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ABSTRACT

An efficient, digital technique for the measurement of the autocor-
relation function and power spectrum of Gaussian random signals is
described. As is quite well known, the power spectrum of a signal can
be obtained by a Fourier transformation of its autocorrelation function.
This paper presents an indirect method of computing the autocorrelation
function of a signal having Gaussian statistics; this method greatly re-
duces the amount of digital processing that is required.

The signal, x(t), is first "infinitely clipped"; that is, a signal, y(t),
is produced, where y(t)= 1 when x(t) > 0 and y(t)= -1 when x(t) < 0. The
normalized autocorrelation function, p (V), of the clipped signal is then
calculated digitally. Since y(t) can be oded into one-bit samples, the
autocorrelation processing (delay, storage, multiplication, and summa-
tion) can be performed quite easily in real time by a special purpose
digital machine - a one-bit digital correlator. The resulting py(-T) can
then be corrected to give the normalized autocorrelation function, Px(),
of the original signal. The relation is due to Van Vleck and is simply

p (r) = sin [- p (t)/2].

The paper begins with a review of the measurement of power spec-
tra through the autocorrelation function method. The one-bit technique
of computing the autocorrelation function is then presented; in particular
the-mean and variance of the resulting spectral estimate are investigated.

These results are then applied to the problem of the measurement of
spectral lines in radio astronomy. A complete radio astronomy system
is described. The advantages of the system are: 1) It is a multichannel
system; that is, many points are determined on the spectrum during one
time interval,- 2) Since digital techniques are used, the system is very
accurate and highly versatile. The system that is described was built
for the purpose of attempting to detect the galactic deuterium line. The
last three chapters describe the results of tests of this system, the
deuterium line attempt, and an attempt to measure Zeeman splitting of
the 21 cm hydrogen line.

Thesis Supervisor: Jerome B. Wiesner
Title: Institute Professor
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GLOSSARY

TIME FUNCTIONS

A stationary, ergodic, random time function

having Gaussian statistics.

The function formed by infinite clipping of x(t).

That is, y(t) = 1 when x(t) > 0 and y(t) = .1

when x(t) < 0.

FREQUENCY AND TIME

Due to their rather standard usage in both communication theory

and radio astronomy, the symbols, T and - , symbolize different

quantities in different sections of the paper. In the first 3 chapters,

T is a time interval and t is the autocorrelation function delay

variable. In the last 6 chapters, T is temperature and t is either

optical depth or observation time. Some other frequency and time

variables are the following:

At, k, K, ft

A'r, n, N' s

The time function sampling interval is At .

A sample of the time function, x(t), is x(kAt)

where k is an integer. The total number of

samples is K. The sampling frequency is

ft = 1/At . In most cases At and ft will

be chosen equal to A t and f , respectively.

The autocorrelation function sampling interval

is AT . The samples of the autocorrelation

function are R(nAt) where n is an integer

going from 0 to N-1. The reciprocal of At

is f
s

x(t)

y(t)
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Af The frequency resolution of a spectral

measurement (see Section 1. 3). It will be

approximately equal to 1/N-At.

B1 , B 2 0  The 1 db and 20 db bandwidths of a radio-

meter. The spectrum is analyzed with

resolution, A f , in the band, B The

sampling frequencies, ft and f . are

often chosen equal to 2B 2 0 .

f A known combination of local oscillator
0

frequencies.

AUTOCORRELATION FUNCTIONS

R(t) The true autocorrelation function of x(t).

R "(T) A statistical estimate of R(t) based upon

unquantized or many-bit samples of x(t)

p(t) or px(T) The true normalized autocorrelation function;

p(t) = R(r)/R(0).

"(T) A statistical estimate of p(T) based upon

unquantized or many-bit samples of x(t)

p'(-) or p t) A statistical estimate of p(T) based upon

one-bit samples of y(t) .

p (t) The true normalized autocorrelation function

of y(t) .

p' A statistical estimate of py(T) based upon
y s

one-bit samples of y(t).
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POWER SPECTRA

(The power spectrum is defined in Section 1. 2)

P(f) The true power spectrum of x(t)

P"(f) A statistical estimate of P(f) based upon

unquantized or many-bit samples of x(t)

P*(f) The expected value of P"(f)

p(f) The true normalized power spectrum;

p(f) = P(f)/R(O).

p"'(f) A statistical estimate of p(f) based upon

many-bit or unquantized samples of x(t)

p'(f) A statistical estimate of p(f) based upon

one-bit samples of y(t)

p*(f) The expected value of p'(f) and p''f).

p'(f) The normalized spectral estimate produced
c

by a one-bit autocorrelation radiometer

when its input is connected to a comparison

noise source.

p'(f) A normalized estimate of the receiver power

transfer function, G(f) . It is the spectral

estimate produced by a one-bit autocorrelation

radiometer when the input spectrum and

receiver noise spectrum are white.

3p'(f) The estimate of the difference spectrum that

is determined by a switched radiometer;

3p'(f) = p'(f) - p'(f)
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TEMPERATURES

Ta(f) The power spectrum available at the antenna

terminals expressed in degrees Kelvin.

Tr(f) The receiver noise temperature spectrum.

T(f) The total temperature spectrum referred to

the receiver input. T(f) = T a(f) + Tr(f)

Tc(f) The spectrum of the comparison noise source.

Tav The frequency-averaged value of T(f).

The average is weighted with respect to the

receiver power transfer function, G(f)

Ta av The frequency-averaged value of T a(f).

Tc av The frequency-averaged value of

Tc(f) + Tr(f)

Tr av The frequency-averaged value of Tr (f)

3T The unbalance temperature; 3T T - T
av av av c av

RMS DEVIATIONS

A ar with two subscripts will be used to denote an RMS deviation

of a statistical estimate. The first subscript will be a P, R, p, or p

and indicates the variable to which the RMS deviation pertains. The

second subscript will be a 1 or an m and indicates whether the

statistical estimate is based upon one-bit or many-bit samples.

Thus, for example, Crp1 is the RMS deviation of p'(f) , the one-bit

estimate of p(f) . Statistical estimates of RMS deviations will have
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a single subscript and a prime or double prime indicating whether

one-bit or many-bit samples are referred to. For example, c'(f)
p

is a statistical estimate of cr (f)

MISCELLANEOUS

w('r) The function that is used to weight: the auto-

correlation function; see Section 2. 2.

W(f) The spectral scanning or smoothing function.

It is the Fourier transform of w('L);

see Figure 2. 2

G(f+f0) The receiver power transfer function. The

spectrum at the clipper input, P(f) , is equal

to G(f+f ) times the input temperature

spectrum, T(f+f 0 ).

SPECIAL SYMBOLS

x(t) A line over a variable indicates that the

statistical average is taken. See Equation 1. 1.

P*(f) An asterisk superscript on a spectrum indi-

cates that it has been smoothed and is

repeated about integer multiples of the

sampling frequency. This operation is

discussed in Section 2. 2.

Tt(f) The one-bit autocorrelation radiometer pro-

duces a statistical estimate of an input tempera-

ture spectrum such as T(f) . The statistical

average or expected value of this estimate is

equal to Tt(f) . The relationship between T(f)

and Tt(f) is discussed in Section 4. 2-1. Under

proper conditions, such as a sufficiently fast

sampling rate, Tt(f) is simply a smoothed

version of T(f) .
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CHAPTER 1

INTRODUCTION

This report can be divided into three parts which comprise Chapters

1 - 2 - 3, 4 -5, and 6 - 7 - 8, respectively.

1) A technique for the measurement of the power spectrum

and autocorrelation function of a Gaussian random process is presented.

This technique, which will be referred to as "the one-bit autocorrelation

method, " has the property that it is easily performed digitally; hence,

the accuracy and flexibility associated with digital instrumentation is

achieved. The technique is a multichannel one; that is, many points

on the spectrum and autocorrelation function can be determined at one

time. A limitation is that the bandwidth analyzed must be less than

10 mc for operation with present-day digital logic elements.

2) The above technique will be applied to the problem of the

measurement of spectral lines in radio astronomy. In Chapter 4 the

composition and theoretical performance of a practical radio astronomy

system utilizing the one-bit digital autocorrelation technique will be

presented. The design of components of this system is discussed in

Chapter 5.

3) The above system was constructed and extensive experimen-

tal results are given. These results are of laboratory tests of the
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system, an attempt to detect the galactic deuterium line, and an attempt

to measure Zeeman splitting of the 21 cm hydrogen line.

The reader who is interested in the radio astronomy aspects of

the report may wish to skip Chapters 2 and 3; the results of these two

chapters are summarized in radio astronomy terms in Chapter 4.

The remainder of this chapter will be spent on some background

material, a comparison of filter and autocorrelation methods of spec-

tral measurement, a classification of spectral measurement problems,

and finally, a brief description of the one-bit autocorrelation method.

1. 1 STATISTICAL PRELIMINARIES

A brief presentation of some of the statistical techniques and

terminology used in this paper will be given in this section. In addi-

tion, some assumptions will be stated regarding the statistical nature

of the signals of interest. For an introduction to statistical communi-

cation theory techniques, the reader is referred to Davenport and

1 2
Root, Chapters 1 - 6 (109 pages) or Bendat, Chapters 1 and 2 (77

pages).

The type of signal which is -of interest in this paper is the random

time function; that is, a signal whose sources are so numerous,

complicated, and unknown that exact prediction or description of the

time function is impossible. Our interest is in the study of averages

. w- .-' _10NrP'^_ IN W W " ga_ . -_1 - __-
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of functions of the signal, in particular, the power spectrum, which

will be defined in the next section.

A random variable, x , is the outcome of an experiment which

(at least theoretically) can be repeated many times and has a result

that cannot be exactly predicted. The flipping of a coin or the meas-

urement of a noise signal at a given time are two such experiments.

The outcome of a particular experiment is called a sample of the

random variable; it is implied that there are a large number of sam-

ples (although many samples may have the same value).

The random variable is described by a probability density function,

p(x). The statistical average (this will sometimes be called the "mean")

of a random variable will be denoted by a bar over the quantity being

averaged, such as 3 . In terms of the probability density function,

the statistical average of x is given by,

fx p(x) dx (1.1)

~00

In most signal analysis cases the random variable is a function of

a parameter such as frequency or time. Thus, there is an infinite

number of random variables, one for each value of the parameter.

For each random variable there is a large number of samples. This

two dimensional array of sample functions is called a random process

and is illustrated on the following page.



(1)

x (t)

t t
0

Figure 1.1

The concept of a random process with time as the parameter is

shown in Figure 1.1. For each value of time a random variable, xt9'

is defined. Each random variable has an infinite number of samples,

x , x (2) (). The random process can also be described

0 (1) (2)as having an infinite number of sample functions, x (t), x () . . .

x(0(t). (The superscripts will be dropped when they are not needed

for clarity.)

Statistical averages, such as 3F, are taken vertically through the

random process array and may or may not be a function of time.

Time averages, such as,

T

- x(t) dt
T f

0

M!" -400000000-- 'd -1 - I- 1 1 - --



are taken across the array and may or may not depend on the sample

function chosen.

It will be assumed that signals whose power spectra we wish to

measure are stationary and ergodic. By this it is meant that statis-

tical averages such as xt ' t 2 and x t t + t are independent of
0 0 0 0

the time, t , and are equal to the infinite time averages which, in

turn, are independent of the particular sample function, i. e.,

T

xt Tlim x (t) dt (1.2)t T, Zo T f
0 -T

2 lim 1 2
x ZT J x (t) dt (1.3)

0 -T

T

x x =-- f x(t) x(tt s) dt (1.4)
t t + Ir T -+) oo 2 T0 0

T

These assumptions imply that the power spectrum does not vary with

time (at least over the period of time that measurements are made).

This is the usual situation in radio astronomy except for the case of

solar noise.

Under the stationary and ergodic assumptions the sample functions

of the random process have a convenient interpretation, each sample

k
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function is a "record" or length of data obtained during different time

intervals. The statistical average then has the interpretation as the

average result of an operation repeated on many records.

The quantity, x t xt + , is called the autocorrelation function of
0 0

the signal. From Equation 1. 4 we see that under the stationary and

ergodic assumption the autocorrelation function can also be expressed

as an infinite time average. Because of the stationary assumption,

xt t 0+ is not a function of t and the notation, R (T) or R(, )
o o

will be used to signify the autocorrelation function.

In words, the autocorrelation function is the (statistical or infinite

time) average of the signal multiplied by a delayed replica of itself.

R (o) is simply the mean square, x , of the signal, while R (00) is
2

equal to the square of the mean, K . It is easily shown that

R (o) > R_ () = R (-,r). The normalized autocorrelation function,

PX (,), is equal to R ()/R (o) and is always less than or equal to

unity.

The variance, a- 2 , of a random variable is a measure of its
x

dispersion from its mean. It is defined as,

2 2
<r = (x - x 15

x

--L
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The positive square root of the variance is the RMS deviation, r .

The statistical uncertainty, A, of a random variable is the RMS

deviation divided by the mean,

A - (1.7)x

As is often the case in the analysis of random signals, it will be

assumed that the signal has Gaussian statistics in the sense that the

joint probability density function, p (xt, xt+), is the bivariate Gaussian

distribution,

1

2t R (o) 1 - p Z /2
x I x

2 2 (1.8)

exp t -Z (ixtxt+r +X t+t

-2. R (0) 11 - P 2 -
x x

This assumption is often justified by the central limit theorem (see

Bendat , Chapter 3) which states that a random variable will have a

Gaussian distribution if it is formed as the sum of a large number of

random variables of arbitrary probability distribution. This is usually

true in the mechanism which gives rise to the signals observed in radio

astr onomy.
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1. 2 DEFINITION OF THE POWER SPECTRUM

The power spectrum is defined in many ways dependent on: 1)

The mathematical rigor necessary in the context of the literature and

application in which it is discussed, 2) Whether one wishes to have a

single-sided or double-sided power spectrum (positive and negative

frequencies, with P(-f) = P(f) )} 3) Whether one wishes P(f)Af or

2P(f) Af to be the power in the narrow bandwidth, Af.

In this paper, the double-sided power spectrum will be used since

it simplifies some of the mathematical equations that are envolved.

The negative-frequency side of the power spectrum is the mirror

image of the positive-frequency side; in most cases it need not be

considered. In accordance to common use by radio astronomers

and physicists, P(f) Af (or P(-f) Af ) will be taken to be the time

average power in the bandwidth, Af, in the limit as Af -+ 0 and the

averaging time, T -+ 00 Thus, the total average power, PT, is

given by,

00

PT = P(f) df (1.9)

0

or

PT P(f) df (1. 10)

T 0 0

L
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(if an impulse occurs at f = 0 , half of its area should be considered

to be at f > 0 for evaluation of Equation 1. 9).

The statements of the preceding paragraph are not a sufficiently

precise definition of the power spectrum because: 1) The relationship

of P( f) to the time function, x(t) , is not clear, 2) The two limiting

processes (Af -+ 0, T -- 00 ) cause difficulty; i. e., what happens in the

limit to the product, TAf ?

A more precise definition of the power spectrum is obtained by

defining P(f) as twice the Fourier transform of the autocorrelation

function, R(-r), defined in the previous section. Thus, we have

00 -j 2 tf r

P(f) = 2 R(T ) e dr (1. 11)

-00

T

R(-)= Tlim 1 x(t) x(t + -) dt (1. 12)

The inverse Fourier transform relation gives,

R(T) = f P(f) cos 2,tfV df (1. 13)

00

R(T) P(f) e df (1. 14)

-00
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This definition of the power spectrum gives no intuitive feeling

as to the relation of P(f) to power. We must prove then, that this

definition has the properties stated in the second paragraph of this

section. Equations 1. 9 and 1. 10 are easily proved by setting -r 0

in Equations 1. 12, 1. 13, and 1. 14. We find,

T

R(o) = Tm T x2 (t) dt (1. 15)

- T

00

R(o) = P(f) df (1. 16)

0

The right-hand side of Equation 1. 15 is identified as P the totalT'

average power. Power is used in a loose sense of the word; PT is

the total average power dissipated in a one-ohm resistor if x(t) is

the voltage across its terminals, otherwise a constant multiplier is

needed.

The proof that P(f) Af is the time average power in the band Af,

as Af -* 0 and T -+ 0 is not as direct. Suppose that x(t) is applied

to a filter having a power transfer function, G(f). It can be shown by

using only Equations 1. 11 and 1. 12 that the output power spectrum,

P 0 (f) , is given by (see Davenport and Root, p. 182),

P (f) = G(f) P(f) (1. 17)
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If G(f) is taken to be equal to unity for narrow bands of width, Af,

centered at +f and -f, and zero everywhere else, we find

00

P(f) df = P(f) Af (1.18)

0

as Af + 0. The left-hand side of Equation 1. 18 is simply the average

power out of the filter (using Equations 1. 15 and 1. 16) and, hence,

P(f) Af must be the power in the bandwidth Af.

1. 3 THE GENERAL FORM OF ESTIMATES OF THE POWER
SPECTRUM

The power spectrum of a random signal cannot be exactly measured

by any means (even if the measurement apparatus has perfect accuracy);

the signal would have to be available for infinite time. Thus, when the

term "measurement of the power spectrum" is used, what is really

meant is that a statistical estimate, P'(f), is measured.

The measured quantity, P'(f), is a sample function of a random

process; its value depends on the particular time segment of the random

signal that is used for the measurement. It is an estimate of P(f)

in the sense that its statistical average, PN(f) , is equal to a function,

P*(f), which approximates P(f). The statistical uncertainty of P'(f)

and the manner in which P*(f) approximates P(f) appear to be in-

variant to the particular spectral measurement technique and will be

briefly discussed in the next two paragraphs.



12

The function, P1(f), approximates P(f) in the sense that it is a

smoothed version of P(f). It is approximately equal to the average

value of P(f) in a band of width, Af, centered at f,

ftAf/2

P*(f) ~f P(f) df (1. 19)

f-Af /2

The statistical uncertainty, A , of P (f) , will be given by an
p

equation of the form

A MP(f) -(f) 2
A -P() (1.20)

P*(f)

where T is the time interval that the signal is used for the measure-

ment and cX is a numerical factor of the order of unity dependent on

the details of the measurement.

Equations 1. 19 and 1. 20 are the basic uncertainty relations of

spectral measurement theory and appear to represent the best per-

formance that can be obtained with any measurement technique (see

Grenander and Rosenblatti 3 p. 129). Note that as the frequency

resolution, Af , becomes small making P"(f) a better approxima-

tion of P(f) , the statistical uncertainty becomes higher [ Pt(f) is a

worse estimate of P*(f)1 . Optimum values of Af , with the cri-

terion of minimum mean square error between P'(f) and P(f) are

given by Grenander and Rosenblatt, pp. 153-155. In practice, Af

is usually chosen somewhat narrower than the spectral features
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one wishes to examine and T is chosen, if possible, to give the

desired accuracy.

1. 4 COMPARISON OF FILTER AND AUTOCORRELATION METHODS
OF SPECTRAL ANALYSIS

Two general methods have been used in the past to measure the

power spectrum. These are the filter method, shown in Figure 1. 2 (a)

and the autocorrelation method, shown in Figure 1. 2 (b). In this section

the two methods will first be briefly discussed. A filter-method system

that is equivalent to a general autocorrelation-method system will then

be found.

This result serves two purposes: 1) It helps to answer the question,

"Which method is best?" 2) An intuitive understanding of the filter-

method system is quite easily achieved, while this is not true for the

autocorrelation-method system. Therefore, it is often helpful to

think of the autocorrelation-method system in terms of the equivalent

filter-method system.

The filter-method system of Figure 1. 2 (a) is quite straight-forward.

The input signal is applied in parallel to a bank of N bandpass filters

which have center frequencies spaced by 6 f. The power transfer

function of the i tth bandpass filter (i = 0 to N-1) is G.(f) [impulse

response, h.(t)] , which has passbands centered at i f. The N

outputs of the filter bank are squared and averaged to give N numbers,



N BANDPASS N y
2
(t) N P/(ibf)

x(t FILTERS SQUARERS AVERAGERS F.Gi(f) i - ON-1 i - ON-1 T i - ON-1
i = O,N-1 T

T

yj(t) = x(t) h (t-t) dt

0

T

P (ibf) y 2(t) dt

0

FIG. 1.2(a) - Bandpass-filter method of spectral measurement.

N CHANNEL R(6) MULTIPLY BY R 1 (n )() SAMPLED
x(t) CORRLLATOR WEIGHTING R DATA A

n- O,N-1 FUNCTION n = ,N-1 FOURIER i= 09N-1T w(t) N TRANSFORM

T

R I(nA1) -T0x(t) x(t+nA-) dt
A/(ibf) = 24r R (0) w(O)

N-1

+4A- R '(nat) w(nAr) cos 2ii6fn4t
n=i

FIG. 1.2(b) - Autocorrelation method of spectral measurement.

H
4:-
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P r (i 3 f) , i = 0 to N - 1, which are estimates of the power spectrum,

P(f), at f = i 3 f.

The relation of the filter-method spectral estimate, P (i 5 f), to

the input signal, x(t), is,

T T
P [if = x±rh (X-t)d )

P (i h f) tdt dX (1.21)

0 0

which is the time average of the square of the convolution integral

expression for .the filter output in terms of the input. It is assumed

that x(t) is available for only a finite interval, T, and that the filter

input is zero outside of this interval. The relation of P' (i 3 f) to the

true spectrum is of the form of Equations 1. 19 and 1. 20 where A f

is simply the filter bandwidth.

The autocorrelation method of spectral analysis is based upon

the expression (called the Wiener-Khintchin theorem) giving the power

spectrum as a Fourier transform of the autocorrelation function, R(t ).

Indeed, this is the way we defined the power spectrum in Section 1. 2.

The expression is repeated below,

00 -2 g f T

P(f) = 2 R( t ) e dr (1. 22)

-00

The autocorrelation function can be expressed as a time average of the

signal multiplied by a delayed replica of itself,

.. . .uim s al .1 .......l l ~ i li I II -i - i -- .. . . .. . .. . .
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T

R(T) = T f x(t) x(t+-t) dt (1.23)
-T

The operations indicated in Equations 1. 22 and 1. 23 cannot be per-

formed in practice; an infinite segment of x(t) and an infinite amount of

apparatus would be required. An estimate of R(T) at a finite number of

points, T nAt, can be determined by a correlator which computes,

T

R (nA -r) x(t) x(t+nAr) dt (1.24)

0

A spectral estimate, P (i b f), can then be calculated as a modified

Fourier transform of RE (nAt)

N-1

P (i f) = 2A T R (o) w(o) + 4At R'(nAt)

n=1
(1. 25)

w(nAt) cos (27i f nAt)

The numbers, w(nAt) , which appear in Equation 1. 25 are samples

of a weighting function, w(T) , which must be chosen; the choice is dis-

cussed in the next chapter. The weighting function must be even and

have w(-r) = 0 for t> NAT; its significance will soon become apparent.

In order to use all of the information contained in R'(nAt), 5f should be

chosen equal to 1/ [ 2(N-1)At ]. This follows from application of the

Nyquist sampling theorem; PX(iS f) is a Fourier transform of a function

band-limited to (N-1) AT.
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The relation of P F (i 5f) to the true power spectrum will again

be of the form of Equations 1. 19 and 1. 20 where Af, the frequency

resolution, is approximately equal to 1/ [(N - 1) At ] . The calculation

of the exact relation between Pt (i 5f) and P(f) will be the major topic

of Chapter 2. Our major concern in this section is to relate P' (i 6f)

and P (i sf).

It is shown in Appendix A that P' (i 3 f) will be equal to P' (i 5 f)

for any common input, x(t), provided the filter responses and the auto-

correlation weighting function, w( t ), are related in a certain way.

The only significant assumption that was required for this proof is that

the duration of the data, T, be much longer than the filter time constants

(or equivalently, N At ). This requirement must be satisfied in practice

in order to obtain a meaningful spectral estimate, and thus, it is not

an important restriction.

The required relation between the filter response and the auto-

correlation weighting function is most easily stated in terms of Gi(f) ,

the power transfer function of the i tth filter, and W(f), the Fourier

transform of the weighting function,

00

W(f) = 2 w(T ) cos 2C ft dt (1.26)

0

The relation is,

00

G(f M W(f - i Ff-kfs) + W(f +i Ff +kfs) (1.27)

k=-00
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where f = I/Ar . This result is illustrated in Figure 1. 3; G.(f)S

consists of narrow bandpass regions, each having the shape of W(f),

centered at +i f, f +i f, 2f * i 3f, etc.

It is thus obvious that the autocorrelation spectral measurement

system has many spurious responses. It can be seen that these spurious

responses will have no effect if the input power spectrum is restricted

(by prefiltering) such that,

P(f t ) W(f-f') df 1) df1 = 0 for Jfj > f /2 (1.28)

-00

This requirement, a necessary consequence of sampling of the auto-

correlation function, is, of course, not required with the filter-method

system since filters without spurious response are easily constructed.

If the requirement of Equation 1. 28 is met, the terms where k A 0

in Equation 1. 27 have no effect and an equivalent set of filter power

transfer functions is given by,

G.(f) = W(f - i 3f) + W(f+i Ff) (1. 29)
1

Furthermore, if we consider only positive frequencies not close to

zero, we obtain,

G.(f) W(f - i 3f) (1. 30)



fs -isf -f

G (f)
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SHAPE, W(f)

-f s/2

f = SAMPLING FREQUENCY = 1/AT
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N = NUMBER OF MEASURED POINTS
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bf .5fs/(N-1) - SPACING BETWEEN

ADJACENT FILTER CENTER FREQ.
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FIG. 1.3 - The autocorrelation method of spectral measurement depicted in Fig.
1.2(b) is equivalent to the filter-array method of Fig. 1.2(a) if the i'th

filter (i=O .to N-1) has the power transfer function, Gi(f), shown above.
W(f) is the Fourier transform of the autocorrelation weighting function, w('r).
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To summarize then, we have shown that the estimation of N

points on the autocorrelation function (Equation 1. 24) followed by a

modified Fourier transform (Equation 1. 25) is equivalent to an N-filter

array spectral measurement system if Equation 1. 27 is satisfied. Each

method estimates the spectrum over a range of frequencies, B = (N-1)3f

= f /2, with 5f spacing between points. If the autocorrelation method

is used the spectrum must be zero outside of this range.

Note that the G.(f) which can be realized with practical filters is

quite different than the equivalent G.(f) of an autocorrelation system

(to the advantage of the filter system). The restriction on W(f) is that

it be the Fourier transform of a function, w( 'r), which must be zero

for t > N At . This restriction makes it difficult to realize an equiva-

lent Gi(f) which has half-power bandwidth, Af, narrower than

2/(N AZt) 2 f (high spurious lobes result). No such restriction

between the bandwidth, Af, and the spacing, 3f, exists for the filter

system.

In most filter-array spectrum analyzers, 3f is equal to Af; that is,

adjacent filters overlap at the half-power points. This cannot be done

with the autocorrelation method; 3f will be .4 to .8 times A f dependent

on the spurious lobes which can be tolerated. This closer spacing gives

a more accurate representation of the spectrum, but is wasteful in terms

of the bandwidth analyzed, B = (N-1) 5f, with a given resolution, Af.

