
interactive agent generated architecture

by

Jeffrey Charles Stanley Krause
Bachelor of Architecture
University of Southern California
1994

Submitted to the Department of Architecture in partial
fulfillment of the requirement for the degree Master of
Science in Architecture Studies at the
Massachusetts Institute of Technology
June 1996

@ Jeffrey Krause 1996. All rights reserved.
The author hereby grants to M.I.T. permission to
reproduce and to distribute publicly paper and elec-
tronic copies of this thesis document in whole or in
part.

Signatury t+N Au~hor Jeffrey Krause,
Department of
Architecture
May 10, 1996

i/II/

Certified by

Accepted by

William J. Mitchell
Dean, School of
Architecture
and Planning
Professor of Architecture
and Media Arts and
Sciences
Thesis Supervisor

Roy Strickland
Associate Professor
of Architecture
Chairman, Department
Committee on Graduate
Students

OF TE CHNOLOGY

JUL 1 91996AL-

- - - - 4 LIBRARIES





Thesis readers

Takehiko Nagakura
Assistant Professor of School of Architecture and
Planning

Support

Pattie Maes
Associate Professor of Media Arts and Sciences

William L. Porter
Norman B. and Muriel Professor of Architecture
and Planning

John L. Williams
Associate Professor of Civil & Environmental
Engineering





interactive agent generated architecture

by

Jeffrey Charles Stanley Krause
Bachelor of Architecture
University of Southern California
1994

Submitted to the Department of Architecture in partial
fulfillment of the requirement for the degree Master of
Science in Architecture Studies at the
Massachusetts Institute of Technology
June 1996

abstract 00a

The thesis explores architectural form generation
through two behavior based artificial intelligence
approaches: the communication of agents in an
unpredictable simulation system, and the codifi-
cation of information within an evolutionary
process. Both concepts stem from the evaluation
of potentially definable mental constructions
involving the process of translation and genera-
tion through base-level procedural methods. The
experiments look towards the implementation of
alternative computational processes regarding
knowledge encapsulation, process recording,
simulation environments, agent communication
and interpretation from bottom-up design
approaches. The experiment explores alternative
approaches to design theory within the discipline
of architectural computation.

Thesis supervisor: William J. Mitchell
Dean of the School of Architecture and Planning



rr~~ - - - -- - -- ----



table of contents

abstract 00a
introduction Ola
kbai vs. bbai 01b
bbai & architecture 01c
on randomness and embedded knowledge 02a
generative paradox 02b
on emergence 02c
on modular component design 03a
on procedural thinking 03b

agent 04
agents in the environment 04a
movement 04b
behavior 04c
formal development 04d
communication 04e
structure of simulation 04f
simulation modules 04g

genetic 05a
on learning 05b
on from evolution 05c

on interpretation and conclusion 06a
definitions 06b
bibliography 06c
code 06d





introduction 01a

The impetus of the thesis arises from the obscuri-

ty and the complexity surrounding the concepts

of design and creativity. We have a difficult

enough time defining these concepts let alone

trying to explain our own idiosyncratic processes

while inventing, designing, or creating. I attempt

to take advantage of the ambiguity within this

approach, to expound, explore, and manufacture

through an implementation process without fol-

lowing conventional scientific investigation or

research methodologies. Alternative to knowl-

edge based examples the nature of the thesis is

to operate in the immediacy: 'perpetuating the

sketch', to meander through possibilities, explor-

ing threads of thought which generate new

ideas, and to work towards a better understand-

ing of decentralized architectural processes which

would be inconceivable through traditional com-

putational methods.

Fundamentally, this work is a departure from tra-

ditional knowledge based artificial intelligence

(KBAI) approaches which are structured in top

down methods through knowledge based sys-

tems, heuristic programs, planning or reasoning

systems. The starting point of the application is

to think about emerging larger ideas through

bottom up methods using very simple systems,

agent behaviors, and communication in a large

decentralized scale. In the agent model multiple

agents communicate, transmitting information,

1 
9

'I

a

V

4- *

'9-



collaborating on the development of form and

working autonomously to generate a collective

object which is no longer the representation of

the 'end-object', but an object which is a proce-

dural scenario.

In the genetic model, information encapsulation

in objects is mutable, transferable and inherita-

ble. The genotypes which describe the formal

makeup is judged, or in genetic terms tested for

fitness. The most fit of the population in turn

are mated for future generations.

The thesis document is a compilation of theoreti-

cal and implementable concepts of bottom up

approaches in computation. The rest of the doc-

ument is committed to exploring theoretical

background, a description of the experiments

and the process of creating the applications.

what is behavior-based artificial
intelligence and how does it differ
from knowledge based artificial
intelligence?
how can computational forms be
synthesized and through what
methods?

kbai 01b

vs.
bbai

Knowledge based artificial intelligence(KBAI)

most commonly refers to top down methods

within problem approach and solving. KBAI sys-

tems usually model single competencies which

deal with larger knowledge structures where

1 
10

7

-A-



depth of investigation is more important than the

breadth of the search. The systems tend to be

closed and not autonomous. The emphasis of

such methodologies is based upon embedding

knowledge in to the system in a mostly static

sense. The information within the system is then

interpreted through reasoning and planning

roles. There is no learning of the empirical

knowledge within the system because this

knowledge is built in from the start. KBAI con-

cerns itself primarily with function oriented

decomposition within domain independent mod-

ules. The internal models used within these

methods are complete and need to be correct

(relative) to the problems under investigation.

The focus of the activities is problem solving

through rational thought processes. For example

trying to describe architectural components and

their "fundamental" connections between one

another: A building can be described as compo-

nents, roof, body, and foundation. The body of

the building is composed of rooms, walls, struc-

tural elements, and windows, etc. One problem

with such a system is that when the understand-

ing of the system transforms the model has to

change. KBAI works through a process of know-

ing the problem and the solution and trying to

decompose both to find the core procedural, or

mappable method underlying the descriptive

relationships between the two.

Behavior based artificial intelligence(BBAI) is a

nouvelle approach for evolving multiple compe-

tencies at a very low level. The system is

11

I.

* .v'

*~~* *1



autonomous and often open. Agents within

these types of systems find, evolve and derive

their own goals where emphasis is placed less on

the system and more on the behavior of the

agents. The agent's interaction is active, involv-

ing more process like structures without general

interpreters or reasoners. The agent's focus is on

development, adaptation and interaction with

the environment (space of occupation inclusive

other agents). The environment which the

agents inhabit is often unpredictable, complex or

random. BBAI solutions usually include task-ori-

ented decomposition with task dependent mod-

ules. The internal representations of problems,

goals or actions within the agents are usually

multiple, redundant, possibly inconsistent and

nonobjective. BBAI, through bottom up

approaches, tries to evolve the problem and solu-

tions simultaneously. For a given situation multi-

ple explorations, representations, and states exist

even solutions which are potentially contradicto-

ry.

bbai &
architecture

01C

How might architectural develop-

ment be approached using BBAl

systems?

Perhaps a key philosophical point to the argu-

ment would involve the interpretation and misin-

terpretation within the didactics of architecture

discourse not only in relationship to design but

112

B.



also judgment, intuition and experience. Within

the question lies information regarding creative

and flexible design processes and approaches

which at any given moment are transformable,

mutable and transient. One problem is with sig-

nifying systematic and objective definitions with

formal consequences. The problem being the

codification of these systems through static hier-

archical formal models when they should be

viewed as dynamic and changing systems. One

focus of the investigation is to point towards

imagining alternative forms or procedural gener-

ation and layout, one which at fundamental lev-

els can change, allowing agents (as carriers of

knowledge) to be responsive enough to an envi-

ronment to adapt (with little effort) to situations

and concerns without initiating monumental

structural changes to a large program. Large

hierarchical programs, built for solving single

tasks, are often difficult to 'recode on the fly'

and are (by definition) challenging to merge with

other top-down or hierarchical models. The

problem being flexibility in the base structures in

regards to reactive situations to a changing or

unpredictable environment. In KBAI systems if

the environment changes then the program has

to be recoded to respond to the changing para-

meters. Within emergent systems of BBAI we

can view elements of the design process through

these generative filters, focusing on emerging

behavior rather than the codification of knowl-

edge.

13



on randomness 02a
and
embedded
knowledge

I pick up the pencil, rotate it slightly,
draw a line lightly, short, a two sec-
ond line. Lift the pencil, brush my
hand over the paper. Push the pen-
cil down, drawing, lightly, three sec-
onds. Move the hand elsewhere.
Draw multiple lines, quickly, lifting
the pencil at each stroke.

pline, copy, pline, offset, offset,
trim, zoom, trim, regen, zoom,
pline, pline, zoom.

agent 01 and 02 should be con-
structive. Agent 02 should be trans-
formative. All agents should move
randomly. Agents should emote
behavior when their fields have
been intersected.

All three examples describe procedures. They are

algorithms which can be implemented and of

course augmented and extended. They are

drawing, or more importantly, generative tech-

niques which have a considerable amount of

information embedded intuitively behind the

simple descriptive notion of the algorithm. The

procedures of course are reusable, and practical

to an extent. They are empty in regards to obvi-

ous interpretable solutions from the actions but

extraordinarily wide open to the possibilities of

formal derivations from the systems.

Each algorithm contains problematic structural

problems which would need to be resolved if -

implemented computationally. One could focus T

14 "



through the steps searching for missing informa-

tion or expand the algorithm to encompass a

wider and describe a larger system.

generative 02b
paradox

what is the difference between a
robust system which can generate
everything, and a system of con-
straints which can generate a limit-
ed number of possibilities?
can a topic which represents the
degradation and perpetuation of
unpredictable structures augment a
design process?

Randomness, within the context of design and

thought processes, is usually dismissed as whim-

sical and nonsensical. The inherent trap of ran-

domness is the idea of creating nothing from a

set of nothing. The process of randomness

becomes more compelling when applied to the

genre of a procedurally described system. In this

case the procedural system which defines the

range of random interactions becomes the arti-

fact to judge. This artifactual system can be

described as narrow or inclusive as one wishes

within a method of operations. The argument

becomes multi-fold when applied to discipline

analysis and interpretation, whereby robustness

and consistency of the system can be viewed as

'tuning' randomness. One could also describe

the operational field more systematically from

the given set of parameters and actions, goals,

sensors, or behaviors. These properties define a

larger set of learning which takes place through
I..

?~-

-p' ~

t ,#~ .,~

15



the description of the function: f->Sensors *

Goals * Behaviors -> Action, which is updated

over time to define a new function description:

fl -> A * G * B -> Al.

how much information, meaning or
sense does randomness allow?
how do we judge what information
should be embedded?
how can we reflect on the actions
generated from the system?

Claude Shannon, the founder of information the-

ory wrestled with the problems of context, struc-

ture and meaning. Shannon was interested in the

content and transmission, generation, and

retrieval of information. Shannon looked to

ideas of information degradation and generation

through transformation processes, i.e. sending a

television, or phone signal and having it trans-

formed again through a perceivable medium.

The paradox, known as Maxwell's demon derives

through imagining an all inclusive generative sys-

tem from a defined and describable system.

Maxwell's demon can be applied to any dis-

course but is easily mappable to visualization,

information storage and image manipulation.

The representational example describes the gen-

eration of "all" images derived from a simple

graphic imaging system. If a graphic image can

represent a realistic image, it can represent all

realistic images. To generate "all images" we

implement a simple algorithm which toggles pixel

colours within the image, either randomly or sys-

tematically. Within this example we will assume

that the environment for the generation of "all

16

L



images" is 1280 pixels by 1024 pixels. This is a

standard semi-high resolution image which

could, for the most part, be an image (recogniz-

able even) of anything. This image has

1,310,720 pixels within the frame. To make the

problem easier consider only 1 million pixels.

Each pixel within the field has to have a state, or

mappable colour code, which describes its pres-

ence. We could use a larger amount of colours

to describe the state but let us imagine that we

only use black and white and eight shades of

grey. Within this context the number of pictures

which can be generated is 101,000,000, or the

states per pixel to the power of the number of

pixels. 1 0 10A6 is already an astronomically large

number. 10100 is a googol, meaning 10 multi-

plied by itself 100 times. Our system is 10 multi-

plied by itself 1,000,000 times or 1 followed by a

million zeroes. A googol is already a number

larger enough to have no physical meaning,

already trillions of times larger than the number

of elementary particles in the observable uni-

verse. Conclusion: having a system to describe

everything is not difficult, actualizing the poten-

tials of the system is where complexity arises, fil-

tering and judging become the difficult tasks.

The problem with the above mentioned paradox

and 'all-inclusive' systems is that they quickly

transform in NP-hard problems. Of course from

the example the majority of the generative

images would be meaningless noise. The ques-

tion arises on how to make the system generate

a significant number of meaningful examples

consistently without having to search through

17



infinite sort space.

how can multiple agents collaborate
in robust and effective ways?
how can many simple agents
together do complex things?

on emergence 02c

The previous paradox raises more interesting

issues in relationship to context and structure

embedded within the potentials of random form

or image generation. The interesting concern

within a generative system becomes the complex

relationships of the structure for generation and

the potential outputs of a procedural system.

The beauty of the system evolves through

bounding the extents of predictability.

Let us look more closely at another system in

which two perpendicular lines are being connect-

ed. Each line has two points, if they can only be

connected at the end points the number of pos-

sibilities is severely restricted and can be visual-

ized quite easily within four states or 22 possibili-

ties. If the lines can be connected also at mid-

points we have 23 possible connections of 3

points with another 3 points in space with two

lines.

This is the structure and general argument

threaded throughout the thesis, to manage sim-

ple connections and interdependencies to form

larger emergent structures. The system can also

be explored at another level which quickly elimi-
4

18

-1 F c ambinabons

combination
with 3 intesecbon

.- ~.

->3Ik



generated

mal 

types

L

left comer

L
similar length

linear

IAs

nates all predictability to one concern but limits

the output to describable family classes.

The same system of connections with random

length legs will produce an infinite number of

distinct objects. The emergent perceivable

groupings of families becomes the evaluation

factor for understanding the system at another

level. The offspring (objects) may be infinite in

describable appearance but the families are limit-

ed in description and grouping characteristics:

large objects, small objects, horizontal objects,

linear objects, similar objects, etc. The objects

can only be grouped, compared or judged within

predictable relationships to possible solutions

which could be generated, i.e. the system is rela-

tive in which portions are predictable absolute.

To describe consistency of output we need to

judge the behavior structure and the relative

family structures. For example, the possibility of

generating objects of the same leg length would

be unlikely (depending on the constraints of the

variables). The point is not to assume, predict or

work towards a larger ordering system, which

describes standard accepted notions of propor-

tion of 'conventional' beauty, but to celebrate

the possibility of a larger more chaotic interven-

tion within a simple structure which can emerge

more didactic architectural relationships. These

simple procedures offer greater insight to gener-

ating theories about emergent form and the cre-

ation of space. The system is very basic but the

rich complexity which can evolve from the sys-

19



tern leads to more compelling concepts.

Behavior based systems are built from funda-

mental components in which larger notions

evolve.

how can localized interactions of
objects lead to larger global and
non-determined systems?
how can we effectively use modular
programming on a larger scale to
form more complex programs and
representations within a design con-
text?

on modular
component
design

03a

The modular approach depends on the context

for architectural problem solving and investiga-

tion giving weighted importance to the develop-

ment of objects through scaleable manipulations

within procedural methods. This theory departs

from the traditional hierarchical approach on two

fundamental stances.

01 Hierarchical tree models limit the importance

of the entire process while working within the

model. The state of the model is limited to the

path one takes through the tree towards a given

solution while not encompassing the solution

search and judgments taken place within the

process.

02 A more robust model to explore derivable

dependencies with a larger emphasis on problem

exploration than problem solving. One theory of

20

EZEj t



State 82

/3

State Transposition of Design Goals

state 91 State 91 with Tragectories

fluid thought models is described in the motion

state diagram, in which concepts or procedures

are dynamically linked moving through a theo-

retical space towards "design states". The

design states can be explicitly defined, i.e. focus

on spatial concerns, focus of affordability, or

focus on circulation. The transformations

between the states of the model is the genera-

tive process. The largest advantage of such a

technique involves procedural information to

evolve as the structure emerges.

