.5: Expected Queue Length, Part 4

k n q p Number of Customers % Difference
Exact] ELP ELC ELP [ELC

4
4
4
4

4
4
4
4
4
4
4

4
4
4
4
4
4

4
4
4

10
10
10
10

15
15
15
15
15
15
15

18
18
18
18
18
18

50
50
50

5
5
5
5

5
5
5
30
30
30
30

3
3
3
10
10
10

25
25
25

0.50
0.90
1.00
1.20

0.50
0.90
1.20
0.50
0.90
0.99
1.20

0.50
0.90
1.20
0.50
0.90
1.20

0.50
0.90
1.20

0.0255
1.0294
1.5621
2.5802

0.0083
0.8816
2.4949
0.0087
3.3590
12.0185
26.3228

0.0035
0.4171
1.1515
0.0046
1.7598
6.6408

N/A
N/A
N/A

0.0276
1.0509
1.5870
2.6090

0.0093
0.9035
2.5250
0.0099
3.4071

12.0752
26.3706

0.0041
0.4269
1.1636
0.0053
1.7973
6.6891

0.0000
2.0477

21.0302

0.0251
1.0364
1.5750
2.6022

0.0081
0.8886
2.5190
0.0086
3.3557

12.0310
26.3602

0.0035
0.4194
1.1609
0.0045
1.7652
6.6793

0.0000
1.9829

21.0256

-8.53
-2.09
-1.59
-1.12

-12.82
-2.48
-1.21

-12.81
-1.43
-0.47
-0.18

-15.01
-2.36
-1.05
-15.32
-2.13
-0.73

N/A
N/A
N/A

1.26
-0.68
-0.82
-0.85

1.69
-0.79
-0.97
1.83
0.10

-0.10
-0.14

1.70
-0.57
-0.81
2.19

-0.31
-0.58

N/A
N/A
N/A
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Table 4.6: Expected Queue Length, Part 5

k n q p Number of Customers % Difference
Exact ELP ELC ELP ELC

3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3

1
1
1
10
10
10
10
25
25
25
25
50
50
50
50

100
100
100
100

0.50
0.90
1.20
0.50
0.90
0.99
1.20
0.50
0.90
0.99
1.20
0.50
0.90
0.99
1.20
0.50
0.90
0.99
1.20

0.0537
0.2000
0.3146
0.1529
2.6619
4.1735
7.1059
0.1530
4.1869

10.8323
21.7567
0.1530
4.4502

20.6393
46.7492
0.1530
4.4570

35.4102
96.7492

0.0541
0.1997
0.3136
0.1563
2.6755
4.1882
7.1219
0.1564
4.2024

10.8496
21.7730
0.1564
4.4658

20.6380
46.7655

0.1564
4.4725

35.3010
96.7655

106

0.0526
0.1977
0.3121
0.1516
2.6611
4.1779
7.1207
0.1516
4.1819

10.8359
21.7732

0.1516
4.4442

20.6214
46.7658

0.1516
4.4508

35.2803
96.7657

-0.76
0.14
0.32

-2.23
-0.51
-0.35
-0.22
-2.24
-0.37
-0.16
-0.08
-2.24
-0.35
0.01

-0.03
-2.24
-0.35
0.31

-0.02

5
5
5
5
5
5
5
5
5
5
5
5
5

5

2.03
1.14
0.79
0.88
0.03
-0.11
-0.21
0.88
0.12
-0.03
-0.08
0.88
0.14
0.09

-0.04
0.88
0.14
0.37

-0.02



Table 4.7' Expected Queue Length, Part 6

Ik n p Number of Customers % Difference
Exact ELP ELC ELP ELC

5
5
5
5
5
5
5
5
5
5
5

5
5
5
5

5
5
5
5
5
5
5

5
5
5
5
5
5
5
5
5
5
5

10
10
10
10

15
15
15
15
15
15
15

5
5
5

15
15
15
15
50
50
50
50

5
5
5
5

5
5
5

30
30
30
30

0.50
0.90
1.20
0.50
0.90
0.99
1.20
0.50
0.90
0.99
1.20

0.50
0.90
1.00
1.20

0.50
0.90
1.20
0.50
0.90
0.99
1.20

0.0847
1.2594
2.7386
0.0879
3.2240
6.2557

11.7643
0.0879
4.1766

20.3972
46.6627

0.0250
1.0238
1.5612
2.5898

0.0081
0.8767
2.5018
0.0086
3.2523

11.9980
26.4057

0.0879
1.2765
2.7625
0.0912
3.2455
6.2802

11.7911
0.0912
4.2004

20.4291
46.6898

0.0268
1.0463
1.5888
2.6237

0.0091
0.8999
2.5382
0.0095
3.2972

12.0541
26.4601

0.0838
1.2655
2.7586
0.0869
3.2224
6.2636

11.7884
0.0869
4.1719

20.4059
46.6876

0.0245
1.0332
1.5785
2.6192

0.0080
0.8861
2.5340
0.0084
3.2489

12.0145
26.4545

-3.79
-1.35
-0.87
-3.72
-0.67
-0.39
-0.23
-3.72
-0.57
-0.16
-0.06

-7.41
-2.20
-1.77
-1.31

-11.17
-2.64
-1.45

-11.06
-1.38
-0.47
-0.21

1.06
-0.48
-0.73
1.19
0.05
-0.12
-0.21
1.19
0.11

-0.04
-0.05

1.68
-0.92
-1.11
-1.14

2.21
-1.08
-1.29
2.56
0.10

-0.14
-0.19
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Table 4.8: Expected Queue Length, Part 7

k n q p Number of Customers % Difference
Exact ELP ELC ELP ELC

8
8
8

8
8
8

10
10
10
10
10
10

10
10
10

10
10
10

15
15
15

15
15
15

20
20
20

3
3
3

5
5
5

3
3
3
3
3
3

5
5
5

10
10
10

3
3
3

5
5
5

3
3
3

10
10
10

10
10
10

2
2
2

10
10
10

10
10
10

5
5
5

10
10
10

10
10
10

10
10
10

0.50
0.90
1.20

0.50
0.90
1.20

0.50
0.90
1.20
0.50
0.90
1.20

0.50
0.90

0.50
0.90
1.20

0.50
0.90
1.20

0.50
0.90
1.20

0.50
0.90
1.20

0.1450
2.6073
7.1970

0.0839
2.4077
7.0944

0.0943
0.4667
0.7924
0.1423
2.5875
7.2289

0.0825
2.3906
7.1240

0.0240
1.0101
2.6097

0.1387
2.5597
7.2726

0.0807
2.3662
7.1646

0.1368
2.5451
7.2951

0.1470
2.6183
7.2170

0.0858
2.4243
7.1266

0.0957
0.4747
0.8052
0.1437
2.5969
7.2508

0.0838
2.4051
7.1590

0.0248
1.0343
2.6583

0.1390
2.5661
7.2974

0.0810
2.3779
7.2041

0.1366
2.5502
7.3216

0.1432
2.6062
7.2180

0.0825
2.4093
7.1266

0.0937
0.4720
0.8040
0.1404
2.5864
7.2521

0.0810
2.3925
7.1598

0.0233
1.0259
2.6576

0.1367
2.5586
7.2990

0.0791
2.3688
7.2053

0.1348
2.5441
7.3231

-1.37
-0.42
-0.28

-2.31
-0.69
-0.45

-1.49
-1.72
-1.61
-0.95
-0.36
-0.30

-1.59
-0.61
-0.49

-3.21
-2.39
-1.86

-0.22
-0.25
-0.34

-0.45
-0.49
-0.55

0.18
-0.20
-0.36

1.21
0.04

-0.29

1.66
-0.07
-0.45

0.60
-1.14
-1.46

1.33
0.04

-0.32

1.82
-0.08
-0.50

2.71
-1.56
-1.84

1.46
0.04

-0.36

2.01
-0.11
-0.57

1.51
0.04

-0.38

_______ a. & & a. a ____________

108

U-



Table 4.9: Expected Virtual Delay, Part 1

k n q p Delay Time (seconds) % Difference
Exact ELP IELC ELP ELC

3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3

3
3
3
3
3
3
3
3
3
3

3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3

5
5
5
5

5
5
5
55

5

1
1
1

10
10
10
10
25
25
25
25
50
50
50
50

100
100
100
100

5
5
5
15
15
15
15
50
50
50
50

0.50
0.90
1.20
0.50
0.90
0.99
1.20
0.50
0.90
0.99
1.20
0.50
0.90
0.99
1.20
0.50
0.90
0.99
1.20

0.50
0.90
1.20
0.50
0.90
0.99
1.20
0.50
0.90
0.99
1.20

0.7258
1.9138
2.6236
1.3299

11.7035
16.7486
26.1824

1.3303
17.7931
39.4030
74.6444

1.3303
19.1258
72.9962

157.9232
1.3303

19.1783
125.3812
324.5898

0.4319
3.7633
7.0042
0.4429
8.2273
14.2500
24.9277

0.4429
10.7428
43.2591
94.6130

0.7421
1.9325
2.6413
1.3589

11.7541
16.7968
26.2257

1.3593
17.8504
39.4575
74.6887

1.3593
19.1840
73.0167

157.9674
1.3593

19.2368
125.1208
324.6338

0.4479
3.8010
7.0429
0.4593
8.2758
14.2990
24.9730
0.4593
10.7976
43.3182
94.6590

0.7288
1.9223
2.6350
1.3301

11.7044
16.7564
26.2041

1.3305
17.7869
39.4088
74.6691

1.3305
19.1173
72.9624

157.9479
1.3305

19.1700
125.0588
324.6143

0.4320
3.7714
7.0231
0.4429
8.2272

14.2576
24.9489

0.4429
10.7410
43.2675
94.6352

-2.24
-0.98
-0.68
-2.18
-0.43
-0.29
-0.17
-2.18
-0.32
-0.14
-0.06
-2.13
-0.30
-0.03
-0.03
-2.18
-0.30
0.21
-0.01

-3.71
-1.00
-0.55
-3.69
-0.59
-0.34
-0.18
-3.69
-0.51
-0.14
-0.05

-0.41
-0.45
-0.44
-0.01
-0.01
-0.05
-0.08
-0.01
0.03
-0.01
-0.03
-0.01
0.04
0.05

-0.02
-0.01
0.04
0.26
-0.01

-0.03
-0.22
-0.27
0.02
0.00

-0.05
-0.09
0.02
0.02

-0.02
-0.02
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Table 4.10: Expected Virtual Delay, Part 2

k n qjp Delay Time (seconds) % Difference
Exact] ELP ELC ELP ELC

3
3,
3
3

3
3
3
3
3
3
3

3
3
3
3
3
3

3
3
3

10
10
10
10

15
15
15
15
15
15
15

18
18
18
18
18
18

50
50
50

5
5
5
5

5
5
5

30
30
30
30

3
3
3

10
10
10

25
25
25

0.50
0.90
1.00
1.20

0.50
0.90
1.20
0.50
0.90
0.99
1.20

0.50
0.90
1.20
0.50
0.90
1.20

0.50
0.90
1.20

0.0606
1.5251
2.1786
3.3294

0.0128
0.8680
2.1491
0.0132
2.7452
8.6120
18.0667

0.0049
0.3952
0.9622
0.0057
1.2624
4.1407

0.0003
0.4814
4.3571

0.0654
1.5519
2.2076
3.3602

0.0144
0.8874
2.1734
0.0149
2.7782
8.6538

18.1067

0.0056
0.4046
0.9735
0.0066
1.2875
4.1741

0.0000
0.4934
4.3818

0.0605
1.5311
2.1881
3.3436

0.0127
0.8722
2.1599
0.0132
2.7443
8.6170
18.0810

0.0048
0.3974
0.9677
0.0057
1.2648
4.1530

0.0000
0.4813
4.3646

-8.06
-1.76
-1.33
-0.92

-12.75
-2.24
-1.13

-12.77
-1.21
-0.49
-0.22

-15.46
-2.37
-1.17

-15.82
-1.99
-0.81

0.00
-2.48
-0,57

0.08
-0.39
-0.44
-0.43

0.23
-0.49
-0.51
0.30
0.03
-0.06
-0.08

0.21
-0.55
-0.57
0.35

-0.19
-0.30

0.00
0.03
-0.17

LL..................A & I U. _______________ I LI L
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Table 4.11: Expected Virtual Delay, Part 3

k n q p Delay Time (seconds) % Difference
Exact ELP ELC ELP ELC

4 3 1 0.50 0.7228 0.7425 0.7283 -2.72 -0.77
4 3 1 0.90 1.9131 1.9394 1.9287 -1.37 -0.82
4 3 1 1.20 2.6270 2.6530 2.6477 -0.99 -0.79
4 3 10 0.50 1.2973 1.3308 1.2980 -2.58 -0.05
4 3 10 0.90 11.5507 11.6168 11.5522 -0.57 -0.01
4 3 10 0.99 16.7757 16.8373 16.7893 -0.37 -0.08
4 3 10 1.20 26.4936 26.5464 26.5317 -0.20 -0.14
4 3 25 0.50 1.2975 1.3310 1.2982 -2.58 -0.05
4 3 25 0.90 17.0937 17.1704 17.0832 -0.45 0.06
4 3 25 0.99 39.3009 39.3711 39.3107 -0.18 -0.02
4 3 25 1.20 75.2261 75.2785 75.2686 -0.07 -0.06
4 3 50 0.50 1.2975 1.3310 1.2982 -2.58 -0.05
4 3 50 0.90 18.1367 18.2150 18.1233 -0.43 0.07
4 3 50 0.99 72.4043 72.4267 72.3565 -0.03 0.07
4 3 50 1.20 158.5256 158.5780 158.5682 -0.03 -0.03
4 3 100 0.50 1.2975 1.3310 1.2982 -2.58 -0.05
4 3 100 0.90 18.1686 18.2471 18.1551 -0.43 0.07
4 3 100 0.99 122.9165 122.6126 122.5280 0.25 0.32
4 3 100 1.20 325.1922 325.2445 325.2348 -0.02 -0.01

4 5 5 0.50 0.4233 0.4413 0.4236 -4.25 -0.08
4 5 5 0.90 3.7563 3.8005 3.7705 -1.18 -0.38
4 5 5 1.20 7.0675 7.1131 7.1008 -0.65 -0.47
4 5 15 0.50 0.4324 0.4507 0.4324 -4.23 -0.01
4 5 15 0.90 8.0419 8.0972 8.0418 -0.69 0.00
4 5 15 0.99 14.2607 14.3145 14.2740 -0.38 -0.09
4 5 15 1.20 25.1909 25.2397 25.2280 -0.19 -0.15
4 5 50 0.50 0.4324 0.4507 0.4324 -4.23 -0.01
4 5 50 0.90 10.1933 10.2551 10.1883 -0.61 0.05
4 5 50 0.99 42.9238 42.9906 42.9375 -0.16 -0.03
4 5 50 1.20 94.9546 95.0037 94.9929 -0.05 -0.04
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Table 4.12: Expected Virtual Delay, Part 4

k n q p Delay Time (seconds) % Difference
Exact ELP ELC ELP ELC

4
4
4
4

4
4
4
4'
4
4
4

4
4
4
4
4
4

4
4
4

10
10
10
10

15
15
15
15
15
15
15

18
18
18
18
18
18

50
50
50

5
5
5
5

5
5
5

30
30
30
30

3
3
3

10
10
10

25
25
25

0.50
0.90
1.00
1.20

0.50
0.90
1.20
0.50
0.90
0.99
1.20

0.50
0.90
1.20
0.50
0.90
1.20

0.50
0.90
1.20

0.0595
1.5214
2.1853
3.3534

0.0126
0.8652
2.1617
0.0130
2.6307
8.5969

18.1596

0.0048
0.3942
0.9643
0.0056
1.2505
4.1772

N/A
N/A
N/A

0.0645
1.5507
2.2168
3.3862

0.0142
0.8857
2.1857
0.0146
2.6673
8.6362

18.1915

0.0055
0.4041
0.9757
0.0065
1.2757
4.2047

0.0000
0.4800'
4.3892

0.0594
1.5322
2.2025
3.3789

0.0125
0.8729
2.1813
0.0129
2.6294
8.6057

18.1845

0.0048
0.3982
0.9740
0.0056
1.2548
4.1991

0.0000
0.4656
4.3883

-8.42
-1.92
-1.44
-0.98

-12.62
-2.37
-1.11

-12.62
-1.39
-0.46
-0.18

-14.97
-2.51
-1.18

-15.18
-2.01
-0.66

N/A
N/A
N/A

0.13
-0.71
-0.79
-0.76

0.48
-0.89
-0.91
0.62
0.05

-0.10
-0.14

0.42
-1.00
-1.01
0.71

-0.34
-0.52

N/A
N/A
N/A
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Table 4.13: Expected Virtual Delay, Part 5

113

k n q p Delay Time (seconds) % Difference
I_ I_ Exact ELP ELC ELP ELC

5 3 1 0.50 0.7205 0.7411 0.7280 -2.86 -1.05
5 3 1 0.90 1.9120 1.9419 1.9330 -1.56 -1.10
5 3 1 1.20 2.6286 2.6595 2.6562 -1.18 -1.05
5 3 10 0.50 1.2772 1.3080 1.2785 -2.41 -0.10
5 3 10 0.90 11.4482 11.5043 11.4501 -0.49 -0.02
5 3 10 0.99 16.7907 16.8453 16.8085 -0.33 -0.11
5 3 10 1.20 26.6911 26.7451 26.7411 -0.20 -0.19
5 3 25 0.50 1.2774 1.3081 1.2787 -2.41 -0.10
5 3 25 0.90 16.6531 16.7142 16.6399 -0.37 0.08
5 3 25 0.99 39.2286 39.2891 39.2419 -0.15 -0.03
5 3 25 1.20 75.5773 75.6319 75.6325 --0.07 -0.07
5 3 50 0.50 1.2774 1.3081 1.2787 -2.41 -0.10
5 3 50 0.90 17.5391 17.6006 17.5225 -0.35 0.09
5 3 50 0.99 72.0059 72.0031 71.9469 0.00 0.08
5 3 50 1.20 158.8861 158.9406 158.9414 -0.03 -0.03
5 3 100 0.50 1.2774 1.3081 1.2787 -2.41 -0.10
5 3 100 0.90 17.5618 17.6229 17.5448 -0.35 0.10
5 3 100 0.99 121.2834 120.9207 120.8507 0.30 0.36
5 3 100 1.20 325.5528 325.6072 325.6080 -0.02 -0.02



Table 4.14: Expected Virtual Delay, Part 6

k n q p Delay Time (seconds) % Difference

- 41 UiExact ELP J ELC ELP ELC

5
5
5
5
5
5'

5
5
5

5
5

5

5

5
5

5
5

5
5
5

5
5
5
5
5
5
5
5
5
5
5

10
10
10
10

15
15
15
15
15
15
15

5
5
5

15
15
15
15
50
50
50
50

5
5
5
5

5
5
5

30
30
30
30

0.50
0.90
1.20
0.50
0.90
0.99
1.20
0.50
0.90
0.99
1.20

0.50
0.90
1.00
1.20

0.50
0.90
1.20
0.50
0.90
0.99
1.20

0.4179
3.7508
7.1077
0.4259
7.9202

14.2651
25.3539

0.4259
9.8607

42.6968
95.1587

0.0589
1.5183
2.1889
3.3682

0.0125
0.8630
2.1692
0.0129
2.5586
8.5850

18.2148

0.4347
3.7961
7.1593
0.4429
7.9716

14.3176
25.4078

0.4429
9.9163

42.7622
95.2129

0.0634
1.5493
2.2239
3.4067

0.0139
0.8850
2.1982
0.0143
2.5932
8.6239

18.2511

0.4184
3.7693
7.1515
0.4261
7.9202

14.2825
25.4024

0.4261
9.8541

42.7147
95.2086

0.0588
1.5328
2.2119
3.4022

0.0124
0.8734
2.1953
0.0128
2.5576
8.5966

18.2474

-4.03
-1.21
-0.73
-3.99
-0.65
-0.37
-0.21
-3.99
-0.56
-0.15
-0.06

-7.75
-2.04
-1.59
-1.14

-11.62
-2.55
-1.33

-11.43
-1.35
-0.45
-0.20

-0.13
-0.49
-0.62
-0.04
0.00

-0.12
-0.19
-0.04
0.07

-0.04
-0.05

0.17
-0.96
-1.05
-1.01

0.48
-1.20
-1.20
0.78
0.04

-0.13
-0.18

- A £.1 1
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Table 4.15: Expected Virtual Delay, Part 7

k n q p Delay Time (seconds) % Difference
Exact ELP ELC ELP ELC

8
8
8

8
8
8

10
10
10
10
10
10

10
10
10

10
10
10

15
15
15

15
15
15

20
20
20

3
3
3

5,
5
5

3
3
3
3
3
3'

5
5
5,

10
10
10

3
3
3

5
5
5

3
3
3

10
10
10

10
10
10

2
2
2

10
10
10

10
10
10

5
5
5

10
10
10

10
10
10

10
10
10

0.50
0.90
1.20

0.50
0.90
1.20

0.50
0.90
1.20
0.50
0.90
1.20

0.50
0.90
1.20

0.50
0.90
1.20

0.50
0.90
1.20

0.50
0.90
1.20

0.50
0.90
1.20

1.2462
11.2766
27.0040

0.4157
6.2374

15.9904

0.9951
3.2941
4.8224
1.2355

11.2139
27.1131

0.4122
6.2049
16.0517

0.0575
1.5096
3.3994

1.2208
11.1253
27.2626

0.4074
6.1585

16.1357

1.2131
11.0785
27.3393

1.2720
11.3246
27.0714

0.4295
6.2800
16.0555

1.0225
3.3566
4.8975
1.2591

11.2569
27.1869

0.4242
6.2436

16.1225

0.0603
1.5439
3.4541

1.2404
11.1586
27.3462

0.4167
6.1914

16.2155

1.2307
11.1074
27.4286

1.2491
11.2797
27.0747

0.4164
6.2462

16.0556

1.0087
3.3466
4.8965
1.2392

11.2177
27.1915

0.4132
6.2150

16.1240

0.0574
1.5337
3.4539

1.2260
11.1305
27.3516

0.4089
6.1711

16.2179

1.2194
11.0849
27.4337

-2.07
-0.43
-0.25

-3.30
-0.68
-0.41

-2.76
-1.90
-1.56
-1.91
-0.38
-0.27

-2.91
-0.62
-0.44

-4.94
-2.27
-1.61

-1.61
-0.30
-0.31

-2.28
-0.53
-0.49

-1.45
-0.26
-0.33

-0.23
-0.03
-0.26

-0.17
-0.14
-0.41

-1.37
-1.59
-1.54
-0.30
-0.03
-0.29

-0.24
-0.16
-0.45

0.17
-1.60
-1.61

-0.43
-0.05
-0.33

-0.37
-0.20
-0.51

-0.52
-0.06
-0.35
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The three remaining aggregate performance measures: expected waiting time in

the system, expected number of customers in the system, and expected number of

busy servers, are approximated very well using either heuristic. As seen in Tables 4.16

through 4.36, the heuristic solutions are always within 1% of the exact solution. The

expected number of busy servers is approximated particularly well, with the results

for both heuristics being, in most cases, identical to 3 decimal places with the exact

values.

