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___________________________________________________________________________________________ 
 
Abstract 
 
The existence of the memristor, as a fourth fundamental circuit element, by researchers at Hewlett Packard (HP) labs in 
2008, has attracted much interest since then. This occurs because the memristor opens up new functionalities in 
electronics and it has led to the interpretation of phenomena not only in electronic devices but also in biological systems. 
Furthermore, many research teams work on projects, which use memristors in neuromorphic devices to simulate 
learning, adaptive and spontaneous behavior while other teams on systems, which attempt to simulate the behavior of 
biological synapses.  
In this paper, the latest achievements and applications of this newly development circuit element are presented. Also, the 
basic features of neuromorphic circuits, in which the memristor can be used as an electrical synapse, are studied. In this 
direction, a flux-controlled memristor model is adopted for using as a coupling element between coupled electronic 
circuits, which simulate the behavior of neuron-cells. For this reason, the circuits which are chosen realize the systems of 
differential equations that simulate the well-known Hindmarsh-Rose and FitzHugh-Nagumo neuron models. Finally, the 
simulation results of the use of a memristor as an electric synapse present the effectiveness of the proposed method and 
many interesting dynamic phenomena concerning the behavior of coupled neuron-cells. 

 
 Keywords:  Chaos, neuron, synapse, memristor, FitzHugh–Nagumo model, Hindmarsh–Rose model, complete syncronization.  
 __________________________________________________________________________________________ 
 
1. Introduction 
 
Until the beginning of 70ies the electronic circuit theory has 
been spinning around the three known, fundamental two-
terminal circuit elements, which are known as: resistor (R), 
capacitor (C) and inductor (L). These elements reflect the 
relations between pairs of the four electromagnetic quantities 
of charge (q), current (i), voltage (v) and magnetic flux (φ) 
that mathematically can be written as: 
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                         (1) 

 
In the case that the factors C, L and R have constant 

values, the corresponding circuit elements are linear. 
However, as it can be derived, a relation between the charge 
(q) and the flux (φ) is missing. 

At that time (1971), Professor Leon Chua from the 
University of California at Berkley, dubbed this missing link 

by introducing the fourth fundamental element based on the 
symmetry arguments [1]. This fourth circuit element was 
named memristor (M), an acronym for memory resistor, 
which its existence was conjectured due to the following 
missing relation between the charge (q) and the flux (φ) 
(Fig.1(a)). 
 
d ( )dφ M q q=                          (2) 
 
The multiplicative term M(•) is called the memristance 
function. 

Dividing both sides of (2) by dt one obtains 
 
( )v M q i=                          (3) 

 
If M is constant, equation (3) is nothing but the defining 

relation of a linear resistor (R), as it can be shown from (1).  
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Fig. 1. The four circuit variables connected by the fundamental circuit 
elements and (b) a typical v-i characteristic curves of a memristor driven 
by a sinusoidal voltage input. 
 

However, Chua has proved theoretically that a memristor 
is a nonlinear element because its v-i characteristic is similar 
to that of a Lissajous pattern. So, a memristor with a non-
constant M describes a resistor with a memory, more 
precisely a resistor whose resistance depends on the amount 
of charge that has passed through the device. 

A typical response of a memristor to a sinusoidal input is 
depicted in Fig.1(b). The ‘pinched hysteresis loop current-
voltage characteristic’ is an important fingerprint of a 
memristor. If any device has a current-voltage hysteresis 
curve, then it is either a memristor or a memristive device. 
Another signature of the memristor is that the ‘pinched 
hysteresis loop’ shrinks with the increase in the excitation 
frequency. The fundamentality of the memristor can also be 
deduced from this figure, as it is impossible to make a 
network of capacitors, inductors and resistors with an v-i 
behavior forming a pinched hysteresis curve [2]. So, it will 
be very easy to visualize the inevitable presence of the 
memristor, if we rewrite equations (1) & (2) as shown in the 
Table 1. 

As we can see from Table 1 the integral can be used in 
four  different  ways  to   describe   the  relationship between  
 
 

current and voltage by either using it or not using it. We note 
that the equations for resistance and memristance appear 
identical, except for the presence of the integral sign in the 
latter’s case on both sides of laws. However, this integral 
cannot be cancelled because the constant of integration need 
not be zero. And this is the constant that makes the 
memristor ‘remember’ the previous state. 

Some of the more interesting properties of memristor are 
[1]: 
• Non-linear relationship between current (i) and voltage 

(v). 
• Does not store energy. 
• Similar to classical circuit elements, a system of 

memristors can also be described as a single memristor. 
• Reduces to resistor for large frequencies as evident in 

the v-i characteristic curve. 
• Memory capacities based on different resistances 

produced by the memristor. 
• Non-volatile memory possible if the magnetic flux and 

charge through the memristor have a positive 
relationship (M > 0). 

Furthermore, a more generalized class of systems, in 
regard to the original definition of a memristor, called 
memristive systems [2], is introduced. An nth-order current-
controlled memristive one-port is represented by 
 

( , , )
d ( , , )
d

v R w i t i
w f w i t
t

=

=
                         (4) 

 
where Rnw∈  is the n-dimensional state variable of the 
system. 

Also, the nth-order voltage-controlled memristive one-
port is defined as: 
 

( , , )
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t

=

=
                         (5) 

 
Similarly to memristor, a memristive system has the 

following properties:  
The memristive system should have a dc characteristic curve 
passing through the origin. 
• For any periodic excitation the v-i characteristic curve 

should pass through the origin. 
• As the excitation frequency increases toward infinity 

the memristive system has a linear behavior. 
• The small signal impedance of a memristive system can 

be resistive, capacitive, or inductive depending on the 
operating bias point. 

After Chua’s work in 1971, only a few works appeared 
in the literature for a long time since it was thought that the 
memristor was only a theoretical element and it could not be 
realized practically. 
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Name Law Constant  α Its name 

Resistor i = αv α = 1/R R: Resistance 

Capacitor ∫i = αv α = C C: Capacitance 

Inductor i = α∫v α = 1/L L: Inductance 

Memristor ∫i = α∫v α = 1/M M: Memristance 

  
Tab. 1. The possible relationships between current (i) and voltage (v).

 
So, until recently, the memristor had received little 

attention [3-5], even though a working device made from 
op-amps and discrete nonlinear resistors had been built and 
demonstrated in the seminal paper of Chua [1]. The 
memristor, we can say that it was the ‘Holy Grail’ of 
Electronics. However, in 2008, Hewlett-Packard scientists, 
working at its laboratories in Palo Alto-California, 
announced in Nature [6] that a physical model of memristor 
has been realized. In their scheme, a memory effect is 
achieved in solid-state thin film two-terminal device. 

This element is passive while the latest realization of a 
memristor is that of an active one on a base of niobium 
oxide [7]. The memristor, which is realized by HP 
researchers, is made of a titanium dioxide layer which is 
located between two platinum electrodes. This layer is of the 
dimension of several nanometers and if an oxygen                  
dis-bonding occurs, its conductance will rise 
instantaneously. However, without doping, the layer behaves 
as an isolator. The area of oxygen dis-bonding is referred to 
as space-charge region and changes its dimension if an 
electrical field is applied. This is done by a drift of the 
charge carriers. The smaller the insulating layer, the higher 
the conductance of the memristor. Also, the tunnel effect 
plays a crucial role. Without an external influence the 
extension of the space-charge region does not change. 
 

 
Fig. 2. Structure of TiO2 memristor, in which TiO2−x and TiO2 layers are 
sandwiched between two platinum electrodes, (b) equivalent circuit and 
(c) symbol of the memristor. 
 

