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Abstract

We develop three traveltime imaging techniques that utilize refraction/reflection data
recorded on the surface. They include nonlinear refraction traveltime tomography,
joint refraction traveltime migration and tomography, and joint nonlinear refraction
and reflection traveltime tomography. These techniques are applicable to a large
range of geological investigation problems, from imaging the shallow earth structure
to deep crustal soundings. We implement these techniques on a regular velocity grid,
which can well represent any complex velocity structure in the earth.

We first describe a wavefront raytracing algorithm for calculating the first-arrival
refractions and later reflections, and for downward continuing the traveltime curves
for the refraction migration purpose. The method simulates wave propagation by
expanding a wavefront in terms of traveltimes, accounting for various wave effects.
In addition, it is more accurate and efficient than several existing methods.

We develop a nonlinear refraction traveltime tomography method that accounts for
several fundamental physical issues in the refraction problem. The inversion jointly
minimizes the misfits of the average slownesses (ratios of traveltimes to the corre-
sponding ray lengths) and the apparent slownesses (derivatives of traveltimes with
respect to distance). We apply the Tikhonov regularization method to obtain a
stable solution. To measure the reliability of the solution, we perform uncertainty
analysis and calculate its posterior model covariance by way of nonlinear Monte Carlo
inversions.

To enhance resolution of the toniographic image when large velocity contrasts
occur in the Earth, we conduct joint refraction traveltime migration and tomography.
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Refraction traveltime migration that downward continues the forward and reverse
traveltimes reconstructs the location (image) of a refractor for a given velocity model,
while traveltime tomography resolves a velocity structure with a curvature constraint
constructed from the migration image. We present two algorithms to solve this joint
imaging problem. Numerical experiments and real cases prove that both methods are
useful for reconstructing a velocity model with sharp interfaces.

We also develop a joint nonlinear refraction and reflection traveltime tomography
method on a regular-velocity grid. Similar to the nonlinear refraction traveltime
tomography, we explicitly invert the average-slowness and the apparent-slowness data
that are converted from the refraction and reflection traveltimes. The approach is
beneficial to this joint inverse problem, because it modifies traveltimes associated
with long rays and short rays in the refractions and reflections to the same order of
magnitude, and combines two types of data on the basis of their physical information
rather than using an arbitrary weighting factor. We show that the inclusion of the
first-arrival refractions can be very helpful to reduce the undetermined features in the
slowness field in the reflection traveltime problem.

For imaging the shallow earth, utilizing the first-arrival traveltimes is practical
and reliable. Nonlinear refraction traveltime tomography is useful for imaging com-
plex velocity variations. For cases with sharp refraction interfaces, the joint refraction
traveltime migration and tomography proves more applicable. When we image the
deep earth structure for which the deep reflections can be readily identified, per-
forming joint refraction and reflection traveltime tomography appears to be more
attractive.

We demonstrate applications to three real cases. The first case in South Boston,
Massachusetts is to determine the bedrock topography in a complex near-surface
area for an engineering project. The second real case is to image the shallow velocity
structure surrounding the Bala Kimberlite which is partially exposed at the surface in
Riley County, Kansas. Our interest is to understand the structure of the kimberlite
plug in the subsurface. We apply nonlinear refraction traveltime tomography and joint
refraction traveltime migration and tomography techniques to both cases. The results
are consistent with other geophysical information. The third case is to image the
crustal structure of California Borderland using marine OBS data and joint refraction
and reflection traveltime tomography technique. The results show that most of the
anomalous variations seen in the traveltimes are due to the shallow complex velocity
structure. The deep crust is relatively simple, and the Moho at the depth of about
23 kin with slightly lateral variation is found along two survey lines.

Thesis supervisor: M. Nafi Toksdz
Title: Professor of Geophysics
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Chapter 1

Introduction

1.1 Objectives

In this thesis we develop and apply three traveltime imaging techniques to reconstruct

seismic velocity structures from data recorded on the surface. These three techniques

include:

9 nonlinear refraction traveltime tomography

* joint refraction traveltime migration and tomography

9 joint nonlinear refraction and reflection traveltime tomography

Seismic tomography techniques have been extensively applied to image the earth.

Almost all seismic tomographic images are based on the spatial distribution of seis-

mic wave velocity. However, even with dense sources and receivers, solving a seismic

traveltime tomography problem can be a very complicated problem. Because the seis-

mic energy associated with a traveltime measurement may follow a complicated path,
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both raypath and physical properties along the raypath need to be reconstructed.

If sources and receivers are both placed on the surface, the seismic traveltime to-

inography problem becomes more difficult than the transmission geometry, from the

forward traveltime calculation to the solution of the nonlinear inverse problem. Con-

sequently, traveltime linearization and model simplification are widely adopted in the

surface tomography problem. In this thesis, we shall explore how we incorporate the

unique physical properties in the refraction and reflection wave propagation into the

tomography treatment and conduct tomographic inversion on a regular velocity grid.

1.2 Background

Difficulties in conducting refraction/reflection traveltime tomography arise for many

reasons. First of all, for the surface sources and receivers, we are not even sure if

we can always simulate the forward traveltime modeling with sufficient accuracy for

any velocity structures. Two-point raytracing algorithms may suffer from the prob-

lem of converging to a local minimum traveltime path, and occasionally missing the

global minimum (Vidale, 1988; Moser, 1991; Lees and Shalev, 1992; Fischer and

Lees, 1993). The applications of these methods require smooth velocity structure in

terms of slowness gradient (Julian and Gubbins, 1977; Cervenf et al.1977). Vidale

(1988, 1990) presented a finite-difference appproach to solve the eikonal equation

for traveltime calculation. His scheme can quickly fill in traveltimes in a regular

velocity grid, and is by far the fastest method of computing traveltime. However,

several authors pointed out that the finite-difference solution to the eikonal equation

(Vidale, 1988, 1990) might violate causality for moderate to large velocity contrasts

because of expanding a square wavefront (Qin et at, 1992; Aldrige and Oldenburg,

1992; van Trier and Symes, 1991; Schneider et al., 1992). Undoubtedly, to calcu-

late refraction traveltimes accurately for tomography purposes is a challenge, since it
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may involve many wave effects, such as diffractions, head waves, and paths through

shadow zones, for which ray theory breaks down. On the other hand, we cannot solve

a wave equation for the purpose of traveltime calculation, because it requires inten-

sive computation and subsequent "picking" of times. Wavefront raytracing methods

that simulate wave propagation using traveltimes seem very promising. But accurate

wavefront raytracing methods may require vast computer memory and intensive com-

putational effort. Therefore, the first research topics in this thesis are to develop an

accurate and efficient wavefront raytracing method that can be ideally suited for the

refraction/reflection tomography problem.

We also find that little effort has been made to identify implicit and explicit in-

formation in the traveltime data associated with the type of wave propagation for

the tomography formulation. The difference among several types of existing seismic

tomography (i.e., crosswell, refraction, and reflection) lies only in the source/receiver

geometry, rather than in the consideration of the wave propagation. For any survey

geometry, when we construct a model and minimize the misfit between the predicted

traveltimes and data with an 12 norm, we qualitatively know that the physical infor-

mation associated with the traveltimes is utilized in some way. However, nature does

not have to obey a least-squares criterion. Conducting a least-squares inversion, We

do not know how to measure the true data information. After having identified this

problem in the existing seismic tomography methods, we attempt to convert implicit

physics in the traveltime data to be explicit with some quantitative criteria. This

leads to the tomography problem that inverts average-slowness data (traveltimes di-

vided by the ray lengths) and apparent-slowness data (derivatives of traveltimes with

respect to distance).

In the world of seismic imaging, migration and tomography represent two major

techniques. Migration maps interfaces in the subsurface by reconstructing physical

raypaths in a downward continuation process, while tomography reconstructs a slow-
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ness model by inverting recorded data. The idea of migration can be applied to both

reflection and refraction data, in terms of either wave fields or traveltimes, although

their imaging conditions differ. Theoretically, it would be ideal if one can combine

migration and tomography in a simultaneous imaging process, since they constrain

the model in two very unique ways. However, it is difficult to establish same meaning-

fl criteria for evaluating both migration image and tomography solutions owing to

their different sensitivity to properties. Clayton and McMechan (1981) demonstrated

a 1-D joint refraction migration and inversion method, which was interactive. To our

knowledge, there has been no better method proposed so far. To solve this problem,

we adopt French's (1975) probability concept for explaining the migration image, and

introduce two algorithms that automatically link migration and tomography by way

of regularizauion.

For deep earth soundings, refraction and reflection methods can be applied to

estimate both velocities and the reflector horizons. Because of intensive computation

required, all existing joint refraction and reflection methods simplify the problem

by using coarse model parameters (e.g., Zelt and Smith, 1992; Wang and Braile,

1996). On the other hand, nonlinear traveltime method on a regular velocity grid is

applied to solve refraction or reflection problem only (Pullammanappallil, 1994). This

motivates us to study several issues in the joint refraction and reflection problem and

propose a practical nonlinear method. In addition, Bube et al.(1995) theoretically

derived that the depths of reflectors are determined, but the slowness field has some

undetermined features in the reflection traveltime problem. The inclusion of the

first-arrival refraction data can help constrain the slowness field.

In all three imaging methods, we apply the Tikhonov regularization (Tikhonov

and Arsenin, 1977). Although the method was applied in solving geophysical inverse

problem long time ago, the true essence of the approach has been recognized only

recently. The method can serve several purposes:
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1. To produce a minimum-structure solution which does not have unnecessary

features to fit the data to a predetermined misfit level (Constable et al., 1987).

2. To perform a global inversion in the sense of reconstructing the whole model

(Matarese, 1993).

3. To avoid solving an ill-posed inverse problem, and find an effective regular-

ization criterion in the class of the Tikhonov method so that the inverse problem is

valid for continuum and the solution is independent of the model parameterization

(Delprat-Jannaud and Lailly, 1993; Zhang et al., 1996; Zhang and Toksdz, 1996).

Therefore, the purpose of applying the Tikhonov method is already beyond the

initial motivation, i.e., for obtaining a "smooth" solution only. We attempt to fur-

ther extend its concept and demonstrate that the use of Tikhonov method allows to

combine migration and tomography in one joint process and resolve sharp features.

1.3 Outline

This thesis focuses on developing new techniques in many aspects, and studying

the applicability of the new techniques in solving real problems. Chapter 2 intro-

duces an improved wavefront raytracing approach on a regular slowness grid which

is designed to avoid particular problems in the minimum-traveltime (shortest path

raytracing) methods. This new method is applied to all three imaging techniques

presented in this thesis. In Chapter 3, a nonlinear refraction traveltime tomogra-

phy method is formulated. Several issues have been discussed, including physical

information in the traveltime data, Tikhonov regularization, nonlinear inversion al-

gorithms, and comparison of linearized and nonlinear uncertainty analyses. Chapter

4 presents a joint refraction traveltime migration and tomography method. This new
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method simultaneously reconstructs interfaces associated with wavefront systems by

way of migration, and inverts model parameters from traveltimes. Two algorithms

for conducting joint migration and tomography are developed. Chapter 5 introduces

joint nonlinear refraction and reflection traveltime tomography. Numerical examples

demonstrate that combining refraction and reflection traveltime tomography in one

joint algorithm can better resolve reflector depths and the slowness field. In Chapter

6, we show applications of the nonlinear refraction traveltime tomography and the

joint refraction traveltime migration and tomography methods to two shallow imaging

problems. One is to image bedrock at a coastal site in eastern Massachusetts, and the

other is to image the Bala Kimberlite in Riley County, Kansas. Chapter 7 presents

application of the joint refraction and reflection traveltime tomography method to

the crustal structure of the California Borderland using marine data from Ocean Bot-

tom Seismometers. The data were collected during the Los Angeles Region Seismic

Experiment (LARSE) in 1994. Three Appendices are included to detail the numer-

ical computation in terms of both the forward modeling and inversion. Appendix

A compares traveltime accuracy using two finite-difference eikonal solvers (Vidale,

1988; Hole and Zelt, 1995), a conventional minimum-traveltime method (Saito, 1989;

Moser, 1989, 1991) and a proposed method in this study. Appendix B discusses the

differences between two inversion schemes, creeping and jumping methods. Appendix

C demonstrates how the regularization trade-off parameter influences the inversion

results, and how one should choose a proper trade-off parameter for an optimal solu-

tion.
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Chapter 2

Wavefront Raytracing Method

Abstract

We develop a wavefront raytracing technique using graph theory. The method is
based on the minimum-traveltime raytracing approach proposed by Saito (1989, 1990)
and Moser (1989, 1991), but significant improvement has been made to enhance the
accuracy and efficiency of the numerical calculation. The fundamental goal of this
new development is to provide a sophisticated traveltime calculation approach for
performing nonlinear refraction traveltime tomography, joint refraction traveltime
migration and tomography, and joint refraction and ref'ection traveltime tomography.
Therefore, our method is designed to deal with a point source in any complex medium
for tomography purpose, line-source downward continuation for migration problem,
and calculation of both the first and the later arrivals on a regular slowness grid
for joint refraction and reflection traveltime tomography. To apply this method,
one expands a wavefront with a graph template following the Huygens' principal.
We optimize node distribution by two steps in a given slowness model prior to the
raytracing. First, we apply an iso-angle node distribution in the graph template to
reduce traveltime errors associated with angle sampling. Second, we avoid the zig-zag
raypath problem by removing nodes in smooth or homogeneous areas in the model.
Numerical examples demonstrate that this new method is accurate and efficient.

17



2.1 Introduction

During last five years, geophysicists have focused on developing wavefront raytracing

methods for serving several purposes in the seismic interpretation. Particularly in the

exploration context, traditional two-point raytracing approches are nearly abandoned.

For seismic modeling purposes, it is not necessary to calculate exact traveltimes for

a given velocity model. Even with a modern parallel computer, exact traveltime cal-

culations for an arbitrary velocity model can be very costly. Instead, geophysicists

hope to develop numerical algorithms that are efficient enough and can yield required

traveltime accuracy for the seismic survey geometries. In addition, raytracing meth-

ods are often applied to serve as a tool for conducting tomography and migration.

Therefore, one must account for the integrity of the entire modeling problem when

deriving a raytracing algorithm. It appears that wavefront raytracing methods have

the best suitability in most circumstances (Vidale, 1988, 1990; Saito, 1989, 1990;

Moser, 1989, 1991; Schneider et al., 1992; Coultrip, 1993).

Historically, Raytracing has referred to two-point raytracing algorithms (Julian

and Gubbins, 1977; Um and Thurber, 1987; Cervenf%, 1987). In the geophysics com-

munity, this term is now extensively used for any traveltime calculation that involves

ray. To distinguish between different methods, we define any method using a two-

point raytracing algorithm as a ray method, and any method applying a wavefront

expansion algorithm as a wavefront method. Ray methods are based on the concept

that seismic energy of infinitely high frequency follows a trajectory determined by

the rayrtracing equations. Physically, these equations describe how energy contin-

ues in the same direction until it is refracted by velocity variations. In "shooting"

methods, a fan of rays is shot from one point in the general direction of the receiver.

The correct path and traveltime to connect the two points may then be approached

with successively more accurate guesses (e.g., Julian and Gubbins, 1977; Cervenf et
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al., 1977). "Bending" methods start with an initial, probably incorrect guess for the

ray path. The raypath is bent by a perturbation method until it satisfies a minimum

traveltime criterion (Um and Thurber, 1987; Thurber, 1987). However, the ray meth-

ods suffer from the problem of converging to a local minimum traveltime path, and

occasionally missing the global minimum (Moser, 1989, 1991). When travel paths to

many points from a source are needed, one has to conduct raytracing calculations fbr

many times. Therefore, they are impractical for tomography and migration purposes

which generally deal with the common-shot data. In addition, they require the use

of a continuous model parameterization and cannot be easily applied to a grid model

without some form of reparameterization (Lees and Shalev, 1992; Fischer and Lees,

1993).

We should point out that the raytracing methods that we address in this thesis

only calculate traveltimes and solve traveltime equations which have no amplitudes

involved. For example, finite-difference traveltime methods solve the eikonal equa-

tion rather than the elastic or acoustic wave equation. Wave propagation in media, in

high frequency asymptotics, can be described by the WKBJ Green's function, which

consists of both traveltimes and amplitudes (Chapman, 1978). We should also point

out that two-point raytracing methods or wavefront methods all can be used to cal-

culate the later refractions and reflections. For wavefront raytracing methods (e.g.,

the finite-difference and the minimum-traveltime methods), the later arrivals can be

calculated following a Huygens' principle (Moser, 1989, 1991).

In fact, we cannot afford solving a wave equation for the purpose of traveltime

calculation because intensive computational work may be required. However, ideally

we do want to account for all the wave effects in the traveltime calculation, such

as raypaths through the shadow zones, head waves, and diffractions. This provides

motivation for the development of wavefront raytracing methods that use rays lo-

cally and expand minimum-traveltime wavefronts. In this study, we separate existing
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wavefront raytracing methods into three groups: applying finite-difference method to

solve the eikonal equation (Vidale, 1988, 1990; van Trier and Symes, 1991; Schnei-

der et al., 1992); applying an analytical solution to expand a wavefront (Vinje et

al., 1993); and using graph theory to find minimum-traveltime paths by expanding

a wavefront (Saito, 1989, 1990; Moser, 1989, 1991; Mandal, 1992; Fischer and Lees,

1993; Klimes and Kvasnicka, 1993; Weber, 1995). Moser (1991) called the last ap-

proach as a shortest path raytracing method based on the original Dijkstra's (1959)

algorithm. However, in seismic traveltime problem, we calculate the minimum trav-

eltimes. Therefore, throughout this thesis, we shall call Saito's (1989, 1990) and

Moser's (1989, 1991) approach as a "minimum-traveltime raytracing method".

Wavefront methods are attractive because they can simulate wave propagation in

the entire model. However, they are by no means able of simulating all the wave

effects. For example, they cannot account for frequency responses to the structure.

At this point, wavefront raytracing methods employ rays at infinitely high frequency,

as with any other ray methods. In Figure 2-1, we show an example where a wavefront

is expanded in a complex medium from a surface source using a 5th-order minimum-

traveltime raytracing algorithm of Saito (1989, 1990) and Moser (1989, 1991). Al-

though the model has of strong heterogeneities, the wavefront is continuous through

high- and low-velocity zones.

The performance of the wavefront raytracing algorithms is uneven. Using an ana-

lytical ray solution to expand a wavefront requires locally smooth velocity structure.

Qin et al.(1992) showed that the finite-difference approach by Vidale (1988, 1990)

violates causality for moderate to large velocity contrasts. On the other hand, the

minimum-traveltime raytracing method by Saito (1989, 1990) and Moser (1989, 1991)

also requires local smooth velocity structure, but may produce zig-zag raypath prob-

lem if the velocity structure is too smooth. Nevertheless, several authors showed the

flexibility of the minimum-traveltime method and its potential for better performance
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(Mandal, 1992; Fischer and Lees, 1993; Klimes and Kvasnicka, 1993; Weber, 1995).

In this study, we improve the conventional minimum-traveltime method by using a

sparse and iso-angle node distribution in a graph template so that it is more accu-

rate and efficient for traveltime calculations in any velocity medium. In Appendix

A, a detail of comparison between finite-difference methods and minimum-traveltime

methods in theory and numerical performance is presented.

2.2 Graph Theory

Graph theory and shortest paths in networks are an abstract formulation of problems

that appear in many different branches of science. For a finite number of objects

involved, the exact solution of the problem can be found in a finite number of steps.

For example, a traveling salesman wants to find the shortest route from one city to an-

other in order to minimize his time spent on traveling. Saito (1989, 1990) and Moser

(1989, 1991) independently introduced this network approach for calculating seismic

traveltimes. They all demonstrated the expansion of a wavefront with a graph tem-

plate in which local straight rays may cross several square cells, although Saito (1989,

1990) attributed his method to the use of Huygens' principle. Indeed, the necessary

physics for adopting graph theory to seismic modeling is succinctly contained in Huy-

gens's secondary source principle. The application of Huygens' principle to networks

yields the efficient Dijkstra's (1959) algorithm. Mandal (1992) implemented the same

algorithm on a triangular grid. Subsequently, several authors applied the minimum-

traveltime method in various seismic imaging and earthquake modeling problems,

such as crosswell traveltime tomography (Saito, 1991; Matarese, 1993), reflection mi-

gration (Moser, 1994), earthquake location problem (Moser et al., 1992; Nolet and

Moser, 1991).
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Following notation given by Moser (1991), we will illustrate the application of

graph theory in the seismic traveltime calculation. A graph is a set of nodes with a

weight function that assigns a real number to each connection arc (slowness). A path

is a sequence of nodes and connections succeeding each other. The traveltime along a

path from one node to another is defined as the sum of the weights of the connections

of the path. A shortest path is a path with the smallest possible traveltime. There will

be one and only one way to reach a node from the source node through the network

and there are no loops. The procedure to time nodes depends on a graph template

which fixes a number of ray directions for sampling a wavefront. Figure 2-2 shows

a 4th-order graph template that was used by Saito (1989, 1990) and Moser (1989,

1991). Each square represents a slowness cell which may or may not have the same

slowness with the neighbors. Local straight rays cross cells up to four rings in the

4th-order template. For higher accuracy, one needs to apply higher-order templates

which can better sample angles of an expanding wavefront, but it will require more

computation time. For the 4th-order template as shown in Figure 2-2, it samples 32

directions around the central point which may be the original source or a secondary

source. Matarese (1993) showed graph templates at several orders with the concept

by Saito (1989, 1990) and Moser (1989, 1991).

Applying graph theory to trace the shortest (minimum) traveltime path, one needs

to repeat a three-step algorithm. For simplicity, we demonstrate this procedure us-

ing a 2nd-order graph template as shown in Figure 2-3. The exact Dijkstra's (1959)

algorithm behind this procedure is given in Appendix A. We can extrapolate trav-

eltimes from the source to all the other nodes in the model using graph theory. At

the first step, we time the neighbor nodes that are connected by the graph template

using straight rays. For local traveltime calculations, one can integrate over constant

slowness cells or average the slowness over a line segment connecting the grid point

to the source. After timing the candidate nodes, in the second step, we determine a

minimum time point among the candidate nodes and take it as a secondary source. In
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the third step, we exclude the previous source from the candidate list and re-time all

candidates in the neighborhood of the secondary source. The procedure is repeated

until the nodes in the whole model are timed with the minimum-time criteria. During

this process, we use a vector to store a record of the "parent" sources simultaneously,

which are the raypath connections for each node. The raypath information gives cell

sensitivities to the receiver traveltimes which are needed for tomography inversion.

This simultaneous storage of raypaths during raytracing differs from the use of a

finite-difference eikonal solver which needs to estimate raypaths from the traveltime

gradients after the completion of traveltime calculation.

The most time-consuming step during this process is the second one, finding the

minimum-traveltime points among candidate nodes. Moser (1989, 1991) suggested

sorting the candidate times in a "heap". Given a set of arbitrary numbers in a

random order, the HEAP algorithm is a fast one for selecting the minimum. If

the number of nodes is n, the selection by comparison needs n operations. Using

HEAP algorithm, one only needs logn operations. However, the HEAP algorithm

is a general approach for sorting any arbitrary numbers, and it does not account

for any particular process in the seismic traveltime calculation. Recently, Klimes and

Kvasnicka (1994) introduced an INTERVAL algorithm which is about five times faster

than the use of HEAP algorithm. This algorithm separates nodes into intervals of

length dmin according to their traveltimes. When updating traveltimes for candidate

nodes, the updated nodes belong to intervals higher than the current minimum node

i. The nodes in the lowest non-empty interval are not affected. Thus, one can select

a node from the lowest non-empty interval to be the minimum. Figure 2-4 shows a

comparison of the computation speed by using HEAP and INTERVAL algorithms for

a series of nodes.
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2.3 Improved ~Wavefront Raytracing Algorithm

A major concern about the minimum-traveltime method is with the accuracy of its

result. The accuracy of the minimum-traveltime method depends on the number

of connections per node, because with more connections, the minimum-traveltime

method can sample more directions. As pointed out by Moser (1991), the traveltime

errors in the minimum-traveltime method are due to space discretization and angle

discretization. These two errors are independent, i.e., decreasing the grid size does

not reduce the error due to a finite angle coverage. As a result, using a low-order graph

template yields zig-zag raypaths in smooth parts of the velocity model. On the other

hand, computer time increases linearly with the number of node connections. It is not

practical to apply a graph template consisting of a large number of node connections.

Fischer and Lees (1993) showed an improvement that applies a correction after the

raytracing. They perturbed the rays at interfaces according to Snell's Law. Weber

(1995) presented another posterior correction method to remove zig-zag raypaths. If

a raypath changes its direction at a node, it has a breakpoint at that node. If the

elimination of a breakpoint makes the traveltime shorter, the breakpoint is removed.

We point it out that the new generation of minimum-traveltime method that Fischer

and Lees (1993) and Weber (1995) presented applies local straight rays only within

a slowness cell in a graph template, which will be illustrated in the following.

In this study, we improve the minimum-traveltime method by two steps prior to

the raytracing calculation. The basic idea is to sample a wavefront more evenly and

also determine a minimum computational effort needed for a given velocity model.

The first improvement is made by optimizing node distribution at cell interfaces so

that the angle coverage can be more even. Figure 2-5 shows placement of nodes in

the new version of the minimum-traveltime method that we propose. Suppose that

we employ two nodes at each cell interface. If we place nodes with ai = O.29289dx,
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a2 = 0.41421dx, and a3 = 0.29289dx (where dx is the length of a slowness cell), then

the angles that these local rays sample are equal, 22.50. In this case, the equal-angle

distribution becomes obvious when we draw a circle passing all these nodes as shown

in Figure 2-5. With the selection of these particular a1 , a2 , and a3 , each arc between

two local rays is 22.50. Figure 2-6 displays two different graph templates on the same

network, one with regular node distribution on cell interfaces (Moser, 1991; Fischer

and Lees 1993; Weber, 1995), the other with the optimized node distribution that

we proposed. Notice that the differences of local raypaths are not large, but they are

very significant for the global accuracy. Meanwhile, this modification does not alter

any computation time, because we only need to define a1 , a2, and a3 with a different

set of numbers in the calculation. If the number of nodes on each grid boundary is

more than two, then the optimized propagation angles cannot be exactly equal, but

they can be optimized to have a minimum difference.

Further node optimization is made by analyzing the velocity model prior to the

raytracing. This step is more important. Instead of timing all the network nodes with

the same graph template, the traveltime nodes in the areas where velocity gradients

are smaller than a given tolerance are eliminated. This results in a sparse node

network. When a wavefront is expanded into this area, a path record will be kept

and updating time will not take place until reaching another node. The use of this

sparse-node model avoids the zig-zag raypath problem and also enhances computation

speed. Therefore, the computation time of our approach is structure-dependent. The

computation time for a model without any node elimination represents an upper run-

time bound of our approach, which occurs only when the model is extremely complex,

every cell velocity is unique.
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2.4 First-Arrival Refraction Traveltimes

In this section, we shall demonstrate four numerical examples for calculating the

first-arrival refractions. Applying the minimum-traveltime method, one can calculate

the global-minimum traveltimes from a source to any point in the model. Therefore,

the method can be directly applied in the cross-well traveltime tomography and the

first-arrival refraction traveltime tomography.