Notice that for both Lq and E[Delay], the performance of the heuristics is worst

for low utilization ratios. We suspect that for low utilization ratios, the probabilities

of having more customers than the number of servers (m > in) are small compared

with the probabilities of having few customers in the system, therefore, the percentage

differences are larger but the absolute differences are small. For example, in Table 4.2,

the AI/E 3 /10/10 + 5 system has L, = 0.0263, 0.0284 and 0.0261 for the exact, ELP

and ELC, respectively, giving a percentage difference of -8.3% and 0.72% for ELP

and ELC, respectively, with respect to the exact. The absolute differences are 0.0021

and 0.0002 for ELP and ELC, respectively. In contrast to L, and E[Delay], the

aggregate measures W, L and E[Busy] do not worsen for any particular changes in

the system parameters or utilization ratios. This may be because we use all occupancy

probabilities in evaluating W, L and E[Busy], instead of a subset of the occupancy

probabilities required to compute Lq and E[Delay].

For all aggregate measures, the results obtained using the heuristic solution tech-

niques are sometimes larger, sometimes smaller than the exact solutions. Therefore,

neither ELP nor ELC provides an tipper or a lower bound for the exact results.

The examples and results presented so far in this section show clearly that ELC

dominates ELP. T he heuristic technique ELC provides a superb approximation of the

exact results. In ELC, only 5% of the results differed more than 1% from the exact

results; no values differ more than 3%. Using ELP, 18% of the results differ more

than 1% and 6% of them more thtan 3% from the exact values. If the computing times

for the heuristic solution techniques are similar, then the heuristic of choice would be

ELC. In the paragraphs below, we provide an analysis of the number of Chapman-
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Table 4.16: Expected Waiting Time in System, Part 1

k nq p Waiting Time (seconds) % Difference
Exact ELP ELC ELP ELC

3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3

3
3
3
3
3
3
3
3
3
3
3

3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3

5
5
5
5
5
5
5
5
5
5
5

1
1
1

10
10
10
10
25
25
25
25
50
50
50
50

100
100
100
100

5
5
5

15
15
15
15
50
50
50
50

0.50
0.90
1.20
0.50
0.90
0.99
1.20
0.50
0.90
0.99
1.20
0.50
0.90
0.99
1.20
0.50'
0.90
0.99
1.20

0.50'
0.90
1.20
0.50
0.90
0.99
1.20
0.50
0.90
0.99
1.20

10.3909
10.9459
11.2942
11.1125
20.3850
24.8242
33.3901
11.1131
26.8017
47.4306
81.5987
11.1131
28.2403
81.1113

164.8676
11.1131
28.2978

133.7097
331.5342

10.3623
13.0018
15.5983
10.3799
17.5741
23.0950
33.1500
10.3799
20.2565
52.1390

102.7796

10.3971
10.9483
11.2931
11.1380
20.4334
24.8710
33.4329
11.1387
26.8575
47.4845
81.6430
11.1387
28.2971
81.1299

164.9119
11.1387
28.3548

133.4420
331.5780

10.3764
13.0357
15.6342
10.3945
17.6210
23.1429
33.1952
10.3945
20.3104
52.1980

102.8257

10.3873
10.9401
11.2877
11.1082
20.3834
24.8302
33.4109
11.1088
26.7932
47.4356
81.6234
11.1088
28.2294
81.0754

164.8924
11.1088
28.2870

133.3799
331.5585

10.3607
13.0073
15.6150
10.3779
17.5724
23.1016
33.1711
10.3779
20.2533
52.1472

102.8018

-0.06
-0.02
0.01

-0.23
-0.24
-0.19
-0.13
-0.23
-0.21
-0.11
-0.05
-0.23
-0.20
-0.02
-0.03
-0.23
-0.20
0.20

-0.01

-0.14
-0.26
-0.23
-0.14
-0.27
-0.21
-0.14
-0.14'
-0.27'
-0.11
-0.04

0.03
0.05
0.06
0.04
0.01

-0.02
-0.06
0.04
0.03
-0.01
-0.03
0.04
0.04
0.04

-0.02
0.04
0.04
0.25
-0.01

0.02
-0.04
-0.11
0.02
0.01
-0.03
-0.06
0.02
0.02

-0.02
-0.02
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Table 4.17: Expected Waiting Time in System, Part 2

k n q p Waiting Time (seconds)l %Difference
Exact] ELP ELC ELP J ELC

3
3
3
3

3
3
3
3
3
3
3

3
3
3
3
3
3

3
3
3

10
10
10
10

15
15
15
15
15
15
15

18
18
18
18
18
18

50
50
50

5
5
5
5

5
5
5

30
30
30
30

3
3
3
10
10

0.50
0.90
1.00
1.20

0.50
0.90
1.20
0.50
0.90
0.99
1.20

0.50
0.90
1.20
0.50
0.90

10.0525
11.2109
11.7159
12.6447

10.0113
10.6875
11.7018
10.0120
12.6157
18.2410
27.4561

10.0040
10.2757
10.6710
10.0052
11.1186

10 11.20 1113.6777

25
25
25

0.50
0.90
1.20

10.0000
10.4586
14.1743

10.0569
11.2337
11.7405
12.6711

10.0128
10.7033
11.7214
10.0136
12.6476
18.2823
27.4961

10.0046
10.2819'
10.6775
10.0061
11.1418
13.7098

10.0000
10.4698
14.1989

10.0521
11.2150
11.7231
12.6565

10.0112
10.6902
11.7104
10.0119
12.6142
18.2458
27.4704

10.0039
10.2765
10.6737
10.0052
11.1204
13.6896

10.0000
10.4583
14.1818

-0.04
-0.20
-0.21
-0.21

-0.01
-0.15
-0.17
-0.02
-0.25
-0.23
-0.15

-0.01
-0.06
-0.06
-0.01
-0.21
-0.23

0.00
-0.11
-0.17

0.00
-0.04
-0.06
-0.09

0.00
-0.03
-0.07
0.00
0.01

-0.03
-0.05

0.00
-0.01
-0.03
0.00

-0.02
-0.09

-0.00
0.00

-0.05

u____I I if I I I___ A.I I
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Table 4.18: Expected Waiting Time in System, Part 3

k n q p Waiting Time (seconds) % Difference
Exact ELP ELC ELP ELC

4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4

4
4
4
4
4'
4'
4
4
4
4
4

3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3

5
5
5
5
5
5
5
5
5
5
5

1
1
10

10
10
10
10
25
25
25
25
50
50
50
50

100
100
100
100

5
5
5
15
15
15
15
50
50
50
50

0.50
0.90
1.20
0.50
0.90
0.99
1.20
0.50
0.90
0.99
1.20
0.50
0.90
0.99
1.20
0.50
0.90
0.99
1.20

0.50
0.90
1.20
0.50
0.90
0.99
1.20
0.50
0.90
0.99
1.20

10.3831
10.9337
11.2824
11.0545
20.1745
24.7866
33.6587
11.0548
26.0174
47.2609
82.1767
11.0549
27.1443
80.4508

165.4700
11.0548
27.1792

131.1705
332.1367

10.3479
12.9696
15.6284
10.3622
17.3542
23.0675
33.4004
10.3623
19.6488
51.7632

103.1212

10.3889
10.9357
11.2801
11.0833
20.2380
24.8467
33.7114
11.0837
26.0924
47.3307
82.2292
11.0837
27.2210
80.4707

165.5224
11.0837
27.2561

130.8585
332.1888

10.3629
13.0094
15.6717
10.3778
17.4072
23.1201
33.4491
10.3778
19.7091
51.8299

103.1703

10.3769
10.9236
11.2711
11.0473
20.1716
24.7971
33.6955
11.0477
26.0028
47.2695
82.2192
11.0477
27.1266
80.4000

165.5127
11.0477
27.1615

130.7736
332.1790

10.3450
12.9793
15.6581
10.3590
17.3512
23.0792
33.4372
10.3590
19.6411
51.7767

103.1596

-0.06
-0.02
0.02

-0.26
-0.31
-0.24
-0.16
-0.26
-0.29
-0.15
-0.06
-0.26
-0.28
-0.02
-0.03
-0.26
-0.28
0.24

-0.02

-0.15
-0.31
-0.28
-0.15
-0.31
-0.23
-0.15
-0.15
-0.31
-0.13
-0.05

0.06
0.09
0.10
0.06
0.01
-0.04
-0.11
0.06
0.06

-0.02
-0.05
0.06
0.07
0.06

-0.03
0.06
0.07
0.30

-0.01

0.03
-0.07
-0.19
0.03
0.02
-0.05
-0.11
0.03
0.04
-0.03
-0.04
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Table 4.19: Expected Waiting Time in System, Part 4

k n q p Waiting Time (seconds) % Difference

L IQ___ Exact JIELP ELC ELP ELC

4
4
4
4

4
4
4
4
4
4
4

4
4
4
4
4
4

4
4
4

10
10
10
10

15
15
15
15
15
15
15

18
18
18
18
18
18

50
50
50

5
5
5
5

5
5
5

30
30
30
30

3
3
3

10
10
10

25
25
25

0.50
0.90
1.00
1.20

0.50
0.90
1.20
0.50
0.90
0.99
1.20

0.50
0.90
1.20
0.50
0.90
1.20

0.50
0.90
1.20

10.0509
11.1990
11.7109
12.6551

10.0110
10.6811
11.7071
10.0117
12.4893
18.2138
27.5488

10.0039
10.2738
10.6707
10.0051
11.1021
13.7084

N/A
N/A
N/A

10.0552
11.2242
11.7382
12.6843

10.0124
10.6981
11.7272
10.0131
12.5250
18.2526
27.5807

10.0045
10.2805
10.6775
10.0059
11.1258
13.7353

10.0000
10.4554
14.2062

10.0503
11.2065
11.7240
12.6766

10.0108
10.6861
11.7227
10.0114
12.4869
18.2221
27.5737

10.0039
10.2752
10.6755
10.0050
11.1053
13.7296

10.0000
10.4410
14.2053

-0.04
-0.23
-0.23
-0.23

-0.01
-0.16
-0.17
-0.01
-0.29
-0.21
-0.12

-0.01
-0.06
-0.06
-0.01
-0.21
-0.20

N/A
N/A
N/A

0.01
-0.07
-0.11
-0.17

0.00
-0.05
-0.13
0.00
0.02
-0.05
-0.09

0.00
-0.01
-0.04
0.00
-0.03
-0.15

N/A
N/A
N/A

IL -I - .....................-L................LJ.. l _ _ _ _ _ _ _ _ _ _
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Table 4.20: Expected Waiting Time in System, Part 5

121

k n q p Waiting Time (seconds) % Difference
I_____ Exact ELP ELC ELP ELC

5 3 1 0.50 10.3784 10.3814 10.3703 -0.03 0.08
5 3 1 0.90 10.9259 10.9243 10.9128 0.01 0.12
5 3 1 1.20 11.2750 11.2690 11.2602 0.05 0.13
5 3 10 0.50 11.0195 11.0422 11.0105 -0.21 0.08
5 3 10 0.90 20.0368 20.0883 20.0329 -0.26 0.02
5 3 10 0.99 24.7619 24.8139 24.7757 -0.21 -0.06
5 3 10 1.20 33.8318 33.8852 33.8802 -0.16 -0.14
5 3 25 0.50 11.0198 11.0425 11.0108 -0.21 0.08
5 3 25 0.90 25.5247 25.5822 25.5061 -0.23 0.07
5 3 25 0.99 47.1478 47.2074 47.1596 -0.13 -0.03
5 3 25 1.20 82.5263 82.5809 82.5815 -0.07 -0.07
5 3 50 0.50 11.0198 11.0425 11.0108 -0.21 0.08
5 3 50 0.90 26.4825 26.5404 26.4602 -0.22 0.08
5 3 50 0.99 80.0109 80.0049 79.9483 0.01 0.08
5 3 50 1.20 165.8306 165.8851 165.8859 -0.03 -0.03
5 3 100 0.50 11.0198 11.0425 11.0108 -0.21 0.08
5 3 100 0.90 26.5074 26.5648 26.4846 -0.22 0.09
5 3 100 0.99 129.4921 129.1204 129.0503 0.29 0.34
5 3 100 1.20 332.4972 332.5515 332.5523 -0.02 -0.02



Table 4.21: Expected Waiting Time in System, Part 6

k n q p Waiting Time (seconds) % Differencel
iI___Exact ELP ELC ELP ELC

5
5
5
5
5
5
5
5
5
5
5

5
5
5
5

5
5
5
5
5
5
5

5
5
5
5
5
5
5
5
5
5
5

10
10
10
10

15
15
15
15
15
15
15

5
5
5
15
15
15
15
50
50
50
50

5
5
5
5

5
5
5
30
30
30
30

0.50
0.00
1.20
0.50
0.90
0.99
1.20
0.50
0.90
0.99
1.20

0.50
0.90
1.00
1.20

0.50
0.90
1.20
0.50
0.90
0.99
1.20

10.3390
12.9484
15.6479
10.3516
17.2113
23.0485
33.5566
10.3516
19.2814
51.5118

103.3254

10.0500
11.1908
11.7072
12.6614

10.0109
10.6766
11.7102
10.0114
12.4099
18.1944
27.6039

10.3518
12.9883
15.6968
10.3647
17.2596
23.0996
33.6102
10.3647
19.3344
51.5770

103.3796

10.0537
11.2170
11.7371
12.6955

10.0121
10.6945
11.7343
10.0127
12.4434
18.2328
27.6402

10.3353
12.9611
15.6873
10.3475
17.2075
23.0639
33.6047
10.3475
19.2710
51.5293

103.3752

10.0491
11.2009
11.7248
12.6902

10.0106
10.6834
11.7309
10.0112
12.4075
18.2054
27.6365

-0.12
-0.31
-0.31
-0.13
-0.28
-0.22
-0.16
-0.13
-0.27
-0.13
-0.05

-0.04
-0.23
-0.26
-0.27

-0.01
-0.17
-0.21
-0.01
-0.27
-0.21
-0.13

0.04
-0.10
-0.25
0.04
0.02

-0.07
-0.14
0.04
0.05

-0.03
-0.05

0.01
-0.09
-0.15
-0.23

0.00
-0.06
-0.18
0.00
0.02

-0.06
-0.12
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Table 4.22: Expected Waiting Time in System, Part 7

k n q p Waiting Time (seconds) % Difference
Exact [ ELP J ELC ELP [ ELC

8
8
8

8
8
8

10
10
10
10
10
10

10
10
10

10
10
10

15
15
15

15
15
15

20
20
20

3
3
3

5
5
5

3
3
3
3
3
3

5
5
5

10
10
10

3
3
3

5
5
5

3
3
3

10
10
10

10
10
10

2
2
2
10
10
10

10
10
10

5
5
5

10
10
10

10
10
10

10
10
10

0.50
0.90
1.20

0.50
0.90
1.20

0.50
0.90
1.20
0.50
0.90
1.20

0.50
0.90
1.20

0.50
0.90
1.20

0.50
0.90
1.20

0.50
0.90
1.20

0.50
0.90
1.20

10.9666 | 10.9798
19.8114
34.1096

10.3355
15.4323
24.2557

10.6403
11.9864
12.9446
10.9487
19.7305
34.2075

10.3301
15.3903
24.3105

10.0480
11.1715
12.6743

10.9246
19.6174
34.3425

10.3227
15.3311
24.3858

10.9123
19.5583
34.4121

19.8525
34.1760

10.3433
15.4696
24.3200

10.6495
12.0178
12.9870
10.9577
19.7654
34.2802

10.3353
15.4230
24.3803

10.0495
11.1989
12.7227

10.9266
19.6410
34.4247

10.3241
15.3569
24.4645

10.9107
19.5766
34.4999

10.9548
19.8061
34.1784

10.3299
15.4353
24.3195

10.6358
12.0039
12.9795
10.9361
19.7250
34.2839

10.3241
15.3939
24.3813

10.0467
11.1886
12.7213

10.9111
19.6121
34.4295

10.3162
15.3362
24.4666

10.8986
19.5535
34.5045

-0.12
-0.21
-0.19

-0.08
-0.24
-0.27

-0.09
-0.26
-0.33
-0.08
-0.18
-0.21

-0.05
-0.21
-0.29

-0.02
-0.25
-0.38

-0.02
-0.12
-0.24

-0.01
-0.17
-0.32

0.01
-0.09
-0.26

0.11
0.03

-0.20

0.05
-0.02
-0.26

0.04
-0.15
-0.27
0.11
0.03
-0.22

0.06
-0.02
-0.29

0.01
-0.15
-0.37

0.12
0.03

-0.25

0.06
-0.03
-0.33

0.13
0.02

-0.27
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Table 4.23: Expected Number of Customers in System, Part 1

k n q p Number of Customers % Difference
Exact ELP J ELC ELP [ ELC

3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3

3
3
3
3
3
3
3
3
3
3
3

3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3

5
5
5
5
5
5
5
5

5

1
1
1

10
10
10
10
25
25
25
25
50
50

50
100
100
100
100

5
5
5

15
15
15
15
50
50
50
50

0.50
0.90
1.20
0.50
0.90
0.99
1.20
0.50
0.90
0.99
1.20
0.50
0.90
0.99
1.20
0.50
0.90
0.99
1.20