The internal state x is the extent of the space-charge 
region, which is restricted in the interval [0, 1] and can be 
described by the equation 
 

,    0 1,    Rwx x x
D

= ≤ ≤ ∈                        (6) 

 
where w is the absolute extent of the space-charge region 
and D is the absolute extent of the titanium dioxide layer. 
The memristance can be described by the following 
equation: 
 

( )on off( ) 1M x R x R x= + −                        (7) 
 
where Ron is the resistance of the maximum conducting state 
and Roff represents the opposite case. So, when x = 0, 
R = Roff, and when x = 1, R = Ron. The vector containing the 
internal states of the memristor is one dimensional. For this 
reason scalar notation is used. The state equation is: 
 

on
2

d ( )
d

νx R i t
t D

µ=                           (8) 

 
where µv is the oxygen vacancy mobility and i(t) is the 
current through the device. By using the equation (6) the 
previous equation can be rewritten as: 
 

ond ( )
d

νw R i t
t D

µ=                           (9) 

 
So, the dynamics of the memristor can therefore be 

modeled through the time dependence of the width w of the 
doped region. Integrating equation (9) with respect to time, 
 

on
0 ( )νRw w q t

D
µ= +                      (10) 

 
where w0 is the initial width of the doped region at t = 0 and 
q is the amount of charges that have passed through the 
device. Substituting (6), (10) into equation (7) gives: 
 

on
0 2

Δ( ) ( )νR RM q R q t
D

µ= −                     (11) 

 
where 
 

0 0
0 on off 1

w wR R R
D D

⎛ ⎞= + −⎜ ⎟⎝ ⎠
                    (12) 

 
and ΔR = Roff − Ron. The term R0 refers to the net resistance 
at t = 0 that serves as the device’s memory. This term is 
associated with the memristive state, which is essentially 
established through a collective contribution, i.e. it depends 
directly on the amount of all charges that have flown 
through the device. 
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That’s why, we can say that the memristor has the feature 
to ‘remember’ whether it is on or off after its power is turned 
on and off. This announcement brought a revolution in 
various scientific fields, as many phenomena in systems, 
such as in thermistors whose internal state depends on the 
temperature [8], spintronic devices whose resistance varies 
according to their spin polarization [9] and molecules whose 
resistance changes according to their atomic configuration 
[10], could be explained now with the use of the memristor. 
Also, electronic circuits with memory circuit elements could 
simulate processes typical of biological systems, such as the 
learning and associative memory [11] and the adaptive 
behavior of unicellular organisms [12].  

Furthermore, neuromorphic computing circuits, which are 
designed by borrowing principles of operation typical of the 
human (or animal) brain, can potentially solve problems that 
are cumbersome (or outright intractable) by digital 
computation. Therefore, certain realizations of memristors 
can be very useful in such circuits because of their intrinsic 
properties which mimic to some extent the behavior of 
biological synapses. Just like a synapse, which is essentially 
a programmable wire used to connect groups of neurons 
together, the memristor changes its resistance in varying 
levels. Many research teams [13-16] found that memristors 
can simulate synapses because electrical synaptic 
connections between two neurons can seemingly strengthen 
or weaken depending on when the neurons fire. For this 
reason, many well-known circuits, in which the nonlinear 
element  has   been   replaced   by   memristors,   have   been  
proposed [17-19].  

Based on the aforementioned fact that memristors can 
mimic the behavior of biological synapses, we have studied, 
via computer simulations the dynamical behavior of two 
systems of coupled nonlinear neuromorphic circuits that 
simulates the well-known Hindmarsh-Rose and FitzHugh-
Nagumo neuron models. For this reason a flux-controlled 
memristor, as an electrical synapse, is used in each case. The 
proposed coupled systems have very interesting dynamic 
behavior as for certain values of their elements, they exhibit 
spiking/bursting and chaos phenomena, as it occurs in real 
neurons. 

According to the related explanations, the rest of the 
chapter is organized as follows: The next Section provides a 
brief description of the most interesting applications of 
memristors in various scientific fields. Section 3 presents the 
scientific field of neuromorphic circuits, which is probably 
the most exciting application of memristors, while Section 4 
presents the most well-known neuron models and the basic 
features of the synapse. In Section 5 the explanation of the 
relation between the synapse and the memristor is discussed. 
Section 6 is devoted to the results of the coupling schemes 
between the circuits that simulate the chosen neuron models 
via a memristor, which plays the role of a synapse. Finally, 
Section 6 outlines the conclusions that have been reached 
with this research study. 
 
 
2. Applications of Memristor 
 
What implications does the discovery of memristor hold for 
the future of electronics technology? If it is such an 
important circuit element, why has it taken nearly four 
decades to construct a prototype of the memristor? It is a fact 
that in history, we have several such instances of practical 
realizations lagging behind the theoretical conceptualization. 

Also, as it is mentioned, due to its dynamical behavior, the 
memristor enables a lot of new interesting applications in 
analog circuit design. Since, some realizations have been 
already presented, the development of applications with 
memristors becomes more and more challenging. Besides 
applications in neural networks and storage devices, analog 
memristive circuits also promise further applications. In this 
section, some of the more interesting and promising 
applications of the memristors are presented in detail. This 
list of applications reveals that the research on the memristor 
is a subject that will be insisted on it in the near future. 
• Digital Memory: Until now the most straightforward 

and developed application of memristive systems is the 
digital binary non-volatile memory. This occurs 
because a bit of information could be easily encoded in 
the memristive system’s state assigning, for example, 
the low resistance state to ‘1’ and the high resistance 
state to ‘0’. For that reason many research teams have 
already work on this subject [20-22]. So, the use of 
memristor could offer an enabling low cost technology 
for non-volatile memories where future computers 
would turn on instantly without the usual ‘booting 
time’, currently required in all personal computers [17]. 

• Programmable Analog Circuits: In this circuits’ family 
various memristive systems that operate under threshold 
conditions could be used as digital potentiometers, by 
applying small amplitude voltages to these systems 
when they are used as analog circuit elements [23]. In 
the case of memristive systems the state is changed only 
when the voltage applied to it exceeds a certain 
threshold. So, its resistance is constant in the analog 
mode of operation, and changes by discrete values with 
each voltage pulse. 

• Learning Circuits: An electronic circuit whose response 
at a given time adapts according to signals applied to 
this at previous moments of time, is called ‘learning 
circuit’ [12]. This actually is the reason for which 
memory circuit elements would be used because they 
could provide non-volatile information storage. Such 
electronic circuits have already been proposed and 
experimentally implemented. Pershin et al. [12] 
proposed a learning circuit which is composed of an LC 
contour and a memristive system in parallel with a 
capacitor that mimics the adaptive behavior of a slime 
mold ‘Physarum polycephalum’ from the group of 
amoebozoa. Additionally, Driscoll et al. [24] realized a 
similar learning in which the application of signals in a 
specific frequency range sharpens the quality factor of 
its resonant response, and thus the circuit learns 
according to the input waveform. 

• Quantum Computing with Memory Circuit Elements: 
Nowadays, the research topic of quantum computing 
becomes more and more interesting due to the fact that 
the usual computer technology reaches its limits. The 
superconducting qubit circuits, which are designed, 
involve usual capacitors and inductors [25, 26]. So, 
many research teams thought that the use of memory 
elements such as memcapacitive and meminductive are 
ideal for such circuits, especially for use in the field-
programmable quantum computing [27]. This would be 
done by replacing the capacitors and the inductors, 
which provide the coupling between different qubits, 
with non-dissipative memcapacitors and meminductors. 
So, by providing additional voltage sources to control 
the state of these memory elements the coupling 
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strength between qubits can be selected. This would be 
beneficial from such novel quantum hardware design 
because of the infinity interaction schemes that can be 
implemented within a single circuit architecture.  

• Digital Logic: One of the most promising applications 
of memristive systems could be their use to perform 
logic operations. There have already been demonstrated 
very promising hybrid reconfigurable logic circuits 
[28], and logic circuits with a ‘self-programming’ 
capability [29]. The state of the memristive system acts 
as both logic gate and latch capable to hold one bit of 
information. Lehtonen et al. [30] have reached to the 
interesting conclusion that two memristive systems 
suffice to compute all Boolean functions. 