Figure 2-7 illustrates the raypaths calculated for the first-arrival traveltimes using

three different graph templates. The model consists of two layers with a graben inter-

face. A source is placed at the surface, and our interest is to examine the first-arrival

refractions. With both 4th-order and 5th-order Saito-Moser graph templates, the

results show zig-zag raypaths in the constant velocity medium. Under the refractor

interface, apparently the calculated raypaths are much longer than what they should

be. Over the refractor, deviations from straight rays mainly occar near the diffraction

points. These problems are introduced due to the use of Dijkstra's (1959) algorithm

in a network with a finite number of nodes. With discrete paths and few node con-

nections in a graph template, there are often several equally short paths between two

nodes, especially where the velocity structure is homogeneous or smooth. Some of

these equally short paths are good approximations of the ray, but most are not, and

Dijkstra's (1959) algorithm does not differentiate between them, often choosing a ray

not close to the true one. As shown in Figure 2-7(c), the approach that optimizes node

distribution as we proposed can accurately construct the refraction raypaths. Before

raytracing, it removes nodes in the constant velocity areas by checking the gradients

of the velocity structure. With an iso-angle distribution for the remaining nodes on

the interface, the method can find an accurate critical point for generating the re-

fraction, and construct accurate raypaths as well. Figure 2-8 displays the traveltimes

corresponding to the above calculated raypaths. It shows that the lower-order graph
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template produces largei refraction traveltimes. Increasing the number of nodes in

the graph template helps to reduce the problem, but meanwhile it requires more in-

tensive computation. Proposed graph template appears performing well, results in

the shortest raypaths and minimum traveltimes.

In a tomography inversion, raypaths are taken as the model sensitivity. For migra-

tion, raypaths along with the traveltimes determine the image locations. Therefore,

correctly estimating raypaths for a given model is important for imaging purpose. In

refraction imaging, two well-known problems associated with raypaths are the hidden-

layer structure and the low-velocity zone. Thidden-layer problem is one whose the

velocity in an intermediate layer is higher than those above and lower than the over

layers it overlies. But its velocity is not high enough to generate any first-arrival

refraction, it only influences the absolute traveltimes of those refracted from the

deep layers. Accurately calculating raypaths through the hidden layer is important

for reconstructing this structure from the limited information. Figure 2-9 shows a

three-layer model and the first-arrival raypaths from a source at the surface. Using

a 4th-order Saito-Moser graph template produces nearly straight paths across the

hidden layer. With a 5th-order graph template the raypaths are improved, but the

bending points due to the hidden layer occur slightly above the physical interface.

Another difficulty for refraction imaging is the low-velocity zone problem in which

refraction does not occur along its upper interface at all. Figure 2-10 shows a three-

layer model, and the intermediate layer has the lowest velocity (1000 m/s). Again,

correctly constructing physical raypaths through the layer is very important for con-

ducting tomography inversion. However, similar problems occur for this model as

shown in Figure 2-10 when using the 4th- and 5th-order Saito-Moser templates. The

4th-order graph template produces straight paths across the low-velocity layer, while

the 5th-order graph template places the bending points above the velocity interface.

As one can see, for both hidden-layer and low-velocity models, our proposed graph

template can correctly calculate the raypaths. This is because of two reasons. First,
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the local straight rays in our graph template do not cross cell interface. Second, we

do not place traveltime nodes in homogeneous or smooth velocity zones. Figure 2-11

and Figure 2-12 show the calculated traveltimes using three different graph templates

for the two models. Only the results for the refractions are displayed for comparison.

In any cases, Saito-Moser graph templates result in larger traveltimes.

We will show another comparison of the traveltime modeling results using the sec-

ond generation of the graph templates in which local rays do not cross cell interfaces.

Figure 2-13 displays absolute traveltime accuracy for three solutions. The model con-

sists of two layers and is gridded into 200 by 50 uniform cells (spacing interval 1.0 m).

In this example, we show results using only two nodes on each cell boundary as shown

in Figure 2-5. In modeling real data, we usually use four or five nodes for higher ac-

curacy. Regular nodes produce large errors in some areas including refraction in this

case due to uneven angle sampling. Without additional computation effort, simply

adjusting the node distribution according to Figure 2-5 reduces the error by nearly

50% for refraction traveltimes. Further optimizing the nodes by eliminating those in

the smooth-velocity areas gives results with negligible errors.

2.5 Reflection Traveltimes

Because we shall perform a simultaneous refraction and reflection traveltime tomo-

graphic inversion, we need to modify the minimum-traveltime method to calculate

both the first arrivals and the later arrivals. This modification is based on our new

version of the minimum-traveltime method. To calculate the reflection traveltimes,

we first expand a wavefront from the point source, and time the nodes in the slowness

network which are on and above a given reflector. After this step, the first-arrival re-

fraction traveltimes and the minimum traveltimes from the source to a given reflector
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are determined. In the next step, we keep a copy of the calculated travel times and

raypaths, and assign all the network nodes with traveltime infinity except for those

along the reflector. Then we continue to expand a wavefront from the reflector (line

source) back to the receivers. During this process, traveltimse at any point along

the line source are not allowed to be updated by any other point. This restricts the

calculation to a reflection raypath rather than a refraction. If we want to calculate

the later refraction, we simply remove this restriction and allow the traveltime at a

point along the line souice (refractor) to be updated by any other point along the

line source, if such an update makes a minimum.

Figure 2-14(a) shows a synthetic model of the axial magma chamber in the crust.

We apply the wavefront method that we introduced to calculate the first-arrival re-

fraction (Pg) and the reflection from the Moho (PmP). Later we shall demonstrate

tomographic inversions for the same model. The model consists of sea water (1.5

km deep), large velocity gradients in the shallow earth, and a central low-velocity

zone. It is parameterized by 300 x 100 grids covering a 2-D profile of 30 km by 10

km. The Moho is about 8.4 km in average depth with lateral and depth variation.

We simulate an OBS experiment and display the calculated traveltimes from an OBS

on the seafloor. For efficient numerical modeling, we apply reciprocity, and take the

OBS as a "source" and calculate the traveltimes from the OBS to a dense receiver

array (shooting locations) at the sea surface. In fact, for modeling the OBS prob-

lem that one needs to calculate a large number of traveltimes from the same source,

wavefront methods are more efficient and convenient than the two-point raytracing

approaches. They only need a single forward computation. Figure 2-14(b) shows

the downward incident traveltimes from the OBS including the first-arrival refraction

(recorded at the sea level) and the minimum traveltimes from the OBS to the Moho.

After this step, we place a line source along the reflector (the Moho) and continue to

expand the wavefront for reflection calculation. Figure 2-14(c) shows the contoured

reflected traveltimes from the Moho. In Figure 2-15, the absolute refraction and re-
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flection traveltimes are displayed. At long offset distance, the wide -angle reflection

traveltimes nearly have the same moveout as the refractions. The influence of the

central low-velocity zone can be seen in both the near-offset refraction and reflection

traveltimes, but the changes are not dramatic.

Figure 2-16 shows another numerical model which consists of a curved reflector

and lateral velocity variations. This model also presents the velocity structure in

a crustal scale. For a source near the right edge on the surface, one can see that

the reflections from the curved interface propagate to the surface with an uniform

wave pattern, and reach all of the receivers. For this type of structure, conventional

two-point raytracing algorithms may fail to find ray connections for some receivers

due to large raypath error associated with very curved interfaces (Moser, 1991). In

Figure 2-17, reflection traveltimes for 11 sources equally distributed on the surface

are displayed. Because of lateral velocity variations and the reflector geometry, it

turns out that the fastest reflection always appears to the receiver in the left side of

the model, where is above the top of the reflector.

2.6 Conclusions

Application of a wavefront raytracing method to the seismic modeling problem is ap-

pealing, because it simulates a wave propagation process, thus it can handle effects due

to waves, such as diffraction, head waves, and paths to shadow zones. This avoids

the breakdown of ray theory for certain complex velocity structures, and ensures

the traveltime calculation in the tomography and migration problems to be reliable.

Among various wavefront methods, it seems that the minimum-traveltime has the

great potential to honor well the physics in the traveltime problem. Another popular

approach includes finite-difference method to solve the eikonal equation. However,
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the ikonal equation describes the magnitude of the traveltime gradient only, not its

direction. Differentiating the eikonal equation, we can derive as high-order derivatives

of traveltime along the ray as we select, but no information on the behavior of the

traveltime in otlher directions may be derived from it directly. In preferring the direc-

tion of a ray to other directions in a finite-difference scheme, in order to increase the

accuracy and stability in strongly heterogeneous media, the resulting algorithm needs

to include a sorting procedure iii a much similar way as in the minimum-traveltime

method (Podvin and Lecomte, 1991). In Appendix A, we analyze several theoretical

aspects of wavefront raytracing methods and point out that a finite-difference eikonal

solver is useful only when it closely follows the strategies in the minimum-traveltime

methods.

We identified two major problems in the existing minimum-traveltime methods,

i.e., nonuniform angle sampling, and zig-zag raypaths. Therefore, we proposed a two-

step procedure to improve the minimum-traveltime method. These two steps include

applying an iso-angle node distribution, and eliminating unnecessary nodes in smooth

velocity areas prior to the raytracing. Notice that all these problems are associated

with a regular grid slowness model. However, we chose to stay with this type of

slowness parameterization rather than a continuous functional or a few interfaces,

because this type of model is essential for performing high-resolution seismic imaging

and tomography. Therefore, our fundamental goal is to improve the performance of

the traveltime calculation method on a regular velocity grid. It appears that our new

method is successful.
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Traveltimes in Complex Velocity Model

1000 2000 3000

Velocity (m/s)

Figure 2-1: Expanding a wavefront in a complex velocity model. A 5th-order Saito-
Moser graph template is applied. After raytracing is completed, traveltimes and
raypaths in the entire model are calculated.



4th-order graph template

Figure 2-2: A 4th-order graph template for extrapolating traveltimes from a source.
Each circle is a traveltime node, and each square cell may have one slowness. Local
straight rays are used to time neighbor nodes.
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Figure 2-3: Wavefront extrapolating procedure using graph theory. A 2nd-order
graph template is applied for demonstration. See text for details.



Traveltime Computation Speed
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Figure 2-4: A comparison of computation time for using HEAP and INTERVAL
algorithm in the minimum-traveitime raytracing method.
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Optimized Node Distribution
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0 = 22.50

Figure 2-5: A proposed graph template of the shortest raypath method for traveltime

calculation. Traveltime nodes are placed on the cell interfaces in a slowness network

based on ai, a2 and a3 - We select optimal ai, a2 and a3 so that the angles of the

expanded wavefront are equally sampled



Regular vs. Optimized Node Distribution
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* regular node

o optimized node

Figure 2-6: A comparison of graph templates for the shortest path raytracing method.
Star denotes regular node that samples grid interface equally; the open circle repre-
sents the iso-angle node that we propose. Slightly shifting nodes along the grid
interface so that rays evenly sample angles can reduce raytracing error due to the
angle discretization.

37



Raypaths from a 4th-order Saito-Moser graph template

Raypaths from a 5th-order Saito-Moser graph template

Raypaths from a proposed graph template in this study

Figure 2-7: A comparison of raypath accuracy for a two-layer model with a graben

interface for using three graph templates. The 4th-order and 5th-order Saito-Moser

templates introduce large raypath errors, while the proposed new graph template can

accurately construct raypaths.



Traveltime Difference due to Graph Templates
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Figure 2-8: Refraction traveltimes calculated using the 4th-order and 5th-order Saito-
Moser templates and the proposed graph template for the graben model. A velocity
reduction by 4000 m/s is applied. Notice that the traveltimes from the 4th-order
and 5th-order Saito-Moser templates are larger due to longer raypaths. Higher-order
results are more accurate, but also require more computation time.



Hidden Layer Problem

Raypaths from a 4th-order Salto-Moser graph template

v3 = 4000 m/s

Raypaths from a 5th-order Saito-Moser graph template

Raypaths from a proposed graph template in this study

Figure 2-9: Three-layer velocity model and raypaths using the 4th-order and 5th-order
Saito-Moser templates and the proposed graph template. The second layer velocity
is not sufficiently high, causing a hidden layer problem in the first-arrival traveltimes.
Notice that the use of the 4th-order and 5th-order Saito-Moser templates is unable
to calculate the raypaths in the hidden layer correctly.
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Low-Velocity Layer Problem

Raypaths from a 4th--4er Salto-Moser graph template

v1 = 2000 m/s
\v2 = 1000 m/ds

v3 = 4000 m/s

Raypaths from a 5th-order Saito-Moser graph template

Raypaths from a proposed graph template in this study

Figure 2-10: Three-layer velocity model and raypaths using the 4th-order and 5th-
order Saito-Moser templates and the proposed graph template. The second layer
velocity is the lowest, causing bending raypaths. Notice that the use of the 4th-
order and 5th-order Saito-Moser templates is unable to compute the raypaths in the
low-velocity layer accurately.
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Hidden-Layer Model

Traveltime Difference due to Graph Templates

100 150
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Figure 2-11: Calculated traveltimes using three different graph templates for the
hidden-layer model. Only the results at the range between 50 m to 200 m are displayed
to show the first-arrival refractions. Velocity reduction 4000 m/s is applied.
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Low-Velocity Model

Traveltime Difference due to Graph Templates
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Figure 2-12: Calculated traveltimes using three different graph templates for the low-
layer model. Only the results at the range between 100 m to 200 m are displayed to
show the first-arrival refractions. Velocity reduction 4000 m/s is applied.
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iso-angle and sparse node
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Figure 2-13: A comparison of raytracing accuracy due to two different graph templates

shown in Figure 2-3. A two-layer model (200 m by 50 m) is discretized with grid size

1.0 m. The upper-layer velocity is 2500 m/s and the lower-layer velocity is 4500 m/s.

Using two regular nodes on each cell interface produces refraction traveltime error
up to 0.4 ms; shifting these two nodes for equal angles (22.50) reduces refraction
traveltime error down to 0.2 ms; further eliminating nodes in the homogeneous areas

reduces error to be eligible.
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Figure 2-14: Traveltime calculation for a mid-ocean ridge model: a) P-wave velocity
model; b) incident traveltime contour from a source on the seafloor; c) reflected
traveltime contour back from the Moho.
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Figure 2-15: Refraction and reflection traveltimes from six OBSs on the seafloor. Solid
curve represents refraction traveltimes and dashed line denotes reflection traveltimes.
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Figure 2-16: A crustal structure model consisting of a curved reflector and strong
lateral and vertical velocity variations. Raypaths of reflections from a source near the
model edge.



Reflection Traveltimes

E

c)
I=

Distance (km)

Figure 2-17: Reflection traveltimes from 11 sources on the surface with even distri-
bution. Because of large lateral velocity variations and curved reflector shape, the
reflection traveltimes are not symmetric to the source locations.
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Chapter 3

Nonlinear Refraction Traveltime

Tomography

Abstract

We have identified a few important issues for performing nonlinear refraction travel-
time tomography. These include the information content of the refraction traveltime
curves, characteristics of the refraction traveltime errors, and ill-posedness of the in-
verse problem. Consequently, we have developed a regularized nonlinear refraction
traveltime tomography method that explicitly honors the physics of the refraction
traveltime problem. Aside from an accurate raytracing approach needed to calcu-
late the first-arrival refractions, we find that structure ambiguity due to short and
long rays in the seismic refraction problem may significantly influence the inversion
results. In addition, minimizing the misfit of the absolute traveltimes with a least-
squares criterion does not account for the whole meaning of a refraction traveltime
curve. Therefore, with the new raytracing approach that we developed, we chose
to solve a tomography problem that explicitly minimizes the misfits of the average
slownesses (ratios of traveltimes to the corresponding ray lengths) and the appar-
ent slownesses (derivatives of traveltimes with respect to distance). As a result, we
enhance the resolution as well as the convergence speed. We regularize our inverse
problem with the Tikhonov method. The use of the Tikhonov regularization avoids
solving an ill-posed inverse problem and allows us to invert an infinite number of
unknowns. We characterize errors in refraction traveltimes in terms of a common-
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shot error, a constant deviation for recordings from the same shot, and a relative
traveltime-gradient error with zero mean with respect to the true gradient of the
traveltime curve. Correspondingly, we measure the uncertainty of our tomographic
solution using a nonlinear Monte Carlo approach and compute the posterior model
covariance associated with two different types of random data vectors and one ran-
dom model vector. The nonlinear uncertainty analysis indicates that the resolution
of a tomographic solution may not correspond to the ray coverage in some areas in
the model.

3.1 Introduction

Utilizing seismic refraction traveltime data for imaging the subsurface has long been

a standard technique. It is appealing because of its low-cost field operation and easy

data interpretation. Dobecki and Romig (1985) predicted that the seismic reflection

survey would "replace the refraction survey as the most common seismic tool for

engineering and groundwater studies", while Lankston (1989) argued that "the re-

flection method offers some capabilities that the refraction method cannot offer; but

the converse is also true". Indeed, from a physical point of view, refraction methods

rely on the heterogeneity of the medium to turn seismic energy back to receivers, pro-

viding velocity information independent from that in reflection methods. However,

conventional processing of refraction data falls short of showing the true strength of

this technique with oversimplified geometry and media, although they do attempt

to develop unique physical concepts from refraction traveltimes. On the other hand,

modern tomography methods seem to ignore the value of physical concepts that have

been already established for the refraction problem. They simply match the absolute

traveltimes using a least-squares criterion like any other tomographic problem (e.g.,

reflection and crosshole tomography). Consequently, the unique physical information

in the seismic refraction data has not been fully or properly utilized, and certain

statements have often been made about the effectiveness of the refraction method
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without appropriate qualifications. In this study, we investigate a few fundamental

issues in the refraction traveltime problem and perform numerical modeling in several

ways. As a result, we have developed a new refraction tomography technique that

combines both conventional concepts and recently developed inversion techniques.

Seismic refraction data are conventionally acquired with "forward" and "reverse"

shots, and their interpretation is often made using reciprocity. These include the

Generalized Reciprocal Method (GRM) (Palmer, 1980), the wavefront reconstruc-

tion method (Aldrige and Oldenburg, 1992), and the wavefield extrapolation method

(Clayton and McMechan, 1981; Hill, 1987). All of these methods assume that seismic

velocity structures are simple, and primarily attempt to map a refractor. Tomogra-

phy methods, using some approach to calculate traveltimes and raypaths on a regular

grid and applying an inversion technique to reconstruct the seismic velocities, have

been extensively studied and developed for crosshole and reflection geometry. How-

ever, little has been done for refraction problems. White (1989) developed a refrac-

tion traveltime tomographic method that applies a two-point raytracing algorithm

and solves a damped least-squares problem for both velocities and refractor depths.

The inverse problem is regularized with a gradient smoothing operator in a creeping

manner (for definition and concept, see Appendix B). Zhu and McMechan (1989)

performed refraction tomography using an analytic traveltime solution, and their to-

mographic approach is same for the crosswell geometry (McMechan et al., 1987) and

requires the initial model to have positive velocity gradients. Stefani (1995) showed a

turning-ray tomography which is similar to White's (1989) but he inverted the veloci-

ties only. Using a finite-difference approach to solve the eikonal equation without rays

involved, Ammon and Vidale (1993) developed a refraction traveltime tomography

regularizing the inverse problem with second-order model derivatives in a jumping

fashion (for definition, see Appendix B). Because they explicitly construct a sensitiv-

ity matrix Iby repeating the forward calculation for each perturbed slowness cell, their

approach is limited to a small number of model grids. In Appendix A, we show that
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the relative errors in the traveltime calculation for a two-layer model using Vidale's

(1988) algorithm can be extremely large due to expanding a square wavefront. The

error is up to 8.7% when the velocity contrast is 1:2.5.

It appears that existing techniques for refraction traveltime tomography have some

numerical shortcomings due to either the raytracing approach used or to the ill-posed

inverse problem encountered or both. In the previous chapter, we addressed issues

of traveltime calculation, now we focus on the nonlinear inverse problem. We have

to deal with an ill-posed inverse problem, where the number of unknowns is greatly

more than the number of data points. An ill-posed inverse problem must be properly

regularized in order to obtain a stable solution, which is independent of the model

discretization (Delprat-Jannaud and Lailly, 1993; Zhang et al., 1996). Rodi (1989)

and Zhang et al. (1996) showed that regularizing the model update (creeping) rather

than the model itself (jumping) cannot ultimately avoid the difficulties associated with

solving an ill-posed inverse problem (a detailed discussion of creeping and jumping

inversions is presented in Appendix B). Further, not all regularization approaches

perform well, and an appropriate criterion for refraction traveltime tomography must

be defined. It also appears that existing refraction tomography methods have not

sufficiently considered the physical properties inherent in the refraction problem. As

a result, all of these refraction tomography techniques are not much different from

those for crosswell or reflection geometry.

In this stuuy, we shall improve the performance of refraction traveltime tomogra-

phy in terms of both the forward raytracing calculation and the inversion techniques.

Moreover, our numerical treatment will account for several issues that are uniquely

associated with the physical properties in the seismic refraction. Our method includes

several new developments. First, instead of using traditional two-point raytracing al-

gorithms (Julian and Gubbins, 1977; Um and Thurber, 1987; Cervenf, 1987), we ap-

ply a new version of the minimum-traveltime raytracing approach (Saito, 1989, 1990;
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Moser, 1989, 1991) which can expand a wavefront in a regular grid model from its

source. Second, we view seismic refraction traveltimes as continuous "curves" rather

than uncorrelated data points. Therefore, we solve an inverse problem that takes

traveltimes in two different forms, i.e., minimizing the misfit of average slownesses

(traveltimes divided by the ray lengths) and the misfit of apparent slownesses (deriva-

tives of traveltimes with respect to distance). Third, we view model parameters as

correlated and realize that a meaningful tomography solution should not depend on

the model parameterization. Therefore, we apply Tikhonov regularization (Tikhonov

and Arsenin, 1977) to perform a global inversion in the sense of reconstructing the

whole model as opposed to applying ad hoc posterior smoothing constraints to keep

the inversion stable. We will show that not all the smoothing criteria in the Tikhonov

method can perform well for the refraction tomography. Fourth, we conduct uncer-

tainty analysis to quantify the resolution and variance of the solution. We view the

errors in the refraction traveltime data in terms of a common-shot error, a constant

shift from the "true traveltimes" of the same shot, and a relative traveltime-gradient

error. We construct two data vectors with random errors and one random model

vector, and apply a nonlinear Monte Carlo approach to estimate the posterior model

covariance.

3.2 Characterizing the Refraction Traveltime Prob-

lem

Seismic refraction contains both lateral and vertical subsurface information due to its

variety of raypaths. This variety is attractive because rays from a small number of

shots may cover a large area of the subsurface. However, it can also be potentially

dangerous because there may be too mauy possibilities of model solutions to produce
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the same traveltime curves due to the variety allowed. Although using Tikhonov

regularization to find a solution with minimum structure can eliminate those results

with extreme roughness (Constable et al., 1987), there may still be many solutions

that look physically reasonable and fit data equally well due to insufficient physical

constraints inherently occuring in the refraction problem. For instance, deep refrac-

tion raypaths are always poorly constrained but significant to our solution. If we can

characterize a refraction traveltime problem with sufficient physical concepts, we may

be able to constrain our solution to be more physically meaningful under quantita-

tive criteria. This leads to the discussion of the following issues, which governs our

philosophy for further numerical implementation:

(1) Unlike crosshole or reflection problems, ray lengths in the refraction problem

may range over two orders of magnitude. Short rays constrain the velocity more

tightly than do long rays, structure ambiguity increases with ray length. Therefore,

inverting the absolute traveltimes with the least-squares criterion would be poten-

tially dangerous because it tends to update the deep structure first for fitting long-ray

traveltimes due to their large misfit magnitude. We chose to minimize the misfit of

"average slownesses" (the ratios of traveltimes to the ray lengths) instead of "inte-

grated slownesses" (absolute traveltimes). This conversion modifies the traveltimes to

be of the same order, and allows for constraining the shallow structure more tightly.

It also allows one to characterize the data misfit in terms of a physical measure,

i.e., average slowness. The drawback of this approach is that the long-ray traveltimes

cannot be fit to the same variance with the short-ray traveltimes when using the least-

squares criterion for inversion. Consequently, the deep structure cannot be resolved

well. However, this problem can be solved by additionally inverting the traveltime

derivatives.

(2) Refraction data are conventionally utilized in the form of absolute traveltirnes

and traveltime derivatives with respect to distance. Both types of data provide inde-
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pendent information of the subsurface, alternatively, independent constraints on the

raypaths. The latter gives a local apparent slowness of a refractor, which is conceptu-

ally similar to the apparent resistivity in the electrical problem. Refraction traveltime

tomography method should also incorporate this type of data in the inversion and

explicitly minimize the misfit of traveltime derivatives. Although minimizing travel-

time misfit with the least-squares criterion tends to reduce the misfit of traveltime

derivatives as well, it does not explicitly specify a variance for the apparent-slowness

misfit. In terms of ray traveltime tomography, inverting traveltime derivatives also

ensures continuity of a wavefront across receivers, thus the solution maintains a wave

resolution as the traveltime curves imply.

Figure 3-1 shows several possibilities of calculated traveltimes that give the same

rms traveltime misfit but may correspond to different models if one uses the least-

squares criterion. The calculated traveltime at the receiver Ro is assumed to be fixed.

If the next receiver is placed at R, or R2 and the rms traveltime misfit remains

same, then the apparent-slowness (traveltime gradient) misfits for R1 and R 2 from

Ro are different, implying two different models. Therefore, one must account for

the receiver spacing when measuring the travelti me misfit in terms of least-squares

criterion. For the same receiver location (R2 and R'), the same rms traveltime misfit

may also correspond to two different traveltime gradients because of the use of the

least-squares criterion. Jointly inverting average-slowness data and apparent-slowness

data, one can reconstruct a model that fits the traveltime curves rather than the data

points only.

Bube and Langan (1989) addressed the problem with the least-squares criterion

from a different aspect: least-squares solutions of seismic inversion problems tend to

lie very sensitive to data points with large errors. Using If minimization with 1 <;

p < 2 gives more robust solutions, but usually with higher computation cost. Bube

and Langan (1989) thus proposed to apply an iteratively reweighted least squares
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approach with reasonable efficiency and solve a hybrid L1/L 2 minimization probl.in.

The hybrid L1/L 2 data fitting behaves like an L2 fit for small residuals and like an

L' fit for large residuals. They obtained favorable results when testing synthetic

crosswell tomography inversion. In this study, as an alternative approach, we keep

the simplicity of the L2 minimization, but we convert one L2 minimization problem

of the absolute traveltime misfit into two simultaneous L 2 minimizations. One is the

L2 minimization of the average slowness misfit, the other is the L2 minimization of

the apparent slowness misfit. We shall demonstrate that this alternative approach

also gives reliable results.