0.50
0.90
1.20
0.50
0.90
0.99
1.20
0.50
0.90
0.99
1.20

1.4723
2.3542
2.7736
1.6669
5.3869
6.9845
9.9337
1.6670
7.2240

13.7988
24.4766

1.6670
7.6246

23.8834
49.4603

1.6670
7.6404

39.6021
99.4603

2.5886
5.5249
7.5259
2.5950
7.8424
4.7781
16.5440
2.5950
9.1151

25.5892
51.3398

1.4719
2.3534
2.7741
1.6707
5.3996
6.9975
9.9465
1.6708
7.2390

13.8144
24.4899

1.6708
7.6399

23.8891
49.4736

1.6708
7.6558

39.5236
99.4735

2.5920
5.5389
7.5438
2.5986
7.8633
4.7781
16.5666
2.5986
9.1394

25.6181
51.4128

1.4726
2.3559
2.7765
1.6662
5.3868
6.9866
9.9402
1.6663
7.2217

13.8004
24.4840

1.6663
7.6217

23.8731
49.4677

1.6663
7.6375

39.5052
99.4676

2.5882
5.5285
7.5354
2.5945
7.8418
4.7783

16.5546
2.5945
9.1137

25.5933
51.4009

0.03
0.03

-0.02'
-0.23
-0.23
-0.19
-0.13
-0.23
-0.21
-0.11
-0.05
-0.23
-0.20
-0.02
-0.03
-0.23
-0.20
0.20

-0.01

-0.13
-0.25
-0.24
-0.14
-0.27
0.00

-0.14
-0.14
-0.27
-0.11
-0.04

-0.02
-0.07
-0.10
0.04
0.00
-0.03
-0.07
0.04
0.03
-0.01
-0.03
0.04
0.04
0.04
-0.02
0.04
0.04
0.24

-0.01

0.01
-0.07
-0.12
0.02
0.01

-0.00
-0.06
0.02
0.02
-0.02
-0.02
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Table 4.24: Expected Number of Customers in System, Part 2

k n q p Number of Customers % Difference
Exact ELP ELC ELPIELC

3
3
3
3

3
3
3
3
3
3
3

3
3
3
3
3
3

3
3
3

10
10
10
10

15
15
15
15
15
15
15

18
18
18
18
18
18

50
50
50

5
5
5
5

5
5
5
30
30
30
30

3
3
3
10
10
10

25
25
25

0.50
0.90
1.00
1.20

0.50
0.90
1.20
0.50
0.90
0.99
1.20

0.50
0.90
1.20
0.50
0.90
1.20

0.50
0.90
1.20

5 .0249
9.6049
10.6687
12.2615

7.5077
13.8120
17.0746
7.5090
17.0205
26.6620
41.1833

9.0010
15.6368
18.3028
9.0047
17.7309
24.4731

24.9990
47.0191
70.8665

5.0270
9.6238
10.6920
12.2908

7.5088
13.8318
17.1114
7.5102
17.0636
26.7226
41.2432

9.0012
15.6394
18.3236
9.0054
17.7682
24.5336

24.9996
47.0703
70.9901

5.0248
9.6113

10.6789
12.2763

7.5077
13.8201
17.0927
7.5089

17.0185
26.6694
41.2047

9.0010
15.6449
18.3180
9.0046

17.7355
24.4956

25.0000
47.0182
70.9039

-0.04
-0.20
-0.22
-0.24

-0.01
-0.14
-0.22
-0.02
-0.25
-0.23
-0.15

-0.00
-0.02
-0.11
-0.01
-0.21
-0.25

-0.00
-0.11
-0.17

0.00
-0.07
-0.10
-0.12

0.00
-0.06
-0.11
0.00
0.01

-0.03
-0.05

-0.00
-0.05
-0.08
0.00
-0.03
-0.09

-0.00
0.00

-0.05
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Table 4.25: Expected Number of Customers in System, Part 3

k n q Pl Number of Customers % Difference
Exact ELP ELC ELP ELC

4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4

4
4
4
4
4
4
4
4
4
4
4

3
3

3
3
3
3
3
3

3
3
3
34
3
3
3
3
3
3

5
5

5

5
5
5S
5S

1
1
1

10
10
I0
10
25
25
25
25
50
50
50
50

100
100
100
100

5
5
5

15
15
15
15
50
50
50
50

0.50
0.90

-1.20
0.50
0.90
0.99
1.20
0.50
0.90
0.99
1.20
0.50
0.90
0.99
1.20
0.50
0.90
0.99
1.20

0.50
0.90
1.20
0.50
0.90
0.99
1.20
0.50
0.90
0.99
1.20

1.4728
2.3577
2.7788
1.6582
5.3433
6.9949

10.0279
1.6582
7.0152

13.7693
24.6511

1.6582
7.3288

23.7064
49.6410

1.6582
7.3384

38.8629
99.6410

2.5853
5.5290
7.5636
2.5906
7.7533

11.0449
16.6764
2.59061
8.8418

25.4232
51.5606

1.4724
2.3571
2.7798
1.6625
5.3598
7.0115

10.0435
1.6626
7.0354

13.7895
24.6669

1.6626
7.3495

23.7126
49.6567

1.6626
7.3591

38.7713'
99.6567

2.5890
5.5453
7.5847
2.5944
7.7769

11.0699
16.7007
2.5944
8.8689

25.4559
51.5852

1.4732
2.3607
2.7838
1.6571
5.3429
6.9985

10.0393
1.6572
7.0113

13.7720
24.6639

1.6572
7.3240

23.6919
49.6538

1.6572
7.3336

38.7462
99.6538

2.5846
5.5352
7.5801
2.5897
7.7522

11.0512
16.6949
2.5897
8.8383

25.4299
51.5798

0.03
0.03

-0.04
-0.26
-0.31
-0.24
-0.16
-0.26
-0.29
-0.15
-0.06
-0.26
-0.28
-0.03
-0.03
-0.26
-0.28
0.24

-0.02

-0.14
-0.29
-0.28
-0.15
-0.30
-0.23
-0.15
-9.15
-0.31
-0.13
-0.05

-0.03
-0.13
-0.18
0.06
0.01

-0.05
-0.11
0.06
0.06

-0.02
-0.05
0.06
0.07
0.06

-0.03
0.06
0.07
0.30

-0.01

0.03
-0.11
-0.22
0.03
0.01

-0.06
-0.11
0.03
0.04

-0.03
-0.04

____ a & IL A.
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Table 4.26: Expected Number of Customers in System, Part 4

k n q p Number of Customers % Difference
2 LJ IIExact j ELP J ELC .ELP -ELC

4
4
4
4

4
4
4
4
4
4
4

4
4
4
4
4
4

4
4
4

10
10
10
10

15
15
15
15
15
15
15

18
18
18
18
18
18

50
50
50

5
5

5

5
5
5

30
30
30
30

3
3
3

10
10
10

25
25
25

0.50
0.90
1.00
1.20

0.50
0.90
1.20
0.50
0.90
0.99
1.20

0.50
0.90
1.20
0.50
0.90
1.20

0.50
0.90
1.20

5.0243
9.6153

10.6921
12.2980

7.5076
13.8252
17.1095
7.5087
16.8527
26.6507
41.3226

9.0010
15.6476
18.3204
9.0046

17.7269
24.5484

N/A
N/A
N/A

5.0264
9.6356
10.7167
12.3285

7.5086
13.8447
17.1440
7.5099

16.9007
26.7072
41.3704

9.0012
15.6496
18.3395
9.0053
17.7628
24.5972

25.0000
47.0121
71.0279

5.0240
9.6268

10.7103
12.3243

7.5075
13.8397
17.1418
7.5086

16.8494
26.6636
41.3600

9.0011
15.6622
18.3474
9.0045

17.7348
24.5882

25.0000
46.9487
71.0233

-0.04
-0.21
-0.23
-0.25

-0.01
-0.14
-0.20
-0.01
-0.29
-0.21
-0.12

-0.00
-0.01
-0.10
-0.01
-0.20
-0.20

N/A
N/A
N/A

0.00
-0.12
-0.17
-0.21

0.00
-0.10
-0.19
0.00
0.02

-0.05
-0.09

-0.00
-0.09
-0.15
0.00

-0.04
-0.16

N/A
N/A
N/A
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Table 4.27: Expected Number of Customers in System, Part 5

k n q p Number of Customers % Difference
Exact ELP ELC ELP ELC

5 3 1 0.50 1.4731 1.4729 1.4737 0.01 -0.04
5 3 1 0.90 2.3600 2.3605 2.3639 -0.02 -0.16
5 3 1 1.20 2.7821 2.7847 2.7886 -0.10 -0.23
5 3 10 0.50 1.6529 1.6563 1.6516 -0.21 0.08
5 3 10 0.90 5.3140 5.3275 5.3134 -0.26 0.01
5 3 10 0.99 7.0008 7.0154 7.0055 -0.21 -0.07
5 3 10 1.20 10.0877 10.1036 10.1026 -0.16 -0.15
5 3 25 0.50 1.6530 1.6564 1.6516 -0.21 0.08
5 3 25 0.90 6.8838 6.8993 6.8788 -0.23 0.07
5 3 25 0.99 13.7483 13.7656 13.7520 -0.13 -0.03
5 3 25 1.20 24.7565 24.7729 24.7731 -0.07 -0.07
5 3 50 0.50 1.6530 1.6564 1.6516 -0.21 0.08
5 3 50 0.90 7.1502 7.1658 7.1442 -0.22 0.08
5 3 50 0.99 23.5873 23.5859 23.5693 0.01 0.08
5 3 50 1.20 49.7492 49.7655 49.7658 -0.03 -0.03
5 3 100 0.50 1.6530 1.6564 1.6516 -0.21 0.08
5 3 100 0.90 7.1570 7.1725 7.1508 -0.22 0.09
5 3 100 0.99 38.3732 38.2639 38.2432 0.28 0.34
5 3 100 1.20 99.7492 99.7655 99.7657 -0.02 -0.02
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Table 4.28: Expected Number of Customers in System, Part 6

k n q p Number of Customers %Difference
Exact ELP ELC ELP ELC

5
5
5
5
5
5
5
5
5
5
5

5
5
5
5

5
5
5
5
5
5
5

5S

5
5
5
5
5

55
5
5

5

10
10
10
10

15
15
15
15
15
15
15

5
5
5
15
15
15
15
50
50
50
50

5
5
5
5

5
5
5
30
30
30
30

0.50
0.90
1.20
0.50
0.90
0.99
1.20
0.50
0.90
0.99
1.20

0.50
0.90
1.00
1.20

0.50
0.90
1.20
0.50
0.90
0.99
1.20

2.5832
5.5310
7.5874
2.5879
7.6947

11.0499
16.7584

2.5879
8.6765

25.3108
51.6627

5.0239
9.6214

10.7064
12.3206

7.5075
13.8330
17.1309

7.5086
16.7469
26.6397
41.4055

2.5864
5.5479
7.6116
2.5912
7.7162

11.0744
16.7852
2.5912
8.7004

25.3427
51.6898

5.0257
9.6439
10.7350
12.3569

7.5084
13.8561
17.1735

7.5095
16.7919
26.6957
41.4600

2.5824
5.5391
7.6091
2.5869
7.6933

11.0581
16.7826
2.5869
8.6718

25.3195
51.6876

5.0235
9.6365
10.7305
12.3554

7.5074
13.8522
17.1737
7.5084

16.7436
26.6567
41.4544

-0.12
-0.31
-0.32
-0.13
-0.28
-0.22
-0.16
-0.13
-0.27
-0.13
-0.05

-0.04
-0.23
-0.27
-0.30

-0.01
-0.17
-0.25
-0.01
-0.27
-0.21
-0.13

0.03
-0.15
-0.29
0.04
0.02

-0.07
-0.14
0.04
0.05
-0.03
-0.05

0.01
-0.16
-0.23
-0.28

0.00
-0.14
-0.25
0.00
0.02
-0.06
-0.12
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Table 4.29: Expected Number of Customers in System, Part 7

k n q p Number of Customers % Difference
Exact ELP ELC ELP ELC

8
8
8

8
8
8

10
10
10
10
10
10

10
10
10

10
10
10

15
15
15

15
15
15

20
20
20

3
3
3

5
5
5

3
3
3
3
3
3

5
5
5

10
10,
10

3
3
3

5
5
5

3
3
3

10
10
10

10
10
10

2
2
2

10
10
10

10
10
10

5
5
5

10
10
10

10
10
10

10
10
10

0.50
0.90
1.20

0.50
0.90
1.20

0.50
0.90
1.20
0.50
0.90
1.20

0.50
0.90
1.20

0.50
0.90
1.20

0.50
0.90
1.20

0.50
0.90
1.20

0.50
0.90
1.20

1.6450
5.2647

10.1822

2.5839
6.8399

12.0710

1.5664
2.8161
3.4836
1.6423
5.2467

10.2151

2.5825
6.8254

12.1022

5.0230
9.0327

12.3683

1.6387
5.2213
10.2602

2.5807
6.8047
12.1450

1.6368
5.2078

10.2834

1.6470
5.2757

10.2022

2.5858
6.8566

12.1033

1.5684
2.8272
3.5008
1.6437
5.2562

10.2371

2.5838
6.8403

12.1374

5.0239
9.6611

12.4219

1.6390
5.2279

10.2852

2.5810
6.8167

12.1847'

1.6366
5.2131

10.3100

1.6432
5.2639

10.2033

2.5825
6.8422

12.1035

1.5672
2.8274
3.5025
1.6404
5.2459

10.2385

2.5810
6.8280

12.1383

5.0225
9.6569

12.4237

1.6367
5.2205

10.2868

2.5791
6.8080
12.1860

1.6348
5.2072

10.3116

Fir

-0.12
-0.21
-0.20

-0.08
-0.24
-0.27

-0.13
-0.39
-0.49
-0.08
-0.18
-0.22

-0.05
-0.22
-0.29

-0.02
-0.30
-0.43

-0.02
-0.13
-0.24

-0.01
-0.18
-0.33

0.01
-0.10
-0.26

_____ _____ a _________ .i _________ a u _________
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0.11
0.02
-0.21

0.05
-0.03
-0.27

-0.05
-0.40
-0.54
0.11
0.02
-0.23

0.06
-0.04
-0.30

0.01
-0.25
-0.45

0.12
0.02
-0.26

0.06
-0.05
-0.34

0.13
0.01

-0.27



Kolmogorov equations needed to solve the models and the CPU times required to

obtain the solutions.

To illustrate the advantage of using the heuristic techniques, we compare in Ta-

bles 4.37 and 4.38 the number of Chapman-Kolmogorov equations and the associated

CPU times required to solve these equations for each of the 170 models in the study.

The first three columns specify all combinations of n, q and p examined for each value

of k. Columns 4 and 5 specify the number of states in each model for the exact and

heuristic techniques, respectively. The CPU times required to obtain steady-state

solutions with p = 0.9 for the exact solution technique is in column 6, and the max-

imum of the times required using ELC and ELP is in column 7. The CPU times

required to solve the models using the two heuristics are almost identical. In some

cases, it takes longer to solve the model using ELP than using ELC, and vice versa,

but the differences are small. The final column shows the ratios of columns 6 and 7.

We selected the utilization ratio of 0.9 bccause it is a high utilization ratio without

being over-saturated. As seen in Table 4.1, it takes longer to reach steady-state for

models with p = 0.9 than with p = 0.5 or 1.2, due to longer transient periods.

The maximum number of statts using the exact solution technique grows faster,

as suggested by Equation 3.1, than the number of states using the heuristic solution

techniques, as given in Equation 3.18. For example, the ranges for the models pre-

sented go from 30 states up to 901901 states in the case of the exact solution, while

for the same models using the heuristics the range is from 23 to 7651. This number

is particularly sensitive to the value of k.

The CPU times for running the experiments using the exact solution technique

range from 0.42 seconds up to 192,475 seconds (53.46 hours); note that we were

unable to solve the largest system using the exact solution technique with the available

computer hardware and software. Using the heuristic solution techniques, solution

times ranged from 0.25 seconds up to 1183.73 seconds (19.73 minutes). The time

to obtain the solution not only depends on the number of Chapman-Kolmogorov

equations to solve, but also on how long the model takes to reach steady-state. For

example, solving the M/E£4/5/5 +15 system, with 966 states, using the exact solution
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Table 4.30: Expected Number of Busy Servers, Part 1

k n q p Number of Busy Servers % Difference
Exact ELP j ELC ELP ELC

3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3

3
3
3
3
3
3
3
3
3
3
3

3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3

5
5
5
5
5
5
5
5

5
5

1
1
1

10
10
10
10
25
25
25
25
50
50
50
50

100
100
100
100

5
5
5

15
15
15
15
50
50
50
50

0.50
0.90
1.20
0.50
0.90
0.99
1.20
0.50
0.90
0.99
1.20
0.50
0.90
0.99
1.20
0.50
0.90
0.99
1.20

0.50
0.90
1.20
0.50
0.90
0.99
1.20
0.50
0.90
0.99
1.20

1.4169
2.1507
2.4558
1.5000
2.6426
2.8136
2.9750
1.5000
2.6953
2.9092
2.9996
1.5000
2.6999
2.9445
3.0000
1.5000
2.7001
2.9616
3.0000

2.4981
4.2493
4.8249
2.5001
4.4625
4.7781
4.9906
2.5001
4.4998
4.9079
5.0000

1.4157
2.1496
2.4565
1.5000
2.6425
2.8135
2.9751
1.5000
2.6953
2.9092
2.9996
1.5000
2.6998
2.9444
3.0000
1.5000
2.6999
2.9614
3.0000

2.4980
4.2490
4.8252
2.5000
4.4624
4.7781
4.9906
2.5000
4.4999
4.9079
5.0000

1.4176
2.1534
2.4597
1.5000
2.6427
2.8137
2.9751
1.5000
2.6953
2.9093
2.9996
1.5000
2.7000
2.9445
3.0000
1.5000
2.7000
2.9614
3.0000

2.4981
4.2503
4.8257
2.5001
4.4626
4.7783
4.9907
2.5001
4.4999
4.9079
5.0000

- - - - - ________________ . ________ a

0.09
0.05

-0.03
0.00
0.00
0.00

-0.00
0.00

-0.00
0.00

-0.00
0.00
0.00
0.00
0.00
0.00
0.01
0.00
0.00

0.00
0.01

-0.01
0.00
0.00
0.00

-0.00
0.00

-0.00
-0.00
0.00

-0.05
-0.12
-0.16
0.00

-0.00
-0.01
-0.00
0.00

-0.00
-0.00
-0.00
0.00

-0.00
0.00
0.00
0.00
0.00
0.00
0.00

-0.00
-0.02
-0.02
-0.00
-0.00
-0.00
-0.00
-0.00
-0.00
-0.00
0.00
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Table 4.31: Expected Number of Busy Servers, Part 2

k n q p Number of Busy Servers % Difference
Exact [ELP ELC ELP ELC

4.9986
8.5669
9.1069
9.6999

7.4992
12.9230
14.5984

7.4999
13.4912
14.6167
14.9996

8.9971
15.2106
17.1609
9.0001

15.9474
17.8949

24.9996
44.9579
49.9968

5
5
5
5

5
5
5

30
30
30
30

3
3
3

10
10
10

25
25
25

0.50
0.90
1.00
1.20

0.50
0.90
1.20
0.50
0.90
0.99
1.20

0.50
0.90
1.20
0.50
0.90
1.20

0.50
0.90
1.20
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3
3
3
3

3
3
3
3
3
3
3

3
3
3
3
3
3

3
3
3

10

10

10

10

15
15
15
15
15
15
15

18
18
18
18
18
18

50
50
50

4.9986
8.5675
9.1062
9.6970

7.4993
12.9236
14.5915
7.4997

13.4915
14.6165
14.9994

8.9974
15.2172
17.1519
8.9997

15.9471
17.8927

24.9990
44.9572
49.9965

4.9987
8.5701
9.1093
9.6996

7.4993
12.9279
14.5963
7.4999

13.4916
14.6168
15.0002

8.9975
15.2240
17.1618

8.9998
15.9486
17.8935

25.0000
44.9577
49.9965

0.00

0.01

-0.01

-0.03

0.00
0.00

-0.05
-0.00
0.00

-0.00
-0.00

0.00
0.04

-0.05
-0.00
-0.00
-0.01

-0.00
-0.00
-0.00

-0.00

-0.03
-0.03
-0.03

-0.00
-0.03
-0.03
-0.00
-0.00
-0.00
-0.01

-0.00
-0.05
-0.06
-0.00
-0.01
-0.00

-0.00
-0.00
-0.00



Table 4.32: Expected Number of Busy Servers, Part 3

k n q p Number of Busy Servers % Difference
Exact ELP ELC ELP ELC

4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4

4
4
4
4
4
4
4
4
4
4
4

3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3

5
5

5
5
5
5
5
5
5
5
5

1
1
1

10
10
10
10
25
25
25
25
50
50
50
50

100
100
100
100

5
5
5

15
15
15
15
50
50
50
50

0.50
0.90
1.20
0.50
0.90
0.99
1.20
0.50
0.90
0.99
1.20
0.50
0.90
0.99
1.20
0.50
0.90
0.99
1.20

