
MODEL-BASED SCIENTIFIC DISCOVERY:
A STUDY IN SPACE BIOENGINEERING

by
Nicolas Groleau

I.T.P.E., Ecole Nationale des Travaux Publics de l'Etat, 1986

M. S., Massachusetts Institute of Technology, 1989

Submitted to the Department of Civil and Environmental Engineering
in Partial Fulfillment of the Requirements for the Degree of

Doctor of Philosophy
in Intelligent Engineering Systems

at the

Massachusetts Institute of Technology

September 1992

© Copyright Nicolas Groleau 1992. All rights reserved.

The author hereby grants to MIT permission to reproduce and
to distribute publicly copies of this thesis document in whole or in parts.

Sintuof Autho
Department of Civil and Environmental Engineering

August 17, 1992

Certified by
Professor Laurence R. Young, Department of Aeronautics and Astronautics

Thesis Co-Supervisor

Certified by
Professor Peter Szolovits, Department of Computer Science

Thesis Co-Supervisor

Certified by
Professor Jerome Connor, Department of Civil and Environmental Engineering

Certified by
Professor Duvurru Sriram, Department of Civil and Environmental Engineering

Department Reader

Accepted by
Professor Eduardo Kausel

Chairman, Departmental Committee on Graduate Studies

- -, -1 1-- 4 14 - - - -- -- - --- ---- - - , ,

MODEL-BASED SCIENTIFIC DISCOVERY:
A STUDY IN SPACE BIOENGINEERING

by
Nicolas Groleau

I.T.P.E., Ecole Nationale des Travaux Publics de l'Etat, 1986

M. S., Massachusetts Institute of Technology, 1989

Submitted to the Department of Civil and Environmental Engineering
in Partial Fulfillment of the Requirements for the Degree of

Doctor of Philosophy
in Intelligent Engineering Systems

September 1992

Abstract

This thesis describes a novel system that modifies the theory contained in a model of the
normal human orientation system. This system, called MARIKA, demonstrates
automated scientific discovery in an actual scientific domain through techniques adapted
from diagnosis and design. MARIKA comprises a simulation module, a constraint
propagation module and a model revision module. The model is captured in a simulation
environment that produces time-varying signals. The model parameters are represented as
constrained range variables, and the input, output and intermediary signals are segmented
in time and approximated by linear combinations of a set of four simple shapes adequate
for the vestibular domain. The model linear differential equations and boundary
conditions are transformed into constraints on the curve fit parameters and the model
parameters. Some extensiona aie also provided to cover simple non-linear cases and
steady state conditions. Clinical data are abstracted using the shapes predicted by the
model. These data are then compared to simulation predictions by propagating the
constraints relating the model and the curve fit parameters. In case of contradiction, the
model is modified by either extending the range of model parameters to pathological
values or altering the structure of the model according to pre-indexed methods.

MARIKA correctly models normal vestibular data and several end-organ and nervous
processing defects. MARIKA demonstrates the synergy of diagnosis and design
techniques, qualitative and quantitative representation, and modeling, simulation, and
artificial intelligence for a routine form of automated scientific discovery. MARIKA's set
of shapes could readily be enhanced to be used to perforrm model-based theory refinement
on a variety of linear domains. These encouraging results could lead to a useful clinical
vestibular tool and to a space vestibular adaptation scientific discovery system.

Thesis Co-supervisor: Dr. Peter Szolovits
Title: Professor of Computer Science

Thesis Co-supervisor: Dr. Laurence R. Young
Title: Professor of Aeronautics and Astronautics

page 2

Dedication

I read my share of theses while working on mine. I always started by

reading the dedication and acknowledgments pages. I often found them

corny and exaggerated. I am lucky enough to find myself in the same

strange but unavoidable position.

In dedicating this work I have only one regret. Somehow it might not

justly reflect the quality of the support I received while doing it.

I would like to dedicate this thesis to my wife Patricia who suffered every

bump along the way and took close to six years of leave from her life to let

me accomplish one of my old dreams. I remember a newspaper clip she

showed me in 1985 in a beatup suburb in central France, which described

a pretty good engineering school in Massachusetts. Well, you can put it in

the scrap book now and turn to the next page.

La lune est douce,
La lune est blanche

Ce soir.
Tu es la source

Ou ij m'dpanche,
Miroir

Ob se refletent
Les mots d6sirs

Pour moi,
Qui ne souhaite
Que de mourir

Pour toi.
Amour fidele,

Corps voluptueux,
Mon ftme,

Ca tu es celle
Que je veux
Ma femme.

To you...

page 3

Acknowledgements

There are many people to thank, for the journey is long and I couldn't have traveled
alone. I've tried my best to include everyone in a mostly random order.

Thanks to Don Kaiser for coming at the right moment and teaching me so much about the
outside world. Yes...Remember kids, there is an outside world! Thanks to him as well for
simply stating "In my mind, you certainly have the necessary attributes for getting your
Ph.D., just make sure [they do] not convince you otherwise!" Many thanks too for
reviewing the text of the thesis and helping make it into readable English.

Thanks to Pete Szolovits for his earnest and just evaluations. I didn't always like it but I
knew all along it was for the best. Thanks for filling up a committee member spot when it
was freshly deserted. Thanks for thinking of me when [PI] got started.

Thanks to Larry Young for giving me the opportunity to be introduced to the space
program. Thanks also for constantly providing that element of uncertainty that at times
felt like a yo-yo ride between heaven and hell. It was for the best? Right?

Thanks to Jerry Connor for providing rock solid encouragement in all circumstances.

Thanks to Duvurru Sriram for his continued role in all my years at MIT. I appreciate his
editorial help and advise during both my theses. He gave me the opportunity to come to
MIT in the first place.

Thanks to the MVL support staff for making it a livable place. Some conversations were
long, some just a wink at the outset of a meeting but having a family at my home away
from home was a blessing.

Thanks to Jim for teaching me all the hardware stuff I know and sharing some of his
years of experience and wisdom of life.

Thanks to Beverly for making red tape what it is supposed to be, a little information, a
signature and your on your way. Thanks too for unpredictable but insightful
conversations on the widest variety of subjects (I meant patients).

Thanks to Kim Tseko for persevering in her role of dictatoress.

Thanks to Sherry for holding the house together and providing such example of a
dedicated lab member. By choice I didn't take advantage of her culinary talents and I
know I missed a lot.

Thanks to the MVL students, the old and the young generation: Keoki, Dave, Jock,
Glenn, Valerie, Juan, Karla, Scott, and Ted. Your youthful enthusiasm made the passage
of time more perceptible. Texas and southern California will hold memories of SLS-1
and hopefully SLS-2 will be reason for reunion. By the way Valdrie, you know you can't
graduate until a fellow French student joins MVL, and thanks for the Simulab help.
Particular thanks to Keoki for excellence, to Dave for being a spontaneous friend, for a
beery kind of pool game, and for his MATLAB legacy, to Jock for almost Mount
Whitney kinds of things, and to Scott and Ted for MATLAB help.

page 4

Thanks to Dr. Dan, and Dr. Mark for showing the path.

Thanks to Dan Merfeld for being patient enough to teach me what the vestibular system
is really made of and opening the doors of modeling. Being his worst student, the rest of
his teaching career should be a breeze.

Thanks to Dava Newman for racing along with me part of the way and staying ahead just
far enough.

Thanks to Lyman Hazelton for breathing a different wind into [PI] and being a different
type of boss. He gave me the elbow room I needed for the last sprint, he unwedged me at
critical points of my research and spent numerous hours reviewing the thesis document.
Thanks for the things he does and for all the things he leaves for others to do. Long life to
Scuttle! Upward, forward and onward...

Thanks to the rest of the [PI] team. In particular thanks to Irv Statler for initiating me to
the art of perseverance in argumentation, to Michael Compton for teaching me that
without PR we would all be working on OJECTS, to Rich Frainier for teaching me the
other way to do software: the organized way. Thanks to him too for optimism, patience
and always expecting more. Particular thanks go to Silvano Colombano who acted as a
remote boss, an adviser, a friend and most of all provided the ultimate motivation: a
flexible deadline and concrete post-graduation plans.

Thanks to Don Rosenthal for pointing me to LabVIEW even though this is the only
mention of the software in this document. It made my RA so much more rewarding.
Thanks also for a warm welcome and two great working trips in the Sierras. Thanks
finally for hiring Silvano in the first place.

Thanks to the members of the AI Research Branch at NASA Ames Research Center who
attended a talk I gave on an earlier version of this work and kicked me back in the right
direction. The world will have to wait for a solution to the mystery box...

Thanks to my daughters Nastassia and Marika after whom I named some of the work I
did over the first few years of their lives. They provided a constant reminder of what my
priorities ought to be. I hope somehow those years of sacrifice and roller-coaster ride will
pay back.

Thanks to Robert, Enock, Glenn, Pasquale, J-M, TB, NY, CN & ED and others for
rounder edges.

Thanks to the Westgate crowd for Volleyball, barbecues and sharing the playground, rain
or shine.

Thanks to Pascale and Bruno for a very long Saturday afternoon and a small but full
treasure chest from the mainland.

Thanks to the IM soccer, Cosmos and the Aero & Astro team for providing two
championships and some of the most childish frat 'baloney' I ever witnessed first hand.

Thanks to V6ronique and Lois for being their for my wife all those years and for the
whole family during Marika's crucial first semester in Fall 1989.

Thanks to my brother Pierre for helping me prove to myself that there is more than one
path to fulfillment.

page 5

Thanks to Pierre Haren for teaching me what AI stands for and opening the door to MIT.

Thanks to Kim and Aziz for the Celtics tickets, and thanks to Debbie and David for the
Patriots tickets.

Thanks to my hair for holding on while I was pulling on it and my head was spinning. It
instead simply decided to turn white of fright.

Thanks to Conrad Wall III for providing wall to wall references (Don's pun), and let
Gordon Arekawa and Dave Balkwill spend some of their time canning some data for me.

Thanks to Dr. Chuck Oman for paying so much attention to the mailboxes that he didn't
notice the lab was running out of teaching faculty and doctoral students. Not that it makes
a difference, nut it allowed me to slip by unhindered...

This just in time thesis was brought to you by grant NASA grant #NCC2-5705, with
additional funding from Boeing contract #L1452-JJK91-786.

page 6

Biography

Nicolas Groleau was born in Neuilly-sur-Seine, a Parisian suburb, in early 1964.

However, his parents moved to the French Riviera by the time he was four and that's

where he likes to call home.

He obtained his Civil Engineer's degree from Ecole Nationale des Travaux Publics de

l'Etat in Lyon, France, in June 1986, with a minor in Computer Science. After a year of

research on multi-expert systems at INRIA, Nicolas started his Masters in Civil

Engineering at MIT. He graduated in February 1989 with a thesis focusing on a

Blackboard architecture for Design.

Switching gears, he started his inter-departmental doctoral work at the Man-Vehicle

Laboratory in the Aeronautics and Astronautics Department where he developed an

interest for the vestibular system, image analysis, and Macintosh-based data acquisition

and analysis.

His most pressing goal is to start his career before he reaches thirty and begin saving for

his kids' college.

page 7

Table of Contents

Abstract ... 2

Dedication ... 3

Acknowledgem ents 4

Biography .. 7

Table of Contents 8

List of Figures ... I I

List of Tables .. 12

CHAPTER I ... 0 13

I. Introduction .. 4 ... 14

CHA PM R 2 ... 19

II. Scientific Discovery ... 20

11. 1. Introduction ... 20

11.2. Scientific Discovery System s .. 26

11.2. 1. Introduction .. 26

11.2.2. AM .. 26

11.2.3. BACON .. 29

11.2.4. IDS .. 4 30

11.2.5. KEKADA ... 32

11.2.6. GENSIM ... 33

11.2.7. M ECHEM /STOICH 4 35

11.2.8. CER .. 37

11.2.9. Flite ... 38

11.2.10. GORDIUS .. 40

11.2.11. Conclusion .. 41

CHAVIER 3 .. 4 43

III. Ile Scientific Dom ain .. 44

111. 1. The Vestibular Domain .. 44

IH.2. The Hum an Orientation M odel .. 45

111.3. Conclusion ... 53

CHAPTER 4 ... 55

IV. A M odel-Based Approach to Scientific Discovery .. 56

IV. 1. Brief Overview of M ARIKA . .. 56

IV. 1. 1. Choosing an Appropriate Scientific Dom ain 56

page

IV.1.2. Overview of the MARIKA System.......................57

IV.2. Knowledge Representation Details... 68

IV.2. 1. Parameter Estimation .. 71

IV.2.2. Initial Value Constraints ... 72
IV.2.3. Differentiation Constraints .. 73
IV.2.4. Interpretation of the Model Equations......................73

IV.2.5. Constraint Propagation and Patching......................76

IV.2.5.1. Model Tuning ... 76

IV.2.5.2. Structural Modifications........................77

IV.2.5.3. Model Parameter Range Modifications.............79

IV.2.6. Implementation ... 80

IV.3. Model-Based Scientific Discovery as Diagnosis and Design............81

IV.3. 1. Introduction... 82

IV.3.2. The Diagnosis Analogy ... 83
IV.3.3. The Design Analogy .. 85
IV.3.4. Conclusion .. 88

C H A PTER 5 ... 89
V. Demonstration of the System...90

V.1. Data Sources... 91

V.2. Rotating Chair Examples ... 91

V.2.1. Normal Continuous Rotating Chair......................97

V.2.2. Single Canal .. 99
V.2.3. Abnormally Low Canal Sensitivity.......................102

V.2.4. Absence of Velocity Storage............................ 105

V.2.5. Normal Sinusoidal Rotating Chair........................107

V.3. Barbecue Spit Examples ... 112

V.3.1. Normal Barbecue Spit .. 112

V.3.2. Hyper-Sensitive Canal-Otolith Interaction................... 118
V.3.3. Low Otolith Sensitivity.. 119

C H A F E R 6 ... 121

V I. C onclusions... 122

VI.1. MARIKA's Development Context .. 123

VI.2. Scientific Contributions ... 124

VI.3. Limitations of MARIKA ... 126
VI.4. Future Work ... 127

REFERENCES... 130

page 9

APPENDIX A ... 139
M A TLA B Curve Fitting Code .. 139

APPENDIX B ... 142

SCREAM ER Patch Lisp Code.. 142

A PPENDIX C ... 157

PARMENIDES Object-Oriented Programming Lisp Code.................157

APPEND IX D ... 178
Chair Example Constraint Propagation Code ... 178

APPENDIX E ... 184

EXTEND M odeling Code... 184

APPENDIX F..209

SIM ULAB M odeling Code... 209

APPENDIX G..222

The Course of Science: A Lighter Side .. 222

APPENDIX H ... 224

Real Discovery is M axim ized Intuition .. 224

page 10

List of Figures

Figure 1: The full human orientation model ... 46

Figure 2: The SIMULAB implementation of the model..47

Figure 3: Overview of the system's structure ... 57

Figure 4: The model of the semicircular canals only ... 58

Figure 5: Segmentation of the input signal, o............................ 69

Figure 6: Object network for equation Y= o.............................74

Figure 7: The constraint blocks ordering .. 79

Figure 8: Applicability of design to scientific discovery .. 86

Figure 9: The Extend model for the rotating chair........................93

Figure 10: Velocity ramp input and estimated output velocity..................94

Figure 11: Simulated internal signals..95

Figure 12: Barbecue spit simulated data. .. 119

page 11

List of Tables

Table 1: Levels of Scientific Discovery .. 21

Table 2: A Review of Scientific Discovery Research in AI........................27

Table 3: Comparison of relevant systems feature sets.......................41

Table 4: Model signals and parameters.. 52

Table 6: Segment representation.. 71

Table 7: Structural patches look up table. ... 78

Table 8: Comparison of design and scientific discovery levels. 87

Table 9: Comparison of barbecue spit data................................... 117

page 12

CHAPTER 1

Introduction

To reduce experience to order is a task older than science, the ancient goal

of the philosophers. But to augment experience is the task that engages the

artist, the artisan, the traveler, and indeed every child, who is the learner in

us all. It was out of the slow fusion of the two that science appeared

glowing in the crucible of history, and its composition is still visible in its

affinities: science owes heavy debts to philosophy, art, craft, exploration,

and childhood. [Morrison and Morrison 1987]

It is impossible to dissociate language from science or science from

language, because every natural science always involves three things: the

sequence of phenomena on which the science is based, the abstract

concepts which call these phenomena to mind, and the words in which the

concepts are expressed. To call forth a concept, a word is needed; to

portray a phenomenon, a concept is needed. All three mirror one and the

same reality. [Lavoisier 1789]

page 13

I. Introduction

As put so well in [Langley et al. 1987], I believe the process of scientific discovery is a

domain worth studying:

"The story of scientific progress reaches its periodic climaxes at the

moments of discovery...

However romantic and heroic we find the moment of discovery, we cannot

believe either that the events leading up to that moment are entirely

random and chaotic or that they require genius that can be understood only

by congenial minds. We believe that finding order in the world must itself

be a process impregn.ted with purpose and reason. We believe that the
process of discovery can be described and modeled, and that there are

better and worse routes to discovery-more and less efficient paths."

Scientific discovery has been a focus of recent Artificial Intelligence (AT) developments.

The fundamental argument is that intelligent systems should autonomously discover a

large portion of the knowledge they require. It is indeed becoming clearer that the amount

of knowledge needed for powerful specialized systems or for general purpose systems

cannot be efficiently coded by hand. The fundamental question addresses what

mechanisms will provide a computer ,ystem with such learning or discovering abilities.

One natural exploratory path is to have the computer mimic the techniques of human

scientific discovery as it is often well documented.

"...a few hundred rules in a computational system can only provide a

sketchy model. Nevertheless, what is attractive about computational

modeling of discovery is that it provides us the insights on the reasoning

behind the critical decisions taken by the scientists during the course of

their research. A computational model also provides a panoramic view of

the process of research and may even help to develop a methodology (or

page 14

methodologies) for better strategies for scientific research in different

fields." [Kocabas 1992]

Some seminal works in automated scientific discovery include the early system AM

[Lenat 1977], and the BACON prog ams and its successors [Langley et al. 1987, Karp

and Friedland 1989, Kulkarni 1987, Kulkarn: and Simon I98, Langley and

Nordhausen 1986, Vald6s-Pdrez 1990, Zytkow 1987]. Following these investigations, a

series of works retracing historical discoveries, many being demonstrated in the

chemistry domain, were developed. Though not all researchcrs agree on the exact bounds

of scientific discovery, theory formation is dearly a. the core of the domain. As scientists

advance in their understanding of a domain, they develop models that are sets of

hypotheses supported to varying degrees by experimental facts. With the risk of

oversnplifying, as the knowledge acquired by the scientists increases, the theory

formation effort progresses from the formatioi. of qu litative laws through quantitative

laws tt the unification of theories. In a way parallel to enginering design, scientific

discovery can be innovative to routine. Intuition and genius are words oftzn used to

characterize the first phase of scientific discov try. The establishment of numerical laws

and the explanation of the phenomena from first principles are difficult tasks to automate.

This is innovative science. My work focuses on the more routine aspects of discovery.

Indeed, my system includes a countable number of model alteration techniques. They can

be combined to produce non-trivial model variations, but the space of models explored

can be outlined a priori. In this thesis I present a system that performs model-based

scientific discovery. In accordance with [Hawking 1988]:

"I shall take the simple-minded view that a theory is just a model of the

universe, or a restricted part of it, and a set of rules ghat relate quantitie? in

the model to observations that we make. It exists only in our minds and

does not have any siher reality (whatever that might mean). A theory is a

good theory if it satisfics two requirements: It must accurately describe a

page 15

large class of observations on the basis of a model that contains only a few

arbitrary elements, and it must make definite predictions about the results

of future observations."

I believe model-based theory formation is an important technique, because the traditional

scientific method is to observe a phenomenon, make a hypothesis and then prove or

disprove the hypothesis, at least from a statistical point of view. When trying to prove or

disprove a hypothesis, the scientist is trying to test a model of the domain, a single

hypothesis model.

The majority of discovery systems in AT use well documented historical discoveries or

toy problems. While it is clear that the latter may be unconvincing because of the

conceptual leap between the perfect small world of a toy problem and an actual scientific

domain, the former has its own drawbacks. Proving that somehow the solution was not

accidentally coded into the system is difficult, because the computer scientist clearly

knows the answer a priori. Moreover, such re-discovery systems rarely prove their

usefulness by being tested in a scientific domain in its current development stage.

Another argument is given in [Zyskow and Baker 1991]:

"Typically, discovery systems hav relied either on user input or on

simulation. In the former case. the data are severely limited in numbers; in

the latter, they are idealized, lacking many real-.world characteristics."

I originally chose the adaptation of the vestibular domain to weightlessness conditions as

my scientific field of experiment. Providing selective stimuli to a single sensor or

suppressing a single signal is often impractical or unethical for human subjects. However,

the micro-gravity environment provides altered conditions under which the signals due to

gravity are completely eliminated. The experiment I originally chose for this

investigation is performed both on the ground and in space. Comparison of these two

page 16

experimental conditions provides insight into the role the gravity receptors play in spatial

orientation. My initial goal was to design a system that could predict the behavior of the

vestibular system for a set of astronauts in micro-gravity from baseline ground data using

a vestibular domain model. However, the data gathered during the Spacelab Life

Sciences 1 (SLS-1) space shuttle mission are inconsistent with the current views of the

vestibular system and cannot be predicted by incrementally modifying the current model.

Because further space data will be difficult to obtain, I have shifted to a more reliable

data set from clinical vestibular research.

In this thesis I describe a system that modifies the theory contained in a model of the

normal human spatial orientation system. Each parameter of the model is represented as a

range of possible values for normal subjects. As the examination of an individual

progresses through a series of clinical tests, modifications to model parameters are made

within the constraints of normality. If the individual is a normal subject, the system

constrains the set of parameters describing the vestibular system of that individual. If the

individual has a response indicating a pathological case, the system is unable to find a

consistent set of parameters. The system then modifies the structure of the model

according to the discrepancies and tunes the new model. The final result is a model

structurally different from that of a normal subject but that represents the subject's

pathological vestibular system. This system is a step towards automation of model-based

theory revision. The choice of pathological vestibular research simplifies knowledge

engineering and validation. The field has been studied over a longer period of time than

vestibular adaptation to weightlessness and data are more abundant. Moreover, the

pathological subjects I model have well defined medical conditions that are used to

evaluate the system's output. Nevertheless, the techniques developed here are readily

applicable to help solve the original model development task. However, additional

structural modification methods, such as the addition of a new parameter or the

page 17

introduction of a new signal, will be necessary to solve the original task; yet they are not

addressed in this thesis.

After this brief introduction, I present an overview of relevant Al research done in

scientific discovery in Chapter 2. The relevance to the work presented here is outlined.

Chapter 3 introduces the vestibular domain and the human orientation modeling approach

I used for this thesis. In Chapter 4 1 describe my approach to model-based scientific

discovery. I present my initial goal of space vestibular adaptation discov.ry system

before justifying the redirection towards the clinical environment. Each step of the system

from initial tuning to selection of the most parsimonious model is discussed. Chapter 5

details working examples of my system called Model Analysis and Revision of Implicit

Key Assumptions (MARIKA). These include data from normal subjects as well as

various types of pathological cases in both rotating chair and off vertical axis rotation,

known as "barbecue spit" conditions. I conclude in Chapter 6 by assessing contributions

of this work as well as outlining its limitations. I also sketch directions for future work.

page 18

CHAPTER 2

Scientific Discovery

The task of science is both to extend the range of our experience and to
reduce it to order, and this task presents various aspects inseparably

connected with one another. Only by experience itself do we come to

recognize those laws which grant us a comprehensive view of the diversity
of phenomena. As our knowledge becomes wider, we must even be
prepared therefore to expect alterations in the point of view best suited for
the ordering of experience. [Bohr 1929]

page 19

II. Scientific Discovery

11.1. Introduction

When working on routine science and trying to add even an infinitesimal brick to the

edifice of science, one runs into the problem of the nature of scientific theories. The issue

here is how to prove a scientific theory correct. As opposed to mathematical theories

where theorems are proven logically, a scientific theory cannot be proven. It can only be

disproved if one of its predictions is contradicted by an experiment. A theory becomes

closer and closer to being considered true as the number of minor theories built upon it

(that use it as an underlying principle) increases. The edifice of science is built from first

principles that are themselves small theories that serve as a sound foundation for the rest

of science. The truth value of a theory increases with the truth value of all theories that

use it as part of their argumentation. Typically these building blocks have survived the

test of time. In the scientist's mind they slowly drift from long lasting theory to

undeniable truth.

"Any physical theory is always provisional, in the sense that it is only a

hypothesis: you can never prove it. No matter how many times the results

of experiments agree with some theory, you can never be sure that the next

time the result will not contradict the theory. On the other hand, you can

disprove a theory by finding even a single observation that disagrees with

the predictions of the theory. As philosopher Karl Popper has emphasized,

a good theory is characterized by the fact that it makes a number of

predictions that could in principle be disproved or falsified by observation.

Each time new experiments are observed to agree with the predictions the

theory survives, and our confidence in it is increased; but if ever a new

observation is found to disagree, we have to abandon or modify the theory.

page 20

At least that is what is supposed to happen, but you can always question

the competence of the person who carried out the observation.

In practice, what often happens is that a new theory is devised that is really

an extension of the previous theory." [Hawking 1988]

Scientific discovery has been a focus of recent Artificial Intelligence (AI) developments.

With the risk of oversimplifying, as the knowledge acquired by the scientists in a domain

increases, the theory formation effort progresses from the formation of qualitative laws to

the unification of theories. Scientific theory formation can be broken into several tasks

requiring different techniques as the overall knowledge developed for the domain

increases. Several levels of theory formation are described in Table 1.

No. Level of Theory Formation Amount of Work

I Qualitative Laws Large

2 Quantitative Laws Large

3 Partial Hypotheses (Explanations from first principles) Moderate

4 Coiplete Theories from Partial Hypotheses Moderate + This Work

5 Generalization of Local Theories Large

6 Unification of Theories None

Table 1: Levels of Scientific Discovery.

The first level of theory formation requires the scientist to notice patterns in the data at

the qualitative level. Starting from numbers, the scientist looks for patterns and

regularities in order to come up with qualitative laws describing the phenomena that one

can observe. The direction of variation of numeric terms are compared and influences

between those terms are sought.

These qualitative findings can be transformed into quantitative statements by combining

related numeric terms and looking for other qualitative or numeric relations. For example,

page 21

if variable X and variable Y increase simultaneously, the ratio X may be constant. A
Y

numerical law of the form } constant is discovered. Interesting work has been done in

that area with programs such as BACON, [Langley et al. 1987], Fahrenheit [Zykow

1987] and IDS [Langley and Nordhausen 1986].

More recently, a significant effort has been started that deals with discovery in large

databases and is reviewed in [Piatetsky-Shapiro and Frawley 1989]. However, typical

scientific discovery is usually poor in data and cannot use such data hungry techniques.

"We point out that database miners cannot count on the same quality of

data as scientists can. Database miners must content themselves with

sparse, static data, because they cannot count on experiments and data

refinement available in scientific data collection." [Zytkow and

Baker 1991]

Scientific discovery usually involves interaction between data gathering and data

modeling or data explaining in one way or another. In contrast, large database discovery

cleanly separates the two activities in time.

"In a database, the data are fixed and sparse. The number of records is

fixed and no other observational attributes can be introduced." [Zytkow

and Baker 1991]

Once the numerical laws have been established, the scientist can look for explanations to

why these laws hold. According to Webster, a law is a statement of an order or relation of

phenomena that so far as is known is invariable under the given conditions. On the other

hand, an explanation shows the reason for or the cause of. The second phase of scientific

discovery is to find the underlying principles that explain those laws. This is

complementing the 'how' can these data be modeled by a 'why' can they be modeled that

page 22

way. Typically, elementary scientific principles can be hypothesized to hold in the

domain studied that lead to the observed laws.