(3) Characterizing data error is important for us to understand issues of uncer-

tainty in the refraction traveltime problem. Errors in refraction traveltime data are

not arbitrarily "random", and generally do not have a zero mean to the "true trav-

eltimes" from a statistical point of view. From our experience with numerous field

experiments, we found it often difficult to determine an accurate zero time even with

a modern recording system for the large crustal imaging projects, or an electronic

trigger system for the small-scale survey purpose. For instance, in the latter case,

a constant trigger threshold under different near-surface geological conditions may

lead to different trigger delays (Zhang et al., 1996). Further, the primary data from

a seismic experiment are the waveform records, and the traveltimes are picked from

the primary data in one way or another. Random noise does not influence the picked

traveltimes explicitly. In fact, picking traveltimes from controlled-source records is

a process that relies in part on the phase moveout. Therefore, we define two types

of errors, common-shot error, a random shift for traveltimes at all the receivers from

the same shot, and a traveltime-gradient error which is mainly due to the traveltime-

picking uncertainty.
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3.3 Minimizing A Physically Meaningful Objec-

tive Function

We solve a regularized nonlinear inverse problem. Starting from an initial model con-

structed using a conventional analytical refraction approach (e.g., GRM method), we

iteratively update traveltimes and raypaths without assuming any interfaces or veloc-

ity functionals in the model. The refraction traveltime problem is highly nonunique.

If inversion algorithms are properly applied, one may easily find many solutions that

can predict the data equally well. However, not all these solutions are physically

meaningful. To obtain an optimal solution, our strategy is to establish quantita-

tive criteria for meaningful data fit and meaningful model correlation when sufficient

physical concepts are involved. Instead of inverting absolute traveltimes, we minimize

the misfit of the average slownesses and the misfit of the apparent slownesses. We

apply Tikhonov regularization (Tikhonov and Arsenin, 1977) to explicitly constrain

the model roughness as opposed to applying ad hoc posterior smoothing for keeping

the inversion stable. Specifically, we minimize the following objective function,

D(m)= (1 - w)IICI(d - G(m))112 + wl|D2(d - G(m))112 + rjfRmj2  (3.1)

= (1 -w)I|d- C(m)1 2 +wIcd- G(m)||2 +TIIRmI 2  (3.2)

= (1-w)Si + WS2 +TS 3  (3.3)

dL-f- .average-slowness data, (3.4)

^def Odd -= -: apparent-slowness data, (3.5)
Ox

where d is the traveltime data; G(m) is the calculated traveltime data for the current

model m; C1 is an operator that scales a traveltime with the corresponding ray length

I and returns an average slowness J along the raypath. Here, the ray length 1(m)

is a variable parameter, and it is updated iteratively in the tomographic inversion.

57



Later we will show that using the shot-receiver distance to replace I in the inversion

plays the same role as 1. D, is a differential operator for traveltime with respect

to distance, and d = Dd returns the gradients of the traveltime-distance curves

(apparent slownesses); R is a regularization operator; r is a smoothing trade-off

parameter; and w is a weighting factor between the average-slowness misfit norm

and the apparent-slowness misfit norm. As one can see, the objective function (3.1)

contains three terms all associated with slownesses in one way or another, i.e., the

misfit of average slownesses, the misfit of apparent slownesses, and the roughness of

slowness derivatives.

3.3.1 Inversion algorithm

Efficiency of numerical computation is important for performing a nonlinear travel-

time tomography. In addition to the fast raytracing approach that we described, we

also want to develop an efficient inversion procedure so that a large inverse prob-

lem can be rapidly solved on a workstation. For this purpose, a critical strategy is

to avoid explicitly dealing with the sensitivity matrix in inversion, i.e., one should

implicitly account for the effects of sensitivity matrices rather than constructing or

storing the sensitivity matrix itself for inversion (Mackie and Madden, 1993; Zhang et

al., 1995). For example, using the Gauss-Newton (GN) method to linearize the sta-

tionarity equation associated with minimizing the objective function (3.1) and then

applying a Conjugate Gradient (CG) approach to solve the inversion for each iter-

ation (Scales, 1987) is one of these approaches. Directly minimizing the objective

function using a CG method (Nolet, 1987) is another. Both techniques do not require

the storage of any matrix, but only the results of a matrix multiplying a vector or

its transpose multiplying a vector. We take the first approach to demonstrate our
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concepts in inverting refraction traveltime data. This leads to the following equation,

((1 - w)ATAk + wB[ Bk + rRT R + ekI)Amk =

(1 - w)AT(d - C(mk)) + wBf(d - G(mk))) - TRTRmk, (3.6)

def G I 9G
A =- =--- 1(3.7)

ab 8 _8
2G

B an(3.8)
3m OmOx'

mk+1 = mk+mnk, k = 1,2,3,..., N, (3.9)

where each non-zero term in Ak (average-slowness sensitivity matrix) contains the

length of a local ray across a model cell divided by the entire ray length, and each

non-zero term in Bk (apparent-slowness sensitivity matrix) represents the differences

of the ray lengths in a cell divided by the receiver spacing when the locations of two

adjacent receivers are used to calculate derivatives. In fact, apparent slowness can be

defined more robustly by giving different receiver combination. In this study we take

the simplest combination for the purpose of showing this concept.

Linearizing a nonlinear inverse problem in an iterative fashion may be highly

efficient for numerical computation. Linearization does not necessarily lead to a

"poor" solution or miss the "global" solution. In fact, it is a matter of question how

a nonlinear function is linearized and for what scale the linearization is applied rather

than linearization itself. We account for nonlinearity by adding a variable damping

parameter in the GN method as suggested by Morgan (1981). Because we explicitly

minimize model roughness as described by equation (1), large nonlinearity occurs

only in the early inversion stage due to a poor starting model, and the objective

function approaches a quadratic form when the data misfits (S1 and S2 in equation

(1)) are small and the model roughness (S3) becomes dominant. Following a procedure

described by Morgan (1981), we add a variable damping term ekI to the left-hand

side of equation (6) with ek = a' x rhs, where a- is an empirical parameter (about
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0.1) and rhs is the rms misfit norm of the right-hand side of equation (6). If the

objective function is not minimized well and quite nonlinear, then rhs is large, and a

large damping ek is automatically applied and only small model updates are allowed.

With the inversion proceeding further and rhs decreasing, a smaller Ck drives the

convergence speed faster. Several authors applied this approach to solve nonlinear

electrical tomography problems (e.g., Mackie and Madden, 1993; Zhang et al., 1995)

and demonstrated its effectiveness.

3.3.2 Average-slowness and apparent-slowness data

We chose to minimize the misfit of average-slowness data and the misfit of apparent-

slowness data instead of absolute traveltimes (integrated slownesses). There are sev-

eral advantages to use these concepts. We shall demonstrate the inversion perfor-

mance with numerical examples.

Figure 3-2 shows a numerical model consisting of 200 x 50 cells with a uniform

grid spacing 1.0 m. Its velocities vary from 600 m/s to 4500 m/s, and the structure

consists of a near-surface low-velocity zone, and a deep graben refractor. A total of

12 shots are assumed with 48 surface receivers at a 4.0 m spacing. Figure 3-2 also

illustrates the first-arrival raypaths for this survey, and Figure 3-3 displays calculated

traveltimes for the model. We first estimate the upper-bound velocities using a GR.M

type velocity analysis function (Palmer, 1980) and construct a 2-layer starting model.

Figure 3-4 demonstrates tomography results obtained by inverting different types of

data, i.e., integrated slowness, average slowness, and jointly average slowness and

apparent slowness. A third-order derivative operator (R in equation (1)) is applied in

all three inversions for regularization, and appropriate parameters are selected so that

all these inversions converge to the same rms traveltime misfit (0.1 ins). It appears

that inverting the absolute traveltimes tends to overestimate the features in the deep
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structure. Given an initial guess of the model, a larger misfit almost always occurs for

the longer-range traveltimes. Therefore, inverting the absolute traveltimes attempts

to produce deep features before the shallow structure is well reconstructed, and it

quickly reduces the misfit variance mostly associated with long rays. On the other

hand, inverting average slowness constrains the shallow velocities well, but cannot

precisely reconstruct the deep structure due to a larger misfit variance allowed for the

longer rays. Finally, this example shows that an optimal solution can be obtained only

by jointly inverting the average slownesses and the apparent slownesses. Figure 3-

6 and Figure 3-5 show the progressive reconstruction of the models when inverting

absolute traveltimes and traveltime curves, respectively. One can see that inverting

traveltime curves more tightly constrains the slowness structure at every inversion

iteration. The traveltime derivative data give independent structure information.

Figure 3-7 illustrates the progress of the inversion in terms of rms average-slowness

misfit, rms apparent-slowness misfit, and the objective function. Two experiments are

conducted, one, inverting average-slowness data only, the other, inverting average-

slowness data during the first 6 iterations and jointly inverting apparent-slowness

data from the 7th iteration. It appears that the misfit of traveltime gradients rapidly

decreases after the inversion starts to explicitly minimize the misfit of apparent slow-

ness. An appropriate weighting factor (w in equation (1)) is selected so that the rms

misfit of the average slowness and the apparent slowness converge to the similar vari-

ance, corresponding to the compatible resolving capability. Figure 3-7 shows that one

can also invert pseudo average slownesses (traveltimes divided by shot-receiver dis-

tances) instead of "true" average slownesses (traveltimes divided by ray lengths). In

terms of misfit measurements, they are nearly identical, but inverting pseudo average

slownesses avoids tracking exact ray lengths and thus saves computation time.

Figure 3-8 shows the traveltime fit for the noise-free data at iteration 4 (inverting

average slowness only) and at iteration 25 (jointly inverting average slowness and
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apparent slowness from the 7th iteration). At an early inversion stage (iteration 4),

traveltimes associated with short rays are preferentially fitted. With the inversion

proceeding, traveltimes associated with long rays are also fitted well due to inverting

the traveltime gradients (apparent slowness) until the misfit of the traveltime curves

becomes negligible (iteration 25). Although we eventually fit the absolute traveltimes,

inverting the traveltime curves with two separate da';a vectors gives different misfit

criteria and requires a different inversion procedure that progressively reconstructs a

model in a physically meaningful way. It also defines a physically meaningful measure

of the data misfit.

Traveltime calculation is the most time-consuming step of nonlinear traveltime

tomography. As we described earlier, our traveltime calculation method defines a

node distribution on the basis of the model complexity. Therefore, the CPU time

for each inversion iteration is nonuniform. Figure 3-9 presents CPU time for the

tomography experiment inverting both average-slowness data and apparent-slowness

data. Given a simple 2-layer starting model, the inversion is fast at the beginning, but

slow down when the detailed features appear in the model, and eventually becomes

stable when the whole model is reconstructed. This calculation was conducted on a

DEC 3000 workstation.

3.3.3 Tikhonov regularization

When an inverse problem is ill-posed, no matter how sophisticated the optimization

approach is, there can be no definitive "solution" solely on the basis of fitting the data.

In other words, minimizing only the data misfit (even including the traveltime gradient

data) does not have one "global solution". Of course, one could increase the grid size

up to the point where the number of grids is equal to the rank of the least-squares

matrix. But such a coarse model would not be sufficient to produce accurate forward
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solutions. For refraction traveltime tomography, most methods attempt to apply ad

hoc constraints to keep the inversion stable. These include filling areas between rays

with nonzero sensitivity (Hole, 1992; Cai and Qin, 1994), applying model gradient

derivatives to damp the model stepsize in a creeping manner (White, 1989), or using

a posterior low-pass filter to smooth the model itself after each iteration (Zhu and

McMechan, 1989). We chose to solve an inverse problem that explicitly minimizes

data misfit as well as model roughness using the Tikhonov regularization. The use

of Tikhonov regularization avoids solving an ill-posed inverse problem and validates

an inverse problem for an infinite number of unknowns (Delprat-Jannaud and Lailly,

1993; Zhang et al., 1996).

Applying Tikhonov regularization involves the use of model derivative operators,

and may produce a "smooth" solution. However, when we say "model smoothness"

or "model roughness", we must answer, "by what criterion?" In fact, we found that

not all smoothness criteria of the Tikhonov method perform well for the refraction

traveltime problem. We will study the following four criteria:

first-order smoothing : R = V, S3 = (Vm(x))2 dx, (3.10)

second-order smoothing: fR = V2 , S3 = J(V2m(x))2 dx, (3.11)

third-order smoothing: fR = V3 , S3 = f(V3m(x))2 dx, (3.12)

f ourth -order smoothing: fR = V4, S3 = J(V4m(x))2 dx. (3.13)

Each of these derivatives yields one criterion of smoothness. One can also apply a

higher-order derivative operator and define a different smoothness criterion for inver-

sion. Figure 3-10 shows a comparison of the inversion results for smoothness at three

different criteria, i.e., the first-order smoothing, the second-order smoothing, and the

fourth-order smoothing. All these numerical experiments are performed by inverting

both average-slowness data and apparent-slowness data. We select appropriate pa-

rameters to allow them to converge to the same misfit level. The application of a
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third-order smoothing operator is given in Figure 3-4.

The results show that the use of the first-order smoothness criterion for smooth-

ing (gradient smoothing) produces nonphysical smoothness because the true model

contains nonlinear velocity variations. The second-order smoothness criterion (cur-

vature smoothness) can effectively regularize the inverse problem. One can observe

the evidence that the resolution increases with the solution uncertainty. Applying

higher-order smoothness criteria yields oscillating near the structure interfaces where

the deep rays pass. Our experience shows that it is not necessary to apply a derivative

operator higher than the fourth order. When we applied the fourth-order smoothing

operator, we actually had to enforce the highest velocity in the model to be less than

4800 (m/s), which was estimated using the GRM method (the highest true veloc-

ity is 4500 (m/s)). This constraint helps to reduce the oscillation. Similar to the

performance of spline interpolation/extrapolation (Press et al., 1992), we found that

minimizing the second- or third-order model derivatives is more stable and has less

possibility of nonphysical oscillation. Figure 3-11 illustrates inversions with the 1st-

and 2nd-order derivative operators for a complex velocity model. The model con-

sists of random velocity variations with an Gaussian distribution. With 12 sources

and 48 receivers on the surface, we test synthetic traveltime tomography inversions.

As shown in Figure 3-11, the 1st-order smoothing operator tends to construct lin-

ear features in the model, while the 2nd-order smoothing operator allows nonlinear

variations in the velocity model.

We notice that some authors chose a regularization operator with different trade-

off parameters for vertical and lateral constraints or different derivative operators for

vertical and lateral regularization (e.g., Cai and Qin, 1994). This approach assumes

that the lateral velocity variations are smaller than the vertical variations in the

refraction problem. However, this assumption is not always true, particularly when

an undulating refraction boundary occurs.
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3.4 Measuring Nonlinear Uncertainty

A complete solution to any inverse problem must address issues of uncertainty. Two

important approaches in geophysics are the Backus-Gilbert method (Backus and

Gilbert, 1968, 1970), measuring uncertainty in terms of spread, and Bayesian infer-

ence (Tarantola, 1987), characterizing uncertainty completely through the posterior

covariance operator. We apply Monte Carlo methods to measure variance and res-

olution from the posterior model covariance associated with our regularized inverse

problem. Monte Carlo methods require inverting data vectors with random errors

starting from models with random perturbation for many realizations until the pos-

terior model covariance can be well approximated. We shall compare the performance

of nonlinear and linearized Monte Carlo methods in dealing with the refraction trav-

eltime problem.

Unlike waveform problems, noise influences traveltime data implicitly. Although

numerical algorithms can be applied to pick traveltimes automatically, the user often

has to determine where the first-break energy starts. In many cases, the user may

need to pick all of the traveltimes manually because of noise. As we addressed ear-

lier, we characterize refraction traveltime variance in terms of "common-shot error"

and "traveltime-gradient error". Figure 3-12 displays noise-free synthetic traveltimes

(solid curve) from the numerical experiment that we described and "picked" travel-

times with some assumed error patterns (dash curves). It seems unlikely that one

would pick or take such rough traveltimes for inversion as those shown in Figure 3-

12(a). In other words, assuming Gaussian errors for the absolute traveltimes is not

realistic even at a first look and inclusion of additional random shooting-time er-

rors is not realistic either (see Figure 3-12(b)). In fact, in most cases, one would

pick traveltimes by identifying the moveout of the first-break waves other than solely

based on a single trace. This leads to the possible picked traveltime curves that one
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may determine as shown in Figure 3-12(c), which contains "common-shot error" and

"traveltime-gradient error". Therefore, for uncertainty analysis with the Monte Carlo

methods, we need to construct two random vectors for data errors, and one random

vector for model perturbation with uncorrelated normal Gaussian distribution:

(1) (1) 274k = d+ e, ek ~IN(0, 1 ), (3.14)

4 =(d+W2)+2dA, ek)~ N(0,), (3.15)

mk =moo + e (3) e(3) N(0,o), (3.16)

k =1, 2, ... , K,

where, d is a data vector and d is a data-gradient vector, e) is the traveltime-gradient

error, dk is the perturbed data-gradient vector with error e; e is the shooting-

time error, and dk is a perturbed data vector by both the shooting-time error and

the traveltime-gradient error, Ax is the receiver spacing for which we consider the

traveltime gradient; nco is the solution of our nonlinear tomography inversion, and

mk is a perturbed model vector by error e). Because of our objective function defi-

nition, we can directly take the rms apparent-slowness misfit to be the variance of the

traveltime-gradient error oI, and use the rms average-slowness misfit for the variance

of the model perturbation a2. The variance of shooting times can be estimated using

the near-shot traveltimes or simply half a period of the refracted wave to account for

the variance of trigger responses.

After solving K realizations, we compute the posterior covariance matrix (Matarese,

1993),

= ^'C Z(m'k - mo)(frk - moo)T, (3.17)

where d5 e is the solution of the kth realization. In practice, we estimate a convergence

criterion So for the objective function and only accept those realizations with the

value of the objective function less than So.

We measure variance and resolution of our regularized nonlinear solution from Q,
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matrix. The square roots of the diagonal elements in Cm can be interpreted as "error

bars" describing the uncertainties on the posterior values of the model parameters.

More importantly, model correlation tells how well each point is resolved (Tarantola,

1987). For a point i, its correlation with the entire model is given by,

Cm(i,rt)
pi(n) C.= n)(3.18)

(Cm(i, i)) 1/2(Cm(n, n))(/28

n 2=12.N

where N is the total number of the model parameters. If the posterior correlation

is close to zero, the posterior uncertainty are uncorrelated. If the correlation is close

to +1, the uncertainties are highly correlated, indicating that the parameters have

not been independently resolved by the data set, but only some linear combination

of the parameters. If the correlation is close to -1, the uncertainties are highly anti-

correlated.

For the numerical experiment that we performed, we show uncertainty measure-

ments using a nonlinear Monte Carlo approach (250 realizations), i.e., allowing ray-

path perturbed in each realization (see Figure 3-13). The solution is obtained by

minimizing misfit of the average-slowness and apparent-slowness data, and the inver-

sion is regularized by the third-order Tikhonov method. We found that common-shot

error primarily influences the near-surface structure, particularly near the shot lo-

cations. The traveltime-gradient error mainly produces uncertainty along the deep

rays. Model correlation results from the nonlinear realizations show that two partic-

ular points that we select are fairly well resolved.

It is interesting to see that a better resolution is shown for the deep point right

above the graben bottom where rays actually do not pass. This estimate is correct,

because nonlinear traveltime tomography would not allow the velocities above the

graben refractor arbitrary. If the velocities are too high, the deep rays would move

up and reduce the velocities. If they are too low after the random model perturbation,
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regularized inversion would remove the low-velocity features which are not required

for fitting the data. Therefore, areas where rays do not pass may not be poorly re-

solved. Meanwhile, we also performed linearized Monte Carlo inversions to measure

uncertainty by fixing the raypaths for each realization (see Figure 3-14), which are

much faster than the nonlinear approach. For the selected model point in the shallow

low-velocity zone, applying linearized Monte Carlo method yields a resolution esti-

mate similar to the result obtained by using the nonlinear approach. This is because

many rays pass through the area, and the fixed raypaths are sufficient to constrain the

whole area in the model. On the other hand, linearized Monte Carlo inversions fail

to delineate the resolution of the second model point where rays do not pass. Since

insufficient ray coverage often occurs in the refraction traveltime problem, applying

nonlinear Monte Carlo inversions are necessary for measuring uncertainty.

3.5 Conclusions

After identifying a few important issues in the refraction problem, we speculate

on possible improvements in performing nonlinear refraction traveltime tomography.

These include developing an approach for accurate and efficient traveltime calculation,

defining data correlation and model correlation with physically meaningful concepts,

performing the inversion efficiently and effectively, and measuring uncertainty of the

regularized nonlinear solution. All these issues are important in conducting complete

refraction traveltime tomography. Therefore, we develop a new version of the SPR

method with sparse and iso-angle node distribution which is particularly useful for

refraction calculation. We take traveltimes into the inversion with two separate data

vectors, i. e., average slowness and apparent slowness. As a result, we invert the en-

tire traveltime curves rather than uncorrelated traveltimes. Because we deal with

an ill-posed inverse problem, we cannot obtain an unique and stable solution solely
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on the basis of fitting the data. It is necessary to apply additional constraints. The

approach that we have taken is to employ a smoothness operator (2nd, 3rd or 4th

order) to find the simplest or a minimum-structure solution that fits the data to a

given tolerance. Not only do we obtain a solution, but we also measure the variance

and resolution of the solution. We found it important to apply a nonlinear Monte

Carlo method for measuring the uncertainty of the regularized solution in the area

where rays do not pass. Finally, our tomography techniques prove effective in both

numerical experiments and two real cases that will be shown later.
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Figure 3-1: A demonstration of the limitation on the least-squares criterion for mea-
suring traveltime fit. The calculated traveltimes at R1, R2 and R' all have the same
rms misfit in terms of a least-squares criterion, but their traveltime gradients rela-
tive to Ro fit the data gradients differently, thus corresponding to different model
solutions. Therefore, a meaningful solution must fit the traveltimes as well as their
gradients which are associated with the receiver spacing.
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Figure 3-2: Numerical experiment for resolving a graben model containing a near-
surface low-velocity zone. A "true" velocity model (200 m by 50 m) is gridded into
200 by 50 cells. raypaths for 12 sources and 50 receivers on the surface, and an
estimated starting model for inversion are presented.
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Figure 3-3: Calculated traveltime curves for the graben model.
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Figure 3-4: With a 3rd-order derivative regularization, inversion results from inverting
traveltime data only; average slownesses only (ratios of traveltimes to the ray lengths),
or both average slownesses and apparent slownesses (traveltime gradients); the last
one shows the best performance for resolving graben shape and velocities.
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Figure 3-5: Iterative solutions by inverting absolute traveltimes.
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Figure 3-6: Iterative solutions by inverting traveltime curves.
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Figure 3-7: Two inversions using a 3rd-order derivative operator for regularization

but different data are conducted for the model shown in Figure 3. One inversion (solid

curve) takes average slowness data only in all 30 iterations; the other (dash curve)

starts to explicitly minimize misfit of traveltime gradients (apparent slownesses) from

the 7th iteration. Right from here, a rapid decrease of rms misfit is shown for both

average and apparent slowness. The objective function becomes slightly larger due

to the sudden inclusion of an 12 norm of the traveltime gradient misfit.
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Figure 3-8: Traveltime data fit at iteration 4 and iteration 25. It demonstrates that
tomography tends to invert near-shot traveltimes in the early inversion stage, later
fits the long-offset traveltimes.



Iteration computation time

Inversion Iteration

Figure 3-9: CPU run time for each inversion iteration. Note they are not equal
because our forward traveltime calculation depends on model heterogeneity, and also
because inverting apparent slowness data starts at the 7th inversion.
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Figure 3-10: Inverting average-slowness and apparent-slowness data, tomography re-
sults using 1st-order derivative operator (over-smoothed), 2nd- and 4th-order deriva-
tive operators for regularization.
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Figure 3-11: Inverting complex velocity model with 1st- and 2nd-order smoothing

operators.
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Figure 3-12: noise-free synthetic traveltimes and "picked" traveltimes with assumed
noise pattern: a) adding random Gaussian noise to the absolute traveltimes; b) adding
random Gaussian noise to the absolute traveltimes and to each shot record; c) adding
random Gaussian noise to the traveltime gradients and also adding random Gaussian
noise to each shot record. Pattern c) is realistic for refraction problem.
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Figure 3-13: Uncertainty analysis using a nonlinear Monte Carlo method: it shows
% standard error in the reconstructed slowness values as a function of position, and
model correlation at two selected points. Both are well resolved.
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Figure 3-14: Uncertainty analysis using a linearized Monte Carlo method by fixing
raypaths of the final solution. For the second point that is not covered by any rays,
linearized method fails to estimate its resolution, while for the first one where many
rays pass, the correlation estimate is similar to that from nonlinear method.





Chapter 4

Joint Refraction Traveltime

Migration and Tomography

Abstract

Migration and tomography represent two major methods in state-of-the-art seismic
imaging technology. Migration maps interfaces in the subsurface by reconstructing
physical raypaths from a downward continuation process, while tomography recon-
structs a physical model by inverting recorded data. For interpreting refraction travel-
times, we present two new approaches that combine migration and tomography in one
joint imaging process in an iterative manner. The slowness parameters on a regular
grid can be updated on the basis of fitting traveltimes as well as defining interfaces
associated with the migrated traveltime image. The first method, model-interface
method, assumes that a slowness discontinuity corresponds to the entire migration
image. Therefore, a reference curvature constraint is emplaced at the image location
by way of Tikhonov regularization. The second approach places a discontinuity in the
regularization (Laplacian) operator according to the location of the migration image,
thus we call it derivative-interface method. The first method gives a stronger model
constraint, while the second one relies more on the data. We demonstrate that both
methods are capable of reconstructing sharp features.



4.1 Introduction

Although imaging the shallow earth using the seismic refraction methods has long

been a standard approach, reconstructing reliable and high-resolution image from

traveltimes is still a challenge. Conventional traveltime approaches (e.g., GRM method,

plus-minus method) are efficient, but they are only applicable to simple problems be-

cause of the many structural assumptions required for interpretation. Inverting a

large number of traveltimes from many shots, in a fashion of the tomographic imag-

ing, has recently become a more attractive tool, because tomography methods can

potentially deal with more complex media (White, 1989 ; Zhu and McMechan, 1989;

Ammon and Vidale, 1993; Stefani, 1995; Pullammanappallil, 1994). However, many

studies showed that sharp interfaces in the subsurface generally are not necessary fea-

tures for fitting the refraction traveltimes (Zhu and McMechan, 1989; Stefani, 1995).

Subsequently, turning-ray tomogarphy methods are developed, and applied to obtain

a smooth velocity structure. In Chapter 3, we presented a nonlinear refraction trav-

eltime tomography approach that explicitly accounts for the physical context of the

refraction traveltimes and applies Tikhonov regularization to obtain a stable solu-

tion. In this chapter, we show a further improved technique that combines refraction

traveltime migration with nonlinear refraction traveltime tomography in one joint

algorithm which is capable of reconstructing a reliable velocity model with a sharp

interface. This joint process updates a slowness model associated with the physical

raypaths of refractions derived from a traveltime migration.

Refraction traveltime migration consists of two steps: wavefront reconstruction

and the application of an imaging condition. The wavefront reconstruction method

is one of the earliest of the many techniques for interpreting refraction traveltimes.

Thornburgh (1930) demonstrated that subsurface wavefronts could be reconstructed

from surface arrival times by applying Huygens's principle in reverse. Subsequently,



Hagedoorn (1959) elucidated an imaging condition for delineating a refracting horizon.