• Metamaterials: In 2009 Driscoll et al. demonstrated a 
form of memory capacitance that interfaces 
metamaterials with a class of devices known 
collectively as memory devices [31]. The resonant 
elements that grant metamaterials their distinct 
properties have the fundamental limitation of restricting 
their useable frequency bandwidth. The development of 
frequency-agile metamaterials has helped to alleviate 
these bandwidth restrictions by allowing real-time 
tuning of the metamaterial frequency response. So, 
Driscoll et al. demonstrated electrically controlled 
persistent frequency tuning of a metamaterial, which 
allows the lasting modification of its response by using 
a transient stimulus.  

• Dynamic Load: Shin et al. have presented in 2010 a 
programmable gain amplifier that utilises a memristor 
as a variable resistor [32]. This implementation has the 
advantages of the increased step resolution of the 
effective resistance and the fact that this system is 
susceptible to minimal parasitics. Also, Pershin and Di 
Ventra have reported a similar approach in which they 
used memristors to develop programmable threshold 
comparators, Schmitt triggers and frequency relaxation 
oscillators [23]. 

• Image Processing: Memristive systems could be used 
for the edge detection which is an important 
computational step in early vision systems that finds 
application in various domains from computer vision to 
bio-imaging. This process is performed using either 
resource intensive software algorithms or by employing 
resistive grids, implemented with conventional CMOS 
elements. Prodromakis et al. (2010) have proposed the 
substitution of the CMOS elements with memristive 
elements serve as dynamic sensors which change in the 
total memristance value is a direct indication of the 
pixel intensity gradient between neighbouring pixels 
[33]. Since an edge is defined by a large intensity 
difference, the devices are monitored continuously and 
appropriate memristance thresholds are set to enable the 
faster or even slower detection of the edges, depending 
on the average pixel intensity contrast of the figure. 

• Cellular Neural Networks: As it is known, the Cellular 
Neural Networks (CNN) constitute a class of 
information processing systems, which are made of 
massive aggregates of regularly spaced circuit clones, 
called cells that communicate with each other only 
through their nearest neighbors. In a memristive 
implementation of a CNN processor, the intercellular 
connections are implemented by memristive crossbars 
[18]. The motivation for using memristive crossbars is 
that the area consuming intercellular communication 

network can be lifted from the CMOS layer, thus 
allowing for a larger number of cells within the same 
die area. 

• Other Applications: In the last few years new research 
results have appeared concerning the generation and 
analysis of chaotic signals using memristor elements. 
All these new techniques are based on the replacement 
of the nonlinear resistance in the circuit, like the well-
known Chua circuit [34], which is the most basic chaos 
generating circuit, by the memristor and novel features 
in chaotic behavior are observed. These attempts had as 
a motivation the use of such circuits for the purpose of 
modeling of dynamics which are shown in the nature. 
From this perspective, Itoh and Chua derived several 
oscillators from Chua's oscillators by replacing Chua's 
diodes with memristors characterized by a monotone-
increasing piecewise-linear function [35]. In the same 
way Muthuswamy and Kokate proposed other 
memristor based chaotic circuits [18]. Also, in 2010, 
Muthuswamy and Chua proposed an autonomous 
circuit that uses only three circuit elements in series: a 
linear passive inductor, a linear passive capacitor and a 
memristor [36]. Furthermore, in Refs. [19, 37-40] cubic 
memristors have replaced the nonlinear elements in 
well known circuits of Chua’s family. 

Apart from the interesting fundamental study of the 
dynamic behavior of nonlinear systems, the field of 
applications of such circuits also includes secure 
communication schemes with chaos based on memristors 
[18], the image stabilization [41] and image encryption 
technique by using memristors [42]. 

 
 

3. Neuromorphic Circuits 
However the most exciting application of memristive 
systems and possibly, the most important is in neuromorphic 
circuits. Neuromorphic are circuits which operation is meant 
to mimic that of the (human or animal) brain. In these 
circuits, memristive systems (and possibly also 
memcapacitive systems) can be used as synapses whose role 
is to provide connections between neurons and store 
information. The small size of solid-state memristive 
systems is highly beneficial for this application since the 
density of memristive systems in a chip can be of the same 
order of magnitude as the density of synapses in human 
brains (1010 synapses per square centimeter). Therefore, 
using memristive systems, the fabrication of an artificial 
neural network of a size comparable to that of a biological 
brain becomes possible.  

As it is known, a neuron, which is also known as 
‘neurone’ or ‘nerve cell’, is an electrically excitable cell that 
processes and transmits information through electrical and 
chemical signals. A signal occurs via a synapse, a 
specialized connection with other cells. So, neurons connect 
to each other to form neural networks. Neurons are the core 
components of the nervous system, which includes the brain, 
spinal cord, and peripheral ganglia. A number of specialized 
types of neurons exist, such as [43]:  
• Sensory neurons which respond to touch, sound, light 

and numerous other stimuli affecting cells of the 
sensory organs that then send signals to the spinal cord 
and brain.  

• Motor neurons which receive signals from the brain and 
spinal cord, cause muscle contractions, and affect 
glands.  
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• Interneurons which connect neurons to other neurons 
within the same region of the brain or spinal cord.  

All neurons are electrically excitable, maintaining 
voltage gradients across their membranes by means of 
metabolically driven ion pumps, which combine with ion 
channels embedded in the membrane to generate 
intracellular-versus-extracellular concentration differences 
of ions such as sodium, potassium, chloride, and calcium. 
Changes in the cross-membrane voltage can alter the 
function of voltage-dependent ion channels. If the voltage 
changes by a large enough amount, an all-or-none 
electrochemical pulse called an action potential is generated, 
which travels rapidly along the cell's axon, and activates 
synaptic connections with other cells when it arrives. 

Real neurons show a variety of dynamical behaviors, 
according to the values of biophysical parameters [44]. 
Among the most important ones, one may find:  

 
• Quiescence: The input to the neuron is below a certain 

threshold and the output reaches a stationary regime. 
• Spiking: The output is made up of a regular series of 

equally spaced spikes. 
• Irregular Spiking: The output is made up of an 

aperiodic series of spikes. 
• Bursting: The output is made up of groups of two or 

more spikes (called bursts) separated by periods of 
inactivity. 

• Irregular Bursting: The output is made up of an 
aperiodic series of bursts. 

 
The other important part in the nervous system is the 

synapse. The word ‘synapse’ was introduced in 1897 by 
English physiologist Michael Foster. Synapses are essential 
to neuronal function because they are the means by which 
the  signals  are  passed  from  one  neuron  to  another.  At a  
synapse, the plasma membrane of the signal-passing neuron 
(the presynaptic neuron) comes into close apposition with 
the membrane of the target (postsynaptic) cell. Both the 
presynaptic and postsynaptic sites contain extensive arrays 
of molecular machinery that link the two membranes 
together and carry out the signaling process.  

There are two fundamentally different types of synapses 
[45]: 

 
• Chemical synapses: In this type of synapses, the 

electrical activity in the presynaptic neuron is converted 
(via the activation of voltage-gated calcium channels) 
into the release of a chemical called a neurotransmitter 
that binds to receptors located in the postsynaptic cell, 
usually embedded in the plasma membrane. The 
neurotransmitter may initiate an electrical response or a 
secondary messenger pathway that may either excite or 
inhibit the postsynaptic neuron. Because of the 
complexity of receptor signal transduction, chemical 
synapses can have complex effects on the postsynaptic 
cell. 

• Electrical synapses: In this type of synapses, the 
presynaptic and postsynaptic cell membranes are 
connected by special channels called gap junctions that 
are capable of passing electric current, causing voltage 
changes in the presynaptic cell to induce voltage 
changes in the postsynaptic cell. The main advantage of 
an electrical synapse is the rapid transfer of signals 
from one neuron to the next. 