"Une th6orie biologique n'a de sens que si elle part de l'observation des
objets naturels et y retourne rapidement. Une premiere manikre d'6prouver

sa solidit6 consiste & examiner la plausibilit6 des m6canismes 6l6mentaires

sur lesquels elle se fonde." [Changeux 1983]

Biological theories do not make sense unless they are rooted in the

observation of natural objects and rapidly return to them. A

straightforward way to test their strength is to examine the plausibility of

the elementary mechanisms on which they are founded.

These principles can be very basic or themselves built from lower level principles.

However, great discoveries often require the introduction of a new principle. As these

clusters of explanations are developed, partial hypotheses are formed. Some alternatives

usually exist at various levels as the overall compatibility of the locally mapped

knowledge hasn't been established. Discovering underlying principles can actually be

done in two ways. One can consider the laws and try to infer which principles could

produce such laws. Conversely one can hypothesize a particular explanation, calculate the

nature of the law it would produce and compare it to the observed law. This is the way

the scientific method always prefers. The predicted results are compared to the actual data

and the match is statistically evaluated. The two techniques are also used interactively.

The differences between the predictions and the data are left to be further modeled. The

first pass determines the first degree law and subsequent passes allow the description of

higher order terms.

The next level of theory formation formulates more complete theories from the local

hypotheses. This stage of scientific discovery takes place when a mathematical model has

evolved from previous research. Certain parts of this model are likely to be well

page 23

established, while others are more hypothetical. Model-Based theory formation can then

be performed, as I am proposing in this thesis. The purpose of this technique is to build

on the existing model by confirming it, modifying sub-hypotheses within it or refining it

incrementally as new data are gathered. This is particularly useful for domains where

obtaining each new data point is very costly or time critical, such as space research,

biological recordings [Schement, and Hartline 1992], clinical settings, etc.

Finally, large domains will see the coexistence of a number of widely accepted and broad

theories. As in Physics, such theories will ultimately have to be unified in order to smooth

out arbitrary validity boundaries.

"The eventual goal of science is to provide a single theory that describes

the whole universe." [Hawking 1988]

This issue is currently at the crux of theoretical quantum mechanics where scientists are

working (with significant success) on the unification of the four universal forces that can

be seen as four complementary theories. The discovery of the unification of all these

forces into one will probably the greatest accomplishment of scientific discovery. It will

explain all physical phenomena by a single equation.

"I still believe there are grounds for cautious optimism that we may now

be near the end of the search for the ultimate laws of nature."

[Hawking 1988]

It is, however, clear that despite the immense esthetic value of such a universal theory,

routine science and censequently engineering need more practical tools with which to

work. Therefore, broad theories are specialized into smaller ones that have a more narrow

range of validity but that encompass a larger number of constraints, compiling a

backward copy of scientific progress into a usable program.

page 24

"it turns out to be very difficult to devise a theory to describe the universe

all in one go. Instead, we break the problem up into bits and invent a

number of partial theories. Each of these partial theories describes and
predicts a certain limited class of observations, neglecting the effects of
other quantities, or representing them by simple sets of numbers. It may be
that this approach is completely wrong. If everything in the universe
depends on everything else in a fundamental way, it might be impossible

to get close to a full solution by investigating parts of the problem in

isolation. Nevertheless, it is certainly the way we have made progress in

the past." [Hawking 1988]

As I have just outlined, scientific discovery comprises many tasks, and in a way parallel

to engineering design, these tasks can cover the spectrum from innovative to routine. My

work focuses on the more routine aspects of the discovery process. Indeed, a large portion

of the scientific effort consists of slowly pushing the validity of established theories in

slightly novel ways. The system I present here makes small modifications to the

vestibular system model in order to fit individual data as they are acquired. Similarly, a

system working on vestibular space adaptation would incrementally modify the model of

the vestibular apparatus to reflect the data set as it grows with data acquired in micro-

gravity.

Other scientific discovery systems have been developed but do not address the level of

discovery I just described. It seems therefore useful to review some of these systems and

their relation to the work presented here.

page 25

11.2. Scientific Discovery Systems

11.2.1. Introduction

Some seminal works in scientific discovery include the early system AM [Lenat 1977],

and the BACON programs [Langley et al. 1987]. Following these investigations, a series

of works, many being demonstrated in the chemistry domain, were developed to retrace

historical discoveries [Karp and Friedland 1989, Kulkarni 1987, Kulkarni and

Simon 1988, Langley and Nordhausen 1986, Vald6s-P6rez 1990, Zytkow 1987]. Table 2

shows some of the works mentioned above with a brief description. The systems most

relevant to this thesis are discussed in the following sectionsl.

11.2.2. AM

AM is a heuristic-driven elementary mathematics and set theory discovery system. The

system doesn't discover concepts to explain observations, but simply explores to map out

1 COPER applies the model-driven approach to numerical discovery. The system's generator is
knowledge rich. It uses dimensional attributes to constrain the generation of theoretical terms. Once its set
of theoretical terms is complete, the system performs search in a space of polynomial functions to
summarize the data.

ABACUS represents the scope of laws either as symbolic conditions or as simple maxima and
minima on the values of numeric terms.

Unlike BACON, GLAUBER is presented with the entire set of data it must analyze. Therefore, it
searches only a space of laws and concepts but no data space. The data it processes is entirely symbolic and
GLAUBER generates qualitative laws only.

DALTON performs heuristic search in a space of molecular models which must explain chemical
reactions. It can consider many reactions consecutively and intelligently backtracks if some later reaction
requires a model revision.

STAHL is a GLAUBER-like program specialized in chemistry. Its initial state is a set of reactions
and it tries to distinguish elements from compounds and to determine the elemental composition of each
compound.

Rather than stating the scope of a law as simplistic independent values, FAHRENHEIT specifies
these limits as another set of numerical laws using new theoretical terms.

page 26

mathematically interesting concepts. AM starts with 115 basic elements such as sets, lists,

and elementary relations such as equality. AM has successfully rediscovered concepts

such as multiplication, natural numbers, prime numbers and the unique factorization

theorem.

System Focus Author(s)

AM Model-driven heuristic evaluation Lenat

COPER Knowledge-based generator Kokar

ABACUS Qualitative & quantitative, Falkenheimer,

model & data-driven Michalski

BACON, GLAUBER, Numerical laws from raw data Langley, Simon,

DALTON, STAHL Bradshaw

FAHRENHEIT Numerical laws scope and Zytkow

experiment generation

IDS Numerical & qualitative laws, Langley,

time variance Nordhausen

KEKADA Experimentation strategy Kulkarni, Simon

GENSIM Qualitative theory modification Karp, Friedland

GORDIUS Theory formation and debugging Simmons

MECHEM/STOICH Simplest theory formation Vald6s-P6rez

CER Comprehensive model of Kocabas

scientific research

Table 2: A Review of Scientific Discovery Research in Al.

AM represents its concepts as frames. The heuristic rules contained in the system are

attached to slots in the concepts. The system operates from an agenda of tasks. It selects

the most interesting tasks as determined by a set of over 50 heuristics. It then performs all

heuristics it can find which should help in executing it. Heuristics represented as

operators are used to generalize, to specialize or to combine elementary concepts or

relations to make more complex ones. Heuristics can fill in concept slots, check the

page 27

content of slots, create new concepts, modify the task agenda or interestingness levels,

etc. Because it selects the most interesting task to perform at all times, AM is performing

best-first search in a space of mathematical concepts. However, its numerous heuristics

(over 200) guide its search very effectively, limiting the number of concepts it creates and

improving their mathematical quality.

This system was much more exploratory than mine. It is not trying to explain a data set,

but rather explore a space rich in interesting concepts. Howeve-, its use of heuristic-

driven best-first search applied to frames representing concepts has proven to be

powerful. In my system, I represent concepts as frames and perform best-first search in

the space of models with the help of domain specific heuristics.

This description and the following remarks concerning MARIKA reflect the

understanding of AM's behavior as stated in [Lenat 1977]. AM's disconcerting success

seemed to be limited by its impossibility to discover new heuristics. EURISKO was

Lenat's attempt at addressing this lack. The difficulties arising during the implementation

of EURISKO as well as the controversy surrounding AM lead [Lenat and Brown 1984] to

revisit the system and provide interesting conclusions regarding knowledge

representation for discovery system.

The central argument here is the following:

(1) 'Theories' deal with the meaning, the content of a body of concepts,

whereas 'theory formation' is of necessity limited to working on form, on

the structures that represent those concepts in some scheme.
(2) This makes the mapping between form and content quite important to

the success of a theory formation effort (be it humans or machines).

... [Lenat and Brown 1984]

Though MARIKA doesn't find the model patches on its own, I believe it achieves the

goal of mapping form to content in a natural manner. The model is represented as a set of

equations objects with left hand-side and right hand-side expression objects that can be

page 28

either simple signals, or combinations of signals and/or variables. Similarly, signals

comprise a se' of slots including shapes slots (constant, linear, exponential, etc.) that are

represent as structured objects themselves2 . The mapping between the physiological

defects and the equation patches is direct and natural. Modifying a parameter limit or an

expression in an equation (affecting the form of the model) translates directly into a

subject out of the range of normals or a recognizable vestibular pathology (interpretation

of the content).

11.2.3. BACON

The BACON series of systems were developed over a number of years. However, they

are all improvements on the theme of heuristic search for numerical laws. The system is

given a set of independent terms and requests the corresponding values of the dependent

terms. The system produces higher level terms and intrinsic properties3 and can apply the

same technique over again until it discovers numerical laws relating them. These laws

express linear relationships only, but the creation of theoretical terms allows it to discover

laws such as Keple 1's d!= k. Similarly, the creation of intrinsic properties allows
p 2

BACON to postulate numeric terms associated with observable ones. For example, on its

path to discovering Black's law of heat, the system postulates the existence of specific

heat and finds appropriate values for the substances involved in its experimentation.

According to its authors, BACON's weakest point is its inability to establish the limits of

validity of the laws it discovers. The FAHRENHEIT system addresses that issue.

2 Knowledge representation is detailed in section IVA.
3Intrinsic properties, such as specific heat, are numeric terms which are postulated by the scientist (or the
discovery program) that are associated with the observable nominal ones.

page 29

BACON represents data in clusters. These clusters are attribute-value pairs representing

observations at any level of complexity. Heuristics are represented as productions rules

arranged in four categories: data gathering, regularity detection, higher-level terms

definition and calculation, introduction and manipulation of intrinsic properties.

BACON can be viewed as a necessary upstream step for my system. Numerical laws

have to be discovered but also explained from simpler principles to provide the

knowledge embedded in MARIKA's model and patches. Also, a system trying to model

the adaptation of the vestibular system to space could require the addition of signals, and

parameters that could benefit from the techniques developed for the introduction of

intrinsic properties. However, the authors of BACON say:

"A hypothesis that will be central to our inquiry is that mechanisms of

scientific discovery are not peculiar to that activity but can be subsumed as

special cases of the general mechanisms of problem solving." [Langley et

al. 1987]

I believe that this is little more true than stating that GPS [Newell and

Simon 1963] is the technique that will allow computers to perform the problem

solving tasks humans encounter. This theory of scientific discovery seems far too

general and has to be specialized and proven at a finer level of detail before such

generalization can be justified. However, the insight that scientific discovery is

amenable to computational techniques remains at the core of this work.

11.2.4. IDS

IDS formulates both qualitative and quantitative laws. It interacts with a simulated world

from which it gathers data represented as attribute-value pairs that are associated with

page 30

specific objects and vary over time. Qualitative schemas are used that comprise a finite

state diagram. Each state correspond to an interval of time during which the direction of

variation of all attributes doesn't change. This representation is directly inspired by

Forbus' Qualitative Process Theory [Forbus 1984]. Initially, IDS contains only a simple

set of qualitative schemas. Three operators allow IDS to create new qualitative schemas

to represent new data. It can create new schemas if an observation cannot be classified in

an existing schema. It can add new transitions between qualitative states if they are

observed. It can also specify state descriptions if they are found to be too general.

IDS can also generate numeric laws that are indexed by the objects involved as well as

the state in which they hold. The qualitative schemas therefore place numeric laws within

a qualitatively defined range of validity and also constrain the search for numeric laws.

IDS uses data-driven heuristic search for both constant and linear relations between

variables. It also has the capacity to create intrinsic properties that are attached directly to

specific objects. The system also discovers that some state transitions occur whenever the

a particular term reaches a certain value. The authors [Langley and Zytkow 1989] claim:

"IDS's greatest significance lies in its attempt to integrate the discovery of

qualitative and quantitative laws."

I have retained the use of a qualitative description of time varying signals to help

constrain the search for a better model. The search spaces however are very different, but

the discoveries of my system incorporate quantitative constraints on qualitatively

modified model.

page 31

I.2.5. KEKADA

The emphasis in KEKADA is placed on discovering strategies and processes that will

allow a discovery system to gather the data it requires [Kulkarni 1987, Kulkarni and

Simon 1988]. BACON, for example, makes no attempt to justify where appropriate data

is coming from or how it was chosen for presentation to the system. The data is just

available for use. It is obvious that the proper choice of data sets can help the discovery

system focus on interesting areas.

KEKADA provides experimentation strategies that the author claims are applicable to a

large range of scientific domains. The strategies are derived from observation of

historical discoveries in the field of chemistry. They include generic strategies such as:

focusing on a surprising phenomenon, magnification, application of divide-and-conquer,

scoping, factor-analysis, relating to other phenomena, as well as domain specific

strategies. KEKADA explores a space of rules containing both hypotheses and strategies

and a space of experiments and results. The system is implemented as a production

system working on attribute-value pairs used to represent experiments, processes,

hypotheses and strategies. The system is surprise-driven. It sets up expectations before an

experiment is carried out, and focuses on why those expectations were not met. The

system's search is controlled by a set of heuristics implemented as operators such as:

experiment-proposers, experimenters, hypothesis-or-strategy-proposers, problem-

generators, problem-choosers, expectation-setters, hypothesis-generators, hypothesis-and-

confidence-modifiers and decision-makers.

My system implements part of this strategy. MARIKA solves a well defined problem:

modify its model of the vestibular system to match the experimental results. This can

require tuning, parameter range extension or structural modifications. The simulation part

page 32

of the system sets up the expectations. As a result of failure in the constraint propagation

process, MARIKA posts various hypotheses and performs a simple search to find an

appropriate patch and instantiate it. However, KEKADA has no model of the domain, nor

is it trying to build one. It is exploring a region by focusing on surprising results and

hopes to discover increasingly interesting phenomena without explaining or modeling

them.

I1.2.6. GENSIM

GENSIM focuses on the hypothesis formation problem and qualitative scientific

reasoning. The scientific domain chosen for this system is molecular biology. The

knowledge embedded in the system reflects a detailed historical investigation of work

done over more than a decade. The hypothesis formation problem occurs when

predictions and observations are in conflict. The techniques used in GENSIM assume that

the scientific theory can be represented in a model that can be simulated to produce

expectations but that also permits hypothesis formation to rectify the faults of the theory.

It is interesting to note that because the experimental conditions of an experiment are

often known with some imprecision, these conditions can also be modified to improve the

quality of the predictions. My system does not consider that possibility because this

would be an additional but non interesting mode of modification. This mode is non

interesting in the sense that it has no influence on the model. However, finding which

conditions to modify is an interesting problem. GENSIM represents knowledge as a

hierarchical taxonomy of the classes of chemical entities, the processes that describe

chemical reactions and an actual experiment that is made of objects instantiating some of

these classes. GENSIM is actually a qualitative genetics simulator. The qualitative

reasoning is inspired by Forbus' representation [Forbus 1984] and production rules. Some

page 33

new qualitative representations are actually introduced [Karp and Friedland 1989], such

as incomplete knowledge of mathematical relationships implemented as partially

instantiated frames.

In his study of scientific literature, [Karp 1989] notes patterns in differences between

consecutive scientific knowledge levels indicating the reasoning methods used to derive

the new theories from the old ones. Among them, object modificaticn (instantiation,

postulation, refinement), process modification and creation, parameter refinement,

extension and restriction of domain of applicability, and increase and decrease in belief in

a theory. Only some of these are clearly implemented in MARIKA although most would

prove useful in a vestibular space adaptation system.

Karp also describes four different modes of scientific exploration: confirmation, theory

generation, discrimination, and fact finding. It is interesting to compare this model to the

classic three step deductive model of theory generation, prediction, and experimentation.

It becomes clear that only a single theory can exist at any given time. Discrimination

helps select the most promising theory, while fact finding generates knowledge that helps

constraint theory generation when it generates too many theories or none. My system is

mostly concerned with confirmation and theory formation.

Karp treats the hypothesis formation problem as a design problem. I certainly agree with

this approach and complement it with a diagnosis phase. The hypothesis generator, called

Hypgene uses backward reasoning to determine what modifications will eliminate the

discrepancy. Karp's modification operators perform simple syntactic operations targeted

at specific errors. Because of the highly dynamic and coupled nature of the vestibular

domain, such technique isn't applicable in MARIKA. I instead rely on a partially

qualitative forward reasoner implemented as a constraint network. Constraint violation

are directly indexed in a table of possible patches that are instantiated appropriately. As in

Karp's system, this simple scheme provides good results. Both systems would benefit

from more versatile operators, but the overall architecture remains valid.

page 34

11.2.7. MECHEM/STOICH

The purpose of MECHEM/STOICH is given by [Valdds-Pdrez 1990] as:

"Given observed data about a particular chemical reaction, discover the

underlying set of reacion steps from starting materials to products, that is,

elucidate the reaction pathway."

The system proceeds in three steps. First, it generates pathway hypotheses based on

general chemical knowledge. In the second step, a set of heuristics is applied to design

experiments and gather additional non-experimental data relating to these hypotheses.

Lastly, the system uses the evidence to confirm or invalidate the hypotheses. The system

has to propose the existence of unseen chemical elements and does so on the basis of

simplicity.

An important factor in the success of a theory is its degree of "parsimony". That is to say

that the more concise the theory, the better. Of two theories otherwise equivalent, the

simplest and most elegant will always be preferred. This is a theoretically pleasing

concept that is rather difficult to apply in practice. The notion of parsimonious theory is

present in my system. Modifying the existing theory incrementally by choosing the

simpler patches first will likely lead to adequate theories closely related to the old ones.

Once again, if the role of innovative science is to provide deep insights by parting

significantly from established scientific ground, the role of routine science is tuning the

established theory while extending it at the boundaries. Parsimonious changes are a part

of the daily routine of science.

Vald6s-P6rez introduces a distinction between two types of architecture for scientific

discovery systems. The first type, of which his system is an example, is derived from the

generate-and-test paradigm. Of course, the basic mechanism can be extended by

page 35

generating the hypotheses in a favorable order and interleaving evaluation and generation

tasks. However, the second architecture mimics the reasoning of the scientists more

closely by establishing small islands of hypothesis and confirming them before linking

these islands into a larger theory. I couldn't agree more with this second method and the

focus of my thesis is indeed the weaving of these hypothetical threads of into the

theoretical fabric.

The author also reflects on research methods in AL:

"One way to carry out Al research...is to endeavor to invent or improve a

general method, concept, or algorithm, then demonstrate its applicability

on several problems extracted largely from the real world.

A second way to carry out AT research is by selecting a real-world

problem whose automation is not easily perceived, and automating it by

whatever means found effectual. By analyzing a sufficient number of

successful automations, tentative hypotheses may be formed with a degree

of credibility assured by their origin in the empirical data of working

programs.

Conducting significant, empirical research in the seeond manner involves

1. selecting a task largely derived from the real world, 2. cemonstrating

that its automation is not easily perceived, 3. exhibiting a program that is

successful to a certain degree, and 4. analyzing how the program works

and the relation of its mechanisms with those of other programs."

I have clearly chosen the second method and this thesis is written with this agenda in

mind. However, I strongly disagree with Vald6s-Pdrez's conclusion referring to his work

and stating that:

"Notably lacking from this list is the proposal of a theory or hypothesis;

we believe that not every new datum should give rise to a new

hypothesis."

page 36

A thesis comprises more than a single new datum. In any case, this argument is only valid

at the infancy of a domain when obtaining data points is the primary objective before

establishing qualitative laws. I firmly believe that automated scientific formation has

reached beyond that stage and any piece of scientific research in this domain should begin

by the formation of a hypothesis. The purpose of the rest of the work is then to try to

invalidate the hypothesis. Failing this, the hypothesis is often considered valid and, as

time passes, becomes part of the theoretical foundation.

MECHEM/STOICH provides a mechanism for conjecturing hidden chemical entities.

Though this task is not addressed in my thesis, it would be interesting to transpose it to

hidden signals or processes of the vestibular system. Finally, this systems proves that

constrained search in order of parsimony is a useful technique. My thesis applies a similar

technique to another current scientific domain.

11.2.8. CER

CER is more of a framework for automated discovery than a program automating some

tasks on the discovery pathway. Its scope encompasses formulating and choosing

research goals, choosing strategies, proposing experiments, and generating, testing and

modifying hypotheses. It seems unfair to judge such a system on its level of

implementation. CER implements a restricted blackboard architecture through messages

posted by the various control modules. Four have been implemented: the goal setter, the

goal chooser, the strategy proposer and the experiment proposer. Using this restricted set,

the program is able to pursue the rediscovery of superconductor materials unknown to it.

It is clear that if automated discovery is to succeed, systems will have to be designed that

page 37

comprise many specialized subsystems. This observation has been formulated in

[Kocabas 1992] as:

"The design of a comprehensive computational model of discovery must

ultimately include all the essential elements of scikntific research covering

a number of different research tasks..."

The work presented in this thesis represents the automation of one such task. My claim is

that this is a non-trivial task to automate but that it plays an important role in routine

science. Citing [Kocabas 1992] again:

"Modern scientific research is a complex enterprise usually requiring a

large number of small but necessary inventions and discoveries of tools,

techniques and subsidiary hypotheses before its main goals and strategies

are accomplished."

11.2.9. Flite

The Flite system [Prager et al 1989] is a flight simulator tuner. The system helps

simulation engineers verify and tune aircraft aerodynamic models to provide the pilot in

training with more realistic feedback. The flight program is tested by comparing

maneuvers and experiments. Maneuvers are performed by the actual aircraft and the

results are recorded as time histories. Maneuvers consist of a steady-state motion,

followed by varying pilot inputs and aircraft response. During tuning, experiments are

repeated until the time histories of the simulator and the aircraft match. The dynamics are

modeled by a set of first order linear equations. The constants appearing in the equations

are called gains and represent the influence of state variables on one another.

Discrepancies are calculated between maneuver and experiment signals. The simulation

page 38

engineer can decide to tune the model to reduce any deficiencies or to tune the pilot

inputs of the experiment. Certification requires roughly a hundred maneuvers with

different combinations of aircraft configurations. Signals are segmented and discretized

using an extension of Forbus' theory [Forbus 1987]. The search in the space of

modifications of the simulator is guided by the qualitative representation of the

discrepancies. The tuning system heuristically chooses the experiments to perform. It

tries experiments affecting the fewest parameters first. However, once a parameter is

identified as deficient, the system runs all experiments that could help in the diagnosis.

The system then discretizes the maneuver and the experiment and calculates

discrepancies. Heuristics are used to decide qualitatively which parameters to modify and

how to do so after each test. These qualitative suggestions are then merged to form a

consistent set. Numerical optimization is then performed according to the qualitative

guide.

Many of the ideas of my system were inspired by Flite. The segmentation problem is

simpler in the case I consider because the shape of the input defines it. The types of

equations necessary to model the vestibular system are somewhat more complex that the

ones used in Flite's aerodynamic model. Flite focuses on the tuning process whereas my

system uses tuning only to prove that the data is consistent with the theory. In case of

contradictory qualitative suggestions, Flite stops short of action:

"The third possibility is to interpret contradictory constraints as evidence

of a structural deficiency. Structural deficiencies are not currently

addressed in this work." [Prager et al 1989]

I have focused most of my attention on fixing such structural deficiencies. However, the

overall framework proved to be useful and the tuning portion of the system can run into

interesting normal range exceptions.

page 39

II.2.10. GORDIUS

[Simmons 1988] addresses theory formation and debugging in the course of explaining

geological strata. Given a description of a section of terrain both before and after geologic

alteration, his system builds a possible geological history, or interpretation. This theory of

terrain alteration is not arrived at directly. Simmons proposes a Generate, Test, and

Debug (GTD) paradigm. The GORDIUS system first Generates an approximate

interpretation using a rule-based system. This interpretation is then Tested with a

quantitative simulator which represents passage of geological time. If the simulation

doesn't coincide with the observed soil layers, a Debugger traces back through the

dependency tree built by the simulator to remove assumptions which are responsible for

the bug. GORDIUS considers assumptions about the geological events, the parameter

bindings, the ordering of events, the persistence of attribute values, the persistence of

objects, and the existence of objects.

In order for the debugger to reason backward from the simulation bug, the simulator must

insert all possible assumptions at every point of the dependency network. The processes

described in GORDIUS are mostly invertible which permits backward reasoning. As was

noted in the discussion of GENSIM, the vestibular domain considered for MARIKA

doesn't lend itself to such inversions because the all processes occur simultaneously and

show cross-coupling effects that cannot be neglected. Also, MARIKA doesn't generate

the model it first starts with, it is given. MARIKA performs only a test and a debug

phase. The debug phase of MARIKA considers the possible absence of a process or a

signal and questions the binding of parameters. These assumptions are very similar to

ones considered in GORDIUS. However, there is no clear notion of event (or process)

ordering in MARIKA because of the dynamic nature of the vestibular system. Similarly,

objects (or signals) persist; at worse they can decay to zero.

page 40

11.2.11. Conclusion

Table 3 summarizes the features used in the systems described above and in MARIKA.

The table illustrates that each system satisfies its own requirements according to the type

of discovery it performs as well as the idiosyncrasies of the domain it is tackling.

Feature 0FeatureC

System u u

AM X X X4 X

BACON _ X. X X X

IDS X X X X X

KEKADA X X X

GENSIM X X X X X

MECHEM

STOICH X X X X

CER X .x X _X

Flite X X X X X X5 X X

GORDIUS x x x X X X6

MARIKA X X X X X X X

Table 3: Comparison of relevant systems feature sets.

Scientific discovery efforts often belong to one of two classes. The first class envisions an

architecture where every aspect of scientific discovery is taken into account in logical but

unimplemented ways. Others pretend only to have built a brick to add to the domain's

foundation. While I agree with [Langley and Zytkow 1989] that:

4AM learns concepts in a symbolic fashion though many of them relate to number theory.
5 Flite scopes its changes within the qualitative segmentation it defined.
6GORDIUS has only a weak model of the domain because, for example, the pre-conditions of a geological
process are necessa:ry but not sufficient conditions to its execution.

page 41

"One ultimate goal of research in machine discovery is the construction of
an integrated discovery system that'covers many aspects of scientific
reasoning..."

I believe that until it is clear that we have enough bricks it is more productive to mat e

more bricks than it is to start a wall. However, I am concentrating on routine science so I

could be biased toward small constructive efforts and away from unifying visions.

Consequently,I disagree with conclusions of the sort found in [Kocabas 1992].

"...integration of various research tasks and activities...constitutes a step

towards building more comprehensive models of scientific research."