The theory of how one could implement the

motion state diagram has not been fully explored

and would be valuable research further. Modular

evaluative components are dynamically connect-

ed depending on the procedures defined within

the context of the generated solution environ-

ment. What becomes particularly interesting is

the concept of space which is integrally linked to

smooth motion transformations between states

within the model. The larger concept of the

state motion model is that particular states can

be describable but the transformations between

the generating states are dynamic and change

through the exploration of the translation

process.

The theory of modular program design works in

collaboration with procedural methods. The

development of multiple procedural methods

working in collaboration (or disjunction) can

allow for emergence within the system at several

levels. The concept is that a modular design can

21



be flexible enough to accommodate a variety of

experiments by concatenating modules (as need-

ed) and adjusting the properties of the modules.

Modules within the framework of the application

refer to the separate components. For example,

each agent is a modifiable object module; there

are movement, simulation, update, interaction,

generation, report, export and plotting modules.

The general concept behind modular design is to

augment the modules to perform additional

experiments. The module design is still at a very

low level within the object oriented code which

subsequently needs to be compiled for each

experiment. For further development an inter-

pretable system (higher-order programming)

would prove useful for changing module design

interactively in-between generations.

Modular design is implemented within the

extents of this simulation application in two

regards. First modularity explains the compo-

nents of the system; for example the movement

component moves the objects and then checks

for interactions. Within this module information

can be recorded, or updated depending on the

will of the designer alternatively transpiring

behaviors can be recorded to a file, recorded

within objects, displayed or updated immediately

or after the round. Interactions which occur can

be queued or be computed immediately. And

second, modular refers to the embedded com-

ments within objects. For example, all objects

have multiple display capabilities - the three-

dimensional display module of an object can be

1 

22

~/.

* 'F'



transformed so that the object fundamentally

draws (displays) itself differently within the envi-

ronment. For example, an object can test its

environment, if it is adjacent and intersecting

two solids on the walls of the object than it could

transform itself into a void object.

on 03b

procedural
thinking

how to fit the project within the
scope and context of an architectur-
al process?

The procedures and methods involved tend to

respond to early phases within a design process

in which ambiguity and abstractness, in an inclu-

sive search space, is more beneficial. But to

describe the project solely as an attempt to work

within early phases of design is a misconception.

More accurate definitions and descriptions of a

pedagogical nature are more appropriate. The

system is highly internalized and inexperienced in

regards to architectural knowledge aside from

the formal architectural behavior inherently built

into the system. This knowledge is limited to the

context of the experiment. Situations and events

are determined which allow for the transference

of information, manipulation or the generation of

information. One fundamental theory about the

structure of the program is to determine the

types of interactions between the objects and

then place them in an environment which gener-

ates the simulation. For example: an object mov-I 23
A*

Ak

4%k7,



ing in a particular manner through the environ-

ment could learn that it is more beneficial to

generate objects rather than destroying them.

The possibility to learn is through implicit feed-

back mechanisms and communication with other

agents, successful communication allows the

agent to continue to develop.

A highly rational thinking process within a struc-

tured context can only describe the antithesis of

the investigation. The project is approached in a

free context exploring, playing and investigating

through countless "coding sketches" and process

experiments. This way of thinking and working is

not as productive or efficient (based upon time

constraints and undestandibility) as working with

a conventional method with a viable hypothesis

within a larger scientific, technological or archi-

tectural framework. The explorative, generate

"on the fly" method allows for a more flexible

approach which is less guided and less commit-

ted to the solving of a problem and more

involved in opening up the questions. This is a

new and unexplored way to computational,

architectural, design and aesthetic approaches.

The role of the designer as procedural inventor

and orchestrator. The behavior based approach

affords a more explorative stance because the

system is inherently about exploring solution

space in a nondeterminate and flexible fashion.

The environment can be catastrophically different

and the agents can explore and adapt evolving

new methods over time.

124

r



agent model

agents in the environment 04a

Agents within the environment share, transfer,

and communicate with one another. The follow-

ing are descriptions of the object/ agents with

their properties described. As part of a larger

event (the simulation) the agents also record

their history as traces, and their interactions,

these are what will later be called 'design stories'.

These stories are at a very preliminary level,

alternative programs need to be coded to inter-

pret decentralized data in relationship to formal

outputs to see if any meaningful correlation

could be determined.

points

The point class is a traditional object-oriented

base class with extra functionality. In a compu-

tational sense the base class is the fundamental

building block from which other classes develop.

The point class plays a significantly larger role

within the structure of the program. All agents

have inherited point class information. The fol-

lowing is the header file of the point class and

the data structures located within the agent.

class FPoint

public:
float x,y, move-factor, field, width, ob-slope, ob-x;
int color, id, prop, ob.flag, ob_id;
Tree *move;
Tree *inter;

FPoint (FPoint&);
FPoint (float, float, float, int);
FPoint (float, float);

25



FPoint (nt , int, int);
FPoint 0;
void move-object0;
void plot-zone(;
int property(;
void move object(int);
int intersect(FPoint, FPoint, FPoint);
int ccw(FPoint, FPoint, FPoint);
-FPoint 0;
float& operator[] (int);
FPoint operator= (FPoint);

friend ostream& operator<<(ostream& , FPoint&);
void plotO;

};

lines

Lines exist only for calculative purposes and do

not exist as a class with methods. Properties of

lines are hybrids of point characteristics, or as

representable constituents of polygons.

Although a point is not a specifically repre-

sentable object, it can encapsulate conceptual

formal information. A point moving in space on

a straight line with a trajectory has implied

meaning of linearity whereby offsets from the

development of the intersection would be linear.

Boundaries or traces represented as lines are

inherently derived from concept points, these can

be displayed (described) spatially (three, or two

dimensionally) or as a line. The line class and its

inclusivity was debated over extensively and a

line class would be helpful fundamentally within

a larger system especially in generating future

concept agents, an agent which could have two

dimensional influence through one dimensional

existence.

26



polygons

Polygons are higher level developments of points

with implied line characteristics. A polygon is the

other fundamental shape and form giver to the

environment. For the most part, any develop-

ment within the field takes place as a by-product

of the information embedded within the polygon

and its relative responsiveness to communicating

with other agents. Polygons within this simula-

tion all have 4 points but are not necessarily

orthogonal. The points which make up the poly-

gon agent can be randomly determined or 'con-

sistent' polygons can be made describing regular-

ized data within the object for specific tasking

purposes. The points are the fundamental com-

municators within the agent passing messages to

the polygon agent and the other point agents.

The diagram shows the makeup and breakdown

of the polygon and the embedded points of the

polygon. The line object between the points is

for the most part nonexistent except for in geo-

metric reasoning algorithms. Polygon can have a

variety of movement characteristics. In most

cases the Polygon class is placed on path trajec-

tories towards a specific location in space.

class Polygon

private:
int n, id, ht, color, attraction;
float area, arearatio, longside;
Tree *move;
Tree *inter;
FPoint *p;
void calc valueo;
int pointjinfluence[251;
void clear-point-bufo;
float path_x;
float path-y;

1 27

symbolic line
vitualdly connected

embedded agents

111M N

ONNNINP,

f



public:
float length, width, value-ratio;
int polygon-found;
FPoint min-xy;
PolygonO {n = 0; p = NULL; id = 0; length = 0.; width = 0.; poly-

gon-found = 0;}
Polygon(int m) {n = m; p = new FPoint[m+1];}
Polygon(int m, float* xpoint, float* ypoint, int pid, int col, int

height);
Polygon(int m, float* xpoint, float* ypoint);
Polygon(char a, int ident);
Polygon(FPoint x1, FPoint yl, FPoint x2, FPoint y2);
-Polygono) {};
void move-object(int);
void action(int, int, float);

void set~vertex(int, FPoint);
FPoint get-vertex(int);
int getLnvertO{return n;)
int getattractionO{return attraction;)
void set-id(int a){id = a;)
int getjido{return id;)
int getjhtO{return ht;}
int get~coloro{return color;)
void displayo;
void print3d(;
int propertyo;
int path(FPoint pntl);
void calc min-xyo;
int inside(FPoint t);
int enclose(Polygon& a);
int overlap(Polygon& a);
void move object(int id, float new-x, float new-y);
void rotateobject(int id, float about-x, float about~y, float

dtheta);
friend ofstream& operator<<(ofstream&, Polygon*);
int intersect(FPoint, FPoint, FPoint, FPoint);
int ccw(FPoint, FPoint, FPoint);
friend float angle(FPoint, FPoint);
friend ostream& operator<<(ostream& , Polygon*);
void plotO;
void plot3dO;
void clearO{delete this;)
; }

object

The Object class is a second order agent within

the field. The Object is very similar to a poly-

gon, but not used as a constructive generative

agent. The Object class is a by-product of other

agent interaction. The Object can be viewed as

a computationally slimmer and more docile agent

than the polygon which is much more robust.

The Object class is used as the building block

agents within the field. Simple manipulation of

objects can lead to larger structures with unpre-

28



dictable consequences. The diagram below con-

sists of Objects which were further manipulated

by point agents which moved them by carrying

them and placing them in other locations.

The rules to generate these agents are primarily

built into the point class. The point class can

carry around objects and deposit objects through

the intersection/action with them. For the most

part the path points fulfill this role for as they

move linearly they pick up objects within the

field. The placement of the Objects is less chaot-

ic. When a point carrying an object intersects

another Object the point can place the Object at

either endpoint, the midpoint, or the intersection

point of the Object..

Third order objects which evolve through the

structure of the system include splines and curves

showing developing localized connections. As a

patch within the environment grows significantly

splines develop to connect elements within local-

ized regions. This interaction is still at a very

localized level but communication, as vibrations
third orderobjects through the environment, can spread throughout

larger distances. The splined objects are generat-

ed based upon weighted values in the points of

the object class.

class Object

private:
int n, id, ht, color;
FPoint *p;
float plate;
float z1, z2;
int point, poly, act, ob-flag;

public:
Objecto;

29



Object(FPoint a, FPoint b, int id-num, int pt, int pl);
Object(float x1, float y1l, float x2, float y2, int id-num, int pt, int pl,

float size);
-Object {;
FPoint get-vertex(int);
float get~slopeo;
float get-aslopeo;
float get-distO;
int getjflago{return ob_flag;)
void toggle-flago;
int getjido{return id;)
void action(int, int, float);

void update(FPoint t);
void plotO;
void plot._transformO;
void clearO(delete this;)
void print3do;
void print3d-abo;

};

movement of agents 04bwner

how can movement of objects with-
in the environment evolve potential
archetypal interactions?

The movement types embedded within the sys- hyper

tem are multi-fold and used specifically to derive

characteristics and approaches to various emer-

gent characteristics. movement types

wanderer

Wandering agents are objects which statistically

will remain in the same position over n-large

generations. These objects will move orthogo-

nally and locally within a region. The behavior

which can be associated with such movement

types is information spreading within a local

region. For example these points can communi-

cate with the agents within their region, this

information can then be exchanged to other 1

objects within a region to allow for a much larger

understanding of developable regions in the

model. The wanderer can also make multiple

30



." .

--- - oe

wih bjc

changes onto the affected area of the local

region, this can result in development, or deterio-

ration explosion.

path

Objects moving along a path seem to have the

largest influence across a wider spectrum within

the environment agent model. These agents

check for intersections as they move along incre-

mentally through the environment. The agents

can theoretically transmit and carry information

across boundaries and regions from different sec-

tions within the environment.

hyper

Hyper agents move from location to location

randomly within the model. These agents have

the most successful interaction on a larger scale

within the environment. Hyper agents can carry

information from developing patches within the

space, transmitting information across the envi-

ronment.

higher order movement types

path-directed: path directed objects move

through space but towards a local point, region

or other object with a predetermined strength

tendency. The strength tendency determines

how long it will take for the object which is mov-

ing to converge on the determined point within a

movement spectrum. The purpose of pathI 31



directed objects is to realize the potentials of an

object moving in space along a path and to sim-

ulate what properties of development could take

place along the path.

A more appropriate use of the movements types

would be to match them with specific behavior

types. The diagrams represent potential loca-

tions for specific development around a well-

defined path within the system.

Coded movement sets patterns for the move-

ments of objects. For determining specific and

predictable behavior within the environment. Or

through the analysis of regional behavior.

evolved movement types

Future investigations will include agents which

inherit or develop multiple movement behaviors.

For example agents could exist having both

hyper and wandering characteristics. As an agent

'teleports' through the environment, it could

wander searching for interaction, if unsuccessful

the agent could 'teleport' again. Other evolv-

able properties could include 'hyper-transporters',

agents which move between developing patches

within the environment transmitting information

to agents.

behaviors

determined

04c

32



Growth: The ability for objects to generate, aug-

ment or add a particular component to the field

of generation of another object.

Decay: The subtraction of objects, properties or

characteristics from agent within the environ-

ment. Decayed objects can also represent them-

selves as voids within the environment.

Transformation: Changes the existing state of

objects or agents within the environment.

Transformation behavior interaction are usually

polar in nature or adaptive to the characteristics

of the transforming object.

higher order 04d

formal

development

how is form evolved and generated
within the diagram?

One form of development within the system is

based upon direct object interaction. In this case

the interaction is solely based on the objects

intersecting in time and space. The diagram

below shows a point and a polygon entering one

anothers field. The field of the object is the local

extents (or radius) of the objects influence and at

what strength.

The diagram shows a possible interaction situa-

tion. If the object is generative it could produce

a hybrid from the objects. In this case a point

object is intersecting (communicating within the

133



determined field) with a polygon. Two 'embed-

ded points' are chosen from the polygon by the

point agent (intersecting) and then processed

through the agents own mechanism to deter-

mine how to represent the formal by-product.

The two points chosen are reasoned through the

descriptive properties within the agent. For

example a growth point intersects with a multi-

property agent with 2 growth points and a decay

and transformation point. The growth object

could be attracted to the growth points and use

the line-segment representing growth to develop

another object/agent. A slope region is deter-

mined by the chosen points which in turn gener-

ates an object. The object developed then

encapsulates strength properties from both

agents and determines the localized placement

adjacent to the other objects. Within this exam-

ple a large number of possibilities could arise

from the simple description of the data embed-

ded within the object at any given time.

communication 04e

of agents

Agents, formal and conceptual, communicate to

each other through interaction. This overarching

principle evolves through the physical (direct)

intersection of moving objects within the envi-
zones / field intensity

ronment.

The system primarily operates on a decentralized

level of interaction which gives rise to an alterna-

tive result in the process. At any moment the

34



objects within the simulation field are solely

responsible to themselves and their direct (local)

environment. This is to say that communication

of elements only transpires through direct inter-

action.

Traditional computational approaches represent

communicative properties through the descrip-

tion of top down hierarchical methods. The dia-

gram represents conventional information dis-

semination.

In a behavior based system retrievers pass

through separate object methods to reach neces-

sary information between the agents. In the dia-

gram information is passed directly through and

to the objects which are communicating. This

leads to interesting ideas of emerging ambiguity

or contradictory agents. Whereby a polygon as

an agent could have separate behavior than the

constituent point agents which make up the

polygon. It is inconclusive if this methodology is

a useful way of viewing object communication.

The method is computational faster, but takes

longer to code and implement. The communica-

tion can also lead to unpredictable behavior of

agents whereby the richness of an environment

becomes more than the sum of each agent char-

acteristic.

35

l~ygn and

X' v-
'Z



structure of

the simulation

The initial stage of the simulation is to generate a

population of agents. The generation can be

accomplished by population type, number, or

behavior depending on the experiments under

investigation. The properties of objects can be

directed or generated. The number of point

agents, and polygon agents, or movement types

can be adjusted within the program.

Generate

[opa
t

ion

advance simulation round

check for interaction

01 0 type determine action

update field

overall program structure

The entire program is operating on multiple lev-

els simultaneously. The diagram shows how the

application communicates and uses component

modules to enact the simulation. The two

largest sections of the application are the inter-

preter and the executable code. In order to get

access and display information graphically Tcl/Tk

is used as the visualization engine. Tcl is an inter-

preter which sends messages to the C++ code

via a socket, and alternatively the C++ code

sends information to the interpreter telling it

what to do, what to update, and how to display

information. The Tcl code sends messages to the

Tk system which is bootstrapped on top of X11

windows. Inside of the C++ agent code are

modules which can be configurable to work

within the experiments needed at a given time.

These modules can then communicate to other

programs such as Autocad, 3dstudio, Geomview,

Inventor, or other imaging programs. Depending

1 36

program modules



on the nature of the experiments (or invention)

separate modules can be used.