 

4. Neuron Models 
 
Neurons are a core component of the nervous system. 
Organized internally similar to other cells, they are 
specialized for intercellular communication by way of their 
membrane potential. Biological experiments and numerical 
analysis of models for the oscillations of isolated neurons, 
have led the researchers to construct low dimensional analog  
electronic neurons whose properties are designed to emulate 
the membrane voltage characteristics of the individual 
neurons. So, in the case of modeling a biological neuron, 
physical analogues are used in place of abstractions such as 
‘weight’ and ‘transfer function’. The input to a neuron is 
often described by an ion current through the cell membrane 
that occurs when neurotransmitters cause an activation of 
ion channels in the cell. We describe this by a physical time-
dependent current I(t). The cell itself is bound by an 
insulating cell membrane with a concentration of charged 
ions on either side that determines a capacitance Cm. Finally, 
a neuron responds to such a signal with a change in voltage, 
or an electrical potential energy difference between the cell 
and its surroundings, which is observed to sometimes result 
in a voltage spike called an action potential. This quantity, 
then, is the quantity of interest and is given by Vm. Until 
now, many models of biological neurons have been reported 
in the literature. Next, the most important models, which 
will be used in the next Section, are presented in detail. 
 
 
4.1. Hodgkin-Huxley model 
 
 It is the most successful and widely-used model of neuron, 
which has been based on the Markov kinetic model 
developed from Hodgkin and Huxley's 1952 work based on 
data from the squid giant axon [46]. This model tries to 
replicate the electrophysiological process of biological 
neurons.  

In more details, the semi-permeable cell membrane 
separates the interior of the cell from the extracellular liquid 
and acts as a capacitor (Fig.3). If an input current I(t) is 
injected into the cell, it may add further charge on the 
capacitor, or leak through the channels in the cell membrane. 
Because of active ion transport through the cell membrane, 
the ion concentration inside the cell is different from that in 
the extra-cellular liquid. The ‘Nernst’ potential generated by 
the difference in ion concentration is represented by a 
battery. The conservation of electric charge on a piece of 
membrane implies that the applied current I(t) may be split 
in a capacitive current IC which charges the capacitor C and 
further components Ik which pass through the ion channels. 
Thus 
                             
( ) ( ) ( )C k

k
Ι t I t I t= +∑                     (13) 

 
where the sum runs over all ion channels. In the standard 
Hodgkin-Huxley model there are only three types of 
channel: a sodium channel with index Na, a potassium 
channel with index K and an unspecific leakage channel with 
resistance R (Fig.3). 

From the definition of capacity C = Q/u where Q is a 
charge and u the voltage across the capacitor, we find the 
charging current IC = C du/dt. Hence from (13): 
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d ( ) - ( )
d k

k

uC Ι t I t
t
= ∑     (14) 

 
In biological terms, u is the voltage across the membrane 

and ( )k
k
I t∑  is the sum of the ionic currents which pass 

through the cell membrane. 
 

 
Fig. 3. Schematic diagram for the Hodgkin-Huxley model. 
 

As mentioned above, the Hodgkin-Huxley model 
describes three types of channel. All channels may be 
characterized  by  their  resistance  or,  equivalently,  by their  
conductance. The leakage channel is described by a voltage-
independent conductance gL = 1/R; the conductance of the 
other ion channels is voltage and time dependent. If all 
channels are open, they transmit currents with a maximum 
conductance gNa or gK, respectively. Normally, however, 
some of the channels are blocked. The probability that a 
channel is open is described by additional variables m, n and 
h. The combined action of m and h controls the Na+ 
channels. The K+ gates are controlled by n. Specifically, 
Hodgkin and Huxley formulated the three current 
components as: 

 
3 4( ) ( ) ( )k Na Na K K L L

k
I g m h u E g n u E g u E= − + − + −∑       (15) 

 
where the parameters ENa, EK, and EL are the reversal 
potentials.  

The three variables m, n, and h are called gating 
variables. They evolve according to the differential 
equations 

                                                                               
d ( )(1 ) ( )
d
d ( )(1 ) ( )
d
d ( )(1 ) ( )
d

m m

n n

h h

m α u m β u m
t
n α u n β u n
t
h α u h β u h
t

⎧ = − −⎪
⎪
⎪ = − −⎨
⎪
⎪ = − −⎪⎩

   (16) 

 
where α and β are empirical functions of u that have been 
adjusted by Hodgkin and Huxley to fit the data of the giant 
axon of the squid. 
 
4.2. FitzHugh-Nagumo model 
 
Sweeping simplifications to Hodgkin-Huxley were 
introduced by FitzHugh and Nagumo [47]. Seeking to 
describe ‘regenerative self-excitation’ by a nonlinear 
positive-feedback membrane voltage and recovery by a 
linear negative-feedback gate voltage, they developed the 
model described by 
 

 
( )

3d 1
d 3
d 1
d

x γ x x y z
t
y x α βy
t γ

⎧ ⎛ ⎞= − + +⎜ ⎟⎪⎪ ⎝ ⎠
⎨
⎪ = − − +⎪⎩

             (17) 

 
where the variable x describes the potential difference across 
the neural membrane and y can be considered as a 
combination of the different ion channel conductivities, 
present in the Hodgkin-Huxley model. The control 
parameter z of the FitzHugh system describes the intensity of 
the stimulating current. 
 
 
4.3. Hindmarsh-Rose model  
 
The Hindmarsh-Rose (HR) model is based on the global 
behavior of the neuron and its underlying operation is 
removed from the actual biological process. For this reason, 
is one of the most interesting neuron models which is used 
for studying the neuronal activity and more specifically the 
spiking-bursting behavior of the membrane potential 
observed in experiments made with a single neuron. This 
phenomenological neuron model, which has been proposed 
by Hindmarsh and Rose [48], may be seen either as a 
generalization of the Fitzhugh equations or as a 
simplification of the physiologically realistic model 
proposed by Hodgkin and Huxley. It has been proven to be a 
single-compartment model providing a good compromise 
between two seemingly mutually exclusive requirements: 
The model for a single neuron must be both computationally 
simple, and capable of mimicking almost all the behaviors 
exhibited by real biological neurons, in particular the rich 
firing patterns [49]. 

So, the three-variable HR model of action potential was 
proposed as a mathematical representation of the firing 
behavior of neurons, and it was originally introduced to give 
a bursting type with long InterSpike Intervals (ISIs) of real 
neurons. It can be used to simulate spiking/bursting and 
chaos phenomena in real neurons. The equations of the HR 
model are given as follows: 
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( )

3 2

2

d
d
d
d
d ( )
d

X Y a X b X Z I
τ
Y c d X Y
τ
Z r s X χ Z
τ

⎧ = − ⋅ + ⋅ − +⎪
⎪
⎪ = − ⋅ −⎨
⎪
⎪ = ⋅ ⋅ + −⎪⎩

   (18) 

 
where, X represents the membrane action potential, Y is a 
recovery variable and Z is a slow adaptation current;              
I mimics the membrane input current for the biological 
neurons; a, b allows one to switch between bursting and 
spiking behaviors and to control the spiking frequency;                
r controls the speed of variation of the slow variable Z in 
(18), (i.e., the efficiency of the slow channels in exchanging 
ions) and in the presence of spiking behaviors, it governs the 
spiking frequency, whereas in the case of bursting, it affects 
the number of spikes per burst; s governs adaptation:                   
a unitary value of s determines spiking behavior without 
accommodation and sub-threshold adaptation, whereas 
values around s = 4 give strong accommodation and                 
sub-threshold overshoot, or even oscillations; χ sets the 
resting potential of the system.  

In the following numerical simulations, let a = 1.00,                    
b = 2.82, c = 1.00, d = 5.00, r = 0.02, s = 4.00, χ = –1.60 
and I = 3.50. As it can be shown in Figure 4(a), the HR 
model shows the typical bursting neuronal behavior, in 
which spikes are separated by periods of inactivity, while in 
Figure 4(b) the chaotic behavior of the model for the 
selected parameter’s values is confirmed. Each semi-circle 
originates from an individual spike from the overall output 
burst.  