Many discovery systems in Al use well documented historical discoveries or toy

problems. It is clear that the latter may be unconvincing because the small world of a toy

problem is too perfect compared to an actual scientific domain. On the other hand,

proving that somehow the solution to a historical re-discovery system was not

accidentally coded into the system is difficult, because the computer scientist clearly

knows the answer a priori. Moreover, such re-discovery systems rarely prove their

usefulness by being tested in a scientific domain in its current developmental stage. I

have chosen to build a novel system that modifies the theory contained in a model of the

normal human vestibular system. In the next section I describe the vestibular domain and

the modeling approach I used to represent it.

page 42

CHAPTER 3

The Vestibular Domain

and

its Modeling

"Les th6ories math6matiques posseient la propri6t6 d' a«exister sous une

forme autonome, mais cette qualit6 fait aussi leur faiblesse. Dans les

sciences de la nature, et en particulier en biologie, les contraintes pesant

sur la thdorie sont beaucoup plus sdvbres qu'en math6matiques. Celle-ci,

certes, doit etre irr6prochable dans sa coh6rence interne et dans sa logique,

donc satisfaire le math6maticien. Mais elle doit aussi adh6rer 6troitement A

une r6alit6 ext6rieure. Une th6orie biologique n'a de sens que si elle

correspond A une orepr6sentation >d'objets ou de ph6nomenes naturels

et, de ce fait, peut etre directement soumise A l'dpreuve de I'exp6rience."

[Changeux 1983]

Mathematical theories have the advantage of "existing" on their own.

However, this is also one of their drawbacks. On the other hand, theories

in the physical sciences, and in biology in particular, have to satisfy more

constraints than mathematical theories do. They clearly have to be

perfectly coherent internally and thereby satisfy the mathematician. But

they must also closely comply with an external reality. Biological theories

make sense only if they "represent" natural objects or phenowr.:na and

can therefore be subjected to experimental testing.

page 43

III. The Scientific Domain

111.1. The Vestibular Domain

I originally chose the adaptation of the vestibular domain to weightless conditions as my

scientific field of experiment. The human orientation system is comprised of the brain

merging information from multiple sensors yielding a sense of position and velocity in

three dimensional space. Current research focuses on how the central nervous system

integrates this information to generate appropriate responses. Providing selective stimuli

to a single sensci or suppressing a single signal is often impractical or unethical for

human subjects. However, the micro-gravity environment provides altered conditions

under which the signals due to gravity are completely eliminated. The experiment I

originally chose for this investigation is performed both on the ground and in space.

Comparison of these two experimental conditions provides insight into the role the

gravity receptors play in spatial orientation. My initial goal was to design a system that

could predict the behavior of the vestibular system for a set of astronauts in micro-gravity

from baseline ground data using a vestibular domain model. Spacelab Life Sciences 1

(SLS-1) presented a perfect opportunity for such a test. This space shuttle mission

included a battery of vestibular tests performed pre-flight on the both the orbiter crew and

the payload crew [NASA 1991]. A few data points were also obtained in space for two

experiments that can be readily compared to simulated data from our model. However,

these data are so inconsistent with the current views of the vestibular system that they

cannot be predicted by incrementally modifying the model. Because further space data

will be difficult to obtain, I have been forced to shift to a more reliable data set from

clinical vestibular research. The techniques developed here are readily usable to help

solve the original model development task. However additional structural modifiers, such

page 44

as the addition of a new parameter or signal, will be necessary to parallel the full

reasoning of the scientist.

The human orientation system comprises multiple sensors sending information to the

brain, where it is merged to yield a sense of spatial orientation. Sensors of interest to this

study include the otolith organs, the semicircular canals, the visual system, tactile

receptors and proprioceptive receptors. The otolith organs and semicircular canals are

located in the inner ear and form the vestibular system. The otolith organs react to

gravito-inertial forces. They indicate tilt with respect to gravity and linear acceleration.

During weightlessness the absence of gravity produces novel sensations. The semicircular

canals sense head rotation but provide misleading information during low frequency

stimulation (< 0.01 Hz) due to their decay characteristics. The visual system is a more

widely known sensory system that generates compelling orientation sensations that

sometimes may be erroneous. Loss of balance in very wide field of view theaters is a

striking example. Tactile perceptions allow us to sense surfaces in contact with our body

and provide valuable orientation cues. For example, a good reference point is the feet

pressing against the ground, whereby we can estimate the vertical. Proprioceptive

information consists of the relative position of body parts. A proprioceptive reflex of

interest in this study is the tendency to right the head toward the perceived vertical. The

vestibular system is discussed at much greater length in [Young 1984].

111.2. The Human Orientation Model

Earlier human orientation models often used elements representing the vision system and

the semicircular canals. Two influential models are the positive feedback model by

page 45

Robinson [Robinson 1977] and the feed-forward paths model by Raphan and Cohen

[Raphan et al. 1977]. These models demonstrate good compliance with simple orientation

experiments such as rotation about an earth-vertical axis. They were later expanded to

represent the otolith organs in an ad hoc manner. However, they do not offer much in the

way of explaining the findings of, or providing predictions for other experiments.

feedback iii]
+ar Eror Computation

Scc OtOaff

r o9 otog

a

Figure 1: The full human orientation model showing the sensors, the CNS model, the
error computation and the feedback calculations

My modeling approach is more systematic and based on the observer theory ([Kalman

and Bucy 1961], [Oman 1988]). Simply put, the Observer Theory Model (OTM) states

that the system (the Central Nervous System (CNS) in my case) has a model of the body

dynamics as well as a model of the sensory dynamics. With this model, the CNS

calculates expected values for the sensor signals according to estimates of the body

position and the stimulus. It then compares these expected signals to the actual signals

being sensed. The difference between the two is then input into the OTM that drives the

page 46

I4
OtOsi

feedback loops thereby providing a better CNS estimation. Such an OTM has been

developed ([Merfeld 1990], [Merfeld et al. 1992]) for the orientation system of the

squirrel monkey that includes otoliths organs and semicircular canals only. I have

modified the characteristics of the end-organs to reflect known human reactions. I have

also added vision, and tactile and/or proprioceptive signals in order to be able to simulate

a wider range of experiments.

ClNk To orkspa To Vorkspact To VTrkoWrp2

omegaom qarl

OM"& 9error2

57s voeter vetrl aM
int. diff.4 m . vector vcor

stppe retnl ersnsteCSitra oe.Tentra. prtofFiurf1i.th

m oTo Workspa*3

vim
5.5 voos Veie

IMt2 dff2

Figure 2: The SIMULAB implementation of the model

The model as shown in Figure I highlights the two parts of the computer simulation. The

top stippled rectangle comprises the stimuli and the actual sensors, while the bottom

stippled rectangle represents the CNS internal model. The central part of Figure I is the K

matrix that provides the feedback coefficients. I assume that the CNS has perfect

knowledge of the sensory dynamics, which means that the sensor sub-models, such as the

semicircular canals and the otoliths, are identical to the actual sensors. Also, the subject

exerts no motor control, which is an additional simplification.

page 47

The model has been implemented in Extend [Copyright Imagine That, Inc. 19901, a

computer simulation program for the Macintosh. The model has also been ported to

SIMULAB, a modeling extension to MATLAB [Copyright The Math Works, Inc. 1991]

as shown in Figure 2. The model accepts motion and visual stimuli and produces three

responses: perceived linear motion, perceived angular response, and perceived gravito-

inertial vector. For ease of implementation, the model is transposed to the Fourier

domain. Therefore, the end organs are represented as combinations of summers,

amplifiers, differentiators and integrators. Because of these process arrays have x, y and z

components, the model is correct in three dimensional space.

Looking at Figure 1 in some detail, we can observe the following. Gravity (j) is primarily

sensed by the otoliths organs. The gravity error (jen) is calculated as the rotation required

to align the expected measurement of gravitational force (otoaff with the actual

measurement of gravitational force (otofr) sensed by the otolith organs.

Angular velocity (4 is primarily sensed by the semicircular canals (scc), though vision

and somatosensory cues have demonstrated their importance particularly during low

frequency stimulation. Therefore, the semicircular canal error, the visual error and the

somatosensory discrepancy are all calculated and combined in the error rectangle.

The semicircular canal error (s3Ze) is defined to be the difference between the actual

semicircular canal afference7 (sEcaff) and the expected semicircular afference (stafr):

(se)=(scaff) (-\sccaff)

7An afferent nerve carries information as a time varying excitation level. Such a nerve exhibits a resting
firing rate which increases when excited and decreases when inhibited.

page 48

The visual error is defined to be the difference between the angular velocity of the visual

fieldo) and the expected angular velocity of the head . This quantity is calculated in

the error rectangle and is referred to as residual visual velocity (r):

(;.) = (&)-(&)

Similarly, the somatosensory discrepancy (4 is defined to be the difference between the

angular velocity sensed through somatosensory stimulation (o) and the expected angular

velocity

The angular velocity error (%eI) is defined to be the weighted vector sum of each of the

sensory errors and is calculated in the error rectangle:

(4rr~ef) = wSVCC * Eer) + wvV * (4,,v) + wVS * (id)

where wfCC, w?, and ws are the weights 8 assigned to the semicircular canals error,

residual visual velocity, and somatosensory discrepancy, respectively.

The gravity error and the velocity error are transformed into gravity feedback and

velocity feedback by multiplying the vector error by the feedback matrix (K):

8 These weights are matrices of dimension lx3 and not necessarily multiple of the identity matrix. For
simplification I assume them have identical values for all three dimensions.

page 49

gfeedback) =(K
-. 0 = (K)._&
feeack 01err

To greatly simplify this model I assume the cross effects between axes are negligible.

This simplification assumes the various sensors to be positioned exactly in perpendicular

planes. While it is known that this is not true, the resulting numerical simplification

doesn't limit the validity of the results. This simplification yields a feedback matrix with

twelve non-zero elements. To further simplify the model I neglect all response

asymmetries9 (e.g. pitch responses are equivalent to roll responses, etc.). This allows us

to fully represent the feedback matrix using just four non-zero parameters' 0:

k11 0 0 k12 0 0
0 kl 0 0 k12 0

K 0 0 ki1 0 0 k12
k21 0 0 k22 0 0

0 k2i 0 0 k22 0
0 0 k2 1 0 0 k2 2

Therefore we have:

(ifeedback) =kII * (I)*(err)+ k12 * (I)* (&err)

(feedback) =k2i * (I) * (i t) + k22 * (I)*(NaT)

9 The vestibular clearly presents such asymmetries. In particular pitch and roll responses differ from one
another and greatly differ from yaw responses. There are also asymmetries with respect to linear
acceleration stimuli: horizontal and vertical responses differ. Asymmetries exist even within a single
direction as for up and down vertical linear acceleration.
10The K matrix is of dimension 6x6. Three dimensions correspond to the three degrees of freedom
associated with angular velocity (k22) and the other three dimensions correspond to the three dimensions of
space associated with gravitational forces (kji). This allows angular velocity errors to affect the
gravitational estimate (k12) and gravity errors to affect the angular velocity estimate (k21).

page 50

These feedback vectors are used to drive the CNS models of the otoliths and the

semicircular canals respectively, producing expected afferences such as the following

(where Totol and toto2 are otolith time constants,^ ais the scc adaptation time constant and

ti is the scc long time constant).

oto(s) = S + TWO

S + toto2

to(s) a A 1*s

Ta * A1

The expected afferences are then compared to the actual afferences to produce the error

vectors discussed above.

Signal Description

W) velocity input vector

rg processing element calculating the position of gravity in head coordinates

sensed gravity vector at the beginning of the experiment

W sensed gravity vector

oto processing element representing the otolith sensors

Toto otolith time constant

^tn2 otolith time constant

(iff) sensed otolith afference vector

(fln) gravity error vector

(K) 9x9 error feedback matrix

(I) 3x3 identity matrix

feedback gravity feedback vector

estimated gravity vector

estimated otolith afference vector

a) estimated acceleration vector
A

Ira scc adaptation time constant

page 51

A

^Tj sec long time constant

sec processing element representing the semicircular canal sensors

(Si 6aff) sensed semicircular canal afference vector

Pj velocity error vector

{s4j) semicircular canal error vector

estimated semicircular canal afference vector

10 residual visual velocity vector

sensed visual velocity vector

estimated visual velocity vector

fs) somatosensory discrepancy vector

&) sensed somatosensory velocity vector

s) estimated somatosensory velocity vector

wC_ semicircular canal velocity weight factor

w _ visual velocity weight factor

ws somatosensory velocity weight factor

CWfeedba velocity feedback vector

estimated velocity vector

Table 4: Model signals and parameters.

The subtle portions of the model reside in the generation and mixing of the feedback

vectors. There are two ways of sensing velocity discrepancy: directly using the velocity

sensors (semicircular canals) and using gravity sensors (otoliths) and estimating the rate

at which the sensed gravity vector moves away from the expected gravity vector. These

estimates are the velocity feedback and the gravity feedback respectively. The

semicircular canals detect velocity discrepancies for high frequencies (-I and the

otoliths for low frequencies (, with mixing in between.
(T

page 52

The parameters and signals of the model are summarized in Table 4. The parameters that

are part of transfer functions such as oto, LoTo2, 'La, and 'i represent the response of the

end organs. They have a limited range of physiologically possible values. Such afferent

signals cannot be investigated in humans directly, but precise ranges of values are known

for a variety of animals. Dimensional analysis of the end organs allows us to predict the

value of these parameters in the human. Moreover, human orientation psychological

experiments measure signals processed by the CNS. These results also constrain the

range of value of these parameters. The remaining parameters are less constrained and

represent the crux of the human orientation theory presented here. The best possible

support for the underlying theory is to set them appropriately for existing data sets and

validate predictions with new experiments.

111.3. Conclusion

The human orientation system is a complex system where the brain merges information

from a variety of sensors. These signals include the semicircular canals, the otoliths,

vision and somatosensory perception. I have designed a model of this system based on

the Observer Theory Model. Under this scheme, the Central Nervous System has an

internal representation of the sensor organs and tries to minimize the error between its

estimate of the sensory nerve afferents and the actual afferent signals. The model is

implemented in all three spatial dimensions and provides realistic outputs.

The clinical vestibular domain is well suited for this work because:

I have a working representation of the model of the system that allows me to

run experiment simulations in reasonable amounts of time.

page 53

0 The model can be represented as a set of differential equations which can be

reasoned upon.

* The model is simple enough for someone with a rudimentary understanding of

the vestibular system to follow the examples, yet complex enough to make

hand analysis prohibitively difficult.

0 The model is rooted in current scientific efforts to understand vestibular

pathology.

* Data are available to compare model predictions to actual experiment results.

* The domain is sufficiently well understood that interpretation of the results is

possible, yet the system could be made useful in a clinical setting.

Moreover, the domain knowledge imbedded in the model could be readily used and

expanded in a research effort to solve the original problem of adaptation of the human

vestibular system to weightlessness.

page 54

CHAPTER 4

Scientific Discovery as a Model-Based

Diagnosis and Design Process

At the heart of the natural sciences and engineering there are general

notions of observation and measurement. Based on observation, the

scientist builds a physical insight into the problem being studied and from

that insight he formulates a theory by trial and error. This theory is a

proposed concept of that aspect of nature which he is studying. Guided by

this concept he designs new experiments. The observation of the results of

these experiments either confirms the theory, dictates a change of the

theory or rejects it completely. Although a concept may be beautiful and

appealing to the mind of the scientist, the factual results nevertheless are

dominant in this interaction of theory and experiment. From this point of

view it is legitimate to say that in the fields of natural science and

engineering, experiments and observations (measurements) are most

fundamental.

Of almost equal importance is the idea of model building [Rosenblueth

and Wiener 1945]. It can in fact hardly be separated from the observations

and experiments mentioned before. The formulation of a theory (as a

proposed concept of the aspect of nature being studied) may rightly be

called 'model building'; the theory stands as a verbal or mathematical

'model' of reality. [Eyhkoff 1974]

page 55

IV. A Model-Based Approach to Scientific Discovery

IV.1. Brief Overview of MARIKA

IV.1.1. Choosing an Appropriate Scientific Domain

The ideal scientific discovery domain should contain some of today's open research

problems. Vestibular adaptation to weightlessness is such a problem, but as outlined

earlier it presents a number of difficulties. First, there is no guarantee that it is solvable in

a reasonable amount of time or solvable at all. Following the SLS-1 results, the principal

investigator reflected for a few months before proposing a direction of explanation for the

surprising data. If a discovery system made a significant new discovery, it would have to

be peer reviewed before it could be accepted. Such delays are prohibitive during testing

of a discovery program. To circumvent these difficulties, I chose a clinical domain

closely related to the original one. This is not an artificial domain, but one where data are

more abundant and better explained. Solutions to the problems I present to MARIKA are

known. However, since experts in the domain view the problem as a medical diagnostic

problem and I pxovide solutions in the form of a model of the deficient vestibular system

of the patient, I believe my system to be free of hidden knowledge.

page 56

IV.1.2. Overview of the MARIKA System

Figure 3 shows a functional diagram of the MARIKA system.

normative

conditions data

Experiment ILataDiscretization

predictions Pand Constraint
Simulator -ameter ipt- ns. Gnrao

Estimation ! flS Generator

cons aints

tunedConstraint
parameters Propagator

model Model Range conflictin
Builder modifications Celstr imits

structural Mel conflictin
4TioFificion Structure constraints

Modifier

constraint/structure
index

Figure 3: Overview of the system's structure

MARIKA starts with a model of the normal vestibular syaem. For illustration purposes,

in this section I use a simplified model consisting of the semicircular canals as shown in

Figure 4. The end organs are represented as high pass fiIers. The feedback loop

implements the exponential decay characteristic of semicircular afference. As in Figure 1,

the model clearly displays the stimuli and the actual sensors in the top rectangle, while

the bottom rectangle represents the CNS internal model. The central part of the fig tre is

the K matrix that provides the feedback coefficient.

page 57

Figure 4: The model of the semicircular canals only

The vestibular model is represented as a set of differential equationsl. These equations

include signals and vestibular parameters linearly combined into expressions. For

example, a single dimension of the simple model in Figure 4 can be expressed by the

following set of equations:

o= K (Y -Y

MARIKA works iteratively with a single experiment added at each iteration. Initial

conditions are given to the Experiment box and the Simulator box of Figure 3 as

I For reason of convenience, the simulation of the model uses a mostly graphic description of these
equations as described in [The Math Works, Inc. 1991]. The transformation between the SIMULAB model
and the model equations is straight forward. The model is shown in Figure 2.

pagt 58

Y-Y

experimental conditions and input signals respectively. For the example of Figure 4,

experimental conditions include a rotating chair stimulus with trapezoidal velocity that

translates into null visual, and somatosensory input signals, vertical initial gravity

conditions and a velocity signal in the vertical axis. The simulator also requires a model

that was possibly modified during the previous run of MARIKA. The Experiment

produces only output signals, eye movements in this case, while the Simulator produces

internal and output signals:

conditions

SExperiment

RON- ~Simulator cin

model q

q4$879=-.cr

The Discretization box separates the predicted signals into segments and fits them with a

set of four basic curves. The Parameter estimation box uses the segmentation and the

curves defined by discretization and fit the experimental input and output signals. All the

signal parameters are then replaced by variables:

page 59

da Discretization
and

-vaditions Parameter jmif
Estimation

The Constraint Generator uses the discretized experimental and predicted signals, the

experimental initial conditions, the normal range of the model parameters, and the model

equations to generate constraints on the model parameters and the curve fit variables:

page 60

normative
a s 7data

conditions

dat

. .c Constraint
ed tiI3 5 Generator

T -0

model .
constraints

The Constraint Propagator takes the constraint network and tries to propagate all

constraints. It either succeeds and generates tighter model parameter limits, or fails on a

structural constraint derived from a model equation, or fails on a model parameter limit:

constraints

param~ers Propagao

limits

conflicting
constraints

The Range Constraint Relaxer relaxes parameter limits found to be in conflict and outputs

a new set of parameter limits. The Model Structure Modifier looks up a table of structural

modifications of the model, based on the model equations constraints in conflict, and

produces structural modifications. The tuned parameters, the range modifications, ad the

structural modifications are used to generate a new model. The new model is used during

the next iteration of the system.

page 61

tuned
parameters

Builder lmt

constraints

The MARIKA system can be summarized as executing the following steps for each

vestibular experiment:

1) Introduction of the model parameters' range constraints.

2) Simulation of a single experiment with the hypothesized model.

3) Fitting of each vestibular signal generated by the model: internal,

inputs and outputs.

4) Generalization of the model signals by replacing the curve fit

parameters by variables.

5) Introduction of the constraints derived from initial experimental

conditions.

6) Introduction of the constraints derived from differentiation relations

between the signals.

7) Introduction of the constraints derived from the model equations.

8) Estimation of the curve fit parameters of the measured experiment

data.

9) Propagation of all constraints.

Where step 9) has three possible outcomes:

a) No violation: the system has produced a set of constraints that

prove that the individual's vestibular behavior is adequately

represented by the current model.

b) Structural constraint violation: the system must look up

corresponding structural patches, build the modified models

and start the process over.

page 62

c) Variable range constraint violation: the system must relax

model parameters constraints until all variable range

constraints are satisfied.

Using this example, I will illustrate the nine steps described above.

1) Each parameter of the model is represented as a variable having a range of values

reflecting the population of normal subjects. For this model, r, r, and K are represented

as:

6.0 s 5 - 8.0 s

6.0s Sr ,:58.0 s

1.0 s K s 3.0

which I note as:

=[6.0 ; 8.0]

=[6.0 ; 8.0]

K=[1.0; 3.0]

2) As the examination of an individual progresses through a series of tests, the system

performs simulations of the vestibular apparatus using average parameter values.

3) The predicted data are then discretized to fit the description imposed by MARIKA.

The signals are first segmented and then fitted to one of four shapes or simple linear

combinations of them: corstant, linear, exponential, and sinusoidal. Considering only the

signals of the first equation during the first segment we get the following fits:

page 63

t=0.2 * t

Y = -9.8 + 1.4 * t + 9.8 * e-P-0

Y=1.4 - 1.4 * e-P-0

where o is linear, Y is the sum of an exponential, a linear shape, and a constant shape,

and Y is the sum of an exponential and a constant shape.

4) The resulting fits are generalized by substituting curve fit variables for the shape

parameters:

co=A *t

Y= B + C * t + D * et/1

Y(= E + F * 4t/t2

Three sets of constraints are then introduced on the vestibular variables and the curve fit

variables 12 . MARIKA successively introduces initial constraints, differential constraints

and model equations constraints.

5) Initial constraints are derived from initial experimental conditions:

@t=0:co=0,Y=0, Y=0

OR

No constraint yielded,
B + D =0,
E + F =0,

12As more experiments are run, the set of curve fit variables is duplicated, but the constraints on the

page 64

vestibular variables are compounded.

6) Differential constraints enforce derivative relationships between signals:

dt

OR

C- *e-t = E + F * e-ft2
T i

OR

C=E,
I =

7) Model equations are translated into constraints over the model parameters and signals

they refer to:

A-C =0

F=D

8) The clinical data are then segmented and fitted similarly to the simulated data.

assuming: m=A*t, o =G *(I-e-t/a)

A =0.2

2= 21.0

G=2.8

9) Constraint propagation is then initiated.

a) If the individual is a normal subject, the system constrains the set of parameters

describing the vestibular system of that individual in a way similar to [Prager et

page 65

al. 1989]. Modifications to model parameters are made within the constraints of

normality:

=[6.0 ; 8.0]

t=[6.0 ; 8.0]

K =[1.75 ; 2.33]

If the individual is a pathological case, the system is unable to find a consistent set of

parameters. The system then modifies the structure of the model according to the

discrepancy highlighted during constraint propagation and tunes the model.

Discrepancies can be of two types.

b) In case of a structural constraint violation, the system looks up corresponding

patches, builds the modified model and starts the process over. Because the model

is very simple, the only structural modification consists of removing the feedback

loop, which leaves the following equations:

o=Y

c) In case of vestibular variable range constraint violation, the system must relax

model parameter constraints until all variable range constraints are satisfied. For

example, if we restrict the range of normals to:

t=[6.0 ; 8.0]

^r =[6.0 ; 8.0]

K=[1.5 ; 2.5]

page 66

and observe data such as:

assuming : = A * t , o = G *(1 - e-ft)

A =0.2

T2 11.0

G=1.9

MARIKA will return a relaxed set of parameter constraints such as:

x=[5.0 ; 6.33]

T [4.47 ;4.80]

K=[1.5; 1.9]

In any case, the final result is a model structurally different from that of a normal subject

but that represents the subject's pathological vestibular system. Therefore the theory

contained in the model of the individual is modified because that individual is different

from the norm, not because the model is wrong for all individuals observed, as would be

the case in the original space experiments.

page 67

IV.2. Knowledge Representation Details

The model is represented as a set of first-order differential equations. The example in

Figure 4 can be expressed as:

4 -@Y

W=KIY-Y)

Assuming a simple rotation stimulus around a vertical axis, the only non-zero data are

along that axis. I therefore simplify the example further to show only the vertical

component. The system of equations simply becomes:

Y_
Y= Y

E=K (Y - Y

The constant coefficients or parameters of the model (t,^', and K in the above equations)

are represented as constraints over the range of possible values.

=[6.0; 8.0]

I=[6.0; 8.0]

K=[1.0; 3.0]

page 68

The time varying signals such as input, output, and various intermediary signals are

discretized. The only input here is w, the only output is co, the intermediary signals and

their derivatives are Y, Y, Y, and Y. The signals are separated into segments with a begin

and end time. Those times are governed by that of the input signal whicra is clearly

segmented as shown on Figure 5.

All the segments representing a single signal are put together to represent the discretized

signal. Each segment can be approximated by a constant, a ramp, a decaying exponential,

a sinusoid or a linear combination of them. A segment is therefore approximated by one

or more shapes. These representations can easily be calculated from the raw signals by

least-squares algorithms. This signal processing step is illustrated in the discretization and

parameter estimation box off Figure 3.

_sejment #1 segment #2

0

time in seconds

0 5 10 15 20

Figure 5: Segmentation of the input signal, o

This crucial step of data reduction allows MARIKA to transform a continuous data

analysis problem into a discrete one. Moreover, because there are only four simple shapes

page 69

to consider, the system can apply efficiently four sets of rules and doesn't require an

extensive array of mathematical tools. Each signal is reduced to a few segments, which

are reduced to a few shapes, which are described by a few parameters. MARIKA can

therefore reason at a qualitative level that captures the important mathematical

characteristics of the signals over time. Because of the carefully chosen representation,

the qualitative reasoning is successful at interpreting data in a numeric, time varying

domain.

The limited mathematical reasoner can handle all linear differential equations involving

signals that can be represented by combinations of the four shapes. Its operators perform

equation reduction, signal comparison, derivation calculation, initial condition

verification, and transform all its conclusions into constraints on the model parameters

and the shape parameters. Standard con;train propagation is then used to produce the

desired relationships between variables.

The reasoner as defined above is complete. Signals are represented as linear combinations

of the four shapes and are transformed by linear equations or derivation operators that are

linear and each one outputs simple shapes given a simple shape as input.

The vestibular domain as modeled in Chapter 2 is mostly linear. There are three sources

of non-linearity, the calculation of the gravity vector j from g0 and w, the calculation of

the estimated gravity vector g from g and co, and the calculation of the gravity error

vector jge from odtoa and otoaff. All three calculations require vector cross products or

dot products. These operations are not linear but can be simplified in some cases. When (0

and 9 are collinear, g remains unchanged, therefore g is identical to 9 and gen is zero. In

general, once the system has reached steady state, the calculation of the two gravity

vectors requires multiplying a constant velocity component with a sinusoid gravity

component. Because one of the terms is a constant, the operation is linear. Also, at steady

state, the two gravity vectors rotate around the subject at the same constant speed. They

can be represented as sinusoids with identical frequencies but different phases. The

page 70

gravity error vector is therefore constant, conserving linearity. The system is still

complcte for linear differential equatins, gravity error calculation and gravity vector

calculation under the collinearly and the steady state assumptions.

The represntation of the model is largely object oriented and provides a natural mapping

between the domain knowledge and the system. Specific representation techniques such

as inheritance, deamons, and methods are used to further streamline the system and make

for a compact efficient implementation. Details of how this representation is used by

MARIKA are given in the foilowing sections.

IV.2.1. Parameter Estimation

Each segment of a signal is approximated by one or more shapes. These reprsentatior s

can easily be calculzted from the raw signals by least-squares algorithms.