The modules can be updated internally or

patched with new information. For example if a

the user wanted to run a simulation of all

orthogonally based objects and movements, the

move module and the pool generation module

could be adjusted to accommodate the experi-

ment.

simulation 049

modules

main

The agent-module is the maino controlling loop

of the program. The agentmodule initializes

the population and its properties. After initializ-

ing the simulation the Tcl/Tkmodule and inter-

actionmodule take over the control parameters.

The agent-module also initiates the global vari-

ables of the system and the arrays, trees, or

other data structures needed for storing or creat-

ing agent information.

agents

The agent-module contains the descriptive

methods, behaviors, goals and data of the agents

within the environment. The module also con-

tains information of derivative forms of agents

and communication properties.

round

37



the roundmodule contains information regard-

ing specific instructions or reasoning which

should occur at each simulation round. This

module determines whether agents should check

for interaction or develop autonomously. Also

the roundmodule determines the queuing of

interactions within the environment.

data

The datamodule describes what global data

should be managed through the process. The

module also manages data transmission and flow

between modules, including information to be

stored in files whether it is procedural or record-

ed.

plot

The plot module transforms the object to repre-

sentable forms in other languages or file format,

for example: to the Tcl/Tk graphics output, to a

DXF file, as Autolisp code, or as OOGL code.

Information embedded within the system con-

ceptually relates to type information but not

expressly in formal concerns.

In order to understand how form can be derived

from the system, or how additional information

can be embedded within the structure so to

allow another type of interpretable information

transformation to take place, it is required to

understand the properties and behaviors of the

agents. Throughout these investigations the for-

mal output was kept at a very low level with

very little reasoning at higher orders of develop-

138

L__Vtransparnt

O-ofid

V



ment. To this end agents are mostly described as

boxes with behaviors. Object development can

be looked at a variety of levels depending on the

focus of the investigation. Procedural information

is built into and recorded within the system. This

information can be interpreted or augmented has

seen fit by the 'designer' within the process. In

this case object behaviors (void, solid, transpar-

ent) are implemented into structures with these

characteristics. These transformable behaviors

determined by other interventions and communi-

cation of agents. For example an agent can

embed height information of developable object

within other agents, or alternatively normalize

height value based upon past experience and

communication.

Within the procedure other descriptive informa-

tion about strength values, attraction behaviors,

generative characteristics, movement sequences,

height, size, form, position is simulation, etc. can

be exchanged.

display

The display-module contains explicit methods for

telling the interpreter how to draw, and if to

draw within the environment. Also specified is

information on when to draw and redraw

depending on interaction or update of objects. It

is not necessary for all information to be dis-

played graphically, for example object paths or

strategic simulation points can be told by agents

to show or hide themselves. This feature is ben-

eficial while trying to visualize the complex infor-

39



mation transmissions of the system. As the sys-

tem is generating, "weeding through data" can

be quite cumbersome. Having the ability to dis-

play data in a intuitive manner helps for under-

standing and directing the development of the

program. c

move

The movemodule contains descriptions of the

characteristics of the moving patterns of agents.

Movement patterns can be random, follow one

of the predefined methods, or new patterns can

be written.

/

construction conditions
abstractor
articulator

Objects can be constructive constituents of each

other, for example the polygon being made of

points. But all points within the polygons have

their own characteristics and behaviors. All

agents can send messages to one another, which

makes writing the code a bit more obtuse. It

allows objects emerge and decay with greater

flexibility.

higher order constructions

As agents develop and transform the environ-

ment, the can manipulate existing information

(usually Object class agents) through a process

called abstraction and articulation. Agents

manipulate Objects into separately representable

units but keep the perceivable characteristics of

the forms. The diagram represents the transfor-

mation properties:

40



a: shows the initial line form.

b: the extracted (generated) form from embed-

ded information in the object.

c: shows the constructable areas of each bound-

ed line zone of the object.

d: isolating one edge for further development

e-g: potential formal manipulations of the edge

into articulated elements.
parent 01 parent 02

remainders from parents

cross over fragment

-11 -2 5 1 4l 12 5
new offspring

1 2 3 11 2 9 5 1 5 4 2 3 2 5 2 9 71

mutation node
crossover gene

/$V/ ~ . V,7// //j 77 /

Yy

//7(w/V/"7
7

,'> /y
7

A
7

7>

/7,7 //* 7/ i r //77 7* * $ 7

/ ,'/ ~ / 7 ~ / ~ . 7/ > /

4

genetic
experiment

05a

The point of the genetic experiment is to explore

formal development through an evolutionary

system in which characteristics evolve from

embedded information within objects but which

does not have to be explicitly coded. The notion

of codifying entire bodies of architectural knowl-

edge is admirable but at fundamental levels,

especially when considering judgment values

embedded within the system, a problematic

endeavor. These judgments can imply and per-

petuate preconceived aesthetic and formal values

limiting the variability or robustness of the model

and its output. In this example object informa-

tion is embedded within the genome and then

evolved through user interaction. The simulation

is implemented within a larger genetic algorithm

which manipulates the genotypes of the objects.

The genotype of the objects contain procedures

for representing and creating the object.

Evolution: The simulation begins by first creating

41



the population of genotypes. The seed most

commonly used to create the population is ran-

dom, alternatively existing genotype seeds can

be used for the creation of the population. In

any population a fitness or survivability has to be

determined in order to process future genera-

tions. The fitness can be predetermined, meaning

an implicit goal can be built into the system with

which the objects can objectively be ranked.

High percentile populations are mated and pro-

duce new generations. When a fitness is made

explicit the simulation can converge

autonomously towards a solution. The role of

evolution becomes significantly different when

fitness is determined by the user (interactively

determined fitness). The first experiment mea-

sures itself against an objective fitness and in the

second the fitness is determined by the user.

on learning 05b

This first experiment was to initially test the

robustness of a system which learns very basic

components of drawing, and representation with

a simple genotype description. The fitness is

determined by how well the objects draw line

through a box. A genetic object can draw lines

within the environment and the number of inter-

section with the 'fitness box' are then calculated

and the simulation evolves the population and

continues. The genotype is a ten integer descrip-

tion of the objects movement parameters.

142

-------- ---------- ------ -- ---------
........ ---------

........ .

................ ........................ ... .................... ............

----------------------
T4

---- ------------------------- ---------------- ----------------- ----------- ------------- .. ..............

e. 
ey



genotype representation:

m6Ail %L-Ic"

on form
evolution

05C

This experiment is a derivative of the first exam-

ple with a larger genotype describing three

dimensional characteristics of the objects within

spatial constraints but evolution is guided

through the interaction of the viewer. For exam-

ple, an initial pool of objects are created and

then evaluated or judged by the viewer. This can

be done in ranking order or by assigning some

143

position characteristic

01 x position

02 y position

03 +/- movement

04 x offset

05 +/- movement

06 y offset

07 +/- movement

08 x offset

09 +/- movement

10 y offset

Each object is generated n number of times and

the fitness is derived from the interaction with

the box. The example shows randomly created

objects each with a different genotype with the

resulting output drawn.



value to the objects. After determination of fit-

ness the generation continues but with the mat-

ing of the highest fit examples. The next genera-

tion has a larger probability of passing on charac-

teristics of fit genotypes through the evolution of

the code into other objects. Evaluation on objects

can continue until an object with satisfactory

characteristics have been evolved or until diversi-

ty within the system becomes significantly

stymied. Potential development within the sys-

tem are readily viewed even with a limited pro-

cedural genotype from this example at a base

level tacit questions of emergence and under-

standing can be derived. As one looks at an

object with idiosyncratic concerns it is always not

possible to explicitly convey aesthetic, pragmatic,

or functional descriptions. The way a designer or

a perceiver views an object does not expressly

have to be codified within the system, this is fun-

damental shift from KBAI. Within a KBAI exam-

ple structured knowledge would be built into the

system and reasoning would take place in

response to the system, the system could then

plan or generate from the interpretation of the

responses. At this point little known about

encoding complexities of design that it is more

beneficial to react and develop alternative bot-

tom up approaches and methodologies that can

respond to larger systems without having the

knowledge fundamentally built into the system.

If we were to evaluate the following example,

how would we build in conditions and responses

to such a highly complex way of reasoning on

144

4i



coming to conclusive responses to the system.

Idiosyncratic approaches can be embedded into

the system throughout training or development

over time, but initially should the designer of

such a system succumb to dogmatic descriptions

of composition or form descriptions? In the

example below three walls are placed together.

How can these figures be judged? What should

the criteria be? In fact the objects could be eval-

uated in any number of concerns; spatial, com-

positional, in section or plan, space forming, in

regards to circulation, experience, privacy, etc.

Further, at any evaluative concern the question-

ing and disagreement or lack of conclusive

understanding would continue to be divisive.

modular design of genetic structures

One would be quick to point out the raising

complexity towards specific emergence of a

genetically created object. As the data and pro-

cedure set become large the ability to derive

objects becomes increasingly complex. The gen-

eration of initial populations becomes critical in

order to generate a large enough pool within the

spread creating diversity. The data could be fur-

ther augmented into component structures each

of which could significantly develop to pass char-

acteristics through generations.

45



on
interpretation
and
conclusion

06a

how should the figures or objects be
viewed?
how can one place the research in a
larger architectural framework?

The thesis examples should be viewed as one

approach towards embedding "smart objects and

agents" into architectural and computational

thinking environments. One would argue that

reducing architectural to formal concerns limits

the description of the characteristics of architec-

ture too myopically. The approach of such sys-

tems is to question how to embed information

into agents, whether form, concepts, objects, or

events in a manner which can take advantage of

today's computational capabilities. It is also nec-

essary to question the manner in which we tradi-

tionally design, draw and think both by hand and

with the use of the computer.

Larger questions need to be studies and explored

within simulated environments. These questions

are related to ideas and concepts of decentralized

processes, emergent systems, judging creative

computational expression, and managing highly

complex notions of ambiguous design method-

ologies. The thesis represents a starting point for

communicating generative ideas to a larger com-

munity for future development.

46

-



One component of the thesis was to explore

notions of designing as a procedural way of

thinking which can be related to both computa-

tional behavior based methods and generative

processes. This is not to confirm that the mind

and the computer are significantly mappable, but

rather an attempt to move towards definable

and codeable ways of thinking that can be

experimentally tested. Ambiguity has been pur-

posely implemented into nondeterminent algo-

rithms within the applications and threaded

throughout the thesis investigation.

Fundamentally the thesis is about exploration of

untested ideas, attempts at proving truth, science

or predictable responses have been placed at a

very low level within the investigation.

Behavior based investigations can lead to funda-

mentally new ways of approaching design or cre-

ative architectural and generative experiences.

The thesis is a departure from traditional top

down computational approaches in which evolv-

ing and expanding the problem space from bot-

tom up levels becomes the focus. Questions of

embedding knowledge into architectural agent

objects looks towards the future of more intelli-

gent CAAD software, and determining alterna-

tive approaches to generation which are much

more process oriented and flexible rather than

predetermined and static.

47



7

00lq



definitions 06b

algorithm

<algorithm, programming> A detailed sequence
of actions to perform to accomplish some task.
Named after an Iranian mathematician, Al-
Khawarizmi.

Technically, an algorithm must reach a result after
a finite number of steps, thus ruling out brute
force search methods for certain problems,
though some might claim that brute force search
was
also a valid (generic) algorithm. The term is also
used loosely for any sequence of actions (which
may or may not terminate).

Artificial Life

<algorithm, application> (a-life) The study of
synthetic systems which behave like natural living
systems in some way. Artificial Life complements
the traditional biological sciences concerned with
the analysis of living organisms by attempting to
create lifelike behaviors within computers and
other artificial media. Artificial Life can contribute
to theoretical biology by modeling forms of life
other than those which exist in nature. It has
applications in environmental and financial mod-
eling
and network communications.

There are some interesting implementations of
artificial life using strangely shaped blocks. A
video,
probably by the company Artificial Creatures
who build insect-like robots in Cambridge, MA
(USA), has several mechanical implementations
of artificial life forms.

complexity

<algorithm> The level in difficulty in solving
mathematically posed problems as measured by
the
time, number of steps or arithmetic operations,
or memory space required (called time complexi-

49



ty,
computational complexity, and space complexity,
respectively).

The interesting aspect is usually how complexity
scales with the size of the input (the "salability"),
where the size of the input is described by some
number N. Thus an algorithm may have
computational complexity O(NA2) (of the order
of the square of the size of the input), in which
case if the input doubles in size, the computation
will take four times as many steps. The ideal is a
constant time algorithm (0(1)) or failing that,
O(N).

See also NP-complete.

creativity

Various definitions are used to reach a better
understanding and interpretation of the word.
The methods involved by each group or category
in hypothesizing aspects of creativity and inter-
pretation have lead to general theories about the
brain. If we examine the main definitions, and
classify them, they can be organized into six
major groups or classes. Of course many defini-
tions can fit into one or more class.

Class A Gestalt or Perception: This class places a
major emphasis upon the recombination of ideas
or the restructuring of a "Gestalt."

Class B End product or Innovation: "Creativity
is that process which results in a novel work that
is accepted as tenable or useful or satis-
fying by a group at some point in time."
Harmon refers to creativity as "any process by
which something new is produced-an idea or
an object, including a new form or arrangement
of old elements."

Class C Aesthetic or Expressive: This category
tends to more personally oriented, with a major
emphasis on self- expression. It usually
includes the role of the 'starving artist' who cre-
ates art for himself or herself.

Class D Psychoanalytic or Dynamic: This group
is primarily defined by certain interactional

50



strength proportions between the id, ego, and
superego.

Class E Solution thinking: In this category more
emphasis is placed upon the thinking process
itself rather than the actual solution of the prob-
lem. Guilford defines creativity in terms of a very
large number of intellectual factors. The most
important of these factors are the discovery fac-
tors and the divergent-thinking factors. The dis-
covery factors are defined as the "ability to
develop information out of what is given by
stimulation." The divergent factors relate to
one's ability to go off in different directions when
faced with a problem.

Class F Alternative or other: In this category
one could find the definition of creativity as
"man's subjective relationship with his environ-
ment". Or according to Rand the "addition to
the existing stored knowledge of mankind."

Boden outlines two different types of creativity,
one type is the psychological or P-creative, the
other historical or H-creative. Both types deal in
novel ideas of creation, but novel in regards to
different interpretations. P-creative thoughts,
concepts or idea are novel to the individual mind
which conjured the idea. P-creativity is a
thought which is personally generated that has
never been thought before, a idea in which the
thinker previously had no understanding or con-
nection. P-creative thoughts do not have to be
novel in regards to societies interpretation. An
idea is H-creative if the idea is truly novel-never
been thought of, developed, or constructed
before. Most people tend view the H-creative
individual to be more creative, in that the idea is
completely novel and never thought of before.

genetic algorithm

(GA) An evolutionary algorithm which generates
each individual from some encoded form known
as a "chromosome" or "genome".
Chromosomes are combined or mutated to breed
new
individuals. "Crossover", the kind of recombina-
tion of chromosomes found in sexual reproduc-I 51



tion
in nature, is often also used in GAs. Here, an off-
spring's chromosome is created by joining
segments chosen alternately from each of two
parents' chromosomes which are of fixed length.

GAs are useful for multidimensional optimization
problems in which the chromosome can encode
the values for the different variables being opti-
mized.

genetic programming

<programming> (GP) A programming technique
which extends the genetic algorithm to the
domain of whole computer programs. In GP,
populations of programs are genetically bred to
solve
problems. Genetic programming can solve prob-
lems of system identification, classification,
control, robotics, optimization, game playing,
and pattern recognition.

Starting with a primordial ooze of hundreds or
thousands of randomly created programs com-
posed
of functions and terminals appropriate to the
problem, the population is progressively evolved
over
a series of generations by applying the opera-
tions of Darwinian fitness proportionate repro-
duction
and crossover (sexual recombination).

heuristic

A rule of thumb, simplification or educated guess
that reduces or limits the search for solutions in
domains that are difficult and poorly understood.
Unlike algorithms, heuristics do not guarantee
solutions.

nondeterminism

<algorithm> A property of a computation which
may have more than one result.

One way to implement a nondeterministic algo-
rithm is using backtracking, another is to explore

52



(all) possible solutions in parallel.