0.50
0.90
1.20
0.50
0.90
0.99
1.20
0.50
0.90
0.99
1.20

1.4185
2.1564
2.4630
1.5000
2.6485
2.8220
2.9793
1.5000
2.6964
2.9134
2.9998
1.5000
2.7000
2.9467
3.0000
1.5000
2.6999
2.9625
3.0000

2.4984
4.2630
4.8396
2.5000
4.4677
4.7881
4.9929
2.5000
4.4999
4.9114
5.0000

1.4173
2.1554
2.4643
1.5000
2.6484
2.8219
2.9793
1.5000
2.6963
2.9134
2.9998
1.5000
2.6998
2.9466
3.0000
1.5000
2.6998
2.9623
3.0000

2.4983
4.2625
4.8398
2.4999
4.4676
4.7880
4.9929
2.4999
4.5000
4.9114
5.0000

1.4197
2.1611
2.4698
1.4999
2.6487
2.8223
2.9794
1.4999
2.6964
2.9135
2.9998
1.4999
2.6999
2.9466
3.0000
1.4999
2.7000
2.9623
3.0000

2.4984
4.2646
4.8410
2.4999
4.4678
4.7884
4.9929
2.4999
4.5001
4.9115
5.0000

0.08
0.04

-0.06
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.01
0.00
0.00
0.00
0.01
0.01
0.00

0.00
0.01

-0.00
0.00
0.00
0.00

-0.00
0.00

-0.00
-0.00
0.00

-0.09
-0.22
-0.28
0.01

-0.01
-0.01
-0.00
0.00

-0.00
-0.00
0.00
0.00
0.00
0.00
0.00
0.00

-0.00
0.01
0.00

-0.00
-0.04
-0.03
0.00

-0.00
-0.01
-0.00
0.00

-0.00
-0.00
0.00
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Table 4.33: Expected Number of Busy Servers, Part 4

k n q p Number of Busy Servers % Difference
Exact) ELP ELC LP ELC

10
10
10
10

15
15
15
15
15
15
15

18
18
18
18
18
18

50
50
50

5
5
5
5

5
5
5

30
30
30
30

3
3
3

10
10
10

25
25
25

0.50
0.90
1.00
1.20

0.50
0.90
1.20
0.50
0.90
0.99
1.20

0.50
0.90
1.20
0.50
0.90
1.20

0.50
0.90
1.20

4.9988
8.5859
9.1300
9.7178

7.4993
12.9436
14.6146
7.4998

13.4936
14.6322
14.9998

8.9975
15.2306
17.1688
8.9999
15.9672
17.9076

N/A
N/A
N/A

4.9987
8.5847
9.1298
9.7195

7.4993
12.9413
14.6189
7.5001

13.4936
14.6320
14.9998

8.9972
15.2227
17.1759
8.9998
15.9654
17.9080

25.0000
44.9644
49.9977

4.9989
8.5904
9.1353
9.7221

7.4994
12.9512
14.6228

7.4999
13.4937
14.6326
14.9998

8.9976
15.2427
17.1865
8.9998
15.9696
17.9089

25.0000
44.9657
49.9977

0.00
0.01
0.00
-0.02

0.00
0.02

-0.03
-0.00
0.00
0.00
0.00

0.00
0.05

-0.04
0.00
0.01

-0.00

N/A
N/A
N/A

-0.00
-0.05
-0.06
-0.04

-0.00
-0.06
-0.06
-0.00
-0.00
-0.00
0.00

-0.00
-0.08
-0.10
0.00
-0.02
-0.01

N/A
N/A
N/A

IaIaI Ia I I I.

135

4
4
4
4

4
4
4
4
4
4
4

4
4
4
4
4
4

4
4
4



Table 4.34: Expected Number of Busy Servers, Part 5

136

k n q p Number ofBusyServers % Difference
Exact ELP ELC ELP ELC

5 3 1 0.50 1.4194 1.4188 1.4211 0.04 -0.11
5 3 1 0.90 2.1600 2.1607 2.1661 -0.03 -0.28
5 3 1 1.20 2.4675 2.4711 2.4765 -0.15 -0.37
5 3 10 0.50 1.5000 1.5000 1.4999 -0.00 0.00
5 3 10 0.90 2.6521 2.6521 2.6523 0.00 -0.01
5 3 10 0.99 2.8272 2.8272 2.8276 0.00 -0.01
5 3 10 1.20 2.9817 2.9817 2.9819 -0.00 -0.00
5 3 25 0.50 1.5000 1.5000 1.4999 -0.00 0.00
5 3 25 0.90 2.6968 2.6969 2.6969 -0.00 -0.00
5 3 25 0.99 2.9160 2.9160 2.9160 -0.00 -0.00
5 3 25 1.20 2.9998 2.9998 2.9998 0.00 0.00
5 3 50 0.50 1.5000 1.5000 1.4999 -0.00 0.00
5 3 50 0.90 2.7000 2.7000 2.6999 0.00 0.00
5 3 50 0.99 2.9480 2.9479 2.9479 0.00 0.00
5 3 50 1.20 3.0000 3.0000 3.0000 0.00 0.00
5 3 100 0.50 1.5000 1.5000 1.4999 -0.00 0.00
5 3 100 0.90 2.6999 2.6999 2.6998 0.00 0.00
5 3 100 0.99 2.9630 2.9629 2.9629 0.00 0.00
5 3 100 1.20 3.0000 3.0000 3.0000 0.00 0.00



Table 4.35: Expected Number of Busy Servers, Part 6

k' n q p Number of Busy Servers % Difference
I _I Exact | ELP j ELC ELP ELC

5
5
5
5
5
5
5
5
5
5
5

5
5
5
5

5
5
5

5
5

5
5
5
5
5
5
5
5
5
5
5

10
10
10
10

15
15
15
15
15
15
15

5
5
5

15
15
15
15
50
50
50
50

5
5
5
5

5
5
5

30
30
30
30

0.50
0.90
1.20
0.50
0.90
0.99
1.20
0.50
0.90
0.99
1.20

0.50
0.90
1.00
1.20

0.50
0.90
1.20
0.50
0.90
0.99
1.20

2.4985
4.2716
4.8488
2.4999
4.4707
4.7942
4.9941
2.4999
4.4999
4.9135
5.0000

4.9989
8.5977
9.1451
9.7308

7.4994
12.9563
14.6291
7.4999

13.4946
14.6417
14.9999

2.4985
4.2715
4.8491
2.4999
4.4707
4.7942
4.9941
2.4999
4.4999
4.9136
5.0000

4.9989
8.5975
9.1462
9.7333

7.4993
12.9563
14.6353

7.5000
13.4947
14.6416
14.9999

2.4986
4.2736
4.8505
2.5000
4.4709
4.7946
4.9941
2.5000
4.4999
4.9136
5.0000

4.9990
8.6034
9.1520
9.7362

7.4994
12.9661
14.6396
7.4998

13.4948
14.6422
14.9999

0.00
0.00

-0.01
-0.00
0.00
0.00

-0.00
-0.00
0.00

-0.00
0.00

0.00
0.00

-0.01
-0.03

0.00
0.00

-0.04
-0.00
-0.00
0.00
0.00

-0.00
-0.05
-0.04
-0.01
-0.00
-0.01
-0.00
-0.01
0.00

-0.00
0.00

-0.00
-0.07
-0.07
-0.06

-0.00
-0.08
-0.07
0.00

-0.00
-0.00
0.00

137



Table 4.36: Expected Number of Busy Servers, Part 7

k n q p Number of Busy Servers D% Difference
Exact ELP ELC ELP ELC

8
8
8

8
8
8

10
10
10
10
10
10

10
10
10

10
10
10

15
15
15

15
15
15

20
20
20

3
3
3

5
5
5

3
3
3
3
3
3

5
5
5

10
10
10

3
3
3

5
5
5

3
3
3

10
101
10

10
10
10

2
2
2

10
10
10

10
10
10

5
5
5

10
10
10

10
10
10

10
10
10

0.50
0.90
1.20

0.50
0.90
1.20

0.50
0.90
1.20
0.50
0.90
1.20

0.50
0.90
1.20

0.50
0.90
1.20

0.50
0.90
1.20

0.50
0.90
1.20

0.50
0.90
1.20

1.5000
2.6574
2.9851

2.5000
4.4322
4.9765

1.4721
2.3494
2.6911
1.5000
2.6592
2.9862

2.5000
4.4349
4.9782

4.9990
8.6225
9.7586

1.5000
2.6615
2.9876

2.5000
4.4385
4.9803

1.5000
2.6627
2.9883

- 9 1 1 Is -- r

1.5000
2.6575
2.9852

2.5000
4.4323
4.9767

1.4728
2.3525
2.6956
1.5000
2.6593
2.9863

2.5001
4.4351
4.9784

4.9991
8.6268
9.7636

1.5000
2.6617
2.9877

2.5000
4.4389
4.9806

1.5001
2.6629
2.9884

1.5000
2.6577
2.9853

2.5000
4.4328
4.9769

1.4735
2.3554
2.6985
1.5000
2.6595
2.9864

2.5000
4.4355
4.9785

4.9992
8.6310
9.7660

1.5000
2.6619
2.9878

2.4999
4.4392
4.9807

1.5000
2.6630
2.9885

0.00
-0.00
-0.00

-0.00
-0.00
-0.00

-0.04
-0.13
-0.17
0.00

-0.00
-0.00

-0.00
-0.01
-0.00

-0.00
-0.05
-0.05

0.00
-0.01
-0.00

-0.00
-0.01
-0.00

-0.00
-0.01
-0.00
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-0.00
-0.01
-0.01

-0.00
-0.01
-0.01

-0.09
-0.26
-0.27
0.00

-0.01
-0.01

0.00
-0.01
-0.01

-0.00
-0.10
-0.08

0.00
-0.01
-0.01

0.00
-0.02
-0.01

-0.00
-0.01
-0.01

1 1111 -L I I



technique takes 140.96 seconds, and solving the M/E 5/3/3 + 25 system, with 931

states, also using the exact approach takes 256.01 seconds. Using the heuristic solution

techniques, the same effect occurs; for example, let us compare the time to solve the

M/E 5 /15/15 + 5 queue, with 801 states, with the time to solve the M/E 4/5/5+ 50

queue, with 851 states. The former takes 44.87 seconds while the latter takes 141.55

seconds.

As a final comment on Tables 4.37 and 4.38, the CPU time ratios illustrate the

clear advantage of using the heuristic solution techniques over the exact solution

technique. The importance in the speed of solving the desired systems resides in the

use of the technique for solving multiple queueing systems or a network of queues. If

the heuristic techniques were to require longer times, modeling the system would not

be useful in applications. For example, the application in Section 5.2 could be included

in a network of multiple en-route sectors, each modeled by an M(t)/E(t)/n/n + q

queueing system. Notice the range of the CPU time ratios: from 1.68 times faster in

the smallest system up to 2646.07 times for the second largest system considered in

the analysis (the largest we were able to solve using both exact and heuristic solution

techniques).

The computing times for both heuristics are similar and always in the same order

of magnitude. Therefore, for the remainder of the thesis, ELC will be used as the

heuristic of choice.

In this section, we have presented an extensive collection of examples that validate

the use of ELC to approximate steady-state behavior of MI/EA/n/n + q systems

under stationary conditions. The examples described above include a wide range of

parameters k, n, q and p. The results presented for both occupancy probabilities and

several aggregate performance measures, along with information on the system size

(number of states) and CPU times, show strong evidence that ELC is an excellent

alternative to the exact solution technique: 95% of the ELC results are within 1%

of the exact values, and 100% of the results are within 3%; systems that we were

unable to solve using the exact solution technique, because of the large number of

states, can be solved using ELC; and, the CPU times to solve the models using ELC
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are much faster than using the exact model, up to three orders of magnitude faster.

The heuristic solution technique ELC is very robust to parameter changes and its

excellent performance appears to be quite robust to parameter changes.

4.2 Validation: Transient Conditions

In this section, we present behavior of several models during their initial epochs

showing their response to initial conditions. We continue our validation of the ELC

heuristic by comparing transient results generated by the exact and ELC solution

techniques. As with the steady-state, the ELC heuristic provides and excellent ap-

proximation to transient model response.

The examples below are systems with finite queue size and stationary parame-

ters. Some examples have large enough waiting room that they behave as systems

with (effectively) infinite waiting capacity. All systems start empty and idle. The

performance measures examined are the expected number of customers in the system

and expected virtual delay, as defined in Section 3.2. The reason for choosing such

performance measures is to analyze how fast the system becomes busy and how long

it takes for the delays to become considerable, given the arrival and service rates

of the queue. In all examples, the service rate is held constant to p = 0.1, which

corresponds to the same service rate as in Section 4.1 of 0.1 customers per epoch per

server. The epochs in this section are smaller than in Section 4.1. In this section, the

unit of time is one minute, compared to one hour in Section 4.1 (e.g., we are looking

the system every minute instead of every hour).

We tested six different models with various utilization ratios for a total of twelve

examples. The examples cover a wide range of system parameters for the Erlang

order k, the number of servers nt, and the size of the queue q. We usedl three (dilferent

utilization ratios, p = 0.5, 0.9 amid 1.2, as in the previous section (see Table 4.39).

Table 4.39 shows the maximum percentage difference between the exact and ELC

results, for each example, in columns 3 and 4, and the actual differences in columns

5 and 6. Notice that the maximum percentage differences were up to 14.46% while
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Table 4.37: Summary of Examples, Number of States and CPU Times for Erlang
Orders 3 and 4

Servers Queue Utilization Number of States CPU Times (sec), p = 0.9
n q p Exact Heuristic Exact Heuristic Ratio

H (max) |

Erlang Order (k): 3

3 1 0.5, 0.9, 1.2 30 23 0.42 0.25 1.68
3 10 0.5, 0.9, 0.99, 1.2 120 86 10.16 1.71 5.94
3 25 0.5, 0.9, 0.99, 1.2 270 191 38.14 10.76 3.54
3 50 0.5, 0.9, 0.99, 1.2 520 366 136.47 35.56 3.84
3 100 0.5, 0.9, 0.99, 1.2 1020 716 373.73 87.66 4.26
5 5 0.5, 0.9, 1.2 161 91 5.32 1.14 4.67
5 15 0.5, 0.9, 0.99, 1.2 371 201 39.05 6.28 6.22
5 50 0.5, 0.9, 0.99, 1.2 1106 586 227.75 74.08 3.07

10 5 0.5, 0.9, 0.99, 1.2 616 226 34.85 10.03 3.47
15 5 0.5, 0.9, 1.2 1496 411 98.55 14.89 6.62
15 30 0.5, 0.9, 0.99, 1.2 4896 1186 1155.5 122.76 9.41
18 3 0.5, 0.9, 1.2 1900 472 156.13 20.05 7.79
18 10 0.5, 0.9, 1.2 3230 731 574.52 64.03 8.97
50 25 0.5, 0.9, 1.2 56576 5126 13221.5 661.53 19.99

Erlang Order(k): 4

3 1 0.5, 0.9, 1.2 55 32 0.96 0.33 2.91
3 10 0.5, 0.9, 0.99, 1.2 235 122 15.49 5.12 3.03
3 25 0.5, 0.9, 0.99, 1.2 535 272 101.46 18.21 5.57
3 50 0.5, 0.9, 0.99, 1.2 1035 522 369.77 61.33 6.03
3 100 0.5, 0.9, 0.99, 1.2 2035 1022 844.52 147.82 5.71
5 5 0.5, 0.9, 1.2 406 131 18.14 2.05 8.85
5 15 0.5, 0.9, 0.99, 1.2 966 291 140.96 10.96 12.86
5 50 0.5, 0.9, 0.99, 1.2 2926 851 825.23 141.55 5.83

10 5 0.5, 0.9, 0.99, 1.2 2431 331 198.43 18.66 10.63
15 5 0.5, 0.9, 1.2 7956 606 1022.69 26.25 38.96
15 30 0.5, 0.9, 0.99, 1.2 28356 1756 10132.98 200.45 50.55
18 3 0.5, 0.9, 1.2 11305 697 2270.3 63.46 35.78
18 10 0.5, 0.9, 1.2 20615 1082 6020.9 154.95 38.86
50 25 0.5, 0.9, 1.2 901901 7651 N/A 1183.73 N/A
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Table 4.38: Summary of Examples, Number of States and CPU Times for Erlang
Orders 5, 8, 10, 15 and 20

Servers Queue Utilization Number of States j CPU Times (sec), p = 0.9
n q p Exact Heuristic Exact Heuristic Ratio

(max)

Erlang Order (k): 5

3 1 0.5, 0.9, 1.2 91 41 4.17 0.84 4.96
3 10 0.5, 0.9, 0.99, 1.2 406 158 38.54 4.68 8.24
3 25 0.5, 0.9, 0.99, 1.2 931 353 256.01 31.1 8.23
3 50 0.5, 0.9, 0.99, 1.2 1806 678 1286.24 99.27 12.96
3 100 0.5, 0.9, 0.99, 1.2 3556 1328 2153.3 207.43 10.38
5 5 0.5, 0.9, 1.2 882 171 55.77 3.01 18.53
5 15 0.5, 0.9, 0.99, 1.2 2142 381 453.7 18.14 25.01
5 50 0.5, 0.9, 0.99, 1.2 6552 1116 2789.7 250.93 11.12

10 5 0.5, 0.9, 0.99, 1.2 8008 436 939.26 26.35 35.65
15 5 0.5, 0.9, 1.2 34884 801 5048.7 44.87 112.52
15 30 0.5, 0.9, 0.99, 1.2 131784 2326 55031.1 425.29 129.40

Erlang Order (k): 8

3 10 0.5, 0.9, 1.2 1365 266 266.62 14.64 18.21
5 10 0.5, 0.9, 1.2 9207 471 3704.2 22.48 164.78

Erlang Order (k): 10

3 2 0.5, 0.9, 1.2 726 114 47.45 2.2 21.57
3 10 0.5, 0.9, 1.2 2486 338 692.66 22.76 30.43
5 10 0.5, 0.9, 1.2 23023 601 13125.1 34.54 380.00

10 5 0.5, 0.9, 1.2 646646 961 192475.05 72.74 2646.07

Erlang Order (k): 15

3 10 0.5, 0.9, 1.2 7616 518 4121.3 49.73 82.87
5 10 0.5, 0.9, 1.2 131784 926 78712.5 78.33 1004.88

Erlang Order (kc): 20

3 10 0.5, 0.9, 1.2 B17171 698] 25712.4 88.33 291.09
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Table 4.39: Transient Examples and Maximum Percentage Difference

System - Utilization ratio % Difference T Actual Difference
p E[Cust.] E[Delay] E[Cust. jE[Delay]

I I I(minutes

M/E 3 /5/5 + 5 0.5 0.36 2.6 0.0065 0.0021
0.9 0.48 2.18 0.0147 0.0107
1.2 0.54 1.92 0.0220 0.0239

M/E 3/18/18+3 0.5 0.54 5.88 0.0332 0.0001
0.9 0.58 6.57 0.0575 0.0003
1.2 0.57 5.06 0.0760 0.0031

M/E 4/15/15+30 0.5 1.07 14.46 0.0561 0.0001
0.9 1.16 10.50 0.1101 0.0041

M/E5 /3/3+ 100 0.9 1.08 3.01 0.0241 0.0701

M/E10 /3/3+10 0.9 2.36 6.19 0.0559 0.1612
1.2 2.58 5.49 0.0818 0.2541

M/E20/3/3+ 10 0.9 3.81 9.52 0.0939 0.2678

the actual differences were very small in all cases..

It is important to remember that we are not analyzing the behavior of the

M(t)/Ea(t)/n/n + q queueing system. Rather, we are interested in the comparison

of the exact and ELC results to demonstrate that the heuristic solution technique

approximates well transient behavior.

In order to better appreciate the behavior of the heuristic solution technique during

the transient period, we show the plots of some of the examples in Table 4.39. We

have selected three examples that are representative of the set of models analyzed, and

we also present the three cases with the worst performance of ELC in approximating

the exact results. Notice that the worst performances are observed in the transients

for the expected virtual delay. The results for the expected number of customers are

consistently good.

The plots in the examples below are not all drawn in the same axis scales, even

for the results of the same model, as the transients are different for each performance
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Figure 4-5: Transient results for the M/E 3/5/5 + 5 queueing system with p = 0.9:
(a) L and (b) E[Delay] (minutes)

measure and we want to analyze each measure separately. The first set of examples

are for the M/E 3 /5/5 + 5 queueing system. Figure 4-5 shows the transient results

for the exact and ELC solution techniques, with p = 0.9. This small and very

capacitated system (small k, n and q) demonstrates that the two solution techniques

show almost identical results.