Segment # of Params Parameter Description Segment Equation

Type Params Name

constant 1 C constant value C

ramp 1 A slope ofsegment A * t

exponential 2 K maximum Ke*

I-'time constant

sinusoid 2 A amplitude

(frequency A * sin (cot +(D)

ral6:hase

Table 6: JSegment representation.

page 71

Table 6 details the representation used for each type of shape. The curve fitting

algorithms are directly inspired from [Balkwill 1992] and were adapted with help from

Ted Liefeld of the Man-Vehicle Laboratory at MIT. As explained in Section 111.2,

SIMULAB is embedded within the MATLAB numeric computation software package.

The core of the algorithm relies on a constrained optimization function with Nelder-

Meade search algorithm of the parameters. The MATLAB code is detailed in Appendix

A.

Once the segment has been fitted, the precision of the resulting fit is evaluated and stored.

Each fitting parameter is then replaced by a unique variable, even if another parameter

exists with a numerically close value. The experiment data are fitted in a similar fashion.

However, the shapes of each segment are assumed to be identical to those of the

simulated data. Paameter estimation [Eykhoff 1974] is then used to cast the experimental

data within the model's framework.

IV.2.2. Initial Value Constraints

The initial value of a segment is simply obtained by adding the zero value of all its

shapes. The initial conditions of the four shapes are as follows:

constant shape constant

linear shape 0

exponential shape maximum

sinusoid shape amplitude * sin (phase)

Initial constraints are generated by forcing the calculated initial value of a segment to be

equal to the imposed value. The imposed value comes from the experimental setup if the

page 72

segment is the first of the list representing a signal. If the segment isn't the first, the final

condition of the previous segment is the initial condition of the next segment by argument

of continuity. The final condition can be obtained from the simulation, from the data or

from the discretized signals. It is most efficient to obtain it from the information stored in

the segment itself by calculating the value of the shape at the time of the end of the

segment.

IV.2.3. Differentiation Constraints

In order to generate derivative constraints, I compare the calculated differential segment

to the actual differential segment. The calculated derivative is obtained by creating a

segment that has shapes recursively calculated as the derivatives of the shapes of the

original segment. The comparison of constant and linear shapes is trivial. On the other

hand, the comparison of exponential shapes or sinusoid shapes is more complex. In order

for these to be compared, one must decide whether they are compatible based on time

constants and frequency respectively. In case of compatibility, constraints are introduced

on the characteristic parameters of the shapes to force them equal. If a shape isn't

compatible with any other, its maximum or amplitude must be zero respectively.

IV.2.4. Interpretation of the Model Equations

Model equations are viewed as having a left-hand side and a right-hand side that contain

expressions. An expression includes an operation (one of +, -, *, and /) and two

arguments. If the operation is an addition or a subtraction, both arguments have to be

signals or expressions. Otherwise, the first is a signal and the second is a variable.

page 73

Using this representation, the first equation of the model shown in Figure 4, Y = o -

can be represented by the network in Figure 6.

equation-1

LHS RHS

expression-I

Co expression-2

/ Y 'Y

Figure 6: Object network for equation -= --

Equations hold at all times, but are interpreted segment by segment. Equations are

defined in terms of signals. Each equation is interpreted segment by segment. The

algorithm is as follows:

interpret equation
reduce LHS
reduce RHS
compare LHS RHS

The first task is to reduce both expressions to segments. The definition of reduce is

recursive. There is no work required if the expression is already a segment. If the

expression is an addition or a subtraction, the two expressions are reduced to segments

and added together to form a single segment. If it is a multiplication or a division, all the

shapes are modified appropriately and gathered to form the new segment. Adding two

segments is done by adding similar shapes together. Adding or subtracting constant or

page 74

linear shapes requires adding or subtracting their constants or slopes respectively.

Exponentials and sinusoids have to be compatible to be added or subtracted. If they

aren't, they are just collected in the resulting segment with proper sign adjustment to the

maximum and the amplitude respectively if the operation is a subtraction.

To accommodate the non-linearities described earlier in this section, I have defined two

other operators called error and delta-g. They take two pairs of arguments as inputs

and output a single shape. Both operators are limited to the collinearity case of the

rotating chair and the steady state case. No other case is recognized, and the operators

return an error if presented with improper input. The e r r or operator produces a constant

shape. That shape is zero in the case of collinearity and easily calculated from the phase

shift of the inputs for the steady state case. The delta-g operator produces a zero constant

shape in the case of collinearity. For the steady state case, two of the inputs have to be

constant and the output is a linear combination of the two other inputs. The vestibular

system is such that the velocity arguments are constant and the gravity arguments are

compatible sinusoids. The output is consequently another compatible sinusoid.

The second task is to compare the segments resulting from the reduction of the

expressions. Here again, comparisons are done separately for each type of shape. If the

same shapes exist on both sides, their characteristics are asserted to be identical. If only

one exists, it is asserted to be zero. Compatibility of exponentials and sinusoids has to be

checked before zeroing a shape or asserting two shapes to be equal.

page 75

IV.2.5. Constraint Propagation and Patching

IV.2.5.1. Model Tuning

During an experiment, only the input and output signals are known. Indeed, the

intermediary signals are located (or hypothesized to be) within the vestibular end-organs

and the brain. For obvious ethical reasons, we may not access these intermediary signals.

However, every part of the model is accessible and I assume that the intermediary

experimental signals are identical to the intermediary predicted signals. Because the input

signals to both are identical, only the output signals differ. Once the model data are

discretized and the constraint network is set up, the experimental data are discretized and

injected into the network. This process is repeated for each test performed on the

individual.

Constraint propagation is aimed at resolving apparent contradictions between the

constraints posted by various experiments, or between the model structure and the data,

or between the experimental data and normative data. An important feature of the

constraint network is that it is identical for all normal subjects. If such constraints can be

resolved, the resulting set of constraints satisfies the experiment data and predicted

outputs. Given additional hypotheses (introduced as constraints) each parameter can be

assigned a unique value representing the individual as accurately as possible within the

structure of the model. This data path is represented by the dashed arrow of Figure 3.

Numerical optimization is not used exclusively because it doesn't capture all the

information present in the constraint network and requires additional information. Also,

the more numerous the parameters and tests used for tuning, the weaker the dependence

of the tuning on each test. The constraint propagation technique uses all the information

available and only the information available. Selecting the proper set of parameters to

tune is a knowledge intensive tasL and benefits from the techniques described above.

page 76

IV.2.5.2. Structural Modifications

If the constraint sets cannot be resolved, the constraint propagation mechanism terminates

on a contradiction. The constraints responsible for the conflict are then used to

hypothesize about structural modifications to the system that can most likely predict the

data correctly. The possible violations of these constraints are known a priori because

they reflect possible physiological failures. These she-ld not be confused with possible

diagnoses or indices of disorders and symptoms as in [Mira et al. 1988]. Two types of

conflicts can arise, variable range conflict and structural conflicts. The first type occurs if

the model is structurally valid, but the individual being tested lies outside the range of

normals. It is clear that regardless of the distribution of values for a model parameter such

as a time constant, a portion of the population is left out. In such cases, the constraint

propagation system fails when attempting to narrow one of the limits of a variable. The

system must then attempt to relax constraints on the model parameters. This data path is

represented by the bold arrow of Figure 3 and is described in Section IV.2.4.

The second type of conflict involves multiple experiments. In such cases, the propagation

system fails on a constraint derived directly from a model equation. As described above,

the system has to modify the structure of the model13 and start the process over. This data

path is illustrated by the solid arrows at the bottom of Figure 3. When MARIKA fails on

a structural constraint, the system determines which constraint was violated and looks up

a table of patches. The patch table is indexed by model equations from which model

structure constraints are derived directly as explained in Section IV.2.5.2. The patch table

131n keeping with my initial goal of scientific discovery, these hypotheses would be methods of revision of
the theory as put forward by the scientist before performing the actual experiments. It is clear that in reality
such heuristics are often developed a posteriori; however an autonomous dizcovery system would require a
set of such methods. A system for autonomous discovery such as the one described her? requires the
scientist to perform a priori analysis of the favored theory to identify possible failures of the theor' 3s well
as patches. It seems that the pattern of failure itself could direct reasoning and therefore general patching
methods have to be complemented by specific failure dependant recommendations.

page 77

is displayed in Table 7. The offer only three different types of patches. However, the

mechanism could be expanded v'ith additional patches that would enrich the structural

range of the system.

Constraint propagation failure Proposed patches

wi (single parameter) Left sce only OR Right sec only

w2 (single parameter) Left scc only OR Right sec only

any part of equation Left sec only OR Right sec only

Y= wi *iR + w2 *YLh

'r (single parameter) No velocity storage

'c (single parameter) No velocity storage

k, No velocity storage

k2 No otoliths

Table 7: Structural patches look up table.

The hypothesized models are then tuned in turn as explained above independently from

one another. It is interesting to note that even the simplest example leads to two different

explanations that differ only in parsimonyl 4 (detailed example in Chapter 5). The system

terminates when all sub-models have been successfully tuned. The most parsimonious

model is then chosen. Because all of them have been adequately tuned, criteria such as

the number of constraints violated, and therefore number of structural modifications, are

used in selecting the favored model. Other schemes in which the structural modifications

are ordered by preference or likelihood would bias the system towards those solutions

141 measure parsimony by the number of changes a modified model requires from the original model.

page 78

and could terminate search on the first successfully modified model. A best-first search

would then seem appropriate.

IV.2.5.3. Model Parameter Range Modifications

Constraint propagation is implemented in three blocks: the discretized vestibular data

parameter constraint, the constraints derived from the model equations, and finally, the

model parameters range constraints. When more than one experiment is considered, the

vestibular data and the model equations exist in as many sets as experiments. The blocks

are input consecutively. The model parameters still form the last constraint block as

sketched in Figure 7.

Single experiment
discretized vestibular data
model equations
model parameters range

Multiple experiments
discretized vestibular data
model equations

discretized vestibular data
model equations
model parameters range

Figure 7: The constraint blocks ordering

When failing on a parameter range constraint, the network gives a message indicating the

parameter limit being asserted. As this limit is incompatible with the rest of the network,

it is temporarily discarded and put in a queue. Once all offending limits have been

discarded, they are re-introduced one by one. They are of course no more compatible than

page 79

during the first pass, but additional constraints have been incorporated and therefore

MARIKA has more information to base its decisions on.

When reinserted a limit can prove to be binding either directly or indirectly. nspecting

the partial constraint propagation performed by the system, the parameter range

restriction can either succeed, but as a consequence some other constraint is violated

(indirect path), or the parameter just cannot be limited (direct path). The direct path is the

simplest to one to solve. The limit has to be relaxed until it can be satisfied. During

relaxation, more general limits have to be enforced, such as a parameter taking positive

values only. In the indirect case, the parameter is limited but other constraints have to be

relaxed. Any range limit which is still valid is a candidate for relaxation. Valid limits are

those which haven't been made any tighter during propagation. Limit relaxation is

iterative. Parameters mast have absolute limits which they cannot violate as well as

normal limits. The first relaxation attempt consists of using the absolute limit instead of

the normal one. If successful, the limit can be made tighter by interval dichotomy or any

other method. A relaxation is judged successful if the system made some progress by

constraining some parameter further, except for the parameter limit ueing relaxed. If the

first relaxation attempt is unsuccessful, another limit is considered. Once a limit has been

successfully relaxed, the next range constraint from the queue is re-introduced and the

same proces5 takes place until the queue is empty. A detailed example is described in

Chapter 5.

IV.2.6. Implementation

The system is implemented on a Macintosh computer using the general purpose

programming environment, Macintosh Common Lisp [Apple 1991]. Specialized software

packages such as Extend [Imagine That 1990] and SIMULAB [The Math Works 1991]

page 80

are used to run simulations and MATLAB [The Math Works 1989] is used to perform the

parameter estimation. The Screamer package [Siskind 1991] is used to implement the

constraint propagation scheme. Screamer is a macro package running in Common Lisp

that I have modified slightly to run under Macintosh Common Lisp. I have made other

small modifications to allow documentation of the constraint propagation failure for

MARIKA's structural modification and parameter range modification. Modified code is

presented in Appendix B.

The signals, segments and shapes are represented as frames. I used the Parmenides 1.5

[Shell and Carbonell 1990] frame system with some custom additions facilitating object-

oriented style programming documented in Appendix C.

The programming emphasis is on presenting a complete system in working order. The

idiosyncrasies of the Macintosh operating system have not been explored to provide an

integrated system. The goal of this work is to demonstrate a conceptual architecture, not a

seamless set of interacting modules. Tme current implementation includes the simulation,

the curve fitting, the constraint generation, and the constraint propagation por ions of the

system. Currently, the operator has to implement the proposed structural patches in the

equations and the simulator, has to trigger the modules in the appropriate sequence, and

has to follow instructions in relaxing parameter range limits.

IV.3. Model-Based Scientific Discovery as Diagnosis and

Design

I consider model-based discovery to be a diagnosis and design problem. More precisely, I

see model-based theory refinement as a four step process. First gather data, second

compare the data to model-based predictions, thirC identify the sources of discrepancies

page 81

between the predictions and the field data, and fourth fix those discrepancies. The first

three steps are traditionally addressed by diagnosis systems while the fourth step requires

design techniques. In the following sections I explain both analogies using traditional

diagnosis and design terminology aid literature to justify them.

IV.3.1. Introduction

As shown in Table 3, only a few discovery systems include a model of the scientific

domain they explore. Only GENSIM, Flite, GORDIUS, and MARIKA do. Other systerrs

are heuristic-based and this difference can mostly be explained by the level of discoveiy

they perform. The four model-based systems listed above all assume sufficient

development of the scientific domain to allow mathematical modeling. The other systems

are often more exploratory or work at one of the law levels defined in Table 1.

I will adopt a functional definition of a model as in:

"Model building consists of the following steps:

selection of a model structure based on physical knowledge;

fitting of parameters to available data (estimation);

verification and testing of the model (diagnostic check);

application of the model to its given purpose." [Eyhkoff '974]

In the context of my thesis, the purpose of the model is to concisely represent scientific

domain knowledge in a form that can be simulated to produce data predictions.

Moreover, the representation of the model and the implementation of the accompanying

simulation method must allow symbolic reasoning necessary to debug and improve the

model.

page 82

IV.3.2. The Diagnosis Analogy

MARIKA starts from a theory expressed in a mathematical model of differential

equations. It therefore doesn't consider the theory generation problem for unorganized

data. It is however rare for a theory to survive without modifirations. I claim that the

process of scrutinizing a theory to correct it can be viewed is a diagnosis problem. I will

take [Hamscher and Davis 1987] definition of diagnosis:

A useful way to decompose this [the diagnosis] task is to consider three

separate tasks: (i) generating fault hypotheses, (ii) checking those

hypotheses for consistency, and (iii) discriminating among the consistent

hypotheses on the basis of further probes or tests.

MARIKA implements the first step through constraint propagation. The propagation

failure directly indexes possible model modifications called patches. Consistency of the

patches is performed through another constraint propagation pass. Discrimination among

competing patches requires further debugging and parsimony considerations. In this

perspective, there is constant interaction of prediction (data obtained from model

simulation) and observation (field data). Davis describes the goal of diagnosis as "Given

some observations of a misbehaving device, a description of its internal structure, and

descriptions of the behavior of its components, we wish to find out which components 15

could have failed in such a way as to explain the misbehavior". Similarly, I describe the

goal of model-based scientific discovery as "Given some valid experimental data, a

description of the internal structure of the theoretical model, and descriptions of the

behavior of its components, we wish to find which components of the model failed in

such a way as to explain all discrepancies and suggest how to fix them". I view model-

1 5 Diagnosis of multiple simultaneous faults can be more complicated as the choice of the proper fault
cannot rely on explaining all symptoms but most symptoms, and overlapping of symptoms between faults
makes discriminating among diagnoses less efficient.

page 83

based theory formaticn as a reversed form of diagnosis where the data are correct but the

model is wrong.

A recent paper [Hamscher 1991], describes current issues in diagnosis research. Two of

there issues are the capacity of reasoning with defeasible assumptions and interleaving of

deliberation and action.

Theory formation involves hypothesis formation. However, the assumptions used are not

always correct and may have to be revised. Defeasible assumptions are therefore the crux

of theory debugging. However, one assumption that diagnosis systems rarely question is

the adequacy of the system description. At best, diagnosis systems manipulate

hierarchical levels of representation, whereas the goal of scientific discovery systems is to

find how to modify the description to fit the data better.

What I propose for model-based scientific discovery is a form of therapy:

Therapy can be defined as an interleaved process of using both diagnosis

and repair to suppress undesired symptoms [Hamscher 1991].

MARIKA takes experimental data sets ane by one and modifies its model incrementally.

Similarly, a vestibular adaptation theorist program would perfect its theory during flight

as individual astronaut data are gathered and dictate changes.

The two main paradigms used in diagnosis systems are probabilistic and logical. The

quantity of knowledge regarding space vestibular adaptation that is available to or

analyzed by the scientific community is not sufficient to allow true probabilistic

considerations. It would seem that scientists reason more in tens of causal relationships

than they reuse theory patches which have worked before. However, MARIKA's -rmain

largely overlaps with vestibular clinical diagnosis (see Section 111.3) and its selection of

theory patches has a probabilistic flavor because it bases its choice of a patch on prior

page 84

success. Staistics are not used, but patches are selected only if they proved useful in the

past. MARIKA chooses from a look up table. The assumption is that the scientist believes

that the patches can be indexed by the type of model failure observed. These patches

could be ordered by degree of occurrenc. in the patients, but this would assume a priori

knowledge uiich is not modeled because it doesn't exist in the original domain of

vestibular adaptation to weightlessness. For this task, the scientist must provide theory

patches ahead of time and statistical data just don't exist. Nevertheless, the scientist can

guess which modifications can prove useful.

MARI1A is therefore exploring a sr -ice of possible models that can be outlined at the

time the lookup table is designed. A more exploratory system would generate model

patches and therefore models in a more data-driven dynamic fashion.

The diagnosis approach has to be complemented because .. iile diagnosis is cortent with

iocating the fault, assuming either that the component can be repaired or replaced

according to established procedures, scientific discovery mu2t design a new model that

leaves no unexplained data. Model-based scientific discovery must include a design stage

that satisfies the requirements set up by the discrepancy.

IV.3.3. The Design Analogy

Of the systems described in Chapter II, GENSIM is the or- that most emphasizes

scientific discovery as a design process. More precisely, Karp presents hypothesis

formation as design. GORDIUS also includes theory design as its generation stage.

However, it is implemente/ as a rule-based system and Simmons doesn't consider design

as an important issue. I believc Karp's idca can be applied more broadly to the entire

scientific di covery domain. In a % ay parallel to engz.a1 sing design, scientific discovery

can range from innovative to routine.

page 85

'Figure 8 is a summary of the nature of design, design knowledge, and alternative models

of design as described in [Sriram and Tong 19911. Thick arrows specify design concerns

applicable to scientific discovery in general. Thin arrows specify design methods used in

MARIKA.

= - LeveLsof1Desig
-Creative Design

"Innovative Design
goo Redesign (CBR)

- * Routine Design
* Cooperative Design

-ModelsofDesin
e Top-down refinement

Pop * Constraint Propagation
* Optimization
o Analogical Transformation

N- * Patching

DlesignTaSks
* Artifact Synthesis
* Artifact Configuration
* Parameter Instantiation

Iterative K-Based Design
" Chronological Backtracking
* K-Directed Backtracking
" Hillclimbing
o Problem Reformulation

mn&mm Cooperative Desia
* Social aspect of Science
* Dual Design (stabilizer/innovator)

Karp's Approach
Ip * Hypothesis formation as design

Figure 8: Applicability of design to scientific discovery

Following the classification of design tasks as described in [Groleau 1989], Table 8

compares the levels of design and scientific discovery. MARIKA performs some redesign

tasks as it modifies the current scientific modeA structurally. It also performs routine

science when modifying parameter assignments. As explained earlier, scientific discovery

is an iterative process requiring large amounts of knowledge, whether the domain is new

and broad or older and narrower. MARIKA performs a simple form of knowledge-

directed backtracking when using table lookup to suggest a structural patch or

temporarily ignoring a range conatraint. My system performs hill climbing at a high level,

page 86

MONO

MMO W

amp

010

considering modeling bugs in succession; it also uses hill climbing when adjusti' Ag

parameter boundaries.

Problem Solving Technique Discovery Level Discovery System

Creative Historical KEKADA,

design discoveries IDS, etc...

Innovative Case-based Reasoning, Qualitative & BACON,

design Analogy, Quantitative laws FAHRENHEIT,

Commutation, etc... etc...

Redesign Expert Systems, Model-based GORDIUS,

Case-based Reasoning, scientific MARIKA, etc...

Parameter Optimization, etc... discovery

Routine Hierarchical Refinement, Routine science =

design Constraint Propagation, etc... engineering

Cooperative Blackboard, Scientific

design Multi-agent Architecture, etc... community

Table 8: Comparison of design and scientific discovery levels.

Most models of design are applicable to scientific discovery. GORDIUS performs top-

down refinement of hypotheses as it tests generic hypotheses before attempting to apply

them in specific instarces. MARIKA uses constraint propagation and patching

techniques 16. All design tasks are performed by scientific theory design systems. For

example, GORDIUS first synthesizes a theory before debugging it, whereas

MECHEM/STOICH and MARIKA configure a theory and instantiate parameters if

16Patching techniqucs are also used in GORDIUS, GENSIM, and MECHEM/STOICH.

page 87

Design

Level

necessary. Discovery systems do not model the cooperative aspect of science. The

historical data contained in the great re-discovery systems, such as KEKADA, IDS,

GENSIM, or CER, often contain data gathered by many scientists working in different

labs. Comprehensive discovery systems of the future may consider distributed

architectures where each level of discovery can be addressed by a specialized module.

These modules could share discoveries through a blackboard-like scheduling system.

IV.3.4. Conclusion

MARIKA implements the last three steps of model-based discovery in an autonomous

fashion. Data are provided by the experimenter and MARIKA has no influence on the

data set it is provided with. Diagnosis techniques are used to compare the data to the

model predictions and to identify the discrepancies. Fixing the discrepancies requires

simple design techniques akin to redesign (a priori countable structural modifications) or

routine design (parameter instantiation).

page 88

CHAPTER 5

Working Examples

We expect them [theories] to improve as did the maps of the world; we

hope for exciting new discoveries from time to time, and we can count
upon steady cleansing and incremental improvement in detail. But one
thing we ought not to expect: with our theories, our maps of the processes

of the universe, we should not expect to make simple pictures of what was
never visual in the first piace.

But we will always try. [Morrison and Morrison 1987'

page 89

V. Demonstration of the System

The purpose of this section is to demonstrate the proposed system using simple examples.

i used a rotating chair stimulus and a "barbecue spit" stimulus, as explained below. The

rotating chair tests the Vestibulo-Ocular Reflex (VOR). Subjects are seated erect in a

chair with eyes open in the dark. Their limbs and head are strapped to the chair. They

wear long sleeves and pants thereby minimizing tactile cues. Because they are spun

around a vertical axis, the horizontal semicircular canals are the only vestibular organs

stimulated 17. Horizontal Eye movements in the dark are recorded in order to measure the

compensatory response to the velocity estimate of the CNS. Conditions are similar for the

barbecue spit except that subjects are rotated around an earth horizontal axis through their

long body axis. In this case, the otoliths are stimulated, by the varying gravity

component, as well as the horizottal semicircular canals.

My system is able to tune the model for normal subjects as well as discover pathological

cases with unilateral semicircular canal deficiency, central nervous lesions affecting the

VOR time constant, bilateral reduced otolith response, and hyperactive semicircular

canal-otolith interaction.

Such examples are simple enough for someone with a rudimentary understanding of the

vestibular system to discover the pathological cases. They demonstrate the behavior of

the system as well as interesting concepts. For example, in the case of unilateral

deficiency, the system should hypothesize that either the left canal is inoperative and the

17The horizontal canals reprzsent a simplification from reality where the horizontal canals are pitched up
significantly. Another argument could be that the otoliths placed on each side of the head are stimulated by
the centrifugal force. Assuming the distance from them to the rotational axis is 3 cm (a little over an inch),
such force would remain below otolith detection threshold at speeds up to 130 degrees/s. Moreover, these
stimuli would indicate accelerations in opposite directions and the CNS would probably cancel them out.

page 90

right one functions correctly or the right canal is inoperative and the left canal behaves

like a right canal. The first solution is clearly chosen for its parsimony.

V.1. Data Sources

The data necessary for the above demonstration were obtained from the studies

performed in [Furman 1989, Furman et al. 1990, Wall et al. 1984, Wall et al. 1989, Wall

et al. 1984, Wall et al. 1987, Wall 1990] and from the Vestibular Laboratory at the

Massachusetts Eye and Ear Infirmary (MEEI).

V.2. Rotating Chair Examples

I will first use the rotating chair stimuluc just described. The stimulus occurring entirely

in the earth horizontal plane, I restrict my calculations to the direction perpendicular to

that plane in which all signals involved can be expressed. I will first show that the system

is able to 1une the model for normal subjects as well as to discover unilateral semicircular

canal deficiency. I will also demonstrate tuning of the system for abnormally low

semicircular canal sensitivity.

As described in Chapter 4, the system can be summarized as executing the following

steps:

1) Introduction of the model parameters range constraints.

2) Simulation of the hypothesized model.

page 91

3) Fit of all signals present in the model, including inputs and outputs.

4) Generalization of the model by parameterizing the curve fits.

5) Introduction of the constraints derived from initial experimental

conditions.

6) Introduction of the constraints derived from differenti ion relations

between the signals.

7) Introduction of the constraints derived from the model equations.

8) Estimadion of the curve fit parameter of the experiment data.

9) Propagation of all constraints.

Where step 9) has three possible outcomes:

a) No violation: the system has produced a set of constraints that

prove that the individual's vestibular behavior is adequately

represented by the current model.

b) Structural constraint violation: the system must look up

corresponding structural patches, build the modified models

and start the process over.

c) Variable range constraint violation: the system must relax

model parameters constraints until all variable range

constraints are satisfied.

Figure 9 shows the model as represented in Extend. Notice the existence of two

sermicircular canals. Their outputs are merged using weights that depend on the direction

of rot; tion. The CNS has a single representation of the semicircular canal sensors.

page 92

Figure 9: The Extend model for the rotating chair

The corresponding model equations are:

eq.1:Yt = (0-&
tR

eq. 2: tL = (0- L
TL

eq.3: ?= wi* !(+ w2 * L OR Y = w2 * YR + wI * YL

eq. 4:. Y = (j)- ,

eq.5:w=k(Y--y

Notice that eq.3 exists in two versions, one for clockwise rotation and one for

counterclockwise rotation.

I simulated this model using the input pictured in Figure 10-A (Co) and obtained the

output pictured in Figure 10-B (o).

page 93

culpu4 -A/r RIGHT SCC

Y_

LEFT SCC

000
+K

-dot

MGNPLCRP
-K

PILTER

SCCAP

CA

S
4
0

(3 0

5 10 15 20 25

dme in secon

10-B

5 10 15 20 25
time in secon

30 35 40 45 50

30 35 40 45 50
ds

Figure 10: Velocity r&np input and estimated output velocity

The model produces the internal signals pictured in Figure 11. All velocities are in

arbitrary units. Figure 11-A shows YR (or Y[), Figure 11-B shows Y (or tR, or YD,
ON A

Figure 11-C shows Y and Figure 11-D shows Y.

During the first segment, the seven signals can be represented by the following shapes:

w=0.2 * t

YR=R-9.8* (I -e--0)+ 1.4 *t

R= 1.4 - 1.4 * e- T7-0

YL=-9.8 * (I - e-0-0)+ 1.4 * t

YL= 14 - 14 e-0.0

Y = 1.4 - 1.4* e-If-0

o) = 2.8 * (I - e-t/21.0)

Y=-9.8 * (1 -e--0)+29.4* (1 - ef2-.O)

Y = -1.4 * e-0-0 + 1.4 * e-V1-0

page 94

1-

1 -- - - - - - - - - - - - - - - -- .