Reconstructing wavefronts of the surface arrival times and then applying imaging

condition yields the spatial image of the refractor. The physical concepts of this

procedure are similar to those in the prestack reflection depth migration. Aldridge

and Oldenburg (1992) implemented a refraction traveltime migration method using a

finite-difference approximation to the solution of the eikonal equation for traveltime

calculation. They called it "wavefront reconstruction method". Since the wavefront

reconstruction is really only the first step in the method, we view the two-step imaging

approach that they described as "migration". In fact, the wavefront reconstruction

is equivalent to the process of the downward continuation in the reflection migration

method, and applying the imaging condition yields a migrated traveltime system.

We point out that refraction migration methods can be also applied to the seismic

wavefield data as demonstrated by Clayton and McMechan (1981) and Hill (1987).

Although the application of refraction migration method may yield a clear image

of the refractor, the imaging process requires an accurate velocity input in the same

way as in the reflection migration problem. Unlike reflection problem, the refraction

wavefront reconstruction is a wide-angle process. It requires an accurate raytracing

approach for the traveltime downward continuation. We shall apply a new version of

the minimum-traveltime method (Zhang and Toks6z, 1996). The method is far more

accurate than the finite-difference approach which expands a "square wavefront",

and also more accurate and efficient than the minimum-traveltime method by Saito

(1989, 1990) and Moser (1989, 1991). We present two algorithms that jointly perform

refraction traveltime migration and tomography. In an iterative manner, nonlinear

refraction traveltime tomography reconstructs a velocity model to be used by migra-

tion, while the migrated image in turn helps locate sharp interfaces associated with

refractions for the tomographic imaging. In principle, we simultaneously reconstruct

velocities and wavefront systems by such a joint process.



4.2 Refraction Traveltime Migration

Before we introduce refraction traveltime migration, we will first recall what reflection

migration is about. Although interpretation procedures in the way of "migration" was

really first started in the refraction problem (Thornburgh, 1930; Hagedoorn, 1959),

the full concept of migration was later completed in the reflection problem as a general

approach to interpret seismic reflection data. Among many contributors, Claerbout

(1971) established a fundamental framework for reflection wavefield migration. Since

then extensive applications of migration techniques on computers have been developed

for petroleum exploration (Gardner et al., 1974; French, 1975; Stolt, 1978; Gazdag,

1978).

Seismic reflection migration involves reconstructing the subsurface image from the

surface wavefield recordings. Instead of inverting the entire wavefield data to recon-

struct a large number of physical parameters in the earth, migration simplifies the

imaging problem by mapping seismic events back into the subsurface on the basis of

reversing a forward wave propagation process. Therefore, migration is believed to be

more efficient and practical than wavefield tomography. We should point out that mi-

gration and tomography are two completely different imaging techniques, according

to the physics and mathematics that they rely on. One cannot view migration as one

iteration of the tomographic inversion, or linearized tomography. In practice, reflec-

tion migration and tomography need different forward modelers for simulating wave

propagation, for example, one-way wave equation for migration, but full (accoustic

or elastic) wave equation for tomography. Tomography attempts to fit the recorded

data by reconstructing a physical model, while migration downward continues the

data without any effort to fit them but reconstructing a wavefront system instead.

Both reconstruction processes are nonlinear to the seismic velocities, thus requiring

sophisticated numerical techniques.



Refraction traveltime migration is an unique approach. Two oppositely propagat-

ing wavefront systems are reconstructed from the arrival times recorded on a forward

and reverse spread, respectively. Then, pairs of these subsurface wavefronts intersect

on or slightly below the refracting interface when the sum of their times equals the

known reciprocal time. The downward continuation of two wavefront systems are

separately completed by activating a line source at the receiver array each time. The

line source is activated sequentially with an initiation function T,(X) derived from

the recorded refraction arrival times T(X):

Ts(X) = Tr - T(X) (4.1)

where Tr is the reciprocal time. To properly image both edges of refractor where they

are not covered by the forward and reverse raypaths, one needs to construct phantom

arrival times from the traveltimes of offset shots (Rockwell, 1967; Ackermann et al.,

1986). The direct arrival times from the forward and reverse shots are replaced by

the corresponding offset data with parallel moveout (see Figure 4-1). The downward

continuation of a wavefront system is straight-forward using the minimum-traveltime

method, which can expand a wavefront from any source. With the recent improve-

ment made by Zhang and Toks6z (1996), the method is fairly accurate for complex

velocities. Figure 4-2 depicts downward continuation of the forward and reverse ar-

rival times for a two-layer graben model. Constant layer velocities 800 m/s and

3500 m/s are given in the model. Downward continuation of surface arrival times

with the overburden velocity 800 m/s in the entire model results in reconstructed

traveltimes t1 (x, z) and tr(X, z), corresponding to the forward and reverse data, re-

spectively. Then, according to Hagedoorn's imaging principle, the refracting interface

is implicitly defined by the relation,

tf(X, z) + tr(X, z) = Tr. (4.2)
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Therefore, we sum two downward continued wavefront systems, and locate grid points

where the imaging condition (4.2) is satisfied. Figure 4-2c illustrates the superposition

of the two reconstructed wavefront systems shown above and the migration image

(solid line). The resulting depth is an accurate spatial image of the original refracting

horizon.

Figure 4-3 shows the forward, reverse, and offset traveltimes for the graben model

that we studied in Chapter 3 (see Figure 3-2). It has variable overburden velocities. A

shallow low-velocity zone is in one side of the model, making the model asymmetric.

Thus the arrival times vary with offset due to the shallow complex velocity structure.

Figure 4-4 displays the downward continued wavefronts and the migration results

using the exact overburden velocities. Again, the graben geometry can be well imaged.

The refraction migration procedure that we described above is similar to the

prestack depth migration in reflection seismology. In prestack depth migration, one

needs to downward continue a wavefront system from a shot impulse and a wavefront

system from the recorded data, and apply an imaging condition. However, there

are some differences between two procedures. Two downward propagators in the



refraction migration are same, while the reflection migration employs a down-going

propagator for shot and a up-going propagator for the data. In the refraction mi-

gration, the imaging condition is applied only once after downward continuation is

completed in the entire model; but in the prestack reflection migration, after each

depth step of the downward continuation, the imaging condition needs to be applied

once to determine possible image. On the other hand, refraction imaging condition

yields the correct refracting horizon only if the earth consists of constant velocity

layers bounded by plane dipping interfaces, but the reflection imaging condition is

correct for any velocity model in theory as long as it is dealing with the reflected

events.

Refraction imaging condition is a good approximation in general as demonstrated

by several authors (Hagedoorn, 1959; Rockwell, 1967; Schenk, 1967; Hill, 1987;

Aldrige and Oldenburg, 1992). Note that the refraction imaging condition is only

approximately valid in the two examples above, because raypaths of the forward and

reverse shots are not coincident with the entire refracting horizon due to graben geom-

etry. The migration results, however, are fairly accurate. This is because unrefracted

wavefronts still cross near the interface when the reciprocal raypath associated with

the refracted wavefronts is off the interface (Hill, 1987).

Refraction migration can yield an accurate image of refractor, but it requires

detailed knowledge of the near-surface velocity structure. Therefore, the true strength

of this technique can be achieved only when a tomography method is applied to

obtain an accurate velocity model. In this study, we will solve a joint migration and

tomography problem. Because the migration output is the image of a refractor, and

the tomography output is a velocity structure, the immediate question is, how do we

automatically tie two different processes together? We shall present two algorithms

to answer the question.



4.3 Joint Migration and Tomography Algorithms

In Chapter 3, we described a nonlinear refraction traveltime tomography method that

inverts traveltimes in a physically meaningful way. We converted refraction travel-

times into average slownesses and apparent slownesses for inversions, and regularized

the inverse problem with the Tikhonov method. Therefore, the objective function

consists of three terms. Using a conjugate gradient (CG) approach or a combined

Gauss-Newton (GN) and conjugate gradient method (Scale, 1987; Mackie and Mad-

den, 1993; Matarese, 1993; Zhang et al., 1995), one can minimize the objective func-

tion (3.1) without constructing or storing any sensitivity matrices. Therefore, the

tomographic inversions can be very efficient. In this study, we apply GN-CG method

to solve a joint imaging problem iteratively.

Our objective is to combine migration and tomography in one joint imaging pro-

cess. The approaches that we take are to apply constraints derived from the migration

to the Tikhonov regularization for the tomography inversions. The Tikhonov method

has been extensively applied in the geophysical tomography inversions to serve several

purposes:

1. To produce a minimum-structure solution which does not have unnecessary

features or roughness to fit the data to a predetermined misfit level (Constable et al.,

1987). From a statistical point of view, such a solution has the highest probability

for the available data.

2. To perform a global inversion in the sense of reconstructing the whole model

(Matarese, 1993).

3. To avoid solving an ill-posed inverse problem by defining effective regularization

criterion in the class of the Tikhonov method so that the inverse problem is valid for



continuum and the solution is grid-independent (Delprat-Jannaud and Lailly, 1993;

Zhang et al., 1996; Zhang and Toks6z, 1996).

The use of the Tikhonov method involves applying a derivative operator. A Lapla-

cian (second-order derivative) operator is a favorite one (Constable et al., 1987; Smith

and Booker, 1988; Rodi, 1989). In the following, we will show that regularization does

not always produce a "smooth" solution as one may expect. When we say "smooth-

ness", in fact, we must have an explicit criterion for it. This leads to the two methods

for performing joint imaging studies.

4.3.1 Model-Interface Method

If we can construct a curvature constraint from the migration result, we may obtain

a slowness model with sharp features by using a new form of the Tikhonov regular-

ization. Suppose that im(k) is a traveltime migration image (impulse response), and

we assume a constant magnitude of a slowness change As at the interface associated

with the migration image, and m is the slowness model, then we rewrite the third

term in the objective function (3.3) with the inclusion of the migration image,

S3 = lAs(Di(im)) - D2 (m)112  (4.3)

where Di is a first-order derivative operator, and D 2 is a second-order derivative

operator.

The regularization term as defined in the equation (4.3) places a model curvature

constraint with reference to the migration image. Figure 4-5 illustrates how it works.

Considering a 1-D slowness structure, for a step change of the slownesses at a refrac-

tion interface with As (sai+ - si), the slowness gradient across the interface is a delta

function with a finite magnitude As. The curvature of the model slownesses across the

interface can be evaluated by calculating the gradient of the delta function. Because



the traveltime migration image is like an impulse, and corresponds to the refraction

interface, we can view the image as the gradient of a reference slowness model which

consists of one interface separating two constant-slowness areas. Therefore, applying

a first-order derivative operator on the migration image associated with the current

model produces a curvature constraint for the nonlinear tomography inversion in the

same iteration. We call this technique "model-interface method", because it assumes

that the slowness interface coincides with the migration image.

Migration imaging is a process that needs accurate velocity information. There-

fore, it is not necessary to conduct migration when the shallow velocities have not

been reconstructed sufficiently well. In practice, we conduct tomographic inversions

for a few iterations until the traveltime misfit is less than a predetermined criterion,

then we start to perform joint migration and tomography. Hereafter, the migration

image and the slowness parameters are simultaneously updated after each subsequent

iteration. During this joint process, a significant raypath update may appear although

there may not be much change in the traveltime misfit. Note that the slowness change

magnitude As in the equation (4.3) has to be provided for conducting joint migra-

tion and tomography. However, we shall show that the imaging results are not very

sensitive to this parameter. Inverting the data will eventually reconstruct a proper

slowness jump when the location of the jump is correct.

Figure 4-6 demonstrates the application of the joint migration and tomography al-

gorithm to the graben model experiment. At early inversion stage, the major concern

is to reconstruct a reasonable velocity model before migration is applied. Therefore,

during the first 5 iterations, only tomography inversions are conducted. But the mi-

gration results (solid line) using the corresponding velocity models are also plotted in

the figure. Starting from the 6th iteration, the joint traveltime migration and tomog-

raphy algorithm is applied. Figure 4-6 shows the final solution at iteration 10, which

reconstructs both velocities and interface well.



4.3.2 Derivative-Interface Method

Applying a Laplacian operator for regularizing the inverse problem as in equation

(4.3), we assume that the model parameters are correlated, and we conduct inver-

sions to reconstruct the whole model with the same correlation. In seismic refraction

problem, however, we often deal with the earth structure that consists of different

geological units, namely, overburden low-velocity zone, high-velocity refractor. Phys-

ically, the elastic parameters in one geological zone may not be correlated with those

in the other geological zone. If we can construct an interface between two zones by

way of migration, we may correlate model parameters in the same zone only and

allow tomography inversion to determine any possible slowness jump across the inter-

face. This motivates the second approach for doing joint migration and tomography:

constructing an image driven regularization operator which has a derivative discon-

tinuity along the migration image. Specifically, we rewrite the regularization term in

equation (3.1) for joint migration and tomography:

S3 = ||Rim||2  (4.4)

where RI is an image driven operator, which varies with iteration when joint migration

and tomography is activated. In Figure 4-5, we illustrate derivative discontinuity

across cell i and i + 1 along z axis (depth). In numerical implementation, a difference

operator is applied instead of a differential operator for the regularization purpose

(e.g., Constable et al., Ammon and Vidale, 1993, Zhang et al., 1996). An uniform

Laplacian operator connects three cells and returns a roughness residual, si_ 1 - 2si +

si+1 for point i, and si - 2si+ - Si+2, for point i + 1, except at model edges. When

a migration image is derived, i.e., it is located between cell i and cell i+1, we design

an operator Ri such that it has a derivative discontinuity across the image, returning

si_1- s for point i, and -si+2 + si+1 for point i +1, and the same three-point formula

for cells elsewhere except for the model edges. Therefore, there is no connection

between cells i and i + 1. In other word, the slowness change across the image



si - si±1 is not constrained at all, inversion will determine this value on the basis of

fitting data and correlating model parameters in each individual zone.

We take a similar procedure to the first method, i.e., conducting nonlinear refrac-

tion traveltime tomography for a few iterations, then activating joint migration and

tomography until the rms traveltime misfit is acceptable. One may choose different

regularization parameters for each correlated parameter zone, say, T1 for the upper

zone, and T2 for the lower zone. In general, a smaller -T may be selected for the over-

burden medium, because large velocity variations may occur in the shallow structure.

A smaller r1 allows larger model roughness. In theory, there should be one unique set

of -rs that allows a model to fit data to a predetermined noise level. However, one may

not be able to find the exact rs needed without conducting any inversion, because

such optimal regularization parameters are associated with data residuals and model

residuals. Therefore, trial-and-error experiments are required. Numerical examples

will be demonstrated.

4.3.3 Comparison of Two Algorithms

Two different approaches can be applied to accomplish same goal, i.e., jointly con-

ducting migration and tomography on the basis of regularizing the model parameters.

The first approach, which places an a priori curvature constraint, seems to apply a

stronger penalty on the model slownesses than the second one. When the migration

image is taken into the tomography inversion as a curvature constraint in certain

iteration, a slowness interface must appear at the image location. When the second

approach is applied and the model correlation is disconnected for areas above and

below the image location, the migration image only implies a possible interface in the

model. Whether the interface is true and how large the slowness jump is, it will be

further determined by the nonlinear tomography inversion. In other words, during



the joint process, our first approach completely trusts the migration result, while the

second one leaves the image reliability to tomography. As we addressed earlier, the

imaging condition in the refraction migration problem is not exact, but approximate.

The situation that the migration image does not correspond to a refractor could hap-

pen, where the second approach can be more applicable. On the other hand, the

first approach can be more useful if the deep rays cannot sufficiently constrain the

refractor in the way of the tomographic inversion, and if the refractor geometry is not

too complex. We shall show that both approaches can well reconstruct the graben

model. For a model that consists of a discontinuous refractor, however, only the

second (derivative-interface) method works well.

Figure 4-6 shows a model consisting of a shallow low-velocity zone, and a deep

refractor with sharp horizontal interface and lateral discontinuities. The model scale

is exactly same with the graben model, and we actually take the calculated traveltimes

for the same shots and receivers as for the graben model and investigate the resolving

capabilities of the two joint imaging approaches. Figure 4-7 displays forward, reverse,

offset traveltimes and phantomed traveltimes. In comparison to the traveltimes shown

in Figure 4-3 for the graben model without the lower layer discontinuity, a systematic

delay occurs for all far receivers. This suggests velocity ambiguity for the overlain

discontinuity.

In the following tomography and joint migration and tomography imaging pro-

cesses, we start from a homogeneous initial model. The image resulted from nonlinear

refraction traveltime tomography shows a major shape of the graben with relatively

large velocity contrast near the edges of graben. It also shows evidence that under

the central graben bottom, velocity is low, but it does not show sharp lateral contrast

owing to the nearly horizontal raypaths. Joint migration and tomography methods,

however, accurately reconstruct sharp horizontal interface. In Figures 4-6c and 4-6d,

migration images are also displayed over the velocity solution for illustration. Both



model-interface and derivative-interface methods show evidence of low velocity under

the central graben. In fact, their solutions are nearly identical.

It is also important to know how the solutions of the two joint imaging methods

are sensitive to the choices of the a priori parameters, for example, slowness variance

As in the model-interface method, and the trade-off parameters r1 and T2 in the

derivative-interface method. We will repeat joint migration and tomography for a

range of these parameters and demonstrate their sensitivities to the solutions.

The true velocity change at the refractor interface is 1500 m/s (from 3000 m/s to

4500 m/s) in the graben model. Figure 4-8 illustrates that the model-interface method

is capable of imaging structure when an approximate estimate of this parameter is

used, for example, 1000 m/s and 2000 m/s, respectively. As we learned in Chapter 3,

one may find many global solutions from conducting nonlinear refraction traveltime

tomography fitting data equally well. The role of As in the model-interface method

is to direct the joint migration and tomography imaging to obtain one global solution

that has an interface associated with the migration image. Therefore, this parameter

need not be exact. In fact, one can estimate this parameter reasonably well based on

velocity analysis from the traveltime curves prior to imaging.

When applying the derivative-interface method, we need select the regularization

trade-off parameters T1 and r2 . Matarese (1993) showed the general role of the regu-

larization parameter in nonlinear traveltime tomography. With r increasing, the rms

traveltime misfit increases and the model solution becomes smoother. In contrast,

with r decreasing, the rms traveltime misfit also decreases, and the model tends to

be rougher. The idea is to choose a proper r so that the rms traveltime misfit con-

verges to a predetermined noise level when dealing with real data, and the solution is

geologically meaningful. Using the derivative-interface method for joint imaging, we

may need to select two different trade-off parameters as we addressed earlier. Figure



4-9 shows that the graben model can be well reconstructed if we take r1 and r2 to be

20.0 and 200.0, respectively. But the results also show that they are not too sensitive

to these parameters. With the change of r1 or r2 by a factor of 2, the solutions are

still acceptable.

4.4 Low Velocity Zone Problem

Joint migration and tomography proves to be very useful for imaging the graben

model. It combines the advantages of migration and tomography, and allows to

resolve a sharp interface and smooth velocity structure. However, it by no means

solves all the difficulties in the refraction traveltime problem. In this section, we shall

show that the joint method does not help to improve the low-velocity zone image in

the subsurface. The low-velocity zone problem has long been a difficult one for the

application of the refraction traveltime method (Zanzi, 1990).

We start from a two-layer model with dipping interfaces as shown in Figure 4-

11. At very short offset distance, the first-arrivals are the direct waves, then the

refractions from the first interface. At long offset distance, the refractions from the

second interface come first. In Figure 4-12 we show a modified model and place

a low-velocity zone (Vp: 1700 m/s) in the second layer (average P-wave velocity

2300 m/s). In this case, many rays pass above or beneath the low-velocity zone,

but few pass through the zone. The first-arrival traveltimes for both models are

presented in Figure 4-13 for a comparison. The influence of the low-velocity zone is

small, showing low sensitivity. We apply both tomography and joint migration and

tomography method to the synthetic traveltimes for the two models, and reconstruct

them from a homogeneous starting model (P-wave velocity 3200 m/s). In these cases,

we apply the model-interface method in the joint imaging approach.



In Figure 4-14, we show the results of imaging the two-layer model by way of

traveltime tomography and joint migration and tomography methods. Similar to the

graben model that we demonstrated earlier, joint method can better reconstruct the

image than the tomography method, resolving a sharp interface associated with the

forward and reverse traveltimes. For the second model consisting of a low-velocity

zone, Figure 4-15 shows that the tomography method roughly resolves a low-velocity

zone in the second layer, but the geometry of the interface between the second and

the third layers apparently trades off the velocities in the zone, resulting in a biased

solution. The joint method does not improve the solution, and the interface beneath

the low-velocity zone is incorrectly placed due to the incorrect overburden velocities.

However, both solutions give traveltimes to fit "data" equally well with rms misfits

less than 0.1 ms.

This experiment suggests that the joint imaging method may still suffer from

nonuniqueness although it reduces the number of possible solutions because of the

additional data information that is utilized. This problem occurs due to the limited

physical information in the data. As we can see in Figure 4-13, the signature of

the low-velocity zone in the subsurface is very small for receivers on the surface.

Therefore, it is easy to find many solutions to explain the data. Among those, the

easiest one, a minimum-structure solution, may not approximate the true model well

if sharp boundary exists around the low-velocity zone. Possible approaches for solving

such a problem in the future may include method that accounts for the first-arrival

amplitude and its attenuation in some way, or that applies a priori low-velocity

constraints in the tomography inversion.
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4.5 Conclusions

In this chapter, we introduce two new imaging approaches that combine refraction

traveltime migration and tomography in one joint process. Two methods proposed

both on the basis of regularizing model parameters, are, model-interface method

and derivative-interface method. The model-interface method completely trusts the

migration result and assumes a slowness discontinuity along the entire image. The

derivative-interface method, on the other hand, suggests a possible interface at the

image location, allowing the tomography inversion to update slownesses in both sides

of the image and further determine whether an interface should stay. From a first

look, it seems that the second method should be more flexible. Nonetheless, when the

ray coverage in the subsurface is not sufficient, the first method may be more useful,

with a stronger constraint, provided that the refractor geometry is not too complex.

Finally, when we evaluate the performance of joint migration and tomography

approaches, we have to admit that the results are fairly good for general structures.

All these tests started with an initial homogeneous slowness model, but the slowness

structure was well reconstructed after about 10-15 iterations. Remember that we

used only the first-arrival refraction traveltimes recorded on the surface. On the

other hand, we also demonstrated some difficulties of the methods when imaging the

low-velocity zone in the subsurface.

Why does a joint migration and tomography imaging method work better than

the tomography alone? The answer is simple: because the sufficient physics context

of the seismic wave propagation has been accounted for in the joint imaging methods.

Migration and tomography represent two different perspectives on the seismic data,

the earth model, and their relationship. The former tries to reverse the wave propa-

gation process (forward modeler) and uses the data as an initial condition; the latter

attempts to reverse the input (model parameters) and the output (data) in the seis-
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mic wave propagation. When two approaches are combined, it presents a maximum

resolving power.
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Figure 4-1:
model. The
the purpose

Forward, reverse, and offset traveltimes for a simple two-layer graben
forward and reverse traveltimes are phantomed with the offset data for
of migration.
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a) Downward continuation of the forward traveltimes

b) Downward continuation of the reverse traveltimes

c) Superposition of the two reconstructed wavefronts

20 m

Figure 4-2: Downward continuation of the phantomed forward and reverse traveltimes

with the overburden velocity constructs two wavefront systems. Summing up two

wavefront systems and applying an imaging condition yields an migration image.
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Figure 4-3: Forward, reverse, and offset traveltimes for a graben structure with vari-
able overburden velocities. Notice asymmetric traveltime curves due to a low velocity
zone in the left side of the model.
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a) Downward continuation of the forward traveltimes

b) Downward continuation of the reverse traveltimes

c) Superposition of the two reconstructed wavefronts
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Figure 4-4: Downward continuation of the phantomed forward and reverse traveltimes
with the overburden velocity constructs two wavefront systems. Applying an imaging
condition yields migration result which is fairly close to the model interface.
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Figure 4-5: a) 1-D slowness cells; 2) taking derivatives of a) results in an impulse
response. If we use the migration image to correspond to this interface, a curvature
constraint can be constructed by taking derivative of the image. See text for details.
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Joint Migration and Tomography

Iteration 3

Iteration 5

Iteration 10

30m

6001000 2000 3000 4000 4800

Velocity (m/s)

Figure 4-6: Iterative solutions using a model-interface algorithm for joint traveltime
migration and tomography. During first 5 iterations, only tomography inversions are
conducted. From the 6th iteration, joint algorithm is applied.
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Figure 4-7: a) a graben model with overlain discontinuity; b) nonlinear refraction
traveltime tomography; c) solution of joint migration and tomography by model-
interface method (migration image displayed); d) solution of joint migration and
tomography by derivative-interface method (migration image displayed).
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Figure 4-8: Forward, reverse, and offset traveltimes for the model shown in Figure
4-6. Forward and reverse traveltimes are phantomed for migration imaging.
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Constraining interface by model discontinuity

AV = 1000.0 (m/s)

AV = 1500.0 (m/s)

AV = 2000.0 (m/s)

600 2000 3000 4000 4800
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Figure 4-9: Imaging graben structure by model-interface method with a range of
assumed velocity change at interface. Solutions show little sensitivity to the choices
of these parameters.
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Constraining interface by derivative discontinuity

tl = 1o, t2 = 200

Tl = 20, T2 = 200

Tl = 20, T2= 100
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Figure 4-10: Imaging graben structure by derivative-interface method with a range
of regularization trade-off parameters. Solutions show little sensitivity to the choices
of these parameters.
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Velocity Model
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Figure 4-11: A two-layer velocity model, and raypaths of the first arrivals from 15
sources to 96 receivers on the surface.
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Velocity Model
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Refraction Raypaths

20 m

Figure 4-12: A two-layer velocity model with a low-velocity zone in the second layer,
and raypaths of the first arrivals from 15 sources to 96 receivers on the surface.
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Traveltime Curves

Horizontal Distance (m)

without low-velocity zone

------ with low-velocity zone

Figure 4-13: The first-arrival traveltimes for the two-layer model (solid line), and for
the two-layer model with a low-velocity zone in the second layer (dashed line).
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Figure 4-14: Tomography and joint migration and tomography solutions for the two-
layer model.

116



Tomography

Joint Migration and Tomography

20 m

8001000 2000 3000

Velocity (m/s)

Figure 4-15: Tomography and joint migration and tomography solutions for the two-
layer model with a low-velocity zone.
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Chapter 5

Joint Nonlinear Refraction and

Reflection Traveltime Tomography

Abstract

We develop a rapid nonlinear traveltime tomography method that simultaneously in-
verts refraction and reflection traveltimes on a regular velocity grid. For traveltime
and raypath calculation, we employ the new wavefront method that we introduced
in Chapter 2. The first-arrival traveltimes are calculated on the basis of cell veloci-
ties, and the later refraction and reflection traveltimes are computed using both cell
velocities and given interfaces. We solve a regularized nonlinear inverse problem.
The model parameters (cell slownesses and reflector geometry) are regularized by a
Laplacian operator in order to solve a valid inverse problem for a continuum. The
traveltimes are also regularized such that we invert traveltime curves rather than un-
correlated traveltime points. A conjugate gradient method is applied to minimize the
nonlinear objective function. After obtaining a solution, we perform nonlinear Monte
Carlo inversions for uncertainty analysis and compute the posterior model covariance.
In a numerical experiment, we demonstrate that combining the first-arrival refraction
with the reflection can better constrain the slowness field. This is particularly im-
portant for inverting crustal structures where large velocity variations occur in the
upper crust.
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5.1 Introduction

Seismic tomography techniques have been rapidly developed since Aki's first demon-

stration in 1974 (Aki et al., 1974). The concept of traveltime tomography was orig-

inally from medical science, however, seismologists have been dealing with very dif-

ferent problems in which the seismic traveltimes are nonlinear to the medium and

the inversion solution is nonunique due to ill-posedness or insufficient medium infor-

mation in data. Seismologists apply tomography to many experimental geometries

and different type of data (i.e., reflection, refraction, crosshole and earthquake data).