NP-complete

<complexity> (Nondeterministic Polynomial time)
A set or property of computational decision
problems which is a subset of NP (i.e. can be
solved by a nondeterministic Turing Machine in
polynomial time), with the additional property
that it is also NP-hard. Thus a solution for one
NP-complete problem would solve all problems
in NP. Many (but not all) naturally arising
problems in class NP are in fact NP-complete.

NP-hard

<complexity> A set or property of computational
search problems. A problem is NP-hard if
solving it in polynomial time would make it pos-
sible to solve all problems in class NP in
polynomial time.

Some NP-hard problems are also in NP (these are
called "NP-complete"), some are not. If you
could reduce an NP problem to an NP-hard
problem and then solve it in polynomial time,
you
could solve all NP problems.

53



Bibliography

Akin, Omer, Psychology of Architectural Design, Pion
Limited, London, 1986.

Boden, Margaret A., The Creative Mind: Myths and
Mechanisms, Weidenfeld and Nicholson,
London, 1990.

Boden, Margaret A., Dimensions of Creativity, MIT
Press, Cambridge, MA, 1994.

Dawkins, Richard, "The Evolution of Evolvability",
Artificial Life, SF1 Studies in the Sciences of
Complexity, ed. C. Langton, Addison-Wesley
Publishing Company, 1988.

Dawkins, Richad, The Blind Watchmaker, Harlow
Longman, 1986.

Freud, Sigmund, On Creativity and the Unconscious,
Harpor and Row, New York, 1958.

Goldberg, D.E., Genetic Algorithms in Search,
Optimization, and Machine Learning,
Addison-Wesley, 1989.

Hausman, Carl R., and Rothenberg, Albert, The
Creativity Question, Nuke University Press,
Durham, NC, 1976.

Hofstadter, Douglas R., Godel, Escher, Bach, An
Eternal Golden Braid, Vintage Books, New
York, 1979.

Kipnis, Jeffrey, 'Architecture Unbound', pg 12-23, AA,
London,1 985.

Koza, J., Genetic Programming: on the Programming
of Computers by Means of Natural Selection,
MIT Press, 1992.

Maes, Pattie, "Modeling Adaptive Autonmous
Agents", Artifial Life Journal, edited C.
Langton, Vol.1 , No. 1 & 2., MIT Press, 1994.

Mitchell, William, The Logic of Architecture, MIT
Press, Cambridge, 1990.

Morrison, Foster, The Art of Modeling Dynamic
Systems, Forecasting for Chaos, Randomness,
and Determinism, John Wiley & Sons, Inc.,
New York, 1991.

54



Poundstone, William, The Recursive Universe, Cosmic
Complexity and the Limits of Scientific
Knowledge, Contemporary Press, Chicago,
1985.

Sartre, Jean-Paul, The Psychology of Imagination,
Citadel Press Book, New York, 1991.

Sims, Karl, "Evolving 3d Morphology and Behavior by
Competition", Thinking Machines
Corporation, internal document.

Sims, Karl, "Interactive Evolution of Dynamical
Systems", Toward a Practice of Autonmous
Systems: Proceedings of the Firt European
Conference on Artifical Life, ed. by Varela,
Francisco, & Bourgine, MIT Press, 1992, pp.
171-178.

Sternberg, Robert, The Nature of Creativity,
Cambridge University Press, 1988.

Virilio, Paul, The Lost Dimension, Semiotext(e),
Columbia University, New York, 1991.

Woolley, Benjamim, Virtual Worlds, Blackwell
Publishers, Oxford, 1992.

Dynamic Links
http://www.mit.edu:8001 /people/jcsk/home.html
http://alife.santafe.edu/alife/papers.html
http://www.sunlabs.com/research/tcl/index.html
http://www.cogsci.indiana.edu/
http://mitpress.mit.edu/jrnls-catalog/adaptive.html
http://papa.informatik.tu-
muenchen.de:80/-weissg/LNA-1042/
http://www.aic.nrl.navy.mil/galist/
http://agents.www.media.mit.edu/groups/agents/

55



I 56



addobject.h

#ifndef ADD OBJECT H
#define ADDOBJECT H
void addobject(int);
#endif

fpoint.h

* FPOINT.H *

#ifndef FPOINT H
#define FPOINTH

#include <iostream.h>
#include <math.h>

#define X 0 // make code more readable for humans
#define Y 1
#define min(A,B) ((A)>(B) ? (B) : (A))
#define sqr(x) ((x)*(x))

class FPoint

public:
float x,y, move_factor, field, width, ob slope, ob_x;
int color, id, prop, ob flag, ob_id;

/ constuctors*/

FPoint (FPoint&);
FPoint (float, float, float, int);
FPoint (float, float);
FPoint (int , int, int);
FPoint (;
void move object);
void plot zone();
int property();
void moveobject(int);

int intersect(FPoint, FPoint, FPoint);
int ccw(FPoint, FPoint, FPoint);

/*
*destructor

~FPoint ();
float& operato) ] (int);
FPoint operator= (FPoint);

friend oitream& operator<<(ostream& , FPoint&);
void plot));

#endif /* FPOINT Ho/

move_object.h

#ifndef nVE OBJECT H
#define 0 VE/OBJECTH
void move_object(int);
#endif

object.h

#ifndef H OBJECT
#define H OBJECT

#include <fstream.h>

#include <limits.h>
#include <fpoint.h>
#include <polygon.h>
class Object

private:
int n, id, ht, color;
FPoint *p;
float plate;
float zl, z2;
int point, poly, act, ob_flag;

public:
Object();
Object(FPoint a, FPoint b, int idxnum, int pt, int pl);
Object(float xl, float yl, float x2, float y2, int idnum, int pt, int pl,

float size);

~Object ()();
FPoint getvertex(int);
float get slopeo);
float get aslopeo);
float get dist));
int get_flag) oreturn ob flag;)
void toggle flag();
int get id)( return id;)
void action(int, int, float);
void update(FPoint t);
void plot);

void clear)delete this;)
void print3d();
void print3dab();

#endif /* OBJECT H0/

polygon.h

#ifndef H POLYGON
#define H POLYGON

#include <fstream.h>

#include <limits .h>

#include <fpoint.h>
#include "object.h"

class Polygon

private:
int n, id, ht, color, attraction;
float area, area-ratio, long_side;

FPoint *p;
void calcvalue (;
//int point -influence( 25] ;
//void clearpointbufo;
float path x;
float pathy;

public:
float length, width, value_ratio;
int polygon found;
FPoint minxy;
Polygon() {n = 0; p = NULL; id = 0; length 0.; width 0.; polygon found =

0;)
Polygon(int m) (n = m; p = new FPoint m+l);)
Polygon(int m, float* xpoint, float* ypoint, int pid, int col, int height);
Polygon(int m, float* xpoint, float* ypoint);
Polygon (char a, int ident);
Polygon(FPoint xl, FPoint yl, FPoint x2, FPoint y2);
-Polygon() ( ;
void move_object(int); // hmmm
void action(int, int, float);

void set vertex(int, FPoint);
FPoint getvertex(int);
int get_nvert() (return n;)
int get attraction()return attraction;)
void set id(int a)(id = a;)
int get id() return id;)
int get ht){ return ht;)
int get_color() retun color;)
void displayo;
void print3d();
int property(;
int path(FPoint pntl);
void calcminxy () ;
int inside(FPoint t); /*determines if t is

inside the polygon*/
int enclose(Polygon& a); /*determines if a is

entirely inside the ply*/
int overlap(Polygon& a); /*determines if two

polygons overlap*/
void moveobject(int id, float newox, float newy); /*moves the upper

left hand corner
of the bounding box to a

new x and y
void rotate ob

j
ect(int id, float aboutx, float abouty, float dtheta);

/*rotates a polygon about
x and y thru theta*/

friend ofstream& operator<<(ofstream&, Polygon*); /*outputs polygon to
file*/

int intersect(FPoint, FPoint, FPoint, FPoint);
int ccw(FPoint, FPoint, FPoint);
friend float angle(FPoint, FPoint); /*calculates the angle ccw

from the axis
pointing down*/

friend ostream& operator<<(ostream& , Polygon*);

void plot(); /*calls tcl conmand to
plot the polygon*/
void plot3d(;

// void print()
void clearo){ delete this;)

// int match(Polygon* ){ cout << "polygon:match() NADA << endl;

random.h

/*********************************************************************PANDOM.H*

#ifndef tANDOM H
#define PANDOM H
#define IA 16807
#define IM 2147483647
#define AM (1.0/IM)
#define IQ 127773

#define IR 2836
#define NTAB 32
#define NDIV (1+(IM-1)/NTAB)
#define EPS 1.2e-7
#define RNM (1.0-EPS)

class Random

public:
long idum;
Random(long num)

{ idum = num;)
float ranl()

int j;
long k;
static long iy-0;
static long if NTAB]
float temp;

if (idum <= 0 || !iy) {
if (-(idum) < 1) idum=1;
else idum = -(idum);
for (j=NTAB+7;j>=0;j--) {

k=)(idum) /IQ;
idum=IA* (idum-k* IQ) -IR* k;
if (idum < 0) idum += IM;
if j < NTAB) iq j = idum;

iy-iv[ 0];



k= (idum) /IQ;
idum=IA* (idm-k*IQ))-IR*k;
if (idum < 0) idum += IM;
j=iy/NDIV;
iy-oiq j] ;
is j) = idum;
if ((temp=AMiy) > RNMX) return RNMX;
else return temp;

#undef IA
#undef IM
#undef AM
#undef IQ
#undef IR
#undef NTAB
#undef NDIV
#undef EPS
#undef RNMX

#endif /* RANDOM H */

registeroC-with-tcl.h

#ifndef H CCOM
#define H CCOM

void register C with tcl(void);

#endif /* H CCOM *

report.h

#ifndef REPORT H
#define REPORT H
void report();
#endif

say hello.h

#ifndef SAY HELO H
#define SAY HEL0 H
void say_hello();
#endif

tcl to C.h

#ifndef TCL SO C H
#define TCL TO C H
#include <tk.hl
#include <tcltkui.h>

//void registerC with tcl();
//void setuptcltk(UlParams t *,int , char
extern "C" int say helloui (ClientData, Tcl Interp *, int, char**);
extern "C" int move objctsui (ClientData, TclInterp *, int, char**);
extern "C" int report ui (ClientData, Tcl_Interp *, int, char*);
extern "C" int zone ui (ClientData, Tcl_Interp *, int, char**);
extern "C" int add object ui (ClientData, Tcl Interp *, int, char*
extern "C" int object ui (ClientData, Tcl_Interp *, int, char*);

int addjsolygon ui (ClientData, TclInterp *, int, char**);
int movepolygonui (ClientData, Tcl_Interp *, int, shar**);
int rotatepolygonui (ClientData, Tcl_Interp *, int, char**);
int plotpolygoniui (ClientData, Tcl_Interp int, char**);
int plot circleui (ClientData, Tcl Interp *, int, char**);
int add_point ui (ClientData, Tcl_Interp *, int, chat);
int add line ui (ClientData, Tcl Interp *, int, chao**);
int nove object_numberui (ClientData, TclInterp *, int, char**);
//int report_ui(ClientData, TclInterp *, int, char**);
//int say_hello ui (ClientData, Tcl Interp *, char**);
//extern "C' int sayhello ui (Clientlata, Tcl Interp *, char**);
//int get clock (ClientData, Tcl_Interp *, int, char**);
#endif

tcltkui.h

#ifndef H TCLUT
#define H TCLUI
#include <tk.h>
#include <tcltkui.h>

typedef struct uiparams

Tk Window w;
Tk Window cwin;
Pixmap pixmp;
Pixmap buff;
Tcl Interp * interp;
int x, y;
double blahl;
Tcl DString buffer;
int tty;
char inamd 32);

I UIParamst, *TUIParamst;

extern " C"

void setup_tcltk (UIParamspt, int, char*);
void px_shell ( ClientData, int);
void pxxnotify ( ClientData, XEvent 0);
void wait2map ( ClientData);

#endif /* H TCLUI */

add object.C

#include <stdio.h>
#include <stdlib.h>
#include <tcltkui.h>

#include " random. h
#include "fpoint.h"
#include "polygon.h"
#include "moveobject.h"

extern FPoint Pointf];
extern Polygon* PolA] I;
extern Random RAND x;
extern int Maxpoints;
extern int Point num;
extern int Polys_num;
extern Object_num;
void add-object (int num)

{f

if (num == 0) {
cout << "adding poly" << endl;
Pold Poly_nod = new Polygon('a', Object num);
Pol( Polyn um->rotate_object(l, Pol Poly _non ->get vertex(l).x,

Poly Polyum] ->getvertex (l).y, (int) (RAND x.ran1()*500)360);
Polf Poly-nu] ->plot();
Poly num++;
object num++;

if (num == 1) {
Point[ Point nu] = new

FPoint(RAND x.ranl()*500,PAND x.ranl()*500,RAND_x.ranl()*l00, Objectnum);
Point[ Pointnum] ->plot()
Point num++;
Object-num++;

agent.C

#include <tcl.h>
#include <tk.h>
#include <stdio.h>
#include <iostream.h>
#include <stdlib.h>
#include <fstream.h>
#include <string.h>
#include <time.h>
#include <signal.h>

#include <tcltkui.h>
#include <tcl to C.h>
#include "register_C_with tcl.h"

#include "fpoint.h"
#include "polygon.h"
#include "object.h"
#include "random.h"

// Global Variables

Random AND x (-4);

int Circle offset = 5;
int Maxpoints;
int Point num = 0;
int Polyium = 0;
int Object_num = 1;
int Object_linenum 0;
int Sinulation round 0;

int S, q, r;

UIParams t hello ui;
FPoint *Point(500];
Polygon *Pol) 500;
Object *Object lin 1000];
FPoint *Globhcenter_pointI20];
int Globcenterpointnum;

int main(int argc, char ** argv)

extern FPoint *Point[500];
extern Polygon * Polg 500};
extern Object *Object linr 1000];
extern int Maxpoints;
extern int Point num;
extern int Polynum;
extern int Object num;
extern int object_line_num;
extern FPoint Glob rcenter_point 20);
extern int Globcenterpoint num;
char tclcomanc[ 200] , pointd 50];
extern Simulation round;
float xl;
char start[ 50];
s = r = q = 0;

setupi tcltk(&hello ui, argc, argv);

registerC_with_tcl();

char name( 20] ;
int rv, Maxjoints_points, Max_points_polys;
clock t begin time, end-time;
clock();
sprintf(start,"rm temp.lsp");

system(start);rv = Tcl Eval (hello ui.interp, "source dtrt.tcl");
if (rv != TCL OK) {

fprintf(stdout, "Exiting... cannot find tcl startup file: dtrt.tcl\r');
exit (1);

iv = Tcl Eval (hello ui.interp, "source gemetry.tcl");
rv = TclEval (hello1ui.interp, "makemenu" );
int i, N, m;

int j;
Tcl LinkVar (hello ui. interp, "numb", (char 0) &Object_num, TCL INK INT);
cout << "Enter a niumber for generated points (<500): ";
cin >> Maxpoints_points;
cout << endl;
cout << "Enter a number for generated polys (<500): ;
cin >> Max_points_polys;
cout << endl;
cout << "Enter a number for centers (< 20):;
cin >> Globhcenterpointnum;
cout << endl;
end time = clock);
cout << "Number of points# << Max_points_points << endl;
cout << "Number of polys# " << Max_points_polys << endl;

cout << "seed#' << end time<< endl;
for (int rand time=0; rand_time <=end_time;rand time++)(

RAND x-ran1();

Max_points = Max_pointsolys+Max_pointsrpoints;
for (i = 0; i < Globcenter_pointnum; i++)

Globcenter_pointi] = new FPoint();
for (i = 0; i < Maxpointspoints; i++){

// Point[ Pointtnum] = new
FPoint(PANDx.ranl)

0
*500,RAND x.ranl()*500,RAND x.ranl()*100, Object num);

Point[ Point nuj = new
FPoint(RANDx.ranl()*50, RANDx.ranl()*50, RAND x.ranl)*100, Objectnum);

Point[ Point nin ->plot();
cout << " Pt #" << * (Point[ Pointnu]);

Point_num++;



Object_num++;

for (i = 0; i < Max points_polys; i++)(
Pol( Polynum = new Polygon('a', Object num);
Poly[ Polynueg ->rotate_object(1, Pol Poly_nud ->get vertex (1) x,