10 11-A1 11-B

5- ~0.5-.

0 50 0 50

time in seconds time in seconds

3 11-C 0.5 1 I~D

j%

0 .. - .. -... ..-

0(i-.-0.51
0 50 0 50

time in seconds time in seconds

Figure 11: Simulated internal signals

Let us focus on the first signals, W, YR, and YR. The generalizations of the signals are:

YR = B + C * t + D *

YR = E + F * ed/2

Differentiation constraints dictate that:

dYR
dt

OR

C - - * edi = E + F ed/t
TI

OR

C=E
tl = t2
DRF

TI

page 95

Initial conditions constraints dictate that:

@t=O:YR=O, tR=0

OR

B +D=O
E+F=O

After constraint propagation, the two generalized signals are correctly represented as:

YR=BR * (R-/11) - * t
TR

YR=- BR(e-t/R)
TR

Using the same techniques, the generalizations of the other signals are represented as:

w=A*t

YL = G + H * t + I * e-t/h

?(L= I + KK * e-t/s

Y= L + M *e-fts

(o = N + 0 * e-t/t

Y = P + Q * e-t/' + R * e-/Te

Y = S * e-'/T + T * e-t/Ta

page 96

The model equations give18:

eq.1: A -- E =- F = - i =2
TR ZR TR

eq.2: A -H, J= - -,1KK=--, T3 = T4
TL TL TL

eq.3: L=w, * E + w 2 *J, M=w* F + w 2*KK, 2 =4 ='E5

eqA:J - 0, S - =, T= N - + O, 7 =19, 6 ='E8 =o

eq.5: N = k * L, O= - k * T, k * M - k * S = 0, E5 = 9, '6 =Eio

The differentiation equations give:

C=E. - 1 =F,TIE=E2'El

H = J,J- -- =KK, '3 ='4
T3

-= S,-R=T, 7 =9,TE8='TIo
T7 T8

I will demonstrate the system using this model under three different sets of

circumstances. The constraint network described above will remain identical for all three.

17 .t. Nrmnl rCo.;i s Pnotatinq ChairV .m.lIVE 11i 'UIHIMkfl RItautao AttP,44EAL 5-1.AWA

First I assume a normal experiment. Let's assume the curve fit variables to be:

A =0.2

T6=21.0

N =2.8

0 = - 2.8

18The first version of eq.3 is used in the example.

page 97

Assuming the following model parameter constraints,

R = 6 -0 ; 8.0]

TL [6.0; 8.0

=[6.0; 8.0]

w =1[0.17; 1.00]

W2 [0.17 1.00]

k=[1.0; 3.0]

the system provides the following constraint set:

tR =[6.0; 8.0]

TL [6.0 ; 8.0

^=[6.0; 8.0]

Wi =[0.17 ; 0.79]

W2 =[0.17 ; 0.79]

k =[1.22; 2.50]

in which w 1, w2 and k are further constrained.

page 98

V.2.2. Single Canal

Next, I will assume a deficient right semicircular canal. In this setting, the curve fit

variables are assumed to be:

Clockwise rotation

A1 =0.2

61 = 21.0

N61 = -061 = 1.87 of nominal value)

Counterclockwise rotation

A2 = 0.2

T62 21.0

N6 2 = -062=0.93 (4of nominal value)

If simulated independently, those two experiments provide conflicting but internally

consistent constraint sets:

Clockwise rotation

TR = [6 .0 8.0]

= [6.0; 8.0]

^=[6.0; 8.0]

wi =1[0.17 ; 0.79]

w2 =[0.17 ; 0.79]

k=[1.62; 2.5]

page 99

Counterclockwise rotation

TR = [6 .0; 8.0]

TL=[6.0; 8.0]

T=[6.0; 8.0]

Wi =[0.17 ; 0.31]

w2 =[0.17 ; 0.31]

k =[1.62; 2.33]

The conflict does not appear among the model parameters. However four curve fit

parameters exhibit incompatibilities:

Clockwise rotation

L, =[0.75; 1.15]

P1 =[11.20; 14.93]

R1 =[-24.12; -15.68]

T1 =[0.75; 1.15]

Counterclockwise rotation

L2=[0.40 ;0.57]

P2 =[5.60 ; 7.47]

R2 =[-12.06 ; -8.40]

T2 =[0.40 ;0.57]

When simulated consecutively within the same network that comprises two sets of curve

fit variables and a single set of model parameters, the system fails during propagation

indicating:

Failed when attempting to set max of

(+ (* W2 E2) (* W1 J2)) to 0.61

page 100

The constraint violated is clearly the second version of the one derived from eq.3 that was

formulated as:

L = W2 * E + wj * J

This constraint was posted as a result of the second experiment, as the curve fit variables

indices are set to 2 (E2 and J2) and the equation reflects a counterclockwise rotation. At

this point, the model parameters set is:

TR=[6 . 0 0 ; 8.00]

tL [6.00; 8.00

T=[7.27; 8.00]

wi =[0.34; 1.00]

W2 =[0.17 ; 0.31]

k =[1.62; 1.79]

The patch table lookup provides two possible model patches. The first one corresponds to

a deficient right canal, the second one corresponds to a deficient left canal.

The first patch requires the model equations to be modified as follows:

eq.2 : YL=w)L-
'L

eq.3: Y= w2 *YL ORY?= w1 *YL

eq.4: Y = -O

eq.5: co= K?-)

page 101

This patch is successful of course and results in the following set of model parameters:

tR=[6.0; 8.0]

TL =[6.0; 8.0]

W[6.0; 8.0]

Wi =[0.23 ; 0.48]

W2 = [0.47 ; 0.96]

k =[1.62; 2.5]

Interestingly, the second patch is also successful and results in the following set of model

parameters:

TR = [6.0 8.0

tL=[6.0; 8.0]

t=[6.0; 8.0]

WI = [0.47 ; 0.96]

W2 = [0.23 ; 0.48]

k =[1.62 ; 2.5]

This model assumes the remaining right canal behaves as a left canal and has a stronger

sensitivity in the clockwise direction. The first patch is chosen by the system because it

involves a single change, while the second patch involves two changes.

V.2.3. Abnormally Low Canal Sensitivity

Next, I will show an example where the model is structurally correct but some of the

limits of the model parameters have to be extended beyond their normal range.

page 102

Let's assume the curve fit variables to be:

A =0.2

T6=21.0

N = 0.93

0 = - 0.93

and the model parameter constraints to be:

TR=[6 .-0 8.0]

L=L[6.0; 8.0]

t=[6.0; 8.0]

WI =[0.17 ; 0.67]

W2 =[0.33; 1.33]

k =[1.0; 3.0]

The system fails during propagation indicating:

Failed when attempting to set the min of W2 to 0.33

This constraint isn't derived from an equation. Moreover, the problem occurred while

implementing the upper bound of the w2 parameter. The system is therefore run ignoring

the upper bound on w2. All troublesome model parameter constraints are removed until

the remaining system can be satisfied. In this case no other limit has to be suspended.

page 103

The resulting constraint set without a lower limit on w2 is:

TR= [6.0; 8.0]

TL = [6.0; 8.0

T=[6.0; 8.0]

wi =[0.17 ; 0.67]

w2 =[-0.58; 0.31]

k =[1.62; 2.50]

The first limit to relax is the 0.33 lower bound on w2. This produces a consistent system

resulting in the following parameter set:

tR =[6.0; 8.0

tL=[6.0; 8.0]

T=[6.0; 8.0]

wi =[0.17 ;0.48]

W2 =[0.00; 0.31]

k = [1.62 ; 2.50]

If I choose to modify the lower bound on w 1 instead, the system also reaches equilibrium,

although a different one:

TR=[6.0 ; 8.0]

TL=[6.0; 8.0]

= [6.0; 8.0]

wi =[0.00; 0.15]

W2 =[0.33 ; 0.48]

k = [1.62; 2.33]

page 104

V.2.4. Absence of Velocity Storage

The next example involves simulated chair data for a patient with no velocity storage.

Velocity storage is the property of the vestibular system to maintain a sensation of

rotation long after the canal afferent signal has decayed. In my model, velocity storage is

represented by the existence of the CNS internal model and the feedback gain. When

velocity storage is absent, the time constant of the estimated velocity is the same as the

afferent time constant. The feedback loop of the observer model is cut to predict data

correctly.

The second segment of the output and the associated curve fit are:

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

A'
0O

No velocity storage chair responsc

5 10 15 20

time in seconds

25 30 35 40

page 105

.'

(3

11

with an exponential decay fit of
$t) = A * Jf)

where

T = 7.22 (samples)

A = 0.74 (arbitrary units)

By comparison, the normal response has a lower maximum but a longer time constant:

0.8

0.7-

0.6

0.5

0.4

0.3

0.2

0.1

0
()

No velocity storage vs normal chair respons(

5 10 15 20

time in seconds

25 30 35 40

When presented with these data, MARIKA first unsuccessfully tries to relax the lower

bound of k. However, the value would have to be lowered to 0.00 to obtain a consistent

constraint network. Because a value of 0.00 for the feedback gain parameter indicates no

feedback, the parameter k cannot be lowered and the patch table 19 proposes to restructure

the model without the feedback loop, which is equivalent to destroying the velocity

storage mechanism.

19The patch table is pre-compiled from clinical knowledge.

page 106

C

4 -

<3S

N

N

N

N -

-

Once the model has been modified in this way, the system easily satisfies the constraints

and returns an unmodified set of model parameters:

R = [6.0; 8.0

TL =[6.0; 8.0]

^r=[6.0; 8.0]

WI = [0.17 ; 0.67]

W2 =[0.33; 1.33]

k =[1.0; 3.0]

V.2.5. Normal Sinusoidal Rotating Chair

The next example shows steady state sinusoidal chair data for a normal human. This data

set was obtained from MEEL. The chair velocity is sampled at 10 Hz with a sinusoidal fit

of

qt)= A * sin (t/T + P)+ C

where

T = 3.18 (samples/radian)

A = -817 (arbitrary units)

P = -0.36 (radians)

C = 68.0220 (arbitrary units)

The frequency 21 of the chair velocity is given by:

0 = 10 =0.500 Hz

2 I'Fhis offset is an artifact due to imperfect calibration of the null position.
2 1 The factor 10 in the numerator reflects the fact that there are 10 data points per second.

page 107

The chair velocity is not calibrated; however, the maximum chair velocity is known to be

50 degrees per second.

The velocity estimate measured from desaccaded slow phase velocity of eye movements

was sampled at 10 Hz and is given in solid line by:

60 Velocity response

40-

20

0

~-20-1

-40-

-60-

-80
0 50 100 150 200 250

time in 0.ls increments

with a dotted sinusoidal fit of

f(t) = A * sin (t/T + P) + C

where

T = 3.20 (samples/radian)

A = 26.86 (arbitrary units)

P = 2.93 (radians)

C = 0.00 (arbitrary units)

The frequency22 of the response is given by:

22The factor 10 in the numerator reflects the fact that there are 10 data points per second.

page 108

o= 10 = 0.497 Hz
T*2*

The signals can be represented as:

o=A * sin(VT + B)

Y = C * sin (trr + C)

= E * sin (t/r + F)

o = G * sin (t/r + H)

Y = I * sin (/r + J)

Y= L * sin (yr + M)

Assuming a single semicircular canal to simplify the model, the model equations are:

eq.1:Y?= o -

eq.2: Y = W -

eq.3: co = k(-)

These equations are translated into the following constraints:

page 109

E= (A *cos B -.C*cosD +(A* sin B sin D

A * sin B -- 2* sin D
F=arctan

A* cos B -C * cos D
'C

L = G * COS H - *COS J 2 + G *sin H -L*sin j)2

G* sin H - * sin J

F = arctan
G*cos H - *cosJ

A = K *1(E * cos F - I * cos j)2+(E * sin F - I * sin J)2

B = arctan E*sin.F -* sin J)
(E * COS F - I * COS J/

The input velocity to (solid line) and the predicted output to (dotted line) are:

Stimulus and response velocities
60

40-

20 - -

.U 1 1 ,

. -20II0

*t 20

-40

-60-
0 5 10 15 20 25

time in seconds

page 110

The intermediary signals Y (solid line) and Y?(dotted line) are predicted as:

End-organ signals

C,
4-A

40-

20 -f-

L*-

0 'L *L- : *

-20

-40
Cn

-60
0 5 10 15 20 25

time in seconds

The intermediary signals Y (solid line) and Y (dotted line) are predicted as:

30 Estimated end-organ signals
-30

20

10-

01 1

_ -10 ' - -

CO

l -20
Cd

(U -30
0 5 10 15 20 25

time in seconds

page 111

The model prediction and the data are close enough that constraint propagation does not

constrain the model parameters any further. This only proves that MARIKA couldn't help

refine the problem any further. To ensure that the data modeling is correct, the cross-

correlation coefficient between the fitted experimental data and the model prediction can

be calculated. For this data set it has a value of 0.961

V.3. Barbecue Spit Examples

I will first demonstrate the system using normal barbecue spit data from MEET. Two

simulated pathological cases follow, the first one involves canal-otolith hyper-sensitivity,

while the second one demonstrates bilateral low otolith sensitivity.

V.3.1. Normal Barbecue Spit

This example shows barbecue spit data for a normal human from MEET. The barbecue

position (solid line) is sampled at 10 Hz as follows:

Barbecue position
200

150-

10 0

501

0

-50-

-100
0 100 200 300 400 500 600

time 0.ls increments

page 112

It is measured as the angle between a nose-down reference and the position of the subject.

It has a sinusoidal fit (nearly indistinguishable dotted line) of:

ft)= A * sin (tn' + P)+ C

where

T = 9.94 (samples/radian)

A = 120.62 (arbitrary units)

P= -0.51 (radians)

C = 62.1023 (arbitrary units)

The frequency of the barbecue position and its velocity are given by:

(o=---10 0.160 Hz = 0.160 * 2 * x = 1.006 rad/s
T*2*=.Oxrd/

The velocity estimate (solid line) measured from desaccaded slow phase velocity of eye

movements is:

Velocity: exponential response
80

40--

20-> 0-

-20,
0 100 200 300 400 500 600

time 0.ls increments

23This offset is an artifact due to imperfect calibration of the null position.

page 113

with an exponential decay fit (dotted line) of

$t)= A * '40'+ C

where

T= 116 (samples)

A = 41.8 (arbitrary unist)

C = 11.8 (arbitrary unist)

The time constant of the exponentially decaying portion of eye velocity is given by:

'r=--=11.60s
10

The peak velocity is therefore v = 41.8 + 11.8 = 53.6 */s. Once the exponential decay fit

is subtracted from the data, the remaining signal (solid line) is:

Velocity: sinusoidal response
40.

20-

0-

-20-

-40

-60
0 100 200 300 400 500 600

time 0.ls increments

page 114

with a sinusoidal fit (dotted line) of

t(t)= A * sin (t/,T+ P)+ C
where

T = 10.28 (samples/radian)

A = 9.45 (arbitrary unist)

P = -1.82 (radians)

C = 0.00 (arbitrary unist)

The frequency of the sinusoidal portion of eye velocity is given by:

w 10 =0.155 Hz
T *2*7i

This calculated frequency is within 3% of the stimulus frequency2 4 and shows

compensatory eye movements for the sensed gravito-inertial force. The whole signal

(solid line) can therefore be fit (exponential fit is dashed, complete fit is dotted):

80 Velocity response

60

40-

5 20 -' -.'-

20-
> 0

-201
0 100 200 300 400 500 600

time 0.ls increments

2 4 These frequencies would be much closer if calculated over more than one run or over a longer data
segment.

page 115

The model predicts exponential output of the form:

with an exponential decay fit of

fit)= A * 4-10 + C

where

T = 14.40 (samples)

A = 0.24 (arbitrary unist)

C = 0.16 (arbitrary unist)

The time constant of the exponentially decaying eye velocity is 14.40 seconds and longer

than the actual data (cross-correlation coefficient between the fitted experimental data

and the model prediction of 0.996).

page 116

Velocity: exponential reponse

4 0.35 -

0.3

0.25-

0.2-

0.15
0 10 20 30 40 50 60

time in seconds

However, it seems that the MEEI data run25 is not very characteristic of normals. It is to

be noted that other authors have published data resembling my model more than the

MEEI data as shown in Table 9.

MEEI run MEEI average Stockwell et al. Model

Time constant 11.60 s 9.46 s 15 s 14.40 s

Amplitude 41.80 /s 24.70/s =320/s 24.00/s

Bias 11.80/s 13.2*/s =170/s26 160/s

Modulation 9.40/s 5.70/s =90/s 11*/s

Table 9: Comparison of barbecue spit data.

Assuming a single semicircular canal for simplification, the model equations are:

eq.1:Y- -

eq.2: =o@g

eq.3: e = e or (g. g

eq.4:g=(c+k 3 *6)®

eq.5:a*= g-Z

eq.6: Y = w

eq.7: w=k1 *\Y-Y+k2*e

As shown in Figure 1 and explained in Section 111.2, eq.3 expresses that gravity error is

calculated as the rotation required to align gravity with the expected gravity. Equations

251 could only obtain a single run from MEElI. At best, additional runs would probably have shifted the data
toward the published MEEI averages for a normal. More likely, the data would have shifted towards the
more widely accepted averages. In any case, this data run shows proof of concept and the system should be
tested more thoroughly.
2 6 [Benson and Bodin 1966] present a bias value of 15.4*/s, and [Correia and Guedry 1966] present a bias
value of 14.1f/s.

page 117

eq.2 and eq.4 calculate the change in the gravity vector g and the estimated gravity vector

g respectively as the body rotates in space at a speed of o and ro respectively, using

vector cross product. Additionaly, '%s compensated for directly perceived gravity error e.

Eq.7 calculates estimated velocity co as the weighted sum of the semicircular canal error
t_ A_&
Y - Y and the gravity error e.

The model contains two gravity vector calculations (eq.2 and eq.4), and one gravity error

calculation (eq.3). These equations are translated into constraints using the non-linear

extensions explained in Section IV.2.

The system requires modification of three parameters: k, has to be raised while both k2
and k3 have to be lowered. The model does indeed require changes characterizing the

MEEI data as outside the normal range.

V.3.2. Hyper-Sensitive Canal-Otolith Interaction

Simulated data for hyper-sensitive canal-otolith interaction requires a significantly higher

value for k2. This model modification requires increasing the weight of the gravity error.

The semicircular canal decay is still present but the velocity estimate remains almost

constant, resembling data for monkeys [Merfeld 1990]. This response is shown in

Figure 12 as a dotted line. The solid line represents the normal response for reference.

page 118

barbecue spit velocity
31

2.5- .

2--

1.5 -

". 0 .5 - ~- - - - - - ------

0
0 10 20 30 40 50 60

time in seconds

Figure 12: Barbecue spit simulated data.

MARIKA correctly suggest to modify k2 out of the normal range to model hyper-

sensitivity of the canal-otolith interaction.

V.3.3. Low Otolith Sensitivity

Simulated data for bilateral low sensitivity of the otolith does not provide the expected

results. This points out a weakness of the model. If the subject recently suffered the

condition, one would expect the otolith afferent signal to be low, while the expected

otolith afferent would remain high. A large error would occur and drive the internal

estimate low. The overall velocity response would show a decay to a lower final value.

However, the gravity error calculation provided in the model is based on the angle

page 119

between the gravity vector and the expected gravity vector. This angle doesn't depend on

the norm of the vectors and therefore is not sensitive to low otolith afference.

As a limit case, I have run the model assuming no otolith input. The response should then

be identical to the chair stimulus. The model behaves well in this case and MARIKA tries

to lower k2. If the bounds on k2 are tight, the model suggests a structural change in which

the otoliths are taken out. If they are loose, the system proposes to lower k2 to 0.1 which

provides a response undistinguishable from the correct one. Interestingly, this is also the

way the vestibular system would react. Seeing a suddenly high error with low signal to

noise ratio from the otolith the vestibular system would decrease the otolith feedback gain

k2 and simultaneously decrease its internal representation of otolith sensitivity. As

explained earlier, the model represents otolith error in a way that is not sensitive to the

second change and therefore does not propose it.

This response is shown in Figure 12 as a dashed line. The solid line represents the normal

response for reference.

page 120

CHAPTER 6

Conclusions

Nothing would get done if we succumbed to satisfaction. [Minsky 1986]

We would not need to deal with exceptions and censors if we lived in a

universe of simple, general rules with no exceptions, as in the lovely

mathematical worlds of arithmetic, geometry and logic. But perfect logic

rarely works in the real world of people, thoughts, and things. This is

because it is no accident that there are no exceptions to the rules in those

mathematical worlds: there, we start with the rules and imagine only

objects that obey them. But we can't so willfully make up the rules for

objects that already exist, so our only course is to begin with imperfect

guesses-collections of rough and ready rules-and then proceed to find

out where they're wrong. [Minsky 1986]

page 121

VI. Conclusions

I presented a system that modifies the theory contained in a model of the normal human

orientation system. Each parameter of the model is represented as a constraint on the

range of possible values for normal subjects. As the examination of an individual

progresses through a series of clinical tests, experimental signals are discretized. The

structure of the model is extracted by generalizing the shape parameters with curve fit

variables. The equations describing the model are translated into constraints on these

variables. Two other types of constraints are also added to the network, initial values and

differentiation constraints. Constraint propagation is then used to perform a qualitative

simulation of the constraints stemming from normality and the various test results. If the

individual is a normal subject, the system constrains the set of parameters describing the

vestibular system of that individual. If the individual is a pathological case, the system is

unable to find a consistent set of parameters. The constraints involved in the

contradictory constraints directly suggest structural modifications of the system according

to a priori knowledge of vestibular physiological failures. If numerical constraints are

violated, the system relaxes them. The system then tunes the modified model. The final

result is a model structurally different from that for a normal subject but that represents

the specific subject's pathological vestibular system. This method is fundamentally

different from a rule-based diagnostic system because it doesn't rely on patient symptoms

and relations between symptoms and diseases. Instead, the system relies on detailed

knowledge of a model of the patient and possible variations to the model. There is no

direct indexing of these modifications by observables.

This system demonstrates automated scientific discovery in an actual scientific domain

through techniques adapted from diagnosis and design. Qualitative and quantitative

techniques are integrated in this single scheme, creating synergy between simulation and

page 122

Al techniques. The overall system represents progress in vestibular research, theory

formation, and could prove useful for vestibular diagnosis.

VI.1. MARIKA's Development Context

The system I describe here is developed as part of a long term goal for an Interesting Data

Filter software module. This module is one of the pieces of an intelligent computer

system designed to assist astronauts while performing a space-borne vestibular

experiment [Young et al. 1986, Young et al. 1989]. The computerized assistant is named

[PI] (pronounced PI-in-a-box). This system is being developed jointly by the Man-

Vehicle Laboratory at MIT and the Al Research Branch of the NASA Ames Research

Center. The Aerospace Human Factors Research Division at Ames helps in designing the

astronaut-computer interface. [PI] is being designed to fly on the SLS-2 Spacelab mission

in Fall 1993. The system will be connected to the flight experiment apparatus and will

assist the astronaut in the following tasks: Experiment Protocol Management, Data

Acquisition and Reduction, Data Quality Monitoring, Diagnosis and Troubleshooting,

Interesting Data Filtering, and Experiment Suggesting. In its long term version, this

module would comprise individual vestibular models for each astronaut. These would be

tuned according to the techniques developed here using baseline data obtained on the

ground. The role of the system would be to compare flight data to expected data, flag

discrepancies and provide adequate scientific explanations to the astronaut operator. On

the basis of interaction, the system would then propose a new model. The Experiment

Suggester module would be triggered after the astronaut accepted results from the

Interesting Data Filter. Its role would be to modify the experiment to test the latest

page 123

hypothesis. Such a module could benefit from other work done in the scientific discovery

field.

VI.2. Scientific Contributions

The MARIKA system is an inter-disciplinary piece of work that combines ideas from the

AT, simulation, modeling, engineering design, and diagnosis domains. In return, it

contributes to the fields of scientific discovery and vestibular research.

MARIKA demonstrates an automated discovery system on an actual scientific domain.

Though the domain is clinical and not active vestibular research, I have paid attention to

understanding the domain thoroughly and crafting a representation that makes reasoning

natural and efficient. Extending the system to vestibular space adaptation should require

mostly knowledge, not new paradigms.

MARIKA contributes to the vestibular domain through the modeling development it

entailed. The model originally built from monkey data was extended to humans. I also

added other senses such as vision and tactile cues. Modeling of separate symmetrical

semicircular and otoliths end-organs provides a useful clinical research tool.

MARIKA demonstrates the use of techniques adapted from diagnosis and design that

help solve a problem often believed to require some level of intuition. The system proves

that the understanding of a mathematically modeled domain can be enhanced with the

help of adapted AT techniques. MARIKA provides partial proof that:

Because diagnosis can be described as a special case of abduction, it is

[also] worthwhile to try exploiting computational mechanisms developed

for model-based diagnosis to address more general abduction problems.

[Hamscher 91]

page 124

Qualitative and quantitative analysis techniques are applied in synergy in a single

scheme. Quantitative techniques are often more computationally expensive than

qualitative ones. However, they often provide too much detail while qualitative

techniques provide too few or produce too many under-constrained analyses. MARIKA

shows that an appropriate mix of qualitative and quantitative representations and methods

can be used in synergy to provide adequate detail at reasonable computational cost. Also,

the system uses a discrete representation of time to reason about time-varying signals in

an efficient manner.

MARIKA applies simulation and AT techniques in synergy.

The growing cross-fertilization of ideas between the fields of artificial

intelligence (AI) and simulation has stimulated interest in both the

simulation and the artificial intelligence communities.

Simulationists find that simulation software is weak: Users demand more

realistic models, more support for the novice, and better assistance with

extracting information from large amounts of data.

Artificial intelligence workers find that their programs break down when

dealing with real-world problems: They have difficulty in reasoning about

time-varying phenomena and in predicting behavior of complex

probabilistic systems. These limitations prevent expert systems from

achieving their full potential in planning, diagnostic, advisory, and similar

applications that require flexible and robust understanding of the behavior

of realistically complex problems. [Widman and Loparo 1989]

Though answering only a few of these questions, MARIKA provides a more intelligent

simulation system because of its Al component and a more realistic reasoner because of

its simulation component.

Though limited to linear or steady state simulations, MARIKA is a step toward a useful

clinical diagnostic tool. As is, the system is purposely lacking vestibular diagnostic

page 125

knowledge. It could be complemented to provide a diagnosis classification together with

its altered moudl.

VI.3. Limitations of MARIKA

MARIKA works well with models that can be represented as linear differential equations.

Completeness of the set of operators is easily satisfied within the domain of shapes.

Indeed, the domain of shapes could very easily be extended by providing calculation

methods for the various operators (basic operations, derivation, initial value). However,

only a few non-linear cases are handled. All these cases yield shapes that would also be

produced by linear operations. The transient state of the vestibular system cannot be

studied with the system as it stands. Though most of the information can be read in the

steady state model, some effects manifest themselves only as transients.

The system handles four basic shapes at this stage but could easily be extended to others.

However, there is no general mathematical mechanism capable of recognizing or

handling novel shapes. The discretization of data relies on specific knowledge of the

shape, not generally applicaole heuristics.

The segmentation of the signals is critical to proper approximation of the data. Vestibular

experiments present well segmented inputs that provide all the information necessary to

segment intermediary and output signals. Other domains could require segmentation

algorithms as in the Flite system [Prager et al 1989].

MARIKA requires a wrking model of the domain. The current clinical domain satisfies

this requirement when the normal human vestibular system is used. If the vestibular

adaptation domain were used, an initial hypothetical model would be useu. However,

page 126

many domains do not have established models. The goal of MARIKA is to refine a

model, not create one from data.