Next, the FitzHugh-Nagumo and Hindmarsh-Rose 
neuron models will be the subject of study by using coupling 
schemes in which a memristor has been used as an artificial 
synapse. 
 
 
5. The Use of Memristor as a Synapse 
 
Communication and coordination between neurons is made 
possible by synapses. When a synapse connects two neurons 
together the ‘postsynaptic’ neuron receives the ionic current 
while the ‘presynaptic’ neuron is the source. Also, in living 
nervous systems one finds three general types of synaptic 
connections among neurons [50]: ohmic electrical 
connections (also called gap junctions), which is usually 
found in the nervous system of all animals, and two types of 
chemical connections, excitatory and inhibitory, which are 
the more common. So, a synapse is essentially a 
programmable wire used to connect together groups of 
neurons.  

Neuromorphic computers which aim at mimicking 
biological computation, and have numbers of neurons and 
synapses approaching biological scale, can be modeled with 
supercomputers or neural hardware accelerators. However, 
in order for such neural computing devices to achieve a 
biologically plausible synaptic density, it is imperative to 
minimize synaptic size. 

This feat is challenging because the synaptic weight of 
each synapse must be stored. Since digital synapse 
implementations require that several bits of data per synapse 
are memorized, analog synapses may be a superior choice. 
Analog synapses based on floating-gate transistors store the 

weight as charge that is trapped between insulating layers. 
The charge can be manipulated by injecting and tunnelling 
electrons to and from the floating node. Such transistors rely 
on proven technology and allow a relatively high density, 
rendering them worthwhile synaptic candidates. However, 
the memristors, this new class of devices, is the next leap 
forward to high density synapse fabrication. Memristive 
devices will allow the fabrication of single device synapses 
as crossbar arrays on top of Complimentary Metal-Oxide-
Semiconductor (CMOS) circuits. As the synapses would be 
in the memristive layer on top of the CMOS, the entire 
silicon area would be left for neurons. 
 

 
Fig. 4. Simulation of Hindmarsh–Rose neuron showing (a) a typical 
chaotic bursting neuronal behavior for the membrane potential (X) and 
(b) a chaotic phase portrait of Y vs. X. 
 

Some of the characteristics of a memristor synapse in 
comparison with various other CMOS designs, like low 
power consumption (because of nonvolatile capacitor-like 
weight memory and less transistor counts), linear behavior 
of the network (because of linear multiplier), more speed in 
the operation phase (because of using very fast memristor 
multiplier instead of slow Gilbert multipliers) and smaller 
size (because of the replacement of many transistors and a 
big capacitor with a nanometer memristor), make the 
memristors suitable for use in artificial neural networks.  

Until now, various memristors and techniques are used 
for studying their behavior as an artificial synapse. Afifi et 
al. (2009) have proposed and analyzed Spike-Timing-
Dependent-Plasticity (STDP) rule for memristor crossbar 
based spiking neuromorphic networks [51]. Sharifi et al. 
(2010) by using the characteristics, structures and relations 
for the invented HP's memristor, designed two general 
SPICE models for the charge-controlled and flux-controlled 
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memristors, which are used as synapses in an artificial 
neural network [52]. A pulse-based programmable 
memristor circuit for implementing synaptic weights for 
artificial neural networks is proposed by Kim et al. [53]. 
Also, in 2012, Sah et al. have implemented a memristor 
bridge neural circuit, by using memristor emulator circuits, 
which is able to perform signed synaptic weighting [54]. 

In 2010, piecewise linear φ-q characteristics of a flux 
controlled memristor [17], or characteristics with other 
forms of smooth continuous nonlinearities [55], have been 
proposed for using in nonlinear circuits design. Also, other 
researchers have proposed memristors having cubic 
nonlinearities [18, 19, 35, 56] of the form q(φ) = αφ + βφ3, 
with α < 0 and β > 0. Snider (2008) and Linares-Barranco 
(2009) have proposed memristors with sinh-like 
characteristic curves, which have been used to explain spike-
time-dependent-plasticity in neural synapses [16, 57].  

In this direction as an approximation of the 
aforementioned sinh-like characteristic curves, for studying 
the interconnections among coupled analog electronic 
neurons a flux-controlled memristor is used, to emulate the 
excitatory and inhibitory synaptic connection as well as the 
ohmic electrical connections. The proposed memristor is 
described by the function w(φ), where q(φ) is a smooth 
continuous cubic function of the form: 
                                                                                                         

3
1 3( ) k kq φ φϕ = +      (21) 

 
with k1, k3 > 0. As a result the memductance w(φ) is 
provided by the following expression: 
                                                                                            

2
1 3

d ( )( ) = k 3k
d
qw φ φϕ
ϕ

= +     (22) 

 
So, it will be shown that the proposed memristor acts as an 
artificial synapse between coupled neuron-cells. 
 
 
6. Coupled Neuromorphic Circuits 
 
In this Section two different circuits, which realized the 
Hindmarsh-Rose and the FitzHugh-Nagumo neuron models, 
are coupled via the previously mentioned memristor that is 
used as an artificial synapse. The proposed systems are 
solved numerically by applying the fourth-order Runge-
Kutta algorithm and various tools of nonlinear dynamics 
such as the bifurcation diagram and the phase portraits have 
been used. As it will be presented in detail, the coupled 
neuronal systems show interesting dynamical behavior, such 
as chaos, periodic behavior and synchronization.  

Systems of chaotic oscillators, which are coupled, are 
frequently found not only in the simulation environment or 
the laboratory but also in the natural world. For this reason, 
many techniques for coupling two or more nonlinear chaotic 
systems have been proposed in the literature. All these 
techniques can be mainly divided into two classes: 
‘unidirectional coupling’ and ‘bidirectional or mutual 
coupling’. In the unidirectional coupling, one system drives 
another one, while on the contrary in mutual coupling both 
the circuits are connected and each circuit’s behavior 
influences the dynamics of the other. The case of mutual 
coupling between two coupled chaotic oscillators is 
described by the following set of differential equations: 

                                                                                             

   

!x1 = F(x1)−C ⋅ x1 − x2( )
!x2 = G(x2 )+C ⋅ x1 − x2( )

⎧
⎨
⎪

⎩⎪
    (23) 

 
while in the case of unidirectional coupling the system of 
differential equation is written as: 
                                                                                             

   

!x1 = F(x1)

!x2 = G(x2 )+C ⋅ x1 − x2( )
⎧
⎨
⎪

⎩⎪
    (24) 

 
where F(x), G(x) are vector fields in the phase space of 
dimension n, i.e. R nx∈ , and C is a symmetric matrix of 
constants which describes the nature and strength of the 
coupling between the oscillators. 

Electrical synapses are usually bidirectional but in some 
cases can operate heavier in one direction than the other, or 
only in one direction [50]. They are created when the 
presynaptic and postsynaptic membranes meet and gap 
junction channels of each align. Ions flow through gap 
junctions proportionally to the potential differential across 
them. So, electrical synapses are quick message carriers. 

On the other hand, chemical synapses are more 
commonly found in biology. Unlike the electrical synapse, 
there is no direct connection between the presynaptic and 
postsynaptic neurons. No ionic current flows between 
neurons, but neurotransmitters secreted by the presynaptic 
neuron open receptors for special molecules [58]. These 
molecules which are allowed to flow through the receptors 
have a postsynaptic potential response which either increases 
(excitatory coupling) or decreases (inhibitory coupling) the 
membrane potential. 