We increase the number of servers and reduce the queue capacity to obtain the

M/E 3 /18/18 +3 queueing system. The transient results, for both exact and heuristic

solution technique with p = 0.9 and 1.2, are presented in Figures 4-6. The expected

number of customers is approximated extremely well with both utilization ratios,

while the expected virtual delay shows slight differences between the results of both

techniques. Figure 4-6, parts (b) and (d), are two of the examples with the worst

performance we observed in approximating the exact results. Even though some dif-

ferences between both results are evident, the ELC results still approximate very well

the exact results and are always within 7% and 6% for p = 0.9 and 1.2, respectively,

of the exact values.

Our next set of examples are the transients for the M/E 4 /15/15 + 30 model.

Figure 4-7 shows the results for the model with an utilization ratio of 0.5. Similarly

as in the previous examples, the expected number of customers is clearly better than

the expected virtual delay. The expected virtual delay in this example, illustrated in

Figure 4-7, part (b), is the worst case of all the models in this section.

The last two sets of examples include the systems with extreme values of q and k.
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Figure 4-6: Transient results for the M/E 3/18/18 + 3 queueing system with p = 0.9
and 1.2: (a) and (c) L, and (b) and (d) E[DelayJ (minutes)
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Figure 4-7: Transient results for the A/E 4/15/15 +30 queueing system with p = 0.5:
(a) Expected number of customers and (b) expected virtual delay (minutes)
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Figure 4-9: Transient results for the M/E 20/3/3 + 10 queueing system with p = 0.9:
(a) L and (b) E[Delay] (minutes)

Figures 4-8 and 4-9 show the results for the M/E 5 /3/3 + 100 and M/E 20/3/3+ 10

queueing systems, respectively. In those two sets of examples, the results for both

the expected number of customers and the expected virtual delay, are practically the

same for the exact and heuristic solution techniques. The rest of the examples in

Table 4.39 behave similarly in the sense that the results for the exact and ELC are

almost indistinguishable from each other.

These results indicate that the heuristic proposed in Chapter 3 provides a very

good approximation of behavior of M(t)/Ek(t)/n/n + q systems even during the

transient period from rest until the system reaches steady-state. The importance of

analyzing the transient period of the A(t)/E(t)/n/n + q queucing systems is because

in most (if not all) applications, it is necessary to deal with starting conditions 'until

we reach a "normal" stage of operation. Therefore, our heuristic may very well be

used to analyze the real-life problems that can be modeled with multi-server systems
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with Poisson arrivals and Erlangian service time distributions.

In the queueing literature there are few authors that have addressed the transient

analysis of multi-server systems. In Chapter 2, we described the work of Odoni and

Roth [37] and Murray and Kelton [30] among some authors. Little work has been

presented on the transient analysis of M(t)/Ek(t)/n or M(t)/E,(t)/n/n + q models,

perhaps due to the difficulty in generating solutions for the systems. Our results

indicate ELC may be useful in conducting a more thorough analysis of such systems,

particularly using the expected number of customers in the system.

4.3 Validation: Dynamic Parameters

The results in Section 4.2 motivated the analysis of the heuristic solution technique

under nonstationary conditions. In this section, we present results of several examples

using time-dependent arrivals to the system, A(t).

We are interested in analyzing the models during the transient period as well as

during the dynamic steady-state, if one exists. The purpose of this analysis is to

provide a preliminary validation of heuristic solution technique under nonstationary

parameters by comparing behavior generated using ELC with the exact behavior. As

in the previous section, the epoch size is a minute, the systems have limited capacity

and start empty and idle. We present results for the expected number of customers

in the system and the expected virtual delay, as defined in Section 3.2.

Two models are presented in this section. The first is the M(t)/E 3(t)/18/18 + 3

queueing system, with an arrival rate given by

. 'F _V/ 27rt \
A(t) = sin V-- + 1.16

shown in Figure 4-10. The choice of the arrival rate was such that AQt) > 0 for all

t, to avoid "negative" arrivals to the system. The maximum utilization ratio in the

example is
2.16=1
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Figure 4-11: M(t)/E 3(t)/18/18 + 3 queueing system with A(t) = sin(2-j!)+ 1.16: (a)
L and (b) E[DelayJ (minutes)

and the minimum

0.1(18)

The results for this system are presented in Figure 4-11. Note that the results using

the heuristic solution technique follow almost exactly the results from the exact so-

lution technique in the transient period as well as in the dynamic steady-state. The

performance of ELC is as good in approximating the expected number of customers

in the system as in approximating the expected virtual delay. A more detailed view

of the results in the initial epochs after the system started is presented in Figure 4-12.

Even in this zoomed view of the initial epochs of operation, there are 110 significant

differences for practical purposes between the results of both solution techniques. The

maximum percentage difference was 2.03% for the expected number of customers in

the system, given in epoch 30. In the case of the expected virtual delay, the maximum
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Figure 4-12: M(t)/Ea(t)/18/18 + 3 queueing system (zoom) with A(t) = sin(2J) +
1.16: (a) L and (b) E[Delay] (minutes)

percentage difference was 23.81%, in epoch 61, and periodic every 60 epochs, but the

actual difference was less than 9o of a minute. Most percentage differences were

within 2% of the exact results in both performance measures.

The second example is the M(t)/E 5(t)/5/5 + 15 queueing system. The arrival

rate for this system is given by

1 (2rt
A(t) = -sin - +0.75

2 k40/

shown in Figure 4-13. The maximum and minimum arrival rates are 1.25 and 0.25

customers per minute, giving utilization ratios of p = 2.5 and 0.5, respectively.

'I
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0 - - - - - - - -

Nubrafnohsmn

Figure 4-13: Input demand A(t) = 1 sin(!-") + 0.75

Results using the exact and heuristic solution techniques for this system are pre-

sented in Figure 4-14. Figure 4-14 illustrates behavior from start until the system is

in dynamic steady-state. As in the previous example, the results using both solution
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the exact values. In this case, the maximum percentage differences for the expected

number of customers in the system and the expected virtual delay are 1.6% and

3.33%, respectively. Most values for both performance measures are within 2% of the

exact results.

In this section, we have shown preliminary evidence that the heuristic solution

technique provides an excellent approximation of the exact results of the

M(t)/EkQ9/1n/n + q queueing systems with nonstationary parameters. The impor-

tance of these results is that we can use the heuristic for a wide variety of applications

with time-varying arrival and service rates, like the application described in Chap-

ter 5.

With this section, we have completed the validation of the heuristic solution tech-

nique against the exact results for the case of steady-state, transient analysis and

dynamic behavior. In all three cases, we have provided enough evidence to conclude

that ELC is very accurate, much faster than the exact model and very reliable for
th& yeoprmters usd.--JT I-the-next ection,-wepresent soe intuitiv results t
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4.4 Results for Systems with Changes in the Num-

ber of Servers

In this section, we explore the behavior of the M(t)/Ek(t)/n(t)/n(t) + q queueing

systems using Heuristics 3 and 4 presented in Section 3.3 for both the exact and the

heuristic solution techniques. We analyze several models comparing the results for

the exact and ELC results, and provide an intuitive explanation for the behavior of

the system after the number of servers is changed. We present here the results of five

such examples, each with one or two changes in the number of servers.

Notice that during the transient time when a system is modified into a new system,

the results provided using Heuristic 3 for the exact solution technique are not really

exact. Since we are using a heuristic approach to map from the original system to

the modified system, no truly exact results can be generated.

The measures of performance that we discuss in this section are the probability of

saturation, the expected number of customers in the system and the expected virtual

delay. We are interested in analyzing the congestion of the system when changes in the

number of servers occur, and believe that those measures of performance summarize

this effect. One aspect in which we are particularly interested in is the probability of

rejection of customers that arrive at the system.

As in the previous sections, we solve the Chapman-Kolmogorov equations for fi-

nite queue size systems. In this section, we do not solve examples with large enough

waiting room to achieve effectively infinite capacity systems. One reason for not doing

that is because we are interested in finding the rejection probabilities of the queue-

ing systems under investigation. This interest is mainly motivated by the practical

application presented in Chapter 5. The second reason is because systems with high

utilization ratios, or slightly over-saturated systems, may become extremely over-

saturated when the number of servers is reduced.

Since we want to observe the systems frequently, the size of the time periods in

the examples presented is equivalent to one minute per time period, assuming that

a server which is busy for 60 time periods, processes an average of 6 customers in

151



0.30

025

- t 0.20-

(a)a

0.15,
--0ELC

6010

0.05
0.001-

N101b6ruNoEpoch@p(Mh)

(b))

18 - ------- - -- - - - ---- - -2 .0 - --- - - -

14 10--1.0

(b) LELCc----cELC
4 0.5
2
0 f. . W.. . . . T, F , , - I,, , T,, . 7 , ,, , .10 .0 1 T. . I I . , , , .,I 1 1 1

W 90 P_ Ps P: a e a 2 is I
Nufmer Of Epoche (ron) Nuner ofEpohe(min)

(b) (C)

Figure 4-15: Change from M/Ea/18/18 + 3 to M/Ea/12/12 + 3: (a) P(Saturation),
(b) L, and (c) E[Delay] (minutes)

that time. We show the transients when the number of servers changes, and observe

the system from before any change occurs until it reaches steady-state after the last

change in the number of servers. All systems start empty and idle.

We are not interested here in validating the performance of a heuristic solution

technique against an exact solution technique. We are interested in validating Heuris-

tics 3 and 4 proposed in Section 3.3 against one another through intuitive analysis of

the exact and ELC results. The heuristics to modify the number of servers, increase

or decrease the number of servers by only one at a time. If more than one servers

are to be closed or opened, the heuristics can be iterated to obtain the desired final

number of servers in the system.

The first set of results is for the example starting with an M/E 3 /18/18+3 queucing

system and changing to an M/E3 /12/12 +3 model. The results for this example are

in Figure 4-15. The utilization ratio for the initial system is p' = 0.9, with an arrival

rate to the system of A = 1.62 customers per time period, and a service rate per

server of p = 0.1 customers per time period. The corresponding utilization ratio for

152



the modified system, with the same arrival and service rates, is P2 = 1.35. Note that

the probability of saturation increases considerably, as expected, when the number

of servers is reduced from 18 to 12 (see Figure 4-15, (a)). In the original system, we

are rejecting approximately 0.1 customers per minute, while in the modified system

we reject approximately 0.45 customers per minute. Figure 4-15, part (b) shows the

results for the expected number of customers in the system. The expected number

of customers in the system decreases sharply initially from about 16 customers to

about 11, a jump that is due to the number of servers removed. The probability

of having more than 15 customers is now zero. After the change in the number of

servers, the expected number of customers in the system increases until it reaches

steady-state at approximately 13 customers. The short term effect of ignoring the

statistics of the customers in the servers that are closed is evident in this sharp

decrease in the expected number of customers in the system. If we would account for

those statistics, we would expect a smoother change which would eventually reach

the same steady-state value of the modified system. In the same Figure, part (c),

we present the results for the expected virtual delay. In this graph, we observe that

the steady-state expected delay for the modified system is approximately 4 times

the steady-state expected delay of the original system. The transient period does

not show any sharp change, similarly with the probability of saturation, because the

probabilities of having customers in the queue are small in the original system and

start increasing once the system has closed 6 servers, as the utilization ratio increases

considerably.

We can see that Heuristics 3 and 4 used to modify the number of servers in the

system provide reasonable results. It is expected that the rejection probability and

the delay for customers entering the system will increase as the number of servers is

reduced while maintaining the same arrival and service rates. We also expect that the

number of customers in the system will change as there are fewer servers available and

the capacity of the queue remains the same. From the lpoint of view of the customers

in the queue and those arriving to the system, the heuristics provide realistic statistics

as they see the system with only the reduced number of servers. For the customers in
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Figure 4-16: Change from M/E 3 /18/18+3, to M/E 3/9/9+3 and to M/E 3/15/15+3:
(a) P(Saturation), (b) L, and (c) E[Delay (minutes)

service, they are only waiting for their service to be finished and they are not affected

by the change in the number of servers.

The results in the example above are obtained using the exact and heuristic so-

lution techniques. Both solution techniques provide extremely similar results. We

observe the same situation in all the examples presented in this section. The fact that

both sets of results are so close suggests that initializing the patterns that cannot be

mapped, when using Heuristic 4, is not a significant practical or evident limitation

of the heuristic. (The problem of initializing patterns that cannot be mapped when

changing the number of servers in the system was discussed at the end of Chapter 3.)

We continue with example 2. In this example, we study the transition front

the AM/Ea/18/18 + 3 model to a system with one half the number of servers, the

AM/Ea/9/9 +3 system, and then to the AI/E3 /15/15 + 3 model. Figure 4-16 shows

the results for this example. The initial utilization ratio is p = 0.9, with the arrival

and service rates A = 1.62 and yL = 0.1 customers per minute, respectively. Those

rates are kept constant and the utilization ratios for the second and third systems are
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1.8 and 1.08, respectively. The highly over-saturated second system rejects almost

half of the customers that arrive to the system, once it reaches steady-state. The

probability of saturation for this example is presented in Figure 4-16, part (a), and

we see that it increases in an exponential-like curve when the system is modified for

the first time. For the second change, the probability of saturation reduces to zero

since we are adding servers to the system and in the instant the servers are added,

the customers in the queue enter service and the probability of having 18 customers

in the system is initialized to zero. Then, the probability of saturation increases to

reach steady-state. The expected number of customers, Figure 4-16 part (b), shows

a similar behavior as in the example 1 when the number of servers is reduced from 18

to 9, and the steady-state value is close to the maximum number of customers that

can be in the system at any instant of time. When 6 servers are added again to the

system, the expected number of customers increases but without being as saturated

as in the case with 9 servers since the system is not as over-utilized. The effects of

varying the number of servers are also evident in the expected virtual delay. Note

that the expected delay increases more than 6 times when we reduce the number of

servers. With the increase in the number of servers in the second modification, we

observe that the expected delay goes to zero and then increases to a steady-state value

of almost a minute. The reason for the drop to zero is because at the moment we add

the servers, the heuristics initialize to zero the probabilities of having 13 to 18 servers

in the system causing the expected delay to be zero at that time (the probabilities

of 16, 17 and 18 customers in the system are responsible for delays incurred). The

number of servers in the final system is larger than the total capacity (in service and

in the queue) of the intermediate system.

The third set of results is for a system with nonstationary arrival rates. The initial

system is an M(t)/Ea/18/18 + 3 queue that changes to an A!(t)/Ea/9/9 + 3 queue.

In this example, the arrival rate is given by

A(t) =sin -j + 1.16
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shown in Figure 4-10, and the service rate is p = 0.1 customers per minute. The

maximum and minimum utilization ratios for the original and modified systems arc

(1.2,0.088) and (2.4,0.177), respectively. The results for this example are shown iin

Figure 4-17. We observe the same type of behavior as in the previous two examples

when the number of servers is reduced: the probability of saturation increases, the

expected number of customers is reduced due to the very limited queue size and the

expected virtual delay increases accordingly. Interestingly, as the number of servers is

reduced to 9, the expected number of customers in the system is reduced by a small

amount, due to the low utilization ratio given by the low demand at the lower part of

the sinusoidal input. This can be seen in Figure 4-17, parts (b) and (c). Figure 4-17

is a magnified view around the time the servers are closed. hn the previous examaples,

with stationary parameters, we had larger drops because the utilization ratios were

high at the moment the number of servers decreased. The high peaks in the exlpectedl

number of customers in the system also become flatter as the system reaches its

maximum capacity for the number of customers in the system.
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We have examined so far in much detail examples for systems with Erlang order

k = 3, queue size q = 3 and several number of servers in. The reason for such an

emphasis is that the application presented in Chapter 5 uses those systems to niodel

the en-route sectors in the airspace. The next two examples have different Erlang

order and a larger buffer for customers waiting to enter the service facility.

Example 4 starts with the M/E 4/6/6 + 10 system, which is later modified to n =

3 and finally to n = 5. The arrival and service rates were kept constant at A = 0.48

customers per minute, and y = 0.1 customers per minute, respectively. The initial

utilization ratio is p, = 0.8, changing to p2 = 1.6 and finally to pa = 0.96. The

results for example 4 are shown in Figure 4-18. The probability of saturation has

an interesting behavior (see Figure 4-18, (a) and (b)). Because of the larger buffer,

the initial rejection probalbility is almost negligible, and it increases considerably as

the number of servers decreases. The second modification in the system causes the

probability to drop to zero (even though this is not obvious in Figure 4-18 (b) because

we plot the results every 4 minutes) and then over-shoots before reaching steady-state,
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The over-shoot may be a consequence of having such a large probability of saturation

and large probabilities of having customers in the queue, that as we increase the

number of the servers, we have a transient time in which those probabilities remain

high causing the new probability of saturation to increase and later to reach its final

value. In the case of the expected number of customers in the system, Figure 4-18

part (c), we observe that the system experiences a drop in the number of customers

right at the time the servers are closed, but it then starts increasing because of the

high utilization ratio and the larger queue size. In the previous examples we observed

a reduction in the expected number of servers in the system due to the small waiting

room. After the second modification, the expected number of customers is reduced

mainly because the utilization ratio is considerably smaller. The expected virtual

delay increases after the first modification of the system, as in the examples before,

but it does not drop to zero after the second modification. The reason for not dropping

to zero is because some customers that were in the queue in the intermediate system

remain in the queue even after the number of servers increases.

The last example of this section, example 5, presents the results for the transition

from the M/E 1o/3/3 + 10 system to the M/E1o/2/2 + 10 system, and finally to the

M/E1 o/4/4 + 10 system. The behavior of example 5 is similar to the behavior of

example 4 since both have a larger queue size and a small number of servers. The

utilization ratios for this example are pi = 0.8, p2 = 1.2 and pa = 0.6, with a constant

arrival rate A = 0.24 customers per minute and service rate p = 0.1 customers per

minute. The results of this example are presented in Figure 4-19. The probability of

saturation for the initial and final systems are very small because of the low utilization

ratio. In Figure 4-19 part (a) we observe that the rejection probability is reduced

sharply, almost to zero, as the number of servers increases and it eventually becomes

zero in steady-state. Similarly as in example 4, the expected number of customers in

the system and the expected virtual delay increase in the intermediate system and

decrease after the second modification of the system.

As an additional check, for all examples presented in this section, we have comn-

pared the steady-state values for all initial, intermediate and final systems with the
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steady-state values of corresponding systems that have been running, without changes

in the number of servers, and with the same parameters. All the results were iden-

tical, confirming our intuition that after the transients have died down, the modified

systems behave as if they had been running without changes in i all the time. We

can also conclude that if the statistics of the customers in the servers that are re-

moved are not necessary for the analysis of the system, Heuristics 3 and 4 proposed

in Section 3.3 adequately capture the behavior of the system with a variable number

of servers. We have observed that the results for systems with variable i deplend

greatly on the utilization ratio and the size of the queue.

4.5 Conclusion

We have shown through an extensive set of examples and scenarios that the heuristic

solution technique, ELC, is an excellent apl)roximation of the exact results, with a
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wide range of system parameters. Therefore, a more thorough analysis of such systems

can be carried out with ELC instead of solving the exact system. An interesting

future research topic with M(t)/Ek(t)/n(t)/n(t) + q systems would be to determine

the transient times required to reach steady-state.

At this point, we are ready to present a practical application of the

M(t)/Ek(t)fn(t)/n(t) +q queueing systems. In Chapter 5, we describe the implemen-

tation of the exact and ELC solution techniques, and Heuristics 3 and 4 to modify

the number of servers in the system. We also present a case study for the behavior

of en-route sectors in the airspace, under different scenarios, using our model.
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Chapter 5

Computer Models and an

Application to Air Traffic

Management

This Chapter begins with a description of the computer programs developed to im-

plement the exact and heuristic solution techniques discussed in Chapter 3. Then,

we present a case study to illustrate the use of these techniques in the context of Air

Traffic Management. More specifically, we address the modeling of high altitude sec-

tors of the U.S. airspace with M(t)/E(t)/n(t)/n(t) + q queueing systems. The case

study explores multiple scenarios with future demand forecasts and capacity fluctua-

tions, common in the presence of changing weather, and includes a baseline case with

data for a particular sector on April 8, 1996. Using those scenarios, we analyze their

impact on expected delays and rejection rates for users of the sector. We also study

the workload of the air traffic controllers handling the sector.