Among those, tomography using refraction and reflection data is the one that can pro-

vide a much broad range of angular ray coverage of the subsurface and has become

a popular technique for imaging crustal and upper mantle structure with controlled

sources. The basic idea of refraction and reflection tomography is to use a large

number of traveltimes for non-coincident sources and receivers located at the Earth's

surface to determine velocity distribution and reflector locations. To solve a reflec-

tion traveltime tomography problem, Nercessian et al.(1984) assume reflector depth

and shape a priori and perform a tomographic inversion for velocity alone. Lutter

and Nowack (1990) use velocities from a previous inversion and then invert reflector

shape alternatively. Bishop et al. (1985), Stork and Clayton (1986) and Farra and

Madariaga (1988) simultaneously invert for reflectors and velocities with an arbitrary

weighting parameter. Recently, Bube et al.(1995) found that the depths of the reflec-

tors are determined in theory except for edge effects, but the slowness field has some

undetermined features.

Because the undetermined features of the slownesses inherently exist in the reflec-

tion traveltime problem, one cannot solve this problem with any advanced numerical

techniques unless additional physical information is provided. Performing a joint

tomographic inversion of refraction and reflection data can better constrain the slow-
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ness field. Refraction implicitly relies on the heterogeneity of the medium to turn

seismic energy back up to receivers, which provides independent velocity informa-

tion. Methods of joint inversions of refraction and reflection data to obtain interfaces

and velocity parameters are given by Chiu et al. (1986), Huang et al. (1986), Lutter

and Nowack (1990), Zelt and Smith (1992), and Wang and Braile (1996). However,

all these methods oversimplify the forward traveltime calculation and the inverse

problem by parameterizing interfaces and velocities using some functionals with few

parameters. On the other hand, nonlinear traveltime tomography methods that it-

eratively reconstruct raypaths and update a model on a regular velocity grid have

been developed, but only applied to the first-arrival refraction traveltimes (Zhu and

McMechan, 1989; Hole, 1992; Cai and Qin, 1994; Stefani, 1995; Zhang and Toks6z,

1996) or reflection traveltimes (Pullammanappallil and Louie, 1993) separately.

Existing traveltime methods are also limited in several other ways. The use of the

two-point raytracing algorithms is valid for smooth velocity structure only (Oerven'

et al., 1977; Julian and Gubbins, 1977; Um and Thurber, 1987). The finite-difference

method by Vidale (1988, 1990) violates causality for moderate to large velocity con-

trasts (Qin et al., 1992). Its accuracy is reasonably good for transmission and re-

flection calculation, but extremely poor for refractions when large velocity contrasts

exist (see Appendix A for details). Other finite-difference methods either also suffer

from the same problem though some improvements are made (e.g., Hole and Zelt,

1995), or require a large amount of CPU time (Podvin and Lecomte, 1991; Qin et al.,

1992). For inversion, current refraction and reflection methods solve ill-posed inverse

problems, and obtain a numerical solution dependent to the model parameterization.

Although the refraction and reflection traveltime problem is nonlinear, linearized un-

certainty analyses (e.g., sensitivity and raypath analyses) are often used to estimate

variance and resolution of the tomography solution. Therefore, they cannot measure

nonlinear uncertainty beyond what is implied in the raypaths of the solution.
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Recent developments in accurate and efficient raytracing techniques (Saito, 1989;

Moser, 1991; Fischer and Lees, 1993; Klimes and Kvasnicka, 1993; Weber, 1995;

Zhang and Toks6z, 1996) and understanding of the regularized tomographic inver-

sions (Rodi, 1989; Delprat-Jannaud and Lailly, 1993; Matarese, 1993; Zhang et al.,

1996) should yield improved tomographic techniques. In this chapter, we report a

new method of joint refraction and reflection tomography that can accurately and ef-

ficiently reconstruct velocities and reflector geometry in a model with a large number

of grids. Our approach includes several new developments:

1) We develop a new version of the minimum-traveltime raytracing method based

on Saito (1989, 1990) and Moser (1989, 1991), which can rapidly expand a wavefront

in the entire velocity network from its source and calculate refraction and reflection

traveltimes. This method can correctly handle diffraction, headwaves, and paths to

shadow zones.

2) We solve a regularized nonlinear inverse problem that is valid for a continuum

problem, i.e., the solution is independent to the model parameterization (Delprat-

Jannaud and Lailly, 1993; Zhang et al., 1996). This is achieved by applying Tikhonov

method (Tikhonov and Arsenin, 1977) to perform a global inversion in the sense of

reconstructing the whole model.

3) We also regularize traveltime data and invert traveltime curves rather than

uncorrelated points. Jointly inverting average-slowness data (traveltimes divided by

the ray lengths) and apparent-slowness data (traveltime derivatives with respect to

distance), we convert the refraction and reflection traveltimes to be in the same

order of magnitude for better numerical performance, and meanwhile preserve all the

structure information in the data.

4) Not only obtaining a meaningful solution, we also measure the variance and

resolution of the solution. By applying a nonlinear Monte Carlo approach, we calcu-
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late the posterior covariance matrix and quantitatively demonstrate the uncertainty

of the nonlinear solution.

5.2 Regularized Nonlinear Inversion Method

We solve a regularized nonlinear inverse problem and reconstruct velocities associated

with both refractions and reflections as well as interfaces associated with reflections.

Because later refractions are not available in the real data that we shall study in this

thesis work, we address interface problem associated with reflections only. Therefore,

we invert two types of traveltime data and reconstruct two types of model parameters

simultaneously. In addition to the rapid traveltime calculation, successfully perform-

ing such a joint tomography also requires properly regularizing traveltimes as well as

model parameters. In the early inversion studies, fitting data seems to be the major

concern (Marquardt, 1963; Jackson, 1973; Kirkpatrick et al., 1983; Rothman, 1985).

A "global" minimum is defined when the data misfit is sufficiently small. However,

recent tomography studies show that conducting nonlinear inversions one can fit data

to any small misfit magnitude depending on the constraints applied to the model

parameters (Matarese, 1993; Thompson, 1993), but the solutions may or may not be

physically meaningful. Fitting data, primarily trades off with model features. One

important question is how to obtain one stable and unique solution that does not have

unnecessary structures for the given data. On the other hand, there are many numer-

ical criteria for defining a data misfit. Nature does not have to obey the least-squares

criterion (Guillemin, 1954; Lines and Treitel, 1984). In the following, we shall first

address the issues of data regularization. We regularize traveltimes such that they

can be easily inverted in terms of numerical computation and the complete physical

information in the traveltimes can be accounted for. These subjects will be studied

in the following.
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5.2.1 Regularizing traveltimes

We perform joint refraction and reflection traveltime tomography, which usually in-

volves traveltimes over two orders of magnitude due to long rays and short rays.

Numerically, it is difficult to deal with this large data range, because inversions tend

to construct structures associated with long rays, and the convergence may be slow.

On the other hand, fitting traveltimes with a least-squares criterion does not account

for the whole physical meaning of a traveltime curve. For instance, it does not quan-

titatively account for the continuum of traveltimes, though a continuum physically

occurs when the seismic wave propagates across receivers on the surface. With these

considerations, we propose to convert traveltimes into average slownesses (traveltimes

divided by the ray lengths) and apparent slownesses (traveltime derivatives with re-

spect to distance), and jointly invert these two types of data. This approach allows

to invert data in the same order and also account for the shapes of the traveltime

curves. It avoids weighting reflection and refraction traveltimes with an arbitrary

factor. Specifically, we minimize the following nonlinear objective function,

<b(m)= (1 - w)||d- 0(m)l2 + wild - a(m))112 + T|Rm||2I (5.1)

where d is a regularized refraction and reflection data vector or average-slowness

vector, 0(m) is a vector of the calculated average slownesses, d is a vector of the

traveltime derivatives with respect to distance or apparent-slowness data, and G(m)

is a vector of the calculated apparent slownesses, w is a weighting parameter between

the misfit of average slownesses and the misfit of apparent slownesses, R is a Laplacian

operator for regularizing model parameters (model slownesses and reflector geometry),

and -r is a smoothness trade-off parameter. The factor w, weights between the misfit

of average-slowness data and the misfit of apparent-slowness data. The criterion for

selecting w is that it must allow the rms misfits of average slownesses and apparent

slownesses to converge to the same order of magnitude, representing one consistent

resolving capability. From our numerical experiments, we found that taking w to be
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0.4 to 0.5 seems working well in general.

The first term in the objective function measures the misfit of an average slowness.

The inclusion of the second term in the objective function is particularly meaningful

for refraction and wide-angle reflection traveltime problem. It gives an 12 norm of the

apparent slowness misfit, which is independent to the information from traveltime

itself. In fact, a sophisticated approach for picking reliable traveltimes from seismic

records must consider the systematic moveout of a seismic wave across all the traces.

As a result, the information of the traveltime gradients is implicitly extracted and

included in the picked traveltimes. Although minimizing the traveltime misfit with

an 12 norm tends to minimize the misfit of traveltime gradients as well, it does not

quantify the misfit or minimize the misfit to a required tolerance. Therefore, one

must explicitly invert the traveltime gradients. A detailed comparison of minimiz-

ing traveltime misfit in several ways for refraction tomography was demonstrated in

Chapter 3.

5.2.2 Regularizing model parameters

When the number of unknowns is more than the number of data points, no matter how

sophisticated the optimization approach is, there can be no definitive "solution" solely

on the basis of fitting the data. It is necessary to introduce additional constraints.

The approach that we take is to employ a smoothness constraint to find a simplest or

minimum-structure solution that fits the data to a given tolerance (Constable et al.,

1987; Smith and Booker, 1988; Rodi, 1989). We accomplish this using the method of

Tikhonov regularization (Tikhonov and Arsenin, 1977), which is defined as the third

term in equation (1). However, as we demonstrated earlier, not all the smoothing

criteria in the class of Tikhonov regularization can work well for a geophysical inverse

problem. A Laplacian operator is often selected in various inverse problems (Scales
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et al., 1990; Delprat-Jannaud and Lailly, 1993; Martarese, 1993; Thompson, 1993;

Zhang et al., 1996).

In fact, applying a derivative operator to model parameters plays a role more than

just smoothing structure or stabilizing inversion. In a reflection traveltime problem,

Delprat-Jannaud and Lailly (1993) view a useful regularization as a means to make an

inverse problem valid for continuum problem, i.e., a well-regularized solution should

be independent of model discretization. Zhang et al.(1996) demonstrate that 3-D

electrical tomography regularized by the second- or the third-order model derivatives

can almost produce the same solution for two different model discretizations. From a

different philosophical view, Matarese (1993) applies Tikhonov regularization method

for performing a global inversion in the sense of reconstructing the whole model. In all

these applications, it is important to apply the derivative operators explicitly on the

model parameters rather than on the model changes. Smoothing model changes may

stabilize inversion in certain stage, but ultimately it cannot avoid solving an ill-posed

inverse problem, because it minimizes an objective function requiring to fit data only

(Rodi, 1989; Zhang et al., 1996). Appendix B presents a detailed discussion.

Based on these studies, we chose R in equation (1) to be a Laplacian operator for

the joint refraction and reflection traveltime tomography. Numerically, this implies

that a nonlinear interpolation and extrapolation method is applied in the model space

while inverting the data. Considering the fact that the model vector m includes

slownesses and reflector geometry, we actually regularize two different types of model

parameters with the same derivative operator. The selection of the smoothness trade-

off parameter r is not difficult, but one must conduct the inversions a few times to find

an optimal one. This is because an optimal r is inherently dependent to the physical

relationship between the data misfit residuals and the model roughness. Given a

parameter r, the data misfit residuals and the model roughness converge to certain

values. With r increasing, the model roughness increases and the misfit residual
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decreases. One can follow these rules of thumb to determine an optimal r.

5.2.3 Nonlinear inversion algorithm

Another major difficulty for solving a joint refraction and reflection traveltime prob-

lem is the numerical computational burden. The forward traveltime calculation for

refraction and reflection is numerically intensive on a large number of velocity grids.

Therefore, the inversion approach must be sufficiently efficient so that the entire non-

linear tomography method is practical. In this study, we apply nonlinear Conjugate

Gradient (CG) method to minimize the objective function (1) directly. The advan-

tages of the method include fast convergence rate and efficient vector calculations

without any requirement to store matrices in the entire computation. Specifically,

the CG algorithm is described in the following:

updated model : mk+1 = mk + akhk (5.2)

search direction: ho = Cogo (5.3)

hk = Ckgk + 3 khk_1 (k > 0) (5.4)

g'Ck(gk - gk-1)
fik = g7 ..Cgk1(5.5)

9k-1Ckgk_1

gradient of 4D: gA = -AT(d- n(mk)) - B[(d - (mk)) + TRTR(mn15.6)

preconditioner: Ck = (A A + BT Bk + rRT R)-1 (5.7)

where the step length ak is computed so that <b(mk + akhk) is minimized, Ak is the

average-slowness sensitivity matrix, each non-zero term in Ak contains the length of

a local ray across a model cell divided by the entire ray length, Bk is the apparent-

slowness sensitivity matrix, each non-zero term in Bk is the difference of the two

ray lengths in a cell divided by the receiver spacing when data from two adjacent

receivers are used to calculate derivatives. In these calculations, it is not necessary

to explicitly set up matrices of Ak, Bk or Ck. The algorithm only requires the results
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of these matrices multiplying vectors, therefore, one does not need to compute or

store any matrix (Scales, 1987; Mackie and Madden, 1993; Zhang et al., 1995). In

fact, the sensitivity information (raypath) is stored in compact vectors during the

raytracing calculation. Therefore, this algorithm is efficient for dealing with a large

inverse problem.

5.3 Nonlinear Uncertainty Analysis

Several linear (or linearized) uncertainty analysis methods are often applied in the

seismic traveltime problems. These include the examination of a resolution matrix

(Aki and Richards, 1980), display of the integrated sensitivity of all the traveltimes

to each node (e.g., Hole, 1992; Parsons et al., 1996), and calculation of the poste-

rior model covariance matrix using a linearized Monte Carlo method (e.g., Matarese,

1993). All these methods fix the raypaths of the final solution, and attempt to es-

timate uncertainty along the raypaths by one way or another. Physically, they all

assume that good ray coverage corresponds to good resolution. However, as we have

shown in the refraction traveltime tomography in Chapter 3, for a nonlinear trav-

eltime problem an area with coarse ray coverage may not necessarily appear to be

poorly resolved, it may be essential for fitting the data. An accurate measurement of

resolution for a nonlinear problem must account for the raypath uncertainty. There-

fore, for the nonlinear refraction and reflection traveltime tomography, we also apply

nonlinear Monte Carlo inversions to measure the solution uncertainty as the same

way for the nonlinear refraction traveltime problem.

Apparently, performing nonlinear uncertainty analysis for joint refraction and re-

flection traveltime problem may require intensive computation. Repeating the for-

ward calculations for numerous times is a computational challenge. Nevertheless, we
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found that the nonlinear inversions in each realization starting from a randomly per-

turbed model solution can quickly converge to the tolerance given for the tomography

solution after about 4 to 5 iterations. The posterior model covariance can be well

approximated after about 100 to 200 realizations. On a modern workstation such as

DEC 3000, this usually takes 5 to 6 hours for a large inverse problem (300 by 200

slowness cells, 6 sources and 100 receivers).

5.4 Numerical Experiment

We demonstrate a numerical example of nonlinear traveltime tomography inversions

using noise-free synthetic data for a model of the axial magma chamber in the crust

(see Figure 5-1(a)). A true velocity structure similar to this model has been found

across the East Pacific Rise (Vera et al., 1990; Wilcock et al., 1993). Although we

are not going to model real data from magma-chamber structure, our interest is to

understand the performance of a nonlinear traveltime tomography in solving such a

complicated problem. An OBS experiment is simulated with six OBSs on the seafloor

(1.5 km below sea level) along a 30 km survey line. A 2-D profile of 30 km by 10

km is sampled by 300 x 100 grids. The model consists of a low velocity zone in the

central area (3.5 km/sec). The upper oceanic crust consists of a high velocity gradient

zone, and the velocities in the lower crust vary vertically and laterally. The Moho

depth varies across the profile with an average value of about 8.4 km. Using a finite-

difference method to study full seismic waveforms, Wilcock et al. (1993) found that

P. (refraction from upper crust) and PmP (reflection from the Moho) are the two

major phases for a similar model. In Figure 5-1(b), we show the raypaths of these

two phases for our experimental model. As described above, we take the average

traveltimes (average slownesses) and the traveltime gradients (apparent slownesses)

of Pg and PmP as the input data for inversion. As one can see, the central area of
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the model is not well covered by either reflection or refraction raypaths due to a large

low-velocity anomaly. In fact, this insufficient coverage situation may often occur in

real surveys due to the physical structure no matter how dense the receivers or sources

are. It is our interest to see how well the nonlinear traveltime tomography performs

in this situation. Therefore, we conduct three tomography problems separately, i. e.,

a refraction traveltime tomography, a reflection traveltime tomography, and a joint

refraction and reflection traveltime tomography. A 1-D initial model mi is constructed

for all these inversions, and a flat Moho at a depth of 7.0 km is assumed.

For inverting velocity distribution from OBS data, we would like to incorporate

a priori information of bathymetry and sediment into the tomography if they are

available. One can take two different approaches to constrain velocities in these areas

with a priori information: enforcing model sensitivities to be zero or constraining

model curvatures. We take the latter, because its numerical implementation is more

flexible for solving a general problem. Specifically, we slightly modify the objective

function (1),

<b(m) = (1 - w)||d- 0(m)1 2 + wild - G(m)112 + 'r||L(mo - m)112, (5.8)

where mo is a model containing a priori information. However, mo may differ from

the starting model (mi) that we use for the first inversion iteration. The purpose

of using mo is to take its curvature information to constrain inversion, because L

is a Laplacian operator and L(mo) returns the curvature of mo. For this numerical

experiment, we put a water velocity (1.5 km/s) above the seafloor and a homogeneous

velocity (2.5 km/s) below the seafloor into mo. This assumes that we only have

a priori bathymetry information. Otherwise, we assume a velocity "jump" at the

seafloor. For this numerical experiment, taking mi as shown in Figure 5-1(c) to be

mo in the objective function (8) will bias the inversion due to very incorrect curvatures

assumed in the initial guess. However, if any reliable curvature information about

the subsurface is available, it should be placed in mo.
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Figure 5-2 shows inversion results of the refraction traveltime tomography. Using

Pg traveltimes, nonlinear refraction traveltime tomography can reasonably well re-

construct the velocity structure in the upper crust although the initial model in this

area is very different from the true model. It can also map the gradient interface be-

tween the upper crust and the lower crust and indicate the lateral velocity variations

including the low-velocity zone. However, it does not constrain the deep structure

due to shallow raypaths. Therefore, the deep structure that is assumed in the initial

model remains unchanged. It does not constrain the shape of the magma chamber

well because of the lateral velocity ambiguity inherent in the refraction problem.

Reflection traveltime tomography can constrain the lateral velocity changes and

delineate the lateral boundaries of the magma chamber reasonably well, but it suffers

from a velocity-depth ambiguity (see Figure 5-3). As one can see, the model is fairly

well covered by the reflection raypaths, and the raypaths of the wide-angle PmP are

actually similar to those of the deep refractions. However, because the large veloc-

ity variations occur in the shallow structure, the absence of shallow lateral velocity

constraints leads to the structural ambiguity. When the refraction and reflection trav-

eltimes are simultaneously inverted, the entire image can be significantly improved

(see Figure 5-4). A large number of near-horizontal raypaths in the shallow structure

greatly help to map traveltime residuals due to the deep velocity anomaly.

After solving these three tomography problems, we apply a nonlinear Monte Carlo

method to compute the posterior covariance and measure the solution uncertainty.

In Figures 5-2, 5-3 and 5-4, it demonstrates the posterior correlation with respect to

one selected point beneath the low-velocity zone (magma chamber). If the correlation

is close to +1, the uncertainties are highly correlated, indicating that the parameters

have not been independently resolved by the data set, and the result represents only

some linear combination of the parameters. If the correlation is close to -1, the

uncertainties are highly anti-correlated. In the case of refraction traveltime inversion,
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we see the effect of the solution ambiguity along the deep raypaths for the selected

point. For reflection traveltime inversion that incorporates both pre-critical and post-

critical reflections, the resolution of the point is greatly enhanced. It also shows that

the point is slightly anti-correlated with the shallow structure due to the velocity-

depth ambiguity. As in the case of joint inversion, the resolution of the point is the

highest due to sufficient vertical and lateral ray constraints.

The above example is performed on a DEC 3000 workstation. Because the for-

ward traveltime approach that we used in this study minimizes computation time

for each model by accounting for complexity in the model, the iteration CPU time

varies when the inversion proceeds. Figure 5-6 shows this situation, especially for

refraction traveltime tomography and joint refraction and reflection traveltime to-

mography. For reflection calculation, the area in the model that is covered by the

raypaths does not vary much, therefore, the computation time is relatively constant

when inversion starts from an inhomogeneous initial model. When refraction calcu-

lation is included, the computation time of each iteration may increase in the early

inversion stage because of structure changes in the model. In the average sense, one

iteration of the refraction tomographic inversion takes about 1 min 30 sec; one iter-

ation of the reflection tomographic inversion takes 2 min; and one iteration of the

joint tomography needs 3 min 10 sec. Most of the computation time for solving these

tomography inversions is owing to the forward traveltime calculation.

For the three inversions starting from the same initial model, Figure 5-5 shows the

convergence of the rms traveltime misfits versus iteration. In any of these inversions,

we minimize the misfit of traveltime curves and model roughness. However, we output

the rms traveltime misfit during the inversions and observe its changes with iteration.

Apparently, for the same starting model, the initial rms traveltime misfit for the

refraction problem is the smallest, and it quickly reduces to 5 ms after 8 iterations.

For the same misfit, reflection traveltime tomography needs about 15 iterations, while
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joint reflection and refraction tomography needs about 20 iterations.

5.5 Conclusions

In this chapter we demonstrate a nonlinear traveltime tomographic technique that

simultaneously inverts both refraction and reflection data on a regular velocity grid.

This approach is an integration of recent development of the raytracing algorithms

(Zhang and Toksdz, 1996) and the understanding of the performance of the regularized

tomographic inversion (Delprat-Jannaud and Lailly, 1993; Zhang et al., 1996). The

method is extended from the nonlinear refraction traveltime tomography. Modeling

synthetic and real data demonstrates that this approach is practical for imaging large

2-D crustal structures. To understand quantitatively the resolution of our regularized

solution, we conduct uncertainty analysis using a Monte Carlo approach. One of the

important issues that we must address is the nonuniqueness of the inverse problem,

i. e., fitting seismic data does not necessarily suggest that the "true earth structure"

can be uniquely imaged. We deal with this problem from a view of data correlation

and model correlation. Instead of taking traveltimes as uncorrelated points to in-

vert, we fit "traveltime curves", including both traveltime and traveltime derivative

information. Therefore, the tomographic inversion maintains a wave resolution as

implied in the traveltime curves. Numerically, this is accomplished by simultaneously

inverting average-slowness data and apparent-slowness data as the same way that we

implement the refraction traveltime tomography. This conversion is more beneficial

to the joint refraction and reflection traveltime problem, because refractions and re-

flections are input with their physical meaning rather than an arbitrary weight. On

the other hand, we apply Tikhonov regularization to correlate model parameters with

the second-order derivatives. The idea is to obtain one stable solution with minimum

curvatures and with the only necessary features for the given data. We show a com-
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parison of the performance of the refraction traveltime tomography, the reflection

traveltime tomography, and the joint refraction and reflection traveltime tomography

for a numerical model. It demonstrates that combining the first-arrival refraction and

reflection traveltimes can better constrain the slownesses.
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Numerical Model
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Refraction and Reflection Raypaths
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Figure 5-1: An oceanic crust model consisting of sea water, a magma chamber, and
variable Moho topography for numerical experiments. It shows velocity up to 7.0
km/s, the actual velocity beneath the Moho is 8.0 km/s. Simulating an OBS experi-
ment, six OBSs are placed on the seafloor, and marine shooting at the sea surface. The
raypaths of the first-arrival refractions (P) and reflections from the Moho (PmP) are
displayed. A 1-D gradient starting model is constructed for tomography inversions
with a flat Moho. No vertical exaggeration is applied.
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Refraction Tomography
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Figure 5-2: Nonlinear refraction traveltime tomography using synthetic refraction
data for the above model. The solution indicates a low-velocity zone in the central
area, but the detail is not resolvable. Uncertainty analysis using nonlinear Monte
Carlo method is conducted. For a point selected in the model (arrow point), it shows
large lateral correlation, indicating a trade-off pattern for that particular point in the
solution.
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Figure 5-3: Nonlinear reflection traveltime tomography using synthetic reflection data
for the numerical model. The solution shows some deep lateral velocity changes near
the magma chamber, and the Moho topography can be reconstructed reasonably well.
But the overall image is poor due to lack of shallow lateral constraints. Uncertainty
analysis, however, suggests that the point selected is well resolved due to the use
of pre-critical and post-critical reflections. But it also shows certain anti-correlation
with the velocities within the sedimentary area.
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Joint Refraction and Reflection Tomography
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Figure 5-4: Joint refraction and reflection traveltime tomography using both syn-
thetic refraction and reflection data for the same numerical model. It shows that it
can reconstruct an optimal solution when both the shallow and deep structures are
constrained. Uncertainty analysis shows that the point selected is well resolved.
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Numerical Experiment
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Figure 5-5: The rms misfits of traveltimes versus iterations for three traveltime to-
mography inversions.

139



Computation time per iteration

18011

160-

140-

120-

100-

80F

20-

Iteration

Figure 5-6: Iteration CPU time of three different tomography inversions. Because
the traveltime computation speed depends on the model complexity, the CPU time
for each inversion iteration varies.
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Chapter 6

Imaging the Shallow Earth

Structures

Abstract

We apply a nonlinear refraction traveltime tomography method and a joint refraction
traveltime migration and tomography technique to two seismic surveys: determining
bedrock depth at a coastal site in eastern Massachusetts, and imaging the Bala Kim-
berlite in northeastern Kansas. The goal of the first survey was to locate areas where
the overburden soil thickness above the bedrock is sufficient for the construction of a
replacement storm-drainage system. In the second experiment, the goal was to image
the Bala Kimberlite in the subsurface and its surrounding structure so that we can
better understand its emplacement in the shallow Earth.

For the first survey, we show that nonlinear refraction traveltime tomography can
deal with the near-surface variability and accurately reconstruct the bedrock topog-
raphy. Nonlinear uncertainty analysis for the solutions quantitatively demonstrates
its high reliability, which has been verified by drilling. Subsequently, applying a joint
migration and tomography technique to the same data set results in a more realistic
estimate of the bedrock interface and ultimately more accurate velocity structure.
In modeling data from the second experiment in Riley County, Kansas, our nonlin-
ear tomography results delineate a structure of soil, bedrock block, and the sharp
discontinuity of the bedrock near the Bala Kimberlite. The fact that the refraction

141



traveltime migration image consistently corresponds to the structure in the tomogra-
phy solution implies high reliability of the result. The imaging results suggest that
the Bala Kimberlite might be emplaced into a shear fracture zone from the upper
mantle during a major tectonic event.