The basic tool of the study of the dynamic behavior of 
the coupled neuron models is the well-known ‘bifurcation 
diagram’, which is a very common perspective in nonlinear 
dynamics. Also, in order to study how a system depends on 
the initial values of the state variables, two different 
bifurcation diagrams are produced numerically. In the first 
approach, the bifurcation diagram is produced by increasing 
the coupling factor ξ, from ξ = 0 (uncoupled system) to ξmax 
with step Δξ, while initial conditions in each iteration have 
different values. This occurs because the last values of the 
state variables in the previous iteration become the initial 
values for the next iteration. In the second approach, the 
bifurcation diagram is produced by using the same initial 
conditions in each iteration. This means that the system 
begins, in each iteration, for the same basin of attraction. 

Finally, the most interesting phenomenon and one of the 
objectives of this work is the study of the synchronization of 
the coupled neuron-cells. Synchronization is a phenomenon 
characteristic of many processes in natural systems and 
especially in non-linear science [59]. It has remained an 
objective of intensive research and today it is considered as 
one of the basic nonlinear phenomena studied in 
mathematics, physics, engineering or life science [60]. 
Synchronization of nonlinear oscillators is also widely 
studied in biological systems [61, 62] for understanding how 
large and small neural assemblies  efficiently and sensitively  
achieve desired functional goals [63]. 

In general, synchronization of chaos is a process, where 
two or more chaotic systems adjust a given property of their 
motion to a common behavior, such as equal trajectories or 
phase locking, due to coupling or forcing.  
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So, in the case of ‘full or complete chaotic 
synchronization’, which is the most studied type of 
synchronization [64-67], two or more chaotic systems follow 
the same trajectory, i.e., 
                                                                                                                      

1 2( ) ( )  as  x t x t t= →∞    (25) 
 
 
6.1. Coupled Hindmarsh-Rose Circuits 
 
The schematic of the circuit which makes the analog 
simulation of a Hindmarsh-Rose neuron model of equation 
(18) is shown in Fig.5(a). It consists of three integrators {1}-
{3}, two inverters {4}, {5} and two multipliers {6}, {7}. 
The integrators and inverters can be implemented by using 
the operational amplifiers TL082 while the multipliers by 
using the AD633, which has high impedance differential 
inputs and a 10V scaled output. The voltages of the positive 
and negative power supplies were set  ±15V. 

The circuit of Fig.5(a) is described by the following set 
of differential equations. 

 

( )

2 3
1

1 2

2
2

3

2
4 5

d 1
d 10 100

d 1
d 10

d 1
d

x R Ry z+ x x V
t RC R R

y RV x y
t RC R

z R Rx V z
t RC R R

⎧ ⎡ ⎤
= − − +⎪ ⎢ ⎥

⎣ ⎦⎪
⎪ ⎡ ⎤⎪ = − −⎨ ⎢ ⎥

⎣ ⎦⎪
⎪ ⎡ ⎤⎪ = + −⎢ ⎥⎪ ⎣ ⎦⎩

  (26) 

 

By introducing the new variables and parameters, 
0

xX
V

= ,   

 

0

Y = y
V

, 
0
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V

=  and 
2100
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R

= , 
110

Rb
R

= , 1

0
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V

= ,  

 
2

0

Vc
V

= , 
310

Rd
R

= , 
5

Rr
R

= , 5

4

Rs
R

= , 2

0

V
V

χ =  and 1 t
RC

τ = , 

the  normalized system of Hindmarsh-Rose neuron model of 
Eq.(18), for a = 1.0 and c = 1.0, is obtained. In Table 2 the 
values of circuit’s elements in order to have the specific 
values of system’s parameters, b = 2.82, d = 5.0, r = 0.02,       
s = 4.0, χ = 1.6 and I = 3.5, are listed. 
 

R  =    10.00 kΩ 
R1 = 354.60 Ω 
R2 = 100.00 Ω 
R3 = 200.00 Ω 
R4 =     0.25 ΜΩ 
R5 =     0.50 ΜΩ 
C  =   10.00 nF 
V0 =     1.00 V 
V1 =     3.50 V 
V2 =     1.00 V 

 
Tab. 2. The values of circuit’s elements. 
 

 
Fig. 5. (a) Schematic diagram of the Hindmarsh-Rose circuit; (b) Circuit 
realization for producing the difference signal DIF = (x1 – x2) and –DIF, 
which are used in the coupling scheme via the memristor.   
 
 

Next, a system of two HR neuron model’s circuits 
coupled via the proposed memristor, which acts as an 
artificial synapse, is studied. For this reason, the two 
different approaches of coupling (mutual and unidirectional) 
are used in order to study system’s behavior. 

In the first case, the network of two HR neuron model’s 
circuits, electrically coupled via the proposed memristor is 
denoted as N1 ↔ N2, in which N1 and N2 represent the two 
mutually coupled neurons, and the arrow denotes the 
electrical synaptic transfer direction. Also, as a stimulation a 
AC signal (V1 = VAcos(2πft) is used in the first neuron. 

For implementing the mutual type of coupling, between 
the HR circuits, a differential amplifier with op-amp {8}, 
which realize the signal DIF = (x1 – x2) is used (Fig.5(b)). 
Also, the inverter {9} is used for inverting the signal DIF in 
the case of the second coupled circuit. So, the first circuit 
models a HR neuron which is stimulated, while the second is 
a neuron which is coupled with the first one via the 
memristor that plays the role of an artificial synapse. 

By applying the first Kirchhoff law, we obtain: 
 

2 31
M

1 2

1 1 1 1 d
10 100 d

V xy z+ x x i C
R R R R R t
+ − − + = −             (27) 
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where, 
                                                                                                                                  
( )M Mi w ϕ υ=      (28) 

 
and w(φ) the memductance is provided by the equation (22). 
So, by using the previously introduced normalized variables 
and the normalized variable of the memristor,                           
U = φ/(V0RC), the coupled system can be described by the 
following normalized system of differential equations (29). 
 

( )

[ ]

[ ]

3 21
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2
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1
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⎪
⎪
⎪
⎪
⎪⎪
⎨
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪ −⎪⎩

      (29) 

 
where, ξ1 = Rk1 and ξ3 = R3V0

2C2k3. 
The first three equations of system (29) represent the 

first HR stimulated neuron, the next three represent the 
second HR neuron and the last one is the proposed 
memristor’s equation. For studying the effect of the 
proposed memristor to coupled system’s behavior the 
normalized amplitude is I0 = VA/V0 = 3.5 and the normalized 
frequency is chosen to be fN = RCf = 0.16, while the rest of 
the parameters remain the same. 

In Fig.6(a) the bifurcation diagram (first approach) of 
system’s (38) behavior, by plotting the signal difference              
(Y2 – Y1), with respect to the bifurcation parameter, is shown. 
At the beginning, the ξ1 is chosen as a bifurcation parameter, 
while the other parameter of the memristor, the ξ3 remains 
equal to zero. In this case, the two neuron-cells are linearly 
coupled, so the memristor simulates as a gap junction 
between them.  

For extremely low values of the coupling factor ξ1 the 
first neuron-cell shows the typical chaotic bursting neuronal 
behavior of Fig.4, under the influence of the stimulation, 
while the second neuron-cell is inactive. For greater values 
of ξ1 (i.e., ξ1 = 0.02) the coupled system is also in a chaotic 
state, as it is clearly shown from the phase portrait of Y2 
versus Y1 (Fig.6(b)). However, for these values the second 
neuron-cell begins to oscillate chaotically as it is shown for 
the phase portrait of Y2 versus X2 in Fig.6(c). The range of 
this chaotic region is gradually narrowed as the coupling 
factor increases and ultimately results in a periodic state for 
ξ1 > 0.0226. Fig.6(d) displays the system’s period-1 attractor 
in the Y2 versus Y1 phase portrait. 