5.1 Computer Hardware and Software

The software developed was run on a SUN SPARCstation 10 Model 41. We used the

Inter-Math-Science-Libraries (IMSL) ordinary differential equations (ODE) solver to

solve the Chapman-Kolniogorov equations of the AM(t)/Ek(t)/n(t)/n(t) +q queueing
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systems. IMSL uses a fifth and sixth order Runge-Kutta method in solving the ODE's,

with a global error tolerance of 10-6 per call to the ODE solver.

All computer programs were written in the C and C++ programming languages.

The algorithms were developed by the author of the thesis and some were partially

implemented by him. Most of the computer programs were written and optimized by

Mr. Wesley McDermott, MIT SM'94.

5.1.1 Implementing the exact solution technique:

exact-model

We now describe the software developed to solve the Chapman-Kolmogorov equations

for the exact solution technique. The required inputs to the program, the structure

of the program itself and the outputs generated are presented below.

The system parameters needed as input are the Erlang order k, the queue capacity

q and a vector with the number of servers, n, at each epoch. An epoch is the unit of

time at which we observe the system. One restriction to the Erlang order is that k> 2.

The case for k = 1 is solved with the mekn-mudel described below (Section 5.1.2) as

both programs generate the same ordinary differential equations. Figure 5-1 shows

the flow diagram for the exact-model. In the input data, we also must specify the

values or type of functions of the arrival and service rates, i.e. if they are constant

or time-varying, and if we would like to interpolate between the different values of

A(t) and/or p(t) for contiguous epochs in the case the rates are given for each epoch

instead of by a function of t. The last two input quantities needed to run the program

are the unit of time corresponding to each epoch and the number of epochs of the

experiment. Once the input parameters have been indicated in the code, the program

is compiled using a C++ compiler. Every time we modify any parameter, the program

needs to be re-compiled.

The program generates the state probability arrays So and Qi's, 0 S i 5 q, and

maps the elements in the arrays that can be reached with the transitions in Table 3.2,

into a vector with all the state probabilities. Once the vector is generated, the state
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Figure 5-1: Flow diagram for exact-model

probabilities are initialized to zero, except the probability of having zero customers

in the system which is initialized to one. Then, the Chapman-Kolmogorov equations

in Section 3.1.3 are generated for the parameters given and are solved using the

ODE solver of the IMSL software. The main program calls the ODE solver and the

subroutines for the arrival and service rates every time the equations are solved. The

subroutines for the arrival and service rates compute the values for A(t) and p(t),

respectively, for all t required by the Chapman-Kolmogorov equations. If the number

of servers changes from one epoch to the next, the main program verifies that all state

probabilities are mapped correctly and that the sum of all state probabilities is equal

to one, before and after the change in the number of servers. It also initializes to zero
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the state probabilities that are not mapped when the number of servers increases.

When the program finishes, it outputs the state probability distribution at the

end of each epoch. With the state probabilities, we compute the occupancy probabil-

ities of Section 3.2 needed to obtain the desired performance measures described in

Sections 3.2.1 and 3.2.2. The program also provides the CPU time used in computing

the state probability distribution and the distribution of customers in the system.

5.1.2 Implementing the heuristic solution techniques:

mekn-model

To solve Chapman-Kolmogorov equations for the heuristic solution technique, we

developed a program similar to exact-model in structure and requirements. This

program needs an additional input and an additional process to generate all the

parameters in the ordinary differential equations.

The mekn-model requires as input the system parameters k, q and n, the number

of epochs, the size of an epoch, and the time-varying arrival and service rates A(t) and

p(t), described in the previous section, as well as the selection of the heuristic solution

technique to use: ELP or ELC. The choice of ELP or ELC determines the appropriate

transition probabilities a's and fl's to use in the Chapman-Kolmogorov equations

(Section 3.1.4). Computing these transition probabilities is the extra process required

by the mekn-model. All these quantities should be defined in the source file which

is compiled with a C compiler. As with the exact-model, we need to re-compile the

program after any change in the input parameter. Figure 5-2 illustrates the flow

diagram for the mekn-model.

The program generates the state probability array P and the elements that can

be reached with the transitions described in Table 3.3 are mapped to a vector with all

state probabilities. The state probabilities are initialized to have zero customers in

the system, with probability one. The values for the transition probabilities a's and

fl's are computed directly in the me/rn-model and used in generating the Chapman-

Kolmogorov equations in Section 3.1.4. The remaining part of the program follows
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the same structure as the exact-model: it uses the ODE solver in IMSL with the

appropriate arrival and service rates and the number of servers for the epoch beiig

solved. The program uses the same procedure as the exact-model to verify that the

change in the number of servers is correct.

The mekn-model generates the corresponding state probability distribution which

is used to calculate the distribution of customers in the system. It also obtains the

same measures of performance as those evaluated in the exact-model.
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5.2 Application to Air Traffic Management

In recent years, many studies have examined the problem of air traffic congestion,

which has become endemic in the United States, Western Europe and the Pacific Rim

(see [27] for many references). As a result, a number of approaches to modeling that

congestion have been presented and several alternative methods for reducing delays

and the attendant delay costs and safety costs have been examined in considerable

depth (e.g., Ground Holding Policies: [34], [38], [39]).

Most of this work has focused on airport-related congestion which, at least in the

United States, currently accounts for the great majority of flight delays. Another

source of delays, however, is en-route airspace. Far less effort has been dedicated to

date to understanding and modeling congestion in the en-route sectors (e.g., [2]). A

model of delays in these en-route sectors would offer the possibility of developing an

integrated tool for estimating delays throughout the entire air traffic management

system. Such an integrated tool can be developed by combining the new model of

en-route sector delays with existing models for estimating delays in a national or

regional network of major airports and terminal areas. This model could also help in

the problem of re-routing airplanes when one or more sectors are highly congested or

closed due to bad weather problems.

The objective of the case study described in this Section is to propose the use

of the M(t)/Ek(t)/n/n + q queueing model, with variable number of servers, as a

reasonably good model to estimate delays and congestion in an en-route sector.

5.2.1 Basic Operations of an En-route Sector

The description of the basic operations of en-route sectors presented in this Section

was compiled through interviews with FAA controllers and managers at the FAA's

Air Route Traffic Control Center (ARTCC) in Denver, CO, in conjunction with Dr.

David Lee of the Logistics Management Institute (LMI) (see Lee et al. [22]), and

from information available in the MIT Lincoln Laboratory report on the operations

of the Air Route Traffic Control Center (ARTCC) in Kansas City (see Wilhelmsen
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at al. [47]).

En-route sectors are classified according to altitude levels into four types: super-

high altitude sectors, starting at 33,000 ft. and above; high altitude sectors, which

include flight levels between 24,000 ft. and 33,000 ft.; low altitude levels, between

10,000 ft. and 23,000 ft.; and super-low altitude sectors, usually below 10,000 ft..

However, this classification may vary from center to center as can the type of traffic

that uses the sector. Low and super-low altitude sectors surround the airspace where

most aircraft either maneuver in preparation for an landing or climb after take-off to

a higher altitude. Such airspace is called terminal area airspace (TMA). High and

super-high altitude sectors are determined primarily by the jet routes and en-route

traffic. For example, the ARTCC in Kansas City has 41 sectors: 7 are super-high,

15 are high, 17 are low and 2 are super-low; traffic in the center consists of 50%

commercial (of which 70% are over-flights), 25% general aviation and 25% other

traffic, including military operations.

The en-route sectors in the air traffic control centers are grouped into geographical

areas or regions. In general, center areas are delimited by the sector boundaries of

those sectors located on the perimeter of the area. Sector boundaries are drawn to

minimize controller workload associated with traffic crossing the boundaries (e.g.,

avoiding large amounts of traffic crossing only small sections in a sector). At the

same time, sector boundaries are designed to balance the workload between sectors,

and they are adjusted dynamically and may change during the day. The changes

are due mainly to traffic and sector conditions (e.g., bad weather, turbulence, etc.).

Air traffic controllers are specialized in one of the center areas and do not work on

any other area of the ARTCC. The reason for such controller specialization is the

complexity of ARTCC operations.

Our case study presents an example of a high altitude sector. Consequently, we

discuss in some detail the basic operations of this type of sector. Traffic arriving

to high altitude sectors is generally orderly and predictable, but with periodic daily

surges that cause high workload. Aircraft arrival times to the sector are random

and the time an airplane spends inside a sector also tends to be random bitt concen-
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trated around certain values. Airplanes are handled by air traffic controllers without

delay until the number of airplanes in the sector reaches maximum capacity. This

capacity varies from sector to sector, depending on the traffic characteristics (e.g.,

climb/descend vs. cruise, intersecting vs. parallel routes, etc.), the sector limitations

(e.g., special use airspace, available communications and surveillance, etc.) and the

weather. Once the sector is near or at saturation, aircraft are delayed in adjacent sec-

tors by requesting changes in speed and vectoring. There exists a limit on the number

of airplanes that can be delayed to enter the congested sector. If the requests exceed

the limit, the excess airplanes are diverted to adjacent and less congested sectors.

Air traffic controllers face several challenges when handling high altitude sectors.

For example, if a sector has established streams of traffic, controllers need to merge

arriving airplanes into such streams; if aircraft passing through a sector are on the

way to highly congested airports, controllers have to sequence such airplanes as they

approach the terminal area airspace; if there is poor weather in a sector or if a sector is

saturated, airplanes have to be re-routed through adjacent and less congested sectors;

and, if en-route sectors experience high volume of traffic at high speed, combining

such traffic represents a heavy burden on the controllers.

Weather plays a very important role in en-route sector operations. In poor

weather, controller workload may be severely affected as more communications with

pilots are needed, flight-plans are modified, airplane monitoring increases and in-

teraction with adjacent sectors is higher, among other effects. Even though certain

elements of weather are predictable, not all can be determined precisely, e.g., severity

and exact location of turbulence, formation of new convective cells and strength of

winds aloft.

Another interesting aspect of an en-route sector's operation is the combination of

two or more sectors to accommodate staffing needs and the ebb and flow of traffic.

For example, in low-traffic hours (late at night), all sectors in a center area may he

conmbined into two sectors: high and low altitude. (In the Kansas City Center, up to

5 sectors may be combined into one.) in high-traffic hours, a controller with a single

sector may need the assistance of one or two additional ones in order to handle the
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high volume of demand.

5.2.2 Modeling an En-route Sector

Let us now summarize the characteristics of en-route sector operations through the

following four points:

* Interarrival times to the sector will be assumed for modeling purposes to be

independent and exponentially distributed.

e Demand is time-varying.

* Times-in-sector are random, may be concentrated near certain values and are

assumed to be independent of each other.

* Sector capacity is variable and there is a limit to the number of airplanes that

can wait to enter the sector.

Therefore, a reasonable queueing model to approximate the operations of en-route

sectors is the M(t)/G/n(t)/n(t) + q system. The assumptions regarding the interar-

rival time distribution and the independence of the service time distribution need to

be considered carefully.

Determining the true demand of en-route sectors is not an easy task since ob-

serving and interpreting the arrival process is difficult and complicated. The arrival

data to the sector may be biased by controllers' actions: we cannot fully determine

the demand just from the arrival data available because we do not know how many

airplanes were diverted or delayed prior to arrival in the sector to enforce en-route

sector capacities or to avoid bad weather in the sector, i.e., we can only observe the

actual number of planes that crossed the sector in a period of time; and, we may not

observe the true demand of the sector since airplanes could be spaced prior to entering

the sector to satisfy separation requirements, i.e., aircraft will not arrive in clusters

or as frequently if controllers have already spaced them before arrival to tihe sector.

Another approach to determine the en-route sector demand could be by counting

aircraft that intend to go through the sector. One problem with this approach is
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that airplane routes may be biased because airlines may have designed them to avoid

highly congested sectors. Therefore, using the assumption that the arrival process is

Poisson may be a reasonable approximation but may not be absolutely correct.

At the same time, times-in-sector may be greatly influenced by the particular

airways in the en-route sector, since most airplanes stay on the airways throughout

the sector, fly at speeds within a certain range and need to maintain separation

requirements with other airplanes on the same airway. Thus, the independent times-

in-sector assumption may also be violated. If an en-route sector does not have major

airways where almost all airplanes fly, the independent service time distribution may

be safely applied since aircraft will follow numerous routes within the sector at various

speeds.

In the next section, we present data for the high altitude sector ZID095A, in the

Indianapolis Center, which we use to validate our proposed model.

5.3 High Altitude Sector ZID095A

The ZID095A high altitude sector covers part of Ohio, Kentucky and West Virginia.

It is in a location where routes connecting several pairs of major airports intersect.

The information about arrivals to the sector was obtained from the Enhanced Traffic

Management System (ETMS) and was processed at LMI. The arrival data selected

correspond to April 8, 1996, a day with good weather and low winds, in which normal

operations can be assumed.

In Figure 5-3, we show the arrival information for the 24 hour period. Note that

after the number of arrivals increased above 50 aircraft in an hour, it remained high

until the end of the day. The hours with the most operations observed are from 9

until 10 am, and front 6 until 7 pm, with maxima of 82 and 87 aircraft, respectively.

The total number of aircraft observed passing through the sector during the (lay were

1,149. As we said before, the number of aircraft observed in the sector may not

correspond exactly to the true demand as air traffic controllers may have (Ivertedl

some aircraft to other sectors.
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Figure 5-3: Arrivals to ZID095A on April 8, 1996

The Poisson arrival assumption was checked by LMI by comparing histograms of

interarrival times with those of a Poisson process. A sample of those comparisons is

shown in Figure 5-4 with the interarrival times for aircraft crossing the ZID095A sector

between 10 and 11 am. There were a total number of 81 arrivals during that period

of time. The arrival rate of 83 aircraft per hour for the Poisson process minimizes

the sum of the squares of the differences between the data and Poisson histograms.

The classical Chi-squared test for goodness of fit shows that we would accept (fail to

reject) the hypothesis that the arrival information has the Poisson distribution with

confidence greater than 98 percent. Figure 5-4 shows the number of arrivals between

intervals of 0.6 minutes, starting from zero, for both the actual interarrival times

during the sample period and the Poisson arrival process.

The service time distribution for aircraft in the sector is obtained from the times-

in-sector of the planes that crossed the sector. Figure 5-5 shows the number of planes

that spent between 0 and 5 minutes in the sector, 5 and 10 minutes, 10 and 15

minutes, and so on. The mean and standard deviation are 13.8 and 5.9 minutes,

respectively. The data of Figure 5-5 suggest that the distribution of service times can

be approximated with an Erlang distribution. According to ARTCC controllers, the

sectors are designed to eliminate "corner-clipping" or flights that stay in the sector

for very short times. They also mentioned that a few airplanes stay in the sector

for extended periods of time, e.g., military training flights. Such specific features
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Figure 5-4: Distribution of Interarrival Times for 10 to
with A = 83

11 am and a Poisson process

Figure 5-5: Times-in-Sector on April 8, 1996

of transit times are considered in the Erlang distributions' general characteristics.

Figure 5-6 shows different curves for Erlang distributions with a mean of 13.8.

In Figure 5-7, we compare the distribution of the transit times in the sector with

those of Erlang distributions of orders 3 and 4. Clearly the transit times may be

approximated reasonably well with either distribution. Choosing the Erlang order

k = 3, we minimize the square of the differences between the actual times-in-sector

and the Erlang histograms.

Determining the capacity of the en-route sector from the ETMS data is not

straightforward. One problem is that we cannot observe directly the capacity of

the sector because we do not know if the volume of traffic observed was constrained
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Figure 5-6: Various Erlang distributions with Mean = 13.8
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Figure 5-7: Distribution of Times-in-Sector vs. Erlang Distributions of Orders 3 and 4

by capacity limits and because the information in the ETMS data is recorded every

5 minutes. The actual number of airplanes in the sector may be used to determine

lower limits on the capacity since we know that controllers were able to handle at least

the volume of traffic recorded in the ETMS data. In order to reduce the effect of the

5-minute interval between ETMS reports, LMI used an 11-minute moving average,

instead of direct counts from such reports. The result from this analysis was that for

the ZID095A en-route sector the capacity lies between 18 and 20 airplanes (see Lee

et al. [22] for a detailed description of the analysis). This result is consistent with

the values 18 ± 3 implied by reference [1], and with the comments of controllers and

managers at the Denver ARTCC. We use the capacity of 18 aircraft in our baseline
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case.

The information to determine the queue capacity in the en-route sector was also

provided by the ARTCC controllers. They suggested a limit of 3 aircraft waiting to

enter the sector. These aircraft experience vectoring and/or speed changes in order to

accommodate the volume of traffic already present in the sector. If more than three

aircraft request passing through a saturated sector, only three are kept in the queue

and the others are diverted to adjacent sectors.

It is important to mention that we have analyzed the ZID095A eli-route sector

with the arrival and service time data for only one particular day. In order to fully

justify the use of the exponential distribution for airplane interarrival intervals and the

Erlang distribution for aircraft times-in-sector, we would need to obtain and analyze

sector data for several other days. Similarly, in order to determine the actual capacity

of the sector we need to process ETMS data for more than just one day.

In the remainder of this Chapter, we present an analysis of some hypothetical

questions about the ZID095A high altitude sector. First, we provide the baseline

case with the original data provided by LMi. Second, we present a scenario with an

increase in demand during the afternoon peak hours. The third example illustrates

the effects on the sector statistics when the sector capacity decreases considerably

during several afternoon hours. We also show a sensitivity analysis of the rejection

probability to changes in the size of the waiting queue. rThe final example illustrates

the use of our model to determine the effect of combining various en-route sectors

during low-traffic hours, and shows the sensitivity of the rejection probability when

the sector capacity is reduced. Except for the baseline case, we do not have real

data to compare our results with. Therefore, the purpose of presenting the scenarios

(lescribed above is to illustrate the flexibility of our model as a powerful planning tool

that includes numerous parameter variations. All the examples presented were solved

using the ELC heuristic solution technique.
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5.3.1 Baseline Results for Sector ZID095A

In our analysis, we consider the sector in isolation without any interaction with ad-

jacent sectors. We evaluate the sector performance using the following statistics:

* Controller expected workload, given by the expected number of aircraft in the

sector.

* Probability of diverted aircraft, given by the saturation probability. Airplanes

are rejected when the sector is at maximum capacity and the queue is saturated.

* Expected delay for aircraft that are allowed to pass through the sector.

The modeling of the ZID095A high altitude sector was made with an

M(t)/E 3 (t)/18/18 + 3 queueing system using the interpolated values of the hourly

demand shown in Figure 5-3 and a mean transit time in the sector of 14 minutes,

which was maintained constant throughout the day. We used the interpolated values

of Figure 5-3 to obtain a smooth transition between arrival rates. The mean transit

time gives a service rate of p - 0 - 4.2857 aircraft per hour per server. The14
maximum hourly capacity is given by 18 x p = 77 airplanes. Using the ELC solution

technique, the number of states in the system is 472 (compared to 1900 if we were

using the exact solution technique) and the CPU time required to obtain the sector

statistics for the 24 hour period was 71 seconds.

In Figure 5-8, we compare the actual demand and the expected number of aircraft

in the sector during the day. Note that the expected workload in the sector stays

at an almost constant level during most of the day, specifically, from approximately

7 am until 8 pm. The constant workload during the day suggests that the demand

during the day was influenced by the controllers to keep the capacity under 18 air-

planes. Figure 5-8 also illustrates that the expected number of aircraft in the sector

follows a similar pattern to that of the demand distribution: as the demand increases

(decreases), the expected number of airplanes in the sector increases (decreases) as

well. The results in all plots are reported at the end of each hour.
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Figure 5-8: Demand and Expected Number of Airplanes in the Sector for April 8,
1996

Even though the expected number of airplanes in the sector is close to saturation

during most of the day, the probability that an airplane finds a saturated queue

is always less than .0.18 and most of the day is below 0.10. Figure 5-9 shows the

probabilities of finding a saturated queue during the entire day. From the 1,149

airplanes that passed through ZID095A, the expected number of aircraft that find a

saturated queue is 76.63, with the maximum of 14.91 aircraft between 5 and 6 l)m.

If we were using scheduled or forecasted demand, those aircraft that find a saturated

Figure 5-9: Rejection Probabilities on April 8, 1996

queue would have been diverted to adjacent and less congested sectors. The reason

for diverting aircraft from congested sectors is to maintain controllers workload within
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manageable levels.