For this reasonit appears that 2 autocorrelation points per equivalent

filter is a fairer comparison.
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1. 5 CHOICE OF THE SPECTRAL MEASUREMENT TECHNIQUE

In the previous section we have compared the filter and autocorrela-

tion methods of spectral analysis on a theoretical basis. The major

result is that if we desire to estimate N points on the spectrum during

one time interval, we may use either an N filter array as in Figure

1. 2(a) or a 2N point autocorrelation system as in Figure 1. 2(b). The

estimates of the power spectrum obtained by the two methods are equiva-

lent; there is no theoretical advantage of one method over the other.

Both methods of spectral analysis can be performed with both

analog and digital instrumentation as is indicated in Figures 1. 4 and 1. 5.

In addition, if digital instrumentation is chosen, a choice must be made

between performing the calculations in a general purpose digital com-

puter or in a special purpose digital spectrum analyzer or correlator.

The digital filter method* shown in Figure 1. 5 deserves special

mention as it is not too well known. The procedure indicated in the

block diagram simulates a single-tuned circuit; the center frequency

and Q are determined by a and 3 . The digital simulation of any

analog filter network is discussed by Tou, 4 pp. 444-464. The digital

filter method will be compared with the digital autocorrelation method

later in this section.

I would like to thank M. J. Levin, M. I. T. Lincoln Laboratory, for

pointing out this technique to me.
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FIG. 1.4 - Analog and digital correlation methods of spectral measurement.
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FIG. 1.5 - Analog and digital filter methods of spectral measurement.
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A way of classifying spectral measurement problems into ranges

where various techniques are applicable is indicated in Figure 1. 6.

The ordinate of the graph is N, the number of significant points which

are determined on the spectrum and the abscissa is the percent error

which can be tolerated in the measurement.

The error in a spectral measurement is due to two causes: 1) The

unavoidable statistical fluctuation due to finite duration of data, 2) the

erro r caused by equipment inaccuracy and drift. The statistical

fluctuation depends through Equation 1. 20 on the frequency resolution-

observation time product, T A f. The value of T Af that is required

for a given accuracy is plotted on the abscissa of Figure 1. 6.

The error due to equipment inaccuracy and drift limits the range

of application of analog techniques as is indicated in Figure 1. 6. These

ranges are by no means rigidly fixed; exceptions can be found. However,

the line indicates the error level where the analog instrumentation

becomes exceedingly difficult.

The range of application of digital-computer spectral analysis is

limited by the amount of computer time that is required. The line that a

drawn represents one hour computer time on a high speed digital com-

puter performing 104 multiplications and 104 additions in one second.

It is interesting that the required computer time is not highly dependent

on whether the autocorrelation method or the filter method is program-

med on the computer. This will be shown in the next paragraph.

k

-~ I ~ I
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Examination of Figure 1.4 reveals that one multiplication and one

addition are required per sample per point on the autocorrelation func-

tion. The sampling rate is 2B, and ZN autocorrelation points are

required for N spectrum points; thus, 4NB multiplications and addi-

tions per second of data are required. A similar analysis of the digital-

filter method of Figure 1. 5 indicates 3 multiplications and 3 additions

per sample per point on the spectrum are required. This gives 6NB

multiplications per second of data. The number of seconds of data that

is required is given by solving Equation 1. 20 for T in terms of the

statistical uncertainty, A , and the resolution Af. This gives

2
T = 4/(A Af) where the numerical factor, a , has been assumed

p
2 2 2 2

equal to 2. We then find 16 N /A and 24N /A as the total
p p

number of multiplications and additions required with the autocorrelation

method and filter method, respectively. Because of the square de-

pendence on N and A , the computer time increases very rapidly to

the left of the one-hour line of Figure 1. 6.

Some additional considerations concerning the choice of a spectral

analysis technique are as follows:

1) If analog instrumentation is used, the filter method appears

to be more easily instrumented and, of course, does not require the

Fourier transform. The bandpass filter, squarer, and averager can

be realized with less cost and complexity than the delay, multiplier,

and averager required by the autocorrelation system. Analog correla-

tion may be applicable to direct computation of autocorrelation functions

and cross-correlation functions, but not to spectral analysis.
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2) Analog instrumentation is not suited for spectral analysis

at very low frequencies (say below one cps) although magnetic tape

speed-up techniques can sometimes be used to advantage.

3) Digital instrumentation cannot be used if very large band-

widths are involved. At the present time, it is very difficult to digitally

process signals having greater than 10 mc bandwidth.

4) If digital instrumentation or a computer is used for the

spectral analysis, there seems to be little difference between the auto-

correlation method and the filter method if the same degree of quantiza-

tion (the number of bits per sample) can be used. This is evident from

the computation of the required number of multiplications and additions

earlier in this section. However, if the autocorrelation method is used,

only one bit per sample is necessary and the multiplications and additions

can be performed very easily. This method will be discussed in the

next section.

1. 6 THE ONE-BIT AUTOCORRELATION METHOD OF SPECTRAL
ANALYSIS

The one-bit autocorrelation method of spectral analysis, as it is

used in this paper, is presented with explanatory notes in Figure 1. 7.

Most of the remainder of the paper will be concerned with the analysis

of this system, its application to radio astronomy, and experimental

results obtained with this system.

The key "clipping correction" equation given in Figure 1. 7 was

5
derived by Van Vleck in 1943. At that time, before the era of digital
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THE ONE-BIT AUTOCORRELATION METHOD OF SPECTRAL ANALYSIS

RESTRICTIONS ON THE INPUT SIGNAL, x(t):

x(t) 1) MUST BE A GAUSSIAN RANDOM SIGNAL
2) MUST HAVE A BAND-LIMITED POWER SPECTRUM,

P(f)=O for Ifl >B
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y(t) a -1 when x(t) O
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--- y(kt) -----------------------------------------
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f(nAt) a sin fr(nAt)]
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N-1
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..- . .- - .. - -.--- -- - -- -- -. - -. . cos2-irfnAt
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OF BAND4IDTH, &f~- 2B/N.

I. . .

CLIPPING
CORRECTION

-- --- P.(nat)

FOURIER
TRANSFORM

p'(f)

F:(. 1.7
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data processing, the present use of the relation was certainly not

foreseen; it was simply a means of finding the correlation function at

the output of a clipper when the input was Gaussian noise. The use of

the relation for the measurement of correlation functions has been

6 7 8
noted by Faran and Hills, Kaiser and Angell, and Greene. The

principle contributions of this paper are: 1) The investigation of the

mean and statistical uncertainty (as in Equation 1. 20) of a spectral

estimate formed as indicated in Figure 1. 7, 2) The application of this

technique to the measurement of spectral lines in radio astronomy.

It should be understood that the spectral measurement technique

as outlined in Figure 1. 7 applies only to time functions with Gaussian

statistics (as defined by Equation 1. 8). Furthermore, only a normalized

autocorrelation function and a normalized (to have unit area) power

spectrum are determined. The normalization can, of course, be re-

moved by the measurement of an additional scale factor (such as
00

P(f) df). These restrictions do not hamper the use of the system
0

for the measurement of spectral lines in radio astronomy.

Recently, some remarkable work which removes both of the above

restrictions has been done in Europe by Veltmann and Kwackernaak, 9

10
and Jespers, Chu, and Fettweis. These authors prove a theorem

which allows a one-bit correlator to measure the (unnormalized)

autocorrelation function of any bounded time function. The proof of the



theorem and the measurement procedure are summarized in Appendix B.

A comparison of this procedure with that of Figure 1. 7 is outlined in

Table 1,.1

It is suggested (not too seriously) that the above mentioned method

of measurement of autocorrelation functions be referred to as the ElB

(European one-bit)method, while the procedure of Figure 1. 7 be referred

to as the AlB (American one-bit) method. Any hybrid of the two pro-

cedures could be called the MA1B method for mid-Atlantic one-bit or

modified American one-bit dependent on which side of the Atlantic

one is on.

- --------- -

30
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TABLE 1.1

COMPARISON OF TWO ONE-BIT METHODS OF
AUTOCORRELATION FUNCTION MEASUREMENT

AlB METHOD ElB METHOD
(Fig. 1. 7) (Appendix B)

Restrictions on Must have Gaussian Must be bounded by
signal, x(t) statistics. iA.

Differences in 1) Clipping level is 1) Clipping level is ran-
procedure 0 volts. domly varied from

-A to +A.

2) SIN correction of 2) No correction.
one-bit autocor-
relation function.

Mean of result Normalized autocor- Unnormalized autocor-
relation function. relation function.

RMS deviation Increased by less than A preliminary analysis
of result com- 7t /2. indicates increase
pared with RMS depends on
deviation of A2
many-bit
autocorrelation
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CHAPTER 2

THE AUTOCORRELATION FUNCTION METHOD
OF MEASURING POWER SPECTRA

2. 1 INTRODUCTION

The theory of measuring the power spectrum through the use of

the autocorrelation function will be presented in this chapter. We

will start with the defining equations, repeated below, of the power

spectrum, P(f) , of a time function, x(t)

P(f) = 2 f R(x) -j ZrfT dx (2. 1)

-00

T

R(,r) T lim T x(t) x(t+-r) dt (2. 2)
T -+1 oo Z T f

- T

If these equations are examined with the thought of measuring

P(f) by directly performing the indicated operations, the following

conclusions are reached:

1) In practice,- the time function is available for only a

finite time interval, and thus the limits on -r and t cannot be

infinite as in Equations 2. 1 and 2. 2. Both the time function and the

autocorrelation function must be truncated.
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2) If the operation of Equation 2. 2 is to be performed by

a finite number of multipliers and integrators, then T cannot assume

a continuous range of values. The autocorrelation function, R(-) ,

must be sampled; that is, it will be measured only for r = nAT

where n is an integer between 0 and N-1.

3) If digital processing is to be used, two more modifica-

tions must be made. The time function will be sampled periodically

giving samples, x(kAt) where k is an integer between 1 and (KtN),

the total number of samples. Each of these samples must be quantized.

If its amplitude falls in a certain interval (say x - A/Z to x + A/2)

a discrete value (x ) is assigned to it. It will be shown in the next

chapter that the quantization can be done extremely coarsely; just two

intervals, x(kAt) < 0 and x(k At)> 0 can be used with little effect

on the spectral measurement.

These considerations lead us to define the following estimates of

the power spectrum and autocorrelation function,

0O

P "(f) &2A Z R"(nAr) w(nAt) e-j ZTf nA-t (2.3)

n= -oo

K

R I t(n A ) x(kat) x(k At + Jn{ A T) (2. 4)

k=l

The function, w(nAr) , is an even function of n , chosen by the observer,

which is zero for I ni > N and has w(0) = 1. It is included in the
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definition as a convenient method of handling the truncation of the

autocorrelation function measurement; R"(n&r) need not be known

for InJ > N. The choice of w(nAt) will be discussed in Section

2. 2- 2.

The estimates given by Equations 2. 3 and 2. 4 contain all of the

modifications (sampling and truncation of the time function and auto-

correlation function) discussed above except for quantization of sam-

ples which will be discussed in the next chapter. We will call these

estimates the many-bit estimates (denoted by a double prime) as

contrasted with the one-bit estimates (denoted by a single prime)

of the next chapter.

The main objective of this chapter will be to relate the many-bit

estimates, P"(f) and R"(nAT) to the true values, P(f) and R(nAr).

Many of the results will be applicable to the discussion of the one-bit

estimates in the next chapter; other results are found for the sake of

comparison with the one-bit results.

It is assumed, of course, that x(t) is a random signal having

Gaussian statistics. The estimates, P"(f) and R"I(nAt), are therefore

random variables since they are based on time averages (over a finite

interval) of functions of x(t). The particular values of P"(f) and R(nA-T)

depend on the particular finite time segment of x(t) that they are based on.

The mean and variance of P"(f) and R"(f) describe, for our pur-

poses, their properties as estimates of P(f) and R(nAl). The mean,

R"(nAr), of R"(nAt), is easily found,
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K

R t (nA) = x(kAt) x(kAt + In! AT) (2. 5)

k=1

= R(nA t) (2.6)

where we have made use of the fact that the statistical average of

x(kAt) x(kAt + In! AT) is simply R(nAt). R'(nAt) is called an

unbiased estimate of R(nAt).

The mean of P (f) is also easily found by taking the statistical

average of both sides of Equation 2. 3 and using Equation 2. 6. Defining

P'(f) as the mean of P"t(f), we find,

00

P'(f) = P(f) =2ZA R(n A T) w(nAt) e -2cfnAt (2.7)

n =- oo

If it were not for the sampling and truncation of R(-r) , P*(f) would

simply be equal to P(f) and,hence, P t (f) would be an unbiased estimate

of P(f) . The relationship of P*(f) to P(f) will be discussed in the

next section. In later sections, the variances of P"(f) and R"(nAt)

will be found.

Much of the material presented in this chapter is contained in a

different form in the small book, The Measurement of Power Spectra,

by Blackman and Tukey. 1 For the sake of completeness this material

has been included here. An extensive bibliography to past work in this

field is given by Blackman and Tukey.
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2. 2 MEAN OF THE SPECTRAL ESTIMATE

2. 2.-1 Relation of P'(f) to P(f)

In the previous section it was shown that the mean, P*(f) , of the

many-bit spectral estimate is given (Equation 2. 7) as the Fourier

transform of the truncated and sampled autocorrelation function. We

will find in the next chapter that the mean of the one-bit spectral

estimate is equal to P*(f) divided by a normalization factor. It is,

thus, quite important that the relationship between P*(f) (the quantity

we estimate) and P(f) , the true power spectrum, be well understood.

This relationship is found by substituting the following Fourier

transform relations for R(nAT) and w(nA-r) into Equation 2. 7:

00
R (

R(nz t) = 2 j2ia n t
P(a ) ed

00

w(nA T) = W(P ) e P rdfp

The result is,

00

P'(f) =

i=-00

00

fP(a ) W(f -a-i f.) dig
-00

(2. 10)

where fs = 1/ AT and we have made use of the relation,

(2.8)

(2. 9)
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00 00

Z e 2-j2o nAt(a+p-f) Z z l -f+if 5 )

n=-o i=-o

Equation 2. 10 not only specifies P*(f) in terms of P(f) , but it

also should be considered as the general definition of the * operator

which will be used in later chapters. This operation is described in

Figure 2. 1. Two modifications of P(f) are involved; the first is a

consequence of truncation of the autocorrelation function and the second

is a consequence of sampling of the autocorrelation function:

1) The spectrum is convolved with W(f) , a narrow-spike

type function of bandwidth, Af fs IN. This convolution should be

considered as a smoothing or scanning operation. Features in the

spectrum narrower than A f are smoothed out.

2) The smoothed spectrum is repeated periodically about

integer multiples of f . If the convolution of P(f) and W(f) is zero

for ff > fs/2, then Equation 2. 10 simplifies to,

P*(f) = P(a) W(a -f) da if I < f /2 (2. 11)

-005

In practice f will be chosen to be twice the frequency at which the

smoothed spectrum is 20 db below its midband value. In this case,

little error (<1% in the midband region) occurs due to sampling and



P(f) = TRUE SPECTRUM

/2 fs /2

W(f) = SCANNING FUNCTION

CONVOLUTION OF P(f) BY W(f) J P(-) W (f- K) d
-00

00 co
Pe(f) z

-fs

P(C) W (f-K-ifs)

-fs/2 fs /2

FIG. 2.1 - The effect of truncation and sampling of the
autocorrelation function is indicated in the above figure.
The quantity, P*(f), is the mean of a spectral measurement
performed with an autocorrelation system.
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P*(f) can be considered as simply a smoothed version of P(f). If

P(f) does not change much in a band of width, Af, then,

P*(f) e P(f) (2. 12)

The relationship between P*(f) and P(f) should be quite familiar

to those versed in the theory of antenna arrays (or multiple slit diffrac-
00

tion theory). The function z W(f - if s) is analogous to the antenna
= -00

field pattern of a line array of N point sources with amplitudes weighted

by w(nA-r).

2. 2-2 The Weighting Function, w(nA-r)

The shape of the spectral scanning function, W(f) , is determined

by the choice of its Fourier transform, the autocorrelation weighting

function, w(nAT). The weighting function can be arbitrarily chosen

except for the following restrictions:

00

w(O) = 1 = W(f) df (2. 13)

-00

w(nA t) = w(-nAT) (2. 14)

w(nA&T) = 0 for mnj > N (2. 15)

The choice of w(nA&T) is usually a compromise between obtaining a

W(f) with a narrow main lobe and high spurious lobes or a W(f) with.

a broadened main lobe and low spurious lobes.

-e I-- 41L. I .1 . 1 -II W .EIM m i ii i 1 -2



PROPERTIES OF THREE WEIGHTING FUNCTIONS

Weighting Function Scanning Function Deviation Paler Strongest
Name Fevato Banwidt Spurious

w(nA ) W(f) Factor Bandwidth Response

w(nAT) = 1 n < N W(f)= Wo(f) = 0. 604 f
Uniform w(nA-) = 0 1 n > N 2NAT sin21fNf/fs 1.099 N s -7 db

w0N Nf/fs

w(nAr) = 0. 5 + 0. 5 cos W(f) = 00 5 W(f)

Cos !nlj< N fs
or + 0. 25 W (f+ ) 0.866 f -16 db

Hanning w(nA) = 0 n> N f s
+ 0. 25 W (f - 2NT

w(nAt) = 0. 42 + 0. 5 cos NW(f) = 0. 42 W(f)

+ 0. 08 cos ~n < N + 0. 25 W (f+ f 1.13 f

Blackman w(nAt)= 0 In > N + 0.25 W 0( -f s/2N) 0.686 N s -29 db

+ 0.04 W0 +fs/N)

+ 0. 04 W (f - fs/N)

TABLE 2. 1
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-30

0 .5 1.0 1.5
N f/fs

FIG. 2.2 - The scanning functions which result from the
uniform, cos, and Blackman weighting functions are shown
above (from Blackman and Tukeyll). See Table 2.1 for
further information. The broken lines indicate W(f) is
negative.
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This problem is a common one in antenna theory and optics.

The "optimum" w(nAr) obviously depends on some exact specifica-

tion of the performance of W(f) . This criterion will usually depend

on the particular measurement that is being made. Some weighting

functions which appear to be optimum in some sense are: 1) The

uniform weighting function (to be discussed below) which gives a

narrow main lobe, 2) The binomial weighting function (Kraus, 12

p. 94) which gives no spurious lobes, and 3) the Tchebycheff weighting

13
function (see Dolph ) which gives equal spurious lobes.

It appears that little can be gained by making a very careful choice

of w(nA-T) . Blackman and Tukey (pp. 95-100) describe five weighting

functions; three of these should be adequate for most applications and

are given in Table 2. 1 and Figure 2. 2. The cos weighting function

appears to be a good compromise for most spectral line observations

in radio astronomy; the uniform weighting function gives sharper reso-

lution,whereas the Blackman weighting function gives low (-29 db)

spurious lobes.

2. 2-3 Some Useful Properties of P*(f)

Some useful relations between P'(f) and R(nAt) can be obtained by

using conventional Fourier techniques. These relations are all derived

from Equation 2. 7, repeated below.
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00

P"(f) = 2 A R(nA-r) w(nAr) e-j ZirfnAT (2.7)

n= - 00

This equation, with P*(f) and R(nA-r) replaced by different quantities,

will often occur (such as Equation 2. 3), and hence, the results of this

section will also apply to the following quantities which replace P*(f)

and R(nA t)

P"(f) and R"(nA'r) - The many-bit estimates of P*(f) and R(n&t).

p'"(f) and p"(nAt) - Normalized many-bit estimates which will
be discussed at the end of this chapter.

p*(f) and p(nAt) - Normalized quantities analogous to P*(f)
and R(nA T).

pt(f) and p(nAt) - Normalized one-bit estimates which will
be defined in the next chapter.

If Equation 2. 7 is multiplied by ej 21tf kA-r and the result is

integrated from 0 to f /2, we find

f s/2

R(nAt) w(nA'r) f P*(f) cos Ztf nAt dT (2. 16)

0

This is analogous to the inverse transform relationship, Equation 1. 14,

between R(x) and P(f) . Setting n=0 in Equation; 2. 16 and t=0 in

Equation 1, 14 gives,

f s/2

R(0) = f P*(f) df (2. 17)

0
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and
00

R(O) =f P(f) df (2. 18)

0

where R(0) is, of course,, the total time average power.

The Parseval theorem for P1(f) can be derived by substituting
f /2

Equation 2. 7 for one P*(f) in the quantity f s PI(f) P (f) df.
0

The result is easily recognized if Equation 2. 16 is used. The result

is,

f /2 002sli 2 2f [P(f) df =2Av R(nAr w n ) (2. 19)

0 n= -o

which is sometimes useful.

2.3 COVARIANCES OF MANY-BIT ESTIMATES OF THE AUTO-
CORRELATION FUNCTION AND POWER SPECTRUM

2
In this section we will examine the covariances, P (f f2 ) and

2- m

Rm2 (n,i m), of estimates, P"(f) and R"(nA) (defined in Equations

2. 3 and 2. 4), of the powe:r spectrum and autocorrelation function,

respectively. These estimates are based on many-bit (or unquantized)

samples of the time function as opposed to estimates based on one-bit

samples which are the major topic of this paper. The calculations of

the covariances in the many-bit case are included for the sake of com-

parison. The following Section 2. 3-1 applies to both many-bit and one-

bit cases.
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2. 3-1 Definitions; Relation of the Spectral Covariance to the

Autocorrelation Covariance

The covariance of the power spectrum estimate is defined as,

T-Pm2(l1 f) = 1 (f) - P(fj f (f P 161(f (. 20)

= P"I(f I P~\.L2) - P--() P 2(fz) (2. 21)

A special case arises when f =f =f and the covariance becomes the
21

variance, o-p2 (f). The positive square root of the variance is the RMS

deviation, '-Pm(f). The variance and RMS deviation specify how much

P"(f) is likely to vary from its mean, P*(f) The covariance specifies,

in addition, how the statistical error at one frequency, fl , is correlated

with the statistical error at another frequency, f .

The definition of the autocorrelation covariance is quite similar,

G- (n, m) R"(nA-C) - R(nA-r)7 LR"(nAT) - R(nAT)] (2. 22)Rm I -

= R"(nAT)R' t(nAt) - R(nAt) R(nAr) (2. 23)

and the meaning of the autocorrelation variance and RMS deviation

follow accordingly.

The spectral covariance or variance can be expressed in terms of

the autocorrelation covariance by substitution of Equations 2. 3 and 2. 7

into Equation 2. 21. This gives,

Miowg*
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00 00

p (fif =4r 2 R (nm)w(nAT)

n= -oo n=-00
(2.24)

w(mA T) e -j 2i- AT (nf1 + mf2 )

Our first step, then, will be to calculate the autocorrelation co-

variance. This is not only needed for the calculation of the spectral

covariance, but is also of interest on its own accord.

Note that the autocorrelation covariance is required to calculate

the spectral variance or covariance; the autocorrelation variance is not

sufficient. However, the integrated (over frequency) spectral variance

can be expressed in terms of the autocorrelation variance summed over

the time index, n . This relation is found by integrating both sides of

Equation 2. 24 (with f2 = f1) from 0 to fs /2. The result is

f /2 00

f (P- (f )df 1  ZAt a- Rm ()w (nA-t) (2.25)

0 n=-o

2. 3-2 Results of the Autocorrelation Covariance Calculation

2
The covariance, 0 R (n, m) , of the many-bit autocorr elation

function estimate is calculated in Appendix C; the results will be dis-

cussed in this section.

The covariance, expressed in terms of the autocorrelation function,

is found to be,
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K

a'Rm (n, m) [R(iAt + InIA-T - ImjAT)-R(iAt)
i=-K 

(2. 26)

+ R(iAt + JnjA'r) R(iAt - ImIAT)]

A plot of a typical autocorrelation function and its RMS deviation,

TrRm(n) , is given in Figure 2. 3.

It is informative to investigate the autocorrelation variance (n=m)

in two limiting cases:

1) Suppose At is large enough so that,

R(iAt) = 0 for i 4 0 (2.27)

Equation 2. 26 then reduces to

2 R2(0) + R2(nA-) (2.28)
Rm (n.) K

The condition of Equation 2. 27 implies that successive products,

x(kAt) x(kAt + nAT 1), which go into the estimate of the autocorrelation

function are linearly independent. There are K such products and

the form of Equation 2. 28 is a familiar one in statistical estimation

problems.

In order to minimize the variance, K should be made as large as

possible. If the duration, T , of the data is fixed, then the only re-

course is to reduce At = T/K. As At is reduced, a point will be

reached where Equation 2. 27 is not satisfied. The minimum value of

At which satisfies Equation 2. 27 is equal to l/2B if x(t) has a
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R(T) = R(0) -21rBT

R(T) t MRmQT)

R(O) a B5Ir/

26jR(O) 2, R(O)

2TRm(T) _(O)
BT

T >> 1/21TB

1/2rB -------- -

PO

P(f) = Po/l + (f/B) ]

2UPjm(O) . 2-J g, PQLpm(f) = 2 P(T)

I Tf I, M

Af B

f > Af

\

~

FIG. 2.3 - An autocorrelation function and its transform, the

power spectrum, are shown above. The form of the RMS deviations
of these functions is indicated. Note that O-Pm(f) is proportional
to P(f) (except near f = 0) whereas TRM(T) is nearly constant.

- - - -" ---- -
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rectangular power spectrum extending from -B to B and if AT is

set equal to 1/2B. The variance at this value of At is

2( 2
- 2 (n) = R (0) + R (nA (2.29)
Rm 2BT

where R(nAi) = 0, n # 0, for the rectangular spectrum with A r = 1/2B.

The next example will illustrate that the variance cannot

be reduced further by reduction of At beyond the point required by

Equation 2. 27.

2) Suppose At -9 0 and K -+ oo in such a manner that

KAt = T is constant. The case of continuous data (analog correlation)

is approached and Equation 2. 26 (with n = m) becomes,

T

TRm 2(n) f R2(t) + R(t + nAT) R(t - nAT) dt

-T (2.30)

If we again take the case of a rectangular spectrum between -B and B;

Equation 2. 30 gives,

2 R 2(0) + R 2(0) (sin 4 itB nA r) / (4it B nAT) 2. 31)
Rm 2BT

This result, with At a 112B, agrees exactly with Equation 2. 29.

Thus, reducing the time function sampling interval, At, from 1/2B to 0

has had no effect on a-R 2 (n) in the case of a rectangular spectrum.

= - - -- 11 i i 11. ., -1- - ---- - - - -- - -- -. , -- -"" -- - - - - aiiiiiiiia
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Examinations of Equations C. 8 and C. II in Appendix C

give more general results. These equations show that both the auto-

correlation variance and the spectral variance do not change for values

of At less than l/2B if P(f)= 0 for f> B.