Polf Poly_num] ->get_vertex (1) .y, (int) (RAND x.ranl()*500)360);
Poli Poly_ner ->plot();
Poly num++;
Object_tnum++;

int counter = 0;

int inner=0;
end time = clock(;

//cout << "Time taken in secs " << clock()/CLOCK3 PERSEC << endl;
//cout << "Time taken in microsecs " << end-time << endl;

TkMainLoop();

cout << "Simulation rounds# " << Simulation round << endl;
// cout << "Number of points: " << Max_points_points << endl;
// cout << "Number of polys: " << Max_points_polys << endl;

for (i = 0; i< Globcenter_point num; i++)
cout << "Central # " << *Glob_center_point[ i] << endl;

cout << "After Tk Main Loop" << endl;
Tcl DeleteInterp(helloui.interp);
cout << "After Tcl Deleterl" << endl;
TclDStringFree(&(hello ui.buffer));
cot << "After Tcl_DStrin' << endl;
exit(O);

fpoint.C

/********************************************************************/*FPOINT.C *

#include <stdio.h
#include <stdlib.h>
#include <math.h>
#include <string.h>
#include <tcltkui.h>

#include "fpoint.h"
#include " rando.h"
#include "object.h"

extern Randam RAND x;
//extern Randm RANDy;
extern UIParast helloui;
extern int Circle-offset;
extern int Maxpoints;
extern int Object_num;
extern Object* Objectline] ;
extern Object_line num;
extern int Simulation round;
FPoint::FPoint(FPoint& a)

x= dl;
y = ;

move factor = a.move factor;
if (mtre factor > 200) moveefactor = 10;
if (move factor < 0) move factor = 10;
field = a.field;
//cout << move factor <<endl;
prop = a.prop;
width = a.width;
obflag = 0;
obid = 0;

FPoint::FPoint(float xl, float yl)

x = xl;
y = y1;
move factor = RAND x.ran1()*100;
field = RAND x.ran1()*50;

if (mtre factor > 75)
color = 1;

else if (move factor > 50)
color = 4;

else if (move factor > 25)
color = 2;

else if (move factor > 0)
color = 3;

prop ((int) (RAND x.ranl()*100))3;
width =RANDx.ranl()*30;
ob flag = 0;
ob id = 0;

FPoint::FPoint(float xl, float y1, float m, int i)

o xl
x = x1;
y = y1;
move factor = m;
field = RAND x.ran1()*50;

if (move factor > 50)
color = 1;

else if (move factor > 25)
color = 2;

else if (move factor > 0)
color = 3;

id = i;
prop = ((int) (RANDx.ranl()*100))3;
width =RAND x.ranl()*30;
ob flag = 0;
ob id = 0;

FPoint::FPoint(int xl, int yl, int m

x = x1;
y = y1;
move factor = m;
field = RAND x.ranl()*50;

prop = ((int) (PAND_x.ran1()*100))O3;
width -RAND x.ranl()*30;
ob flag = 0;
ob id = 0;

FPoint::FPoint()
(f

x =RAND x.ran1()*500;
y =RANDLx.ran1(

0
*500;

move factor = RAND x.ranl()*100;
field = RAND x.ranl()*50;
if (move factor > 50)

color = 1;
else if (move factor > 25)

color = 2;
else if (rmove factor > 0)

color = 3;
id = Object_num;
//cout << "info id in creation :" << id << endl;
prop ((int)(AND_x.ranl()100))i3;
width RAND x. ran *(30;
ob flag = 0;
ob id = 0;

FPoint::-FPoint()

void FPoint::move object)
I
x=RAND x.ranl(0500;
y=RAND0x.ranl()*500;

void FPoint::moveobject(int in)
char tclconrand 200], points( 100)
FILE *file;char lisp2] 500]
int sipht;
if (Simnlation round > 100) color = 2;
if (color == 3) {
// cout << "move type: " << color << endl;
float xx-0, yy=0;
if (im = 0)(

y - y+Circleoffset/2;
0 =2;

if (:m == 1){
x = x+Circle offset/2;
xx = 2;

if (:n == 2))
yy-Circleoffset/2;
yy = -2;

)
if (in = 3)(

x=x-Circle offset/2;
xx = -2;

eprintf(tclcommand, "$c move 'd if f", id, xx, yy);
//cout << tclcommand << endl;
int rv TclEval(hello ui.interp,tclcmnod);
if (rv != TCLOK)

{
printf("error in fpoint.C move type l\n");
exit(-1);

// plot));

if (color == 2) {
//cout << "move type: " << color << endl;
float xl, yl, tenpx, tenpy;
int k, rv;
int count = 0;
int j= ((int)(RAND_x.ranl()*100))4;
tempx = x;
tempy = y;
float xx, yy;
if (j == 0){

x = x+(RAND x.ran1()*100)/2;
y = y+(RAND x.ranl()*100)/2;
xx = x - tempx;
yy = y - tempy;

if (j == 1)(
x = x+( RAND x.ran1()*100)/2;
y = y-( RANDx.ranl()*100)/2;
xx = x - tempx;
yy = -(tempy - y);

if (j == 2))
x = x-( RAND x.ran1()*100)/2;
y = y-( RAND x.ranl()*100)/2;
xx = -(tempx - X);
yy = -(tempy - y);

if (j == 3)
x = x-( RAND x.ranl()*100)/2;
y = y+( RAND x.ran1()*100)/2;
xx = -(tempx - X)
yy = y - tempy;

FPoint *ptemp = new FPoint(tempx, tempy);
for (int test=O; test<bjectline_nut; test++)

//cout << "anything here:: " << Objectline num << endl;
if (intersect (*ptemp, Object line] test] ->get vertex)(1),

Object_line test]->get vertex(2))) count++;
if ((count > 0) && (o flag == 0))(

//cout << "doing the dirty' << endl;
//obslope = Objectline test]->get_slope));
//obo = Object line test]->get dist));
ob id rtest;
Object_lind test] ->toggle flag));
//sprintf(tclconnand, "$c delete obnd', test);
//rv = Tcl_Eval(hello ui.interp,tclcammand);
ob flag = 1;

else if (count > 0)(
int testl = (int) (01D x.ranl()*100)3;
sinpht = ((int) (RAND_x.ranl()*100))10;
if (test1 == 0){

cout << "V1 ";
Objectline] ob id ->update(Objectline test] ->getvertex (1));
Objectline obi ->print3d hab);
sprintf(tclcomnand, "adddlinespecialui (if if if if if if 3 2

curve)", \
(Objectline] obi] ->getvertex(2))[ X] , (Object line] ob ii -

>get vertex(2))[ Y], \
(Object lind obi ->getvertex(1))[ X], (Object line] obi -

>get vertex(1))[ Y , \
(Object line test] ->getvertex (2))) X] , (Objectline test] -

>getvertex (2))[] Y1);
cout << tclcommand << endl;
rv = Tcl Eval(hello ui.interp,tclcommand);



if (Object_lineo ici ->get slope) != Object line test] -
>get slope()))

cout << "!=noslope";

sprintif(lisp2, " (command \"layer\" \"\" \"5"curve\"\"") (comand
\"pline\" '(if if 0) '(if if 0) ' (-f if 0) \"\") (completer -d)\n',
(Object_lin ob(i ->get dvertex (2)g)t[ X, \

(Object-lind( ob id ->get_vertex(2))[ , \
(Object lindob id]i ->getvertex (1) )X], (Object line( obicQ -

>get'vertex (1))[ Y , \
(Object line test]->getvertex(2))[ X , (Object lind test]-

>get_vertex (2))( Y] , simpht);

/* else (
sprintf(lisp2, " (command \"pline\" '(if if 0) '(if if 0) '(if if

0)\"\") (completer d)\n", \
(Objectlin ob id] ->get_vertex(2))[ X],
(Object linsif oid]->getvertex(2))[, \Y
(Object~lind obid) ->get vertex (1) ) , (Object_lined obid] -

>get_vertex(1))[ Y], \
(Object_lind) test] ->get_vertex(2) )[1, (Objectlind test]-

>get vertex(2))[ , simpht);

file = fopen("terp.lsp", "a"');
fprintf (file, "-s', lisp2);
fclose(file);

if (testl = 1))
cout << "V2 ";
Object~lin obi id) ->update(Object_lind test]->get_vertex(2));
Objectlindobid} ->print3d abn();
sprintf(tclcommand, "add-line specialui ()f if if if if if 3 2

curve)", \
(Object lind ob id] ->getvertex(1))[ X} (Object lind ob_i -

>get vertex(1))[ Y} , \
(object line[ ob_id ->get_vertex (2))[ X] (Objectlind obid] -

>get'vertex(2))[ Y} , \
(object ling test] ->get vertex(1))[ 1 , (Object lind test] -

>get_vertex (1))[ Y] );
cout << telcormand << endl;
rv = TclEval(helloui.interp,tclcnnnd);
if (object_lind obid ->get slope) != Object line test]-

>getslope()){
cout << " !=noslope

sprintf(lisp2, " (conmand \"layer\" \"s\" \"'curve\\"") (command

\"pline\" ' (wf if 0) ' (if if 0) ' (if if 0) \"\") (completer wd)\n,
(Object_lin ob id ->get_vertex(1))[ , \

(Object_line[ ob-ij ->get vertex(1))[ Y \
(object ling obid ->get_vertex(2))[ ]

(Object_lin obOi b ->get vertex(2) )[ , \
(Object line test] ->get_vertex(1))[ X], (object lind test] -

>getvertex(1))[YJ) simpht);

file = fopen("terp.lsp", "a"');
fprintf (file, " s", lisp2);
fclose(file);

if (test . 2){
cout << "\5 ";
FPoint *ptempl = new FPoint( \

((Object_lind test] ->getvertex (1))[ X]+(Object lind test] -
>get_vertex (2))[] 1)/2, \

((Object_lind test] ->getvertex (1))[ +(Object_lind test]-

>get_vertex(2))[ Y) (/2);
Object lin) ob id) ->update(ptempl);

obflag = 0;
objectling lobi ->toggleflag();

count = 0;

sprintf (tcIcommand, "add line ui {");
sprintf~points, "if if if if 4 1 fp-d", x, y, tempx, tepy, id);
strcat (tclconnnd, points);

// int test ((int) (I500 nx.ran1()*100))-2;
// if (test 1) (
// rv = Tcl Eval(helloui.interp,tclconnand);
//)
//if (rv != TCL OK)

//
// printf("error in fpoint.C movetype 2 add line\n");
/ cout << tclccmnand << endl;

//exit(-1);

sprintf (tclcommnand, "$c move -d if -f", id, xx, yy);

//cout << tclcommnid << endl;
rv = Tcl Eval(hello ui.interp,tclcommand);
if (rv !- TCL iK)

printf("error in fpoint.C move type 2\');
exit(-1);

// plot));

if (color == 1)
//cout << "move type: " << color << endl;
float in, yy;
float tempx = PAND_x.ran1()*500; float tepy = PAND_x.ranl()*500;
//cout << "x,y:" << x << ""<y << endl;
if (tenrpx < x) xx = tepx x;
if (tempx > x) xx = tempx x;
if (tenpy < y) yy = terpy -y;
if (tempy > y) yy = tespy -y;
x = tempx;
y = terpy;
char tclcommand[ 200 , pointd 50]
sprintf(tclconmmand, "Sc move td if if", id, xx, yy);

//cout << tclconnand << endl;
int rv = TclEval(hello ui.interp,tclcornnd);

if (r; v TCL OK)

printf("error in fpoint.C movetype 1 \n');
exit(-1);

//cout << "new:" << tempx << << tempy << endl;

//cout << "Id, xY:" << id "" << x << "," << y << endl;
if )n > 500) x = x -500;
if ( < 0) X = X +500;
if (y > 500) y =y - 500;
if (y < 0) y = y + 500;

//cout << tclco nnd << endl;
//cout << tclcnnnd << endl;

float& FPoint::operato] (int i)

if (i == 0)
return x;

if(i = 1)
return y;

else
cout << "error in array bound' << i << "cut of range"<<endl;

FPoint FPoint::operator=(FPoint i)

this->x = i.x;
thin->y = i.y;
this->field = i.field;
this->move factor = i.move factor;
this->prop = i.prop;

void FPoint::plot)

char tcleammmc 200] , points[ 1001
float x1,y1;
sprintf(tclcornand, "add_pointui(
sprintf(points, "if if if if d id if)", x, y, x+Circleoffset,

y+Circle offset, color, id, field);
strcat(tclcomand, points);

// cout << telconand << endl;
int rv = Tcl Eval(hello ui.interp,tcIcommand);
if (rv !=TCL OK)

printf("error in fpoint.C plot) \n");
exit(-1);

void FPoint::plotzone)

char tclcommand) 200], points 100]
float x1,y1;

sprintf (tclcommand, "plot zone
sprintf(points, "if if if if -d ;d if)", x, y, x+Circleoffset,

y+Circle offset, color, id, field);
strcat(tclcommand, points);
int rv = TclEval(helloui.interp,tclcomnnd);
if (rv '= TCLOK)

printf("error in fpoint.C plot zone) \n");
exit(-1);

int FPoint::property()
if (prop 0) cout << "grn)' << endl;

// if (prop == 1) cout << "decay' << endl;
// if (prop 2) cout << "transfont << endl;
return prop;

Iostream& operator<<(ostream& s, FPoint& a)

return s << " pt " << a.id "" << d X] << ""<< d 3 << ""<<
a.movefactor << << a.color << ""<< a.prop << ""<< a.field <<"
a.width << endl;

int FPoint::intersect(FPoint pl, FPoint p2, FPoint p3)

float tempR_x = x;
float temp y = y;

FPoint *p0 = new FPoint(terg_x, tep_y);
int jl, j2, kl, k2;

jI = ccw(*pO, pl, p2);
j2 = ccw(*pO, pi, p3);
ki = cow(p2, p3, *p0);
k2 = ccw(p2, p3, p1);
delete p<;
return (jl*j2 <= 0) && (k1*k2 <= 0);

int FPoint::ccw(FPoint p0, FPoint pl, FPoint p2)

float dxI, dx2, dyl, dy2;

dil= pf -p4];
dyl = p[ Y1 - p[ Y1;
dx2 = p2 X) - p0 X];
dy2 = p2[ Y3 - p[ Y

1
;

if (dx1*dy2 > dx2*dyl) return +1;
if (dx1*dy2 < dx2*dy1) return -1;
if ((dx1*dx2 < 0) 11 (dyl*dy2 < 0)) return -1;
if ((dx1*dx1+dyl*dy1) < (dx2*dx2+dy2*dy2)) return +1;
return 0;

move_object.C

#include <stdio.h>
#include <stdlib.h>
#include <tcltkui.h>

#include "random."
#include "fpoint.h"
#include "object.h"
#include "polygon.h"
#include "moveobject.h"

extern FPoint* Point[];
extern Polygon Polg I];
exten Object* Objectlind));
extern Random RAND x;
extern int Max_points;
extern int Point num;
extern int Polynum;
extern object_num;
extern object line n ;
extern int Sisulationround;
extern FPoint *Globcenterpoin ];
//extern int Globcenterpintnu;
void movesobject(int num)

int i, j, k, kk, ii, jj counter, inner, test, path val;
float testprop;



for (i = 1; i <= num; i++)(
Simlation round++;
//cout << "<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<< num << i << endl;
for (k = 0; k < Point num; k++) {

j = ((int) (PAND_x. ran1l(100))O4;
Point[ k] ->move_object (j);

for (kk - 0; kk < Poly__num; kk++)
/ cout << "poly moving toward:" << Pol[ kk) ->get attraction() << endl;
pathval = Pol] kk] ->path(*Glob centerjpoint[ Polo] kk] ->get attraction()]
//cout << "Path Val=" << pathval << ";";<
Poll( kk] ->move_object (path val);

inner=-0;
if (Simulationround < 200)

for (ii = 0; ii < Polytnum; ii++)
for (jj = 0; jj < Pointnum; jj++){

test = PolA ii] ->inside(*Point jj]);
if (test == 1)(

inner++;
//testprop = (float)Pol4 ii] ->property) + (float)Point jj -

>property()/3;
//cout << testprop << " testy "<< endl;

Polg ii} ->action(jj, ii, (float)Point[ jj ->property());
//cout << "Line #:"<< Object_linenum <<endl;