6.1 Imaging Bedrock Topography at Eastern Mas-

sachusetts

6.1.1 Introduction

As part of an engineering project in the Boston area, a new storm-drainage system is

being constructed to serve several communities in eastern Massachusetts. To reduce

project cost, the new service will need to be constructed in tidal areas where bedrock

is relatively deep, so that costly blasting can be avoided. A seismic refraction survey

was conducted to determine bedrock topography and locate those areas where the

overburden is the thickest. Because of complex geological conditions due to glaciation

and tectonic activity along the Boston Basin, bedrock topography may have large

variability.

Hager GeoScience, Inc. collected approximately 1,300 feet of seismic refraction

data along four traverses parallel to, and three traverses perpendicular to, the west

shore of the Fore River in Braintree, Massachusetts (Kutrubes et al., 1996). We will

show imaging results of the two parallel lines close to the river. Data were collected

using an OYO DAS-1 seismograph with 24-channel geophone array. A sampling rate

of 0.25 ms was chosen. Geophone spacing of 10 feet was used for the two lines that we

study in this thesis. The environment at the working site was quite unusual because

the survey area was covered by sea water during the high-tide period, and exposed

for only 1 to 2 hours during the low tide each day. Therefore, we used a hammer
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source in most cases and a Betsgun source if the recordings were too weak in other

cases. Surveys along two adjacent short lines (each 230 ft or 70.1 m) were conducted

with 12 shots for each line. The field configuration is shown in Figure 6-1.

Figure 6-2 shows the seismic waveforms recorded from a forward shot and a reverse

shot on line 1. Data from both shots show delayed first arrivals between receivers 7

and 14, although the topography along line 1 is flat. Moreover, the amplitudes of these

delayed first arrivals are relatively small. The evidence suggests that a low-velocity

zone with strong seismic attenuation exists beneath receiver 7 to 14. It became

obvious when we placed sources (hammer and Betsygun) right at locations between

receivers 7 and 14, the seismic energy was observed to be significantly attenuated

across all of the receivers. Subsequent drilling revealed organics deposit in this area.

Although survey line 2 is adjacent to line 1, a different structural influence was found.

Figure 6-3 displays the forward- and reverse-shot records on line 2. They suggest a

relatively high-velocity anomaly in the shallow structure. At the surface, we found

that weathered sandstone outcrops in the central area on line 2.

6.1.2 Nonlinear refraction tomographic imaging

To precisely map bedrock topography, we conducted nonlinear tomography studies

with a model consisting of 250 x 100 square cells for each survey area (71.0 m by

30.5 m). The surface topography is flat, with variations less than 0.3 meter. For

each line with 24 receivers, 288 traveltime picks were taken from the recordings.

Corrections accounting for reciprocity were made before they were used for modeling.

One of the major problems in the data is the inconsistent shot delay due to the near-

surface variability. A trigger threshold of 100 mV was set in the recording system,

however, different shot locations along survey lines had different responses to it. In

fact, similar situation was also found in many other small-scale surveys, i.e., it is
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difficult to define one accurate shot time for the entire data set. The influence of the

shot time perturbation was demonstrated in Chapter 3, mainly affecting the near-shot

structure reconstruction.

We design an imaging process with two stages. At the early tomography inversion

stage (first 5 iterations), we invert the average-slowness data only. This will give a

large weight to the near-shot traveltime misfit, therefore, inversion tends to construct

the near-surface structure in this stage. When the near-surface structure is reasonably

approximated, we start the second inversion stage that jointly minimizes the misfits of

average slownesses and apparent slownesses. As we addressed earlier, this approach is

rather conservative, but it is important and essential for solving a refraction traveltime

problem because the near-surface variability may introduce many nonunique and

nonphysical solutions.

Figure 6-4 presents a tomography solution of line 1 and the corresponding ray-

paths. It shows a shallow low velocity anomaly which explains the consistent travel-

time delays for receivers above it and the strong attenuation effects shown in Figure 6-

2. Correctly reconstructing the shallow overburden velocities is critical for accurately

mapping bedrock topography. This example at this point demonstrates the impor-

tance of the application of nonlinear tomography method for imaging heterogeneity

in solving real problems. The interface between the bedrock and overburden layer is

deeper under receivers 12 to 19, reaching the depth of about 15 meters. In Figure 6-

5, Line-2 tomogram presents a different shallow structure in which a layer with an

intermedium velocity (3000.0 m/s) appears above the bedrock and outcrops surface

in the central area. Because the velocity in this layer is higher than the soil, and the

saturated sand and gravel, it causes relatively early arrivals between receivers 12 and

19. From the field observation, we identified that this outcroped layer is weathered

sandstone which is seated on the sedimentary rock in this area.
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The process of inversion versus iteration is displayed in Figure 6-6. It shows a

transition from preferably reconstructing the shallow media to the deep structure

when the apparent-slowness data are subsequently included in the inversion. Fig-

ure 6-7 and Figure 6-8 show the corresponding traveltime fits. It appears that poor

traveltime fit corresponds to the low-velocity anomaly in line-1 profile. The fact that

the waveforms are strongly attenuated in this area makes it difficult to determine

accurate first-arrival traveltimes. Therefore, these traveltime picks are unreliable in

comparison to those elsewhere.

To quantitatively measure the uncertainty of the solutions, we apply nonlinear

Monte Carlo inversions to compute the posterior covariance matrix associated with

the final solutions. Therefore, we perturb data and model with random errors, and

then reconstruct solutions for each new data set and initial model. Our numerical

study indicates that nonlinear uncertainty analysis is essential for refraction problem

because insufficient ray coverage often occurs in the media. We select one point

in each model solution and display their posterior model correlation in Figure 6-9.

The uncertainty analyses certainly yield slowness variance and posterior correlation

for cells in the entire model. Physically, we know that the image of the weathered

sandstone outcroping the surface on line 2 is true. Therefore, we take a point in the

weathered sandstone in line-2 profile for reference, and compare its correlation size

with a point on the bedrock in line-1 profile. They all show similar correlation with

the neighbors, therefore, the result suggests that the bedrock image in line-1 profile

should be very reliable. Subsequent drilling in two locations near line-1 confirmed

the estimate fairly accurate.
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6.1.3 Joint migration and tomographic imaging

We further conduct joint migration and tomography using the same traveltime data.

The motivation for developing this new technique is to reconstruct structure with

sharp interface more accurately in a physically meaningful way. Imaging bedrock

topography is apparently one of the ideal cases for the application of this new tech-

nique. When the joint approach is applied, tomography inversion reconstructs a

velocity structure which is needed in the refraction migration, the migration image of

the bedrock in turn assists the tomography to better resolve the velocities. Because

we have already conducted nonlinear traveltime tomography and obtained some ideas

about velocities in the subsurface, we would apply the model-interface method which

places an a priori velocity change at the migration image.

In Figure 6-10, we show a progressive development of the joint imaging process

for reconstruction of the line-1 profile. It displays both the migration image and

reconstructed velocities, although the migration image is not applied to constrain

tomography until iteration 8 when the velocity structure is accurate enough. How-

ever, one can observe the progressive convergence of the migration image and the

large velocity variations to the same locations in the subsurface. Similarly, Figure

6-11 demonstrates an imaging process for the reconstruction of line-2 profile. Al-

though these new images suggest very similar estimates of bedrock topography to

those derived from tomography inversions alone in these two particular cases, we

found that the joint method constructs very different raypaths as shown in Figure

6-12 in comparison to those in Figures 6-4 and 6-5. This is because regularized trav-

eltime tomography on a regular grid always tends to construct turning rays due to

the smoothness constraints applied. Only a joint imaging approach can take full

advantage of regularization and maintain sharp features as well.
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6.1.4 Conclusions

Nonlinear refraction traveltime tomography and joint refraction migration and tomog-

raphy are two advanced imaging techniques that should be very useful to the shallow

environmental investigations. Application of these two methods to the field data from

a coastal site in eastern Massachussets demonstrates their resolving capabilities. In

the shallow structure imaging problems, near-surface velocity variability often occurs

and may introduce large uncertainty in the interpretation. Conventional methods

have difficulties to deal with this problem, and they cannot quantitatively measure

such uncertainty either. In fact, no matter what seismic techniques are applied and

at what depth the object is interested in, one must have sufficient velocity infor-

mation for making accurate interpretation. In some cases, resolving velocities itself

is a purpose for investigating the shallow structure. Nonlinear refraction traveltime

tomography is perhaps the most sophisticated approach for reconstructing velocity

information. Along with a migration method, it can reconstruct both velocities and

interfaces automatically.

6.2 Imaging Bala Kimberlite in Northeastern Kansas

6.2.1 Introduction

At least six kimberlites are found in northern Riley County, Kansas. Five of them,

including Bala, Leonardville, Randolph No. 1, Randolph No. 2, and Stockdale crop

out, and a sixth, Winkler, has been discovered by drilling. The exposed kimberlites are

brecciated masses filled with fragments of country rock and appear as small elliptical

outcrops averaging around 100 by 50 ft. More than 90 percent of the kimberlites

consist of serpentine and calcite, but no two kimberlites are exactly alike in their

147



mineralogy, bulk chemistry, or texture. Previous geological studies suggested that

these six kimberlites might appear as plugs in the subsurface, associated with that

segment of the Abilene anticline where the regional joint pattern shows a marked

deflection in trend. It has been proposed that the kimberlites crystallized in the

upper mantle in the late Precambrian at a minimum depth of 120 km and perhaps

as deep as 300 km. The Riley County, Kansas, kimberlites are thought to have been

emplaced under explosive conditions resulting from an abrupt tectonic activity about

120 m.y. ago (Brookins, 1970).

It is important to learn the detailed structure of the kimberlites in the subsurface,

which should be helpful for the understanding of its geological history in this region.

Unfortunately, previous geophysical investigations of the Riley County kimberlites

were not very successful in providing detailed information. Surface magnetometer

surveys proved unsuccessful as the magnetic anomalies associated with the kimberlites

are restricted to an extremely small area, although Dreyer (1972) was able to interpret

a general trend of the kimberlite from a magnetic survey. Gravimetric studies were

also unsuccessful because the density of the pentinized, carbonated kimberlite is not

appreciably different from the surrounding calcareous country rocks. Recently, the

Department of Geology at University of Kansas have made great efforts to image the

Bala Kimberlite using advanced seismic techniques (Steeples et al., 1995). A seismic

refraction/reflection survey was conducted along two perpendicular lines near and

above the exposed Bala Kimberlite. In this study, we shall apply a nonlinear refraction

traveltime tomography method by Zhang and Toksbz (1996) to reconstruct P-wave

velocities in the subsurface and attempt to characterize the geological structures near

the Bala Kimberlite.

A seismic refraction survey was conducted across the Bala Kimberlite in Riley

County, Kansas. Two seismic lines perpendicular to each other were collected in the

field as shown in Figure 6-13. At the interception of the two lines, the Bala Kimberlite
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is covered by a thin layer of soil at the surface. Topography variations in this area

seem associated with the appearance of the Bala Kimberlite, but the details in the

subsurface remain unknown.

Along each survey line, 96 geophones were evenly deployed on the surface with

a receiver spacing of 4 feet. On line 1 (NW-SE), the first receiver is on the SE end.

On line 2 (NE-SW), the first receiver is on the SW end. The NW end of the first

line ties with the NE end of the second line. Shots with an 8-gauge shotgun source

(Betsy Seisgun) were placed at every geophone location and at a few offset distances

as well. We chose data from 19 shots along a survey line. This should be sufficient

for the refraction traveltime modeling. The overall data quality is fairly good, clearly

showing the significant structural influence in the subsurface. In this section, we show

data and modeling results for line 2 only.

Figure 6-14 shows waveform recordings from a forward spread on line 2. One

of the striking observations is the rapid traveltime decrease with distance at the

end close to the kimberlite. Note that no velocity reduction is applied in the plot.

This dramatic traveltime change is quite unusual, it cannot be explained by any

simple layered structures. On the other hand, the amplitudes of the wavefield at

the longer offsets strongly increase as opposed to the geometrical spreading effect,

indicating strong wavepath focusing. Figure 6-15 shows the records of the reverse

spread along the same line. Comparing with Figure 6-14, we found that the amplitude

focusing effect seems reciprocal, suggesting a true structural influence rather than

an instrumental problem. The first-arrival traveltimes from 19 shots are shown in

Figure 6-16. It clearly indicates a low-velocity zone near the kimberlite. All these

observations indicate a complicated velocity structure near the Bala Kimberlite, which

cannot be interpreted with conventional techniques.
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6.2.2 Nonlinear Traveltime Tomography and Joint Imaging

Parameterizing a grid model with 195 x 70 square cells and each cell length 2.0

feet, we conduct nonlinear refraction traveltime tomography using data from survey

line 2. Topography variations along line 2 (NE-SW) are over 20 feet. The effects are

accounted for in the tomographic imaging. Examining traveltimes from the survey line

2 as shown in Figure 6-16, we found a deep flat refractor with velocity about 2850 m/s

in the areas away from the exposed kimberlite. It appears that significant structure

complexity occurs right near the kimberlite. We first construct a homogeneous initial

model with the velocity 2850 m/s for the tomography inversions. From numerical

experiments, we found that using a homogeneous initial model for the nonlinear

refraction tomography inversion can result in a reliable minimum-structure solution.

The solution can help us to understand a major structure pattern due to data in the

entire model.

Figure 6-17 presents tomographic images for line 2 (NE-SW) starting form a ho-

mogeneous initial model. This initial model gives an rms data misfit residual of about

26.5 ms. A flat bedrock discontinues near the kimberlite. Low-velocity soil fills in the

area between the kimberlite and bedrock. The corresponding traveltime fit is shown in

Figure 6-18. The solution primarily suggests three major areas with average velocities

about 2850 m/s (bedrock), 2000 m/s (kimberlite) and 1300 m/s (near-surface mate-

rials), respectively. Therefore, we construct an initial model with these features, i.e.,

making three velocity blocks in the model as shown in Figure 6-19. This model allows

the initial rms data misfit residual to be 11.2 ms. Inversion reconstructs a solution

that shows the same structure as the previous one in the shallow areas where suffi-

cient rays are available. In the deep structure, the high-velocity bedrock remains on

one side of the model, indicating that the high-velocity structure near the kimberlite

in the previous solution is not necessary. The traveltime fit is shown in Figure 6-20.

The convergence of the rms data residual is illustrated in Figure 6-21. In Figure 6-22,
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we show the reconstructed raypaths corresponding to the two tomographic solutions.

The joint refraction traveltime migration and tomography technique that we de-

scribed in Chapter 4 was applied to the line-2 data (see Figure 6-23) with a homoge-

neous starting model. During the first 7 iterations, we conduct nonlinear traveltime

tomographic inversion. Starting from the 8th iteration, we apply the joint imaging

method. One can see that the migration image shows a sharp lateral discontinuity

which verifies what has been resolved from the tomographic inversion. After migra-

tion joins the imaging process, the smooth velocity transition above the flat bedrock

shown in the tomography solution vanishes. Figure 6-24 shows downward contin-

uation of the forward and reverse traveltimes using the velocity solution from the

second inversion. The results demonstrate large certainty of the solution, because the

migration image corresponds to the velocity features well.

6.2.3 Conclusions

Many researchers studied geology in Riley County, Kansas, and attempted to under-

stand six kinds of kimberlite plugs found in the area (for review, see Brookins, 1970).

There may be more kimberlites in the area that are unrecognized or that do not crop

out, since kimberlites commonly occur in swarms. For the six kinds of kimberlites

that were already found, it is not clear how and why they were emplaced here. Many

other questions also remain unanswered. Seismic techniques can well serve the pur-

pose of the investigation. Our seismic tomographic images present a first look of the

subsurface structure near the Bala Kimberlite.

Our results show dramatic changes of the bedrock (limestone) topography right

near the Bala Kimberlite. Such strong structural variations do not seem associated

with a slow surface movement. Rather, they indicate a rapid tectonic activity. The
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image of the Bala Kimberlite also indicates that it is elongate along line 2 which is

transverse to the trend of the Abilene anticline. Fractures transverse to the anticline

appear to have controlled the emplacement. Therefore, a strike-slip movement along

the nearby Abilene anticline might cause large transverse fractures in the crust where

the Bala Kimberlite intruded from an upper-mantle source under explosive condition.

The presence of high-pressure kimberlite minerals such as pyrope, as well as the

eclogite and pyroxenite indicates an upper-mantle origin for the kimberlites (Brookins,

1970).
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Line-1 source/receiver configuration

* * * * * * * * * * * *

Line-2 source/receiver configuration

* * * * * * * * * * -* -*

A A A A A A A A A A A A A A A A A A A A A A A A

A geophone * source loft

Figure 6-1: Source and receiver configuration applied in the seismic surveys at a
coastal site in eastern Massachusetts. Line 1 and line 2 are adjacent to each other.
24 geophones and 12 shots for each line were used. Note that shot locations shift
off geophone for half a receiver spacing in line 2 for better estimating near-surface
velocities.

153



Forward Shot

~I I I i

Reverse Shot

0

10

a 20

E

30

40

50

Figure 6-2: Waveform data from forward and reverse shots along line 1. Note the
influences due to a shallow low-velocity zone between trace 7 and 14 along line 1.
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Forward Shot

Reverse Shot

Figure 6-3: Waveform data from forward and reverse shots along line 2.
influence due to a shallow high-velocity zone along line 2.
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Line-1 Tomography Solution

900 2000 3000 4000

Velocity (m/s)

Reconstructed Raypaths

5000

10 m

Figure 6-4: Line-1 tomography solution. It shows a low-velocity zone near the surface
where organices was later found by drilling. Bedrock topography deepens slightly off
the center toward the right. Reconstructed first-arrival raypaths are also displayed.
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Line-2 Tomography Solution

900 2000 3000 4000 5000

Velocity (m/s)

Reconstructed Raypaths

10m

Figure 6-5: Line-2 tomography solution. Bedrock topography is found relatively flat.
An intermediate velocity layer is overlain on the bedrock and outcrops the surface.
It is identified as weathered sandstone. Reconstructed raypaths are displayed.
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Figure 6-6: Convergence progress of the line-1 and line-2 inversions. Average-slowness
data were inverted during the first 10 iterations, then both average-slowness and
apparent-slowness data were inverted for another 10 iterations.
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Calculated Traveltime and Field Data for Line 1
25

I-

0.00 10.0 200 300 400 500 600 700

Horizontal Distance (m)

Figure 6-7: Line-1 traveltime fit. Solid curves are the picked traveltime data, dots
are the calculated traveltimes for the final model. Large misfit was found at receivers
near the low velocity zone due to inaccurate traveltime picks.
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Calculated Traveltime and Field Data for Line 2

0 .0
0.00 10.0 20.0 30.0 40.0 50.0 60.0 70.0

Horizontal Distance (m)

Figure 6-8: Line-2 traveltime fit. Data (solid curve) and calculated traveltimes (dot)
are displayed.
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Line-i Model Correlation

Line-2 Model Correlation

10m

0

Correlation

Figure 6-9: Uncertainty analysis using nonlinear Monte Carlo inversions. Posterior
model correlation for selected points are displayed, one from each model. Both points
are correlated only to a very small area in the neighbors, indicating good resolution.
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Iteration 4

Iteration 6

Iteration 8

Iteration 11

900 2000 3000 4000 5000

Velocity (m/s)

Figure 6-10: Applying joint migration and tomography method to line-1 traveltime
data. Migration image and velocity model are superposed for display purpose. During
the first 6 iterations, only tomography was conducted to obtain a reasonable velocity
estimate. Starting from the 7th iteration, migration and tomography are jointly
conducted.
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Iteration 4

Iteration 6

Iteration 8

Iteration 13

900 2000 3000 4000 5000

Velocity (m/s)

Figure 6-11: Applying joint migration and tomography method to line-2 traveltime
data. Similar to line-1 imaging, during the first 6 iterations, only tomography was
conducted to obtain a reasonable velocity estimate. Starting from the 7th iteration,
migration and tomography are jointly conducted.
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Line-i Raypaths from Joint Migration and Tomography

Line-2 Raypaths from Joint Migration and Tomography

10 m

Figure 6-12: Reconstructed raypaths from joint migration and tomography. Note
their deep rays differ from those reconstructed from nonlinear refraction traveltime
tomography.
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TOPOGRAPHY OF THE
BALA KIMBERLITE

N

Figure 6-13: Topography of the Bala Kimberlite and the seismic survey locations.
Above elevation 1400 feet, a small dome shape of the Bala Kimberlite was exposed at
the surface, where two seismic survey lines intercept. Along each line, 96 geophones
were deployed, and shots at every receiver locations and also at offset distances were
conducted.
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Figure 6-14: Waveform recordings from a forward spread on line 2. Note the rapid
traveltime decrease with distance at the end close to the kimberlite.
amplitude focusing effects near the kimberlite.

It also shows
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Figure 6-15: Waveform recordings from a reverse spread on line 2. Note the rapid
traveltime decrease near the kimberlite and amplitude focusing.

167

E
E

IFFIYFYF VIU", i \11khIPIL111"I jilri/ "/"/,I i

w(v Al

ill 111,177717 VVI! 1- Rl,,( 6 kill i ,M A 1-11

Vr 11,

K I i(:, A I rh I f I I 1i it I I I

LFIAV(i \ ,OM I r1YTYVTP/( Ti it
1 kLKhi Drw 1 !1'. ml !I I 1111 Willi

H P till ill 11 ...

F1 I L I V I/ k V\ F

1f 1MV\1AA1) 101111111

.1

-

I



Traveltime Data
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Figure 6-16: The first-arrival traveltimes from 19 shots to 96 receivers.
significant traveltime delay near the kimberlite.
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initial model

2850 rn/s

4th iteration

8th iteration

2nd iteration

6th iteration

10th iteration

20 m

300 1000 2000 3000

Velocity (m/s)

Figure 6-17: Tomography inversions of line-2 traveltimes from a homogeneous start-
ing model (2850 m/s). It shows high-velocity bedrock topography and its lateral
discontinuity. The boundary of the Bala Kimberlite is also reconstructed.
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Traveltime fit from inversion 1
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Figure 6-18: Picked traveltimes from real data (solid line) and the calculated travel-
times for the first inversion solution (dashed line).
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2nd iteration

4th iteration 6th iteration

8th iteration
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10th iteration
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Velocity (m/s)

Figure 6-19: Tomography inversions of line-2 traveltimes from a 2D starting model
with major features resolved from the first inversion.
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Traveltime fit from inversion 2
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Figure 6-20: Picked traveltimes from real data (solid line) and the calculated travel-

times for the second inversion solution (dashed line).
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Figure 6-21: RMS traveltime residuals versus inversion iterations for both inversions.
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Raypaths from inversion 1

SW Raypaths from inversion 2 NE

20 m

Figure 6-22: Reconstructed raypaths corresponding to the tomography solutions
shown in Figure 6-17 and Figure 6-19.
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initial model

4th iteration 6th Iteration
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Velocity (m/s)

Figure 6-23: Application of joint migration and tomography method to the line-
2 data. The migration image and the velocity models are superposed for display.
During the first 7 iterations, tomography method was applied to obtain a reasonable
well model. Staring from the 8th iteration, the joint method is applied.
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forward wavefront system

reverse wavefront system

superposition of reconstructed wavefronts

Figure 6-24: Downward continuation of the phantomed forward and reverse travel-

times for constructing a line-2 migration image. The velocity model reconstructed
from the second inversion was used for migration.
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Chapter 7

Imaging Crustal Structure of the

California Borderland

Abstract

We apply a joint nonlinear refraction and reflection traveltime tomography method to
image the crustal structure of the California Borderland. Ocean Bottom Seismometer
(OBS) and land data were collected during the Los Angeles Region Seismic Exper-
iment (LARSE) along two marine survey lines. Along both lines, it shows strong P
refractions from the upper crust and wide-angle P-wave reflections from the Moho
(PmP). For line 1 from Seal Beach to San Clemente Island, we model a 2-D profile
90.2 km by 24.6 km with 1100x 300 grids. Details of our image include a high velocity
zone under the Catalina Ridge, but a smooth gradient zone between Catalina Ridge
and San Clemente Ridge. The Moho depth is about 23 km with lateral variations.
For line 2 from Santa Monica to south 160 km, our model covers a profile of 160.5
km by 25.0 km with 1605x250 grids. We also found the similar high velocity features
under both Catalina Ridge and San Clemente Ridge. After tomographic imaging, we
measure the uncertainty of the solutions using nonlinear Monte Carlo inversions. The
results indicate that the shallow high-velocity features in the solutions are reliable.
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7.1 Introduction

Seismic experiments have played a major role in imaging the crustal structure of the

earth. To study the crustal structure of the California Borderland province crossing

from land to sea, the Los Angeles Region Seismic Experiment (LARSE) was con-

ducted in October, 1994. This project was a cooperative study involving scientists

from the U. S. Geological Survey, California Institute of Technology, the University

of Southern California, the University of California Los Angeles, and the Southern

California Earthquake Center (SCEC). The primary goal of this project was to in-

vestigate the crustal structure in the Southern California which can aid the study of

earthquake hazard associated with buried faults and amplification of seismic energy

due to structural influences. Nine OBSs were deployed off shore along two survey

lines and recorded air-gun blasts generated by the R/V Ewing (see Figure 7-1). Land

stations were also used to record the marine seismic energy. A detail of the project

is given by ten Brink et al. (1996) and Fuis et al (1996).

As defined by Shepard and Emery (1941) and Moore (1969), the California bor-

derland is bounded on the northwest by Point Arguello and Arguello Canyon; on

the southeast by Bahia Sebastian Vizcalino and Cedros Island. Its western edge is

marked by the base of the continental slope at the north and by Cedros Deep at the

south (Moore, 1969; Vedder, 1987). Previously there was only one large-scale refrac-

tion experiment offshore the Los Angeles basin, and only one-dimensional velocity

structure was determined from modeling analog data (Shor and Raitt, 1958). From

that survey the crust was reported to be 24-km-thick in the area between Catalina

and San Clement Islands, increasing to 30 km on shore and decreasing to 18 km under

the Patton Ridge where it is close to the continent-ocean boundary.
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7.2 Reflection and OBS Data

Because of the geological structure in this region which is characterized as velocity

gradients due to Catalina Schist, multi-channel seismic reflection techniques fail to

record any information of the deep crust (Bohannon and Geist, 1996). In Figure 7-2

and Figure 7-3, we display single-channel reflection records along two survey lines.

They only show the seafloor and sediment reflections and their multiples. Other

than these, the wavefields are quite simple. Nevertheless, refraction and wide-angle

reflection survey with OBSs and land stations provides traveltimes contraining the

lateral and vertical velocity variations in the crust. Figure 7-4 dsiplays the vertical

waveform recordings from one of the OBSs along line 1. It shows strong P-wave

refractions from the upper crust (Pg) and the wide-angle reflections from the Moho

(PmP). Figure 7-5 shows a similar waveform pattern from line 2. Recordings along

line 1 and line 2 all show these two phases, Pg and PmP. Therefore, we perform

a joint refraction and reflection tomography that inverts Pg and PmP traveltimes

simultaneously.