2. 3-3 Results of the Spectral

The spectral covariance,

with the following result,

Pm2 1' 2 T

Covariance Calculation

P (f , ), is calculated in Appendix C

00

J (f) W(f+f 1)

-00

(2.32)

W(f+f 2 ) + W(f-f 2 ) df

It has been assumed that: 1) The signal has Gaussian statistics,

2) Both P(f) and W(f) are smooth over frequency bands of width l/T,

3) The spectrum smoothed by [or convolved with] W(f) is zero for

frequencies greater than B, 4) The time function sampling interval,

At, and the autocorrelation function sampling interval, A-r, have

both been chosen equal to l/2B, 5) Equation 2. 32 is only valid for

Jf1J and If2 I less than B.

The manner in which the

served in Equation 2. 32. If

W(ftf 2) do not overlap, then

spectral estimate covaries is easily ob-

f and f2 are such that W(f+fl) and

a-PM 2 f 2 ) = 0. In other words, the
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statistical errors at two frequencies separated by more than Af, the

bandwidth of W(f) , are uncorrelated. This result might have been

expected from the analogy with the filter-array spectrum analyzer dis-

cussed in Chapter 1.

The spectral variance (fi = f 2 ) can be put in a simpler form if some

further approximations are made. It can be seen that at f = f 2= 0, the

variance becomes,

00

2 _2 P2 2(23
m (0) = J P(f) W (f) df (2. 33)PM T

-00

while for f= f 2 >> Af , we obtain,

12c

2 f P 2 (f) W2(f+f,) df (2. 34)

-00

In what follows we will assume that f is positive and not close to zero

so that Equation 2. 34 applies.

If the spectrum is smooth over bands of width, Af, then P(f) can

be taken out from under the integral sign in Equation 2. 34 to give,

P2 o

PM ( I T W f,(f") df (2.35)

00

where a change of variable f =f+f has been made. The integral now

depends only on the weighting function, w(-r), and has dimensions of a
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reciprocal bandwidth. It is, therefore, convenient to define a dimen-

sionless parameter, a , such that

00 00

-W (f) df w2 () dv (2. 36)

-00 0

where Af is the half power bandwidth of W(f). The second equality

in Equation 2. 36 follows from Parseval's theorem for Fourier transforms.

It should be remembered that W(f) must have unit area as specified by

Equation 2. 13.

The numerical factor, a, will be of the order of unity and is

specified for various weighting functions in Table 2. 1. If W(f) is a

rectangular function of width Af, and height 1/Af, then a=l. The

RMS deviation of the spectral measurement can now be put in the

familiar form,

Gr (f) =a P(f) (2. 37)

The appearances of a typical spectrum and its RMS deviation are sketched

in Figure 2. 3.

2. 4 NORMALIZED, MANY-BIT ESTIMATES OF THE SPECTRUM AND
AUTOCORRELATION FUNCTION

Reminder concerning notation: A p will denote a normalized auto-

correlation function; a lower case p will denote a normalized power



spectrum; a double prime or subscript m will denote a quantity

determined from many-bit samples; a single prime or subspript 1

will denote a quantity obtained from one-bit samples.

The one-bit method of spectral analysis produces a spectral

estimate, p"(f) , and an autocorrelation function estimate, p'(nA-t),

which are (unavoidably) normalized such that,

p '(0) = 1 (2.38)

and
f /2

p'(f) df = 1 (2.39)

0

In order to compare the many-bit results of this chapter with the one-

bit results of the next chapter, the many-bit estimates must be similarly

normalized. A computer- simulated, experimental comparison of

normalized, many-bit estimates with one-bit estimates is given in

Chapter 6 and the results of this section will be used there.

It is important to note that p'(0) has no statistical fluctuation; it

is constrained to equal unity. (This is more stringent than having

P1(0) = 1. ) The variance, arP2 (0), must be zero. A quantity derived

from many-bit samples that has the same property is

(n,& T) = R"(nAT) (2. 40)

53
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where R"(nAr) is defined in Equation 2. 4. Note that R"(nAT) has

been divided by R"(0), a random variable, and not by R(O), which

is constant (but unknown). If p"(nAr) had been defined as R"(nAr)/R(0),

only trivial modifications of previous results would be required. How-

ever, this definition does not give a p"(nA-r) that is analogous to p'(nar).

The normalized many-bit power spectrum estimate, p"(f), is

similarly defined as P"(f)/R"(O). The definition of P4(f), Equation Z. 3,

may be used to give,

p"(f) = 2An) w(nA') e -j 2t f nAr (2. 41)

n= -oo

This definition will give (see Section 2. 2-3),

f /2

p"(f) df 1 (2. 42)

0

in analogy to Equation 2. 39.

Our main purpose in this section will be to find the mean and

variance of p"(nAt) and p"(f). The calculation of the mean or variance

of the quotient of two dependent random variables is a difficult problem.

However, a drastic simplification results if the denominator random

variable, R"(0), has a random fluctuation which is small compared to

its mean. This simplification will be used in the next section.
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2. 4-1 Mean and Variance of the Normalized Autocorrelation Estimate

The mean and variance of p"(nA-r) = R"(nAr)/R"(O) can be found

by expanding R"(nAt) and R"(0) as,

R"(nA t) R(nA-r) + R(O) e(n) (2.43)

where e(n) is a small Ie(n) << 1 random variable. It is easily

seen by solving Equation 2. 43 for e(n), that,

e (n)= 0 (2.44)

2
a- Rm(n, m)

e(n) e(m) = (2.45)
R 2 (0)

The requirement of E(n) << 1 is met by assuring that the observation

time, T, is long enough so that Rm(n) is much less than R(0). This

must be true in practice if the estimate of R"I(nAT) is to be of any

accuracy.

The normalized autocorrelation function estimate, p"(n,&'r), can

then be written as,

p"t(nAT) = R(nAt) +R(0) e(n) (2.46)
R(0) + R(0) e(0)

Since e(n) << 1 (including n=0) Equation 2. 46 can be expanded and

terms of higher order than first in e(n) or e(O) are dropped to give,
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p t (nA T) p(nA-t) - p(n&T) e(O) + e(n) (2. 47)

The mean is now easily found,

p"(nAT) p(nAt) (2. 48)

and the covariance, o- 2(n, m), can be expressed as,

SPm 2 (n, m) [p"1 (nAt) - p(nA )] Lp ."(#AT) --p (tn A)] (2.49

e(n) e(m) + e 2(0) p(nAt) p(mnA )
______________(2. 50)

-e(n) e(0) p(mAt) - C(m) e(O) p(nAT)

The terms, e(n) e(m) [where n or m may be zero , in Equation

2
2. 50 are expressed in terms of 0-Rm (n, m) by Equation 2. 45. This

quantity is given by Equation 2. 26 and substitution into Equation 2. 45

give s,

K

e (n) e(m) = p(iAt + 1n1A- - Imi AT) p(iAr)

i= -K
(2. 51)

+ p(iAt + In AT) p(iAt -jnjAT)j

Equations 2. 50 and 2. 51 specify the covariance of the normalized,

many-bit estimate of the autocorrelation function. A feeling for this

result can be obtained by substitution into Equation 2. 50 of an approxi-

mate form of Equation 2. 51. This approximate form is valid for A t

III
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large enough so that successive samples are independent (as discussed

near Equation 2. 28) and is,

p(InIAT - ImIA- ) + p(n&r) p(mAT)
e (n) E (m) - (2. 51)

K

Substitution of Equation 2. 51 into Equation 2. 50 gives a simple result

for the variance (n=m),

Pu (n) - '(.2)pm K
2

This result should be compared with Equation 2. 28, which gives a-Rm (n)

with the same approximations. The major result has been the reduction

of the variance near n=0, as would be expected.

2. 4-2 Mean and Variance of the Normalized Spectral Estimate

The mean of the spectral estimate is easily found by taking the

mean of both sides of Equation 2. 41 and using Equation 2. 48. This

mean will be denoted as p*(f) and is given by,

00
..... R(nA r) -o5 f nAsr

pp(f) p"(f) - 2Ar w(nAT) e (2. 53)
" R(0)

n=--oo

P*(f) (2. 54)
R(0)

P(f) P*(f) (2. 55)
f [2 

00

P*(f) df J P(f) df
0 0
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where Equation 2. 7 has been used to give Equation 2. 54 and Equations

2. 17 and 2. 18 have been used to give Equation 2. 55. P*(f) is the

smoothed spectrum discussed in Section 2. 2. The mean of p"(f) is, thus,

the smoothed spectrum normalized to have unit area in the range between

0 and f /2.

The spectral variance or covariance can be calculated in a straight-

forward manner through the use of Equation 2. 24 which relates the

spectral variance or covariance to the autocorrelation covariance. The

autocorrelation covariance for the normalized estimate is given by

Equations 2. 50 and 2. 51. Combination of these equations gives a very

long expression for the spectral variance. This will not be presented

in this paper in view of its complexity and minor importance. However,

a heuristic argument which gives an approximate, but simple, expression

for the spectral variance will be given below.

Suppose that we consider that the normalized spectrum is of uniform

height, 1/b, over a bandwidth, b. The effect of constraining the

spectral estimate to have unit area is then equivalent to requiring that

the average height of the spectrum is 1/b , its true value. This is

analogous to correcting a set of measured points so that their average

value is equal to the true value. In this case (see Kenney and Keeping, 14

Section 8. 7) the variance is reduced by 1 - 1/N where N is the number

of independent points. In Section 2. 2 it was shown that points on the

spectrum spaced A f apart are independent; thus, N = b/A f. The

RMS deviation, Gr (f ) of the normalized spectral estimate then becomes,
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o- (f )pm 1 ___ . p(f) r f/ -F b

I TAf

(2. 56)

where Equation 2. 37 has been used for the RMS deviation before normal-

ization. This result approximates the result of a formal derivation

using Equations 2. 24, 2. 50, and 2. 51.

L
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CHAPTER 3

THE ONE-BIT METHOD OF COMPUTING
AUTOCORRELATION FUNCTIONS

3. 1 INTRODUCTION

The theory of estimating the power spectrum through the use of

a finite number of samples, K, of the input signal, x(t) , has been

presented in the previous chapter. This theory would be sufficient

if analog techniques or very finely quantized digital techniques were

used to compute an estimate of the autocorrelation function. The

analog techniques are not usable for high-sensitivity spectral line

analysis in radio astronomy because of lack of accuracy. (As stated

in Section 1. 5, if accuracy requirements allow analog instrumentation

to be used, then the conventional bandpass-filter method of spectral

analysis is preferable.)

Many-bit digital techniques are unwieldly for most radio astronomy

applications because of the large number of operations which must

be performed. In Section 1. 5 it was shown that 16N lAp is the

total number of multiplications required for the estimation of N

points on the spectrum with an accuracy of 100Ap per cent. For

the deuterium line experiment, Ap = 3 x 10-5 and N = 8 which gives

1012 multiplications. A typical high-speed digital computer per-

forms 104 many-bit multiplications per second and thus, about four

years of computer time would be required. If one-bit multiplications



could be used, this computer time could be reduced by about a

factor of 10. Of greater significance is the fact that a special

purpose one-.bit digital correlation computer can be built for about

1110 the cost of a similar many-bit machine. The cost of a one..bit

digital correlator is roughly $1000 per point on the autocorrelation

function (or, according to the discussion of Section 1. 4, $2000

per point on the spectrum). A one-bit digital correlator, capable

of measuring 21 points on the autocorrelation function was built for

the deuterium line experiment and experimental results will be

discussed in later chapters.

The term, "many-bit autocorrelation", needs further explana.-

tion. By this, it is meant that the quantization levels are so small

that the quantization. error can be disregarded. This is usually the

case in digital computers where the usual word lengths of 20 bits

or more allow the quantization error to be 10-6 or less of the maxi-

mum value of the signal.

A general relationship between quantization error and the error

in a spectral measurement does not appear to be known. At first

thought, one might think that to measure the power spectrum with an

accuracy of X% , a quantization error of less than X% is required.

This is not true because the spectral estimate is based on an average

computed from many samples and the quantization error tends to

7
average out. Kaiser and Angell have measured autocorrelation

functions with 8, 3, and 1 bits per sample with surprisingly little

difference in the results.
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The main spectral analysis procedure to be discussed in this

paper is one in which quantization is performed with one bit per

sample and a correction is applied to the resulting autocorrelation

function estimate; the procedure is illustrated in Figure 1. 7. This

method is based on a theorem by Van Vleck. The theorem is stated

as follows:

Suppose x(t) is a sample function of a Gaussian random process

with zero mean and y(t) is the function formed by infinite clipping

of x(t) . That is,

y(t) = 1 when x(t) > 0
(3. 1)

y(t) =.- when x(t) < 0

Then the normalized autocorrelation functions of x(t) and y(t) are

related by

p (-r) sin[ p ( )1 (3. 2)

For completeness this equation will be derived in the next section;

some of the steps in the derivation will also be useful for other work.

Equation (3. 2) is valid for the true normalized autocorrelation

functions, P (r) and p (T) , which cannot be measured from a

finite number of samples of x(t) or y(t) . An estimate of p (-r)
y

can be defined as p"('r), where
y

L
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p (T y(k At) y(k At + r) (3. 3)

k= 1

Equation 3. 3 describes the function performed by a one-bit digital

correlator. An estimate of px(t ) is then defined as,

p ( ) i sin [ '( )](3. 4)

The topic of Section 3. 3 will be to find the mean and variance

of p (t). This is not easily computed because of the complicated

manner in which p ' (-t) is related to x(t) through Equations 3. 1,
x

3. 3, and 3. 4. It has only been possible to calculate the mean and

variance in the case where successive products, y(kAt) y(kAt + t)

in the summation of Equation 3. 3 are statistically independent. In

practice, this will be approximately the case. If At is chosen so

small that successive products are dependent, then some of the data

processing is redundant. The case of independent successive products

is analogous to the special case examined in the previous chapter con-

cerning many-bit samples (see Equations 2. 27 and 2. 28).

An estimate of the normalized power spectrum will be defined as

a weighted Fourier transform of samples of p" (t) in a manner similar

to that used in Equation 2. 3. This estimate will be discussed in

the final section of this chapter.
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It should be remembered that Equation 3. 2 is true only for

certain classes of functions. The Gaussian random process is the

example of interest. The relation is also true for a single sine

wave and McFadden15 has shown that it is approximately true for

a weak sine wave in Gaussian noise.

3. 2 THE VAN-VLECK RELATION

The derivation of Equation 3. 2 is based on the definition of

the autocorrelation function as a statistical average,

Py(t) y(t) y(t + T) 3. 5)
y (t)

Due to the fact that y(t) is defined to be +1 or -1, the term,

y 2(t) , is equal to unity and the term, y(t) y(t + T) , may be expressed

as follows,

y(t) y(t + T) = (1) (P+ + P_) + (-1) (P+ + P-+) (3. 6)

where P is the joint probability that y(t) +1 and y(t +t) = +1,

and the other Pts are similarly defined. These probabilities can

be written in terms of the joint Gaussian probability density of x(t)

by making use of the definition of y(t) . For example, P is

equal to the joint probability that x(t) > 0 and x(t+T) > 0

P+ P[x(t), x(t+-T)] dx(t) dx(t+ t) (3.7)

0 0
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The term p[x(t), x(t+ t)] is the joint Gaussian probability density

function and is given by Equation 1. 8.

Equations entirely similar to Equation 3. 7 exist for P , P

and P-+ and are identical except for the obvious changes in the

limits of integration. Because of the evenness and symmetry of

p[x(t), x(t+r)] it can be seen that,

P = P (3. 8)

P +- P-+ (3. 9)

Additional inspection of p[x(t), x(t+T)J reveals that P or P

can be obtained from P by reversing the sign of px(T) after

Equation 3. 7 has been integrated.

Equation 1. 8 is substituted into Equation 3. 7 and the remaining

task is the integration of this equation. Fortunately this can be done

and a simple result is obtained. The integration is performed by a

transformation to cylindrical co-ordinates, i. e., x(t) = r cos 0 and

x(t+t ) = r sin E), with 0 going from 0 to irJ2 and r going from 0

to infinity. The integral is thus transformed to,

1/2 o 21-o1-oo r 2(1-px sin 20)-

P+= 2Tr 2 P2) 0 0exp[ 2  x 2 j rdr d0
x 0 0 - -6 ( .

(3. 10)

u
The integral in r is of the form, e du, and the resulting integral

16in 0 is tabulated (Dwight, p. 93, Integral #436. 00). The result is,
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P = 1/4+ (1/2i) tan- px

(1 - p )
(3. 11)

= 1/4 + (1/ 2 ) sin-1 px

and, according to the previous discussion, the other probabilities

are given by,

P__ P +

P+- P-+

= 1/4 + (1/2 r) sin-

= 1/4 - (1/2 i) sin

Substitution of these terms into Equation 3. 6 gives finally,

p ( t) = (2/7 ) sin~ I

which can be solved for px(t ) to give Equation 3. 2

3. 3 MEAN AND VARIANCE OF THE ONE-BIT AUTOCORRELATION
FUNCTION ESTIMATE

In this section the mean and variance of the one-bit autocorrelation

function estimate, p' (T) , will be calculated. The equations defining
x

(r)are repeated below,

p' (-r )

p' (t) 1

(3. 15)

y(k A t) y(k A t + t ) (3. 16)

k= 1

px

px

(3. 12)

(3. 13)

(3. 14)

S sin [ " '(r )]
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It will be necessary to assume that the terms, y(k At) y(k At + T) ,

in the summation of Equation 3. 18 are independent of each other as

was discussed in the introduction of this chapter. An approach

utilizing characteristic functions (see Davenport and Root, 1 pp.

50-55) will be used.

The mean of p' (t) can be easily shown to be p (,r); however,
y y

the mean of p*(t) is not so easily found. (Since the sine is a non-

linear operation, one cannot say in general, " sin x sin x".)

The mean and mean square of p* can be expressed in terms of

p(p') , the probability density function of p
y

00

sin (ip / 2) p(p ) dp ' (3. 17)

00 2
p = sin (i py/2) p(p ') dp ' (3. 18)

.. 00

The probability density function, p(p'), is the Fourier transform
y

of M (v), the characteristic function of p'y y

00

p - M (v) e dv (3. 19)
y y

-00

Through application of Fourier transform properties (or directly by

substitution of Equation 3. 19 into Equations 3. 17 and 3. 18), the mean

and mean square of p' can be simply expressed in terms of M (v),
x y
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(1/2j) [M (4/2) - M (-4/2)] (3.20)
x y y

'2 0. 5M(0) - 0. 25 M (I) - 0. 25 M(-,) (3. 21)
xy y y

Since the characteristic function of a sum of statistically inde-

pendent random variables is the product of the characteristic functions

of the individual terms (see Davenport and Root, p. 54) , M (v)

can be expressed as,

K

M (v) I Mk(v) (3. 22)

k=1

where Mk(v) is the characteristic function of a term, (1/K) y(kAt)

y(kAt + t), in the summation of Equation 3. 6.

Each of the terms, (I/K) y(kAt) y(kAt + -r), can assume either

of two values, plus or minus 1/K, with probabilities, 2P and

++
2P+-, respectively. The probability density function of

(1/K) y(kAt) y(kAt + t) then consists of an impulse of area 2P at

1/K and an impulse of area 2P+_ at -1/K. The probabilities, 2P

and 2P±, are given by Equations 3. 12 and 3. 13 of the previous

section. A Fourier transformation gives the characteristic function,

Mkj

Mk + 2ej v/K (3. 23)

The mean and mean square of p' are now given as follows by

combining Equations 3. 23, 3. 22, 3. 21, 3. 20, 3. 13 and 3. 12,
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.K s.2 . -
=. [(cos 2+ j-sin p sin ) - (cos -2-- sin p sin TK)]

(3. 24)

2 1 x .2 .- 1 . K
2 ~ 4 [(cos + j- sin p sin

2 .K . -x

+ (cos K - sin p sin-)

(3. 25)

Thus, expressions giving the mean and mean square of p'(r)

have been found in terms of p (-r), the true normalized autocorrelation

function, and K, the number of statistically independent one-bit

products used in the estimate.

Fortunately the case of interest is for K very large compared

to it ; in this case Equations 3. 24 and 3. 25 are greatly simplified.

Terms of higher order than i/K are dropped in the final result.

The approximations used, in order of their application, are (a and b

are constants of the order of 7t):

2

17) cos a/k A 1 - 2
2K2

2) sin a/k .-, a/k

2

3) (1 + K+ ) e a 2K + )
K



70

The validity of approximation 3) can be demonstrated by taking

the logarithm of both sides of the equation and then expanding

the logarithm.

Through the use of these approximations the following results

2 2
are obtained for the mean and variance, &l =x -P

2

= x[3+ (Py2 - 1)] (3. 26)

2 23 262

p -4- K K - Px 2) (1 -y ) (3. 27)

Equation 3. 26 reveals that the mean of the estimate is biased

2 2
by an amount, p Xt (1 - p )/8K, from the desired value, pxx yx

This bias will be of the order of N times smaller than the RMS

deviation, c , and hence can be neglected in most cases.

The variance, given by Equation 3. 27, should be compared

2
with the variance, Cr m given by Equation 2. 52 for an estimate

of the normalized autocorrelation function computed from unquantized

or many-bit samples. This variance relation also contains the

assumption of independent successive products and is repeated

below,

2
2 __ _

02 x (3. 28)
pm K
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Our conclusion, then, is that the RMS deviation of an autocorre-

lation function estimate based on K statistically independent prod-

ucts is increased by (it/2) [1 - p ()]< iT/2 when the samples are
y-

quantized to one-bit. In the unquantized case we were able to show

that decreasing the time between samples so that successive products

become dependent did not decrease the RMS deviation. We have not

shown that this is true in the one-bit case. It may be possible to

reduce the RMS deviation by increasing the sampling rate. However,

this is doubtful and seems hardly worth the factor of lt/2 which

might be gained.

A comparison of one-bit and many-bit autocorrelation function

estimates performed as a simulation experiment on a digital com-

puter is given in Section 6. 2.

3.4 MEAN AND VARIANCE OF THE ONE-BIT POWER SPECTRUM
ESTIMATE

An estimate, p '(f), of the power spectrum can be determined

from the one-bit autocorrelation function estimate, p'(-r), in a

manner similar to that used in the previous chapter, Equation 2. 3.

This relation is,

-j 2ic f n AT
p'(f) = 2 At P'(n AT ) w(n At) e (3. 29)

n=-oo
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It is assumed that p'(n AT) = p'(-n AT) defines p'(n AT ) for

negative n and that the weighting function, w(n AT), is zero for

In I > N. Thus p '(f) requires that p'(T) be computed for N

equally spaced values of t going from T = 0 to t = (N - 1) At.

The estimate, p'(f) , is a normalized spectral estimate; that is

Equation 2. 17 may be used to show,

f s /

pf) df = p(O) = (3. 30)

0

where f = 1/ AT.
s

In the previous section it was shown that the mean of p (n AT)

is equal to the true normalized autocorrelation function plus a small

bias term. This bias term will be neglected since it is of the order

of /K times smaller than the RMS deviation of p'(n AT). Thus,

by taking the mean of both sides of Equation 3. 29, we find

-j Zo f n AT

= 2AT p(n AT) w(n AT ) e (3. 31)

n= - o

The right-hand side of Equation 3. 31 can be recognized as p*(f),

the smoothed and normalized power spectrum defined by Equation 2. 53,

p(f) = p*(f) (3. 32)

The properties of p*(f) are fully discussed in Section 2. 2 and at

the beginning of Section 2. 4-2; they will not be discussed further in

this chapter.
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A calculation of the variance of p'(f) is quite difficult and has

not been performed. The spectral variance calculation requires that

the covariance of the autocorrelation function estimate be known (see

Section 2. 3-1). In the previous section the autocorrelation variance

was computed through the characteristic function method. An attempt

to extend this method to computation of the autocorrelation covariance

leads to difficulty because integrals similar to that for P in

Equation 3. 10 must be carried out over the trivariate or quadvariate

Gaussian probability density functions. The trivariate integral

arises if statistically independent products are assumed and the

quadvariate integral arises if this assumption is not made. In either

case a closed form evaluation of the integrals has not been found.

It is possible, of course, to evaluate the above integrals

numerically on a computer for a specific autocorrelation function or

power spectrum. Some expansions of the quadvariate normal integral

17
by McFadden may be helpful in this regard. However, in lieu of

doing this, it was decided to simulate one-bit spectral analysis on

a computer and hence "experimentally" determine the spectral

variance. This work is presented in Section 6. 2. An experimental

value of the spectral variance as computed from data taken in the

deuterium line experiment is given in Section 6. 5.

A value for the spectral variance integrated over frequency can

be obtained from only a knowledge of the autocorrelation variance.
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The following relation is easily derived from the Parseval relation,

Equation 2. 19,

f /2 dc

s P2 (f) df =2 A-r I 2 (n) w (nA -r) (3. 33)
0 n=-oo

where 1r 2(f) and y 1 2 (n) are the spectral and autocorrelation

variances respectively. The results of the previous section show that,

in the case of statistically independent products, 0r is increased

by less than ir/2 due to the one-bit quantization. We can thus say

2
that the integrated spectral variance is increased by less than i /4

due to one-bit quantization. If it was known that the frequency dis-

tribution of the one-bit spectral variance was the same as that of

the many-bit spectral variance (this is approximately the case),

then it could be said that the spectral variance is increased by less

than it/2 due to one-bit quantization.

It appears safe to postulate that c (f) will have the same de-
p1

pendence on the observation time, .T, and resolution, Af, as in the

many-bit case. We thus will express a (f) in the form of the many-
p1

bit spectral RMS deviation, o pm(f) given by Equation 2. 56, multiplied

by a numerical factor, p ,

y =(f) p(f) 1 - Af/b (3. 34)
p
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where a is a dimensionless parameter discussed in Section 2. 3-3,

p(f) is the true normalized power spectrum, and b is the total

bandwidth of the spectrum being analyzed.

The numerical factor, p , depends somewhat on the particular

p(f) that is being analyzed. However, the experimental results of

Sections 6. 2 and 6. 5 indicate that p is equal to 1,. 39 in the constant

bandpass region of a spectrum similar to that shown in Figure 6.3.

Most spectra analyzed in radio astronomy will have the same gross

appearance as the spectrum shown in Figure 6.3. This is true

because the input spectrum is nearly constant and, thus, the gross

shape of the measured spectrum is determined primarily by the

receiver bandpass function. At the edges of the receiver bandpass,

p increases (see Figure 6.3 and Equation 6.10) and measurements at

frequencies beyond the half-power points have markedly increased

statistical uncertainty.
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CHAPTER 4

THE RADIO ASTRONOMY SYSTEM

4. 1 THE SYSTEM INPUT-OUTPUT EQUATION

In the previous chapters a technique for the measurement of

the power spectrum, P(f) , of a time function, x(t) , has been

presented; the procedure is described by Figure 1. 7. A spectral

estimate, p'(f) , is produced. The mean and variance of this

estimate are discussed in Section 3. 4 which refers back to Sections

2. 2 and 2. 4-2; these results will be briefly summarized in this

section.

It has been assumed that x(t) is a signal in the video-frequency

portion of the spectrum; P(f) , is zero for f above an upper cutoff

frequency, B20 . Thus, the spectra we wish to measure in radio

astronomy must be restricted (by filtering) to a bandwidth, B 2 0

and then must be shifted (by heterodyning) down to the frequency

range between 0 and B 2 0 . For practical reasons the heterodyning

and filtering will usually be performed in a few steps with the utili-

zation of intermediate frequencies.