In the second type of coupling (unidirectional coupling), 
the network of two HR neuron model’s circuits are coupled 
again via the proposed memristor, but in this case only the 
second cell N2 is influenced by the first one N1, which is 
stimulated by the external AC signal (N1 → N2). The 
coupled system, in the case of unidirectional coupling, can 

be described by the following normalized system of 
differential equations (30). 
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[ ]
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τ
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τ
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⎪ = − −⎪
⎪
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⎪
⎪ = − −⎪
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⎪ = −⎪
⎪
⎪ = −⎪⎩

       (30) 

 
So, in Figs.6(e) & 6(f) the bifurcation diagrams in the 

two aforementioned approaches, with the same and different 
initial conditions in each step, are shown respectively. In 
general, these two diagrams has the same structure as the 
system begins in each case from the chaotic state (ξ1 = 0.02) 
and finally result in a periodic state (period-1), for ξ1 > 7.31. 

However, there is a great difference between them. In the 
first bifurcation diagram of Fig.6(e) the system passes 
through an intermediate chaotic region, while in the second 
one (Fig.6(f)) the system has a periodic behavior in the 
respective region, in which the period of the system is 
gradually decreased and finally results to a period-1. This 
difference is due to the well-known phenomenon of 
‘multistability’ [68] in which the state of the coupled system, 
for a specific value of the coupling factor, may be different 
for the same set of system’s parameters but for different 
initial conditions. Also, the coupling factor, for which the 
system results in a period-1 state, is much greater than in the 
bidirectional coupling of Fig.6(a). This occurrs because in 
the bidirectional coupling the coupled neurons interact and 
the system goes to its final state for small values of ξ1. In 
contrary, in the unidirectional coupling only the first neuron-
cell affects the dynamic behavior of the second neuron-cell, 
so greater values of the coupling factor is needed for 
achieving the final state. 

Next, for studying the influence of the second term ξ3 of 
the memristor, the parameter ξ1 is chosen to be equal to 0.02, 
so as the system is in chaotic mode according to the previous 
analysis, while ξ3 varies. In the bidirectional coupling of 
neuron-cells, the memristor leads the system from the 
chaotic desynchronization for ξ3 = 0 to an approximate 
synchronization mode. Also, a sudden transition from the 
irregular chaotic bursting behavior of each neuron, for           
ξ3 = 0, to the periodic spiking behavior, for greater values of 
ξ3 = 0, is observed. This is due to the way of coupling 
(mutually), which allows the interaction between the 
coupled cells by leading the system to a totally different 
dynamic behavior. 

The synchronization of the mutually coupled neuron-
cells is quantified by calculating the difference ΔY = Y1 – Y2 
and studying the normalized standard deviation σΝ = ΔY/Y1. 
For this reason a diagram of σN versus the parameter ξ3 has 
been made (Fig.6(g)). As it is shown, the deviation in the 
case of bidirectional coupling (black line) has decreased 
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with the increasing of ξ3 and finally for ξ3 > 0.0925 the 
normalized standard deviation is smaller than 2%. This 
means that the synchronization of the coupled neuron-cells 
is almost complete, as it shown in Fig.6(h). So, the 
memristor contributes to the synchronization of the coupled 
neuron-cells. 

In the case of the unidirectionally coupled neuron-cells 
the use of the proposed memristor has the same effect as in 
the previous case. The coupled system is driven again from 
the chaotic desynchronization to the synchronization as the 
parameter is increased. But in this approach each one of the 
coupled neuron-cells is in a chaotic mode. So, a transition 
from the independent chaotic behavior to the synchronized 
chaotic bursting is observed. Also, the normalized standard 
deviation σΝ (gray line in Fig.6(g)) is decreased with the 
increasing of the parameter ξ3 but with smaller rate due to 
the coupling way. So, the system is driven again to a 
synchronization mode with a small deviation. 
 
 
6.2. Coupled FitzHugh-Nagumo Circuits 
 
As introduced by Fitzhugh (1961), the Bonhoeffer – van der 
Pol (BvP) model, for a spiking neuron, is a two dimensional 
reduction of the Hodgkin-Huxley equations [46].                  
A qualitative description of the single neuron activity is 
given, according to FitzHugh, by the system of coupled 
nonlinear differential equations (17). In 1962, Nagumo et al. 
[69] proposed an electronic simulator of the BvP model of 
FitzHugh using a tunnel diode as the nonlinear element 
(Fig.7(a)). 

In this chapter a different approach for the analog 
simulation of the BvP model of differential equations (17), 
by using a nonlinear resistor with a smooth cubic i-v 
characteristic, is adopted (Fig.7(b)). The smooth cubic i-v 
characteristic of the nonlinear resistor of this circuit is given 
by the following equation: 
 

3

2
0

1 1( )
3
υi g υ υ

ρ VΝ
⎛ ⎞

= = − −⎜ ⎟
⎝ ⎠

               (31) 

 
where ρ and V0 are normalization parameters.  

From Kirchhoff’s laws, the following equations are 
obtained: 
 

( )

3

2
0

d 1 1 1
d 3

d 1 R
d

L S

L
L

υ υυ i i
t C ρ V

i υ i E
t L

⎧ ⎧ ⎫⎛ ⎞⎪ ⎪= − + +⎪ ⎨ ⎬⎜ ⎟⎪ ⎪ ⎪⎝ ⎠⎩ ⎭⎨
⎪ = − − +⎪⎩

   (32) 

 

By  introducing  new,  normalized  variables,  tτ
LC

= ,  

0

υx
V

= , 
0

Lρiy
V

=  and 
0

Sρiz
V

= , system (32) is reduced to 

differential equations of system (17), where, 
0

Eα
V

= , 

 Rβ
ρ

= and 1 Lγ
ρ C

= . 

However, Rajasekar and Lakshmanan proposed a 
slightly different form of BvP oscillator [70, 71] given by 
the following state equations: 

( )

3d 1
d 3
d
d

x x x y z
τ
y c x a by
τ

⎧ = − − +⎪⎪
⎨
⎪ = + −
⎪⎩

    (33) 

 
The study of system (33) revealed the existence of 

chaotic behavior, following the period doubling route to 
chaos, and devil’s staircases. The nonlinear differential 
equations (33) can be also simulated by a nonlinear electric 
circuit, using a nonlinear resistor with the same smooth 
cubic  i-v  characteristic  as  before  (Fig.7(c)).   By  applying  
again the two Kirchhoff’s laws we obtain the following 
equations. 
                                                                                                                                  

C L N Si i i i+ + =      (34) 
 
and 
 

d+ +
d
L

L
iυ E Ri L
t

= −      (35) 

 

By introducing the new, normalized variables, tτ
ρC

= , 

0

υx
V

= , 
0

Lρiy
V

=  and 
0

Sρiz
V

= , equations (34) and (35) are 

reduced to equations (33), where, 
0

Eα
V

= , Rβ  
ρ

=  and 

2ρ Cc
L

= . 

In the aforementioned circuits of Figs.7(b) & 7(c), the 
driving source is a current source iS. However, in most cases, 
circuits are driven by voltage sources. In this section, the 
circuit of Fig.7(c) driven by a voltage source, as it is shown 
in Fig.7(d), is proposed. The smooth cubic i-v characteristic 
of the nonlinear resistor of the circuit of Fig.7(d) remains the 
same as in equation (31). 

By applying the two Kirchhoff laws, the system of 
differential equations (36) is obtained: 
 

( )

3d 1(1 )
d 3
d
d

x x ε x y z
τ
y c x a by
τ

⎧ = − − − +⎪⎪
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where, tτ
ρC

= , 
0

υx
V

= , 
0
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V

= , S

0S

ρυz
R V

= , 
0
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V

= , 
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ρ

= , 
2ρ Cc
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=  and 
S

ρε
R

= .  