7.3 Nonlinear Traveltime Tomographic Images

For line 1, we discretize a 2-D profile of 90.2 (km) x 24.6 (km) with 1100x300

(330,000) cells and equal grid spacing 0.082 km. The profile starts from the shore

close to Long Beach to San Clemente Island, and the shooting ship slightly turns near

Catalina Island because of shallow seafloor. Figure 7-6 shows the tomographic image

and Figure 7-7 displays the corresponding raypaths. It shows high velocities under

the Catalina Ridge, which are constrained by the first-arrival refractions only. Off the

Catalina Ridge, the upper crust has been constrained by both refraction and reflection

raypaths. A large number of rays penetrate into the deep crust and reflect back to
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the seafloor from the Moho. A bending Moho topography occurs under the Catalina

Ridge. Between San Clemente Island and Catalina Island, the entire crustal structure

is smooth and simple, while between Catalina Island and the shore the upper crust

displays much complexity. In fact, as shown in Figure 7-1, geological observations

on the seafloor also indicate that many faults exist along the profile close to shore,

but no faults are found between San Clement Island and Catalina Island except for

San Clement fault at the end. Because PmP traveltimes are not asscoiated with

any velocities below the Moho, the tomographic image is meaningful only above the

Moho.

For modeling the crustal structure along line 2, we construct a model of 160.5

(km) x 25.0 (km) with 1605x250 (401,250) cells and equal grid spacing 0.1 km. This

profile starts from Santa Monica to 40 km south of the ridge containing San Clemente

Island passing near the NW tips of Catalina and San Clemente Islands. Figure 7-8

shows the tomographic image of the crustal structure with large velocity variations

in the shallow earth (< 3.0 km), and simple in the deep crust. The Moho dips away

from shore, and its average depth is about 23.0 km. The reconstructed raypaths are

shown in Figure 7-9.

After obtaining tomographic solutions, we conduct nonlinear uncertainty analysis

to estimate variance and resolution of the solutions. We select one point in each

model and compute its posterior model correlation. On line 1, the point is selected at

the high velocity structure under Catalina fault. On line 2, the point is also at a high

velocity structure under San Clemente fault. We try to estimate how well these high

velcoity zones are resolved from the nonlinear tomography studies. Because the point

in line-1 profile is covered by refraction only and the point in line-2 profile is covered

mostly by refraction, we only take refraction data for their uncertainty analyses.

Figure 7-10 shows that the model correlation for each selected point is large only in

a small area (slightly along raypaths), indicating that both points are well resolved.
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Therefore, the high velocity structures under Catalina fault and San Clemente fault

are the necessary features for the traveltime data that we inverted. Figure 7-11 and

Figure 7-12 display traveltime fits corresponding to the final solutions. They include

both Pg and PmP traveltimes. The convergence of the rms traveltime misfits are

presented in Figure 7-13.

7.4 Conclusions

We apply a joint refraction and reflection tomography approach to image crustal

structure of the California Borderland along two marine survey lines. Results indicate

that the velocity structure is generally complex in the shallow earth (< 3.0 km),

smooth in the deep crust. The Moho is about 22.0 km in depth. The structure

pattern is also consistent with the waveform records, i.e., they show two major phases

only, the first-arrival refractions and the wide-angle reflections from the Moho. These

results are important for other seismological studies that need an input of the detailed

crustal struture in the California Borderland. Such studies may include earthquake

relocation, simulation of the strong ground motion, deep earth structure modeling,

and seismic wave propagation. Combining modeling results from other geophysical

data in the future, we may also have a better understanding on the tectonics beneath

California.
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Figure 7-1: Locations of LARSE offshore survey lines. OBSs were deployed along two
lines, continuous marine shooting was conducted. Land seismimeters were also used
to receive the same shooting signal.
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San Clemente Ridge
LS2

Locatiop of seismometers

Figure 7-3: Single-channel reflection data following the shooting ship along line 2.
Again, it shows seafloor and sediment responses only.
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Figure 7-4: Recorded seismic data displayed with a velocity reduction 6.0 km/s from
the OBS C4 in line 1. It shows the first-arrival Pg, and PmP 50 km away to the
north.

V)
C
0

U

00 0

CTi (6

E

-D

Line 01 OBS C4



S Line 02r OBS C4 Shot-Receiver offset in kilometers NSN
ISO 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0

0

- -

the -B 4i ie2 tshw h is-ria P-,andPm at istnce 50k- wa

os-a6

-- -r ~ - -712 *-- -

Fiue758eoddsimcdt ipae ihavlct euto . msfo
-h - -4 -n -in -2". "t sh w th i s-aria 6 " n - - a distan e 50 - m -wa

- ~ ~ ~ t .he -so--u - --th. .- - --- --



Line-1 Tomography Solution

San Clemente fault
t

Catalina fault fault
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Figure 7-6: Solution of joint nonlinear refraction and reflection traveltime tomography
for line 1. Velocity complexity occurs in the shallow structure, particularly near
Catalina fault. The Moho depth is about 23 km. The velocity structure is meaningful
only above the Moho, because Pg and PmP do not have any information about the
velocity beneath the Moho.
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Reconstructed Raypaths Along Line 1
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Figure 7-7: Reconstructed refraction and reflection raypaths corresponding to the
final tomography solution for line 1.
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Line-2 Tomography Solution
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Figure 7-8: Solution of joint nonlinear refraction and reflection traveltime tomography
for line 2. Again, large velocity variations occur in the shallow structure. The middle
crust is smooth. The Moho is at depth 23 km, dipping away from the shore.
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Reconstructed Raypaths Along Line 2
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Figure 7-9: Reconstructed refraction and reflection raypaths corresponding to the
final tomography solution for line 2.
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Model correlation for a selected point on line 1
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Figure 7-10: Uncertainty analysis of the final solutions. One point in each model is
selected for displaying its posterior model correlation. They both show good vertical
resolution, but somewhat lateral trade-off (correlation and anti-correlation).
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Line-1 Traveltime Fit
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Figure 7-11: The first-arrival (Pg) and the reflection (PmP) traveltime fit for line 1
after 20 inversion iterations.

192



Line-2 Traveltime Fit
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Figure 7-12: The first-arrival (Pg) and the reflection (PmP) traveltime fit for line 2
after 20 inversion iterations.
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Inversion Iteration

Figure 7-13: RMS traveltime misfits versus inversion iteration during the joint refrac-
tion and reflection traveltime tomography.
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Chapter 8

Discussion and Conclusions

We have developed three imaging techniques for reconstructing the subsurface struc-

ture, i.e., nonlinear refraction traveltime tomography, joint refraction traveltime mi-

gration and tomography, and joint refraction and reflection traveltime tomography.

These imaging techniques interpret traveltime data recorded on the surface and ac-

count for the nonlinearity of the traveltime problems in several ways. More im-

portantly, we solve all these problems on a regular grid model which is capable of

representing any complexity in the earth's structure. Solving a traveltime imaging

problem on a regular grid is a challenge, because we must deal with a large number

of model parameters, thereby requiring intensive computation and also sophisticated

numerical techniques to handle large uncertainty. This thesis reports how we over-

come these difficulties to implement these three imaging techniques. These methods

are very efficient on a workstation.

We first developed a new raytracing technique that is applied to all three travel-

time imaging methods in various ways, from a point source to expand the first-arrival

refractions, from a point source and then a line source (reflector) to generate reflec-
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tions, and from a line source to downward continue traveltimes for migration. The

performance of the raytracing method is crucial in this thesis, because it determines

the accuracy and efficiency of all three imaging methods, consequently, feasibility

and applicability for solving the nonlinear traveltime problems. The approach that

we proposed for the traveltime calculation seems well suited for the imaging purposes.

It accounts for wave effects in various structures, and high efficiency is achieved by

identifying minimum computational effort for certain particular structure prior to

raytracing.

We characterized refraction traveltime problem and identified a few unique physi-

cal properties associated with refraction. Consequently, we posed a nonlinear inverse

problem that minimizes the misfits of average-slowness data and apparent-slowness

data. The tomography problem is regularized by the Tikhonov's method to obtain

one stable and unique solution. We found that the errors in the refraction traveltimes

are not distributed as random Gaussian type in general, only the errors in their gradi-

ents and their absolute shooting times are. Accounting for this pattern of errors, we

performed uncertainty analysis by applying nonlinear Monte Carlo inversions. In fact,

we believe this complete nonlinear traveltime method represents the first nonlinear

refraction traveltime tomography, since all previous tomography methods applied to

the refraction problems were designed for any survey geometry, they did not reflect

the fact of "refraction" and account for its unique physics.

We combined refraction migration and tomography in one joint process by way of

regularization. This method can resolve a high-resolution image and define a different

concept of "smoothness" for the solution. We view the success of this joint process as

a major breakthrough in seismic imaging. Conventionally, migration and tomography

were defined as two different technical fields, and they were performed separately. It is

apparent that migration needs accurate velocity information which tomography may

help and tomography needs interface information which migration may be able to
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reconstruct, however, the lack of quantitative connection between the two methods

makes it difficult to link them automatically. A few attempts were made to per-

form joint migration and tomography, but proposed methods are interactive rather

than automatic, and need the user's decision during the process to correlate results

of migration and tomography. We presented two algorithms to link migration and

tomography in an automatic way, i.e., constraining model interface or constraining

model-derivative interface by migration image in the tomographic inversion. Because

we conduct traveltime migration which requires computation time compatible to two

forward traveltime problems only, the joint migration and tomography method is

nearly as efficient as the nonlinear traveltime tomography. On the other hand, the

method also demonstrates that regularization does not necessarily result in featureless

structures in the entire model. Correlating model parameters within each geological

zone defined by migration in the tomography inversions reconstructs more meaningful

solution.

Our third approach for imaging the subsurface is to take both refraction and re-

flection traveltimes into a simultaneous tomographic inversion. The major difficulties

of this problem include large numerical computation burden for calculating both re-

fractions and reflections in a regular grid model and also the data ambiguity due

to long rays and short rays. Because of these difficulties, previous joint refraction

and reflection methods parameterized a model with some assumed functional and lin-

earized the inverse problem in one way or another. In this thesis, however, we solved

a nonlinear simultaneous inverse problem on a regular grid as it was posed without

any additional assumptions about structure and data. This joint nonlinear imaging

technique is feasible because of several approaches applied: the efficient raytracing

method that we developed, the use of the Tikhonov's regularization method, and the

input of refraction and reflection traveltimes in a physically meaningful way. Because

the undetermined features of the slowness field in the reflection traveltime problem

are physically inherent, one must provide additional physical constraints to obtain
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a more reliable solution. The inclusion of the refraction data for performing a joint

traveltime tomography is one of the attempts for this purpose. From the data point

of view, the identification of the first-arrival refractions is much more reliable than

the reflections. Therefore, the availability of the refraction data is not an issue in

general. Similar to the refraction traveltime tomography, we applied nonlinear Monte

Carlo inversions to perform uncertainty analysis after obtaining a solution from the

joint inversion.

All of the examples shown in this thesis were designed to explore the validity and

usefulness of these methods. We have shown that the nonlinear refraction travel-

time tomography method works well for a graben model if the second- or third-order

derivative operator is applied for regularization and both the average-slowness and

the apparent-slowness data are inverted. For the same model, we have also shown

that the joint migration and tomography method can well reconstruct the velocities

and the sharp interface. We applied joint refraction and reflection traveltime tomog-

raphy method to an oceanic crustal model and showed its effectiveness. In principal,

these three imaging techniques can be applied to the earth structure at different

scales. In this thesis, for demonstration purpose, we applied nonlinear refraction

traveltime tomography method and joint refraction traveltime migration and tomog-

raphy method to two shallow imaging cases (South Boston, Massachusetts and Riley

County, Kansas), and applied joint refraction and reflection traveltime tomography

method to one crustal imaging case in southern California.

Imaging the shallow Earth's structure for two real cases implies great applica-

bility of these techniques to the geological engineering problems. The first case in

South Boston, Massachusetts was to image bedrock in a complex near-surface area.

Determination of bedrock depth is often needed for various engineering projects. We

demonstrate that the new techniques that we developed can deal with the difficult

situation where the large velocity variations occur above the bedrock. It is obvious
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that correctly reconstructing the shallow velocity structure is crucial for imaging the

bedrock topography. However, conventional methods for mapping a refractor all as-

sume simple overburden velocity structure. More importantly, they cannot explore

the validity of the assumption, but always obtain a solution in any case. For the

field survey in South Boston, MA, our nonlinear refraction traveltime tomography

technique automatically reconstructed the entire velocity structure that influences

the data. Estimating the posterior model correlation at a point on the bedrock image

for Line 1 gave an uncertainty measure for that particular point. When we performed

joint migration and tomography for the same data set, migration image (refractor)

and the largest velocity contrast reconstructed in the model tended to converge to

the same locations, their final mismatch gave uncertainty estimate in another man-

ner. The interest for the Bala Kimberlite survey was on the reconstruction of the

entire shallow velocity structure. It is apparent that tomography is an ideal approach

for this purpose. In this case, the anomalies in the traveltimes cannot be easily ex-

plained in any intuitive way. They show negative and infinite apparent velocities,

and the traveltime curves are fairly nonlinear with respect to distance. Applying

nonlinear traveltime tomography method quickly resolves the structure complexity.

We repeated the tomography inversions for two different initial models, the solutions

are consistent, both indicating the same features.

When we modeled the crustal structure off shore near southern California, it

happens that PmP and Pg are the only two phases that can be identified on the

recordings. In fact, the shallow earth from the seafloor to 3 km in depth shows

strong lateral and vertical heterogeneity which can be constrained by the first-arrival

refractions (Pg). Performing joint refraction and reflection traveltime tomography

resulted in a model that contains much complexity in the shallow structure, smooth

mid and lower crust, and a dipping Moho. Without the refraction data included, the

complexity seen in the shallow earth would be mapped into the deep crust or the

Moho geometry. For this particular case, we took the reflection from the Moho only
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because of availability, the technique can certaintly deal with many reflections as well.

8.1 Future Work

Starting from July, 1995, our initial goal for this thesis work was to develop a real

nonlinear refraction traveltime tomography technique which should mostly depart

from the existing methods that had not accounted for the characteristics of the seis-

mic refraction yet. We first realized that the available raytracing techniques are not

sophisticated enough for refraction calculation. Therefore, we developed a new ray-

tracing method. Along the way, we also developed joint migration and tomography

method when we attempted to enhance the inversion resolution. We inverted both

refraction and reflection traveltimes for solving a joint tomography problem, because

we thought that utilizing both the first and later arrivals should be the next step.

There are certainly many other research issues which we have not explored yet. We

will discuss only a few that have occurred to us during the development of this thesis.

Traveltime calculation is still a challenge in terms of efficiency and accuracy. It

seems that developing wavefront methods will continue to be the future direction.

However, one of the major problems is that the user often has no idea how accurate

the calculated traveltimes are for a complex velocity model. Therefore, one may not

be able to know if the model solution really corresponds to the data misfit residual.

If the traveltime accuracy is higher than the noise level in the data, it will be difficut

to verify if the solution is meaningful. Can we sufficiently increase the local rays in

a graph template so that the accuracy is high enough for any model? We can hardly

do that because of large computational burden. Even though we decide to do so, we

still do not know how "high" the accuracy is when we deal with a complex model.

Therefore, in the future, we must solve the problem of measuring the accuracy of the
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traveltime calculation during the tomography inversion. On the other hand, if the

efficiency of the traveltime calculation can be greatly enhanced, it will be in turn very

helpful for improving the accuracy and also allowing us to do more on measuring the

accuracy. The forward traveltime calculation in our nonlinear refraction traveltime

tomography takes about 92% CPU time of the whole imaging process, the further

improvement of the approach is certainly important.

In this thesis we introduced the approach to invert "traveltime curves" rather

than traveltimes. We minimized the misfits of the averge traveltimes and the first-

order derivatives of the traveltimes as derived from the two nearby receivers. One

direction that we could pursue further is to completely regularize the traveltime data

for inversion. When we dealt with the ill-posedness of the inverse problem, we chose

the Tikhonov method to regularize the model parameters. Similarly, we might apply

a cubic spline interpolation method to the traveltimes and generate real curves from

the data. There are physical reasons for doing this. Considering the seismic wave

propagation through some sharp features in the subsurface, we can observe that

the signature of the structure in terms of traveltime becomes smaller when the wave

propagating longer distance. Smooth variations in traveltimes recorded on the surface

are commonly seen, therefore, data interpolation is not unrealistic. In such a way with

regularization applied to both data and model, we might eventually solve a continuum

inverse problem which is independent of data and model discretization.

We showed two algorithms for conducting joint refraction traveltime migration and

tomography. The approach can also be applied to the wavefield reflection recordings,

which are often migrated for exploring oil and gas reservor. The fundamental problem

in reflection migration is the lack of accurate velocity information. The methods

that we proposed can link migration and tomography in an automatic manner. We

might apply a cross-correlation technique to track the migrated events iteratively and

perform a traveltime tomography while migrating wavefield. The procedure should
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be efficient for iterative prestack migration. If one applies Kirchhoff migration using

rays, then the results of the traveltime calculation for the tomography purpose can

also be used for migration.
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Appendix A

Finite-Difference versus

Minimum-Traveltime Method

A.1 Introduction

For the first arrival traveltime calculation on a regular velocity grid, wavefront raytrac-

ing methods appear more sophisticated than the conventional two-point raytracing

methods. Wavefront raytracing methods can simulate many wave effects, such as

diffraction, raypaths to shadow zone. For the purpose of traveltime tomography, they

are also efficient, because one forward calculation gives the traveltimes throughout

the model. The computation speed is independent to the number of receivers. Specifi-

cally, wavefront raytracing methods include the finite-difference solution of the eikonal

equation (Vidale, 1988, 1990) and the minimum-traveltime raytracing method that

applies graph theory or Huygens' principle to expand a wavefront (Saito, 1989, 1990;

Moser, 1989, 1991). The latter was also called "shortest path raytracing method"

by Moser (1989, 1991). However, in this thesis we used the name, "minimum trav-
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eltime raytracing method", which is more proper for the seismic traveltime problem.

Further refinements of both approaches have been done by several authors (finite-

difference methods: Podvin and Lecomte, 1991; Van Trier and Symes, 1991; Hole

and Zelt, 1995; minimum-traveltime methods: Mandal, 1992; Fischer and Lees, 1993;

Klimes and Kvasnicka, 1993; Weber, 1995). But the numerical comparison of the

two approaches have not been made yet, and statements about their performance are

often misleading. In the following, we shall point out several differences between the

two methods. Particularly, we will discuss the advantages and disadvantages of each

method for the refraction calculation.

A.2 Finite-Difference Eikonal Solvers

Vidale (1988, 1990) presented a method that solves for the first arrival traveltimes by

a finite-difference solution to the eikonal equation

T (T) 2  2
(--) + (-) = (x, z) (A. 1)

where T(x, z) is the first arrival time for seismic energy propagating from a point

source through a medium with a slowness distribution of s(x, z). In Vidale's method,

the solution region is developed along an expanding square, which introduces signif-

icant errors at interfaces where velocity contrasts are large. Briefly we review the

finite-difference scheme that Vidale (1988) proposed to solve equation (A.1).

In Figure A-1, assuming a source point at A, the arrival times at the four points

B 1 , B 2, B3 , and B4 can be computed by taking the product of the distance h and the

average slowness between points A and Bi,

TB, = hsB, + SA (A.2)
2
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Then the arrival times Tc at the four corner points can be computed with the fol-

lowing formulas:

Tc= TA +/2(hs;)2 - (TBi+ 1 - TBJ 2  (A.3)

1
si = (SA + SC, + SBi + SB i +l)4

Using the above formulas, one can first time the open circles in Figure A-1, a total

of 8 nodes surrounding the source point A. After we know the traveltimes at open

circles, the next step is to time filled circles in next ring. To do so, we first need

to find the minimum-time point along the previously timed ring. Adjacent points

to the minimum-time point are timed first. Starting from the minimum-time point,

the points are then sequentially timed along the edge using a finite-difference scheme.

After all four edges are timed, the times of the four corner points are calculated.

Therefore, the traveltimes are sequentially calculated along the "expanding squares"

until the nodes in the whole model are timed.

Qin et al.(1992) carefully analyzed the problem with this "expanding square"

approach. The schemes that Vidale (1988) proposed require "the time for the part

of the raypath leading to a point must be known before the time of the point can be

found" (Vidale, 1988). This can be violated for models with moderate to large velocity

contrasts. Mathematically it may lead to negative values inside the square root in

equation (A.3). Quantitatively, the "expanding square" scheme violates causality if

the critical angle is less than sin~1 (V1 /V 2) = 45 degrees, or V1/V 2 < V/2/2.

To preserve causality, Qin et al.(1992) attempted to improve the finite-difference

approach by Vidale (1988) by solving the eikonal equation along an expanding wave-

front. They described the approach that they presented, "we time the points (about

a 5 x 5 grid of points) near the source region by a Huygens' principle method (Saito,

1990)." However, they did not realize that the approach is already much more than

an eikonal solver, it is a minimum-traveltime method (or shortest path raytracing
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method) based on Dijkstra's algorithm (Dijkstra, 1959) or Huygens' principle, an

approach adopted for seismic traveltime calculation by Saito (1989, 1990) and Moser

(1989, 1991). In fact, the approach that Qin et al.(1992) showed is equivalent to a

5th-order graph template method described by Saito (1989, 1990) and Moser (1989,

1991).

In another effort to solve the problem in the finite-difference schemes for sharp

velocity contrasts, Podvin and Lecomte (1991) proposed an approach that "relies on

a systematic application of Huygens' principle in the finite difference approximation."

Again, they identified the difficulties of Vidale's (1988) finite difference schemes for

timing local nodes in different structures. Therefore, they explicitly add some more

conditions for the proper use of finite-difference schemes in order to separate the

propagation modes of transmission, diffraction and head waves. In addition, applying

Huygens' principle is to ensure correct expansion of a local wavefront. Their approach

turns to be a combination of finite-difference approach and a minimum-traveltime

method. But it is apparently more complicated and expensive than a minimum-

traveltime method. Podvin and Lecomte (1991) implemented the approach on a

parallel computer.

Hole and Zelt (1995) presented an alternative algorithm to improve the problem

in Vidale's finite-difference approach. They adopted part of the idea from Podvin

and Lecomte (1991) and included a head-wave operator in the finite-difference propa-

gation scheme. In order to maintain the high computation speed that Vidale's finite-

difference approach achieves, Hole and Zelt (1995) did not apply Huygens' principle

in every step when expanding the local wavefront. Instead, they chose to apply a

posterior correction based on the Huygens' principle. After traveltimes have been

computed throughout the entire model, the traveltime field is used as a starting point

and times are recomputed starting with a "source" volume at the appropriate wall

of the model and expanding perpendicular to that face. Traveltimes from the new
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calculations replace the previously computed times only if the new times are smaller.

This approach is fast, and may enhance the accuracy of finite-difference calculation

associated with the head waves. But it does not guarantee to be always effective.

The authors suggested, "the reverse propagation step may need to be repeated mul-

tiple times in the presence of a sufficiently complex velocity model, although for most

models one reversal is sufficient."

The finite-difference approach proposed by Vidale (1988, 1990) provides simplicity

and savings in computation time. But its inaccurate calculation for refraction travel-

time is a problem, becoming a major concern in the research community. Although

a variety of corrections or new finite-difference operators are proposed to improve

the solution, the fundamental issue is actually very simple, one must find a minimal

time from one point to another. The minimum-traveltime methods that apply graph

theory for searching the shortest traveltime paths from points to points are more

straight-forward in this sense. In fact, all the proposed alternative algorithms for im-

proving the finite-difference performance either completely or partially use the ideas

behind the minimum-traveltime methods. In the following, we shall explain some

details of the minimum-traveltime methods and compare their performance with the

finite-difference approaches.

A.3 Minimum-Traveltime Methods

In Chapter 2, we have already introduced the minimum-traveltime methods (or short-

est path ratracing methods) by Saito (1989, 1990) and Moser (1989, 1991). In this

Appendix, we move one step further to show the original ideas that they adopted

for the traveltime calculation. Once the ideas are understood, one can employ many

different graph templates to expand a wavefront. It appears that eikonal solver is just
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one of the many ways to time the local nodes. An important issue is that a graph

template must be sufficiently accurate for sampling a wavefront. It happens that

Vidale's (1988, 1990) "graph template" (finite-difference schemes) is not a good one.

Moser (1989, 1991) clearly described graph theory using Dijkstra's (1959) algo-

rithm. In Dijkstra's algorithm, one arranges an order of n nodes to be updated so

that after exactly n iterations the shortest traveltime paths are found. The nodes are

divided in a set P of nodes with known traveltimes and a set Q of nodes with not

yet known traveltimes along shortest paths from s. Initially, P is empty and Q = N.

The minimum traveltime node of Q is s, with a known traveltime tt(s) = 0, so that it

can be transferred to P. Complete Dijkstra's algorithm can be formulated as follows,

(1) Initialization

Q :=N tt(i): = oc for all i E N

P := tt(s): = 0

(2) Selection

Find i G Q with minimal traveltime tt(i)

(3) Updating

tt(j) := min(tt(j), tt(i) + dh) f or all j

transfer from Q to P

(4) Iteration check

If P = N stop

else go to 2.

Step (2) turns out to be most time-consuming in the algorithm. Moser (1990) sug-

gests to use "heap" sorting algorithm which requires log n operations for n nodes.
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Recently, Klimes and Kvasnicka (1994) proposed an INTERVAL method for sorting,

their approach is about 4-5 times faster than the heap sorting algorithm.

Dijkstra's algorithm presents an approach that guarantees to find global mini-

mum traveltimes. However, there is always an accuracy issue involved for finite-grid

modeling. One cannot obtain an exact solution by expanding a wavefront with a

number of finite samples. Errors mainly occur in the updating stage, where a way

of approximately timing local nodes needs to be defined. Timing local nodes in the

minimum-traveltime method is conducted using a graph template. Nakanishi and Ya-

maguchi (1986) showed a template with straight rays only in a constant velocity cell.

Then there is no error associated with a slowness integral along a local raypath. But

there are other errors due to finite-angle sampling which lead to violation of Snell's

law across cell interfaces. On the other hand, using straight rays within a constant

velocity cell requires to place more traveltime nodes than the number of velocity cells

on the graph network. This may introduce large computational burden in the second

step when sorting for the minimum traveltime points is conducted. Saito (1989, 1990)

and Moser (1989, 1991) illustrated a graph template that uses straight rays across

several rings of nodes with a traveltime node placed at each corner of a cell. This

graph template is practical for seismic traveltime calculation in terms of computation

time. From a first look, using straight rays across cell interfaces may introduce large

errors. However, its accuracy may be much better than one might thought. The

graph template that Saito (1989) and Moser (1989) proposed allows us to sample

wavefront curvature densely, and gives us choices for using long rays when necessary.

Matarese (1993) summarized Saito's and Moser's graph templates with a concept

of order, i.e., the graph template that connects a source up to the first ring of nodes

is called "first order", the one that connects a source up to the second ring of nodes is

called "second order", so on. Higher-order graph template allows for better precision

for traveltime calculation, usually a 5th-order graph template seems working well for
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a seismic traveltime problem (Saito, 1989; Fischer and Lees, 1993). The higher the

order of a graph template is used, the more traveltime nodes are included for selecting

a minimal time along the wavefront, requiring more computational time.