The spectrum we wish to measure in radio astronomy is T a(f)

the power spectrum, expressed in degrees Kelvin, available at the

antenna terminals. A receiver noise term, T r(f) , must unavoidably

(r
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be added to T a(f) . According to this statement and the preceding

paragraph, the function of the radio frequency portion of the receiver

(that is, everything between the antenna and the clipper input) is

described by the following equation:

P(f) = [T (f+f ) + T (f+f)J G(f+f) f > 0 (4. 1)
a 0 r 0 0

[P(f) a P(-f) defines P(f) for f < 0].

In the above equation, f is a frequency in the video frequency

range, f is a frequency which is B 20/2 below the center frequency

of the observed frequency range, and G(f+f ) is the power transfer

function of the receiver. G(f+f ) should be zero outside of the band

extending from f 0 to f0+B 2 0 . The frequency, f0 , is determined

by local oscillator frequencies. These may be chosen so that f lies

above f ; in this case f -f should replace f+f wherever it occurs.

Equation 4. 1 describes the modifications of the antenna tempera-

ture spectrum, T a(f) , by the radio frequency portion of the receiver.

These modifications can be removed since T (f+f) and G(f+f ) can

be measured; this topic will be discussed in the next section. The

modifications resulting from further operations indicated in Figure 1. 7

are as follows:

1) The clipping of the time function removes the amplitude

scale from the measured spectrum; only the shape of the spectrum is
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determined. All of the measured spectra are necessarily normal-

ized to have unit area. A scale factor can be determined by some

other means if it is needed. The measured spectra are, thus,

independent of receiver gain to a high degree.

2) The fact that the autocorrelation function is determined

only at discrete points spaced AT apart, limits the bandwidth that

may be analyzed to 1/ZAt = f s/2 = B . The power spectrum

must be forced (by filtering) to be zero outside of this band or else

spurious results will occur. The sampling frequency, f , must be

at least twice the bandwidth analyzed.

3) The truncation of the autocorrelation function to N

points [(N-l)AT is the maximum lag time] limits the frequency

resolution, Af, of the spectral measurement to approximately

l/(N AT) = f s/N = 2B 2 0 /N. The parameter, N, is the number of

correlation channels provided in the digital correlator. The number

of significant points determined on the spectrum, B 2 /A f, is thus

equal to N/2.

4) The power spectrum of a random time function cannot

be exactly measured by any means since an infinite duration of data

is required; this topic was discussed in Section 1. 3. The quantity

we measure, p'(f), is a statistical estimate of the power spectrum.

Its properties are described, for our purposes, by its mean or

expected value, p'(f), and its variance, c 1
2 (f).
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The modifications stated above are contained in the equations

given below which, together with Equation 4. 1, relate the measured

quantity, p'f), to the antenna power spectrum, T a(f)

p'(f) = / 2f)(4. 2)f / 2

$ P (f) df

0

P"(f) P(a) W(f - a - i f )da (4.3)

1=..oo -00

Equation 4. 2 expresses the normalization of the spectral estimate;

p'(f) [and also p'(f)] has unit area between 0 and f s/2.

Equation 4. 3 expresses the effects of sampling and truncation

of the autocorrelation function. The quantity, P*(f), is related to

the true power spectrum, P(f), by Equation 4. 3. This equation

is discussed in Section 2. 2-1 and is described by Figure 2. 1. If

sampling is performed at a fast enough rate, all terms in the summa-

tion of Equation 4. 3 are zero except for the i=0 term, and P*(f)

becomes simply the convolution (or smoothing) of P(f) by W(f).

The function, W(f) is determined by the choice of the weighting

function, w(T ); this topic is discussed in Section 2. 2-2. In general

W(f) is a narrow, spike-type function of bandwidth Af f /N.

Thus, features in the spectrum narrower than Af are smoothed out.

If P(f) does not change appreciably over bands of width, Af, then

P '(f). P(f), for 0< f < fs 12.
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Equation 4. 3 should also be considered as the definition of the

star (*) operator which will be used further. A starred quantity

is related to the unstarred quantity in the same manner as P*(f)

and P(f) are related. For example,

00 00

[T(f+f0) G(f+f) ) = T(+a+ f) G(a+ f0) W(f - a - i f ) da

i=-0o -00
(4.4)

Through the use of the star operator, it is possible to combine

Equations 4. 1, 4. 2, and 4. 3 into one compact equation relating the

measured quantity, p'(f), to the true power spectrum referred to

the receiver input, T(f) = Ta(f) + Tr(f) I

p(f) = [T(f+fo) G(f+fo)] (4. 5)

[T(f+f0) G(f+f0)]" df

0

4. 2 SPECIFICATION OF ANTENNA TEMPERATURE

The noise power spectrum available at the antenna terminals,

T a(f+f ), can be estimated if some auxiliary calibration measurements

are made in addition to the measurement of p'(f). These auxiliary

measurements are of the receiver bandpass, G(f+f ); the average

(over frequency) noise temperature referred to the receiver input,

Tav ; and the receiver noise power spectrum, Tr +f 0).
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4. 2-1 Correction of Effect of Receiver Bandpass

The receiver bandpass can be accurately measured by ob-

serving the system output, p(f), when the input T(f+f ), is

white noise (uniform spectrum over the frequency range G(f+f)

is non-zero). In this case, Equation 4. 5 gives the system output as,

p'M(f) G'(f+f 0 ) (4. 6)
0 f(81

G(ff) df

0

Before discussing how p'(f) is applied, the problem of obtain-
0

ing a white T(f+f ) = Ta (f+f 0  r (f+f0) will be discussed. This

problem is simplified if Tr (f+f ) is white as is often the case when

the receiver front-end is broadband compared to B20. If this is

the case, a white T(f+f0) can be produced by either of three methods:

1) Pointing the antenna at a region where no spectral

line is expected.

2) Connecting a white noise generator (such as a matched

load at 300*K) to the receiver input in place of the antenna.

3) If the receiver is broadband between the input and the

first converter, by detuning the first local oscillator.

Each of the above methods has special problems which must

be considered. It should be pointed out that the receiver bandpass
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need not be determined too accurately once the large receiver

noise term is subtracted off as will be discussed in Section 4. 2-3.

In the case that the receiver noise is not white, a T(f+f )

which is nearly white can still be obtained by application of a

white Ta which is much greater than Tr (f+f) . This may be

accomplished with method 2) or with method 1) if a large enough

T can be obtained from a strong radio source. Attenuation should

be inserted into the receiver so that the clippers are operating at

approximately the normal signal level.

The measurements of p' (f) is applied by dividing p(f) by
0

p (f) to give,
0

T [(f+f 0) G(f+f 0)]

PU) =11, (4. 7)
TY0o1 T - G'(f+f )

where T is a measured quantity to be discussed in the next
av

section and is given by,

[T(f+f) G(f+f)] df

T 0 (4.8)
av f /2

G(f+f0 ) df

0
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An approximation has been used in Equation 4. 7 in that

p'(f)/p'(f) has been assumed equal to p'(f) / p' (f) . This is quite

valid since the random part of p'(f) is small compared to its
0

mean.

The quantity, [T(f+f0) G(f+f 0 ) / G*(ff) , has an important

interpretation and it is therefore convenient to assign a special

symbol, , for this operation on T(f+f 0 ). Thus Tf(f+f 0 ) is

defined as,

T(f+f ) G(f+f )
T0(f+f ) (4.9)

G'(f+f )

with identical relations between T (f+f ) and Ta(f+f ) and

betweem Tt (f+f ) and T (f+f ). The mathematical relationship
r 0 r 0

between Tt(f+f ) and T(f+f ) is quite complicated; however,

the relationship greatly simplifies when a restriction is applied to

the shape of G(ftf0). The restriction is that G(f+f ) must be

smooth over frequency bands of width, Af, for values of f in the

passband region (say between 1 db points). Stated another way,

G"(f+f ) G(f+f ) (4. 10)

for f in the passband region. This condition is easily met in practice.

Under this condition, - Tt(f+f 0 ), becomes simply the convolution

or smoothing of T(f+f 0 ) by W(f) ; that is,
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00

Tt(f+f ) = T (a+f ) W(f-a) da (4. 11)

-00

for values of f in the bandpass region. (The requirement that

G(f+f ) is bandlimited to half the sampling frequency has also been

used in Equation 4. 11). Thus a dagger (t) superscript on T(f+f )

T a(f+f ), or T (ff+f ) should be considering as a smoothing

operation on these spectra. If f is outside of the 1 db receiver

bandwidth or if the condition of Equation 4. 10 is not true, then the

dagger (t) operator must be interpreted by Equation 4. 9. Note

that one cannot say, "[G(f+f ) T(f+f )}W = Gl(f+f ) T (f+f )'

Through the use of the dagger operator, then, Equation 4. 7

becomes,

[P,(f) T 0f) (4. 12)NT, (f T0 Tav

T (f f ) +t (f+f
a o r ( f4. 13)

T
av

The smoothed antenna temperature, Tt (f+f ) is thus expressed in

terms of measurable quantities by Equation 4. 13.

4. 2-2 Measurement of T
av

The quantity, T defined by Equation 4. 8, can be expressed

in a more usable form through the use of a property of the star
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operator given by Equations 2. 17 and 2. 18. These equations sh±ow

that tne integral of a starred variable between limits 0 and f 12S

is equal to the integral of the unstarred variable between limits of

0 and oo. Thus, T becomes,
av

00ST(f+f 0) G(f+f 0) df

T 0 (4.14)
av o

G(f+f 0)

0)

and is recognized to be the average input noise temperature weighted

by the receiver bandpass. It is the temperature that is determined

if the receiver is used for continuum (broadband) measurements.

Tav is proportional to the power in the signal at the clipper

input and is easily determined by conventional means. Note that T
av

includes both the antenna temperature and the receiver noise tem-

perature, T a T + T . All temperature measurements
av a av r ay

performed with the one-bit autocorrelation system are normalized

to Tav as is expressed in Equation 4. 13.

4. 2-3 Measurement of T' (f+f0 )

The spectral measurement system determines the sum,

Tt (f+f ), of the smoothed antenna-temperature spectrum, Tt (f+f ),0 a 0
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and the smoothed receiver noise-temperature spectrum, T* (f+f)
r 0

Thus, we wish to determine Tt (f+f ) and subtract this from

Tt(f+f). The measurement of Tt (f+f ) is accomplished by0 r 0

applying a signal with a known, white, comparison spectrum,

Tc, to the antenna terminals. The system output, p'(f) , divided

by p' (f) , then gives

[ p'(f) T + T (f+f) 15)

p "(f) c Tr (4 15
0~ c av

where T a T + T is the measured average input tem-
cay ~c r ay

perature with the comparison source connected. Equation 4. 15

thus determines Tt (f+f ) in terms of measured quantities.

It should be noted that if T is white, the measurements of
r

p '(f) and p' (f) are identical and p' (f) = p'(f) . In this case,c 0 c 0

Tr is completely determined by the measurement of Tc av

4. 2-4 Summary

The smoothed antenna temperature spectrum, Tt (f+f ), is
a .0

specified by the measurement of two frequency-averaged antenna

temperatures, Tav and Tc av, and three normalized power spectra,

p'(f), p (f), and p'(f) . Both T and p(f) are signal measure-
o av

ments; they are performed with the antenna connected to the receiver

input and pointed in the desired direction. The other three quantities

are auxiliary measurements used to specify the receiver noise
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temperature spectrum, Tr (f+f) , and the receiver response,

G(f+f ). They are determined with a known comparison spectrum

applied to the receiver input at some time before or after the

signal measurements are performed. Equations 4. 13 and 4. 15 can

be combined to specify Tt (f+f ) in terms of these five measured

quantitie s,

Tt (f+f ) x T [Pf T + Ta(fa)p% av pc(f) c

(4. 16)

Tc is the temperature of a known, white comparison spectrum and

f is known from the local oscillator frequencies.

If the receiver noise temperature spectrum is equal to a constant

value, Tr , over the frequency band under observation, B20, then

p'(f) x p'(f) , and Equation 4. 16 reduces to,c 0

T1 (f+f) T - (Tv - Tc) (4. 17)
a 0 av Lp9() c av c

where T - T T.c av c r

4. 3 THE SWITCHED MODE OF OPERATION

4.3-1 Motivation and Description

In the preceding section we have seen that the measurement of

the antenna temperature depends on auxiliary measurements per-

formed before or after the actual observation. The problem of
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error due to changes in the receiver characteristics [T r (f+f 0 ) and

G(f+f )] between the time the observation is made and the time the

auxiliary measurements are made then arises. These changes may

be made small (of the order of a few tenths of a percent in a 10

minute interval) by careful circuitry but are important in view of

the high accuracy needed in spectral measurements in radio astron-

omy. The high accuracy is required because the spectrum we wish

to measure, Ta +f) , is superimposed on a receiver noise spectrum,

Tr +f) , which may be many times T (f+f ). The problem is

aggravated by the fact that the time duration, T, required for a

spectral measurement increases as higher accuracy is desired

(Equation 1. 20).

An approach to this problem is to periodically switch between

the actual signal measurement and the calibration measurement.

The switching is accomplished with a mechanical, ferrite, or diode

switch which alternately connects the receiver input to the antenna

terminals or to a noise source generating a uniform, comparison

spectrum, T . Switching rates between 10 cps and 400 cps are
c

common. While the switch is at the antenna position, the signal

measurements, p'(f) and T , are being performed (that is, a
av.

segment of integration time is accumulated); with the switch at the

noise source position, the comparison measurements, p'(f) and
c

T c v are performed. At the output end of the receiver, a second
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switch (usually of the diode type) is used to either separately

totalize signal and comparison variables or, more commonly, to

totalize the difference between signal and comparison variables.

The switching technique has been extensively used in radio astron-

omy; the Dicke radiometer is based on this principle.

The switching technique, as it is used with the digital auto-

correlation system, is diagrammed in Figures 4. 1 and 4. 2. The

digital correlator is gated in phase with the front-end switch to

add the products, y(kAt) y(kAt + nAt) , which occur when the

switch is at the antenna position and subtract the products which

occur when the switch is at the noise source position. The quantity

that is determined by the digital correlator is F p (nAt) p (nAt) -
y y

p' (nAt), the difference between the estimates of the one-bit auto-
yc

correlation functions of the antenna signal (plus receiver noise) and

the noise source signal (plus receiver noise). When 3 p'(nAr) is

properly corrected and Fourier transformed, the difference spectrum,

3 p'(f) = p '(f) - p'(f) , is determined.
c

The correction of 3 p'(nA-r) to give the difference of the unclipped
y

autocorrelation function estimates, 3 p'(nAt) = p (nAt) -xc

is not quite straight-forward. Application of the usual correction,

Equation 3. 15, gives

p '(nAr) = sin [t p'(nAt)/2] - sin [ ip yc(nAt)/2] (4.,k8)
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This relation is not usable as it stands because p(nAir) and
y

P , c(nAr) are not separately determined in the digital correlator;

only their difference, hp' (nAt) , is available. This is due to an
y

economic consideration in the design of the digital correlator.

However, p' (nAr) , can be determined at some-time, beforeyc

or after the actual observation time, and the correction equation

can be put in the usable form,

i p (nAr) 42[p' (nAr) + <Spi*nAtr)]
b p'(nAr) = 2 sin y cos yc y

(4. f9)

Small errors in the measurement of p' (nAt) are not important
yc

since p' (nAT) is used here only to modify a difference of auto-
yc

correlation functions.

It should be noted that the analysis cf the switched system is

being treated on a static basis. We are neglecting the fact that the

system "remembers" the signal from the previous switch position.

If the system time constants (the longest is of the order of 1/Af)

are short compared to the switching period, the static approximation

is good. However, if a blanking interval is inserted after each

switch throw (see Figure 4."2), the static approximation is almost

exact. During the blanking interval the correlator samples, delays,

and multiplies as usual; however, the products, y(kAt) y(kAt + nAt),

that occur are not added into the sum which forms the autocorrelation

function estimate. The blanking interval simplifies the analysis,

L
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eliminates possible error due to the switching transient, and re-

moves the problem of fluctuations in switch dwell time or "jitter"

in a mechanical switch.

4. 3-2 The Antenna Temperature Equation

The antenna temperature can be expressed in terms of the

difference quantities, Fp'(f) and 6Tav , by substitution of

p'(f) : p*'(f) + 5p'(f) and T * T + 3T into Equation 4. 16.c av c av av

The result is,

T+ (f+f) * (T + 3T ) [(f) + rT c + T
a o c av av ,p 0 (f)j av[ .p'() c

(4. 20)

The quantities, Tcav, p (f) , and p (f) must still be measured at

some time before or after the signal measurements. However, they

have only a weak effect upon the spectral measurement since they

only modify the difference quantities, Fp"(f) and ST av

If the receiver noise spectrum is white, p'c p , and Equation
c 0

4. 20 can be put in the convenient form,

Ta (f+f) - Ta 0 a aav [F8p ((4.21)

av o

where the relations, T T + 3 T and T *T + 5 T
av cav av aav c av

have been used. This same result arises, even if T is not white,
r

if the radiometer is balanced so that 3T 0 and T x T
av c a av
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The antenna temperature equation can be put in many other

forms which may have special value or interpretation for specific

experiments. A form that was used in the deuterium-line and

Zeeman experiments is,

T+(f+f) - Tav L j (4.2)

T v p f)-av

which is easily derived from Equation 4. 20 under the assumption

of a white receiver noise spectrum.

4. 4 SYSTEM SENSITIVITY

The sensitivity of a radiometer is specified by the RMS deviation,

A T(ftf0 )1 of the antenna temperature measurement from its mean

value, Tt(f+f ). The minimum detectable antenna temperaturea 0
depends on the desired confidence limits; a value of a few times

A T(f+f ) is usually adopted.

The RMS deviation, - (f) , of a normalized spectral estimate,
P1

p'(f) , obtained by the one-bit autocorrelation method is given by

Equation 3. 34 as,

pl) p . 1~(4. 23)
p(f) TZA f

where:

T is the duration that the signal is observed
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A f is the frequency resolution; it is the half-power

bandwidth of W(f)

a is a dimensionless parameter of the order of unity;

it depends on the exact shape of W(f) and is given

in Section 2. 2-3

is the increase in RMS deviation due to the clipping

or one-bit operation; it is discussed in Sections 3. 4,

6. 2, and 6. 5. It has a value of 39 in the midband

region (say between 1 db points) of the receiver band-

pass and increases according to Equation 6. 8 on the

edges of the receiver bandpass.

b is the total noise bandwidth of the measured spectrum;

it is approximately equal to the half power receiver

bandwidth.

The specification of the antenna temperature depends, through

Equation 4. 16, on three normalized spectral measurements, p'(f) ,

p (f) , and p'(f) , and two frequency-averaged antenna temperature

measurements, T and T . The RMS deviation of the antenna
av c ay

temperature can be expressed in terms of the RMS deviations of each

of these measurements. This is accomplished by expanding each of

these quantities in Equation 4. 16 as its mean plus a small random

part. The random part is then squared, a statistical average is

taken, and higher order terms are dropped. The result of these

operations is that AT(f+f ) is equal to the square root of the sum

of the squares of the following terms:
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(dr ) (a p ) CP,
T pls T plc AT

av pO cav p 0P av

AT , and (T - T )
pO c av a C p

where (cp) , l p)c , and (O'pi)o refer to the RMS deviations of

p'(f) , p'(f) , and p'(f) , respectively.
C 0

We now assume that: 1) The radiometer is near balance so

that, T T . 2) The amplitude of the observed spectral

line is small compared to white receiver noise so that,

p(f)- f) p o(f) . The expression for the RMS deviation then

becomes,

2 2 2 2 t T2 cr22 ( ) ( ) AT AT (T -
AT pls + plc + av+ cav+ a c plo
T2  p 2  2 + + +

T p p T 2  T 2  T 2
av av cav av

(4. 24)

The first two terms of Equation 4. 24 are the largest and repre-

sent the variances of the measurements of the normalized signal and

comparison spectra, p(f) and p'(f) , respectively. These variances
C

are given by Equation 4. 23 with the observation time, V' , equal to

'r in the signal case and in the comparison case. The third

and fourth terms represent the variance of the measurements of

T and T . Their exact values depend on the manner in which
av cay

T and T are measured. However, since they are of the order
av c ay
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of b/Af times smaller than the first two terms, they are given

with sufficient accuracy by,

AT2 2 2
av a -(4. 25)

T r b
av

and

A T 2  2 2

S av Y b a(4. 26)
T c

c av

The final term in Equation 4. 24 is very xmall if the radiometer

is near balance, or equivalently if (Tt - T )/T a< 1 Ifa c av

(Tt - T )/ T is equal to e , then the observation time for the
a c av

measurement of p*(f) can be as short as 10E 2 1 before the final

term becomes 0. 1 of the first term. This final term will be neglected

in further equations.

According to the previous two paragraphs, then, the RMS devia-

tion can be expressed as,

AT 1 + 1
T f(4.27)

Tav Is A c A

where TS and r are the signal and comparison observation times.

If t is the total observation time (not including time spent in blanking),

r 0. 5t, and r g 0. 5T, so that Equation 4. 27 becomes,

AT 2 a (4.28)

av
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CHAPTER 5

SYSTEM COMPONENTS

A brief discussion of the design parameters and design approaches

of the major components of a switched one-bit autocorrelation radio-

meter (as in Figure 4. 1) will be presented in this chapter. The

deuterium-line detection system will be used as an example. The

chapter is divided into sections concerning the radio-frequency

portion of the system, the clipping and sampling operation, and the

one-bit digital correlator.

5. 1 RADIO-FREQUENCY PORTION OF THE SYSTEM

This section is concerned with the portion of the system which

lies between the antenna terminals and the input to the clipper. The

material of Chapter 4 is drawn upon heavily in this section. The

block diagram of the radio-frequency portion of the deuterium-line

detection system is shown in Figure 5. 1 and will be referred to by

the text.

5. 1-1 Front-End Switch and Noise Source

Two highly important components in any switched radiometer

are the switch and the comparison noise source. The quantity that

is directly measured by the radiometer is the difference between
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the comparison noise-source spectrum, Tc* transferred through

the switch, and thb antenna temperature spectrum, T , transferred

through the other arm of the switch. The comparison spectrum and

switch transfer characteristics must either be measured or assumed

to be linear functions of frequency. The first of these alternatives

can be achieved by using a celestial radio source of known spectrum

as a "primary" standard to measure Tc which then becomes a

"secondary" standard.

- The frequency variations of the switch and noise source have

little effect if they can be assumed to be linear with frequency and

if the linear component of the true spectrum is known or is not

needed. The linear-with-frequency assumption is justified when

the bandwidth analyzed, Bi , is narrow compared with the frequency

scale of changes in the characteristics of the switch and noise source.

The linear component of the true spectrum is known when the band-

width analyzed is somewhat greater than the bandwidth of the spectral

line, so that the background spectrum at frequencies above and below

the spectral line can be established.

In the deuterium-line experiment B 30 kc at a center fre-

quency of 327 mc. The switch and noise source are by no means

high Q devices; and thus, their characteristics change appreciably

only over a scale of tens of megacycles. The measured spectra had

slopes of the order of 0. 05%130 kc which were removed in a com-

puter so that the final result had zero slope. This slope correction
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did not disturb the results of the experiment because the spectrum

should have nearly zero slope whether the deuterium line is present

or not.

5. 1-2 Balance Requirements

The antenna temperature equation (4. 20) contains a term,

3T p'(f)/p'(f) , which represents the effect of unbalance (3Tav # 0)

in the radiometer. This term should be kept small in order to avoid

errors due to time variations in the receiver noise spectrum,

T (f+f ). The magnitude of this term is placed in evidence by appli-

cation of Equation 4. 15 and expansion of Tt(f+f ) as T + FTr(f+fo)
r 0 r av r 0

and Tt(f+f ) as (T) + FTt(f+f) . The terms, 3Tt(f+f ) and
c 0 c av c 0 r 0

)Tf(f+f ), thus represent the frequency variations of the receiver
c 0

noise spectrum about their frequency.-averaged values. The result is,

p'(f) 3T
cT av_ [T -I3T+v pc av c a T(f+fo) + 3Tf(f+f.)]

(f) Tc av (5. 1)

which is small if the radiometer is near balance; and, in addition,

is nearly constant if the receiver noise spectrum and the comparison

spectrum are nearly constant with frequency.

In the deuterium line experiment a servo loop was used to hold

3T /T to less than 0. 30/c and 3T'(f+f ) and 8Tt(f+f ) were
av c av r 0 c 0

each estimated to be less than 1* (they are small because of the
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narrow bandwidth, B 1 ). The term given by Equation 5. 1 is thus

equal to a constant (< 6*) and a frequency-varying component which

is less than 0. 006,* The constant term has negligible effect and the

small frequency-varying term will be linear to first order and will

be removed by the previously-mentioned linear correction. There-

fore, in the deuterium line experiment, the unbalance term,

3T p (f)/p"(f) , could be neglected. In other applications it

may be necessary to determine p'(f) and FT [p (f) is needed
c av o

anyway] and include the unbalance term in the antenna temperature

equation.

There are two more reasons for operating the radiometer near

balance. The first is due to the clippers having different character-

istics when operated at different signal levels (see Section 5. 2 and

Figure 5. 2). If the signal and comparison power levels differ

appreciably, an error due to this cause may occur in the difference

spectrum, 3p'(f) . This error should be negligible with proper clipper

design and if 3Tav av is kept to below a few per cent. A final

reason for operating the radiometer near the balanced condition is

that Tav must be measured by conventional Dicke radiometer

techniques. It is well known that the error due to gain fluctuations

in this measurement will be small if the radiometer is near balance.
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5. 1. 3 Shape of the Receiver Bandpass, G(f+f0)

The function of the radio-frequency portion of the system is

described by the equation,

P(f) = G(f+f0) T(f+f) f > 0 (5. 2)

where P(f) is the power spectrum at the input of the clipper,

G(f+f ) is the power transfer function of the receiver, T(f+f0) is

the power spectrum referred to the receiver input, and f0 is

determined by local oscillator frequencies [ P(f) = P(-f) defines

P(f) for f<0]. In this section the requirements concerning the

shape of G(f+f ) will be presented; in the next section the frequency

conversion problem will be discussed.

A major requirement of G(f+f ) is that it be very small for f

greater than half the sampling frequency, fs . This is necessary in

order to avoid spurious responses due to sampling (see Figures 1. 3

and 2. 1). For the deuterium line receiver, G(f+f ) was designed

to be 20 db down at half the sampling frequency.

A second requirement of G(f+f ) is that it have a fairly uniform

passband. This is necessary because the statistical uncertainty

(RMS deviation divided by the mean) of the spectral measurement

increases at frequencies where G(f+f 0 ) decreases (see Figure

6. 3 and Equation 6. 10). Experimental results presented in Section

- 111MWk1A1!r==M=;2U __ - - - - __ __
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6. 2 indicate that the statistical uncertainty will increase by less than

10% in regions where G(f+f ) is within 1 db (26%) of its maximum

value. A criterion of a passband flat within ±0. 5 db was chosen for

the deuterium-line receiver.