The driving voltage source has the following form: 
 

( )0 cos 2 Nz U f τ= π     (37) 
 
where the normalized frequency is fN = ρCf.  
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Fig. 6. (a) Bifurcation diagram of (Y2 – Y1) vs. ξ1, in the case of mutually coupled neuron-cells, for ξ3 = 0,  (b) Phase portraits of Y2 vs. Y1, for ξ3 = 0 
and ξ1 = 0.02, (c) Phase portraits of Y2 vs. X2, for  ξ3 = 0 and ξ1 = 0.02 and (d) Phase portraits of Y2 vs. Y1, for ξ3 = 0 and ξ1 = 0.05;                                     
(e) & (f) Bifurcation diagrams of (Y2 – Y1) vs. ξ1, with the two different approaches,  in the case of unidirectionally coupled neuron-cells, for ξ3 = 0;  
(g) Diagram of the normalized standard deviation σΝ  vs. the parameter ξ3, in the cases of bidirectionally (black line) and unidirectionally (gray line) 
coupling, for ξ1 = 0.02; (h) Phase portrait of Y2 vs. Y1, for (ξ1, ξ3) = (0.02, 0.3). In all cases the following parameters have been used. b = 2.82, d = 5.0, 
r = 0.02, s = 4.0, χ = 1.6 and fN = 0.16, and initial conditions (X1, Y1, Z1, X2, Y2, Z2, U) = (0.200, 0.001, 0.002, 0.100, 0.003, 0.004, 0.500). 
 
 

For studying the way in which a stimulation signal 
affects the dynamic behavior of coupled, via a synapse, 
neuron’s models of this type, a system of two 
unidirectionally coupled, via the aforementioned memristor, 
circuits of Figs.7(c) & 7(d), which have identical circuit 
elements, L, R, C, E and NR, is proposed. 

The first circuit models a neuron which is stimulated 
while the second is a neuron which receives, via the synapse, 
the transmitted signal. In this way of coupling only the 

second circuit is influenced by the first one. By applying the 
first Kirchhoff law to the second circuit, we obtain: 
                                                                                                                     

2 2 2C L N Mi i i i+ + =      (38) 
 
where, 
                                                                                                                                   

( )M Mi w ϕ υ=      (39) 
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and w(φ) the memductance provided by the equation (22). 
So, by using the previously introduced normalized variables  

and  the  normalized  variable  of  the memristor, 
0

u
V ρC
ϕ= ,  

the system of Fig.7(e) can be described by the following 
normalized system of differential equations (40).  
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                     (40) 

 
where, ξ1 = ρk1 and ξ3 = ρ3V0

2C2k3. 
Kyprianidis et al. [72, 73] showed that the first sub-

circuit of the proposed coupled system (Fig.7(e)) can operate 
in a chaotic mode for specific values of system’s parameters 
and initial conditions. Figs.8(a) & 8(b) display the phase 
portrait of y1 versus x1 and the time-series of signal x1, which 
confirm the expected chaotic behavior of the first uncoupled 
cell, for a = 0.70, b = 0.80, c = 0.10,  fN = 0.16, ε = 0.16 and 
U0 = 0.9.  

At the beginning, for studying the effect, of the coupling 
on system’s behavior, the parameter ξ3 remains equal to 

zero, while ξ1 takes various values, in the interval [0, 10]. In 
this case, the two cells are linearly coupled, so the memristor 
simulates a gap junction between the two neuron-cells. The 
bifurcation diagram of the signal difference (y1 – y2), with 
respect to the bifurcation parameter ξ1 (Figure 8(c)) is used, 
for studying analytically the dynamic behavior of the 
system. As it is shown, for low values of ξ1 the system is in a 
chaotic state (Fig.8(d)), the range of which is gradually 
narrowed and ultimately results in a complete chaotic 
synchronization mode (Fig.8(e)). 

So, the gap junction controls the flow of energy between 
the two neuron-cells and as the coupling coefficient ξ1 
increases, it suppresses the chaotic state of the system. 

Next, in order to study the effect of the second term of 
the memductance and consequently of the specific type of 
memristor to system’s behavior, the parameter ξ3 is changed. 
From the bifurcation diagram of (y2 – y1) versus the 
memristor’s parameter ξ3 (Fig.8(f)), one could see that the 
system is driven from the desynchronization to complete 
synchronization almost immediately for extremely low 
values of ξ3. In more detail, as it is displayed in Figs.8(g) & 
8(h) the two coupled neuronal cells remain in a 
desynchronization state for low values of ξ3 (ξ3 = 0.0001), 
while for greater values of ξ3  (ξ3 = 0.1) the coupled neuronal 
cells are synchronized and remain in this steady state as the 
ξ3 is further increased. So, the proposed memristor 
contributes to the chaotic synchronization of the coupled 
system of neuron-cells. Therefore, in this case the memristor 
controls again the flow of energy between the two neuron-
cells and provides greater suppress to the chaotic state of the 
system, leading it to the complete synchronization state.

 
 

 
Fig. 7. (a) The electronic simulator of the BvP model proposed by Nagumo et al.; (b) The electronic simulator of the BvP model of FitzHugh model, 
proposed in the present work; (c) The nonlinear electric circuit simulating system (33); (d) The equivalent circuit of BvP oscillator’s state equations 
by Rajasekar and Lakshmanan driven by a voltage source; (e) The coupled system via the proposed memristor. 
 
 



Ch. K. Volos, I. M. Kyprianidis, I. N. Stouboulos, and S. Vaidyanathan / 
Journal of Engineering Science and Technology Review 8 (2) (2015) 157 - 173 

	  

 
	  

171 

 
Fig. 8. (a) & (b) Phase portrait of y1 vs. x1 and the time-series of signal x1, which confirm the expected chaotic behavior of the first neuron-cell;              
(c) Bifurcation diagram of (y1 – y2) vs. ξ1, in the case of coupled neuron-cells, for ξ3 = 0; (d) & (e) Phase portraits of y2 vs. y1, for ξ3 = 0 and ξ1 = 1,      
ξ1 = 10;  (f) Bifurcation diagram of (y1 – y2) vs. ξ3, in the case of coupled neuron-cells, for ξ1 = 1; (g) & (h) Phase portraits of y2 vs. y1, for                          
(ξ1, ξ3) = (1, 0.001) and (ξ1, ξ3) = (1, 0.1). In all cases the following parameters and initial conditions have been used. a = 0.70, b = 0.80, c = 0.10,            
fN = 0.16, ε = 0.16, U0 = 0.9, (x1, y1, x2, y2, u) = (0.5, 0.1, 0.8, 0.4, 0.5). 
 

 
7. Conclusion 
 
This paper was based on the latest developments in the very 
interesting field of memristors and their potential 
applications. In this sense, a series of promising applications 
in analog and digital circuits design or in other scientific 
fields was presented. However, probably the most interesting 
application of memristor, due to its nature, is in 
neuromorphic circuits.  

As it was referred within the paper, the last five years, 
many research teams have presented various types of 
memristor and techniques which were used for studying the 

case-study of using this element as an artificial synapse. 
Among the recorded in the literature different approaches on  
this subject, a flux-controlled memristor of cubic φ-q 
function, for emulating the excitatory and inhibitory synaptic 
connection as well as the ohmic connections was adopted.     

Therefore, for the purposes of this work, two of the most 
well-known neuron models, the Hindmarsh- Rose and Fitz-
Hugh-Nagumo, which were coupled via the proposed 
memristor, were chosen. In this direction, electronic circuits 
which simulate the dynamic behavior of the aforementioned 
neuron models were designed.  

The    intensively    study    of   the    coupling    schemes  
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(bidirectional and unidirectional), by using tools of nonlinear 
dynamics, such as the bifurcation diagram and the phase 
portrait, revealed the rich dynamic behavior of the coupled 
systems. Interesting phenomena, depending on the 
memristor’s parameters values, were revealed. Chaotic 
behavior for extremely small values of the parameters,  

periodic states and synchronization mode of the coupled 
neuron-cells,  were  studied.   Nevertheless,  synchronization 
was the most interesting phenomenon because it was shown 
that the proposed memristor could be used as an artificial 
synapse for transmitting information between interconnected 
neuron-cells.   
 

______________________________ 
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