With these concepts in the minimum-traveltime methods, one can understand

that the finite-difference approach by Vidale (1988, 1990) actually uses a somewhat

2nd-order graph template in a form of "square ring". Because of this low order, the

computation is fast, but the results are inaccurate. Later improved approaches (Qin

et al.1992; Podvin and Lecomte, 1991) are equivalent to the use of a higher-order

graph template with more node connections and more directions sampled for wave

propagation, and require longer computation time. Hole and Zelt (1995) added a

head wave operator to the low-order "graph template" in Vidale's approach (1988,

1990), and conducted node connection check from one or more side walls for possible

correction. Their approach may be useful for simple structures, which are often

the cases in real problems. However, it does not guarantee an accurate solution

for complex velocity model, as one can understand from the minimum-traveltime

algorithm.

The accuracy issue is clear, we must well sample a wavefront during finite nu-

merical expansion. This requires sufficient angle and node sampling. To do so, we

need many node connections in a graph template, but we cannot afford large compu-

tational load which may occur when selecting a minimal time with too many nodes

involved. Therefore, as introduced in Chapter 2, we proposed a new approach that

a high-order graph template is in effect only in areas where velocity structures are

complex. Before raytracing, the model gradients are calculated (they are also needed

in tomography inversion). In areas where the velocity gradients are smaller than a

given tolerance, traveltime nodes are eliminated and only connections using straight

rays are applied. In addition, we place nodes on certain locations at the cell inter-

faces in a graph template so that a wavefront can be uniformly sampled. Numerical
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comparison will be illustrated in the next section.

A.4 Comparison of Numerical Accuracy

In this section, we shall compare numerical accuracy of traveltime calculation for four

different wavefront raytracing methods. They include a finite-difference eikonal solver

by Vidale (1988), an improved finite-difference method by Hole and Zelt (1995), 4th-

and 5th-order minimum-traveltime methods by Saito (1989) and Moser (1989), and an

optimized minimum-traveltime method proposed in this study. We choose a 2-layer

model for which analytical traveltimes are available. From a source on the surface,

direct wave, refracted waves, and transmitted wave all should be generated. We real-

ized that few published papers showed error distribution for this simple model except

for Podvin and Lecomte (1991), who showed errors up to about 0.15% using their

approach for a two-layer model with a 1:2 velocity contrast. Vidale (1988) showed

raypaths only for a two-layer model. Most models that were previously studied for

accuracy comparison are either homogeneous, allowing a comparison with analytical

traveltimes of direct waves only, or too complicated that one can only compare with

results from another raytracing algorithm.

In the following experiments, we fix the top layer velocity to be 1000 m/s, but use

two different velocities for the lower layer, 2500 m/s and 4000 m/s, respectively. Note

the different error scale used in each figure. Figure A-2 shows the relative errors by

using Vidale's (1988) finite-difference method. Clearly, large errors are generated due

to high velocity contrast, where the algorithm fails to map a wavefront accurately.

For the velocity contrast 1:2.5, the largest error is about 8.7% and it occurs near

the critical refraction point, the errors in the refracted arrivals at the surface are

about 1.32%. The latter directly affects traveltime accuracy in a refraction traveltime
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inversion problem, while the former influences raypath estimate for inversion in the

subsurface. When the velocity contrast is 1:4, the relative errors increase to 32.4%

and the refraction errors at the surface are about 5.7%. The occurence of these large

errors when using Vidale's algorithm for models with sharp velocity interfaces can be

well explained with the analysis given in the previous sections.

Figure A-3 shows the relative errors for the same models when using improved

finite-difference algorithm by Hole and Zelt (1995). Because of a head-wave operator

included and reverse propagation applied for necessary corrections, the errors are sig-

nificantly reduced in comparison to Vidale's original algorithm. But the large errors

are still associated with refractions and up to 3.2% for a velocity contrast 1:2.5, and

3.7% for a velocity contrast 1:4, again indicating imprecision for mapping a wave-

front at the critical point. In addition, a constant error is added to the traveltimes

whose paths are connected with the sharp velocity interface. This is because Hole and

Zelt (195) used an average slowness of 4 neighbor nodes at each point for traveltime

calculation (personal communication, 1996). Taking average slowness can avoid de-

termining a smaller slowness along a cell interface, and make the computation slightly

faster, and the results should be reasonably accurate for smooth velocity structures,

but inaccurate across sharp interfaces.

For the same two models, we also apply the 4th- and 5th-order Saito's (1989) and

Moser's (1989) minimum-traveltime methods and calculate their relative errors with

respect to the analytical traveltimes. As shown in Figure A-4 and Figure A-5, the

errors are nearly independent to the velocity contrasts. They are up to about 1.3%

for the 4th-order method for both velocity models, and about 0.7% when a 5th-order

method is applied. The largest errors occur only in the areas where the wavefront

angle from a source is poorly sampled by the local ray legs. In the figures, these

are the areas close to horizontal and vertical lines from the source. We finally apply

an optimized minimum-traveltime method as described in Chapter 2. It involves

224



optimizing angle sampling in a graph template with straight rays within each cell only,

and eliminating traveltime nodes in the area where velocity structure is "smooth". For

the two-layer models, this suggests that the traveltime network consists of nodes only

at the model boundaries and velocity interface, the resulting traveltimes have errors

only due to discrete points. Because this approach does not calculate traveltimes at

locations where nodes are eliminated, we actually interpolate and map the times back

into the entire model for accuracy comparison. Figure A-6 shows that the relative

errors are negligible, less than 0.1% in both cases.

A.5 Conclusions

We studied some details in the wavefront raytracing methods for traveltime calcula-

tion, including finite-difference solution to the eikonal equation, and the minimum-

traveltime method. We point out that it is fair to view the finite-difference eikonal

solver as one particular minimum-traveltime method. Any finite-difference schemes

only provide an approach for updating local traveltimes in a similar fashion as a graph

template in the minimum-traveltime method, they may fail and lead to large errors

if Huygens' principle is not well satisfied. In fact, the ideas behind the minimum-

traveltime methods are more straight-forward, one can choose a variety of ways to

time local nodes. For example, we present an optimized graph template that accounts

for angle sampling as well as numerical efficiency. The approach is more meaningful

than solving an eikonal equation with many required corrections or considerations for

different wave modes. Numerical comparison also shows that minimum-traveltime

methods are the most reliable and accurate. In terms of computation time, a 5th-

order minimum-traveltime method can be four times slower than the finite-difference

approach by Vidale (1988), but it should be faster than the finite-difference meth-

ods by Podvin and Lecomte (1991) and Qin et al.(1992) which require additional
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computational efforts. The computation time of an optimized minimum-traveltime

method depends on the velocity structures, or the number of the remaining traveltime

nodes after elimination. For a two-layer velocity model, its speed is comparable to

the Vidale's finite-difference approach.
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Figure A-1: Finite-difference mesh centered about source point A, where Bi and Ci
for i = 1, 2, 3, 4 are to be timed first. Then using a finite-difference scheme to time
filled circles with known traveltimes at open circles.
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FD Method by Vidale (1988)

Velocity Contrast 1.0:2.5

Velocity Contrast 1.0:4.0

20 m
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.............................................................I

20 30 33

Traveltime Error (%)

Figure A-2: Comparison with exact solution. The upper layer velocity is fixed to be

1000.0 m/s, the lower layer velocity is 2500 m/s in the top model, and 4000 m/s in

the bottom model. Model dimensions are 200 x 50 meshes. Relative traveltime errors

(percentage) due to a surface source by using Vidale's (1988) finite-difference method

are displayed.
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FD Method by Hole and Zelt (1995)

Velocity Contrast 1.0:2.5

Velocity Contrast 1.0:4.0
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0 1 2 3 3.8

Traveltime Error (%)

Figure A-3: Comparison with exact solution. The upper layer velocity is fixed to be
1000.0 m/s, the lower layer velocity is 2500 m/s in the top model, and 4000 m/s in
the bottom model. Model dimensions are 200 x 50 meshes. Relative traveltime errors
(percentage) due to a surface source by using Hole and Zelt's (1995) finite-difference
method are displayed.
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Fourth-Order Minimum-Traveltime Method

Velocity Contrast 1.0:2.5

Velocity Contrast 1.0:4.0
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Traveltime Error (%)

Figure A-4: Comparison with exact solution. The upper layer velocity is fixed to be

1000.0 m/s, the lower layer velocity is 2500 m/s in the top model, and 4000 m/s in

the bottom model. Model dimensions are 200 x 50 meshes. Relative traveltime errors

(percentage) due to a surface source by using a 4th-order Saito's (1989) and Moser's

(1989) minimum-traveltime method are displayed.
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Fifth-Order Minimum-Traveltime Method

Velocity Contrast 1.0:2.5
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Traveltime Error (%)

Figure A-5: Comparison with exact solution. The upper layer velocity is fixed to be
1000.0 m/s, the lower layer velocity is 2500 m/s in the top model, and 4000 m/s in
the bottom model. Model dimensions are 200 x 50 meshes. Relative traveltime errors
(percentage) due to a surface source by using a 5th-order Saito's (1989) and Moser's
(1989) minimum-traveltime method are displayed.
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Proposed Minimum-Time Method

Velocity Contrast 1.0:2.5
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Figure A-6: Comparison with exact solution. The upper layer velocity is fixed to
be 1000.0 m/s, the lower layer velocity is 2500 m/s in the top model, and 4000 m/s
in the bottom model. Model dimensions are 200 x 50 meshes. Relative traveltime
errors (percentage) due to a surface source by using an optimized minimum-traveltime
method are displayed.

232



Appendix B

Creeping versus Jumping

Inversions

B.1 Introduction

Regularization is a very specific term in the geophysical inversion techniques. It is

mainly about model regularization, and typically this involves using a difference op-

erator that connects neighbor slowness nodes in one way or another. The role of reg-

ularization can be very significant, and control the outcome of inversions ultimately.

However, the understanding of regularization has not been very consistent. In Chap-

ter 3, we have already discussed the criteria of smoothness needed for tomography

inversions. Here we shall further address the issue as where to apply the regularization

to, i.e., to regularize model stepsize or model itself? Smoothing model stepsize during

inversion is regarded as "creeping", while smoothing model itself is called "jumping"

method (Shaw and Orcutt, 1985; Constable et al., 1987; Scales et al., 1990, Zhang

et al., 1996). Both methods have been widely applied in the geophysical tomogra-
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phy problems, although in some cases authors are not aware of such differences. For

examples, Shima (1992) (electrical tomography), Dabas et al.(1994) (electrical tomog-

raphy), and White (1990) (seismic refraction tomography) actually applied creeping

approaches, while Shaw and Orcutt (1985) (refraction inversion), Constable et al.,

(1987) (MT inversion), Ammon et al.(1990) (receiver function inversion), and Zhang

et al.(1996) (resistivity tomography) used jumping inversion methods.

In the following, we shall derive creeping and jumping algorithms in two ways

which represent different views on the same ideas. Scales et al.(1990) commented

that both methods should yield identical results whenever the initial model is smooth

if the Tikhonov regularization is applied. However, we shall analytically and numeri-

cally illustrate that for a nonlinear and ill-posed inverse problem these two approaches

produce two different solutions from any initial model. This is because these two in-

version schemes simply minimize two different objective functions (creeping: data

variance only; jumping: data variance and the stabilizing functional) and the reg-

ularization plays different role in each of these inversions. We conclude that only

jumping inversion along with the second- or higher-order smoothing operator can ef-

fectively deal with ill-posedness in tomography inversion. In the following discussion,

we shall refer data to a vector d for simplicity, although the tomography approaches

that we present in this thesis invert two types of data related to the traveltimes (av-

erage and apparent slownesses). Our focus in this appendix is on the differences of

the creeping and jumping inversion strategies.
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B.2 Linearizing A Forward Problem

Following Shaw and Orcutt (1985) and Ammon (1990), we first start from the expan-

sion of a forward calculation problem. A forward problem may be described by

d = G(m), (B.1)

where d represents data and G represents the functional which operates on the model

m to produce the traveltime. The relationship (B.1) is nonlinear, and represents the

numerical calculation of traveltimes in our traveltime inversion. Assuming that an

initial model mo is "close" to the true earth model m, then the problem may be

linearized by expanding the observed traveltimes in a Taylor series about mo,

G(m) = G(mo) + AAm + O|I(Am2)II (B.2)

where A is the partial derivative matrix of the functional G at me, Am is the model

correction vector. Discarding the nonlinear term OI(Am2 )||, we complete the lin-

earization,

AAm ~ G(m) - G(mo) = d - G(mo) (B.3)

The right-hand side of (B.3) is a data residual vector, the left-hand side is a simple

matrix product. For a refraction traveltime inverse problem, equation (3) is an ill-

conditioned system of equations which can be solved for Am using standard least

squares techniques.

Shaw and Orcutt (1985) described a simple algebraic modification of (B.3) due to

R. L. Parker (unpublished manuscript, 1985) which consists of adding Amo to both

sides of (B.3):

AAm + Amo ; d - G(mo) + Amo. (B.4)

Considering m = Am + m, equation (B.4) is simplified to

Am ~ d - G(mo) + Amo (B.5)
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Equation (B.5) is of the same form as (B.3) and can be solved using the standard

Singular-Value Decomposition (SVD) approach. The important difference between

(B.5) and (B.3) is that in (B.5) we solve for the model m, not a correction vector

Am. This allows us to apply constraints on the model itself rather than the model

stepsize. Solving equation (B.3) with smoothness constraints is to deal with the

following inverse problem,

A )d - G(m) (B.6)
-rR )0

where R is a regularization operator, and we have suggested to use a 2nd- or higher-

order derivative operator in Chapter 3. Solving equation (B.5) with smoothness

constraints is to deal with another one,

A d - G(m)( Amo (B.7)
-TR )0 ( 0 )

The regularized inverse problem that solves equation (B.6) is a creeping approach,

in which we solve Am and also constrain Am during the inversion. Equation (B.7)

indicates a different situation, where we directly solve m and place constraints on m.

The second approach is a jumping method.

B.3 Roles of Tikhonov Regularization

Although equations (B.6) and (B.7) are frequently referred as creeping and jump-

ing methods, the most important difference between the two methods is what the

inversions actually minimize rather than the optimization approach itself. In this

section, we shall show that Tikhonov regularization plays different role in each inver-

sion scheme and inversions minimize two different objective functions. To be more

specific, we shall study the minimization of the following objective functions,

Creeping : <b(m) = j|d - G(m)|| 2 + T|R(Am)112 , (B.8)
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Jumping: D(m) = ||d - G(m)112 + r||R(m)112.

Solving equation (B.6) with a least-squares method is equivalent to the minimiza-

tion of the objective function (B.8). This is what a creeping approach actually does

when we apply constraints on the model stepsize. On the other hand, a jumping ap-

proach minimizes the objective function as shown in expression (B.9). At this point,

we have already generalized the inverse problems. Any approach that minimizes the

objective function (B.8) is a creeping method, and any inversion that minimizes the

objective function (B.9) is a jumping method. One may see that, in equation (B.8),

when Am -+ 0, the objective function becomes,

4(m) = |ld - G(m)112  (B.10)

Therefore, a creeping method inverts data only. Because of ill-posedness which oc-

curs in many tomography problems, creeping methods are greatly challenged by the

nonuniqueness of the solutions. There may be too many solutions that fit the data

equally well, and the solutions depend on the initial models. On the other hand,

jumping inversion minimizes misfit of data as well as the curvature roughness of the

model. A trade-off parameter r is used to weight between data misfit and model

roughness. For each selected r, the inversion converges to one unique data rms resid-

ual and model curvature roughness norm (R is an Laplacian operator), even though

different initial models may be chosen to repeat the experiment. This behavior has

been demonstrated by a few authors (Ammon et al., 1990, Zhang et al., 1996). How-

ever, it by no means suggests that jumping inversion should always produce one

unique solution. Unique model curvature roughness does not necessarily correspond

to one single unique model. It depends on the inherent physical constraints of the

tomography problems. For example, for a medical survey geometry where a sufficient

ray coverage is available, Matarese (1993) demonstrates that jumping inversion can

reconstruct one unique solution no matter what initial model is used. For refrac-

tion traveltime tomography, this can rarely be true due to poor constraints on the
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deep structure. Because of some undetermined features in the slowness field, the

nonuniqueness of the solutions may be also physically posed in the reflection travel-

time tomography. Nevertheless, the use of a jumping inversion approach can remove

nonphysical solutions, i.e., those with nonphysical curvature roughness in the model.

This constraint appears to be very important, making inversions much more friendly.

In the following, we shall derive equations and verify that jumping and creeping

inversions may produce different solutions for any initial models. As we addressed

early, one can minimize the objective functions in (8) and (9) with any optimization

approaches, leading to the two types of inversions, creeping and jumping. We ap-

ply Gauss-Newton method to minimize the two objective functions, resulting in two

iterative schemes,

Creeping : (AT A +r LT L)Amc = AT (d - G(mc_ 1)), (B.11)

Jumping : (AT A + rLT L)mi = AT(d - G(mL 1) + A(mi 1 )). (B.12)

where k is the inversion iteration. Assuming an initial model m, the difference of

model solutions using creeping and jumping schemes after the first iteration can be

derived from (B.11) and (B.12),

m1 - m = -(AT A + rL T L)TLT Lmo). (B.13)

Based on a similar derivation, Scales et al.(1990) incorrectly concluded that for a

smooth initial model, jumping and creeping will give the same results if the Tikhonov

regularization is applied. However, we argue that their conclusion only applies to

the result for the first inversion iteration as shown by equation (B.13). As inversions

proceed further, the creeping and jumping solutions at iteration k - 1 (k > 2) will

both have somewhat roughness, and the difference of the solutions at iteration k

becomes,

m3 - m = -(AT A + rLT L)-(AT A(mi_1 - mC_ 1) - rLT Lmci). (B.14)
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It appears that the Tikhonov regularization does not necessarily guarantee creeping

and jumping solutions to be same at iteration after one even if the initial model is

smooth. In creeping, the Laplacian operator plays a role as a "procedure control"

and regularizes the curvature of each model stepsize but ignoring the entire model

curvature roughness, consequently, only data misfit norm has been minimized. While

in jumping the role of the Laplacian is to minimize the model curvature roughness. As

the result, both data misfit and model curvature roughness have been minimized. A

lesson that we have learned from these derivations is the importance of an objective

function that one should correctly pose. Different optimization techniques may or

may not converge fast under certain conditions, but what is minimized will ultimately

determine whether the solutions are reliable for a strongly ill-posed inverse problem.

B.4 Numerical Examples

We shall perform numerical experiments using creeping and jumping inversion meth-

ods as described by equations (B.11) and (B.12). A 2D velocity model consisting of

a dipping boundary and a high velocity zone is grided by 50 cells. We assume 9 shots

and 24 receivers at the surface. The velocity contrast in the model is fairly large,

with velocity varying from 600 m/s to 3000 m/s. Figure B-1 shows the model and

the raypaths. One can see that the ray coverage is quite sparse in the subsurface.

This situation often occurs in the refraction traveltime problem. However, we shall

show that the subsurface structure can be fairly well reconstructed from this limited

information if the inversion strategy is proper.

We construct two different initial models for tomography inversions. One is ho-

mogeneous, with a velocity of 2000 m/s. The other consists of two layers with a

dipping interface. One may make an initial model like the second one on the basis of
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a first look at the data, and include certain features. Figure B-2 illustrates progres-

sive development of inversions from the two initial models by regularizing the model

stepsize. We should mention that all the inversions performed here minimize the mis-

fits of traveltime curves, which is a new approach introduced in Chapter 3. For the

homogeneous initial model, we found that the creeping method is unable to change

local incorrect features in the subsurface once they are somehow generated. As shown

in this example, the high velocities on the left at depth of about 25 m are over esti-

mated after the first iteration, but remain unchanged over the later iterations. For the

second starting model, the convergence is faster because of the partial features that

are accounted for. However, the updated model fairly depends on the initial model

over all of the iterations, and the final solution keeps the pattern of the initial model

with some nonphysical roughness. In both cases, creeping method successfully finds

a model that fits data, but the solution is unrealistic, containing unnecessary features

for fitting the data. This is because the approach only regularizes the model stepsize,

but ignores the overall structures in the solution. In contrast, Figure B-3 shows that

jumping inversions find a consistent solution from both initial models, which contains

minimum structures needed for fitting the data. Therefore, the solution is stable and

unique, although most likely it is not exact same with the true model. The uniqueness

that we posed here is regarding the uniqueness of the minimum-structure solution on

the basis of the available data information. It is still likely that there are two or more

minimum-structure solutions due to poorly constrained physical problem.

We should point out that the first-arrival rays in the above example only constrain

the top of the high-velocity anomaly. However, the solution seems also showing some

deep features of the anomaly, which are simply the results of regularization for a

minimum structure.
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B.5 Conclusions

We derived creeping and jumping inversion algorithms, and pointed out that their real

differences are in the objective functions that they minimize. For an inverse problem

that the number of grids is approximately equal or close to the rank of the least-

squares matrix, both inversion methods may be able to solve the problem well. In

fact, in earthquake traveltime tomography in which a large number of data points are

used, creeping methods are often applied (Bolt, 1960; Adams et al.1982). However,

it is important to understand that a jumping inversion method should potentially

work better than a creeping method in a generally ill-posed inverse problem. It

is also important to understand the potential risk that one may have to deal with

when applying a creeping method, i.e., the solution depending on an initial model

and overlooking the global structures. We demonstrate these issues in numerical

experiments.
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Figure B-1: A velocity model consisting of a high-velocity zone and large dipping
velocity interface. We assume 9 sources and 24 receivers on the surface. The corre-
sponding raypaths are also displayed.
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Regularizing Model Stepsize
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Figure B-2: From two different initial models, a creeping inversion method is applied
to invert velocity structures. The solutions are dependent to the initial models.
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Regularizing Model Itself
initial model 1

iteration 1

iteration 8

iteration 15
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Figure B-3: From two different initial models, a jumping inversion method is applied

to invert velocity structures. The solutions are independent to the initial models.

244

--------------------



Appendix C

Data Misfits versus Model

Roughnesses

C.1 Introduction

As we introduced in Chapter 3, our nonlinear traveltime tomography inversion min-

imizes an objective function that consists of the misfits of the average and apparent

slownesses as well as the model roughnesses. The model roughnesses are defined by

the application of a regularization operator R on the slowness model. A trade-off

parameter r is applied to determine a proper ratio between data misfits and model

roughnesses for certain problem. The selection of r is somewhat subjective, although

with real data, one can find a -r that allows the data misfits to converge to the prede-

termined residuals as derived from noise level. If there is no additional information

available, one can always check the errors in the reciprocal times from refraction and

reflection data and obtain an estimate. Several authors discussed the selection of

a trade-off parameter -r in a regularized inversion. These include Smith and Booker
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(1988) for magnetotelluric inversion, Ammon et al.(1990) for teleseismic receiver func-

tion inversion, Matarese (1993) for cross-well traveltime tomography inversion, Zhang

et al.(1996) for 3D d.c. resistivity tomography inversion. In this Appendix, we show

the influence of T on the refraction traveltime tomographic solution. The conclusions

are also applicable to the joint refraction and reflection traveltime tomography that

we described in Chapter 5, because the joint tomography is implemented in the same

way as in the refraction traveltime tomography inversion.

C.2 Numerical Experiments

As shown in equation (3.1), we define the model roughness norm as the following,

S3 = mR TRm, (C.1)

where R is a regularization operator, and m is the slowness model. We chose R to

be a Laplacian operator in this study, which calculates slowness differences with a

three-point formula in each dimension. Because R is symmetric, the calculation of S3

involves applying R twice on the model m. There are two separate data terms in the

objective function. One is the misfit of average-slowness data (Si), the other is the

misfit of apparent-slowness data (S 2). A weighting parameter w is needed between

the two terms. We found that an optimal weighting parameter is between 0.4 and

0.5 in general.

We repeat the numerical experiments shown in Chapter 3 with a number of dif-

ferent rs. The inversion reconstructs a graben model from refraction data with 12

sources and 48 receivers. These rs are, 0.5, 1.0, 3.0, 5.0, 10.0, 20.0, 30.0, 40.0, and

50.0. The starting model consists of 2 layers with constant velocities as shown in

Figure 3-2. The inversion results are obtained when the objective function converges

and approximately remains constant.

246



Figure C-1 shows the misfits of average and apparent slownesses versus the trade-

off parameter r. As the trade-off parameter increases, both average-slowness and

apparent-slowness residuals increase. The figure shows that relatively large gradients

in the curves appear if T is less than 10.0. For large r, the increase of the data misfit

residuals is nearly linear to the trade-off parameter.

Although we do not directly minimize the misfit of traveltimes by the least-squares

criterion, it is important to understand how the traveltime residual varies with the

trade-off parameter. We use the following formula to calculate the traveltime residual,

d - ))2 (C.2)
N

where d is data, G(m) is the calculated data, N is the total number of data points.

Figure C-2 (top) shows the data residual versus the trade-off parameter. As the

trade-off parameter increases, the traveltime residual also increases. The variations

are smooth and continuous. Therefore, one can easily interpolate the points and

obtain a continuous curve. The curve is very important for selecting an optimal r

that corresponds to an allowed rms data residual. When we reconstruct a model, we

must know how much we want to fit data. Conducting nonlinear inversions, we nearly

do not have much difficulties to fit data to any level. However, fitting noise introduces

large uncertainty in the solution. Figure C-2 (bottom) presents an important feature

of the regularized inversion. As the trade-off parameter increases, the data residual

sum ((1 - w)S1 + wS 2 ) increases and the model roughness decreases.

It is also interesting to observe the inversion process. Our inversions include two

stages in terms of fitting data, one, inverting the average-slowness data only before

the 6th iteration, the other, simultaneously inverting average and apparent slownesses

from the 6th iteration. As shown in Figure C-3, a sudden decrease in the traveltime

residual takes place when the apparent-slowness data are inverted. Meanwhile, an

increase in the slowness roughness norm occurs due to deep structures that are re-
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-m

constructed from inverting the apparent-slowness data. During these inversions, the

trade-off parameter uniquely controls the convergence.

Regularized nonlinear inversion with a jumping scheme enables us to reconstruct

a stable solution. With a trade-off parameter r = 5.0, we conduct an inversion for

100 iterations. We found that the model remains nearly unchanged (260 m/s) after

the first 10 iterations. Figure C-4 shows the calculated velocity residuals with the

following formula,

- m "rue)2 (C.3)
n

where mk is an iterative solution, mtrue is the true model, n is the number of the

model parameters. After 10 inversion iterations, variations in the velocity residuals

are less than 5 m/s.
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Figure C-1: RMS Misfits of the average and apparent slownesses versus the trade-off
parameter varying from 0.5 to 50.0.
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Figure C-2: RMS traveltime residual versus the trade-off parameter varying from
0.5 to 50.0 (top), and the data misfit sum versus model roughness (bottom). As
the trade-off parameter increases, the model roughness decreases and the traveltime
residual increases.
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Figure C-3: RMS misfit of traveltimes and the slowness roughness versus inversion
iteration for four different trade-off parameters. Inverting apparent-slowness data is
included from the 6th iteration.
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Figure C-4: RMS velocity residual versus inversion iteration. A trade-off parameter
5.0 is selected. After the first 10 iterations, the velocity residual remains nearly
unchanged.
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