A third requirement on G(f+f ) is that it become very small for

f near zero frequency. This requirement arises because of several

practical considerations such as difficulty in constructing DC coupled

amplifiers and clippers, difficulty in obtaining image rejection in the

final frequency converter for frequencies near 0, and errors due to

DC offset.in the clipping operation. If a spectrum containing low

frequency components is fed into AC coupled clipper stages, the

spectral measurement at higher frequencies may be upset. Thus,

these low-frequency components should be removed by high-pass

filtering previous to the clipping operation. The spectrum that is

within 1 or 2 Af of zero-frequency should be disregarded, as it

may contain an error due to DC offset in the clippers (although, the

switching technique removes most of this error).

Assuming that the 20 db bandwidth, B20 , is set equal to half the

sampling frequency and that the 1 db bandwidth, B 1 , is the region

where a good spectral measurement is obtained, the ratio, r=BI/B 2 0 2

becomes an important parameter describing G(f+f 0 ). The frequency

resolution, Af , is proportional to the sampling frequency

(Af f s/N 40 2B 2 0JN); and thus, the ratio of the usable bandwidth
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analyzed, B1 , to the frequency resolution, Af, is proportional

to r (B I /Af N r N/2). For efficient use of N , the number of

correlator channels, r should be as close to unity as possible with

practical filter designs. A value of r = 0. 67 was used in the deu-

terium line receiver; other parameters were fs = 75 kc , B20 x 37. 5 kc,

B I 25kc, N=21, and Af=3.75kc.

5. 1-4 Frequency Conversion and Filtering

There are a few approaches to the frequency conversion problem.

If a crystal filter with the desired bandwidth is available, it may be

used in the I. F. amplifier (usually 10. 7 MC or 30 MC center fre-

quency) to give the desired response. A second mixer then shifts

the spectrum down to between 0 and B20 cps. This technique was

not used in the deuterium line experiment because it was feared that

the ripples in the crystal filter bandpass might cause a false deuterium

line result. Of course, a correction is made for the receiver response

(by division by p'(f) , see Section 4. 2-1) but some error may result

in this correction. This is another reason why it is desirable to

have a uniform passband.

In the deuterium line receiver, a phase-shift technique used in

single-sideband receivers 1 8 was applied to give a G(f+f 0 ) with a

sharp cutoff and a uniform passband. By conventional means, a wide-

band portion of the input spectrum is converted to a center frequency
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of 10, 700 kc. This signal is then heterodyned with a 10, 681 kc

local oscillator and passed through a low-pass filter having B 2 0

37. 5 kc. The output of the low-pass filter contains the desired

spectrum (which was between 10, 681 kc and 10, 718. 5 kc) but also

contains the image spectrum (which was between 10, 643. 5 kc and

10, 681 kc). A method utilizing 90* phase-shift networks (see Figure

5. 1) is utilized to cancel this image.

The advantage of the phase-shift method is that the bandpass is

primarily determined by a stable low-pass filter which is more

easily realized (requiring lower Q elements, less affected by

variations in the elements, little or no adjustments necessary) than

a bandpass filter. The disadvantage is that it is difficult to obtain

constant phase-shift over a wide range of frequencies; a phase-shift

error results in incomplete cancellation of the image. In the deu-

terium line receiver phase-shift networks giving 25 db image rejec-

tion for frequencies between 3. 75 kc and 37. 5 kc were designed

according to information given by Luck. 19 The band of frequencies

below 3. 75 kc was eliminated with a high-pass filter. The final

result was a usable, uniform pass-band between 5 kc and 30 kc.

A third method of performing the filtering and frequency conver-

sion is to utilize L-C bandpass filters with multiple-stage frequency

conversion to reduce Q problems and image-rejection problems.

(It is difficult to realize bandpass filters having good skirt selectivity
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unless the center frequency to bandwidth ratio is not too large, say

less than 15. Furthermore, if this ratio is large, the shape of the

response is very critical to small changes in the L and C values. )

For example, suppose it was desired to select a 30 kc band out of a

2 mc wide I. F. bandpass centered at 30 mc. A reasonable conver-

sion process would be to place a second I. F., 200 kc wide, centered

at 2000 kc and a third I. F., 30 kc wide, centered at 200 kc. A fourth

mixer would then shift this band down to between 0 and 30 kc. The

obvious disadvantage of this method is the complexity.

5. 2 CLIPPERS AND SAMPLERS

It is quite easy to describe the ideal clipper and ideal sampler:

The clipper output, y(t) , equals 1 when the input, x(t) , is greater

than 0 and y(t) = 1 when x(t) < 0. The sampler output, y(kAt) , is

the instantaneous value of y(t) at t = kAt. [The clipper output is

not actually 1 or - 1, but is either of two voltage levels which are

interpreted to mean 1 and - 1 by the sampler and digital correlator.]

Real clippers and samplers can come close to this ideal behavior.

However, they are very difficult to describe and analyze and, most

important, it is difficult to calculate the error in the spectral measure-

ment that is caused by non-ideal sampling and clipping. The areas

where this non-ideal behavior exists and the approaches used in the

deuterium line receiver are as follows:
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1) Real clippers are more accurately characterized by

an output, y(t), which is equal to +1 when x(t) is greater than a

small voltage, c+ , and y(t) = -l when x(t) is smaller than e.

When x(t) is between e- and E+ , the output may be +1 or -I

or some value in between. Furthermore, c- and c may depend

on the past history of x(t) and may themselves be functions of time

(as caused by noise fluctuations, 60 cps hum, or slow drifts due to

temperature changes).

Fortunately, the effect of non-zero clipping levels can

be reduced to any degree by simply increasing the amplitude of the

signal before clipping. The clippers used in the deuterium line

receiver (see Figure 5. 2) had values of c+ and e_ of less than

20 my. A signal level 40 db above this (2 volts RMS) was used

with satisfactory results.

2) The ideal clipper response is independent of the fre-

quency of the input signal. The real clipper is affected at high fre-

quencies by stray capacities and at low frequencies by coupling

capacitors (if successive stages are AC coupled). In the deuterium

line receiver, the time constants were arranged so each stage had

half-power points of 50 cps and 2 mc while the spectrum under

analysis extended from 5 kc to 30 kc.

3) In the deuterium line experiment,sampling was accom-

plished by the arrangement shown in Figure 5. 3. The flip-flop is



A./0

/0Ofca

,Zoo + e T4
YC800 LE-3 0

EC ~ ~ ~ ~ ~ ~ 7)P C Li C14 -- S7G ------- ,-r --- -, JA E ---096C6 -- +S /9

2~~~~~~~3 V07RS * A# r

FIG. 5.2 - Clipping circuitry used in the deuterium-line receiver. The 1N659 silicon
diodes conduct heavily when their forward bias voltage exceeds .5 voltj thus the volt-
age at point P is approximately a 1 volt peak to peak square wave. The gain of the
amplifier stage is approximately 30.

H0
%D0



1-

FROM SCHMIDT
CLIPPER TRIGGER

0 --

AND
-D* -I:.

AND

SAMPLING
PULSE

1 i s WIDTH
75 KC RATE

f-f
ESET
IGNALS

)OR- S -0
TO SHIFT-
REGISTER

FLIP-FLOP AND
MULTIPLIERS

OR R 0 -0

FIG. 5-3 - Sampling configuration used in the deuterium-line receiver.

POWER GAIN DECREASED
-- BY 75%

'4'

- \POWER GAIN INCREASED
BY 325 %

5KC lOKC 15KC 20KC 25KC 30KC

FREQUENCY

FIG. 5.4 - The effect of large gain changes upon a spectral measurement
performed with the one-bit autocorrelation system is shown; the effect
is due to non-ideal clipper operation. These measurements were repeated
with the gain varied by a different means and identical results were
obtained. In actual operation these large gain changes would not occur
and the switched mode of operation greatly reduces the effect of the
small gain changes which do occur.

110

PERCENT
CHANGE IN
SPECTRAL
SHAPE

2%

0

-2%



111

set [y(kAt) = 1] or reset [y(kAt) = -1] according to whether the

input signal was 1 or -1 during the duration, ts , of the sampling

pulse. If the signal is making a transition during ts , the flip-flop

will be set, reset, or will stay in its previous state according to the

result of a weighted average of the signal during t . The flip-flop
5

is randomly set or reset between samples so that the error is random

if the flip-flop refers to its previous state. This precaution was taken

(it is not known if it is necessary) in order to prevent a false high

correlation between successive samples; this would lead to false

features in the spectrum (again, the switching technique would

cancel most of these errors, anyway).

The duration, ts , of the sampling pulse was 1 [is which is 1/30

of the period of the highest frequency component of the signal. This

gave satisfactory performance. In the case of many-bit or unquantized

samples, it is possible to show that if the sampling pulse has shape,

p(t) , the effect is to multiply the spectrum by the square of the mag-

nitude of the Fourier transform of p(t) . Thus, if 1/ts is much

larger than the highest component in the power spectrum, little change

occurs.

The experimental results of the next chapter indicate satisfactory

performance of the clippers and samplers used in the deuterium-line

receiver. Of particular importance towards evaluating the samplers

and clippers was the comparison of a spectrum measured by the
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system (not using switched operation) with that measured by another

means (see Section 6. 3). The agreement was within 1. 5% and the

error is most likely due to the error of the "other" measurement

method.

The results of another test which is useful for evaluating the

clipping circuitry in the deuterium line receiver are presented in

Figure 5. 4. A spectrum is me asured (not using switched operation)

and then, the signal level is changed by large amounts. If the clipper

was ideal, no clhange would occur in the measured spectrum. The

results indicate that gain changes of the order of 100% cause a few

percent change in the measured spectrum. The spectral error

probably decreases more than linear with the gain change; in other

words, a 1% gain change would cause less than a few hundredths

of a percent change in the measured spectrum. Of course, in actual

operation the switching technique cancels most of this error.

5.3 DIGITAL CORRELATOR

The basic block diagram of a one-bit digital correlator is pre-

sented in Figure 5. 5. The function of each block should be under-

stood from its title, the logical equations on the diagram, and the

definition of symbols given to the right of the diagram. Although

the individual blocks can be realized in many ways, only two major

variations of the block diagram come to mind. These are:
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1) The set of N counters, each having a capacity of M

bits (usually, M >20), may be replaced by an N- M bit memory

(ferrite core, delay line, or other) and a high-speed serial adder.

The sums, vn , of the Fn pulses would be stored in memory and

would be periodically brought out to be increased by the new F n

pulse. The N - M bit memory will be cheaper and have less com-

ponents than the N - M flip-flops required by the counters; however,

speed will be a problem. A combination of counters and memory

may be optimum. If a computer is available, it may provide the

memory and the adder. A straight counter system was used in the

deuterium line correlator.

2) The sum of K simultaneously-computed autocorrela-

tion functions can be calculated by providing K sets of all elements

in the block diagram except the counters, where only one set, capable

of counting K times faster, is needed. The outputs of K one-bit

multipliers are OR'ed (with proper timing) into a common counter.

Since the cost of counters is an appreciable portion of the total cost,

the cost of the correlator is not proportional to K . One cost study

has indicated that the cost increases by 1. 25 for K 2 and 1. 75 for

K = 4. This technique is useful if one wishes to gain factors of 2 or 4

in effective observation time by simultaneously observing the orthogonal

component of polarization and/or using an additional receiver switched
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180* out of phase with the first. Both of these steps were taken

in the deuterium line attempt so that K = 4 for the deuterium line

correlator.

The correlator, as it is shown in the block diagram, is con-

nected for the switched mode of operation. The difference auto-

correlation function, 8 p (n&r), is computed and after proper
y

correction (Equation 4. 19) and Fourier transformation (Equation

3. 29), the difference, 3p"(f) , between the signal spectrum, p'(f)

and comparison spectrum, p (f), is computed. These spectra
C

.and also p (f)] may be individually measured by locking the con-

trol signal, C , at 1 and locking the front-end switch in the antenna

position or comparison position. The correlator is stopped (that is,

counting stops; the counters may be read out and cleared) by locking

the blanking control signal, B , at 0.

An interesting test of the correlator is provided by locking the

front-end switch in one position or the other and operating the cor-

relator in switched mode so that products are added (C = 1) during

half the switching cycle and subtracted (C = 0) during the other

half cycle. The resulting autocorrelation function and power spectrum

should be zero within a few RMS deviations. A more sensitive and

easily interpreted test is provided by feeding a periodic square wave

(derived from the reference-generator divider) into the sampler

input and locking C at 1 . The resulting autocorrelation function
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should be an exactly known triangular function. A single error in

millions of operations can be detected in this way. A constant can

also be fed into the sampler input; the resulting autocorrelation

function should be exactly constant. Controls for inserting these

test signals, along with controls for B, C, and the front-end switch,

should be provided on the correlator front panel.

The contents of the N counters, V , n = 0 to N - 1 , must be

either visually or electronically read out, recorded, and prepared

for entry into a computer. In the deuterium line experiment the

counter contents were visually indicated, written down, and then

manually punched on cards. Automatic readout and recording on

a medium suitable for computer entry is obviously desirable. The

counterst contents are not directly equal to values of points on the

autocorrelation function, as this would require more costly add-

subtract type counters. The autocorrelation function is given in

terms of the counterst contents by

2v - 2v
np(nA-r) n n = 0, N- 1 (5. 3)

y VY 0

for the switched mode of operation and,

Zv - v

p'(nAt) n n = 0, N-1 (5.4)
y Vt

for the unswitched (C 1) mode of operation.
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There are four major parameters which specify the capability

of a one-bit digital correlator. The first and most obvious is N,

the number of channels or points on the autocorrelation function.

This determines the ratio of the bandwidth analyzed, B, , to the

frequency resolution, A f. The value of this ratio depends on the

choice of the weighting function, w(-r), and the shape of the receiver

bandpas s, G(f+f ) . In the practical case, BI /df will be between

N/1. 5 and N/3 The second parameter, K, the number of signals

autocorrelated at one time, was discussed at the beginning of this

section.

A third major parameter is the maximum sampling frequency,

(fs mx , which is limited by the repetition rate of the digital

logic elements. The value of (fs ma determines the maximum

bandwidth that can be analyzed, (B 1)maxP 0. 4 (fs max . For

present transistor logic circuits, the cost of the correlator will

increase by about a factor of two if (f )ma is increased from 500

kc to 10 mc. Above 10 mc the price will rapidly increase, although

future developments may change this picture.

The final parameter is M, the bit capacity of the counters.

This determines the maximum time, Tma , which may elapse

before the counter is full and readout must occur. The maximum

number of counts a counter may receive is one for each sample, thus

M
T is specified by f5 Tax 2 - 1.
maxsmx
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All M bits in the counters need not be read out as some bits

at the input end will be insignificant and L bits at the slow end will

M-L
always be zero if f T < 2 . The number of insignificant bits is

S

also a function of fs T. The RMS deviation of v (no 0) is approx-

imately N/f T for either the switched or unswitched mode of operation.

(This follows from application of Equation 3. 27 which gives the RMS

deviation of an autocorrelation function estimate. ) Thus, a round-off

error that is much less than T can be neglected. If fsT = 2 ,
5 5

then it is safe to discard the M 0 /2 - 3 most insignificant bits. Since

620
f T will rarely be less than 10 6 2 in radio astronomy applica-

5

tions, the 7 bits at the high-speed end of the counter need not be

read out.

The digital correlator that was used for the deuterium-line and

Zeeman experiments is pictured in Figure 5. 6. This machine has

21 channels, can simultaneously autocorrelate 4 signals, has a

maximum sampling rate of 300 kc, and contains counters with a

capacity of 36 bits. The slowest 20 bits of each counter are pro;

vided inexpensively by a 6 digit electromechanical counter with visual

readout; the remaining 16 bits are transistorized counters with neon-

bulb indicators. With the exception of the counters, the machine was

built by Control Equipment Corporation at a cost of $14, 000. The

counters were designed by the author and constructed by an outside

vendor for an additional $5, 000. The machine uses 2100 transistors



FIG. 5.6 - The one-bit digital correlator used for the deuterium-line and Zeeman experiments is shown at
left while the receiver console is shown at right. The left and lower-middle bays of the correlator cab-
inet contain printed circuit cards which comprise four 21-bit shift registers and 84 1-bit multipliers.
The right and upper-middle bays contain 21 sets of 16-bit binary counters with neon bulb readout plus 6-
digit electromechanical counters. The receiver console containa, from top to bottom, the clippers, a
noise-generator control unit, 2 receivers, local oscillators, a second noise-generator control unit, 2
more receivers, and power supplies. The receiver front-ends were in a box mounted on the radio-telescope. H

HD
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and has operated for its first 4500 hours without failure except for

some minor difficulties with the electromechanical counters.

A schematic diagram of shift-register and one-bit multiplier

circuitry designed for a high-speed correlator channel is given in

Figure 5. 7. This circuitry was developed by Control Equipment

Corporation for the National Radio Astronomy Observatory. The

design parameters of this machine are: N = 100 channels, K = 2

receivers, (f s)max = 10 mc, and a counter capacity, M , of 30

bits. Electronic readout (to a computer or paper tape punch) is

provided on the slowest 24 bits of the counter. An expected cost

of this machine is $400 to $700 per channel.
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CHAPTER 6

SYSTEM TESTS

6. 1 INTRODUCTION - SUMMARY

A series of experiments, designed to test various aspects of the

digital autocorrelation spectral analysis system, are described in

this chapter. These tests and their objectives are as follows:

1) Computer Simulation of the Signal and the Signal
Processing System

Samples of a time function having Gaussian statistics

and known power spectrum are generated in a computer. This time

series is analyzed in the computer through the use of both many-bit

and one-bit autocorrelation processing. One-hundred such time

series (1050 samples each) were analyzed in order to give statistical

information concerning the mean and variance of both one-bit and

many-bit estimates of the autocorrelation function and power spec-

trum. The main objective was to find the variance of the one-bit

power spectrum estimate; this is difficult to calculate theoretically

and is needed to specify the sensitivity of the radio-astronomy

system utilizing the one-bit autocorrelation function method.

2) Measurement of a Known Noise Power Spectrum

A noise power spectrum which is "known" to within

1% is produced by passing white noise through a filter whose power

transfer function is measured by conventional sinusoidal techniques.
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This signal is in the video frequency range and is analyzed using

the same clippers, one-bit correlator, and computer program

used in the deuterium line attempt. This was the first measure.-

ment performed with the system and served mainly as an equip-

ment check.

3) Measurements of Artificial Deuterium Lines

A small signal having a spectrum similar to the

deuterium line (except it is a "bump" instead of the deuterium

absorbtion "dip") was produced and injected into the deuterium

line receiver input (at 327 mc). A second large, broadband

noise signal, simulating the radio source, Casseopeia, was also

injected into the receiver input. A means of calibrating the arti-

ficial deuterium line signal in relation to the noise was provided.

Artificial lines of various magnitudes were detected, the weakest

being 37 db (0. 02%) below the noise level.

4) Analysis of the RMS Deviation of the Deuterium
Line Data

A major advantage that is expected of the digital auto-

correlation system is that the theoretical sensitivity (which increases

as the square root of the observation time) is achieved when obser-

vations are carried out for long periods of time. This is often

not the case with analog equipment because of non-stationarity or

drift in the apparatus. The realization of this advantage is



124+

demonstrated by an analysis of the RMS deviation of 68 days

of deuterium line data.

Before discussing these tests, it should be mentioned that the

digital correlator itself can be checked by the application of a few

simple test signals. Two such test signals are a constant, which

gives a constant autocorrelation function, and a square wave

(derived from the correlator clock circuitry) which gives a tri-

angular autocorrelation function. These tests were built into the

digital correlator used for the deuterium experiment and were

periodically performed. The only errors which were ever found

were missed counts in electromechanical counters used in this

machine. The tests are very sensitive; with a 10 second run at

6
300 kc. sampling rate, a single error in 3 x 10 operations can

be detected.

6. 2 COMPUTER SIMULATION OF THE SIGNAL AND THE SIGNAL
PROCESSING SYSTEM

The procedure and objective of this section was summarized

in the introduction of this chapter. Computer-generated estimates

of the mean and variance of both one-bit and many-bit estimates of

the autocorrelation function and power spectrum will be discussed.

(The reader should not be confused by the fact that we are considering

statistical estimates of the mean and variance of another statistical

estimate. ) Many terms must be defined and this will be our first
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task. After this has been done, a large portion of the experimental

procedure and results can be understood by referring to Figures

6. 1, 6. 2, and 6. 3. A discussion of the procedure and results will

be given in the second and third sections, respectively.

6. 2-1 Definitions and Terminology

The notation of this section is the same as that used in Chapters

2 and 3 with one minor exception. The time intervals, At and At ,

will be assumed equal and kAt and nA-v will be replaced by

simply k and n . As usual, p refers to normalized autocorrela-

tion functions; p refers to normalized power spectra; a single

prime, ', or a subscript, J , refers to one-bit samples; a double

prime, ", or a subscript, m, refers to many-bit samples; and a

9 with appropriate subscripts refers to RMS deviation of the variable

indicated by the subscript.

An example is 1p (f) which is the RMS deviation of the spectral

estimate computed from one-bit samples. A statistical estimate of

C (f) is c'(f). In a similar manner, the meaning of a (f) and
p1 p pm

I(f), Cr (n) and %'(n), and cy (n) and "(n) should be clear.
p pl p pm p

The many-bit RMS deviations, g (n) and a (f) have been dis-
pm pm

cussed in Chapter 2 and, the one-bit RMS deviations, 1 1 (n) and

a (f) , have been computed in Chapter 3. The statistical estimates
p1

of these quantities will be defined later in this section.
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The quantity, x(k), will denote a sample of a time function

having Gaussian statistics. These samples will be generated in

the computer by a method described in the next section. As in

earlier work, y(k) is the one-bit sample corresponding to x(k)

y(k) = 1 when x(k) > 0 and y(k) = -1 when x(k) < 0 . The time

between samples, At = At, will always be assumed equal to 1/75 kc

so that the time and frequency scale of our computer-generated

results will be the same in the deuterium-line results.

Following the procedure used in earlier chapters, the one-bit

and many-bit autocorrelation function estimates will be defined as:

p (n) sin - y(k) y(k + In 1) (6. 1)

k 1

and

K

x(k) x(k + Inj)

p" (n) k=1 (6. 2)
1 K

I x 2(k)

k~l

The subscript, i , where i will go from 1 to 100, is used to denote

each of 100 independent, but statistically alike, estimates of p(n).

Each p (n) is determined from a different group of K+n randomly

generated samples; however, each group is generated under the

same conditions, The sample size, K , will be fixed at 1050.
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The values of p (n) and p"f(n) will be calculated for n = 0 to 20

which is analogous to the deuterium-line processing.

The one-bit and many-bit estimates of the power spectrum,

p (f) and p"(f) , respectively, will be computed from p:(n) and

p '(n) in the same manner as previously used (Equation 2. 3).

For example,

20 -j2i fnAT
p '(f) = 2At p (n) w(nAt) e (6.3)

n=-20

where the cos weighting function will be used in analogy with the

deuterium-line data processing. According to the theory presented

in Chapters 2 and 3, the mean or expected value of p (f) and p'(f)
1 1

is the smoothed spectrum, p'(f), which is discussed in Sections 2. 4-2

and 2. 2,

p'(f) = p''(f) = p*(f) (6. 4)

The arithmetic averages of p (n), p '(n), p (f), and p '(f) will

be denoted by pa (n), pa (n), p'a(f), and p" respectively, where,

for example,

100

p (f) p (f) (6. 5)
av~= 100 1
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Similarly, estimates of the RMS deviations of p"(n), p'(n)

p: (f) , and p"(f), will be denoted as c'(n) , '<(n) , c'(f), and
3. 1 p p p

<''(f) respectively, where, for example,
p

100

1(f) [ p - p (f) ]2
p 1001

It can be shown (see Burington and May, 20 p. 149) that if

I functions are used to estimate the RMS deviation of a function

(as in Equation 6. 6 where I = 100), then the RMS error of the

estimate is 100/1SI percent. For example,

[' p(f) - a I(f)]

{pf) pzr (6.7)

Since I= 100 in our case, the true RMS deviations, rp 1 (f)2 ,pm '

C (n) and 0 (n), are estimated by c'(f), c"(f), o'(n) , and
p1 Pm p p P

9a"(n), respectively, with an RMS error of approximately 7%.
p

6. 2.-2 Computer Method

A block diagram of the computer program used to generate the

one-bit and many-bit estimates of the autocorrelation function and

power spectrum is shown in Figure 6. 1. This program was run

100 times with a different (but statistically alike) sequence of ran-

dom numbers each time. The results which will be presented are
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FIG. 6.1 - Block diagram of the computer program used
to simulate the signal and the signal processing system.
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the arithmetic averages and RMS deviation estimates defined in

the previous section.

A complete listing of the computer program is given in Appen-

dix-D and should be referred to for details. The main steps in the

program should be fairly obvious from Figure 6. 1 and the previous

definitions. However, the generation of the Gaussian time series,

x(k) , with known spectrum will be briefly discussed in this section.

The generation of this time series occurs in the following three steps:

1) Random numbers with uniform probability density are

generated by taking the last 4 digits of a non-convergent, iterative,

arithmetic operation (see program, statements 67 to 73).

2) A sum of 5 uniform random numbers is used to form a

new random number which has an approximate Gaussian probability

density function (see Davenport and Root, pp. 81-84, The Central

Limit Theorem). The probability density function of this sum con-

sists of the uniform density function convolved with itself 5 times;

this will closely approximate a Gaussian distribution.

3) The Gaussian distributed random numbers are statis-

tically independent and thus, they have the character of samples of

Gaussian noise with uniform spectrum (white noise). These samples

must then be passed through a sampled-data filter to give the desired
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spectrum. This is accomplished by convolving the white-noise

samples with a filter impulse response. The output samples, x(k)

are then Gaussian with a spectrum equal to the square of the mag-

nitude of the Fourier transform of the impulse response.

6. 2-3 Results and Conclusions

All of the results of the computer simulation experiment are

given in Tables 6. 1 and 6. 2; the more important results are also

plotted in Figures 6. 2 and 6. 3.

The arithmetic averages, p" (n) , p (n) , p* (f) , and p (f) ,av av av av

should be within a few times g/d 100 of the true mean, where the

respective o of a single estimate is used. The VlO term arises

because the arithmetic averages are taken over 100 independent

estimates. The agreement of the averages of the estimates with

the true mean is quite as expected and is not too illuminating since

the theoretical work for this result is quite clear.

Our major interest is in the estimates of the RMS deviations,

cIn), o'(n), c'If) , and c'(f) . It should be kept in mind that
p p p p

these quantities are statistical estimates of the true values, P (n),

o (n), c (f), and a (f) and will have an RMS error of 1/N 200
p1 pm P 1

7% of the true value as is indicated by Equation 6. 7.