During normal operations, as those modeled in this baseline case, the expected

delay for aircraft that pass through the sector is always less than one minute. The

total expected delay during the day for all 1,149 planes is 430 minutes. Figure 5-10

shows the expected delays for airplanes which actually joined the queue and eventually

entered the sector on April 8, 1996. Note that the delays in Figure 5-10 do not account

for diverted aircraft which may had suffered much longer delays due to diversion.

Those amounts of delay incurred by aircraft in the ZID095A sector are reasonable
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Figure 5-10: Expected Delays for Aircraft Crossing the Sector on April 8, 1996

since most delays in the U.S. air traffic system, during a normal day of operations,

are due to congestion at airports. If we were analyzing European en-route airspace,

we would expect larger delays because they have tighter constraints in the use of

airspace than that at airports.

We presented the above model and results to managers and air traffic controllers

at the Denver ARTCC. They agreed that such analysis seems to be a reasonable

representation of the behavior of an en-route sector.

5.3.2 Scenario 1: Increase in Demand of Afternoon Flights

We next used an M(t)/E3 /18/18+3 queueing model with a service rate of p = 4.2857

aircraft per hour per server, as before, and with an increased (lenmand of 15% from 12

noon until 7 pm from that shown in Figure 5-3. We also maintained the same sector
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capacity of 77 aircraft per hour. The system size is 472 states, as in the baseline case.

The CPU time needed to solve this example was 73 seconds.

The increase in demand and the resulting change in the controllers' expected

workload is illustrated in Figure 5-11. Note that the increase in the demand does not

have a significant effect on the controller's expected workload. Instead, the major
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Figure 5-11: Scenario 1: Demand and Expected Workload vs. Baseline

consequence of this increase in demand is reflected in the rejection probabilities and

the expected delays, as seen in Figures 5-12 and 5-13, respectively. In Figures 5-12

and 5-13, we compare the results of Scenario 1 with those obtained in the baseline

case. The rejection probabilities reached almost 0.25 between 5 and 6 pm, compared

to less than 0.18 in the baseline case during the same time of day.
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Figure 5-12: Scenario 1: New Rejection Probabilities vs. Baseline
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We can see that the limited queue capacity has an important effect in regulating a

controller's workload. Even though the demand increases considerably, the workload

remains approximately the same. This effect of the limited queue can be seen as a

"protection" on the controller's workload.

The average number of airplanes diverted during the day increased from 76.53 to

121.56, out of 1224 planes that crossed the sector. The total expected delay for the

same 24 hours is 578.4 minutes, with all operations having an expected delay of less

than a minute.

I0.900

0.700-
10.00-

0 n0 - a ..a ' r.

A0 fl

0.50-

Figure 5-13: Scenario 1: New Expected Delays vs. Baseline

5.3.3 Scenario 2: Decreased Capacity in the Afternoon

Hours

As discussed in Section 5.2.1, the sector capacity may vary during the day due to bad

weather, severe turbulence or technical problems (e.g., radar or radio communication

difficulties). In this example, we assume that a line of thunderstorms passes across

the sector reducing its original capacity of 18 aircraft to the values shown ini Table 5.1.

The queueing model used for this example is the MI(t)/E 3 /n(t)/n(t)+3 system, where

n(t) is equal to 18 except for the hours shown in Table 5.1. We kept a constant service

rate of p = 4.2857 aircraft per hour per server and the time-varying demand shown

in Figure 5-3. The maximum hourly capacity was 77 aircraft, as in the baseline case,
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Table 5.1: Reduced Capacity due to Bad Weather

Time of Day 2-3 pm 3-4 pm 4-5 pm 5-6 pm 6-7 pm 7-8 pm
Capacity (a/c) 15 12 9 9 12 15

Hourly Capacity (a/c) 64 51 38 38 51 64

except when the thunderstorms cross the sector. The system size is 472, 349, 244 and

157 states when the capacity of the sector is 18, 15, 12 and 9 aircraft, respectively.

The required CPU time to compute the solution was 58 seconds.

Notice in Figure 5-14 that the expected number of airplanes in the sector was

reduced to approximately 9 aircraft between 4 and 6 pm. To be able to compare

the maximum controller workload in this scenario with that observed in the baseline

case, we need to analyze the percentage difference between the expected workload

and the maximum capacity at which controllers operate. In the baseline case, the

maximum expected number of aircraft was 16.81, which is 6.5% below the maximum

capacity of 18 airplanes. The corresponding maximum expected number of aircraft in

the bad weather case, Scenario 2, during the same time of day, is 8.97 aircraft. This

is a 0.3% difference from the maximum sector capacity of 9 airplanes. Clearly, this

means a considerably higher level of utilization of the available capacity. According

to our discussion in Section 5.2.1, the expected workload may also increase, as more

planning, re-routing and monitoring is needed under poor weather conditions, even

though the number of planes that passed through the sector decreased significantly.

Once again the effect of reducing the sector capacity is reflected in the rejection

probabilities. As shown in Figure 5-15, the probability that a plane requesting to

enter the sector will be rejected and re-routed increases to almost 0.60. Figure 5-15

presents the results for the hours when the reduction in capacity occurs. In this

case, the average number of diverted airplanes during the day is 179.4, which is more

than double that under normal conditions. In this case, the controller's workload is

protected again by the limited queue capacity of the sector.

Due to the high congestion of the ZIDO95A sector between 5 and 6 pm, most
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Figure 5-14: Scenario 2: New Expected Workload vs. Baseline
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Figure 5-15: Scenario 2: New Rejection Probabilities vs. Baseline

aircraft that were granted access to the sector had to wait in the queue prior to

entering thc sector. Entering the queue means that an airplane has to reduce speed

or has to vector in adjacent en-route sectors. Such operations increase tlie amount of

delay of airplanes passing through the congested sector. Notice in Figure 5-16 that,

the expected delays increases considerably. Airplanes crossing the sector between 5

and 6 pm are delayed approximately 2 minutes, compared to less than a minute in

the baseline case, and the total expected delay during the day increases from 430

minutes in the baseline case to 795.84 minutes.
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Figure 5-16: Scenario 2: New Expected Delays vs. Baseline

5.3.4 Scenario 3: Sensitivity of the Rejection Probability

to Variations in the Queue Length

The purpose of this Scenario is to investigate the sensitivity of the saturation proba-

bilities to changes in the capacity of the queue. The use of the assumption of limited

queue size in modeling en-route sectors is an important one because not all requests

of pilots to fly through a sector are granted. If the sector is highly congested iand

there are already as many airplanes as the controller can handle before they enter the

sector, new requests to enter the sector would be denied. As we have seen before, the

limited queue capacity has also an important effect on the controller's workload.

We use an AJ(t)/E 3/18/18 + q qieueing model with the vralies of q as shown in

Table 5.2, column 1. The demand used is that of Figure 5-3 and the service tate

is y = 4.2857 aircraft per hour per server, giving a maxinium hourly capacity of 77

aircraft. The system size for the various values of q is also shown in Table 5.2, cOlumn

2. In this example, we focus only on the rejection probabilities.

Figure 5-17 shows the rejection probabilities during the day for numerous valiues

of the queue size q. The maximum expected numbers of planes diverted in one hour

are shown in Table 5.2. Notice that for q = 50, the sector behaves almost as if the

queue had infinite capacity. A major consequence of increasing the queue capacity is

that more airplanes are allowed to wait before entering the sector. Therefore, major
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Table 5.2: System Size and Average Number of Aircraft Rejected as q Varies

delays are expected to be experienced by airlplanes that go through the sector.

Allowing an infinite queue capacity in an en-route sector is not a realistic coisid-

eration. The reason is that in most cases, airplanes would experience shorter delays

if diverted to adjacent and less congested sectors. Intuitively, when the queue size
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Figure 5-17: Scenario 3: Sensitivity of the Rejection Probabilities

is increased, the workload of controllers gets closer to the maxinunn sector capacity

as more planes are constantly waiting to enter the en-route sector.
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q System Sum Over Maximum in
Size All Day One Hour

3 472 76.531 14.191
4 509 65.305 13.055
5 546 56.405 12.126
6 583 49.245 11.346
8 657 38.509 10.066
10 731 30.836 8.985
15 916 18.531 6.623
20 1101 11.237 4.611
30 1471 3.801 1.871
40 1841 1.132 0.638
50 2211 0.313 0.195



Table 5.3: Combined Sectors in a Four-Shift Pattern

5.3.5 Scenario 4: Combination of Multiple En-route Sec-

tors

To conclude this Chapter, we present an example in which the capacity of the sector

is reduced during low-traffic hours to combine two or more sectors into a single one.

This is a current practice in air traffic control centers, as described in Section 5.2.1.

If we assume that there are 4 shifts of controllers during thle day, each covering

a period of 6 hours, we can combine the sectors as described in Table 5.3. Shift 1

starts at 12:01 am and ends at 6:00 am. Shifts 2 starts at 6:01 am, and so on. The

first column in Table 5.3 indicates the shift number, the second (olumn1111 indicates

the capacity of each individual sector, and the third colun indicates the number of

sectors assigned to each controller. For example under Shift 1, three original sectors

have been combined into a single sector under one team of controllers. If the capacity

of the team is to handle 18 aircraft simultaneously, then the capacity per original

sector is 6. The model used in this example is an A(t)/E3 /n(t)/n(t) + 3 queueing

model with the original demand of Figure 5-3, and a service rate of p = 4.2857

aircraft per hour per server. After combining the sectors in Shifts 1 and 4, the

maximum hourly capacity of the combined sectors is 77 airplanes. The maxinumu

hourly capacity of the single sectors during Shifts 2 and 3 is also 77 aircraft. The

system sizes were 88, 472, 472 and 244 states for Shifts 1 through 4, respectively. In

this experiment, the CPU time needed to obtain the solution was 40 seconds.

We present the results for all four shifts in Figure 5-18, the expected workload

during the day, and Figure 5-19, the rejection probabilities. Shift 1 has such low
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demand that even after combining three sectors into one, the controller's workload

always remains below 50% of its maximum capacity of 18 aircraft, and most of the

time below 4.6% of the maximum capacity. The rejection probabilities are also in-

fluenced by the low demand. For example, most of the time in Shift 1, the sector

behaves as if the queue would have infinite capacity, i.e., the rejection probabilities

are zero from 12 am to 5 am. In Figure 5-18, the gray bars indicate the controller
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Figure 5-18: Scenario 4: Expected Workload of Air Traffic Controllers
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Figure 5-19: Scenario 4I: Combined Rejection Probabilities

workload under normal operations. The black bars in(Iicate the addli tional workload

iiiposed on the controllers after combining multiple sectors into one. Figure 5-19 in-

dicates in gray the rejection problailities wheni the sectors are controlled selparately,
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and indicates in black the rejection probabilities for Shifts 1 and 4, when multiple

sectors are combined into one.

In the case of Shifts 2 and 3, we observe the same performance as in the baseline

example. During those shifts, multiple sectors cannot be combined due to the high

demand in the sector. During Shift 4, the expected controller's workload, as measured

by utilization of maximum capacity, increases from 79% to 94.75% of the maximum

capacity. The utilization is even higher than during the peak hour in the baseline case

which is 93.4% of the maximum capacity. Regarding the rejection probabilities during

Shift 4, the combination of multiple sectors causes those probabilities to increase to a

maximum close to 0.21, compared to the correspoIi(ling maxinium probability of 0.16

in the baseline case. A direct consequence of the increase ini the rejection robabilities

can be seen in the average number of planes that find a saturated queue. This number

increases from 28.53 airplanes per day in the original case to 104.7 airplanes per day

in the current example.

The analysis of the results for Shift 1 suggests that we may be able to assign

more sectors to a single controller during that shift, while maintaining an adequate

controller workload and low rejection probabilities. If we further modify Shift 1 and

decrease the capacity to 3 airplanes, we are able to coiiibiiie up to 6 sectors into one.

In this case, we used an M(t)/E 3 /3/3 + 3 queueing nodel to solve this experiment.

Tle arrival information is that of Figure 5-3, and the service rate is /L = 4.2857

airplanes per hour per server. During Shift 1, the system size reduces to 37 states

and, after combining the 6 sectors, the maximum hourly capacity is 77 airplanes.

The expected workload for the modified Shift 1 example is exhibited in Figure 5-

20. Notice that the expected workload for a controller increases from less than 50% to

almost 83% of the maximum capacity between 5 and 6 am. This amount of workload

is comparable to those experienced by controllers in charge of a single sector (lurinig

Shifts 2 and 3. The rest of the time in Shift 1, the workload for the combined sectors

is always below 27% of the maximum capacity. Figure 5-20 indicates with gray bars

the controller workload for a single sector and with black bars the additional workload

imposed on the air traffic controller after combining the six eni-route sectors.
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Figure 5-20: Scenario 4: Expected Workload for the Modified Shift I

We also performed a sensitivity analysis of the rejection probabilities to changes

in the number of servers. Our goal was to obtain the minimin value of n(t), the

capacity of the sector at time 1, while maintaining tine rejection probability below

0.10 at all times. In tihe cases where the probability is above 0.10, we (lo not mitnodify

the number of servers, i.e., we keep a maximum capacity of 18 airplanes in the sector.

In this example, the system used was an A(i)/E 3 /n(t)/n(t) + 3 queue, where n(t)

was the variable in the sensitivity analysis. We used the arrival demnand of Figure 5-3

and a service rate of pt = 4.2857 aircraft per hour per server. To find the mininium

values of it for the 24 hour period, we perform a trial and error approach. We started

with the early hours of the day and continue until the end of the day. Tie miniium

values of n are indicated in the third column of Table 5.4. In the same Table, the

fourth column presents the system size for the various values of n. With the values

of n in Table 5.4 the CPU time required to obtain the solutions was 55 seconds.

The rejection probabilities for the system with the minimum capacities are shown

in Figure 5-21. The gray bars show the results obtained in the four-shift experiment

and the black bars show the results using the minimum capacity values. Notice that

most of the day, less than 10% of the requests to enter the sector are denied. Only

during the peak demand hours, fronn 9 to 11 am and from 5 to 6 pm, the rejection

probabilities are above 0.10 for the minimum capacities case.

Comparing the results of the two examples in Figure 5-21, we observe that the
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Table 5.4: Minimum Values of n

From: To: Number of System
Servers per Sector Size

12:01 am 5:00 am 1 13
5:01 am 6:00 am 4 52
6:01 am 7:00 am 17 429
7:01 am 10:00 am 18 472

10:01 am 11:00 am 16 388
11:01 am 6:00 pm 18 472
6:01 pm 8:00 pm 17 429
8:01 pm 9:00 pm 12 244
9:01 pm 11:00 pm 13 277

11:01 pm 12:00 am 4 52
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Figure 5-21: Scenario 4: Rejection Probabilities

rejection probabilities were reduced considerably between 6 and 8 pm as the capacity

was increased form 12 to 17 aircraft. The capacities for both examples are shown in

Figure 5-22. Similarly, the gray bars indicate the capacities for the four-shift example

and the black bars indicate the minimum capacities. In Figure 5-22 we show the

the minimum capacities and compare them to the four-shift capacities. Figures 5--

21 and 5-22 suggest that an acceptable sector performance, in terms of rejection

probabilities, can be achieved using the four-shift scenario. Notice that most of the

day, the capacities in the four-shift scenario coincide with the minimum capacities

of Table 5.4. Therefore, the rejection probabilities are close to those set by our
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Figure 5-22: Scenario 4: Minimum Number of Servers

minimum acceptable level of service when obtaining the minimum alcapacities. As

mentioned before, the major difference between both results occurs fron 6 to 8 p1

where the rejection Probabilities in the four-shift scenario are considerably high. If we

keep the proposed four controller shifts, we may be able to decrease the high rejection

probabilities between 6 and 8 pm to the desired rejection probabilities of less than

0.10 by using some overtime of controllers from the 12:01-6:00 pm shift or, possibly,

"back-up" controllers. Back-up controllers assist the actual controller assigned to one

or more en-route sectors and help them to compensate for periods with large demands

to assure acceptable rejection probabilities. Assisting controllers during high denmand

periods to process the traffic more efficiently is common practice in the air traffic

control centers, as described in Section 5.2.1. A direct benefit of assisting controllers

with either back-up controllers or controllers working overtime is reflected in savings

for the FAA and airspace users. The FAA could assign fewer controllers during lower

demand hours and may pay only for controllers' overtime and/or back-up controllers,

and hence, reduce operating costs. On the other hand, airspace users could save

money as they may incur fewer and shorter delays because traffic is processed faster

and more efficiently during hours of high demand.

This scenario underlines the usefulness of the model with a variable number of

servers. The capability of the model to vary the number of servers has been the key

to balancing controller's workload and to effectively fulfilling staffing needs (including
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back-up controllers) for maintaining an adequate level of service in the sector, i.e.,

keeping the rejection probabilities below a certain threshold, and reducing costs of

using and managing en-route sectors.

5.4 Summary

In this Chapter we addressed the implementation and usefulness of our heuristic

solution technique. We have discussed an example of a possible application of the

queueing model and our heuristic solution technique to an en-route ATC problem.

Our case study for the high altitude sector shows that we can easily modify various

system parameters and explore the effects of those changes using our heuristic solution

technique.

Unfortunately, the lack of real data for actual capacities, delays and nuimber of

aircraft diverted from en-route sectors made it impossible to validate our case study

results. Therefore, the scenarios presented in the case study are only indicative of

the capabilities of the M(t)/E(t)/n(t)/n(t) + q queueing systems to model en-route

sectors and to evaluate their performance under various parameters.

If the Ai(t)/Ek(t)/n(t)/n(t)+q model adequately portrays the behavior of eli-route

sectors, then this model can be a fast and easy-to-use tool that allows us to predict

the workload, the level of service, the congestion and delays for en-route sectors.

The use of this tool may be extremely helpful in the decision-making process at the

strategic and policy level, as well as for the daily operations of en-route sectors. Some

areas where the model may be of help are in determining sector boundaries, assigning

controller shifts, fulfilling staffing needs, estimating delays, determining maximum

capacities, and improving the overall air traffic flow in the airspace for present arid

future conditions of en-route sectors.
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Chapter 6

Conclusions and Future Work

In this final Chapter, we first present the main conclusions of our research and state

the theoretical and the practical contributions of the thesis. We then suggest potential

areas of future research and describe possible ways to extend and apply our results.

6.1 Conclusions

We presented a thorough literature search and described numerous results available

for M(t)/G(t)/n/n+q queueing systems, especially for systems with Erlangian service

time distributions. Our survey included systems under stationary and nonstationary

conditions, and results for systems in the transient period, as well as for systems in

steady-state. We observed several trends of research in queueing theory along the

years and identified key results in the field that were the starting point of our work.

The main contribution of this thesis is an excellent approximation for certain

M(t)/G(t)/n(t)/n(t) + q queueing systems when the service time distribution is uni-

modal and has coefficient of variation less than one, using a heuristic solution tech-

nique for the M(t)/E&(t)/n(t)/n(t) + q queueing model. We developed a practical

solution approach for the static and dynamic AI(t)/Ek(t)/n(t)/n(t) + q queueing

model that is well structured, easily implemented and can be used in a wide variety

of applications. We validated our solution technique with an extensive set of conpu-

tational experiments involving queueing systems in steady-state and with stationary
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parameters and concluded that:

* The results of the ELC heuristic solution technique were always within 3% of

the exact results, arid 95% of the time the results were within 1% of the exact

values.

* The size of the queueing systems that caii be solved has been increased consid-

erably using our heuristic solution approach: systems that were impossible to

solve using the exact solution technique because of the large number of equa-

tions involved, were solved quickly using our heuristic solution technique.

* The time to solve the systems using our heuristic solution technique were up to

2,646 times faster than using the exact solution technique.

The performance of the ELC technique was excellent with a wide range of system

parameters arid appears to be quite robust to parameter changes.

An important feature included in our heuristic solution technique is the possibility

of varying the number of servers in the model. We designed and tested an algorithm

that maps the state probabilities of the systems before and after the number of servers

changes. The results from the tests showed that our solution approach behaves intu-

itively well in modeling a change in the system capacity. With this feature, we are

able to apply our heuristic solution technique to a wide range of realistic scenarios

since many real-life problems involve variations in capacity in response to fluctuations

in demand.

We also investigated the performance of our heuristic solution technique under

nonstationary conditions and during the transient period from rest until the system

reaches steady-state. The heuristic solution technique performed extremely well even

under those circumstances. However, a larger set of examples is needed to fully vali-

date our heuristic during the transient period and with dynamic parameters, including

the case with a variable number of servers.