MARIKA's model patching includes model parameter range adjustment and structural

patching. The structural patching mechanism is very simple as it uses a table look-up.

The quality of the patches depends on the foresight of the scientist who established the

table. A knowledge-based patch suggester would enhance the opportunist attitude of the

system.

MARIKA only suggest destructive model patches. It suggest malfunction or absence of

sub-parts of the model which can be considered as degenerative. As outlined earlier,

modifying the system for the vestibular adaptation domain would require constructive

structural patches and possibly reorganization patches that would suggest new links

between end-organs and signals.

MARIKA uses Screamer, an off-the-shelf constraint propagator that was slightly

modified. Only a few of Screamer's capabilities are used by MARIKA, but computing

penalties are paid for all of its overhead

VI.4. Future Work

MARIKA is currently limited to linear differential equations and consequently steady

state only for some interesting and popular experimental conditions. It would be

interesting to extend the model in general ways to include non-linear operators present in

the vestibular model without restricting them to special simple cases.

In order to demonstrate the usefulness of model-based discovery as diagnosis and design,

MARIKA should be applied to another domain. This domain could involve a different set

page 127

of shapes. The domain would have to be a linear one unless further work lifts that

restriction or special cases can be found to avoid it.

It would be interesting to modify MARIKA to provide its own set of model alterations.

Because MARIKA uses object representation for all the mathematical objects it

manipulates, this could be done in a way similar to AM by applying mutation operators to

the content of object slots. Domain heuristics would have to be applied to generate

meaningful mutations. For expression objects, these patches would be indexed by the

original form of the expression. The variable patches would still be more efficiently

implemented as the set of heuristics present in MARIKA. In a system modified along

these lines, incremental patch generation and indexing would take place after every use of

a patch to allow further modification.

To be most useful in a clinical setting, MARIKA would have to be modified to help find

the next test that would best discriminate between competing structurally different

models. The system would require knowledge of the available experimental setups and

evaluate predictions of the competing models and choose the test that maximizes the

information gained on the patients vestibular system. Such a system would greatly

improve the time necessary for diagnostic testing by shortening the test-analysis loop

which is often a limiting factor in a clinical setting. To achieve these capabilities, the

current system must first be rendered seamless and its speed must be improved. Another

module must be developed to compare predictions made by competing models and

suggest tests that would differentiate them. This new module could also encode

knowledge on the cost of the test and perform some optimization on its test selection.

An important next step in model-based scientific discovery is to modify MARIKA to

solve the original problem of theory formation within the domain of space vestibular

page 128

adaptation. Once this step is achieved, making the system perform under space flight time

and hardware performance requirements would allow it to be tested as a true scientific

discovery system.

page 129

z

References

Apple Computer, Inc., Macintosh Common Lisp 2.0 Reference, 030-5008-A, Developer

Technical Publications, 1991.

Balkwill M. D., Changes in Human Horizontal Angular VOR After the Spaceb SLS-J

Mission, Unpublished Master's thesis, Aeronautics and Astronautics Department,

Massachusetts Institute of Technology, February 1992.

Benson A. J., and Bodin M. A., Interaction of Linear and Angular Accelerations on

Vestibular Receptors, in Manual of Aerospace Medicine, 37, 144-154, 1966.

Bohr N., Atomic Theory and the Description of Nature, 1929.

Changeux J.-P. L'Homme Neuronal, Librairie Artheme Fayard, 1983.

Correia M. J., and Guedry F. E., Modification of Vestibular Responses as a Function of

Rate of Rotation About an Earth-Horizontal Axis, Acta Otolaryngologica, 62, 297-308,

1966.

Eykhoff P., System Identification, Wiley, New York, 1974.

Falkenheimer B. C., and Michalski R. S., Integrating Quantitative and Qualitative

Discovery: The ABACUS System, Machine Learning, 1: 367-401, 1986.

Forbus K. D., Interpreting Observations of Physical Systems, IEEE Transactions on

Systems, Man, and Cybernetics, SMS-17 (3), 350-359, 1987.

page 131

Forbus K. D., Qualitative Process Theory, Artificial Intelligence. 24, 85-168, 1984.

Furman J. M. R., Earth Horizontal Axis Rotational Responses in Patients with Unilateral

Peripheral Vestibular Deficits, Annals of Otology, Rhinology and Laryngology, Vol. 98,

No. 7, 551-555, July 1989.

Furman J. M. R., Wall C. III, and Pang D., Vestibular Function in Periodic Alternating

Nystagmus, Brain, 113: 1425-1439, 1990.

Groleau N., A Blackboard Architecture for Communication and Coordination in Design,

unpublished Master's Thesis, Dept. of Civil Engineering, Massachusetts Institute of

Technology, February 1989.

Hamscher W, and Davis R., Issues in Model Based Troubleshooting, A.I. memo 893,

Massachusetts Institute of Technology, March 1987.

H amscher W., Principles of Diagnosis: Current Trends and a Report of the First

International Workshop, AT Magazine, 15-23, Winter 1991.

Hawking S. W., A Brief History of Time, From the Big Bang to Black Holes, Bantam

Books, April 1988.

Imagine That, Inc., Extend%": Generic and Discrete Event Libraries, February 1990.

Kalman R. E., and Bucy R. S., New Results in Linear Filtering and Prediction Theory,

Journal of Basic Engineering, Transactions of the ASME, Ser D 83:95-108, 1961.

page 132

Karp P. D., and Friedland P., Coordinating the Use of Qualitative and Quantitative

Knowledge in Declarative Device Modeling, in Artificial Intelligence, Modeling and

Simulation, Wiley, New York, 189-206, 1989.

Karp P. D., Hypothesis Formation and Qualitative Reasoning in Molecular Biology,

unpublished Ph.D. Thesis, STAN-CS-89-1263, Stanford University, 1989.

Kocabas S., Elements of Scientific Research: Modeling Discoveries in Oxide

Superconductivity, in Proceedings of the Workshop on Machine Discovery, July 1992,

Aberdeen, Scotland.

Kokar M. M., Determining Arguments of Invariant Functional Descriptions, Machine

Learning, 1: 403-422, 1974.

Kulkarni D. S., and Simon H., The Processes of Scientific Research: The Strategy of

Experimentation, Cognitive Science, 12:139-175, 1988.

Kulkarni D. S., The Processes of Scientific Research: The Strategy of Experimentation,

unpublished Ph.D. Thesis, Carnegie Mellon University, 1987.

Langley P., and Nordhausen B., A Frameworkfor Empirical Discovery, in Proceedings of

the International Meeting on Advances in Learning, Les Arcs, France, 1986.

Langley P., and Zytkow J. M., Data-Driven Approaches to Empirical Discovery,

Artificial Intelligence, 40, 283-312, 1989.

page 133

Langley P., Simon H. L., Bradshaw G. L., and Zytkow J. M., Scientific Discovery:

Computational Explorations of the Creative Processes, MIT Press, Cambridge, 1987.

Lenat D. B., and Brown J. S., Why AM and EURISKO Appear to Work, Artificial

Intelligence, 23, 269-294, 1984.

Lenat D. B., Automated Theory Formation in Mathematics, in Proceedings IJCAI-77,

833-842, 1977.

Merfeld D. M., Spatial orientation in the squirrel monkey: An Experimental and

Theoretical Investigation, unpublished Ph.D. Thesis, Massachusetts Institute of

Technology, February 1990.

Merfeld D. M., Young L. R., Oman C. M., and Shelhamer M. J., A Multi-dimensional

Model of the Effect of Gravity on the Spatial Orientation of the Monkey, submitted to the

Journal of Vestibular Research, May 1992.

Minsky M., The Society of Mind, Simon and Schuster, 1986.

Mira E., Schmid R., Zanocco P., Buizza A., Magenes G., and Manfrin M., A Computer-

Based Consultation System (Expert System) for the Classification and Diagnosis of

Dizziness, Adv. Oto-Rhino-Laryngology, vol. 42., pp. 77-80, Karger, Basel, 1988.

Morrison P., and Morrison P., The Ring of Truth, An Inquiry in How We Know What We

Know, Random House, 1987.

page 134

NASA, Spacelab Life Science 1, Reprints of Background Life Sciences Publications,

White R., and Leonard J. eds., 1991.

Newell A., and Simon H. A., GPS, a program that simidates human thought, in

Computers and Thought, Feigenbaum and Feldman eds., McGraw-Hill, New York, 1963.

Oman C. M., Sensory Conflict in Motion Sickness: an Observer Theory Approach,

Symposium and Workshop on Spatial Displays and Spatial Instruments, Alisomar,

California, September 1988.

Ormsby C. C., and Young L. R., Integration of semicircular canal and otolith

information for multisensory orientation stimuli, Mathematical Biosciences 34:1-21,

1977.

Piatetsky-Shapiro G., and Frawley W., Proceedings of the International Joint

Conferences on Artificial Intelligence. Workshop on Knowledge Discovery in Databases,

Menlo Park, CA, 1989.

Prager R., Belanger P., and De Mori R., A Knowledge-Based System for Troubleshooting

Real-Time Models, in Artificial Intelligence Simulation & Modeling, L. E. Widman, K.

A. Loparo, and N. R. Nielsen, eds., Wiley, New York, 1989.

Raphan T., Matsuo V., and Cohen B., A velocity storage mechanism responsible for

optokinetic nystagmus (OKN), optokinetic after-nystagmus (OKAN) and vestibular

nystagmus, Control of Gaze by Brain Neurons, in Developments in Neuroscience,

Vol. 1., Elsevier/North Holland Biomedical Press, 37-47, 1977.

page 135

Robinson D. A., Vestibular and optokinetic symbiosis: an example of explaining by

modeling, Control of Gaze by Brain Neurons, in Developments in Neuroscience, Vol. 1.,

Elsevier/North Holland Biomedical Press, 49-58, 1977.

Rosenblueth A., and Wiener N., The Role of Models in Science, IEEE Transactions on

Automatic Control, AC-14, 270-276, 1945.

Schement M. J., and Hartline H. P., An Intelligent Controller for Neurophysiological

Experiments, in Computer-Based Medical Systems, Proceedings of the Fifth Annual

IEEE Symposium, Durham, North Carolina, 528-538, June 1992.

Shell P., and Carbonell J., PARMENIDES: A Class-Based Frame System, Carnegie

Mellon University, January 1990.

Simmons R. G., Combining Associational and Causal Reasoning to Solve Interpretation

and Planning Problems, unpublished Ph.D. Thesis, Massachusetts Institute of

Technology, 1988.

Siskind J. M., Screaming Yellow Zonkers, Massachusetts Institute of Technology

Artificial Intelligence Laboratory Technical Document, 1991.

Sriram D., and Tong C., Artificial Intelligence and Engineering Design, Ninth National

Conference on Artificial Intelligence, Tutorial SA2, Anaheim, CA, July 1991.

Stockwell C. W., Turnispeed G. T., and Guedry F. E., Nystagmus Responses During

Rotation about a Tilted Axis, Army-Navy Joint Report, no. NAMRL- 1129, Pensacola:

Nav Aerospace Med Res Lab, 1971.

page 136

The Math Works, Inc., MA TLAB I' User's Guide, 1989.

The Math Works, Inc., SIMULAB"'mA Program for Simulating Dynamic Systems, User's

Guide, 1991.

Valdis-Pdrez R. E., Machine Discovery of Chemical Reaction Pathways, Ph.D.

Dissertation, CMU-CS-90-191, School of Computer Science, Carnegie Mellon

University, 1990.

Wall C. III, and Black F. 0., Intersubject Variability in VOR Responses to 0.005-1.0 Hz

Sinusoidal Rotations, Acta Otolaryngologica, 406: 194-198, 1984.

Wall C. III, and Furman J. M. R., Nystagmus Responses in a Group of Normal Humans

during Earth-horizontal Axis Rotation, Acta Otolaryngologica, 108: 327-335, 1989.

Wall C. III, Black F. 0., and Hunt A. E., Effects of Age, Sex and Stimulus Parameters

upon Vestibulo-ocular Responses to Sinusoidal Rotations, Acta Otolaryngologica,

406:194-198, 1984.

Wall C. III, Busis S., and Kamerer D. B., Differential Assessment of Otolithic Versus

Canal Function in Patients Using Earth Horizontal Axis Rotation, in The Vestibular

Neurophysiologic and Clinical Research, Graham, Malcom D., and Kemink, John L.,

eds., Raven Press, New York, 263-270, 1987.

Wall C. II, The Sinusoidal Harmonic Acceleration Rotatory Chair Test-Theoretical and

Clinical Basis, Neurologic Clinics, Vol. 8, No. 2, 269-285, May 1990.

page 137

Widman L. E., and Loparo K. A., Artificial Intelligence, Simulation and Modeling: A

critical Survey, in Artificial Intelligence Simulation & Modeling, L. E. Widman, K. A.

Loparo, and N. R. Nielsen, eds., Wiley, New York, 1989.

Young L. R., Colombano S. P., Haymann-Haber G., Groleau N., Szolovits P., and

Rosenthal D., An Expert System to Advise Astronauts During Experiments, In the

Proceedings of the International Astronautical Congress, Malaga, Spain, 1989.

Young L. R., Perception of the body in space: mechanisms, Handbook of Physiology,

The Nervous System III, Chapter 22, American Physiological Society, Smith I. D., ed.,

1984.

Young L. R., Shelhamer M., and Modestino S., MIT/Canadian Vestibular Experiments

on the Spacelab-1 mission: 2. Visual Vestibular Tilt Interaction in Weightlessness, in

Experimental Brain Research, 64: 299-307, 1986.

Zytkow J. M., and Baker J., Interactive Mining of Regularities in Databases, in

Knowledge Discovery in Databases, Piatetsky-Shapiro G., and Frawley W. eds., AAAI

press, 1991.

Zytkow J. M., Combining Many Searches in the FAHRENHEIT Discovery System, in

Proceedings of the Fourth International Workshop on Machine Learning, Irvine, CA,

281-287, 1987.

page 138

APPENDIX A

MATLAB Curve Fitting Code

MAThAB/SIMULAB for the Macintosh version 1.1

This code allows the fitting of any type of multi-parameter function. Constrained

optimization is done according to Mean Squared Error with a call to c onst r, a Nelder-

Meade search algorithm of the parameters.

page 139

function [e,g] = model-erizsk(modeLparms,t,u,fnonmparms)

%modelerrnick
% Error function for model fitting. Constrained optimization
% minimizes the output of this function, which is currently set
% as the mean square error (MSE) between the data and the
% fitting function.
% T. Liefeld 12/6/92
% Modified N. Groleau 7/92
% calculate physical parameters for transfer function, and
% determine the corresponding model response

model-parms = model-parms * norm_parms;
T =modelparms(l);
A = modelparms(2);
P = nodel-parms(3);
C =modelparms(4);
K = modelparms(5);

% Define only one function to fit to
y=A*exp(-I*t/T)+C;
%y=A*(1- exp(- 1*t/T))+C*(1- exp(- 1*t/P))+K;
%y=A*sin(tIT + P)+C;

% ensure that y and f are both either row vectors or column vectors
[m2,n2I]= size(f);
[ml,nlJ]= size(y);
if (ml > ni) % y is column vector

if (m2 < n2) % f is row vector
y = y';
end

else % y is row vector
if (m2> n2) % f is column vector
y = Y';
end

end

% Only base MSE on data points at which we have valid data.

d=abs(y-f);
e=sum(d * d) / length(d);

% Un-comment the following four lines for plotting during fitting
%plot(t,f)
%hold on
%plot(t~'');
%hold off

% dummy value which 'constr' requires but is unused for my
% purposes; this must be some constant value for my purposes

g = -1;

return;

page 140

%nickmodelfit
% D. Balkwill 12/9/91
% modified T. Liefeld 06/12/92,7/2/92
% for a different function and parameters.
% modified N. Groleau 7/92 for various functions
% and additional parameters
% Fits a model of up to 5 parameters
% Fitting function calculated as y(t) in model_errnick
% Curve to fit is f(t) defined in the environment

global y;
u=ones(t);

% Nominal model parameters. The parameters to be fitted are the
% non-dimensional ratios of the physical parameters to the
% nominal model parameters here. This places equal emphasis
% on each model parameter, even though they may be orders of
% magnitude apart.

T = 17.5; % time constant
A =0.4; % amp!iiude
P = 0.0; % phase
C =0.0; % additive constant
K =0.0; % additiveconstant

norm_parms = [T; A; P; C; K];

%first option is 1 for verbose, 0 for silent
%error tolerances -- see "help foptions"
options =[1H; le-7 ; le-7; le-7; le-7; le-7];
vlb= [0.8; 0.8; 0.8; 0.8; 0.8]; %lower bounds
vub =[1.2; 1.2; 1.2; 1.2; 1.2]; %upper bounds

model-parms =[1; 1; 1; 1; 1];
[model-parms, options] = constr('model_errnick', mode-parms, options, vlb, vub, [], t,
u, f, normparms);

model-parms = modelparms * norm_parms;

fprintf('*** Model fit ***');
fprintf('Number of iterations = %5.0f\n',options(10));
fprintf('Mean square error = %7.5f\n',options(8));

fprintf(T = %f\n',model_parms(1));
fprintf('A = %f\n',model_parms(2));
fprintf('P = %f\n',model_parms(3));
fprintf('C = %f\n',model_parns(4));
fprintf('K = %f\n',model_parms(5));

% plotting the original function and the fit
plot(t,f);
hold on;
plot(t,y,'g');
hold off;

page 141

APPENDIX B

SCREAMER Patch Lisp Code

This code provides useful names for the constrained variables generated by Screamer. It

also provides a message trace indicating which constrained failed.

page 142

tracelisp
;;; N. Groleau 6/92
;;; Most of this code is verbatim copy of Screamer. Comments with my modifications.

(in-package :screamer)

(use-package '(:lisp))

(lisp:defun fail () (throw 'fail nil))

;;;the OPv2 definitions give meaningful names to the internally generated variables
;;; implements (+v x y)
(defun +v2 (x y)
(assert!-numberv x)
(assert!-numberv y)
(let ((x (value-of x))

(y (value-of y)))
(cond ((and (not (variable? x)) (zerop x)) y)

((and (not (variable? y)) (zerop y)) x)
((and (not (variable? x)) (not (variable? y))) (+ x y))
(t (let ((z (make-variable

'(+,,(if (variable? x) (variable-name x) x) ;;; variable is called
,(if (variable? y) (variable-name y) y))))) ;;; (+ name-of-x name-of-y

(assert!-numberv z)
(+-rule z x y)
(setf x (value-of x))
(setf y (value-of y))
(setf z (value-of z))
(attach-noticer! #'(lambda 0 (+-rule z x y)) x)
(attach-noticer! #'(lambda 0 (+-rule z x y)) y)
(attach-noticer! #'(lambda 0 (+-rule z x y)) z)
z)))))

;;; implements (-v x y)
(defun -v2 (x y)
(assert!-numberv x)
(assert!-numberv y)
(let ((x (value-of x))

(y (value-of y)))
(cond ((and (not (variable? x)) (zerop x)) (- y))

((and (not (variable? y)) (zerop y)) x)
((and (not (variable? x)) (not (variable? y))) (- x y))
(t (let ((z (make-variable

'(- ,(if (variable? x) (variable-name x) x)
,(if (variable? y) (variable-name y) y)))))

(assert! -numberv z)
(+-rule x y z)
(setf x (value-of x))
(setf y (value-of y))
(setf z (value-of z))
(attach-noticer! #'(lambda) (+-rule x y z)) x)
(attach-noticer! #'(lambda 0 (+-rule x y z)) y)
(attach-noticer! #'(lambda 0 (+-rule x y z)) z)
z)))))

variable is called
(- name-of-x name-of-y)

page 143

)

;;; implements (*v x y)
(defun *v2 (x y)
(assert!-numberv x)
(assert!-numberv y)
(let ((x (value-of x))

(y (value-of y)))
(cond ((and (not (variable? x)) (zerop x)) 0)

((and (not (variable? y)) (zerop y)) 0)
((and (not (variable? x)) (= x 1)) y)
((and (not (variable? y)) (= y 1)) x)
((and (not (variable? x)) (not (variable? y))) (* x y))
(t (let ((z (make-variable

'(* ,(if (variable? x) (variable-name x) x) ;;; variable is called
,(if (variable? y) (variable-name y) y))))) ;;; (* name-of-x name-of-y)

(assert!-numberv z)
(*-rule z x y)
(setf x (value-of x))
(setf y (value-of y))
(setf z (value-of z))
(attach-noticer! #'(lambda 0 (*-rule z x y)) x)
(attach-noticer! #'(lambda 0 (*-rule z x y)) y)
(attach-noticer! #'(lambda 0 (*-rule z x y)) z)
z)))))

;;; implements (/v x y)
(defun /v2 (x y)
(assert!-numberv x)
(assert!-numberv y)
(let ((x (value-of x))

(y (value-of y)))
(cond ((and (not (variable? x)) (zerop x)) 0)

((and (not (variable? y)) (zerop y)) (fail))
((and (not (variable? y)) (= y 1)) x)
((and (not (variable? x)) (not (variable? y))) (/ x y))
(t (let ((z (make-variable

'(/,(if (variable? x) (variable-name x) x) ;;; variable is called
,(if (variable? y) (variable-name y) y))))) ;;; (/name-of-x name-of-y)

(assert!-numberv z)
(*-rule x y z) .
(setf x (value-of x))
(setf y (value-of y))
(setf z (value-of z))
(attach-noticer! #'(lambda 0 (*-rule x y z)) x)
(attach-noticer! #'(lambda 0 (*-rule x y z)) y)
(attach-noticer! #'(lambda 0 (*-rule x y z)) z)
z)))))

page 144

;;; implements (=v x y)
(defun =v2 (x y)
(assert!-numberv x)
(assert!-numberv y)
(Qet ((x (value-of x))

(y (value-of y)))
(cond ((known?-=v2 x y) t)

((known?-/=v2 x y) nil)
(t (let ((z (make-variable

'(=,(if (variable? x) (variable-name x) x)
,(if (variable? y) (variable-name y) y)))))

(assert!-booleanv z)
(attach-noticer!
#'Qambda ()

(cond ((known?-=v2 x y) (assert!-true z))
((known?-/=v2 x y) (assertl-false z))))

x)
(attach-noticer!
#'(lambda ()

(cond ((known?-=v2 x y) (assert!-true z))
((known?-/=v2 x y) (assertl-false z))))

y)
(attach-noticer!
#'(lambda ()

(cond ((known?-true z) (assert!-=v2 x y))
((known?-false z) (assert!-/=v2 x y))))

z)

variable is called
(= name-of-x name-of-y)

page 145

;;; implements (<=v x y)
(defun <=v2 (x y)
(assert!-numberv x)
(assert!-numberv y)
(let ((x (value-of x))

(y (value-of y)))
(cond ((known?-<=v2 x y) t)

((kiown?-<v2 y x) nil)
(t (let ((z (make-variable

'(<=,(if (variable? x) (variable-name x) x)
.,(if (variable? y) (variable-name y) y)))))

(assert!-booleanv z)
(attach-noticer!
#'(lambda ()

(cond ((known?-<=v2 x y) (assert-true z))
((known?-<v2 y x) (assert!-false z))))

x)
(attach-noticer!
#'(lambda 0

(cond ((known?-<=v2 x y) (assert!-true z))
((known?-<v2 y x) (assert!-false z))))

y)
(attach-noticert
#'Qambda ()

(cond ((known?-true z) (assert-<=v2 x y))
((known?-false z) (assert!-<v2 y x))))

z)
z)))))

variable is called
(<= name-of-x name-of-y)

page 146

;;; implements (<v x y)
(defun <v2 (x y)
(assert!-numberv x)
(assert!-numberv y)
(let ((x (value-of x))

(y (value-of y)))
(cond ((known?-<v2 x y) t)

((known?-<=v2 y x) nil)
(t (let ((z (make-variable

'(<,(if (variable? x) (variable-name x) x)
,(if (variable? y) (variable-name y) y)))))

(assert!-booleanv z)
(attach-noticer!
#'(lambda ()

(cond ((known?-<v2 x y) (assert!-true z))
((known?-<=v2 y x) (assertl-false z))))

x)
(attach-noticer!
#'(lambda ()

(cond ((known?-<v2 x y) (assert-true z))
((known?-<=v2 y x) (assert-false z))))

y)
(attach-noticer!
#'(lambda 0

(cond ((known?-true z) (assertt-<v2 x y))
((known?-false z) (assert!-<=v2 y x))))

z)

variable is called
(<narne-of-x name-of-y)

page 147

;;; implements (/=v x y)
(defun /=v2 (x y)
(assert!-numberv x)
(assert!-numberv y)
(let ((x (value-of x))

(y (value-of y)))
(cond ((known?-/=v2 x y) t)

((known?-=v2 x y) nil)
(t (let ((z (make-variable

'(/=,(if (variable? x) (variable-name x) x)
,(if (variable? y) (variable-name y) y)))))

(assert!-booleanv z)
(attach-noticer!
#'Qambda ()

(cond ((known?-/=v2 x y) (assert!-true z))
((known?-=v2 x y) (assert!-false z))))

x)
(attach-noticer!
#'(lambda ()

(cond ((known?-/=v2 x y) (assert-true z))
((known?-=v2 x y) (assert-false z))))

y)
(attach-noticer!
#'(lambda ()

(cond ((known?-true z) (assertt-/=v2 x y))
((known?-false z) (assert!-=v2 x y))))

z)
z)))))

variable is called
(/= name-of-x name-of-y)

page 148

;;; prints only reasonable precision
(defun print-variable (x stream print-level)
(declare (ignore print-level))
(let ((x (value-of x)))
(if (variable? x)

(cond ((and (not (eq (variable-domain x) t))
(not (null (variable-antidomain x))))

(error "This shouldn't happen"))
((not (eq (variable-domain x) t))
(format stream "[~S domain:~S]"

(variable-name x)
(variable-domain x)))

((not (null (variable-antidomain x)))
(format stream "[~S antidomain:~Sj"

(variable-name x)
(variable-antidomain x)))

((known?-realv x)
(let ((type (cond

((known?-integerv x) "integer")
((known?-not-integerv x) "non-integer real")
(t "real"))))

(if (finite-range-min? x)
(if (finite-range-max? x)

(format stream "[~S ~A ~4,2F:~4,2F]" ;;; changed format to 4,2F
(variable-name x)
type
(range-min x)
(range-max x))

(format stream "[~S ~A ~4,2F:]"
(variable-name x)
type
(range-min x)))

(if (finite-range-max? x)
(format stream "[~S ~A :~4,2F]"

(variable-name x)

;;; changed format to 4,2F

;;; changed format to 4,2F

type
(range-max x))

(format stream "[~S ~A]"
(variable-name x)
type)))))

((known?-numberv x)
(format stream "[~S ~A]"

(variable-name x)
(if (known?-not-realv x) "non-real number" "number")))

((known?-not-numberv x)
(format stream "[-S non-number]" (variable-name x)))

(t (format stream "[~S]" (variable-name x))))
(format stream "-4,2F" x)))) ;;; changed format to 4,2F

page 149

;;;tells me what minimum it failed on
(defun restrict- in! (x new-min)
(assert!-realv x)
(let ((x (value-of x))

(run? nil))
(cond ((variable? x)

(when (or (not (finite-range-min? x)) (> new-min (range-min x)))
;; note: Should be fuzzy<.
(if (and (finite-range-max? x) (<(range-max x) new-min))

(progn
(format t "~%Failed when attempting to set the min of ~A to ~4,2F" (variable-

name x) new-min) ;; added warning message
(fail)

(local (setf (variable-min x) new-min))
(setf run? t))
(cond ((and (not (eq (variable-domain x) t))

(some #'(lambda (element) (known?-<v2 element new-min))
(variable-domain x)))

;; note: Could do less consing if had LOCAL DELETE-IF.
;; This would also allow checking list only once.
(assign! x (remove-if #'(ambda (element)

(known?-<v2 element new-min))
(variable-domain x))))

(run? (run-noticers x))))
;; note: Should be fuzzy<.
(t (if (< x new-min)
(progn
(format t "~%Failed when attempting to set ~4,2F to ~4,2F" x new-min)

;; added warning message
(fail))

page 150

;;;tells me what maximum it failed on
(defun restrict-max! (x new-max)
(assert!-realv x)
(let ((x (value-of x))

(run? nil))
(cond ((variable? x)

(when (or (not (finite-range-max? x)) (<new-max (range-max x)))
;; note: Should be fuzzy>.
(if (and (finite-range-min? x) (> (range-min x) new-max))

(progn
(format t "~%Failed when attempting to set the max of ~A to -4,2F" (variable-

name x) new-max) ;; added warning message
(fail)

(local (setf (variable-max x) new-max))
(setf run? t))
(cond ((and (not (eq (variable-domain x) t))

(some #'(lambda (element) (known?-<v2 new-max element))
(variable-domain x)))

;; note: Could do less consing if had LOCAL DELETE-IF.
;; This would also allow checking list only once.
(assign! x (remove-if #'(lambda (element)

(known?-<v2 new-max element))
(variable-domain x))))

(run? (run-noticers x))))
;; note: Should be fuzzy>.
(t (if (> x new-max)
(progn
(format t "%Failed when attempting to set ~4,2F to ~4,2F x new-max)

;; added warning message
(fail))

page 151

;;; trigo.lisp
N. Groleau 7/92

;;; Implements constraint for sinusoidal signals. Modeled after Screamer code.