The many-bit and one-bit RMS deviations, c (n) and c<(n)
p p

respectively will be discussed first. Examination of cf"(n) in
p
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TABLE 6.1

RESULTS OF COMPUTER SIMULATION EXPERIMENT
AUTOCORRELATION FUNCTIONS

pp(n) p ( "'((n) m '(n)
px n 10(n) av p p

n 10,000 x 10,000 x 10,000 x 10,000 x 10,000

True Many-Bit One-Bit Many-Bit One-Bit
Function Estimate Estimate RMS Dev. RMS Dev.

0 10000. 0 10000. 0 10000. 0 0. 0 0. 0

1 -0.3 24.7 43.6 269.8 393.5

2 -3094.2 -3177.1 -3185.3 273.5 389.7

3 -0.4 -9.2 -42.0 338.1 466.9

4 -1801.3 -1702. 9 -1766.4 375.8 467. 2

5 -0.7 -21.8 44.2 322.3 460.0

6 -501.7 -476.9 -462.3 349.9 502. 9

7 -3.0 19.3 41.1 319.2 513.8

8 210.7 194.5 228.1 346.8 486.1

9 -5.8 -9.0 -28.7 350.4 517.8

10 242.8 .233. 9 285. 4 345.8 531. 3

11 16.4 -21.0 -36.7 317.7 498.5

12 29.2 31.5 -31.0 343.4 575.0

13 3.9 48.9 107.4 340.0 552.1

14 -74.5 .85.9 -42.4 314.1 493. 8

15 -3.3 -40.5 -31.9 357.3 500. 1

16 -50.7 -75. 5 -92. 8 383. 8 533. 3

17 -10.4 -16.6 -1.2 331.9 486.3

18 7.4 38.0 20.3 326.5 475.8

19 -8.8 26.8 34.3 324.6 462.7

20 9. 1 -32.4 -55.0 372.3 570.7
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FIG. 6.2 - Results of computer simulated autocorrelation
function measurements.
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TABLE 6.2

RESULTS OF COMPUTER SIMULATION EXPERIMENT
POWER SPECTRA

a "(f) cr'(f)
PA) P (f) p '.(f) P lP

av av p(f) p*(f)
f x 5000 x 5000 x 5000

kc True Many-Bit One-Bit Many-Bit One-Bit
Mean Estimate Estimate RMS Dev. RMS Dev.

0
1
2
3
4
5

6
7
8
9

10

11
12
13
14
15

16
17
18
19
20

21
22
23
24
25

26
27
28
29
30

31
32
33
34
35

36
37

4.
8.

17.
34.
57.
86.

118.
146.
167.
178.
182.

182.
182.
181.
181.
181.

181.
181.
181.
182.
182.

182.
181.
181.
181.
181.

182.
183.
181.
174.
157.

132.
102.

71.
45.
25.

12.
5.

5.
8.

18.
34.
57.
85.

116.
144.
164.
176.
181.

183.
183.
183.
182.
183.

184.
185.
186.
185.
185.

185.
185.
184.
183.
181.

180.
179.
177.
170.
154.

129.
99.
69.
44.
24.

12.
5.

6.
9.

17.
33.
55.
83.

115.
143.
165.
178.
184.

186.
186.
185.
184.
185.

186.
186.
184.
182.
182.

183.
184.
183.
181.
178.

178.
180.
180.
173.
157.

130.
99.
68.
42.
23.

10.
3.

0.
0.
0.
0.
0.
0.

0.
0.
0.
0.
0.

0.
0.
0.
0.
0.

0.
0.
0.
0.
0.

0.
0.
0.
0.
0.

0.
0.
0.
0.
0.

0.
0.
0.
0.
0.

0.
0.

237
181
145
128
122
118

122
126
115
099
096

110
119
109
098
103

108
112
115
112
105

106
116
127
127
116

105
104
111
115
117

123
126
126
131
145

160
190

2.
1.
0.
0.
0.
0.

0.
0.
0.
0.
0.

0.
0.
0.
0.
0.

0.
0.
0.
0.
0.

0.
0.
0.
0.
0.

0.
0.
0.
0.
0.

0.
0.
0.
0.
0.

0.
2.

882
547
625
375
258
187

166
166
157
144
144

160
167
151
136
139

145
149
154
156
155

155
155
157
163
162

151
149
160
161
161

177
199
236
314
470

941
323

I I ___________ I A &
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Figure 6. 2 indicates that it is in good agreement with the "exact"

theory (the approximations are well justified) given by Equation 2. 50.

Equation 2. 52, which assumes linearly independent products of

many-bit samples, gives a value for P (n) which is somewhat

low. Similarly, Equation 3. 27, which assumes statistically inde-

pendent products of one-bit samples, gives a Pl(n) which is

somewhat lower than 5<(n)
p

A closer and more compact comparison of the autocorrelation

RMS deviations can be obtained by averaging along n , for example,

20

a. ' = z '(n) (6.8)

n 3=

Since a is the average of 18 approximately independent points,
p

its RMS error is reduced by NfII to a value of 1. 65%. The results

concerning autocorrelation function RMS deviations are summarized

in the following table.

TABLE 6.3 AUTOCORRELATION FUNCTION RMS DEVIATION

(average value in interval 3 < n < 20)

ONE-BIT MANY-BIT RATIO

Results of Approx. Results of Approx.- Exact Increase

Computer Theory Computer Theory Theory Due to
Simulation Eq. 3. 27 Simulation Eq. 2. 52 Eq. 2. 50 Clipping

y p p Ppm pm p p

.0500 .0485 .0338 .0309 .0346 .48
t.0008 t. 0006 ' . 04
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The results concerning the RMS deviations of the many-bit and

one-bit spectral estimates, cY*"(f) and c'(f) , are indicated in
p p

Figure 6. 3. These results indicate that c'(f) is slightly greater
p

than g "(f) in the constant passband region of p*(f). However, at
p

the edges of the band, where p*(f) becomes small, c'(f) becomes
p

much greater than Cr"*(f) . In the many-bit case, ac"(f)/p *(f), is
p p

fairly constant (except for small increases near f-0 and f : f S/2)

and hence, a measurement of p*(f) at a frequency where p*(f) is

small is just as accurate as at a frequency where p*(f) is large.

This is not true in the one-bit case; 9 '(f)/p*(f) becomes large
p

when p*(f) becomes small. This is the most valuable result of the

computer- simulation experiment. Experimental results on actual

spectra indicated the same phenomenon; however, it was thought

that the increase of Y 1(f)/p*(f) at the edge of the band may have

been due to non-ideal operation of the sampler and clipper. In actual

radio-astronomy measurements, the observations were confined to

the constant passband region, such as between 5 kc and 30 kc in

Figure 6. 3.

It is convenient to define p as the ratio of the one-bit spectral

RMS deviation to the many-bit spectral RMS deviation; p is estimated

by r'(f)Jc"(f) . Strictly speaking, p is some unknown function of f
p p

and depends on p(f) and W(f) . However, since the spectra we will

measure in most radio-astronomy applications have the same gross
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shape as the spectrum of Figure 6. 3, the estimate of P given by

a '(f)/cr "(f) has more general application.
p p

In the midband region where p*(f) is constant, P appears to

be constant. An accurate value can be obtained by averaging the

spectral RMS deviations in the interval, 0 kc < f < 29 kc, i. e.,

-' 1 -p. = 1
p20

29

p 0
f=10

(6.9)

There are about 10 independent points in this interval, thus the RMS

error is reduced by [IhI to give a value of 2. 416. We then obtain the

following table.

TABLE 6.4 SPECTRAL RMS DEVIATION

(average value in interval 10 kc < f < 29 kc)

ONE-BIT MANY.-BIT RATIO

Results of Results of Exact Increase
Computer Computer Theory Due to
Simulation Simulation Eq. 2. 56 Clipping

b'/p* "^*p* a p* "
p p pm p p

.1534 .1107 .1150 1.39
±.0036 i.0025 t0.04

The most important result in this

which applies in the constant region of

section is the value, P = 1. 39±. 04,

a spectrum similar to that of
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Figure 6. 3. Examination of CYf(f) and c-"(f) indicates that the
p p

increase in P at the edges of the band follows an empirical law

of the form,

p 1 . 39 [p*Jp*(f)] (6. 10)
0

where p* is the value of p*(f) in the constant midband region.

This equation holds only for p*/p*(f) < 4 ; the increase in p is

greater for p*/p*(f) > 4 . Thus, at 1 db points, P % 1. 56 ; at 3 db
0

points, P= 1. 95; and at 6 db points, I= 2. 78.

The increase of p for small p*(f) implies, in the case of

radio-astronomy measurements, that the observed frequency band

should be in the constant midband region of the receiver power trans-

fer function, G(f+f ) . A correction,is, of course, made for the

multiplication of the receiver input spectrum, T(f+f 0 ), by G(f+f )

(see Section 4. 2-1 ). However, the uncertainty of the T(f+f ) meas-

urement will increase at the edges of the band in a manner indicated

by the previous paragraph.

The spectral RMS deviation results found in this section will be

compared in Section 6. 5 with the RMS deviation of the data taken in

the deuterium-line experiment; the results are in excellent

agreement.
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6. 3 MEASUREMENT OF A KNOWN NOISE POWER SPECTRUM

6. 3-1 Procedure

The goal of this test was to compare, as accurately as possible,

a spectral measurement made by the one-bit digital autocorrelation

method with a spectral measurement performed by some other method.

The limitation on the accuracy of the comparison lies in how accurately

the spectrum can be determined by the "other method. " The basic

limitation on the accuracy of the autocorrelation method is the

statistical uncertainty due to finite duration of data; this uncertainty

can easily be made less than 0. 1%.

A spectrum which is "known" to an accuracy of about 1% can be

produced by passing white noise (uniform spectrum) through a filter

whose power transfer function, IH(f)1 2 , is measured (see Figures

6. 4 and 6. 5). The power spectrum, P(f) , at the output of the filter

is given in terms of the input spectrum, P0(f) , by

P(f) -IH(f)1 2 P (f) (6. 11)

Thus, if P (f) is constant over the region H(f) is non-zero, then

P(f) is proportional to !H(f)12

The one-bit autocorrelation function method of spectral measure-

ment produces a spectral estimate, p (f) , whose mean is the smoothed
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and normalized spectrum, p*(f) . Ten such estimates (i = 1 to 10)

were obtained with the same equipment utilized in the deuterium-

line experiment, this was one of the early tests of the equipment.

A 75 kc sampling rate and one hour integration time were used;

21 points on the autocorrelation were determined; and a uniform

weighting function was applied in the Fourier transformation.

According to Table 2. 1 and Equation 3. 34, the frequency resolution,

Af, is 2. 16 kc, and the statistical uncertainty, CSpy/p(f) is 0. 053%.

The arithmetic average of the ten estimates is defined as

p a(f), whereav

10

p (f i (f) (6. 12)

iv 1

The RMS deviation of the spectral estimate, c (f), is estimated by
p1

o (f) which is defined as follows,

10

07'(f) IP "(f) - P av 2 (6. 13)

I=I

The object of the experiment, then, is to compare p (f) or
av

a p (f) with the jH(f)f 2 measurement. We will also compare

c (f) with the theoretical value, c (f).
p p
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The measured value of IH(f)1 2 , which we will call fH (f) 2

cannot be compared directly with p ay(f) or a p (f) since these

spectra have been normalized and smoothed. Therefore, JHm (f)

was also smoothed and normalized to give pm(f), where

f2IH (f) 2 * W(f) 
(6. 14)

S H (f)1 2  W(f) df

0

(The asterisk denotes convolution.) Note that even if JHm(f)I

were perfectly measured, pm(f) would not quite be equal to p (f)

This is because p*(f) also contains a modification due to sampling

(see Equation 2. 10). As a result, a difference between p*(f) and

P (f) should occur for frequencies near half the sampling frequency.

6. 3-2 Results

The results of the experiment are presented in Figure 6. 6. In

general, the agreement of the spectrum determined by the measure-

ment of IH(f) I and the spectrum measured by the one-bit autocor-

relation system is excellent. Within the region (6 kc to 32 kc) between

the filter half-power points, the largest error is 1. 5% which is

probably due to error in the measurement in IH(f) . The large

increase in error for f > 32 kc is due to spectral foldover (an effect

of sampling). The increase in the error at very low frequencies may
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be due to the noise generator not having a flat spectrum at these

frequencies. The error may also be due to increased RMS deviation

for small p*(f) as was discussed at the end of Section 6. 2-3.

The estimate of the RMS deviation, )c"(f) , is also shown in
p

Figure 6. 6 and is of the order of a few tenths of a percent. This is

higher than the theoretical value of 0. 053% (which applies only in

the midband region between 6 and 32 kc). The reason for the higher

experimental value is apparently due to variations in the filter char-

acteristics during the measurement time. The temperature coeffi-

cients of the capacitors and inductors used in the filter are of the

order of 200 ppm per 'C. The measurements of the ten spectra

took two days and it is estimated that the temperature varied t5*C,

thus causing a 0. 1% change in inductor and capacitor values. This

would tend to shift the filter center frequency; an effect which can be

observed upon examination of the ten spectra and is evident both in

the shape and magnitude of the experimental RMS deviation curve.

Subsequent experiments (next two sections) indicate that the system

does realize the theoretical RMS deviation.

6.4 MEASUREMENT OF ARTIFICIAL DEUTERIUM LINES

The goal of the deuterium line experiment was to detect the 327 mc

deuterium line if the galactic and terrestrial deuterium-to-hydrogen

Wwtjj NANO 01 NO"- - -- No ! !! ! - - -- ___ ___ --- - - - - - - - - ----- '.'d..4
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ratios are equal. The search was made for the line in absorbtion

from the Casseopeia A radio source. The spectrum that is expected

in this case can be predicted from hydrogen-line observations in this

same direction and is shown in Figure 7. 3. Essentially, a 3 kc-wide,

0. 01% dip in the noise spectrum near 327 mc must be measured.

The receiver noise temperature is approximately 1000*; the background

source, Casseopeia A, supplies another 1000'; and the peak deuterium

absorbtion will be approximately 0. 2* if the galactic and terrestrial

abundance ratios are equal.

A spectrum which is similar to this (a "bump" is produced instead

of a "dip") can be generated with the apparatus shown in Figure 6. 7.

A 3 kc-wide noise spectrum, centered at 18 kc, is generated by the

noise generator - filter method used in the preceding section. This

spectrum is heterodyned up to 327 mc through the use of the receiver

local oscillators. Care was taken to prevent the generation of spurious

signals. The signal is passed through a calibrated (i0. 5 db) high-

frequency attenuator and then coupled through the -20 db parts of two-

directional couplers to give two outputs. The radio source, Casseopeia

A, is simulated by high-frequency broad-band noise generators

attenuated to a proper level.

Two sources of the signal are needed, since both polarizations

are observed by the deuterium-line equipment. In the actual experiment,

, ". 40,., . .1 . I I I I - ----- - .- - 11 . 1 11. 1. _-1 - - 1. - - 111 _ - - - - _Z ;=
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each polarization gives an independent but statistically alike signal;

this doubles the effective observation time and, hence, increases the

sensitivity by FZ. In our artificial experiment, two separate high-

frequency noise generators (each simulating a component of the

random polarization of Casseopeia A) are used and, hence, the 1000*

broad-band noise signals are independent. In contrast to this, the

weak, 3 kc-wide, artificial deuterium-line signals arise in a common

source and are, therefore, not independent. However, as long

as these signals are small (<< 1000*),there will not be an increase in

RMS fluctuation due to the coherence of the two artificial signals.

The ratio of the artificial signal power to the broadband noise

power can be determined by observing (on a meter) the change in

total receiver output power as the artificial signal is increased by

varying the calibrated attenuator. By knowing the shape of the artificial

line and the shape of the receiver bandpass, the peak artificial signal

temperature is found. The attenuator then provides a means of adjust-

ing the strength of the artificial deuterium line.

The results of some artificial deuterium-line observations are

shown in Figure 6. 8. Two observations of an artificial line, which

is 1% of the total noise temperature 2000' , are shown in the top

portion of the figure. The two observations were performed two weeks

apart and illustrate the repeatability of the measurement.

'I
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The lower portion of Figure 6. 8 shows the results of an observa.-

tion of a 0. 02%, 0. 4 %, artificial line and, for comparison, an obser.

vation with no line. The 0. 02% line is just at the borderline of

detectability, being just twice the theoretical RMS deviation for the

integration time of 1. 5 x 105 seconds.

6.5 ANALYSIS OF THE RMS DEVIATION OF THE DEUTERIUM-LINE
DATA

6. 5-1 Theoretical RMS Deviation

The deuterium-line data was processed slightly differently from

the procedure to specify antenna temperature presented in Chapter 4

and, thus, an RMS deviation equation slightly differentafom that given

by Equation 4. 28 arises. The quantity that was examined is the

measured difference spectrum, 3p'(f) = p'(f) - p(f) , divided by thec

measured receiver bandpass function, p'(f) . This dimensionless
0

quantity, 3p'(f)/p*'(f) , will be designated as s(f) and has physical

significance in that it is simply related to the deuterium optical depth.

Under the assumption (discussed in Section 5. 1-2) that the receiver

is balanced (3Tav = 0), the mean of s(f) is given by Equation 4. 22 as,

--a'v 0 a

s (f) T(f+f0  T (6. 15)
p 0 (f) I T0 av
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where Tt(f,+f ) is the smoothed input temperature spectrum and T0 av

is Tt(f+f ) averaged in frequency over the receiver bandpass.

T*(f+f ) is the sum of the smoothed antenna temperature spectrum,

T (f+f) , and the receiver noise temperature, Tr (All of these

terms have been defined and discussed in Chapter 4). If Equation

6. 15 is solved for Tt(f+f 0), Equation 4. 20 (with 3Tav = 0 ) results.

The RMS deviation of T t (f+f ) is then given by Equation 4. 28.
a 0

The RMS deviation of s(f) is found upon application of Equation

4. 23, which gives the RMS deviation of a normalized spectral estimate

such as p'(f) , p'(f) , or p'(f) . As explained in Section 4. 4, thec0

RMS deviation of p' (f) can be neglected. The RMS deviation of
0

3p*(f) = p'(f) - p(f) is twice that of p'(f) or p(f) [a factor of \c c

arises because 3p (f) is the difference of two random quantities;

another factor of N arises because only half the total observation

time, t , is spent on each measurement], The result is,

A s(f) =F T - - A f/b (6.16)

where a, P, Af , and b are defined after Equation 4. 23. The

numerical values which apply in the deuterium-line experiment are

a= 0.866, p= 1.39, Af= 3.75 kc, and b= 30 kc.

The time, T, in Equation 6. 16 is equal to the actual observation

time only if a single switched receiver is used and if no blanking time
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is allowed in the switching cycle. As previously explained, four

switched receivers, each monitoring an independent signal, were

used in the deuterium-line experiment. The time, t , then becomes

the observation time per receiver and, except for blanking, would be

equal to 4 times the actual observation time. The blanking time is

1/4 of the total time; thus, t is equal to 3 times the actual deuterium-

line observation time, T . In the course of the experiment, r was

recorded (it is proportional to the number of counts accumulated in

the first counter of the correlator) and whenever observation times

are quoted, t (and not -Ta) is meant. In the deuterium-line experiment

a r of 76. 5 days was achieved even though the antenna was in use

only 68 days and the source was observable only 12 hours a day.

One further step was taken in the processing of the deuterium-

line data. A linear (with frequency) correction was applied to the

measured spectrum to remove any slope that was present (typical

slope correction, 1. 5 x 10- 5/kc ). In other words, the slope-corrected

function, c(f) , is given by,

c(f) = s(f) - (a+ b f) (6.17)

where a and b are chosen to minimize the mean square value of

c(f) . The reason this correction is needed is due to imperfections

in the front-end switch and noise source and is discussed in Section 5. 1-1.
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Some of the statistical error is removed by the slope correction

and the theoretical RMS deviation of c(f) is lower than that of s(f).

It can be shown (Kenney and Keeping,21 Section 8. 7) that the reduction

is by a factor of 1 - 2/N where N is the number of independent

points on the curve. Assuming that points Af/2 = 1. 87 kc apart are

independent, N = 13. 4 for the 25 kc bandwidth which was analyzed.

Thus, the RMS deviation should be reduced by a factor of 0. 92.

The result of applying this correction and substituting numerical

values for a, p, and b is,

Ac(f) 0 5 (6.1~8)

It is convenient at times to give a temperature scale to s(f) and

c(f) by multiplying them by T which was approximately 20000.av

The quantity, AT = Tav Ac(f) then has an interpretation as the RMS

deviation of the measurement of Tt(f+f) Tav, and is given by,

AT 2. 05 T (6. 19)
T A f a

(6. 20)

%IT)HRS

6. 5-2 Experimental Results

The deuterium-line data consists of 169 spectral estimates, each

accumulated with an average observation time, ' , of 10. 8 hours.
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These estimates will be labeled c (f) where i goes from 1 to 169.

The mean of each estimate is given by Equation 6. 15 (with a slope

correction) and the RMS deviation is given by Equation 6. 18, 6. 19,

or 6. 20. The computer program that was used to produce each

c (f) from the output of the digital correlator is listed in Appendix D.

Each spectral estimate was plotted and examined for interference.

A few spectra were discarded due to unusual appearance. The remain-

ing 169 spectra were averaged into weekly averages, tri-weekly

averages, and a final, overall nine-week average. The results of the

three week and nine week averages are shown in Figure 7. 3.

An experimental estimate of the frequency-averaged RMS deviation

of each c (f) is given by Ac. , computed as follows,

30

Sc 1 i2 (f) (6. Z21)

f= 5

(It is assumed in this computation that the mean of each c (f) is zero,

meaning the deuterium line is not present. Unfortunately, this proved

to be the case.) The RMS error of an estimate of the RMS deviation

computed in this manner is equal to 100/Ii percent (Burington and

May, 20 p. 149) where I is the number of independent points on the

spectrum. Assuming points Af/2 = 1. 87 kc apart are independent,
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I = 13. 4 , and the error is approximately 19%. If the Ac. from L
1

different records are averaged together, the RMS error will be

l9/L percent.

In addition to computing the Ac. for each 10. 8 hour record,

the frequency-averaged RMS deviation was also computed for longer

records formed by averaging the 10. 8 hour records. The results

are presented in the table below and, in somewhat different form, in

Figure 6. 9.

TABLE 6.5

ANALYSIS OF RMS DEVIATION OF THE

DEUTERIUM-LINE DATA

AVERAGE NUMBER THEORETICAL EXPERIMENTAL
RECORD OF RMS RMS
LENGTH RECORDS DEVIATION DEVIATION

L T Ac T Ac.
av av 1

10. 8 hrs 169 0. 3400 0. 34000. 0100

229 hrs 8 0.0730 0.087*±0.0120

612 hrs 3 0.0450 0.066*±0.0140

1835 hrs 1 0.0260 0.042010.0160

The results indicate that the

sensitivity is not large, even for

departure from the theoretical

integration times of the order of
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106 to 10 seconds. This should be compared with the conventional

Dicke radiometer, where the theoretical RMS deviation is usually

not achieved for integration times longer than 102 to 103 seconds.

The stability advantage of the one-bit autocorrelation system is put

clearly in evidence in Figure 6. 9.
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SPECTRAL RMS DEVIATION ~ MIN. DETECTABLE SIGNAL
EXPRESSED AS % OF NOISE LEVEL
(3.75 10 BANDWIDTH IS ASSUMED)

AT
T

1%

MEASUE BENSITIVITY
OF A CONVENTIONAL

*3% "WS ITOCED-RADIOMETER

.1% - THEOFETICAL SENSITIVITY
OF OKD6BIT AUTOCORRELATION
SWITMHED-RADIOMETER

03% -THEORETICALSENSITIVITY OF ,
A CONVENTIONAL \ MEASURED SENSITIVITY
SWITCHED-RADIOMETER OF OU3-DIT AUTOCOR.

SWITCHED-RADIOMETER

.01%

.003%

.001%

10 100 103 10 4 105 106 107

OBSERVAT ION TIME, SECONDS

FIG. 6.9 - Experimental and theoretical sensitivity of a

conventional Dicke radiometer compared with a one-bit 
auto-

correlation radiometer. The measurements 2 n the Dicke radi-

ometer were performed by Cohen and Orhaug
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CHAPTER 7

THE DEUTERIUM LINE EXPERIMENT

7. 1 INTRODUCTION

At present, only one spectral line has been observed in radio

astronomy. This is the 1420 mc (21 cm) hydrogen line, detected

in 1951 by Ewen and Purcell. This line is due to hyperfine splitting

of the ground state of cold, neutral, atomic hydrogen which exists

in the interstellar regions of a galaxy. During the past 11 years,

23
extensive studies of the hydrogen line have been made (see Shklovsky,

Chapter 4) and valuable physical characteristics (such as density,

temperature, line-of-sight velocity) of the interstellar medium have

been measured. Indeed, it has been found that a large fraction of

the total mass of our galaxy consists of this neutral atomic hydrogen,

which is presently not observable by any other means.

Deuterium, an isotope of hydrogen (sometimes called "heavy

hydrogen") exhibits a similar hyperfine transition which occurs at

24
approximately 327 mc. In 1952, Shklovsky predicted that it might

be possible to detect this line. Since 1952, there have been at least

four attempts to detect the deuterium line and all have given negative

reuls 26, 27, 28
results. '253 2 The most recent of these, by Adgie at Jodrell

Bank, had a sensitivity which was not quite sufficient to detect the
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line if the interstellar deuterium-to-hydrogen ratio, ND/NH , was

equal to the terrestrial value of 1/6600. The goal, then, of our

experiment was to detect the deuterium line if the interstellar and

terrestrial deuterium-to-hydrogen ratios are equal.

The interstellar deuterium-to-hydrogen ratio is of astrophysical

importance because it gives information concerning the nucleogenesis

of the interstellar medium. 29, 30 The role that ND/NH plays in

nucleogenesis will be very briefly outlined in the following two

paragraphs:

The relative abundances of elements formed by the nuclear burn-

ing in a star can be predicted by stellar nuclear theory. For most

elements, these abundances agree remarkably well with the abundances

found on earth and in meteorites. However, an outstanding anomaly

exists in the case of deuterium. The predicted value of ND/NH is

10 17, which is approximately 1013 times less than the measured

terrestrial ratio.

Fowler, Greenstein, and Hoyle 31 have attempted to explain

the high terrestrial ND/NH ratio in terms of nuclear processes which

occurred on the primordial earth. According to this theory, the

ND/NH ratio of 1/6600 would appear to be purely a terrestrial

phenomenon and there would be no reason to expect this value to be

true in the interstellar regions. If the interstellar medium primely
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consists of the ashes of stars, an interstellar ND/NH of 10

would be expected. An interstellar ND/NH of 1/6600 would tend

to say that both the earth and the interstellar medium were formed

from material which had never been through the stellar burning

process.

Some background material concerning the deuterium line experi-

ment is presented in the authorts B. S. Thesis. 32 The major topics

that are discussed are:

1) The bandwidth and magnitude of the expected deuterium

line are derived in terms of ND/NH This will be discussed in the

next section.

2) The choice of a direction of observation is discussed.

Assuming that ND/N H is constant in the interstellar medium, the

best signal-to-noise ratio is predicted for an attempt to detect the

line in absorbtion from the Cas A radio source.