The last contribution of this thesis is the application presented in Chapter 5. We

have provided an example of the usefulness of our model in real-life problems. rThe
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case study of the high altitude sector demonistrates the capabilities of the

M(t)/Ek(t)/n(t)In(t) + q queueing system to model the behavior of en-route sectors

allowing us to evaluate their performance under various scenarios of capacity and

demand. We have also seen that our model can be used in the strategic planning

process for maintaining adequate workload of air traffic controllers while at the same

time assuring an acceptable level of service for en-route sector users. The nlmodeling of

an en-route sector presented in our work is a building block for a complete air traffic

management tool for estimating capacity and delays in the air traffic management

system. In the following Section, we provide some details concerriag this potential

Air Traffic Management modeling.

6.2 Future Work

Several lines of potential future research emerge from the results of this thesis. Some

are related to the improved understanding of M(t)/G(t)/n(t)/n(t)+q queueing sys-

tems and others to extending the application of such systems in Air Traffic Manage-

ment.

We have identified two possible extensions in analyzing the behavior of multi-

server systems with Poisson arrivals and general service time distributions:

1. Use the exact and/or ELC solution techniques to examine the transient period

time constant in the MIEI/nin + q queueing system. The analysis of the

transient period can be done through an approach similar to the one used by

Odoni and Roth [37] for the MI/M/i model.

2. Explore time use of (lifferent (listrilbutioiis for the service times, e.g. a comtbi-

nation of multiple Erlang distributiomns andl/or phase-type distributions. To (10

this we need to be able to clearly identify the transition probabilities among

states in the system, as well as the size of the system to solve. It is niot ob-

vious or straightforward that a combination of multiple Erlang distributions

or of phase-type distributions may lead to feasible exact arid/or heuristic so-
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lution techniques. The usefulness of such service time distributions is that we

would be able to capture a larger set of general service time distributions, e.g.,

multi-modal distributions, which are observed in several real-life problems. An

example could be an en-route sector with two or more airways where most traffic

is concentrated.

A direct extension of the application presented in Chapter 5 is to analyze several

en-route sectors together, and include them in models such as AND and LMINET

(see Chapter 2 for a description of those models) to b: ild a complete Air Traffic

Management tool. Within this new application, we found two important areas of

research:

1. Account for the dependence among adjacent and non-adjacent en-route sectors.

2. Use ELC and, possibly, optimization tools to incorporate re-routing among en-

route sectors.

The case study p-:esented in Chapter 5 studied a single en-route sector without con-

sidering any interaction with other (adjacent or non-adjacent) en-route sectors. In

order to adequately analyze several sectors together, we need to understand the in-

teractions and interdependent'es among en-route sectors. For example, if air traffic

of an en-route Sector 1 comes mainly from a contiguous Sector 2, any alteration in

the operations of Sector 2 would have a direct effect on the traffic that usually enters

Sector 1. For instance, if Sector 2 experiences unusually high congestion or is affected

by severe weather conditions reducing its capacity considerably, sone of the following

questions may arise regarding the operations in Sector 1: What would happen to the

demand in Sector 1? Would Sector 1 experience higher or lower workload? Will the

capacity of Sector 1 remain unchanged? Another example would be that if Sector 3

is adjacent to a highly utilized Sector 4, then if Sector 4 becomes saturated, Sector 3

may experience higher demand due to diverted airplanes from Sector 4.

Other interactions among sectors may be due to sectors that are not adjacent.

To understand this situation, consider the following scenario. Flight F going from

Boston, MA, to Atlanta, GA, passes through Sector A, covering part of Connecticut,
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and Sector B, covering the region to the East of the coast of North Carolina. If severe

weather conditions affect the Northeast region of the U.S. and Sector A is diverting

most of its traffic to the West, then Flight F may be re-routed to Sector C, covering

part of New York State and Pennsylvania, and Sector D, covering parts of Ohio and

West Virginia. Hence, the demands of Sectors B, C and D will be affected by problems

in Sector A. It would be interesting to study and to understand the dependence of

adjacent and non-adjacent en-route sectors, and to assess the degree of interaction

among themselves.

The second extension to the application of Chapter 5 is very much related to the

one just described. The problem of re-routing aircraft in the airspace involves several

tasks and challenges. For each route between a pair of airports, we need to

e determine the alternate routes, along the complete flight trajectory, in case

airplanes need to be diverted;

* know the weather, the demand and the capacity conditions for all sectors in the

route and alternate routes;

* constantly update the status of all sectors in the original route and alternate

routes;

* update the list of alternate routes as sector conditions amay have changed;

* decide if aircraft have to be re-routed;

* efficiently select which aircraft are to be re-routed (minimize costs); and,

e optimally select the alternate route for diverted aircraft.

Determining the alternate routes requires only an exhaustive list of trajectories 1e-

tween the pairs of airports considered in the experiment. Knowving and updating

sector conditions requires the use of our model to analyze all sectors that are in-

chided in the routes of the experiment, including the alternate ones. With the tap--

dated status for all en-route sectors, the list of alternate routes is updated and the

decision to divert aircraft from saturated sectors is taken. The rotates that include
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saturated sectors should be removed from the list of alternate routes as no aircraft

can be re-routed through already saturated sectors. The decision to divert aircraft

from saturated sectors may be based on the rejection probabilities obtained using our

model.

Selecting the aircraft to be diverted and the new routes for them to follow is not

straightforward. Some optimization tools may need to be used to minimize the costs

for passengers, airlines and the FAA, and also to iinimize the distance traveled,

the delays incurred and the controllers' workload. A major challenge would be to

obtain real data to validate the results. We faced that problem when trying to

validate the results presented in our case study. If the re-routing problem is solved

and en-route sectors are added to a model such as AND (see Chapter 2), along

with re-routing capability, the result would be an extremely powerful and useful Air

Traffic Management tool for modeling the complete air traffic syst2m. Hence, this

area of research includes many technical challenges and promises very interesting and

practical applications.
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Appendix A

States and State Transitions in

the M/E 4 /3/4 Queueing System

In this Appendix, we present, in detail, applications of the exact and heuristic solution

techniques to the AI/E 4/3/4 queue. The objective of this example is to illustrate the

complexity of deriving the state transitions needed for the Chapman-Kolmogorov

equations in even a small example. We also illustrate that the heuristic solution

techniques are considerably simpler and easier to implement.

A.1 State Transitions: Exact Solution Technique

Figure A-1 is the state transition diagram for the M/E4/3/4 queucing system, where

the state is given by Description 2, (1, m, r), defined in Section 3.1.2. The associated

transition rates are defined in Tables A.1, A.2 and A.3. The Chapman-Kolmogorov

equations for the system can be obtained directly from these Tables. Note that the

total number of states in Figure A-1 is given by Equation 3.1:

3+4 3+ 4 - 1
TS=( ++1X 35+20 = 55.

3 3

Let us now explain the transitions described in Tables A.1 and A.2. Columns

1 through 5 contain the states according to Description 2, from Section 3.1.2. We
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the state in column 4 with probability one. If we enter the state in column 1 due to

a stage completion, a transition from one of the states in column 5 occurred, with

the associated transition probability written at the right of the state, assuming that

we were in that particular state. To better understand this last type of transition,

consider the following example. If we entered state (5,2, a) because a stage was com-

pleted, the transition came from state (6, 2, a) or state (6, 2, b) or state (6, 3, b). If the

previous state was (6,2, a), the transition to state (5, 2, a) occurred with probability

one; if the system was in state (6, 2, b), then the transition to state (5, 2, a) occurred

with probability i; finally, if the system was in state (6, 3, b), then the transition to

state (5,2, a) occurred with probability '

The transitions shown in Table A.3 are similar to the transitions described above

for Tables A.1 and A.2. The only difference is that in Table A.3 the transitions out

of the states in column 1, due to a customer arrival, do not exist. The reason is that

the system is saturated and no more customers can be accepted in the servers or in

the queue. Therefore, we only have transitions out of the states in column 1, due to

a stage completion, to the states in column

2, 3 and 4 in Table A.3 are equivalent to t

Tables A.1 and A.2.

(fl,3,h) (isc)

@000 @000*ooo .0.o0
@000 @000
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0000 @000
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0000 0000
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000000
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0000
0000
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Figure A-2: Transitions in and out of state (7,3, c)
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In Figure A-2, all possible transitions for state (7,3, c) are presented. The intention

of this figure is to illustrate, in a more graphical way, how the transitions shown in

Tables A.1, A.2 and A.3 occur. Recall that customers arrive at the system according

to a Poisson process and that the time to complete a service stage is independent and

exponentially distributed. There are four possible ways to enter state (7,3, c) in any

At:

1. from state (3, 2), when a customer arrives and enters directly to the available

server, adding four uncompleted stages to the system;

2. from state (8,3, b), with probability ?, since two of the three servers in (8,3, b)

have two uncompleted stages; if any of those servers complete a stage, then we

will have the same pattern as state (7, 3, c);

3. from state (8,3,c), with probability j, if the server with three uncompleted

stages finishes one of them; and,

4. from stage (8,4), with probability , if one of the two servers with one uncom-3,

pleted stage completes that stage, the customer waiting in queue enters the

freed server.

Note that in Figure A-2, a customer waiting in queue is represented by the four stages

grouped in an oval.

Leaving state (7,3, c), we have four cases as well. If a customer arrives, the

transition is to state (11, 4, c), with the new customer waiting in queue until a server

becomes available. If a stage is completed, three possible transitions may occur,

each with probability 1 since all servers are equally likely to complete a stage at a

given time. The three transitions are as follows: to state (6, 2, b), leaving one server

available; and to states (6, 3, b) and (6, 3, c) with all their servers busy.
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A.2 State Transitions: Heuristic Solution Tech-

niques

Note that the states with identical values of I and m are grouped in Tables A.1, A.2

and A.3. If we combine the states in each group, we would obtain a list of the states in

the heuristic approximations. For example, in Figure A-3, we see how states (7,3, a),

(7,3, b) and (7,3, c) become state (7,3). In the heuristic solution techniques, there

Heuristic I Heuristic I
a 1. = 2/ Heuristic 2 = 7/ Heuristic 2

( 7 ,3 a )(=.3/4( 7 3= 3 /4
S~atc (6,2)State((6,3

Figure A-3: Transitions out of state (7,3) using either heuristic solution techniques

are two possible transitions out of state (7,3), due to a stage completion. Under

Heuristic 1, Equally Likely Patterns, the transition probabilities a 13 and /7,3 are

obtained as follows:

Suppose that patterns a, b and c are all equally likely (probability } each). The

probability that a customer leaves the system, and thus the system will move from

state (7,3) to state (6,2), is given by

since pattern a has no server with only one uncompleted stage and both patterns b

and c each have one out of three servers with only one uncompleted stage. If the

transition is to a state with the same number of customers, i.e., to state (6, 3), the
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transition probability is
7

37,3 =1 - 07,3=-
9

Let us now consider Heuristic 2, Equally Likely Combinations. We need to obtain

the number of combinations for each pattern and the total for all three patterns.

Patterns a and b each have two servers with the same number of uncompleted stages

and a third server with a different number of uncompleted stages. Hence, both have

the same number of combinations:

3!
Ca.= Co-3'!-3.

2!1!

Pattern c has each of its three busy servers with a different number of uncompleted

stages, and the number of combinations is

3!
1!1!1! =6.

Therefore, the total number of combinations in state (7, 3) is given by

Coti = Ca+C+C =12.

The probability of patterns a and b areA = each, and the probability of pattern c12 4

is = . Hence, the transition probability from state (7, 3) to state (6,2) is given by

a713= (-x 0)+ (-x-3)+ (-x3)- =-

with pattern a having no customers with one uncompleted stage, and patterns b

and c having one of three servers with only one uncompleted stage. The transition

probability from state (7, 3) to state (6, 3) is tihus

/37,3 = 1-07,3 --
4

Finally, the simplified state transition diagram for the heuristic solution techniques
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is presented in Figure A-4. Note that even for a small system, like the M/E 4 /3/4

queue, the heuristics simplify considerably the transitions between states. The tran-

sition probabilities ar,m and f#,,m are obtained with Equations 3.11, 3.12 and 3.15,

in Section 3.1.4. Once the state transition probabilities have been obtained, the

Chapman-Kolmogorov equations may be derived using Equations 3.19 through 3.30.

The total number of Chapman-Kolmogorov equations which corresponds to the state

Culovmer 0 123 4

KEY:
STATES: i,m

Sian =6 Cutomers = m

TRANSITIONS:

* Duetoonarrival. with rate i

Duehtomuaapcompletiu, with rate 1 Rkpff)
Duelo a sapcompletion, with rate a1 ,,k p(r)

Figure A-4: M/E 4 /3/4 queue, simplified state transition diagram

transition diagram of Figure A-4 is given by

Ss = (4 - 1)[3(31) +1 x3] +1+3+1 =3(9)+5=32
1 21
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from Equation 3.18.

With this example, we have shown how the state-to-state transitions occur inl both

the exact solution technique and the heuristic solution techniques. Numerical results

of this example for selected performance measures are presented in Section 4.1.
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Table A.1: State Transitions. Part 1: 0, 1 and 2 Customers in the System

State To State To State, Prob. From State From State, Prob.
(l, n,p,r) (Arrival) (Stage Completion) (Arrival) (Stage Completion)

(0,0) (4,1)--(1 ),

(4,1) (8,2) (3,1),1 (0,0) (5,2,b),1/2

(3,1) (7,2) (2,1),1 - (4,1),1; (4,2,b),1/2

(2,1) (6,2,b) (1,1),1- (3,1),1; (3,2),1/2

(1,1) (5,2,b) (0,0),1- (2,1),1; (2,2),11

(8,2) (12,3) (7,2),1 (4,1) (9,3,c),I/3

(7,2) (11,3) (6,2,a),I/2; (6,2,b),1/2 (3,1) (8,2),1; (8,3,c),I/3

(6,2,a) (10,3,a) (5,2,a),1 - (7,2),1/2; (7,3,b),1/3
(6,2,b) (10,3,b) (5,2,a),1/2; (5,2,b),1/2 (2,1) (7,2),1/2; (7,3,c),1/3

(5,2,a) (9,3,b) (4,2,a),I/2; (4,2,b),I/2 - (6,2,a),1; (6,2,b), I1/2
- -(6,3,b),11/3

(5,2,b) (9,3,c) (4,1),1/2; (4,2,b),1/2 (1,1) (6,2,b),1/2; (6,3,c),2/3

(4,2,a) (8,3,b) (3,2),1 - (5,2,a),z/2; (5,3,a),1/3

(4,2,b) (8,3,c) (3,1),I/2; (3,2),1/2 - (5,2,a),1/2; (5,2,b),1/2
-- - (5,3,b),2/3

(3,2) (7,3,c) (2,1),1/2; (2,2),1/2 - (4,2,a),1; (4,2,b),1/2
- -- -(4,3),2/3

(2,2) (6,3,c) (1,1),1 (3,2),1/2; (3,3),1
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Table A.2: State Transitions. Part 2: 3 Customers in the System

State To State To State, Prob. From State From State, Prob.
(l,m,p,r) (Arrival) (Stage Completion) (Arrival) (Stage Completion)

(11,3),1

(10,3,a),2/3; (10,3,b),1/3

(9,3,a),1/3; (9,3,b),2/3
(9,3,b),2/3; (9,3,c),1/3

(8,3,a),1
(8,3,a),I/3; (8,3,b),1/3;
(8,3,c),1/3
(8,2),1/3; (8,3,c),2/3

(7,3,a),2/3; (7,3,b),1/3
(7,3,a),1/3; (7,3,c),2/3
(7,3,b),L/3; (7,3,c),1/3
(7,2),1/3

(6,3,a),1/3; (6,3,b),2/3
(6,3,b),2/3; (6,2,a),1/3
(6,3,b),1/3; (6,3,c),l/3;
(6,2,b),1/3

(5,3,a),1
(5,3,a),1/3; (5,3,b),I/3;
(5,2,a),I/3
(5,3,b),i/3; (5,2,b),2/3

(4,3),2/3; (4,2,a),1/3
(4,3),1/3; (4,2,b),2/3

(3,3),1/3; (3,2),2/3

(2,2),1

(8,2)

(7,2)

(6,2,a)
(6,2,b)

(5,2,a)

(5,2,b)

(4,2,a)
(4,2,b)

(3,2)

(2,2)

(13,4,c),1/3

(12,3),1; (12,4,c),I/3

(11,3),2/3; (11,4,b),1/3
(11,3),1/3; (11,4,c),1/:3

(10,3,a),1/3
(10,3,a),2/3; (10,3,b),2/3;
(10,4,b),1/3
(10,3,b),I/3; (10,4,c),2/3

(9,3,a),1; (9,3,b),1/3
(9,3,b),1/3; (9,4,a),1/3
(9,3,b),i/3; (9,3,c),2/3;
(9,4,b),2/3

(8,3,a),2/3; (8,3,b),I/3
(8,3,a),I/3; (8,3,c),1/3
(8,3,b),2/3; (8,3,c),1/3;
(8,4),2/3

(7,3,a), 1/3
(7,3,a),2/3; (7,3,b),2/3;
(7,3,c), 1/3
(7,3,c),I/3; (7,4),1

(6,3,a),1; (6,3,b), I /3
(6,3,b),1/3; (6,3,c),1/3

(5,3,a),2/3; (5,ab),l/3
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(12,3)

(11,3)

(10,3,a)
(10,3,b)

(9,3,a)
(9,3,b)

(9,3,c)

(8,3,a)
(8,3,b)
(8,3,c)

(7,3,a)
(7,3,b)
(7,3,c)

(6,3,a)
(6,3,b)

(6,3,c)

(5,3,a)
(5,3,b)

(4,3)

(3,3)

(16,4)

(15,4)

(14,4,a)
(14,4,b)

(13,4,a)
(13,4,b)

(13,4,c)

(12,4,a)
(12,4,b)
(12,4,c)

(11,4,a)
(11,4,b)
(11,4,c)

(10,4,a)
(10,4,b)

(10,4,c)

(9,4,a)
(9,4,b)

(8,4)

(7,4)



Table A.3: State Transitions. Part 3: 4 Customers in the System

State To State, Prob. From State From State, Prob.
(l,m,p,r) [j (Stage Completion) (Arrival) (Stage Completion)

(15,4),1

(14,4,a),2/3; (14,4,b),1/3

(13,4,a),1/3; (13,4,b),2/3
(13,4,b),2/3; (13,4,c),1/3

(12,4,a),1
(12,4,a),1/3; (12,4,b),I/3;
(12,4,c),I/3
(12,4,c),2/3; (12,3),1/3

(11,4,a),2/3; (11,4,b),1/3
(11,4,a),1/3; (11,4,c),2/3
(11,14,b),1/3; (11,4,c),1/3;
(11,3),1/3

(10,4,a),1/3; (10,4,b),2/3
(10,4,b),2/3; (10,3,a),1/3
(10,4,b),z/3; (10,4,c),I/3;
(10,3,b),1/3

(9,4,a),1
(9,4,a),1/3; (9,4,b),1/3;
(9,3,b),1/3
(9,4,b),i/3; (9,3,c),2/3

(8,4),2/3; (8,3,b),1/3
(8,4),1/3; (8,3,c),2/3

(7,4),1/3; (7,3,c),2/3

(6,3,c),1

(12,3)

(11,3)

(10,3,a)
(10,3,b)

(9,3,a)
(9,3,b)

(C,3,c)

(8,3,a)
(8,3,b)
(8,3,c)

(7,3,a)
(7,3,b)
(7,3,c)

(6,3,a)
(6,3,b)

(6,3,c)

(5,3,a)

(5,3,b)

(4,3)

(3,3)

(16,4),1

(15,4),2/3
(15,4),1/3

(14,4,a),1/3
(14,4,a),2/3; (14,4,b),2/3

(14,4,b),1/3

(13,4,a),1; (13,4,b),t/3
(13,4,b),1/3
(13,4,b),1/3; (13,4,c),2/3

(16,4)

(15,4)

(14,4,a)
(14,4,b)

(13,4,a)
(13,4,b)

(13,4,c)

(12,4,a)

(12,4,b)
(12,4,c)

(11,4,a)
(11,4,b)
(11,4,c)

(10,4,a)
(10,4,b)

(10,4,c)

(9,4,a)

(9,4,b)

(8,4)

(7,4)

(12,4,b),1/3
(12,4,c),I/3
(12,4,c),1/3

(11,4,a),l/3
(11,4,a),2/3; (11,4,b),2/3
(11,4,c), 1/3
(11,4,c),1/3

(10,4,a),1; (10,4,b),1/3
(10,4,b),/3; (10,4,c),1/3

(9,4,a),2/3; (9,4,b),1/3

(8,4),1/3
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