(in-package :screamer)

(use-package '(:lisp))

(shadow '(defun))

(proclaim '(declaration magic))

(export '(cosv sinv tanv sqrtv))

;;; COS
(defun cosv-internal (xs)
(if (null xs) 0 (cosv2 (first xs))))

(defun cosv (&rest xs) (cosv-internal xs))

(defun cosv2 (x)
(assert!-numberv x)
(let ((x (value-of x)))
(cond ((not (variable? x)) (cos x))

(t (let ((z (make-variable
'(cos (if (variable? x) (variable-name x) x))

(assert!-numberv z)
(cos-rule z x)
(setf x (value-of x))
(setf z (value-of z))
(attach-noticer! #'Qambda () (cos-rule z x)) x)
(attach-noticer! #'(lambda 0 (cos-rule z x)) z)
Z)))))

(defun cos-rule (z x)
(let ((x (value-of x))

(z (value-of z)))
(if (and (numberp z) (numberp x) (/= z (cos x))) (fail))
(if (known?-realv x) (asserc!-realv z))
(when (known?-realv z)
(assert!-realv x))

(if (known?-not-realv x)
(assert!-not-realv z))

(when (and (known?-realv x) (known?-realv z))
(if (finite-range-min? x)

(restrict-max! z (cos (range-min x))))
(if (finite-range-max? x)

(restrict-min! z (cos (range-max x))))
(if (finite-range-min? z)

(restrict-max! x (acos (range-mmn z))))
(if (finite-range-max? z)

(restrict-min! x (acos (range-max z))))

page 152

;;; SIN

(defun sinv-internal (xs)
(if (null xs) 0 (sinv2 (first xs))))

(defun sinv (&rest xs) (sinv-internal xs))

(defun sinv2 (x)
(assert!-numberv x)
(let ((x (value-of x)))
(cond ((not (variable? x)) (sin x))

(t Oet ((z (make-variable
'(sin ,(if (variable? x) (variable-name x) x))

(assert!-numberv z)
(sin-rule z x)
(setf x (value-of x))
(setf z (value-of z))
(attach-noticer! #'(lambda () (sin-rule z x)) x)
(attach-noticer! #'(lambda C) (sin-rule z x)) z)
Z)))))

(defun sin-rule (z x)
(let ((x (value-of x))

(z (value-of z)))
(if (and (numberp z) (numberp x) (/= z (sin x))) (fail))
(if (known?-realv x) (assert!-realv z))
(when (known?-realv z)
(assert-realv x))

(if (known?-not-realv x)
(assert!-not-realv z))

(when (and (known?-realv x) (known?-realv z))
(if (finite-range-mm? x)

(restrict-mini z (sin (range-min x))))
(if (finite-range-max? x)

(restrict-max! z (sin (range-max x))))
(if (finite-range-min? z)

(restrict-min! x (asin (range-min z))))
(if (finite-range-max? z)

(restrict-max! x (asin (range-max z))))

page 153

;;; TAN

(defun tanv-internal (xs)
(if (null xs) U (tanv2 (first xs))))

(defun tanv (&rest xs) (tanv-internal xs))

(defun tanv2 (x)
(assert!-numberv x)
(let ((x (value-of x)))
(cond ((not (variable? x)) (tan x))

(t (let ((z (mke-variable
'(tan (if (variable? x) (variable-name x) x))

(assert! -numberv z)
(tan-rule z x)
(setf x (value-of x))
(setf z (value-of z))
(attach-noticer! #'(lambda ((tan-rule z x)) x)
(attach-noticer! #'(ambda 0 (tan-rule z x)) z)
Z)))))

(defun tan-rule (z x)
(let ((x (value-of x))

(z (value-of z)))
(if (aid (numberp z) (numberp x) (/= z (tan x))) (fail))
(if (known?-realv x) (assert!-realv z))
(when (known?-realv z)

(assert!-realv x))
(if (known?-not-realv x)

(assert!-not-realv z))
(when (and (known?-realv x) (known?-realv z))
(if (finite-range-min? x)

(restrict-mint z (tan (range-min x))))
(if (finite-range-max? x)

(restrict-max! z (tan (range-max x))))
(if (finite-range-min? z)

(restrict-min! x (atan (range-min z0-g
(if (finite-range-max? z)

(restrict-max! x (atan (range-max z))))

page 154

;;; SQRT

(defun sqrtv-internal (xs)
(if (null xs) 0 (sqrtv2 (first xs))))

(defun sqrtv (&rest xs) (sqrtv-intemal xs))

(defun sqrtv2(x)
(assert!-numberv x)
(let ((x (value-of x)))
(cond ((not (variable? x)) (sqrt x))

(t (let ((z (make-variable
'(sqrt ,(if (variable? x) (variable-name x) x))

(assert!-numberv z)
(sqrt-rule z x)
(setf x (value-of x))
(setf z (value-of z))
(attach-noticer! #lambda) (sqrt-rule z x)) x)
(attach-noticer! #'(lambda ((sqrt-rule z x)) z)
Z)))))

(defuz sqrt-rule (z x)
(let ((x (value-of x))

(z (value-of z)))
(if (and (numberp z) (numberp x) (/= z (sqrt x))) (fail))
(when (known?-integerv z)
(assert!-integerv x))

(if (known?-not-integerv x)
(assert!-not-integerv z))

(if (known?-realv x) (assert!-realv z))
(when (known?-realv z)

(assert!-realv x))
(if (known?-not-realv x)

(assert!-not-realv z))
(when (and (known?-realv x) (known?-realv z))
(if (finite-range-min? x)

(restrict-min! z (sqrt (range-min x))))
(if (finite-range-max? x)

(restrict-maxI z (sqrt (range-max x))))
(if (finite-range-min? z)

(restrict-mint x (* (range-min z) (range-min z))))
(if (finite-range-max? z)

(restrict-max! x (* (range-max z) (range-max z))))

page 155

APPENDIX C

PARMENIDES Obj ect-Oriented
Programming Lisp Code

This code provides a more flexible interface to Parmenides objects as well as implement a

simple message passing scheme using the existing slot structure.

page 156

;;; signals.lisp
;;; holds the class definitions for data segmentation
;;; as well as the equation interpreting code

(in-package :user)
(shadowing-import '(screamer::defun screamer:either screamer::local))
(use-package '(:lisp :screamer :parmenides))

(defun clean 0
(mapc #'remove-frame *class-list*)
(mapc Wremove-frame *frame-list*)
)

(defun debug 0
(mapc #'pp-frame *frame-list*))

;;; Allows the calls
;;; (my-send object message arguments) to send a message to an object
;;; (my-send object slot facet) to get the value of the facet of an object
;;; (my-send object slot) to get the value of the slot of an object
;;; (my-send object slot facet value) to set the value of the facet of an object
;;; (my-send object slot value) to set te value of the slot of an object
(defun my-send (frame slot &rest rest)

(cond
((methodp frame slot)
(let ((scif frame)

(message slot))
(declare (special self message))
(apply (get-facet frame slot 'core) rest)))

((null rest) ; GET-SLOT OR GET-VALUE
(if (has-facets frame slot)

(get-value frame slot)
(get-slot frame slot)))

((eq 1 (length rest)) ;GET-FACET OR SET-SLOT OR SET-VALUE
(if (has-facets frame slot)

(if (symbolp (car rest))
(multiple-value-bind (value existence)

(get-facet frame slot (car rest))
(if existence

value
(set-value-demons frame slot (car rest))))

(set-value-demons frame slot (car rest)))
(set-slot frame slot (car rest))))

(t ;SET-FACET
(set-facet-demons frame slot (car rest) (cadr rest)))))

;;; Tests whether a slot is a method
(defun methodp (frame slot)
(get-facet frame slot 'methodp))

page 157

;;; Defines a method attached to the slot of an object
(defmacro my-defmethod (frame slot name parameters &rest core)
(let ((method '(defun ,(if name name (gensym "method"))

,parameters
,@core)))

(if (get-slot frame slot)
(progn
(set-facet frame slot 'methodp t)
'(set-facet frame ',slot 'core ,method))
(add-slot frame slot

'(methodp t core ,method)))))

;;; Returns the function code implementing the method to answer a message
(defun get-method (frame method)
(symbol-function (get-facet frame method 'core)))

;CLASSES

(def-frame has-shapes (:is-a relation)
:has-inverses t
:inverse-name from-signal)

(def-frame differential-of (:is-a relation)
:has-inverses t
:inverse-name integral-of)

(defun update-signal 0
(update-shape-list)
(update-zero-value))

;;; calculates the initial value of a segment
(defun update-zero-value 0

(let* ((constant (get-value frame :has-constant))
(c (if constant (get-value constant :constant) 0))
(exponentials (get-value frame :has-exponentials))
(ms (mapcar #'(lambda (exp) (get-value exp :max)) exponentials))
(sinusoids (get-value frame :has-sinusoids))
(as (mapcar W(lambda (sim) (*v (get-value sin :amplitude)

(sin (get-value sin :phase))))
sinusoids))

(all (cons c (append ms as)))
)

(set-value frame :zero-value '(+v ,@all))))

;;; Posts an initial condition constraint
(defun check-zero-value (signal zero)
(format t "-%(assert! (=v -A -A))" zero (get-value signal :zero-value)))

page 158

;;; Posts the new shape in its proper list within the segment
(defun update-shape-list ()
(let ((newshape (first newval)))

(cond
((isa-instance newshape 'constant)
(set-value frame :has-constant newshape))

((isa-instance newshape 'linear)
(set-value frame :has-linear newshape))

((isa-instance newshape 'exponential)
(set-value frame :has-exponentials (list newshape)))

((isa-instance newshape 'sinusoid)
(set-valie frame :has-sinusoids (list newshape)))

;;; SEGMENT
(def-frame segment 0

:name (:value 'unknown)
:has-shapes (:value ():post-if-set '(update-segment))
:has-constant (:value 0)
:has-linear (:value ())
:has-exponentials (:value 0)
:has-sinusoids (:value ())
:differential-of (:value 0)
:integral-of (:value 0)
:has-differential (:value 'unknown)
:zero-value (:value 'unknown)
)

(my-defmethod
segment derive)0
(let ((linear (get-value self :has-linear))

(exponentials (get-value self :has-exponentials))
(sinusoids (get-value self :has-sinusoids))
(derivation (make-segment

(gensym "segment"))))
(add-to-facet-demons derivation :has- shapes :value (my-send linear 'derive))
(mapcar '(lambda (exponential)

(add-to-facet-demons derivation :has-shapes :value (my-send exp
'derive)))

exponentials)
(mapcar 1. 4ambda (sinusoid)

(add-to-facet-demons derivation :has-shapes :value (my-send sinusoid 'derive)))
sinusoids)

(set-value self :has-differential derivation)

(defun check-derivation (segment)
(let ((derivation (first (get-value segment :integral-of))))
(cond
(derivation
(my-send segment 'derive)
(compare-segments derivation (get-value segment :has-differential)))
(t 0)

page 159

;;; SHAPE
(def-frame shape (cache :*ALL*)

:name (:value 'unknown)
:from-segment (:value 0))

(my-defmethod
shape copy 0 0
(let ((copy (copy-frame self)))

(set-value copy :from-segment 0)

;;;CONSTANT
(setq constant

(def-frame constant (:is-a shape)
:constant (:value 'unknown)))

(my-defmethod
constant derive (0
0)

(my-defmethod
constant minus) 0
(make-constant
(gensym "constant")
:constant '(:value (*v -1.0 ,(get-value self :constant)))

(my-defmethod
constant multiply 0 (variable)
(make-constant
(gensym "constant")
:constant '(:value (*v ,(get-value self :constant),variable))

(my-defmethod
constant divide () (variable)
(make-constant
(gensym "constant")
:constant'(:value (Jv ,(get-value self :constant),variable))

;;; LINEAR
(setq linear

(def-frame linear (:is-a shape)
:slope (:value 'unknown)))

(my-defmethod
linear derive () ()
(make-constant
(gensym "constant")
:constant '(:value ,(get-value self :slope))

page 160

(my-defmethod
linear minus 0 0
(make-linear
(gensym "linear")
:slope '(:value (*v -1.0 ,(get-value self :slope)))

(my-defmethod
linear multiply 0 (variable)
(make-linear
(gensym "linear")
:slope '(:value (*v ,(get-value self :slope),variable))

(my-defmethod
linear divide () (variable)
(make-linear
(gensym "linear")
:slope '(:value (/v ,(get-value self :slope),variable))

EXPONENTIAL
(setq exponential

(def-frame exponential (:is-a shape)
:max (:value 'unknown)
:time-constant (:value 'unknown :fit 'unknown :precision 'unknown)))

(my-defmethod
exponential derive 0 0
(make-exponential
(gensym "exponential")
:max '(:value (*v -1.0 (Iv ,(get-value self :max),(get-value self :time-constant))))
:time-constant '(:value ,(get-value self :time-constant)

:fit ,(get-facet self :time-constant :fit)
:precision ,(get-facet self :time-constant :precision))

(my-defmethod
exponential minus 0
(make-exponential
(gensym "exponential")
:max '(:value (*v -1.0 ,(get-value self :max)))
:time-constant '(:value ,(get-value self :time-constant)

:fit (get-facet self :time-constant :fit)
:precision ,(get-facet self :time-constant :precision))

page 161

(my-defmethod
exponential multiply () (variable)
(make-exponential
(gensym "exponential")
:max'(:value (*v ,(get-value self :max),variable))
:time-constant '(:value (get-value self :time-constant)

:fit ,(get-facet self :time-constant :fit)
:precision ,(get-facet self :time-constant :precision))

(my-defmethod
exponential divide 0 (variable)
(make-exponential
(gensym "exponential")
:max '(:value (/v ,(get-value self :max),variable))
:time-constant '(:value ,(get-value self :time-constant)

:fit ,(get-facet self :time-constant :fit)
:precision ,(get-facet self :time-constant :precision))

;;; SINUSOID
(setq sinusoid

(def-frame sinusoid (:is-a shape)
:amplitude (:value 'unknown)
:frequency (:value 'unknown :fit 'unknown :precision 'unknown)
:phase (:value 'unknown :fit 'unknown :precision 'unknown)))

(setq pi/2 (/ pi 2))

(my-defmethod
sinusoid derive 0 0
(make-sinusoid
(gensym "sinusoid")
:amplitude '(value (*v (get-value self :amplitude),(get-value self :frequency)))
:frequency '(:value ,(get-value self :frequency)

:fit ,(get-facet self :frequency :fit)
:precision ,(get-facet self :frequency :precision))

:phase '(:value (-v pi/2,(get-value self :phase))
:fit (-v pi/2 ,(get-facet self :frequency :fit))
:precision (-v pi/2,(get-facet self :frequency :precision)))

(my-defmethod
sinusoid minus 0 0
(make-sinusoid
(gensym "sinusoid")
:amplitude '(:value (*v -1.0 ,(get-value self :amplitude)))
:frequency '(:value ,(get-value self :frequency)

:fit ,(get-facet self :frequency :fit)
:precision,(get-facet self :frequency :precision))

:phase '(:value (get-value self :phase)
:fit ,(get-facet self :frequency :fit)
:precision ,(get-facet self :frequency :precision))

page 162

(my-defmethod
sinusoid multiply 0 (variable)
(make-sinusoid
(gensym "sinusoid")
:amplitude '(:value (*v ,(get-value self :amplitude),variable))
:frequency '(:value ,(get-value self :frequency)

:fit ,(get-facet self :frequency :fit)
:precision,(get-facet self :frequency :precision))

:phase '(:value ,(get-value self :phase)
:fit ,(get-facet self :frequency :fit)
:precision ,(get-facet self :frequency :precision))

(my-defmethod
sinusoid divide () (variable)
(make-sinusoid
(gensym "sinusoid")
:amplitude '(:value (/v ,(get-value self :amplitude),variable))
:frequency '(:value ,(get-value self :frequency)

.fit ,(get-facet self :frequency :fit)
:precision,(get-facet self :frequency :precision))

:phase '(:value ,(get-value self :phase)
:fit ,(get-facet self :frequency :fit)
:precision ,(get-facet self :frequency :precision))

;;; EQUATION
(def-frame equation)

:LHS (:value 0)
:RHS (:value ()))

;;; EXPRESSION
(def-frame expression 0

:operation (:value 'unknown)
:argl (:value 'unknown)
:arg2 (:value 'unknown))

page 163

; INSTANCES FOR THE SIMPLE EXAMPLE WITH SEGMENT #1

;;;;;;;;?$9;;;;;;;;

;;;;OMEGA

(assert! (realv (setq a (make-variable 'a))))

(setq omega-linear
(make-linear
'omega-linear
:name '(:value omega-linear)
:slope'(:value a)

(setq omega
(make-segment
'omega
:name '(:value omega)

(add-to-facet-demons 'omega :has-shapes :value 'omega-linear)

;;;;Y-DOT-R

(assert! (realv (setq tr (make-variable 'tr))))
(assert! (realv (setq br (make-variable 'br))))

(setq y-dot-r-exponential
(make-exponential
'y-dot-r-exponential
:name '(:value y-dot-r-exponential)
:max '(:value (/v br tr))
.time-constant '(:value tr)))

(assert! (realv (setq cr (make-variable 'cr))))

(setq y-dot-r-ccnstant
(make-constant
'y-dot-r-constant
:name '(:value y-dot-r-constant)
:constant '(:value cr)))

(setq y-dot-r
(make-segment
'y-dot-r
:name '(:value y-dot-r)

(add-to-facet-demons'y-dot-r :has-shapes alue 'y-dot-r-exponential)
(add-to-facet-demons 'y-dot-r :has-shapes :value 'y-dot-r-constant)

page 164

;;;;Y-R

(setq y-r-exponential
(make-exponential

'y-r-exponential
:name '(:value y-r-exponential)
:max '(:value (*v -1.0 br))
:time-constant '(:value tr)))

(setq y-r-constant
(make-constant
'y-r-constant
:narm '(:value y-r-constant)
:constant '(:value br)))

(setq y-r-linear
(make-linear
'y-r-linear
:name '(:value y-r-linear)
:slope '(:value cr)

(setq y-r
(make-segment
'y-r
:nanr '(:value y-r)

:zero-value '(:value 0)))

(add-to-facet-demons 'y-r :has-shapes :value 'y-r-exponential)
(add-to-facet-demons 'y-r :has-shapes :value 'y-r-constant)
(add-to-facet-demons 'y-r :has-shapes :value 'y-r-linear)
(set-value-demons 'y-r :integral-of 'y-dot-r)

;;;;;;;

;EQ1
;6;;;;;;

(assert! (realv (setq tr (make-variable 'tr)))

(setq eql
(make-equation
'eqi
:LHS '(:value y-dot-r)
:RHS '(:value ,(make-expression

(gensym "expression")
:operation '(:value -)
:argl '(:value omega)
:arg2 '(:value ,(make-expression

(gensym "expression")
:operation '(:value /)
:argI '(:value y-r)
:arg2'(:value tr))))))

page 165

991 ol2sd

lbo
I-A

)UrflSUOO-i-A
prnu~uodx;-xi-A

)UU1suo.-J-Iop-A
uuodxo-.z-op-A

vsuo

1Sll-OtUILU bips)

uoprnbo
uoissdxa

p!osnu!s
rpumuodxa

lunsuoo
odmps

Jo-Twaolu!

szduqs-suq

1sW-sVP: bis)

SJLSfl

; EQUATION INTERPRETER

;;;;;;;

;ADD

;;; Adds or substracts two shapes

(defun add-shapes (segment-out operation segment1 segment2)
(let ((constant

(add-constants operation
(get-value segmentl :has-constant)
(get-value segment2 :has-constant)))

(linear
(add-linears operation

(get-value segmenti :has-linear)
(get-value segment2 :has-lirear)))

(exponentials
(add-exponentials operation

0
(get-value segmentI :has-exponentials)
(get-value segment2 :has-exponentials)))

(sinusoids
(add-sinusoids operation

0
(get-value segment1 :has-sinusoids)
(get-value segment2 :has-sinusoids))))

(add-to-facet-demons segment-out :has-shapes :value constant)
(add-to-facet-demons segment-out :has-shapes :value linear)
(mapcar #'(lambda (exponential)

(add-to-facet-demons segment-out :has-shapes walue exponential))
exponentials)

(mapcar #'(lambda (sinusoid)
(ad-to-facet-demons segment-out :has-shapes :value sinusoid))

sinusoids)
)

segment-out)

page 167

;;; Adds or substracts two constants
(defun add-constants (operation shapel shape2)

(cond
((and shapel shape2)
(make-constant
(gensym "constant")
:slope'(:value

,Q(ist
operation
(get-value shapel :constant)
(get-value shape2 :constant))

(shapel (my-send shape 1 'copy))
(shape2 (if (equal operation '-v)

(my-send shape2'minus)
(my-send shape2'copy)))

Adds or substracts two linears
(defun add-linears (operation shapel shape2)

(cond
((and shape 1 shape2)
(make-linear
(gensym "linear")
:slope '(:value

,(list
operation
(get-value shapel slope)
(get-value shape2 :slope))

(shape 1 (my-send shape 1 'copy))
(shape2 (if (equal operation '-v)

(my-send shape2'minus)
(my-send shape2'copy)))

Returns the shapes multiplied by -1
(defun minus-all (shapes)
(mapcar #'(lambda (shape) (my-send shape 'minus)) shapes))

(defun copy-all (shapes)
(mapear #'(lambda (shape) (my-send shape 'copy)) shapes))

(defun add-exponentials (operation list shapes1 shapes2)
(cond
((null shapesi) (append list (minus-all shapes2)))
(t (let* ((shapel (car shapesi))

(shape2 (compadble-exponential shapel shapes2)))
(add-exponentials operation

(append (merge-I-to-1 -exponentials shapeI shape2) list)
(cdr shapes1)
(remove shape2 shapes2))))

page 168

;;; Returns the first exponential in shapes2 compatible with shapel
(defun compatible-exponential (shapel1 shapes2)
(cond
((null shapes2) 0)
(t
(cond
((equal (get-value shapel :time-constant)

(get-value (car shapes2) :time-constant))
(car shapes2))
(t
(compatible-exponential shape I (cdr shapts2)))

;; Returns the compound exponential from expol and expo2
(defun merge- 1-to- 1-exponentials (expol expo2)

(cond
(expo2
(list
(make-exponential
(gensym "exponential")
:max '(:value

,(list
operation
(get-value expol :max)
(get-value expo2 :max)))

:time-constant '(:value (get-value expol :time-constant)))))
(t (my-send expol 'copy))

;;; Adds or substracts two compatible sinusoids
(defun add-sinusoids (operation list shapes1 shapes2)
(cond
((null shapesi) (append list (minus-all shapes2)))
(t (let* ((shapel1 (car shapes 1))

(shape2 (compatible-sinusoid shapel shapes2)))
(add-sinusoids operation

(append (merge-1-to-1-sinusoids shapel shape2) list)
(cdr shapesi)
(remove shape2 shapes2))))

page 169

;;; Returns the first sinusoid in shapes2 compatible with shape I
(defun compatible-sinusoid (shape I shapes2)
(cond
((null shapes2) 0)
(t
(cond
((and
(equal (get-value shapel :frequency)

(get-value (car shapes2):frequency))
(equal (get-value shapel :phase)

(get-value (car shapes2) :phase)))
(car shapes2))

(t
(compatible-sinusoid shape I (cdr shapes2)))

;;; Returns the compound sinusoid from sinI and sin2
(defun merge-I-to-1-sinusoids (sinI sin2)

(cond
(sin2
(list
(make-sinusoid
(gensym "sinusoid")
:amplitude '(:value

,(list
operation
(get-value sini :amplitude)
(get-value sin2 :amplitude)))

:frequency '(:value (get-value sini :frequency))
:phase '(:value (get-value sini :phase)))))

(t (my-send sinI 'copy))

page 170

;;;;;;;;;;;
; REDUCEK
;;;;;;;;;;;

;;; Reduces expression to a single segment
(defun reduce-to-segment (expression)
(cond
((isa-instance expression 'segment) expression) ;;nothing to do for segments
((isa-instance expression 'expression) for expressions
(let ((operation (get-value expression :operation))

(argl (get-value expression :arg1))
(arg2 (get-value expression :arg2))
(segment (make-segment (gensym "segment"))))

(cond
((member operation '(+ -)) ;;if + or -, argi and arg2 are segments
(let ((op (if (equal operation '+) ;;or expressions

'+v

(add-shapes segment
op
(reduce-to-segment argi)
(reduce-to-segment arg2))))

((member operation '(* /)) ;;if * or /, argI is a segment
(let ((shapes (get-value argi :has-shapes)) ;;and arg2 is a variable

(op (if (equal operation '*)
'mutiply
'divide)))

(mapcar #'(lambda (shape)
(let ((newshape (my-send shape op arg2)))
(add-to-facet-demons segment :has-shapes :value newshape)))

shapes))
segment)

(t (format t "~%Unknown expression type: ~A" expression))))

;;; Transforms a model equation into constraints
(defun interpret-equation (equation)

(let
((hs (reduce-to-segment (get-value equation :lhs)))
(rhs (reduce-to-segment (get-value equation :rhs)))
)
(compare-segments lhs rhs)

page 171

;COMPARE

;;; Compares two segments shape by shape
(defun compare-segments (segmentl segment2)
(let ((constantl (get-value segmenti :has-constant))

(constant2 (get-value segment2 :has-constant))
(linearl (et-value segmenti :has-linear))
(linear2 (get-value segment2 :has-linear))
(exponentialsi (get-value segmenti :has-exponentials))
(exponentials2 (get-value segment2 :has-exponentials))
(sinusoids1 (get-value segmenti :has-sinusoids))
(sinusoids2 (get-value segment2 :has-sinusoids)))

(compare-constants constanti constant2)
(compare-linears linearl linear2)
(compare-exponentials exponentialsi exponentials2)
(compare-sinusoids sinusoids1 sinusoids2)

;;; Compares two constants, and generates appropriate constraints
(defun compare-constants (constantl constant2)

(cond
((not (or constanti constant2)) 0)
(t (let ((cI (if (isa-instance constanti 'constant)

(get-value constanti :constant)
0))

(c2 (if (isa-instance constant2 'constant)
(get-value constant2:constant)
0)))

(format t "-% (assert! (=v -A -A))" cI c2)
;;; (assert! (=v cI c2))