The deuterium-line observations were performed with the 85-ft

Howard Tatel Radio Telescope at the National Radio Astronomy

Observatory, Green Bank, West Virginia. The receiving system has

been discussed, of course, in the earlier chapters of this paper.

The basic steps in the signal processing system are given by Figures

4. 1 and 1. 7. A detailed block diagram of the deuterium line receiver

is given in Figure 5. 1 and components of the system are discussed
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in Chapter 5. The treatment of the data and the theoretical and

experimental sensitivities are discussed in Section 6. 5.

7. 2 PHYSICAL THEORY AND ASSUMPTIONS

The relation between the antenna temperature spectrum, T a(f),

and the interstellar deuterium-to-hydrogen ratio, ND/NH , will be

discussed in this section. This relationship can be written down

very simply if some very important assumptions are made. These

assumptions have been made, but not stated, by past researchers

looking for the deuterium line. Indeed, these same assumptions

are included in the basic statement of the results of our work- -

The galactic deuterium-to-hydrogen ratio is less than 1/2 the terres-

trial value. A few of these assumptions are not well justified and a

reinterpretation of our measurements may be necessary based upon

future theoretical and experimental work in astrophysics.

In light of the above statements, the three basic steps relating

the antenna temperature to ND/NH will be briefly reviewed. The

simple relation between T a(f) and ND/NH will then be stated and

the important assumptions that are contained in this statement will

be listed. The three basic steps are as follows:

km 60 _,_ I
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1) The antenna temperature, T a(f) , is equal to a weighted

spatial average of the sky brightness temperature, Tb(f, , )

Ta(f) $Tb(f, 0, ) g(0, 4) d2 (7.1)

41r

where g(0, c) is the antenna gain function and dO sinO dO d4 is

the solid angle increment.

2) The sky brightness temperature, Tb(f, 0, ,) , is related

33
by the classical equation of transfer (see Chandrasekhar3) to the

optical depth of the gas (deuterium or hydrogen), t(f, 0, 4) ; the spin

temperature of the gas, T (assumed constant in space and frequency)
g

and the background brightness temperature, Tbg(O, 4) (assumed

independent of frequency). The relation is,

Tb(f, 0, 0) Tbg(O, ) e - (f,, ) + T 9 - e- T(Y, 0, (7. )

3) The optical depth of the gas is related to n(O, 4) , the

number of gas atoms (in both of the hyperfine states) in a column of

unit cross section extending from the observer to infinity in the

direction of 0 and 4 . The relation is the following, 32

hc 2 A 91
(f,o,) hc- T f Af - g 1 - u(f) - n(0,4) (7. 3)

g o g1+g

where hc /81rk is a constant, A is the spontaneous emission

probability, T is the spin temperature, f is the line frequency,



Af is the Doppler-broadened linewidth, g, and go are the

statistical weights of the upper and lower states, and u(f) is the

line shape function [u(f 0 ) = 1] .

The problem is now to apply these equations to the physical

situation shown in Figure 7. 1 and to interpret a deuterium-to-hydrogen

ratio from our deuterium results, previous hydrogen line observa-

tions in this same direction, and measurement s and calculations of

the physical properties of deuterium and hydrogen.

In the configuration of Figure 7. 1, the background brightness

temperature distribution, Tbg(O, 4) consists of a term, T 0 , which

is constant within the antenna beam and a term, T (0, 4) , repre-
p

senting the contribution of the discrete source. It is convenient to

describe the antenna temperature in terms of measurable, spatial

averages of Tp (0, c) and e- ', . These spatial averages are

T', e M S and e , defined as follows:
p

T = T (, ) g(0, c)d 2  (7.4)
p 4o p

41r

e ~ e- T~,6 ), (, d 0 (7. 5)

e 1 e- g(0,3 ) d2 (7.6)

4e
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a%

T , r(f,9,(p)

ANTENNA T

DEUTERIUM
GAS

CAS A
RADIO
SOURCE

FIG. 7.$ - Configuration for the deuterium-line experiment.

TH (fH,,e) = 4 over all p tH (fH,e,) = 400 over .982 np
H (fH,eP) = 0 over .018.L,

FIG. 7.2 - Two extremes of the possible distributions of hydrogen
optical depth in front of the Cas A radio source are shown. Both
configurations would give the same measured, spatially-averaged,
hydrogen optical-depth, TH(fH), defined by Equation 7.5. However,
the distribution at right would give a measured, spatially-averaged,
deuterium optical-depth, T'(fD), which would be 100 times greater
than that given by the uniform distribution with the same ND/NH
ratio. The major point is that the assumption of uniform hydrogen
optical-depth is the most conservative distribution that can be
chosen as far as setting an upper limit on the ND/NH ratio.
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In words: T' is the contribution to antenna temperature from the
p

discrete source; V'(f) is minus the logarithm of the average of

e taken over the solid angle subtended by the discrete

source; and r"(f) is minus the logarithm of the average of e- T(f,

taken over the entire antenna beam. It is important to note that

t (f) and t"(f) are not just simple averages of r(f).

Equations 7. 1 and 7. 2 can be combined to specify the antenna

temperature in terms of the quantities defined above,

T a(f) T ' e-(f) + T e't<'(f) T [1T - eT ](f (7.7)
ap 0 g

The first term in the above equation represents the contribution to

antenna temperature from the discrete source attenuated by the gas,

the second terms represent the background contribution attenuated by

the gas; and the last term represents emission by the gas.

In the case of the deuterium line, r'(f) = 'D(f) and 'r'"(f) = (f

are much less than one. The exponentials can be expanded to give,

T (f) =T' - t'(f) T + T + It "(f) [T - T] (7.8)
a p D p 0 D s 0

In the direction of the Cas A radio source, the last term can be

neglected since IrTJf) will be of the same order as Tr'(f) and

T - 10000 (with an 84-ft telescope) is much larger than T - T 0 ~ 45*
pg o
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(this assumes that T for deuterium is the same as T for hydrogen
g g

1250K). Thus, the final result for the antenna temperature is,

T a(f) = T' + T - T' (f) T (7.9)

The relation between the peak optical depth, T (fD) and ND/NH

can be calculated with the aid of Equation 7. 3 evaluated for both

deuterium and hydrogen. We find,

0. 30 ND (7.10)
NHH H) H

The following assumptions, listed in order of increasing degree

of justification, are contained in Equation 7. 10:

1) The value of ND/NH that is interpreted from the meas-

urement of D(fD H) really depends on the angular distribution

of hydrogen, nH(0, c), within the solid angle, 2p , subtended by the

discrete source. It also depends on the discrete source temperature

distribution, T (0, 4) . These statements are illustrated in Figure 7. 2

and are explained in the next paragraph.

The ratio, TD(fD', 0 H (fHP 0 ) , does not depend on

nH(0, ) if the deuterium spatial distribution is the same as that of

hydrogen; i. e., nD(0, 4) (ND/NH) nH(0, c) . However, even if the

distributions are the same, the ratio that is measured, T(fD hH ,



167

depends on nH(0, 4) . This arises because of the peculiar way

T H(fH) depends on THfH, 0, ) in Equation 7. 5. If T(fH) was a

simple spatial average of rH H, 0 1), then Th(f D)/ H H) would

be directly related to N H in a manner independent of nH(W,

[assumed proportional to nD(, )

Due to the high resolution that is required, neither nH(0, 4) nor

T (0, 4) have been measured. It is assumed in Equation 7. 10 that
p

both nH(0, 4) [and, hence /,rH(fHs 0, 4)] and T (0, ) are constant

over Rp. It appears (see Figure 7. 2) that this is the most conserva-

tive distribution that can be assumed. In other words, any other dis-

tribution would allow a lower upper-limit of ND/N to be interpreted

from our results. Future measurements of nH(0, 4) and T (, )

for the Gas A radio source will allow a-more sensitive interpretation

of our results.

2) The spin temperatures for deuterium and hydrogen are

assumed equal. Justification of this assumption is uncertain, since

it depends on estimates of the intensity and detailed profile of the

interstellar radiation field at the frequency of deuterium Lyman a

radiation. This problem has been discussed by Field. 34 ,

3) The ratio of the Doppler-broadened linewidths of deu-

terium and hydrogen, AfD/Af H , would be equal to the ratio of the

line frequencies, /fDfH , if the atoms had the same RMS velocity.
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However, a portion of the RMS velocity is due to thermal motion in

which the deuterium atoms, having twice the mass, would have 1/JE

of the RMS thermal velocity of the hydrogen atoms. The other com-

ponent of RMS velocity is believed due to random cloud motion which

would give the same velocity to deuterium and hydrogen atoms. These

velocities are independent and, hence, the total RMS velocity is the

square root of the sum of the squares of the RMS thermal and random

velocities. Approximately 0. 5 Af H is due to thermal motion and,

thus, 0. 866 AfH must be due to random cloud motion. These num-

bers give D/ fH 4 0. 935 fD H *

4) The value of the deuterium transition probability,

-17 -l 34.
AD = 4. 65 x 10 sec , given by Field is correct (this same

value was independently computed by Professor A. H. Barrett of

M. I. T. }. The value, AD = 6. 6 x 10~ 7, given by Shklovsky23 is

incorrect (Equations 14-6, 15-4, 18-3, and 18-4 appear to be

incorrect). The value of A H = 2. 85 x 10-15 sec 1 is not in doubt.

5) The value of the peak hydrogen optical depth, TI fH )

in the Gas A radio source is also the subject of some controversy,

its large value being difficult to measure. The first observers,

35
Hagen, Lilley, and McClain, using a 50-ft paraboloid, report

TH(fH) 2. 6 . Muller, 36 using an 83-ft reflector, gives 4. 0, and

observers at California Institute of Technology, 37 using a single 90-ft

telescope, report TH(fH) > 4. 7 , and 3. 4±0. 4 when using two 90-ft
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telescopes as an interferometer. We will assume that a value,

T H (fH) 4. 0 , is correct and, thus Equation 7. 10 gives,

TD(fD) 1. 8 x 10~4 (7. 11)

for ND/NH = 1/6600 .

7. 3 RESULTS AND CONCLUSION

The final result of the deuterium-line data analysis described

in Section 6. 5 is the normalized spectral function, c(f) . The mean

or expected value of this function is given by,

Tt (f+f ) + T - T

CMf a 0T r av (7. 12)
av

where Tt(f+f ) is the smoothed (by an equivalent scanning filter of
a o

3. 75 kc bandwidth) antenna temperature spectrum, Tr is the receiver

noise temperature, and Tav is the frequency-averaged value of

T T (f+f ) + T (see Equation 4. 14).
a 0 r

The antenna temperature spectrum is specified by Equation 7. 9

in terms of the deuterium optical depth, TD(f) , the sky background

temperature, T , and the contribution to antenna temperature from

the discrete source, T' . The substitution of Equation 7. 9 into
p

Equation 7. 12 gives,

T '
c(f) =T+T +T av t(f)] (7. 13)

p 0 r
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where Tav is the frequency averaged value of T"(f) and 4 (f) is

the smoothed version of TD (f) . (A term, -T T', has been
D av p

neglected in the denominator of Equation 7. 13,.) The ratio,

T "/(T' + T + T ), was measured directly each day by noting the
p p o r

change in total power as the antenna was moved on and off Cas A;

its value is 0. 46 + 0. 02. (The individual temperatures were,

T',#920* , T ~80* and T ~ 1000'.)
p 0 r

The value of c(f) that is expected if ND/NH = 1/6600 is shown

at the top of Figure 7.3 andthe measured results are shown beneath

it. The shape of tG(f) can be predicted from the measured hydrogen

profile, 32 T (f) . The value of the peak deuterium absorption dip,

D(f D) , is given by Equation 7. 11. A reduction by a factor of 0. 9

was allowed because of the smoothing effect of the spectral measure-

ment system; i. e., T*(fD) 0 9 ffD)

The theoretical RMS deviations of the measurement are given by

Equation 6. 18, 6. 19, or 6. 20, and are indicated on Figure 7. 3. The

theoretical RMS deviation of the average of all the data equals the

peak spectral dip expected from an ND/NH of 1/36, 000. If a detec-

tion criterion of twice the theoretical RMS deviation (97. 7% confidence)

is used, the minimum detectable ND/NH is 1/18, 000. Examination

of the data in Section 6. 5-2 indicates that the experimental RMS de-

viation is approximately 1. 4 times the theoretical value; and, thus,

the minimum detectable ND/NH should be raised to 1/13, 000.
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Our conclusion, then, is that the deuterium-to-hydrogen ratio in

the region examined is, with probability 0. 977 and within the stated

assumptions, less than half the terrestrial value.
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Tt(f) - Tav c(f)

x 10

0.10 - EXPECTED PROFILE IF ND/NH = 1/6600 5

0 0

- 0.1 -

0.1 0 - AVERAGE OF ALL DATA

oT 00 0
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00 FIRST 3 WEEKS DEVIATION

3 -0.1 5

Li-0.1
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FREQUENCY ABOVE 327,384.3 KC REFERRED TO THE LOCAL STANDARD OF REST

FIG. 7.3 - Results of the deuterium-line search in the Cas A radio source.
The temperatures indicated on the left-hand margin are with respect to the

total noise temperature (A20000 ) averaged over the receiver bandpass. The

quantity, c(f), is defined by Equation '7.12.
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CHAPTER 8

AN ATTEMPT TO MEASURE ZEEMAN SPLITTING OF THE

21-CM HYDROGEN LINE

8.1 INTRODUCTION

The existence of a galactic magnetic field is presupposed by

theories describing the polarization of starlight, the emission of

galactic radio noise, and the behavior of cosmic rays. The magni-

tude of the field cannot be measured directly from these effects,

although estimates of from 10-5 gauss to 10-6 gauss are common.

These facts are discussed and referenced by Shklovsky, 23 and also

in two papers 3 8 , 39 that describe previous attempts to measure the

field by measuring the Zeeman splitting of the 21-cm hydrogen line.

The experiment was first suggested by Bolton and Wild. 40

A brief description of the Zeeman effect on hydrogen line radiation

may be given as follows. The line-of-sight component of the galactic

magnetic field causes a splitting of the radiation into left-hand and

right-hand circularly polarized waves with a difference in frequency

-6
of 2. 8 cps per 10 gauss. The sharpest hydrogen lines found in

absorption of the strong discrete sources are ~ 10 - 20 kc wide, and

thus the expected splitting of 3 - 30 cps is quite difficult to measure.

The procedure consists of alternately measuring the hydrogen profile

with feeds that are receptive to circular polarization of opposite sense
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and recording the difference profile. This difference profile, A T(f)

is related to the observed (either polarization) profile, T(f) , by the

following relation which holds if the frequency splitting, Af , is small

compared with the width of the observed line:

AT(f) Af T'(f) 2.8x 10 H T (f) (8.1)

where H is the magnetic field, and the prime denotes derivative

with respect to frequency. The observed profile and the expected

difference profile for the two observed sources, Gas A and Taurus A,

are shown in Figures 8. 1 and 8. 2.

8. 2 EXPERIMENTAL PROCEDURE

Observations of Gas A and Taurus A were performed with the use

of the 85-ft Howard Tatel Radio Telescope at the National Radio

Astronomy Observatory, Green Bank, West Virginia, in conjunction

with a dual circular polarization feed built by Jasik Laboratories.

The receiving system and the treatment of data were the same as used

in the deuterium-line experiment except for the following changes:

1) Instead of switching between the antenna feed and a com-

parison noise source, switching was performed between an antenna

feed receptive to right-hand circular polarization and another feed

receptive to left-hand circular polarization. Thus, a measure of the

difference spectrum, AT(f) , given by Equation 8. 1, is obtained.
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Switching between polarizations was done at a 1/14 cps rate by using

a mechanical coaxial switch. Double stub tuners were inserted be-

tween each arm of the switch and the feed, and were adjusted so that

the standing-wave ratio of each polarization feed was less than 1. 01

when measured through the switch.

2) Of course, it was necessary to change the receiver

front-end and first local-oscillator. An electron-beam, traveling

wave, parametric amplifier was used for all observations except

for those of Taurus, Data B, for which a crystal mixer was used.

The single-channel noise temperature, including switch and stub

losses, was 600* for the parametric amplifier, and 1080* for the

crystal mixer.

3) The filter and phase shift networks (items 20, 18, and

17 in the block diagram of Figure 5. 1) were changed so that the

receiver bandwidth was doubled. The 1 db bandwidth became 50 kc

and the 20 db bandwidth became 75 kc. The correlator clock fre-

quency was changed so that the sampling frequency became 150 kc.

The frequency resolution, A f, is therefore 7. 5 kc.

The observational procedure consisted, first, of making

a ten-minute observation of the absorption profile, with the use of

the right-hand circular polarization feed. Typical results are the top

curves in Figures 8. 1 and 8. 2. A loss in sensitivity or a frequency
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error could be found in this manner. Next, after this run, a five-hour

run for measuring the difference profile was made. The local oscilla-

tor was reset every half hour to correct for Doppler shift resulting

from the earth's motion. One or two 5-hour runs were made on

Cas A and Taurus A each day for approximately 35 days.

8. 3 RESULTS AND CONCLUSION

A difficulty that arises in performing the Zeeman experiment is

due to small differences in gain between the right-hand and left-hand

circular polarization feeds. If the gain of one feed is 1 + a times

the gain of the other feed, then the difference profile, AT(f) , will

contain a term a - T(f) ; the absorption profile will appear in the data.

Since the absorption profile is known, it may be removed from the

difference profile. However, care must be taken that the correction

is not shifted in frequency, for this would cause a false Zeeman

effect. It is easily seen that if an unbalance signal, a - T(f) , is

corrected by subtraction of a profile, a - T(f+3f), then the result is

the same as that which would be found for a Zeeman splitting of value

a - 3f .

Approximately 20 percent of the data that were taken showed

values of a less than 0. 003 (Data A); 40 percent had a between

0. 003 and 0. 03 (Data B); and the rest had a greater than 0. 03 and

were not used. The variations in a are probably due to temperature
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effects on the feed, stubs, and switch, and to tracking errors and

flexure of the telescope. The largest error in the local oscillators

was less than 100 cps; thus, even with a = 0. 03, the largest spurious

-6
Zeeman effect would be 3 cps, or -10 gauss.

The average of the Data A and Data B runs for Gas A and Taurus

A are plotted in the figures. The Data A runs require no correction

for feed unbalance, while the Data B runs have been corrected as

indicated in Table 8. 1. Our conclusion is that the line-of-sight

component of the magnetic field is less than 3 x 106 gauss in Gas A

and less than 5 x 10-6 in Taurus A. This conclusion contains the

important assumption that the line-of-sight component of the magnetic

field is constant within the absorbing hydrogen gas.



ZEEMAN RESULTS

Theoretical Actual Total Observ.

RMS RMS Noise Profile Time Treatment of Data
Fluctuation* Fluctuation Temperature Depth T

T (sec)

Cas 0. 0730 0. 099 0  10600 1800 1. 2 x 105 No correction to data
Data A 1.4 1. 9

Cas 0. 0530 0. 120 1060* 1800 2. 1 x 105 Absorption profile of
Data B 1.0 2.3 1. 37* peak subtracted

from raw data

5
Taurus 0. 0440 0. 040 850* 600 2. 2 x 10 Small slope correction
Data A 2.2 2. 0 of 0. 120/10 kc

Taurus 0. 080 0. 050 13300 600 1. 6 x 105 Absorption profile of
Data B 4.0 2.5 1. 150 peak subtracted

from raw data

*AT = 2. 1 T/TBT , where TJ

Observation Time. (The q
give a peak signal = AT. )

= Antenna + Receiver Noise Temperature, B = 7.

uantity below AT is the magnetic field in units of

5 x0 3, and T is the
10-6 gauss which will

2\T' = RMS value of data, with the mean taken over frequency.

Ho

TABLE 8. 1
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APPENDIX A

EQUIVALENCE OF THE FILTER METHOD AND THE
AUTOCORRELATION METHOD OF SPECTRAL ANALYSIS*

Two methods of measuring the power spectrum are presented in

Figure 1. 2, the filter method having output, P (i~f), and the auto-

correlation method having output, PA (i~f). Each of these outputs is a

set of N numbers (i=O, N-1) which estimate the power spectrum at N

frequencies spaced bf apart. In this appendix it will be shown that the

two methods are equivalent if the filter impulse responses, h.(t) , are

related to the autocorrelation weighting function, w(r), in a certain

manner. The equivalence of the two systems simply means that for any

common input, x(t) , the outputs are equal, P (i~f) = PA'(ibf).

The input-output relations of the two systems are,

T

P (ibf) = ZAT w(o) T x 2 (t) dt

0

N-1

+ 4At 2 w(nA-T) cos (2it i~f nAt) (A. 1)

n=1

T

1~ f x(t) x(t+nAt) dt

0

I would like to thank R. Price, M. I. T. Lincoln Laboratory, for pointing
out the relations presented in this section to me.



182
T T2

P (i~f) = x(t) h (x-t) dt]

0 0

(A. 2)

We will manipulate Equation A. 2 so that it takes the form of Equation

A. 1. In order to do so we must make approximations which are quite

valid provided the observation time, T , is much greater than the

filter time constants. In other words,

T >> mr

where h.(-)= 0 for -r>r. (A. 3)

This condition is necessary in practice in order to give a meaningful

spectral estimate.

After expanding the square of the integral in Equation A. 2 and inter-

changing the order of integration, we obtain,

T T IT

P (ibf) = f x(t) x(s)

0 0 0

h.(X-s) dX ds dt
1

A change of variable, T =s-t , gives,

x(t) x(t+T)

T T-t

0 -t

h.(X -t)

(A. 4)

T

fh (X -t)

0

& h.(X -t--r) dX dT dt
1

(A. 5)
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If the condition of Equation A. 3 is used, the integral on X can be very

closely approximated by,

00

g(t) = 4
0

h (k) h.(X--T) d (A. 6)

to give,

T T-t

PF(i f) = f
0 -t

(A. 7)

Upon examination of Equations (A. 1) and (A. 7) we notice that they

will be similar if we require,

gi(-r) = 2 A-r

N- 1

n=-(N- 1)

w(nA-r) cos(Z5tcibf nAr) F(-r-nA -r)

(A. 8)

Equation A. 8 is substituted into Equation A. 7; the integral on T become s,

T-t

(A. 9)

An approximation based on condition (A. 3) has again been used in Equation

A. 9; the argument of the impulse function will be between the limits of

integration for the range of interest, -(N-1)Ar < nAr < (N-l)AT, if

(A. 3) is valid.

x(t) x(t+-r) g,(-r) d-r dt

-t

x(t+,r) 3(-r-nA-r) d'r = x(t+nd-r)
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The result, then, of the substitution of Equation A. 8 into Equation

A. 7 is,

PF'(i~f) A (i~f) (A. 10)

which is what we wished to prove.

The equality required by Equation A. 8 can be more easily under-

stood if Fourier transforms are taken of both sides of the equation.

The quantity, gi(r), is the autocorrelation of the filter impulse response,

hi(t); its Fourier transform is simply the power transfer function of the

filter, G.(f). The Fourier transform of the right-hand side of Equation

A. 8 can be expressed in terms of the Fourier transform, W(f) , of the

autocorrelation weighting function, w(t). We obtain, then,

00

G(f) = [W(f - i~f - kf s) + W(f+isf+kf S) (A. 11)

k=-00

This result is illustrated in Figure 1. 3. G.(f) consists of narrow lobes
1

centered at ±i~f, f sif, Z i3,f .i.... If the true power spectrum

is zero for f > fs/2 ( in practice we will force this to be the case)

then only the lobes of Gi(f) at ±i~f are of any importance and an equi-

valent filter bandpass is,

G.(f) W(f - i~f) + W(f + i~f) (A. 12)
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Finally, if we only consider positive frequencies which are not close

to DC (see Figure 1. 3), then,

G.(f) = W(f - iFf) (A. 13)
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APPENDIX B

THE ElB METHOD OF AUTOCORRELATION
FUNCTION MEASUREMENT

The material presented in this section is based upon papers by

Veltmann and Kwackernaak, 9 and Jespers, Chu , and Fettweis. 10

Reference (9) is in German and is not readily available. The second

reference (10) is to a paper presented at a conference in Belgium;

only the conference abstracts are available. For these reasons and

in view of the importance of References (9) and (10) to spectral meas-

urements, a summary of the results are given here. See Table I for

a comparison of the method of this section with that (AlB) of the bulk

of this paper.

Suppose we wish to measure the cross correlation functions of x1(t)

and x 2 (t), stationary, ergodic, random signals bounded by ±A1 and ±A2 ,

respectively. [For autocorrelation, xI(t) = x 2 (t).] Two auxiliary func-

tions, zI(t) and z 2 (t), having uniform probability density of 1/(2A 1 ) and

1/(2A 2 ) between iAI and ±A2 , respectively, must be introduced.

These auxiliary functions must be stationary, ergodic and statistically

independent of each other, xI(t) , and x 2 (t); that is, the joint probability

density function factors,

p(x, x2,zPz ) = p(x 1 x2 ) p(z 1) p(zZ) (B. 1)



p(xix 2 )

2A1.2A 2

0

Iz I < A

IzZI < A 2

fzl > A1

IzzI> A 2

for all arguments of x, x2 , z1 , and z2

The auxiliary functions are used as variable clipping levels for

x (t) and x 2 (t). The outputs of these "variable clippers" are y1 (t)

and y 2 (t), where,

y 1 (t) = 1

yj(t) = -l

when x (t) > zI(t)

when x (t) < z (t)

with identical equations for y 2 , x 2 , and z 2 '

Since y,(t) and y 2 (t) are either one of two values, their cross-

correlation functions are easily calculated with a one-bit digital corre-

lator which computes,

K

p1 (nA-r) = k 1 yl(kAt) y 2 (kAt + nA't)
y KL k= 12

(B. 4)

for n= 0 to

correlation

N-1. An estimate, R 1 2 (nAT), of a point on the true cross-

function, R 1 2 (T'), is then given as,

R (nAT) = A A py(B.5)
12 1 2 Py
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(B.2)

(B. 3)

(B. 5)



188

We will now prove that R 1 2 t(nA-) is an unbiased estimate of a

point on the true crosscorrelation function, that is,

R 12
t (nA t- = R 12(nA r) (B. 6)

Thus,a method is provided for estimating the crosscorrelation or auto-

correlation functions of bounded signals through the use of a one-bit

digital correlator.

The proof follows from simple manipulations of probability density

functions. For, convenience, we set y,(kAt) = y1 , y 2 (kAt + nAr) = y2

and likewise for xI(kAt), x 2 (kAt + nAt.), zI(kAt), and z 2 (kAt + nA-t).

Equation B. 4 can be substituted into Equation B. 5 which, in turn, is

substituted into Equation B. 6 to give,

R 1 2 (nAt) = AIA 2 y1y2  (B.7)

where the stationarity of yl(kAt) and y2(kA t + nA't) has been used.