/*0

for (ii = 0; ii < Poly_num; ii++)
for (jj = 0; jj < Point num; jj++)
test = PolA ii]->intersect

object.C

#include "object.h"
#include "polygon.h'
#include <math.h>
#include <stdio.h>
#include <string.h>
#include <tcltkui.h>
#include "fpoint.h"
#include "random.h"
#include "fstream.h"

extern UIParams t hello-ui;
extern Random RANDx;
extern int object_num;

Object::Objecto)
n = 2;
p new FPoint n+1];
act = (int)(RAND x.ranl()*100)v3;
int temp = (int) (RANDx.ranl()*100)%3;
if (tep = 0)

plate - (int) (RAND x.ran1()*100)=20+1;
else

plate = (int) (PANDx. ranl()*100)!5+1;
ob_flag = 0;

ht = (((int) (PAND x.ranl()*100))25)+1;

Object::Object(FPoint a, FPoint b, int id num, int pt, int pl))
n= 2;
p =new FPointln+l;
4 1] = a;
[2] = b;
id = id num;
point = pt;
poly pl;
ht (((int) (PAND x.ranl()*100))25)+1l;
act (int) (RAND x.ranl()*l00)=3;
obflag = 0;

Object::Object(float xl, float yl, float x2, float y2, int id num, int pt, int
pl, float size)(

n = 2;
//cout <<"maker: < < ","a << yl << ""<< x2 << " << y2 << endl;

p = new FPoint[ n+1;
40 1]1 ) = X1;
4 1]1 Y = yl;
p 2]1 X1 = x2;
i 2][ Y} = y2;
id = idtnum;
point pt;
poly = pl;
int temp - (int)(PAND x.ranl()*100)3;
if (tep 0)

plate (int) (PANDx.ran1()*100)20+l;
else

plate (int) (RANDx.rani()*100) 5+1;

if (plate == 0)
plate = 1;

ht = (((int) (PAND x.ranl()*l00))25)+1l;
act = (int)size;
ob flag = 0;
//cout << "baker:" << 41}[ X<"," < 1[ Y << "« 1 << 0 2[ X} <<,

<< 4 2] [ Y << endl;

FPoint Object::get_vertex(int i)

if (i >= 0 && i <= n)
return 4 i];

else

cout<< "Cannot get polygon vertex << i << out of range\n";
return p[ 0]);

float Object::get slopeo)

float test;
if (4 11[ X = p 2][ X]4)

test = 0;
else

test = (21[Y - 1][1Y) / (4 2}[XJ - 41XJ);
return test;

float Object::get _aslope)

float test, test1;
test = get slopeo;
if (test == 0) return 1;
else
return (-(1/test));

float Object::get dist()

return (A 1] X]A - p 21 X);

void Object::toggle flag)

if (ob flag == 0) ob flag = 1;
else (

ob flag = 0;

void Object::update(FPoint t)

float new x =t[ X} - [ 1] ;
float newj= t Y - p 1] ;
[ 11 X] = 4 1][ X] + newx;
4 11 Y1 = p 1]1 YJ + new_y;

1 21[ X] = [ 2][ X1 + newx;
2 21 YJ = p( 21[ Y + new_y;

plot));

void Object::plot)

char tclcomanc{ 200] , points[ 100)
sprintf (tclcoand, "add line object ui {
sprintf (points, "=f of af of ad ad ob) ", 11 X] , 1] Y p, 21 X]) ,

4 2]{ 4 , act, (int)plate);
strcat(tlcommand, points);
// cout << tclconanand << endl;
int rv Tcl Eval(hello-ui.interp,tclcommand);
if (rv ' TCLOK)

printf (" error in object.c plot \n");
exit(-l);

void object::print3d)

FILE *file;
char lispcommand 500];
char lisp2[ 50];
char lisp3[ 20];
char lispl) 200) ;
float newx, newx1, newy, newyl, slope, slopel;
int play ((int) (PANDx.ranl()*l00))o20;
int taper = ((int) (PAND x.ranl()*100))t20;
int willtaper = ((int) (PAND x.ran1)*100) )20;
int moveup = ((int)(RANDx.ranl()*100))v20;
int moveupdist = ((int) (RANDx.ranl()*100))v20;

if (9 1][ X != Ff 2][ X] ) (
slope = (p 11[ YJ -p 21 Yj)/ ( 1 X1 - 21 X));
olopel -(l/slope);

else
slope = 0;
slopel = 1;

}
if (slope = 0)
slopel = 1;

newx = (p 2][ ) + plate);
newy = 2] [ Y - (slopel *(r 2] X ) newx));
newx1 = p 1][ X + plate;
newyl = 4 1][ YJ - (slopel (4 1][ X] -newxl));

/* bAse */
sprintf (lisp2, " (conmand \"plineV' ' ()f =f 0) '(=f =f 0) '(=f if 0) '(=f =f

0) \"c\")", \
A 1][ X], P 1][ Ya ,\

F( 2] [ X] ,[ 2}[ YJ],
newx, newy,\
newxl, newyl);

cout << "act:" << act <<
if (act == 0) {
if (willtaper > 5)
sprintf (lispconoand, " (conmand \" extrude\" \"l\" \"\" d \"\"')", ht);
else

sprintf (lispconnand, " (conmand V extrude\" V l\" \"V\' d vd)", ht,
taper);

}
if (act == 1) 1

if (willtaper > 5)
sprintf (lispconmand, " (coond V layer\" V S\" \' sub\" V'\") (command

Vextrude" \"l\" \""V' d \"\) (comand Vlayer\" \S\" \"O\" \"V\')", -ht);
else

oprintf (lispcommand, " (command N' layer\" \"sO" N" sub" \"V') (conmand
Vextrude\" Vl\ \"V' d ad) (command VlayerV' \"\" \"l\" \"\"')", -ht,
taper);

if (moveup < 5)(
cout << "MV'NG OBJ->" << endl;
sprintf (lisp3, " (comand \"move\" N' lV' \"V' -(0 0 0) '(0 0 wd))",

moveupdist);
strcat(lispconoand, lisp3);

if (act == 2)
sprintf(lispcommand, " (connand Vextrude\" \"l' \"\" ad \"\") (command

\"move\" VlN" \"\" '(0 0 0) '(0 0 ad))", ht, play);

file = fopen("temp.lsp", "a');

//fprintf(file, "s as is S\n", lisp3, lisp2, lisp1, lispconoand);
fprintf (file, "s os\n", lisp2, lispcoamand);

fclose(file);

void Object::print3d abo)

FILE *file;
char lispcommanc 500]
char lisp2 500];



char lisp3 2003;
char lispl 200;
float newx, newx1, newy, newyl, slope, slopel;
int play = ((int) (RANDx. ran1i)*100))20;
int taper ((nt) (RD x.ranl()*100)) 20;
int willtaper = ((int) (RANDox.ran1()*100))i20;
int moveup = ((int)(RANDx.ranl()*10))v20;
int moveupdist = ((int) (ZAND0 x.ran(lO*100))20;
float thick = (float) (((int) (00011.o.ranl()*100))Z20);

if (p3 1][ !=1 2[ 1 ){
slope = ((p[ 1][ -032][3 )/ (031][ - A323[30));

slopel = -(1/slope);

else(

slope = 0;
slopel 1;

if (slope 0)
slopel = 1;

newx = (03 2330 + plate);
newy = p[ 2][ Y] - (slopel' (03 23[ 0 newx));
newxl = p[ 13 3 + plate;
newyl = 0 1] 3 - (slopel a (0 13[ X newxl));

file = fopen("teap.lsp', "a");

int orient = ((int)(1D x.ran1()*100))'2;
int num= ((int) (RAND_x.ran1()*100))v5;
int solid ((int) (RAND x.ranl()*l00))a2;
if (thick < 5) thick = 0.0;

sprintf (lisp3," (abstractor '(if if 0) '(if if 0) id 'd td if 'd)", p( 1][X]
p 1]31 , 2][0,p 23 1, orient, namn, ht, thick, solid);

orient ((int) (RAND x.ranl()*100))2;
nuHm (int) (000D x.ran1()'*100))10;
solid ((int) (00011)x.ranl()*100))'2;

sprintf (lisp2," (abstractor '('f if 0) '(if if 0) ad ad 'd if id)",
3 2[0 ,3 2]31 , newx, newy, orient, num, ht, thick, solid);
orient - ((int) (RAND x.ranl()*100))2;
numm (int) (0R00 x.ranl()'*100))w5;
solid - ((int) (0020) x.ran1()'*00)H2;

sprintf (lispconeand," (abstractor ' ('f 'f 0) '('f 'f 0) id ad -d if 'd)",
newx, newy, newx1, newyl, orient, numm, ht, thick, solid);

orient = ((int) (RAND x.ranl()*100))2;
nu(m (int) (PAND x.ranl()*100))15;
solid - ((int) (RAND x.ranl()*100))'2;

aprintf (lispl," (abstractor '('f 'f 0) '(if if 0) 'd id id if -d)", newxl,

newyl, 03 13 x , 3 1]1 Y , 2][ X} , orient, nunm, ht, thick, solid);
fprintf (file, " (coneand \'layer\' \' s\' \' ab\' \"\"') s is is is (command

\'layer\" \'s\' \'\' \\"')\n', lisp3, lisp2, lispl, lispcommand);
// fprintf (file, "is 's\n', lisp2, lispconnand);
fclose(file);

polygon.C

#include "polygon.h"
#include "object.h"
#include <math.h>
#include <string.h>
#include <tcltkui.h>
#include "fpoint.h"
#include "random.h"

extern UIParams t hello ui;
extern Random RAND x;
extern int Object-num;
extern Object* Objecto_lin I;
extern int Object line num;
extern int Poly-num;
extern int Simulation round;
extern int Globcenter_pointnum;

Polygon::Polygon(int num, float' xpoint,
height)

n = num;
p = new FPointg n+1] ;

float* ypoint, int pid, int col, int

for(int i = 0; i < n; i++)
p[ i = FPoint(xpoin i], ypoin3 i](;

id = pid;
ht = height;
color = col;
polygon found = 0;
// calc value(;

clearpoint ibuf);
attraction = (((int) (RANDx.ral()*100))'Globcenteryoint nom);

display();

Polygon::Polygon(FPoint x1, FPoint y1, FPoint x2, FPoint y2)

n = 4;

p =new FPoint n+1];

// A 0] = y2;
P[ 1} = XI;
3 2 = yl;
3 3] = x2;

03 43 = y2;
// P[ 5] = x1;
id = 0;
color = 4;
//clear_point -buf() 0
ht = (((int) (RAND x.ranl()*100))'10)+3;
attraction = (((int)(PANDx.ranl()*100))'Glob center_pointnum);

display();

/* ODE FOR RANDOM SHAPED POLY's
Polygon::Polygon(char a, int ident)

n 4;
p new FPoint[6];

float x offset = RAND x.ranl()*30;
float y offset = RANDx.ranl()*30;

float x temp = RAND_x.ranl()*30;
float y_terp = RAND_x.ranl()*30;

int i = 0;

// for(int i 0; i < n; i++);
01) = FPoint(;
p 2) = FPoint(p 1]{ X}+ xoffset, 13[ Y , 1].movefactor, 0);
0 3] = FPoint (p[ 1] X} + x tenp, p[ 1][ Y +yoffset, p3 1] movefactor, 0);
3 4] = FPoint(p[1][ X}, p l][ 03+y_temp, p[ 1 move factor, 0);

//sentinals---->
3 0 = FPoint(p[ 1]{ X], [ 1][ Y+y_offset, p[1].move factor, 0);

r[ 5] = FPoint (p( 1] X) , 0 1]{ Yj , 3 1 .move-factor, 0);
id = ident;

//cout << "ID of POLY =" id << endl;
color = 2;
//clear_point buf);
ht = (((int) (RAND x.ranl()*100))10)+3;
attraction = (((int) (RANDx.ranl()*100)) Glob centerpoint num);
path x = 03 13 03;
pathj = p 1[1 ;
display();

*/

/* CODE FOR ORTIO POLY'S /

Polygon::Polygon(char a, int ident)

n 4;
p new EPointd6f;

float x offset = RANDx.ranl()*30;
float y_offset = RAND x.ranl()*30;
int i = 0;
// for(int i 0; i < n; i++);
p(1] = FPoint(;
3 2] = FPoint(p[ 1] X)+ x offset, 03 13 31, 3 1] move factor, 0);

0 3] = FPoint(3 1][ X}+ xoffset, 3 1}[ +yoffset, 3 1 nove factor, 0);
3 4] = FPoint(p[ 1]{ [ , p 1}1[ +yoffset, 1. move factor, 0);

//sentinals---->
3 0] = FPoint(p[ 1] X}, p[ 11] +yoffset, 3 1 .nove_factor, 0);
3 5) = FPoint(p[ 1[ X], [ 13 3 , 03 1} move factor, 0);

id = ident;
//cout << "ID of POLY << id << endl;

color = 2;
//clear point buf));
ht = (int)(PND x.ranl()*100))10)+3;
attraction = (((int)(PANDx.ranl()*100))Glob cnter_point_num);

path x = 3 133 X4;
pathy = 03 1[ Y;
display();

void Polygon::calc minxy()

float minx= 10000, mainy = 10000;

for (int i 0; i < n; i++) (
if (min x > [ i][ X] min x = p i]{[ X];
if (minj> 3 i][ ) oinay = 0 11 3;

I
FPoint d(minox,min_y);
min xy = d;

void Polygon::set vertex(int i, FPoint a)

if (i >= 0 && i <= n)
[ i] = a;

else
cout <<"Cannot set polygon verte" << i <<" out of range\n";

FPoint Polygon::get vertex(int i)

if (i >= 0 && i <= n)
return p i];

else

cout<< "Cannot get polygon vertex << i << " out of range\n";
return p 0];

int Polygon::inside(FPoint t)

int i, count = 0, j = 0;

// FPoint *point, *p0, *p1, *p2, *p3;
// p0 = new FPoint();
// pl = new FPoint();
// p2 = new FPoint();
// p3 = new FPoint();

FPoint 'point = new FPoint(0.0,0.0);
// /afs/athena.mit.edu/course/1/1.124/www/Lectures/13/geops/node5.htral
/ *p2 t;
// p3 point;

/*

for (i = 1; i <= n; i++)

j =i +3j1*p0 f ( i]; cout << *p << *p1;
*p1 =1= j];
//if (!intersect(*p0, *p1, *p2, *p3))

// (// *pl =1 A l
// j =i;
if (intersect(*pO, *pi, *p2, *p3)) count++;

)/

if (intersect(3 1, p 2], t, *point)) count++;
if (intersect(p[ 2], 0 3 , t, *point)) count++;
if (intersect(0[3], 3 4], t, *point)) count++;
if (intersect(3 4} , 3 13, t, *point)) count++;

for (i = 1; i <= n; i++)(

*p0 = 03 ii
*pl = F( i+1];
if (intersect(*pO, *p1, *p2, *p3)) count++;

I */
delete point;
// delete pO;
// delete pl;
//delete p2;
//delete p3;

//cout << "counter of lines hit-" << count << endl;



return count & 1; /* Return 0 if even (=outside), 1 if odd (=inside)/

int Polygon::enclose(Polygan& a)

int i,j 0;
for (a = 0; i < a.get_nvert(; i++)

if (!inside(a.get_vertex(i))) = 1;

if (j == 0) return 1;
else return 0; /* return 0 if not enclosed, 1 if enclosed */