The product, y y 2 , is either +1 or -1, and thus yly 2 , can be

written as,

yly 2 = (1)LP yy2=1] + (-1) P yly 2 =-1 (B.. 8)

= 2 P yly 2 =1 - 1 (B. 9)

2 P y 1 ,y 2 =l + 2 P y=-I, y2=-l - 1 (B. 10)

2 P zl,<x- z2 <x 2] + 2 Pz 1>x, z2>x 2  - 1 (B. 11)

P[yly2 =l' means, "probability y 1 y2 =1"). The term, P iz <X1 , z2 z<x2

can be written as an integral over the joint probability density function,

p(x , x 2 , z, z 2 )



P Iz < x ,z 2 <x 2

00 oO x

f f1f
-o 0 -0 -0 o 0
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x2

-00
p(Xl' X2, z 1, z2 )

(B. 12)

dZ dz- dx dxd d2 1 2

Upon substitution of Equation B. 2 into Equation B. 12 and through the

use of the boundedness of x and x2 , we obtain

x1, z 2 < 2]

1

4A A2

A I A 2

1 fA
-A I -A2

p(x I, x 2 ) dz1 dz 2 dx1 dx2

fA
1

-A1

A 2

f.
- A2

(x1 + A1 )(x2 + A 2)

(B. 14)

* P(xl, x2) dx dx2

EI2 +x A 2
+ 2A + A 1A 2 \(B. 15)

A similar manipulation of p z , z2 2

> xl, z2> x2 :1= 4A 1 A2 - A2

Equations B. 15 and B. 16 can be substituted into Equations B. 11 and

B. 7 to give the desired result,

R12 = 1 x1 2
(B. 17)

(B. 18)= R12 (nA-r)

P [z1<
xl

-A

x 2

-A 2

(B. 13)

1
4AA

11 2

4A A2

P [z

gives,

- x2 A1 + A IA
2

(B. 16)
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APPENDIX C

CALCULATION OF
OF THE

THE COVARIANCES OF MANY-BIT ESTIMATES
AUTOCORRELATION FUNCTION

& POWER SPECTRUM

In this appendix the covariances, Tm 2 f) and 2Rm2(N, m)

defined in Section 2. 3-1, are calculated.

in Section 2. 3-2.

Calculation of

The results are discussed

rRm 2(n, m) procedes by substitution of the definition

of R"(nA -), Equation 2. 4, into Equation 2. 23, to give

K K

Rm (n, m)
=1

K k=1 g=1

x(kAt) x(kAt + InIA-r) x(gAt)

- x(gAt + ImIA 1r) - R(nA'r) R(mA-t)

Fortunately, for a Gaussian random process, the joint fourth moment

of the process can be expressed in terms of products of autocorrelation

functions (see Davenport and Root, p. 108),

x(1 t) x(kAt + nIAt ) x(gAt) x(gAt + ImIAT )

+ .R(iAt + JnIAT

= R(nAt) R(mAr)

- ImJA) R(iAt)

+ R(iAt + InIAT ) R(iAt - ImIAT )

where we have set i = k - g.

(C. 1)

(C. 2)
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Substitution of Equation C. 2 into Equation C. 1 gives,

K
zRm(n, m) Z (-K-IiI) [R(iAt + In1A T )- If~i)T ) R(iAt)

K i=-K

+ R(iAt + nIA-r) R(iAt - IA) (C. 3)

where a change of variable (i = k - g) has eliminated one summation.

Thus, we have found the autocorrelation covariance in terms of the auto-

correlation function.

Equation C. 3 can be simplified if it is assumed that R(iAt) = 0 for

i > ia, where ia << K. This will be true in the practical case of

interest and we obtain,

K

aRm (n,m) = R(iA t + InI AT - Im A ) R(i At)

i=-K

+ R(iAt + InIA-T) R(iAt - [mIA)] (C. 4)

The above result will be used to calculate the spectral variance.

For this purpose it is convenientto express aRm 2(n, m) in terms of

P(f) instead of R(t). This is done by substituting the inverse transform

relation, Equation 1. 14, into Equation C. 4. The result is,

K oo oo

R 2 (n, m) =P(f) P(c) ej 2(f+a) iAt

i=-K -co -co

.e jiZfnAT . e-jxZ1fmAT + e-j2OamAr1df da (C.5)

L
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The summation on i can be expressed in closed form as (Reference

Data for Radio Engineers, 14 p. 1042),

K

j2 (f+a)iAt sin [n(f+a)(2K+1)At]
sin [ (f+a

i=-K
00

~ X (f+a-kft) (0.7)At Z
k=-oo

where f = I/At.

The approximation is valid for the purpose of carrying out the integra-

tion on a in Equation C. 5 since the other terms in Equation C. 5 can

be considered constant over regions of width, 1/KAt. The result of

this operation-ip,

Rm (n, m) = 4K f J P(f) P(kft jZx f n AT

k=- 00 -00

[ej 21t f mAT + e -j 2i (kft -f)I m A] df

(C. 8)

The spectral covariance, -Pm 2l' f 2 ), is given in terms of

2
c-Pm (n, m) by Equation 2. 24. Before making this substitution, a great

deal of complexity can be avoided by making an assumption which re-

moves the absolute value signs in Equation C. 8. The absolute value

signs arose in the definition of R"(n AT) by Equation 2. 4. They can
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be removed if Inmj can be replaced by -n in Equation 2. 4 without a

change; that is, we must show,

K

R"(nAT) x(kAt) x(kAt - nAt) (Q. 9)

kyl1

This can be done if we assume AT = hAt, where h is an integer and

K >> nh. This assumption applies in the practical case of interest

(the correlator is more complex if h is not an integer and the statis-

tical uncertainty is large if K is not much greater than nh) and the

substitution, k t = k - nh, leads to the proof.

Equation C. 8 (with absolute value signs removed) can now be

substituted into Equation 2. 24 along with the following Fourier trans-

form relations for W(nAt) w(mA'r),

00 00

w(nAt) w(mAr) f f W() W(Y)

-00 -00

- j 2-t At (nP + mY) dp dy (C. 10)

The resulting expression for (rPm 2 f' f2) is rather long as it envolves

three summations (indices: k, n, and m) and three integrations (vari-

ables: f, P,, and "Y). However, two of the summations (n and m) can

be expressed in terms of sums of impulses (new indices: L and v),

which allows the integrations on P and Y to be performed. The result

of these operations is,



9' 2 1l ' - K
~Pm f1 f)=K~t

00

k=-00

00

I±-o

00

V=-00

00

f P(f) P(kft - f)

-00

. W(f +f1 - fs) [W(f-f 2 + vfs) + W(f+ f2 vfs -kft)1 df

(C. 11)

In order to obtain minimum variance, ft should be chosen high

enough so that

P(f) = 0 for If[> ft/2 (C. 12)

In this case, only the k=0 term is non-zero in the summation on k in

Equation C. 11. The p. and v summations can similarly be reduced if

fs is chosen large enough to avoid the spurious responses due to sam-

pling of the autocorrelation function. The exact requirement is that

f be chosen large enough so that,
5

00

P 2(f) W(f + a) W(f + b) df = 0 (C. 13)

for faj and JbJ > f /2.

If the requirements of Equations C. 12 and C. 13 are met, and we

consider only IfI and If2I < fs/2, then Equation C. 11 can be sim-

plified to,

aP (f1,f2) =

00

JP (f) W(f + f [W( f 2 ) + W(f - 2) df

-00

(C. 14)
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In practice, ft and fs should both be chosen equal to 2B,

which is twice the highest frequency of a component in the power spec-

trum. This choice gives minimum variance and no spurious responses

due to sampling. In this case conditions C. 12 and C. 13 are approxi-

mately obeyed and Equation C. 14 gives an accurate description of tle

spectral variance.



196

APPENDIX D

COMPUTER PROGRAMS

Some of the computer programs developed for this work are given

here. The programs may be helpful to a reader concerned with some

specific detail of the Zeeman, deuterium-line, or computer-simulation

experiments and may also be of small aid to people who wish to write

simi)ar programs in the future. The programs are written in the Fortran

language for use with the IBM 1620 computer.

D. 1 DOPPLER CALCULATION PROGRAM

The frequency of a spectral line received from galactic sources is

Doppler shifted from the rest frequency of the line because of the fol-

lowing motions:

1) Rotation of the earth about its axis.

2) The orbital motion of the earth around the sun.

3) The motion of the sun with respect to a group of nearer stars

which form a velocity reference point called the local standard of rest.

4) The motion of the sources of the spectral line with respect to

the local standard of rest.

The program given on the next two pages calculates the line-of-sight

component of the first three of the above velocities. The line-of-sight com-

ponent of the last velocity is specified as data (VLSR) to the program which

then gives the observed frequency, F, for a given rest frequency, FO.
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The calculation method is that given by MacRae and Westerhout. 4 1 For

convenience in setting local oscillators, the program will calculate two

linear functions of F. These are, F1 F - Y1 + Z1, and, FZ = F - Y2 + Z2,

where Y1, Z1, YZ, and ZZ are constants which are specified as data to the

program. The following additional data must also be supplied to the pro-

gram:

1) The right-ascension (RA HR, RA MIN, RA SEC) and declination

(D DEG, D MIN) of the observed direction.

Z) The date in units of sidereal days from November 5, 1961.

The program will then calculate the number of mean solar days from

November 5, 1961 and will specify the eastern standard time when the

source is at transit (right'.ascension equals sidereal time). The fre-

quency correction will then be calculated for hour angles of -6 to +6

in increments of HT hours, where HT is supplied as data.

3) The program assumes the observation point is Green Bank,

W. Virginia. If a different observation point is used, the correct lati-

tude must be used in the statement specifying CAT, and the correct

relation between local time and sidereal time must be used in the state-

ment specifying ESTI.

41. D. A. MacRae and G. Westerhout, "Table for the Reduction of Veloc--
ities to the Local Standard of Rest," published by the Observatory,
Lund, Sweden, 1956.
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C DOPPLER CALCULATION PROGRAM

CL=2.998E+5
CAT= 3.1415926*(38.+26./60.+11./3600.)/180*

C1=(23.+56./60.+4.099/3600. )/24.
C2=(t21 .+40. /A0a+32.5/3A00a)1 24,
C3=3.1415926*(280.+8./60+33.9/3600.)/180.
E=&0167268

P=3.1415926*(282.+13./60.+5./3600.)/180e
5 READ 100. RAHR. RAMINs RASEC. DDEGs DMIN

PRINT 105, RAHRs RAMIN, RASEC, DDEG9 DMIN
RFAn 101. FOe VLSR9 Tt HT, Yl, Zl. Y29 Z2. F01

PRINT 1069 F0, VLSRt Tq HT, Yl, Z19 Y2, Z2s F01
KT=. /H T
Kl=KT+1
K2=2*KT+1
RA1=(RAHR+RAMIN/60. +RASEC/3600.)/24.
RA=2.*3a1415926*RAl
DEC=3.1415926*(DDEG/180.+DMIN/10800.)
CrCr0SF(DF(r)*rSF(RA)

CS=COSF (DEC)'*SINF(RA)
q=S INF ( DFC)
PRINT 107, CC, CS, S
P A LI' IS

1 RAT=T+RAl
FRT 1=19 Q /244.+Cl* (P AT-C?
ND=EST1
D=ND
NH=(EST1-D)*24.
H=NH
NM=(EST1-D-H/24. )*1440.
flM= MM
NS= (EST1-D-H/24.-DM/1440. )*86400.
PRTNT 102g ND. NH. NM* NS

PRINT 108# RAHR, RAMIN, RASEC
P2RTNTS n1)EG,# rDM4N
PRINT. FO, VLSR
PRTNTe
PRINT9
DO 4 K= 1K2
XK=K-K1
XKmHT*XK2
EST2=C1*(T+RA1+XK/24.-C2)

XLAM=XL+2.*E*SINF.(XL-P)+1 25*E*E*SINF(2**(XL-P))

A--2980 4*SINF(XL AM)+.319
B=27.344*COSF(XLAM)+17.417
C11l.858*COSF ( XL AM) -9.958
V= A*CC+B*CS+C*S

V1=V+VLSR+VE

F=FO1+DELF



2
199

C DOPPLER CALCULATION PROGRAM CONTINUED

F2=Y2*F+Z2
TF (SFNSF SWTTCH 1) 27.

2 PRINT 1039 XK. F1, V19 VE, V
GO T 4

3 PRINT 1049 XK, F1, F2
4 ((NT T NTlFE

PRINT9
PRINT 
IF (SENSE SWITCH 2) 5.6

6 TT+1a
GO TO 1
FND

C DATA CARDS

C NEXT TWO CARDS FOR CAS A
23. 21. 38.. 58. 35 2
1420405.73 -.8 33. .5 1 1400000. . O. 20405.73
C NEXT TWO CARDS FOR /'TAURUS A
5. 32. 6. 22. 00*1

1'2'iS.3 01 5 -5 1: 14Q000 .1 0. 2 0405.73
C NEXT TWO CARDS FOR SAG A
1:7. 43- 22- -28. 5:7 a2
1420405.73 6. 27. .5 1. 1400000. .1 0. 20405.73

TOT Al
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D. 2 DEUTERIUM AND ZEEMAN DATA ANALYSIS PROGRAM

The program that is described in this section takes in as data the out-

put of the one--bit digital correlator and produces the spectral estimate,

c(f), described in Section 6. 5-1. The program is broken up into the fol-

lowing five steps:

1) The cos weighting function described in Section 2. -2- is generated.

2) The computer reads in the digital correlator output on punch cards.

The correlator output consists of 21 numbers which have accumulated in a

combination of binary and decimal counters. After read-in, these numbers

are converted to the computer's binary-coded-decimal number system.

3) The correlator output is normalized according to Equation 5. 3 or

5. 4 dependent on whether the radiometer was operated in the switched

mode of operation (MODE = 2 in the program) or the unswitched mode of

operation (MODE = I in the program). The switched mode of operation

was used for the actual data while the unswitched mode was used to deter-

mine the receiver bandpass function, p' (f). The autocorrelation function

correction (for the effect of clipping) is programmed according to Equa-

tion 4. 19 for switched mode and Equation 3. 15 for the unswitched mode.

4) The sampled-data Fourier transform is performed as indicated by

Equation 3. 29.

5) The resulting difference spectrum, Sp'(f), is divided by the receiver

bandpass function, p' (f) [SBP(I) in the program], to give the normalized

spectral estimate, s(f). The slope of this spectrum is adjusted to be zero

as was discussed in Section 6. 5-1. The final output spectrum is then

typed out and punched on cards.
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C DEUTERIUM - ZEEMAN DATA ANALYSIS PROGRAM

C SENSE SWITCH 1 ON FOR PUNCH OUTPUT
C SFNSF SWITCH 2 QN FOR PRINT OUTPUT

DIMENSION W(21),A*21),B(21),RBP(21) ,R(21) ,S(38),SBP(38),D(21)

C GENERATION OF WEIGHTING FUNCTfONW(K)

DO 1 K=1,21
FLO=K-1
1 W(K)=.5+.5*COSF(3.14159265*FLO/21o)

C DATA INPUT AND OCTAL - FRACTION CONVERSION.

5 READNRUNMODESIGN
DO 6 K=121

6 READA.(K)#B(K)
PUNCH*NRUN.MODE.A(1) .SIGN

PRINT oNRUNMODEA(1) ,SIGN
PRINT e
7 DO 14 K=1#21
OC1=O.
OC2=0.
0C3=O .
8 IF(B(K)-100.)10,9.9
9 0n1-morl+1.
B(K)=B(K)-100.
GO TO 8
10 IF(B(K)-10.)12,11#11
11 c0-2--nr2+l .
B(K)=B(K)-10.
(n TO 10
12 IF(B(K)-1. ) 14,1.3,13
13 0C3=0C3+1
B( K)=B(K)-l.
GO TO 12
14 D(K)=OC1/8.+OC2/64.+OC3/512.+A(K)

C NORMALIZATION AND CORRECTION

C=1.5707963
IF ( MODE-i) 15, 15 12
C MODE 1
15 DO 16 K-1.21
RBP(K)=(2.*D(K)-D (1) )/D.(1)

16 RKIN141F (C*RP (K))

GO TO 19
C MODE 2
17 D1=D(1)
nO 1 Q K-3-21
18 R(K)=2.*SINF(C*(D(K)-D1)/D1)*COSF(C*RBP(K))*SIGN
19 !F S ENE 2 SW ITILH 2)2tO
20 DO 21 K=1,21,3
21 PRINTR(K) ,R(K+1) R(K+2)
PRINT,
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C DUTEIUM- EEMAN DATA ANAI YSIS RnGRAMb CONTul'lpi

2-20 TE (SEPNSE WTTCH 1~ 22294
22 DO 23 K=1,21,3
23 PHlNCH.R(K) .R-(K+1) .R i K+2I

C FIFRIR TRANCSFRM R T 1 F 1 Iw K I lK

DF=1.0
AA -. *T
BB=6. 2831853*T*DF
DO 25 K1l 2 7
25 R(K)=R(K)*W(K)
CC=R ( 1) *T
J=

DO 30 T=138
S(I )=CC

DD=(K-1)*( I-1)
26 S (I)=S(T)+AA*R(K)*COSF(RR*DD)

S=10000.*S( I)
IF (SENSE SWITCH 2) 260.290

28 PRINT#J#51
290 IF (SENCE WITCH 1) 2930

29 PUNCHoJoS1
PRINT.

r FINISHING OPERATIONS

IF( MODE-i )31 al 0 3
C MODE 1

31 DO 32 I=1,33
32 SBP(I)=S(I)
GO TO 5
C MODE 2

33 J-9
DO 39 I=1,33

IF (SENSE SWITCH 2) 369380
36 PRINT.JtS(I)

380 IF (SENSE SWITCH 1) 38.39
38 PlNCH. iS T

39 J=J+1
PR TNT a
IF (SENSE SWITCH 3) 141.140
141 READ.CleC2
Bl=C1/60.
A1=C?-AA*R1

PRINT9ClC2
GO TO 142

140 U=0

W1=0.
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C DUTEIUM- ZEMAN DATvA AN4AXrlr-I PRO)GRAM CONT1INYEFU

X=0

Y=0.
Z=0;

DO 35 I=6,31
G-I
U=U+S (I)

V V+G = I )Wl=W1+1.
X=X+G
Y= Y+G*G
35 Z-Z+S(I)*S(I)
Dl= W1*Y-X*X

B1= (V*W1-X*U) /Dl
RMS1=SQRF (7 W1)
H=Z-Al*A1*Wl-B1*Bl*Y-2.*A1*61*X
RMS2=SQRF (H/Wl)

C1=60 .*B1
c21--34a*B1
40 IF (SENSE SWITCH 2) 419420
41 PRINTRMS-lRMS2,ClsC2
PRINT.
420 IF ( SENSE SW I TrH 1) 42.142
42 PUNCHRMS1,RMS2,ClC2

142 J=0

43 DO 48 I=1,38
G=I
44 S(I)=S(I)-Al-Bl*G
TF (SENSE SWTTCH 2) 45.147

45 PRINTtJtS(I)
147 IF (SENSE SWITCH 4) 47,48

47 PUNCHPJ9S(I)
48 J=.J+
DO 2 K=194
2 PRINT,
GO TO 5
END

TOTAL
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D. 3 COMPUTER SIMULATION PROGRAM

The program listed in this section was used to simulate the signal and

the signal processing system. This topic was discussed in Section 6. 2.

A block diagram of the program is given in Figure 6. 1.

The time required to run this program on the IBM 1620 computer was

approximately 100 hours; however, this time did not have to be continuous.

If Sense Switch 1 was turned on, the computer would punch out cards con.

taining all of the useful results that had been computed up to that time.

These cards could then be fed back into the machine at a later time. In

this way the 100 hours computing time was accumulated mostly at night

and on weekends.
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C COMPUTER SIMULATION PROGRAM

DIMENSION H(40),AR(21),AS(38),SW(38,21),ARX(21),VRX(21),ARY(21)
DIMENSION! VRY(21),ASX(38),VSX(35),ASY(38),VSY(38);W(40);X(21)
DIMENSION Y(21) RX(21),RY(21),SX(38),SY(38)
IM-40
NM=21
LM =30
KM=21
DO 9 I=1,IM

9 READH(I)
DO 11 N-1,NM

11 READAR(N)
DO 13 L-1,LM

13 READAS(L)
READFF2vT2
READZl Z2 9KZ
IF( F) 17,17,28

17 DO 21 N=1,NM
ARX (N) -0*
VRX(N) =0.
AR Y (N ) -0.

21 VRY(N)=0.
DO 26 L-1,LM
ASX(L)=0.
VX(L)-0.
ASY(L)=0.

26 VSY(L)-0.
GO TO 32

28 DO 29 N-19NM
29 READ,ARX(N) ,ARY(N),VRX(N),VRY(N)

9G 31 6-196M
31 READASX(L),ASY(L),VSX(L) VSY(L)
32 FKZ-KZ

V=SQRF(3.3326563E7*FKZ)
U-4999.5*FKZ
IMl=IM+1
NM 1 -NM i 1
PI=3.1415926
P1 1-PI .5
PI2=PI/21.P I132 P I / 7 P13 32o*PI/75#
DO 46 L=1,LM
BE) 45 Kiiiil,KM
SWK=K-1
SWLKw(L 1)*(K 1)

45 SW(LK)=(.5+.5*COSF(PI2*SWK))*COSF(PI3*SWLK)
i6 CONTINUE

Tl=IM+NM+9
T3=T2+T1
A=.33
B= 5 9

49 F=F+1.
JF=F
PRINT.JF
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G EE)MI-U:PreR 64MW LATION PROGRAM CONTINUED

DO S3 I1 19IM
53 WU1)=0.

D0 15, NalNM
X(Nim0.
y (A )l --a
RX(N)=0.
RTf(Nks0,.
Tel.

60 DO 61 12vIM
61 W(I-1)=W(I)

DC 64 NZ.WAK
X (N-1) =X (N)

64Y(N l)-YfN),,
ZT=O.
DO 74 K=19KZ
Z=Zl*Z2
IF( -)69,7070

69 Z=Z+A
70 z1i22

Z2=Z
NZ= Z*1.E 8
Z=NZ

:74 ZTnT~iZ
W (IM)4=( ZT-U) /V
X(NM)0.
DO 78 I=J1 91M
IM2=IM1-I

78 X(NM)=X(NM)+H(I)*W(IM2)
iF(X( NM)) 83983985

83 Y(9NM)=-lo

GO TO 86
85 Y(NM)=le
86 IFiT-T1)88960,80
80 DO 81 N=1,NM

NM2=NM1 N
RY(N)ARY(N)+Y(NM)*Y(NM2)

88 T=T+1.
IF (SENSE %.WITCH 3) 82984~

82 JT=T
PRINTY JT

84 CONTINUE
IF(T -T3)C09C0,90

90 RXI=RX(1)*.0001
RYl-RY(1)
DO 98 N=liNM
X (tH wRX(N ) /RXi

ARX (N) =ARX (N)+RX (N)

RY(N) =SINF ( PI1*RY (N) /RY1) *10000.

98 VRY(N)=VRY(N)+(RY(N)-AR(N) )**2
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C COJMUI EK ~I1 ,!JLA Of! PROC3RAM CONTIfNU[ED

DE) 101 L=ILM-
SX(L)=0.

101 SY(L) .
DO 111 L=19LM
DO 135 K 29KM
SX(L)=SX(L)+RX(K)*SW(LK)

105 SY ( LWY(L)+RY-K) ( LK)
SX(L)=(10000#+2.*SX(L))/75.
ASA(L)=ASA(L)+SX(L)
VSX(L)=VSX(L)+(SX(L)-AS(L))**2
5Y (L)1 ±UUUU.Ie4e"Y IL) )/ (D. -

ASY(L)=ASY(L)+SY(L)
ll VSY (L)=VS'Y(L)+(SY(L)-AS(L))**2

IF(SENSE SWITCH 2)1139120
1.3 PRIN9PRA1,RY

DO 116 N=lNM
Ni'Ab=N- -

116 PRINTNTAb,RX(N),RY(N)

LTAB=L-1
119 PRiNTLTABSX(L),SY(L)
120 IF(F-F2)121,131.131
121 IF(SEN5L SWITCH 1) 12949 -
122 PUNCHFF2,T2

PUNCHoZ1.Z2,KZ
DO 125 N=1.NM

125 PUNCH.ARX(N),ARY(N)iVRX(N)oVRY(N)
DO 127 L=1.LM

127 PUNCH.ASX(L),ASY(L) V$X(L),V5Y(L)
PRINT9
PRINTFF2,T2
GO TO 135

131 PUNCH,0.,F2,T2
PUNCH.ZloZ2,KZ
PRINT.
PRINTv0.#F2,T2

135 PRINTZlZ2.KZ
PRINT.
DO 144 N=1,NM
ARX=ARX (N) /F
ARY=ARY(N)/F
VRX=SQRF(VRX(N)/F)
VRY=SQRF(VRY(N)/F)

- IF(F-F2)143.142,143
142 PUNCHARXARYVRX.VRY
143 NTAB=N-1
144 PRINTNTABARXARYVRXVRY

PRINT.
DO 153 L=1LLM
ASX=ASX(L) /F
ASY=ASY ( L) /F
VSX=SQRF (VSX ( L ) / F) /AS ( L)
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C COMPUTER SIMULATION PROGRAM CONTINUED

VSY=SQRF(VSY(L)/F)/AS(L)
IF(F-F2 )152 151 152

151 PUNCHASXASYVSXVSY
152 LTAB=L-1
153 PRINTLTABASXASYVSXVSY

FVSX=0.
FVSY=0.
DO 154 L=11930
FVSX=FVSX+.05*SQRF( VSX (L) /F)/AS (L)

154 FVSY=FVSY+.05*SQRF( VSY(L ) /F) /AS (L)
PRINT,
PRINT, FVSX, FVSY
STOP
END

C DATA FOR COMPUTER SIMULATION PROGRAM

C H(I) NEXT TEN CARDS

4.0463063E-02 -.21109917 2.4860613E-07 -.52083049
-.40434399 -.46204016 -. 77802933 -5.1404096E-07
-. 54630318 *13955609 .17048281 -.99998148
4.6108997E-07 -3.3561187 -3.2113635 -4.7972268

-11.575174 -1.4725131E-06 -32.110496 61.544267
61.544267 -32.110496 -1.4725131E-06 -11.575174
-4.7972268 -3.2113635 -3.3561187 4.6108997E-07
@99998148 *17048281 @13955609 -.54630318

-5.1404096E-07 -.77802933 -.46204016 -.40434399
-.52083049 2.4860613E-07 -. 21109917 .4.0463063E-02

C AR(N) NEXT TEN CARDS

10000.000 -.25521402 -3094.1803 -.36289696
-1801.3094 -.72864953 -501.72699 -2.9739641
210.65958 -5.8054740 242.76102 16.444171
29.214253 3.8847207 -74.478626 -3.3146357

-50.744706 -10a362919 7.3988346 -8.8327196
9.0940393 1.6463153 2.5638795 1.1505103
.29097677 .57754945 -1.1877550E-02 .27485701
.23565760 .16557374 .29605178 .12468219
.15563592 8.3742613E-02 2.7678368E-02 3.8857877E-02

-8.7503395E-03 9.2514949E-03 -3.5466145E-03 3.3990395E-04

C AS(L) IN TABLE 6.2

C Zl, Z2, KZ ON NEXT CARD

.75326499 .90037117 5

TOTAL
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