/*note: a polygon that exactly touches another is not enclosed

int Polygon::overlap(Polygon& a)

int i, j;

for (i = 0, j = 1; !i && j <= a.n; j++)
i += inside(a.getvertex(j));

for (j = 1; !i && j <= n; j++)
i += a.inside(p[ j]);

return i;

void Polygon::move_object(int id, float newx, float new_y)

float dx = in xiX] - newax;
float dy = in_xg Y3 - newy;
for (int i =0; i < n; i++){

p[ i][ X]1- dx;
p i][ -= dy;

minxg X]= new x;
minx Y] = newy;

void Polygon::move object(int im) // cycle through points

char trlcomand( 200 , points 100};
int Circle offset =5;
int i;i
float xx=0, yy=

0
, tempx, tempy;

terrpx = p[ 1][ X] ;
terrpy f 1][ Y1;

if (im = 5)
im = ((int) (AN x.ran1(*100))4;

if ( = 0){
// y = y+Circleoffset/2;
yy = 2;
for (i = 1 i <= n; i++) (

p[ i][ 1 = [ i][ Y +Circleoffset/2;

if (tm = 1)(
// x = x+Circle offset/2;
xx = 2;

for (i 1 ; i <= n; i++)
p i][ X =Et i} {)X] + Circleoffset/2;

if (im = 2)(
// y ay-Circleoffset/2;
yy = -2;

for (i = 1 ; i <= n; i++) {
Si] [ Y = p i]l[ Y1 - Circleoffset/2;

if (im == 3)
// x=x-Circle offset/2;
xx = -2;
for (i = ; i <= n; i++)
p i][ X} p[i][ f - Circle offset/2;

sprintf(tclcammand, "$c move id if if', id, xx, yy);
//cout << tclcammand << endl;
at rv = TclEval (helloui. interp, tclcorand);

if (rv TCL OK)

printf("error in fpoint.C move type 1\n");
exit(-i);

if ( (Smalation roundi20) == 0)

rhar lisp2 500 ; FILE *file;
float newx, newx1, newy, newyl, slope, slopei;

sprintf(tclcommand, "add lineui (");
sprintf(points, "-f if if if i0 1 pathd)", path x, path1, i)), p( 1}[ ,]

id);
strcat(tclcoand, points);

rv = TclEval (hello ui.interp, tclcoand);
if (r != TCL OK)

printf("error in poylgon.C movetype add line\t");
S cout << tclcammand << endl;

//exit(-1);

if (pathx =t 11( X)
slope = ((pathy - p[ 1] )Y/ (path_x - p[1] )
slopel -(1/slope);

else(
slope =0;
slopel 1;

if (slope = 0)
slopel = 1;

newx = (p[ 1} [ X1 + 2);
newy = p[ 1)[ Y] - (slopel* (p 1]) a- newx));
newx1 = path_x + 2;
newyl = pathy - (slope (pathx - newx1));

/* hAse * /

sprintf(lisp2, " (comrand \"layer\" \"Vs\" \"path\" \"\") (comand \"pline\"
'(-f if 0) '(if f 0) '("f if 0) ' (f if 0 ')\"\"o( mand \"extrude\" \"i\"
\"\" 100 \"\") (comand \"layer\" \"s\" \"i\' \"\"\n)", \

path_x, path_y,\
Ai ][ 4 , 1]{ IN ,1\
newx, newy, \
nexl, newy1);

file = fopen("terp.lsp', "a");
fprintf (file, "is", lisp2);
fclose(file);

path_x = f 1])[ X];
path_y = f[ 1) 1;

int Polygon::path(FPoint pnt1)(
int j= ((int) (Pan x.ranI()I*00))i4;
int r-value;
int rseed = ((int) (RANDnx.rani()*100))a100;
//cout << "seed:" << rrseed << endl;
j++;
if (rrseed > 80)
return 5;

if ((p j}{ X] < pntI X]) && (rseed < 40))
return 1;

if (( j)] X > pnti[ X] && (rrseed < 40))
return 3;

if (A j](I < pnt A)
return 0;

if (f[ j][Y1 > pnt[ )1
return 2;

retun 5;

void Polygon::action(int point, int poly, float size)

char tciemranma 200) , points 100];

int j= ((int)(RAND x.ran1()*100))4;
int k= ((int) (RND x.ra1()*100))t4;
int offx= ((int) (Plan x.ranl))*100))10;
int offy= ((int) (RAND x.ran1()*100)) 10;
int testx= ((int) (RN x.ran1()*100))i10;

float x1= p[ j+1][ X; float y = p[ j+1] Y];
float x2= [ k+I] X]; float y2 = f k+1][ Y;
while (x2 == x1) {
k= ((int) (an x.rai()*100))a4;
x2= p[ k+1) a]; float y2 = p[ k+1[ Y)

float m = ((y2- yl) / (x2 - x1));
int sign = ((int) (RANDx.rani()*100))2;
int sign1 = ((int) (RAND x.ral()*100))f2;
float newx, newy, newx1, newyi;

if (sign == 1) {
newx = x1 + offx;
newy = y1 + offy;

if (sign == 0) {
newx = x1 - offx;
newy = yl - offy;

if (sign == 1)
newx1 = x2 + testx;

if (sign == 0)
newx1 = x2 - testx;

newyl = ( ((newxl - newx)*m) + newy);
//cout << "object: " << newx << "," << newy << << newxl << << newyl

<< endl;
Object lin0object linenuan = new Object(newx, newy, newx1, newyl,

Object_linenum, point, poly, size);Object_lina Object_linenum++}->plot);

void Polygan::display)
cout << "Poly << id << "<< ht << ""<< color <<" << n << attraction <
endl;
for (int i=1; i <= n; i++)

cout << p[ i];

int Polygon::property)
int s = 0;
for (int i=1; i <= n; i++)

s = s+p[i.property(;
return s;
void Polygon::rotate_object(int id, float aboutax, float about_y, float dtheta)
{
float 1, theta;
FPoint r (about x, abouty);
for (int i = 1; i <= n; i++){

1 = sqrt ((t i][ X] -about x)* (t i][ X] -aboutax) + (F[ i] Y] -about_y)* (p[ i) )a -
abouty));

if (!(1 0))
theta = angle(r, i]);
p[ i]{ X] = aboutx + l*cos(dtheta + theta);
p[i][Y] = about_y + 1*sin(dtheta + theta);

calc_min_xy()

void Polygoa::calcvalue(

int long_sidevert;
float length1, long_sidelength, dtheta, minx, maxx, miny, max2y, maxarea;
FPoint pi;

/ * rotate long side Up /
P(n] = A 01;
long_sidelength = sqrt ( (p 0][ X - 1][ X] )* (p 0][ X] - [ 1][ X] )+

(f 0][y] - A I]{ll )*(l][t) - p[1[][ ));
long_side_vert = 0;
for (int i 1; i < n; i++)

length1 = sqrt((p i][ X] - ft i+1][ )] (F i][ a] - ft i+][ K ) +
( i] Y) - f i+1] Y) )*(A i] Y] - f i+1] Y]));

if (lengthl>long sidelength)
long_sidelength = lengthi;
long_side vert = i;



dtheta = angle (p( longside vert) , p[ long_side vert+1));
rotate object(id, p long sidevert][ X1, p longsidevert][ Y] , (-1*dtheta));

/-*** calculate areas and value ratio **/
area 0;
min x 10000; max x = -10000; miny = 10000; maxy = -10000;
p0 - [ 01 ;
for (i = 0; i < n; i++)

if (ein x > t i][ )) ninx p i] X;

if (caxox < P( i][ ) eaxx = pi][1;
if (enj > p[i] [ 1 ) min_y = p i][ Y1;

if (maxy < 1[ ill Y]) maxoy =p i][Y);
area = area + .5*fabs(p ii[ X]p1 1)*) (P i+1] I1 -pq Y )-( i 11 -

pQ 5)* ('[ i+1][l-pQ X));3
)

length = (max x - min x)
width = (noaxi - min_y);
max area = length*width;

if (max area == 0) value ratio = 0;
else value ratio =oarea color/max area;

calc-mun xy();

void Polygon::plot()

char tclcommanc 200) , points[ 1001
sprintf (tclcnomand, " add_polygon ui f id n)
for (int i = 1; i <= n; i++)(

sprintf(points, "if if ", p[ i}{[, 1 i[ hi);
strcat(tclcomoand, points);

sprintf(points, "id id 'd", id, color, ht);
strcat (tclconmand, points);

int rv = Tcl _Eval (helloui. interp, tclcomoond);
if (rv ! TCL OK)

printf("error in polygon.C plot \n");
// exit(-));

float angle(FPoint p0, FPoint pl)

float dx = pll X-pqC X];
float dy = pl 4 -pC[ Y;

if (do > 0)
return (atan(dy/dx));

else

if( dx < 0
return (MPI + atan dy/dx));

else

if( dy >= 0)
return( M PI/2 );

else
return( -MPI/2

int Polygon::intersect(FPoint p0, FPoint p1, FPoint p2, FPoint p3)

int jl, j2, k1, k2;

jl = ccw(pO, p1, p2);
j2 = ccw(pO, pl, p3);
k1 = ccw(p2, p3, p0);
k2 = ccw(p2, p3, pl);

//cout << jl << ," 00 j2 << "," << k1 << " << k2 << endl;
return (jl'j2 <= 0) && (kl'k2 <= 0);

return ((ccw(llpl, lp2, 12p1)
*ccw(l1pl, llp2, 12p2)) <=0)
&& ((ccw(l2p), 12p2, llpl)
*ccw(l2pl, 12p2, llp2)) <=0);'/

/*

return ((ccw(pO, p1, p2)
*cw(pO, pl, p3)) <-0)

&& ((ccw(p2, p3, pO)
*cw(p2, p3, pl)) <=0);*/

int Polygon::ccw(FPoint p0, FPoint pl, FPoint p2)

float dx1, dx2, dyl, dy2;

dx1 = pg[ 4 - pq[ XJ;
dyl = pi ) - pq 55;
dx2 = p2( X - pq[ X ;
dy2 = p2 5 - pQ 5;Y

cout << dxl <<"," << dyl << "," << dx2 <<, << dy2<< endl;

if (dx1*dy2 > dx2*dyl) return +1;
if (dx1*dy2 < dx2*dyl) return -1;
if ((dl*dx2 < 0) 1| (dyl*dy2 < 0)) return -1;
if ((dxl*dxl+dyl*dyl) < (dx2*dx2+dy2*dy2)) return +1;
return 0;

ofstream& operator<<(ofstream& s, Polygon* a)

if (a != NULL)
5 << "addpolygon_ui " << a->n <<"
for (int i = 0; i < a->n; i++) {

s << a->p i) 1 << " << a->p i][ << ;

s << a->id << << a->color <<" << a->ht << endl;
return s;

ostream& operator<<(ostream& s, Polygon* a)

s << "add_polygon ui " << a->n <<
for (int i = 0; i < a->n; i++) )

s << a->Tf i[ "1 <0 0< a->p i][ 1 <<<'

s << a->id << << a->color << " << a->ht << endl;
return 5;

/*
void Polygon::clear_point_bufo)

for (int i=0; i<25; i++){
point influence( i = 0;

/ cout << pointinfluence(i};

void Polygon::print3d)

FILE *file;
char lispcoronc 500;
char lisp2 500;
char points 500];
char lispend{ 100
sprintf(lispcommand, " (command \"layer\" \"s\" \"poly\" \"\")")
sprintf(lispend, " (command \"layer\" \"s\" \ON \"N")");
sprintf (lisp2, " (conmand \"pline\"");
for (int i = 1; i <= n; i++)(
sprintf(points, "'(if if 0.0)", p[ i}[ x, p i)[ );
strcat(lisp2, points);

sprintf(points, "\"C\")");
strcat(lisp2, points);
sprintf(points, " (comand \"extrude\" \"l\" \"" 'if \"N")",

(((float) (ht+Simulation round))/10));
// cout << lispcommand<< endl;
// cout << lisp2 << endl;
// cout << points << endl;
file = fopen("temp.lsp", "a");
fprintf (file, "is is s is", lispcommand, lisp2, points, lispend);
fclose(file);

registerCwith tcl.C

#include <tcl.h>
#include <tk.h>

#include "tcltkui.h"
#include "tcl to C.h"
#include "registerC with tcl.h"

extern UIParams t hello ui;

void registerCwith tcl (void)

Tcl CreateCormand(hello ui.interp,
"sayhello ui",
(TIl CmdProc *) say hello-ui,
(ClientData) hello ui.w,
(Tcl CmdeleteProc*) NULL);

TclCreatecommand(helloui.interp,
"move_object ui",
(Tcl_ CmdProc *) moveobject_ui
(ClientData) helloui.w,
(Tcl CmdDeleteProc*) NULL);

TclCreatecommand(hello ui.interp,
"report crl",
(Tcl CmdProc *) report ui
(ClientData) hello ui.w,
(Tcl CmdDeleteProc*) NULL);

Tcl Createcoonand(hello-ui.interp,
" zone ui" ,
(Tcl CmdProc *) zone-ui
(ClientData) hello-ui.w,
(Tcl CmdDeleteProc*) NULL);

TclCreatecommand(hello ui.interp,
"add_object oi',
(Tcl CmdProc ') add objectui
(ClientData) hello ui.w,
(Tcl CmdDeletePro&) NULL);

Tcl Createconnand(helloui.interp,
"object La",
(TclCmdProc *) object_ui ,
(ClientData) hello ui.w,
(Tcl CmdDeleteProc*) NULL);

report.C

#include <stdio.h>
#include <stdlib.h>
#include <fstream.h>

#include "random.h"
#include "fpoint.h"
#include "report.h"
#include "polygon.h"
#include "object.h"
extern FPoint* Point[];
extern Polygon' Polg ] ;
extern object* Object line[];
extern Random RAND x;
extern int Max_points;
extern int Point num;
extern int Poly_num;
extern Object line num;

void report)

int i, j, k;
printf("Report... Iteration:");

//cout << "Point count = " << Point num << endl;
//for (i = 0; i < Point nun; i++)

//cout << "agent num:"<< i << "<< (Point i]);
for (i = 0; i < Poly_nunt; i++))

//cout << "agent n:"<< i << endl;
//Pol) i} ->displayo);
Poly( i ->print3d();

//ofstream tep_lisp ("tep.lsp");
for (i=0; i < Objectlinenum; i++) {
Object lini)->print3d();

//templisp.close();



say_hello.C

#include <stdio.h>
#include "say_hello.h"
void say_hello()

printf("Hello \n');

tEl to C.C

* modes commands *

/ tcl coRmands that nodes parser must understand
********************************************************************/

#include <iostream.h>
#include <string.h>
#include <stdlib.h>
#include <math.h>

#include <tk.h>
#include <tcltkui.ho

#include "tcl toC.h"
#include <fpoint.h>
#include "say hello.h"
#include "move object.h"
#include "add object.h"
#include "report.h"
#include "object.h"

#include <time.h>

extern FPoint* Point[ ];
extern int Point num;
extern Object* Object_line(];
extern int Object_linenum;
extern UIParams t hello ui;
//extern FPoint Point];

Ssay helloui

int say_hello ui( ClientData, Tcl_Interp interp,
int argc, char argv)

if (argc != 1)
Tcl_AppendResult(interp, "wrong # args: should be \"", argo 0],

say_hello \"", (char *) NULL);
return TCL ERROR;

sayhello() 0

return TCL OK;

* ~move _object u *

int move object ui)( ClientData, Tcl_Interp N interp,
int argc, char ** argv)

int value, inc;
char * string, *varValue, newValue 20;
if (argc != 2) )

TclAppendResult(interp, "wrong # args: should be \"", arg' 0],
" move_object \"", (char *) NULL);

return TCL ERROR;

string = TclGetVar(interp, arg) 1) , TCL LEAVE ERR_MSG);
if (string == NULL)

return TCL ERROR;

if (TclGetInt (interp, string, &value) != TCL OK) {
return TCERROR;

printf (newValue, "VALUE ! !=d", value));
// cout << "THE BIG GUY.." << value << endl;
move object(value);

return TCL OK;

N add_object_ui

int add_object_u( ClientData, TclInterp *interp,
int argc, char * argv)

int value, inc;
char *string, *varValue, newValue 20];
if (argc != 2) (

TclAppendResult(interp, "wrong # args: should be \", argo 0],
" move_object \"", (char *) NULL);

return TCLERROR;

string = Tcl GetVar(interp, arg) 1] , TCLLEAVE ERR_MSG);
if (string == NULL) (

return TCLERROR;

if (TclGetInt (interp, string, &value) != TCL OK)
return TCLERROR;

Nprintf(newValue, "VALUE !! - "f, value);
add object(value);

return TCL OK;

* reportui*

int report ui( ClientData, Tcl_Interp * interp,
int argc, char * argv)

if (argc != 1) {
Tcl_AppendResult(interp, "wrong # args: should be \"", arg4 0)

" say_hello \"", (char *) NULL);
return TCLERROR;

reporto;

return TCL OK;

zone ui*

int zoneui( ClientData, TclInterp * interp,
int argc, char ** argv)

int i;
if (arge != 1)

Tcl_AppendResult(interp, "wrong # args: should be \"", arg) 0
N say_hello \"", (char *) NULL);

return TCL ERROR;

//printf("zone:");
for (i = 0; i < Pointnum; i++){

Point[ i]->plot zone;
cout << "carry:" << Point[ i] ->obflag << endl;

return TCLOK;

* object ui*

int object_ui( ClientData, Tcl_Interp * interp,
int argc, char ** argv)

int i;
if (argc != 1) {

Tcl_AppendResult (interp, "wrong # args: should be \"", arg, 0]
" objectui \"", (char *) NULL);

return TCL ERROR;

//printf)("zone:");
for (i = 0; i < Object_linenum; i++){

Object lin[ i] ->plot();

return TCL OK;

* add circle ui

/* adds a circle

int addpointtui (ClientData, TclInterp *interp, int argc, char **argv)

cout << "tcl to C.C add_point_ui:" << endl;

/* if (argc != 2) {
TclAppendResult(interp, "wrong # args: should be \"", argd 0

" id\"", (char *) NULL);
return TCLERROR;

int id = (int)strtod(arg{ 1), (char**)NULL);
char tclcomand 200)
Polygon *a;
for (int i = 0; i < 3; i++)

a = world i] ->get_element_id (id);
if (a) {

cout << " a ="<< a << endl;
a->plot()

return TCLOK;

* move_object_number*

S Ooves an Object with id
NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN*NNNNNNNNNNNNNNNNNNNNNNNNNNN/

int moveobject_nuNber(ClientData, Tcl Interp *interp, int argc, char **argv)

cout << "tcl to C.C move objectnumber:" << endl;

if (argc != 2) )
TclAppendResult(interp, "wrong # argN: should be \"", arg) 0,

N id\"", (char *) NULL);
return TCL ERROR;

int id = (int)strtod(arg 1) , (char**)NULL);
cout << "ID=" << id << " << Point id] << endl;

char tclcommand 200
Polygon *a;
for (int i = 0; i < 3; i++)

a = worlt i]->get_element id(id);
if (a) {

cout << "a "<< a << endl;
a->plot();

return TCL OK;



* add lineui

adds a line

int add line ui(ClientData, TclInterp *interp, int argc, char **argv)

cout << "tcl to C.C add line ui:" << endl;

return TCL OK;

proc dpos m (
wm geometry $m +100+100

wm withdraw

# mkItem w

# create a top-level window containing a canvas that displays the
# various iten types and allows them to be selected and moved. This
# demo can be used to test out the point-hit and rectangle-hit code
# for itens.

# Arguments:
# w - Name to use for new top-level window.

proc nakemenu ((w citems))
global c tk library
global zone toggle
global poly
global point
global i
set i 100
set zone_toggle 0
set poly 0
set point 1
catch ( destroy In)
toplevel $w
dpos $w
wmi title $w "GenWorld - 8"
wmi iconname $w "Genworld'
wm minsize Sw 500 500
set c Sw.frame2.c
frae $w.buttons

# tk setPalette gray60
pack~ w.buttons -side right -expand y -fill both -pady 2m
button $w.buttons.1 -text object -conmand "objectui"
button Sw.buttons.2 -text B -comand "add_point ui"
button $w.buttons.3 -text Move -command "move object_ui"
button $w.buttons.4 -text zone -command "zoneui"
button Sw.buttons.5 -text report -command "report_ui"
button $w.buttons.6 -text poly -command "add object ui poly"
button $w.buttons.7 -text point -command "add object ui point"
button $w.buttons.8 -text H -command "say_helloui"
button $w.buttons.9 -text object ui -comnand "$c delete object"
button $w.buttons.10 -text zone off -command "$c delete zone"
entry Sw.buttons.entry -width 3 -relief sunen -bg white -textvariable numb
label $w.buttons.label -textvariable numb
label Sw.buttons.move -textvariable iterate
button Sw.buttons.code -text "See Code" -conmand "showcode $w"
button $w.buttons. dismiss -text Quit -conand "destroy ."
pack $w.buttons.1 $w.buttons.2 $w.buttons.3 $w.buttons.4 Sw.buttos .5

$w.buttons.6 $w.buttons.7 $w.buttons.8 Sw.buttons.9 $w.buttons.10
$w.buttons.label Sw.buttons.entry $w.buttons.move $w.buttons.code
$w.buttons.disniss -side top -expand 1 -fill both
#pack $w.buttons.1 $w.buttons.2 -expand lp

frane $w.framel -relief raised -bd 2
frame $w.frame2 -relief raised -bd 2
pack append $w $w.franel ( top fill) $w.frame2 ( top fill expond)

canvas $c -scrollregion {Oc Oc 30c 246) -width 15c -height 12c -bg Gray70

scrollbar sw.frame2.vscroll -relief sunken -command "c yview"
scrollbar $w.frame2.hscroll -orient horiz -relief sunken -cosmand "$c xviev'
pack append Sw.frame2 $w.frame2.hscroll (bottom fillx)

Sw.frame2.vscroll (right filly) 1c (expand fill)
$c config -xscroll "Sw.frame2.hscroll set" -yscroll "w.frame

2
.vscroll set"

set fontl -Adobe-Helvetica-Medium-R-Noral--120-*
set font2 -Adobe-Helvetica-Bold-R-Nonal-*-240-*
if ([winfo screendepth c] > 4)

set blue DeepSkyBlue3
set red red
set blue blue
set green SeaGreen3

else (
set blue black
set red black
set blue blue
set green black

set iterate 0

proc move something i {
global iterate
set iterate [expr $iterate + $i]
Jkmoveuobject ui i]

proc addpoint ui (list)
global c
set x [lindex $list 0]
set y [lindex $list 1]
set xl {lindex Slist 2]
set yl [lindex $list 3]
set colorid [lindex $list 4)
set id [lindex $list 5]
set field [expr [lindex $list 6) /2]
set colorlist (red magenta yellow blue gree
set off [expr ($xl - 2) /2)
set cenx [ expr $x + Soff
set ceny [ expr $y + Soff]

if (colorid == 5) {
set color [lindex Scolorlist 0]

if ( $colorid = 4) {set color[ lindex Scolorlist 1)

if (Scolorid = 3)
set color [lindex Scolorlist 2]

if (colorid = 2)
set color [lindex Scolorlist 3)

if ($colorid = 1)
set color[ lindex $colorlist 4]

set xx [expr fcenx+Sfield]
set yy[ expr Scen_y+ffield]
#eval[ concat $c create polygon [expr scen - $field[ expr scen_y - Ifield
$xx [ expr scen y - $field] $xx fyy [ expr $cenx - $field] fyy -stipple
@/afs/sipb/project/tcl/lib/tk/demos/bimaps/grey.25 -tags zone]
eval [concat $c create oval $x Sy Sxl $y1 -fill fcolor -tags fi

proc plot szone (list)
global c
global zone toggle
puts $zone toggle
#if ( szone toggle = 0} {
set x [lindex $list 0]
set y [ lindex $list 1)
set field sexpr [lindex $list 6 /2]
set xl [lindex flist 2]
set yl [ lindex flist 3)
set off [ expr ($xl - $x) /2)
set cenx [ expr $x + $off
set cen y [expr fy + Soff]
set xx [expr scen x+$field]
set yy[ expr $cen_y+$field
puts $cen x
eval[ concat $c create polygon expr scenx $field [expr scen_y $fiell
$xx [ expr fceny - Sfiel) $xx Syy [ expr lcen-x - $fiel $yy -stipple
@/afs/sipb/project/tcl/lib/tk/demos/bitmps/grey.25 -tags zone]
set zone_toggle 1

#elseif { Szonetoggle == 1)
#$c delete zone
#set zone toggle 0

proc add lineui {list)
global c
set x [lindex $list 0]
set y [lindex $list 1)
set x llindex $list 2)
set yl[ lindex $list 3)
set colorid {lindex $list 4)
set type [lindex $list 6)
set colorlist { khaki3 darkorchid3 orange3 yellow grey80 blue green}
set wd [lindex $list 5)
if I $colorid = 0) {

set color {lindex $colorlist 0)

if { Scolorid = 1)
set color [lindex scolorlist 1]

if)Iusolorid= 2)
set color {lindex $colorlist 2)

if i$colorid = 3)
set color {lindex $colorlist 3)

if i$colorid = 4)
set color [lindex $colorlist 4)

sval[ concat $c create line $x Sy $xl Syl -fill scolor -width Swd -tags type]

proc add line object ui { list)
global c
set x [lindex $list 0)
set y [lindex $list 1)
set xl[ lindex flist 2)
set yl [ lindex flist 3)
set colorid [lindex $list 4]
set type {lindex $list 6]
set colorlist (khaki3 darkorchid3 orange3 yellow grey80 blue green)
set wd [lindex $list 5]
if (scolorid == 0)

set color [lindex $colorlist 0]

if ($colorid = 1) {
set color [lindex scolorlist 1)

if (scolorid - 2 {
set color [lindex fcolorlist 2)

if ($colorid = 3){
set color [lindex Scolorlist 3]

if ($colorid = 4) {
set color [ lindex scolorlist 4]

eval [ concat $c create line $x Sy $xl fyl -fill fcolor -width $wd -tags object]

proc add line special-ui (list)
global c
set x [lindex $list 0]
set y [lindex $list 1)
set x1 {lindex $list 2
set yl {lindex $list 3)
set x2 {lindex slist 4]
set y2 {lindex $list 5)
set colorid [lindex $list 6)

set colorlist ( khaki3 magenta orange3 yellow blue gressi
set wd [lindex $list 7)
if { fcolorid == 0)

set color [lindex fcolorlist 0]

if {Icolorid = 1)
set color [lindex Scolorlist 1]

if (Scolorid = 2)
set color [lindex $colorlist 2)

if (Scolorid = 3)



set color [lindex $colorlist 3]

if (Scolorid == 4) (
set color [lindex $colorlist 4]

eval [concat $c create line x Sy $xl Dy1 $x2 $y2 -fill $color -width Swd
smooth on -tags smothey]

proc add_polygon ui {list) (
global c
# pick off different parts of the list
set n (lindex $list 0]
set nnodes [ expr 2*$n]
set newlist [ilrange $list 1 cnodes)
#puts stdout "$newlist Snnodes"
set idpos { expr $nnodes+l]
set id [lindex $list Sidpos)
set colorpos (expr $idpos+i)
set colorid [lindex $list colorpos]
#puts stdout "$newlist lid icolorid'

# First find corresponding colors to objects

set colorlist {red magenta yellow royalblue3 green)

if (colorid == 5) {
set color ( lindex colorlist 0]

if {$colorid == 4)
set color [lindex Scolorlist 1)

if {Dcolorid == 3)
set color [lindex colorlist 2]

if {colorid == 2)(
set color [lindex $colorlist 3}

if ($colorid == 1) 1
set color [lindex $colorlist 4]

# Now draw object on canvas
eval [concat $c create polygon $newlist -fill $color -tags Sid I
puts $newlist
# Now pass it over to C++ for inclusion in world list
#eval [ concat add_polygon ui list)

proc object replot(
$c delete ob
object ui

DXF takes an integer dxf code and an entity data list.
It returns the data element of the association pair.

(defun dxf~code elist)
(cdr (assoc code elist)) ;finds the association pair, strips lst element

);defun

(defun completer(ht)

(if (< ht 1)
(setq ht 1)

(command "pedit' "I" "s""')

(cannand "change" "1"" p
t 

"la" "temp""")

(comad "explode" "1")
(setq templist (sget "x" ' (8 . "temp"))))

(cocmand "pedit" (3sname templist 0) "T "j" templist "">"X")

(command "change" "l" ""p" "la" "curve
(setq farpoint '(1000 1000 0))
(setq enti (entlast))
(corndoe "offset" 1 entl farpoint"")
(setq ent2 (entlast))

(setq ptl (cdr (assoc 10 (entget (entnext entl)))))
(setq tep entl)
(while (not (equal "0SEQENU' (dxf 0 (entget (setq temp (entnext temp))))))

(setq hold temp)

(setq pt2 (cdr (asoc 10 (entget hold))))
(setq pt3 (cdr (assoc 10 (entget (entnext ent2)))))
(setq terp ent2)
(while (not (equal "SEQEND" (dxf 0 (entget (setq temp (entnext temp))))))

(setq hold temp)

(setq pt4 (cdr (assoc 10 (entget hold))))
(comerand "pline" ptl pt3
(setq ent3 (entlast))
(cornde "pline'" pt2 pt4
(setq ent4 (entlast))
(conand "pedit" ent1 "j" ent2 ent3 ent4
(command "extrude" "1" "" ht "")

(defun completers(ht)
(if (< ht 1)

(setq ht 1)

(setq farpoint '(1000 1000 0))
(setq entl (entlast))
(command "offset" 1 entl farpoint"")
(setq ent2 (entlast))

(setq pt1 (cdr (assoc 10 (entget (entnext entl)))))
(setq temp ent1)
(setq listy ptl)
(while (not (equal "SEQEND' (dxf 0 (entget (setq temp entnext temp))))))

(setq hold temp)
(print (cdr (assoc 10 (entget hold))))
(setq listy (cons listy (cdr (assoc 10 (ntget hold)))))

(setq pt2 (cdr (assoc 10 (entget hold))))
(setq pt3 (cdr (assoc 10 (entget (entnext ent2)))))
(setq temp ent2)
(while (not (equal " SEQEN' (dxf 0 (entget (setq temp (entnext temp))))))

(setq hold temp)

(setq pt4 (cdr (assoc 10 (entget hold))))
(command "pline" pt1 pt3"")
(setq ent3 (entlast))
(command "pline" pt2 pt4
(setq ent4 (entlast))

(command "pedit" entl "j" ent2 ent3 ent4
(conand "extrude" "1""" htr""

(defun test(plist)
(comnand "pline"

(while (car plist)
(car plist)
(setq plist (cdr plist))

(defun ext(ptlist)
(print (car ptlist))
(if (cadr ptlist)

(ext (cdr ptlist))

(defun abstractor (pt1 pt2 orient num ht wd sold)
(if = orient 1)

progn
(cosand "layer" "s" "temp_sol"
(setq d (command "dist" ptl pt2))
(setq d (getvar "distance"))
(setq offs (/ d (+ num 1)))
(ucs change pt1 pt2)
(setq other (list offs wd 0))

(connord "box" "" other ht)
(setq ent (entlast))
(if (= sold 1)

(progn
(command "change" ent "" "P" "la" "SOL""")
(setq ent (entlast))

(if (= sold 0)
progn

;for interior volumes test...
(setq intvol (list 0.5 0.5 0.5))
(if (= ht 1) (setq ht 2))
(setq intother (list (- (car other) 0.5) (- (cadr other) 0.5) ht

0.1)))
(command "layer" "5" "te h""")

(command "box" intvol intother)
; end test

(setq ent1 (entlast))
(comand "subtract" ent "" ent
(setq ent (entlast))

(if (> nom 1)
(comaood "array' ent """"'"" noun (+ offs 1))

(command "ucs" "w")

(if =orient 0)

progn

(setq d (cocneod "dist" pt1 pt2))
(setq d (getvar "distance"))
(setq offs (/ d (+ num 1)))
(ucs change pt1 pt2)
(setq other (list (/ d (+ num 1.0)) wd ht))
(ccmmand "box" "" other)
(setq ent (entlast))
(if (= sold 1)

(progn
(conmand "change" ent """P' "1a" "SOL""')
(setq ent (entlast))

(if (= sold 0)
(progn

;for interior volumes test...
(setq intvol (list 0.5 0.5 0.5))
(if (= ht 1) (setq ht 2))
(setq intother (list (- (car other) 0.5)

ht 0.5)))
(caomand "box" intvol intother)
(setq ent1 (entlast))
(cormod "subtract" ent "" entl"")
(setq ent (entlast))

(- (cadr other) 0.5) (-

(command "rotate" ent "" (0 0 0) 90)
(if (> num 1)

(comand "array"' ent """f"" num (+ offs 1))

(comnand "ucs" "w')

(defun ucschange (pt1 pt2)
(if (< (car ptl) (car pt2))

(setq pt3 '( 1000 0))

(if (> (car ptl) (car pt2))
(setq pt3 '(0 -1000 0))

(if (= (car pt1) (car pt2))
(if (> (cadr pt1) (cadr pt2))

(setq pt3 '(1000 0 0))

(if (< (cadr ptl) (cadr pt2))
(setq pt3 '(-1000 0 0))

(command "ucs" 3 ptl pt2 pt3)