;;; Compares two linears, and generates appropriate constraints
(defun compare-linears (linearl linear2)

(cond
((not (or linearl linear2)) 0)
(t (let ((si (if (isa-instance linearl 'linear)

(get-value linearl :slope)
0))

(s2 (if (isa-instance linear2 'linear)
(get-value linear2 :slope)
0)))

(format t "-% (assert! (=v -A -A))" sI s2)
;;; (assert! (=v si s2))

;;; Compares two exponentials, and generates appropriate constraints
(defun compare-exponentials (shapes1 shapes2)

(cond
((null shapesI)

page 172

(mapcar #'(lambda (expo) (assert-expo-constraint expo 0))
shapes2))

(t (let* ((shapel (car shapes1))
(shape2 (smart-compatible-exponential shapel shapes2)))

(assert-expo-constraint shapel shape2)
(compare-exponentials
(cdr shapes1)
(remove shape2 shapes2))))

;;; Checks if a variable is a boolena
(defun booleanv (x)

(memberv x '(t nil)))

;;; Checks if two vriables are identical
(defun same-variablep (x y)
(if (known? (equalv x y)) t 0))

;;; Returns the first compatible exponential in shapes 2 (or numerically
;;; almost compatible) with shape 1
(defun smart-compatible-exponential (shapel shapes2)
(let ((shape2 (car shapes2)))

(cond
((null shapes2) 0)
(t
(cond
((almost-equal shapel shape2:time-constant) shape2)
(t (smart-compatible-exponential shapel (cdr shapes2)))

;;; Checks if two curve fit variables are numerically almost compatible
(defun almost-equal (shapel shape2 slot)

(let ((varn (get-value shapel slot))
(fitl (get-facet shapel slot :fit))
(precI (get-facet shapel slot :precision))
(var2 (get-value shape2 slot))
(fit2 (get-facet shape2 slot :fit))
(prec2 (get-facet shape2 slot :precision)))

(cond
((equal varn var2) t)
((or (>= (+ fiti precI) (- fit2 prec2))

(>= (+ fit2 prec2) (- fitI prec)))
(format t "-% (assert! (=v -A -A))" varl var2)
;;; (assert! (=v varl var2))
t)

(t 0))))

page 173

;;; Assert the constraints that enforce the two exponentials to be identical
(defun assert-expo-constraint (expol expo2)
(let ((ml (get-value expol :max))

(m2 (if expo2
(get-value expo2 :max)
0)))

(format t "-% (assert! (=v -A -A))" ml m2)
;;; (assert! (=v ml m2))

;;; Compares two sinusoids, and generates appropriate constraints
(defun compare-sinusoids (shapesi shapes2)
(cond
((null shapesi)
(mapcar W(lambda (expo) (assert-sin-constraint expo ())

shapes2))
(t (let* ((shapel (car shapes1))

(shape2 (smart-compatible-sinusoid shapel shapes2)))
(assert-sin-constraint shape I shape2)
(compare-sinusoids
(cdr shapesI1)
(remove shape2 shapes2))))

;;; Returns the first compatible sinusoid in shapes 2 (or numerically
;;; almost compatible) with shapel1
(defun smart-compatible-sinusoid (shapel shapes2)

(let ((shape2 (car shapes2)))
(cond
((null shapes2) 0)
(t
(cond
((and
(almost-equal shape 1 shape2 :frequency)
(almost-equal shapel shape2 :phase))
(car shapes2))

(t
(smart-compatible-sinusoid shape1 (cdr shapes2)))

;;; Assert the constraints that enforce the two sinusoids to be identical
(defun assert-sin-constraint (sin1 sin2)

(let ((al (get-value sini :amplitude))
(a2 (if sin2

(get-value sin2 :amplitude)
0)))

(format t "-% (assert! (=v -A -A))" al a2)
;;; (assert! (=v al a2))

page 174

;TEST

(defun eq-test 0 (interpret-equation eqi))

(defun deriv-test () (check-derivation y-rO))

(assert! (realv (setq d (make-variable 'd))))
(assert! (realv (setq e (make-variable'e))))
(assert! (realv (setq t2 (make-variable 't2))))

;;; Y-DOT-RO
(setq y-dot-rO-exponential

(make-exponential
'y-dot-iO-exponential
:nanme '(:value y-dot-rO-exponential)
:max '(:value e)
:time-constant '(:value t2:fit 7 :precision .1)))

(setq y-dot-rO-constant
(make-constant
'y-dot-rO-constant
:nane '(:value y-dot-rO-constant)
:constant '(:value d)))

(setq y-dot-rO
(make-segment
'y-dot-rO
:nane '(:value y-dot-zO)

(add-to-facet-demons))y-dot-r%):has-sbapes :alue 'y-dot-rO-exponential)
(add-to-facez-demons "y-dot-rO :has-shapes :value 'y-dot-rO-constant)

(assertf (realv (setq tI (make-variable 'tI))))
(assert! (realv (sctq a (make-variable 'a))))
(assert! (realv (setq b (make-variable 'b))))
(assert! (realv (setq c (make-variable 'c))))

;;; Y-RO
(setq y-r-exponential

(make-exponential
'y-rO-exponential
:name '(:valh. y-rO-exponential)
:max '(:value c)
:time-constant '(:value ti :fit 7 :precision .1)))

(setq y-rO-constant
(make-constant
'y-rO-constant
:name '(:value y-rO-constant)
:constant '(:value a)))

page 175

(setq y-rO-linear
(make-linear
'y-r-linear
:nanc '(:value y-rO-linear)
:slope'(:valut b)

(setq y-rO
(make-segment
'y-rO
:nanr '(:value y-rO)

(add-to-facet-demons 'y-iO :has-shapes :value 'y-rO-exponential)
(add-to-facet-demons 'y-rO :has-shapes :value 'y-rO-constant)
(add-to-facet-demons 'y-rO :has-shapes :value 'y-rO-linear)
(set-value-demons 'y-rQ :integral-of 'y-dot-rO)

page 176

APPENDIX D

Chair Example Constraint Propagation
Code

This code shows the Screamer, Parmenides and Lisp code used in the constraint

propagation phase of the normal continuous chair example.

page 177

(in-package ;user)
;;; added two problem definitions
(shadowing-import '(screamer::defun screamer:either screamer::local))
(use-package '(:isp :screamer))
;;; removed old shadow
;;; (shadowing-import '(screamer::defun))

Almost setting the value of a variable
(defun === (var val)

(assert! (<=v var (* val (+ I (* *fuzz* 10.0)))))
(assert! (>=v var (* val (- 1 (* *fuzz* 10.0))))))

;;; Display all data
(defun show-all 0
(show-fits1)
(show-fits2)
(show-model))

;;; Display data for first experiment
(defun show-fitsl10
(let ((old-fuzz *fuzz*)

(*fuzz* 0.01))
(ed-beep)
(ed-beep)
(format t "~% al =-4,2F" al)
(format t "~% bI =-4,2F" bI)
(format t "~% c1=~4,2F" c1)
(format t "~% dl =~4,2F" dl)
(format t "% eI =-4,2F" el)
(format t "~% fI =-4,2F" fl)
(format t "~% g I~4,2F" gl)
(format t "~% hI =-4,2F" hi)
(format t "~% iI =-4,2F" iI)
(formatt "~%jl =-4,2F"jl)
(format t "~% kkl =-4,2F" kki)
(format t "% 11 =-4,2F" 11)
(format t "% nl =-4,2F" ml)
(format t "~% ni =~4,2F" n1)
(format t "-% of. =~-4,2F" oi)
(format t "~% pI =~4,2F" p1)
(format t "~% qi =~4,2F" ql)
(format t "It% ri =-4,2F" ri)
(format t "% sI =-4,2F" s1)
(format t "~% tiI1 =4,2F" Ut1)
(format t "~% t21 =~4,2F" t2i)
(format t "% tti =-4,2F" ttl)

page 178

;;; Diqplay data for second experiment
(defun show-fits2 0
(let ((old-fuzz *fuzz*)

(*fnzz* 0.01))
(ed-beep)
(ed-beep)
(format t "~% a2 = ~4,2F" a2)
(format t "~% b2 =~4,2F" b2)
(format t "~% c2 = ~4,2F" c2)
(format t "~%d2 = ~4,2F" d2)
(format t "~% e2 = -4,2F" e2)
(format t "~-% f2= ~4,2F" £2)
(format t "~% g2 = ~4,2F" g2)
(format t "~% h2 = ~4,2F" h2)
(format t " i2=~4,2F" i2)
(format t "~% j2=~4,2F" j2)
(format t "~% kk2=~4,2F" kk2)
(format t "~% 12=~4,2F" 12)
(format t "~% m2 = 4,2F" m2)
(format t "t~% n2 = -4,2F" n2)
(format t "~% o2 = ~4,2F" o2)
(format t "o~% p2= ~4,2F" p2)
(format t "~% q2 = ~4,2F" q2)
(format t "t~% r2 = ~4,2F" r2)
(format t "o~% s2 = ~4,2F' s2)
(format t "t~% t12 = ~4,2F" t12)
(format t "~% t22 =-4,2F" t22)
(format t "t~% tt2 = -4,2F" tt2)

;;; Display model parameters
(defun show-model 0
(let ((old-fuzz *fuzz*)

(*fuzz* 0.01))
(ed-beep)
(ed-beep)
(format t "t~% tr = ~4,2F" tr)
(format t "~% tU=~4,2F" t1)
(format t "t~% tcap =-4,2F" tcap)
(format t "~% wl = ~4,2F" wi)
(format t "-% w2 = ~4,2F" w2)
(format t "~% k = ~4,2F" k)

page 179

;;; Define curve fit parameters for first experiment
(assert! (realv (se4q al (make-variable'al))))
(assert (realv (setq bI (make-variable 'bi))))
(assert! (realv (setq cI (make-variable 'c1))))
(assert! (realv (setq dl (make-variable 'd1))))
(assert! (realv (setq el (make-variable 'el))))
(asserti (realv (setq fl (make-variable 'fl))))
(assert! (realv (setq gi (make-variable 'gi))))
(assert! (realv (setq hI (make-variable 'hi))))
(assert! (realv (setq iI (make-variable 'ii))))
(assert! (realv (setq ji (make-variable 'jl))))
(assert! (realv (setq kkI (make-variable 'kk1))))
(assert! (realv (setq11 (make-variable '11))))
(assert (realv (setq ml (make-variable 'ml))))
(assert (realv (setq nI (make-variable 'n1))))
(assert! (realv (setq ol (make-variable 'ol))))
(assert! (realv (setq p1 (make-variable 'p1))))
(assert! (realv (setq qI (make-variable 'qi))))
(assert! (realv (setq ri (make-variable 'ri))))
(assert! (realv (setq sI (make-variable 'sI))))
(assert! (realv (setq tti (make-variable 'ttl))))
(assert! (realv (setq t11 (make-variable 'tI11))))
(assert! (realv (setq t21 (make-variable 't21))))

;;; Define curve fit parameters for second experiment
(assert! (realv (setq a2 (make-variable 'a2))))
(assert! (realv (setq b2 (make-variable 'b2))))
(assert! (realv (setq c2 (make-variable 'c2))))
(assert! (realv (setq d2 (make-variable 'd2))))
(assert! (realv (setq e2 (make-variable'e2))))
(assert! (realv (setq f2 (make-variable 'f2))))
(assert! (realv (setq g2 (make-variable 'g2))))
(assert! (realv (setq h2 (mak-variable 'h2))))
(assert! (realv (setq i2 (make-variable 'i2))))
(assert! (realv (setq j2 (make-variable 'j2))))
(assert! (realv (setq kk2 (make-variable 'kk2))))
(assert! (realv (setq 12 (make-variable '12))))
(assert! (realv (setq m2 (make-variable 'm2))))
(assert! (realv (setq n2 (make-variable 'n2))))
(assert! (realv (setq o2 (make-variable 'o2))))
(assert! (realv (setq p2 (make-variable 'p2))))
(assert! (realv (setq q2 (make-variable 'q2))))
(assert! (realv (setq r2 (make-variable 'r2))))
(assert! (realv (setq s2 (make-variable 's2))))
(assert! (realv (setq tt2 (make-variable 'tt2))))
(assert! (realv (setq t12 (make-variable 't12))))
(assert! (realv (setq t22 (make-variable 't22))))

page 180

;;; Define model parameters
(assert! (realv (setq tr (make-variable 'tr))Ys
(assert! (realv (setq tl (make-variable '))))
(assert! (realv (setq tcap (make-variable'tcap))))
(assert! (realv (setq wI (make-variable 'wi))))
(assert! (realv (setq w2 (make-variable 'w2))))
(assert! (realv (setq k (make-variable 'k))))

;;; Constraints for first experiment
(assert! (=v al C/v ci tr)))
(assert! (=v fl (*v -1.0 (/v dl tr))))
(assert! (=v el (*v -1.0 (/v b Itr))))
(assert! (=v al (/v hltl)))
(assert! (-v jI (*v -1.0 (/v gi t))))
(assert! (=v 11 (+v (*v wI el) (*v w2 jl))))
(assert! (=v ml (+v (*v wI fl) (*v w2 kkl))))
(assert! (=v n1 (/v p1 tcap)))
(assert! (=v sI (*v -1.0 (/v qI tcap))))
(assert! (=v ttl (+v (*v -1.0 (/v ri tcap)) ci)))
(assert! (=v ni (*v k 11)))
(assert! (=v 01(*v-1.0 k ttl)))
(assert! (=v ml si))
(assert! (= cl el))
(assert! (=v (*v-1.0 (/v dI t11)) fi))
(assert! (=v hlji))
(assert! (=v (*v -1.0C(/v il t11)) kk1))
(assert! (=v(*v-1.0(/v q1 t11)) s1))
(assert! (=v (*v -1.0 (/v ri t21)) ttl))

;;; Output curve fit for first experiment
(assert! (=v al 0.2))
(assert! (=v nI (* 0.7 (/ 3 3.0))))
(assert! (=v 01 (*v -1.0 nI)))
(assert! (=v t2i17.0))

;;; Model parameter constraints
(assert! (>=v k 1))
(assert! (<=v k 3))

(assert! (>=v tr 6.0))
(assert! (<=v tr 8.0))

(assert! (>=v U 6.0))
(assert! (<=v tU 8.0))

(assert! (>=v tcap 6.0))
(assert! (<=v teap 8.0))

(assert! (>=v wi (/ 1 6.0)))
(assert! (<=v ;A' C/2 3.0)))

(assert! (>=v w2 C/ 1 3.0)))
(assert! (<-v w2 C/ 43.0)))

page 181

;;; Display progress
(show-fits1)
(show-model)

;;; Constraints for second experiment
(assert! (=v a2 (/v c2 tr)))
(assert! (=v f2 (*v -1.0 (/v d2 tr))))
(assert! (=v e2 (*v -1.0 (/v b2 tr))))
(assert! (=v a2 (/v h2 U)))
(assert! (=v j2 (*v .0 (/v g2 U))))
(assert! (=v 12 (+v ('v w2 e2) (*v wI j2)))
(assert (=v r2 (+v (*v w2 f2) (*v w1 kk2))))
(assert! (=v n2 (/v p2 tcap)))
(assert! (=v s2 (*v -1.0 (/v q2 tcap))))
(assert! (=v tt2 (+v (*v -1.0 (/v r2 tcap)) o2)))
(assert! (=v n2 (*v k 12)))
(assert! (=v o2 (*v -1.0 k tt2)))
(as:3ert! (=v r2 s2))
(assert! (=v c2 e2))
(assert! (=v (*v -1.0 (v d2 t12)) f2))
(aszert! (=v h2 j2))
(assert! (=v (*v -1.0 (/v i2 t12)) kk2))
(essert! (=v (*v -1.0 (/v q2 t12)) p2))
(asserr (=v (*v -1.0 (/v r2 t22)) tt2))

;;; Output curve fit for second experiment
(assert! (=v a2 0.2))
(assert! (=v n2 (* 2.8 (/ 1 3.0))))
(assert (=v o2 (*v -1.0 n2)))
(assert! (=v t22 21.0))

;;; Dispby all results
(show-all)

page 182

APPENDIX E

EXTEND Modeling Code

This code implements the vestibular model and all the necessary sub-components in

Extend 1.lj. The model is easy to read as a functional diagram, but not very efficient.

page 183

a

I
'I

I

I U

I i i

I

I' i

LL

I

page 184

15

xI

1] -:.

}i

i~i~ii!E}

Components to Vector

This block accepts up to three scalars as its inpat. It then scales these
scalars by the scale factors entered via the dialog box. The output is
a three element vector.

Written by Dan Merfeld October 1989
Modified by Dan Merfeld on 7/21/90

real dummy [];

** This message occurs for each step in the simulation.
on simulate
(

** put the three components into a vector
dummy[O]= xIn*gainl;
dummy[1]= yln*gain2;
dummy[2] = zln*gain3;

vectorOut = passArray(dummy);
)

** If the dialog data is inconsistent for simulation, abort.
on checkdata

** Initialize any simulation variables.
on initsim

(

makearray(dummy, 3);

I
on createBlock
(
gain1=1.0;
gain2=1.0;
gainZ=1.0;
I

** User clicked the dialog HELP button.
on help
(
showllelpo;
I

page 185

Error Axis

This block takes 2 three component vectors and determines the magnitude
of the angle between the vectors and the direction of rotation required to
align the vectors. This information is output as a three component vector.

Written by Dan Merfeld Ocober 1989
Modified by: Dan Merfeld 7/21/90

** cross product */
** totalSteps, curStep, totalTime, curTime, deltaTime */
** are defined by the system */

real tempOut[],mag,magl,mag2,dotangle;
real temp1ln[],temp2ln[];

on checkdata

(

on initsim

makearray(tempOut,3);
makearray(temp1ln,3);
makearray(temp2In,3);
}
** simulation part */
on simulate

I
GetPassedArray(VectorlLn,templIn);
GetPassedArray(Vector2In,temp2ln);

** calculate the cross product of the two vectors
tempOut[O] = templIn[1I*temp2In[21 - tempiIn[2]*temp2In[1];
tempOut[1] = templlnlj2itemp2In[O] - templln[0]*temp2In[2];
tempOut[2] = templIP[0*ternp2ln[1I - tempIn[l]*temp2In[0];

** calculate the magnitude of the cross product and the two input vectors
mag=sqrt(tempOuto]A2 4 tempOut[1]A2 + tempOut[2]A2);
magl=sqrt(templIn[0]A2 + temp1In[1]A2+ temp1In[2]A2);
mag2=sqrt(temp2In[0A2 + temp2ln[1]A2+ temp2In[2]A2);

** calculate the dot product
dot=tetiplIn[0]*temp2In[0I+templIn[lI*temp2ln[ll]+templ1n[21*temp2In[2];
angle= 180/3.1415927 *acos(dot/(mag 1*mag2));
if(mag >0)

tempOut[0=tempOut[0]*angle/mag;
tempOut[0]=tempOut[0]*angle/mag;
tempOut[2]=tempOut[2]*angle/mag;

page 186

)
else
(

tempOut[O]=O;
tempOut[11=0;
tempOut[2]=0;

}
vectorOut = PassArray(tempOut);
}

on help
(
showHelpO;
}

page 187

Non-Linear Function Generator

OVERVIEW:
Output = f(time or optional input) as linearly interpolated from points in user

supplied data table.

- Input: default is simulation current time (i.e. "function generator mode") or is taken
from input connector on block ("time invariant nonlinearity mode"). Specify mode with
radio button.

- Function definition: enter as many input/output value pairs as required (up to 1500) to
adequately define a continuous function. Values need not be in order, but will be sorted in
order of the "Sort" button is pushed. Be sure the input values provided span the range of
input values which will be encountered. Out of range input values will trigger an abort
message during the simulation.

- Press "Sort" if data requires sorting.

- Optional Plot: push button to see an auto-scaled plot of the values in your data table.

DESCRIPTION:
Applications: This block will generate an arbitrary time function as an input to a

simulation. Alternatively it can be used as a time invariant nonlinear system element. You
can transfer computed function numerical values to the block data table using the
clipboard. You need only specify the value of the function where the derivative changes.
The block interpolates automatically. In many applications, the input is piecewise linear,
so this block is easier to use than a "Plotter I/O" block, which requires data table values at
equally spaced intervals in time.

Original Authors: Cheryl Blanford and Chuck Oman
MIT Man Vehicle Laboratory
Rm 37-219, Cambridge, MA 02139
with modifications by Alfy Riddle, Imagine Th't! 5/22/89

** Nonlinear Function Generator 2/20/89
** Origiral Authors: Cheryl Blanford and Chuck Oman
** MIT Man Vehicle Laboratory
** Rm 37-219, Cambridge, MA 02139

** modifications made to the original program:
** Alfy Riddle, Imagine That!, 4/10/89
** eliminated Data Len-gth parameter
** installed 'validMax' procedure
** installed interpolation in 'simulate' message which
** remembers last data point (for currentTime only!)
**

real dataonly[][2];
real xdatafl,ydatal;
real dataMax, dataMin; ** corrected for roundoff error
integer max; ** length of data array ANR 4/10/89
integer xPoint; ** for incrementing x index on CurrentTime input
integer xy;
real tempx,tempy,xval'e,yvalue;

page 188

Procedure
validMaxO ** ANR 4/10/89
{

** count length of data array
integer i;
i=O;

while(!noValue(data[i[01) && i<1500)
I

i++;

)
max=i;

on sort
{

validMaxO; ** ANR 4/10/89

** split data into 2 arrays for ease of sorting.
makearray(xdata,max);
makearvay(ydata,max);

for(x =0 ;x<max;x++)
(xdata[x]= data[x] [0];
ydata[x]= data[xJ[1];)

for (x=O;x<max;x++)
for (y=x+1;y<max;y++)

if(xdata[y] c xdata[x])
I
tempx = xdata[y];
tempy = ydata[y];
xdata[y] = xdata[xJ;
ydata[y]= ydata[x];
xdata[x] = tempx;
ydata[x] = tempy;
I

**restore table, now properly sorted.
for (x = 0;x<max;x++)
(data[x][0]= xdata[x];
data[x][1]= ydata[xl;}

on choosetoplot

integer k;
validMaxO; ** ANR 4/10/89

makearray(xdata,max); ** ANR 4/10/89
makearray(ydata,max);

page 189

for (k=O;k<max;k++)
{

xdatalk] = dataliki[O];
ydatalk]= data[k] [1];

}

** install the axes
** modified 5/22189, PlotNewScatter not required ANR
installAxis(0, "Nonlinear Function Generator Characteristic",

"INPUT", FALSE, xData[0O,xData[max- 1],
"ourPu", FALSE, 0.0, 1.0, "", 0, 0.0, 0.0,
blackpattern, blackcolor, max);

installArray(0, 0, "Input", xdata, xData[0J,xData[max-1],
max, 0, blackPatterit, cyanColor);

installArray(0, 1, "Output", ydata, xData[0],xData[max-l],
max, 0, blackPattern, cyanColor);

makeScatter(O, 0);
autoscaley(0);
showPlot(0,"Nonlinear Function Generator Characteristic");

}

** This message occurs for each step in the simrulation.
on simulate
I

integer lastXnotDone; ** ANR 4/10/89
lastX =0; ** this is a starting point for the interpolation

** it keeps track of the last interpolated point

**

** dataMax & dataMin are calculated on initSim ANR 5/16/89
** read in x value and interpolate to find the y value.
** 'max' gives the number of data points & is set during initSim
**

if(timebutton==) ** ANR 5/22/89
{

xValue=currentTime;

** get current valid range of data (xPoint = -1 in initSim)
while((xValue >= data[xPoint+1][0]) && (xPoint+l c max))
{

xPoint++;
}

if(xPoint+l >= max) ** data at last point or too high
I

if((xPoint == max-1) && (realAbs(xValue-data[xPoint][0]) <
1.0e-15))

yOut = data[xPoint][11;
else ** ERROR - above range
I

userError
("Nonlinear function generator input too high to

interpolate");

page 190

I
else
(

data[xPoint][0I]))

interpolate");

}
else
(

}

abort;
}

** data in or below range

if((xPoint >= 0) && (xPoint < max-i)) ** interpolate
{

yValue = ((xValue - data[xPoint][0])*(data[xPoint+1][1] -

data[xPoint][1])/(data[xPoint+1][0]

+ data[xPoint][1];

yOut = yValue;
}
else ** data near first point or ERROR
(

if((realAbs(xValue-data[0][0]) < 1.0e-15))
yOut = data[0][1];

else ** ERROR - below range

userError
("Nonlinear function generator input too low to

abort;
I

}

** for connector input (original code)

xvalue = xin;
if(xvalue<dataMin) ** avoids roundoff error msg first pt

usererror(
"nonlinear function generator input too low to interpolate");
abort;
I

for x=O to (max-1)
(
if (xvalue > dataMax) ** avoids roundoff error msg last pt

(
usererror
("nonlinear function generator input too high to interpolate');
abort;
I

if (xvalue == dataIx][O])

yout = data[x][1];
break;
i

if (xvalue c data[x][0j)

page 191

I
yvalue = ((xvalue - data[x-1][0j)*(data[x][1] -

data[x-1][1)/(data[x][0J - data[x-1][0]))
+ data[x-1][1];

yout = yvalue;
break;
I

I
}

I

on endsim
I

pushPlotPic(0);
)

on checkdata

4

** Initialize any simulation variables.
on initsim
I

validMaxO; ** make sure we have this number ANR 4/10/89

if(data[max-1][0]>0) ** for roundoff error ANR 5/1689
dataMax = data[max-1][0J*1.000000001;

else
dataMax = data[max-1][0I*0.999999999;

if(data[0][0] > 0)
dataMin = data[0][0I*0.999999999;

else
dataMin = data[0][0]*1.000000001;

xPoint = -1; ** for cirrentTime mode ANR 5/22i89
I

** User clicked the dialog HELP button.
on help
I
showHelp();

page 192

Rotate G

This block accepts angular velocity as its input. The initial position of gravity is input via
a dialog box. A quaternion integrator is used to continually calculate the orientation of g
with respect to the rotation body.

Written by Dan Merfeld October 1989
(This program took parts of a program written by Brad McGrath.)
Modified by Dan Merfeld 7/21/90

real dcos[],gbody[];
real eO,el,e2,e3;
real wxrad,wyrad,wzrad;
real omega[];
** This message occurs for each step in the simulation.
on simulate
I

**declare variables

real redblue,pink,grey;
real k,z;

GetPassedArray(wjin,omega);

w_xrad = pi * (omega[0/180);
wyrad = pi * (omega[1]/180);
w_zrad = pi * (ornega[2]/180);

It*Z prform the quatemion calculations
red = -0.5*(el*wxrad + e2*w_yrad + e3*wzrad);
blue= 0.5*(eO*wxrad + e2*w_zrad - e3*wyrad);
pink= 0.5*(e*wytad + er wjxrad - el*wjzrad);
grey= 0.5*(eO*wzrad + el*wjyrad - e2*w-xrad);

k = 0.9*(l/deltatime);
z = 1 - (e0A2 + elA2 +e2A2+ e3A2);

eO = eO + deltatime*(red + k*z*eO);
el = el + deltatime*(blue + k*z*el);
e2 = e2 + deltatime*(pink + k*z*e2);
e3 = e3 + deltatime*(grey + k*z*e3);

** Calculate dim cosines from quarternions
dco4[0J=eOA2+e1A2-e2A2-e3A2;
dco.[1]l=2*(el*e2+eO*e3);
dcos[2] =2*(el*e3-eO*e2);

dcos[3] =2*(el*e2-eO*e3);
dcos[4]=e0A2-elA2+e2A2-e3A2;
dcos[5]=2*(e2*e3+eO*el);

dcos[6J]=2*(eO*e2+el*e3);

page 193

dcos[7]=2*(e2*e3-eO*el);
dcos[8]=eO^2-elA2-e2A2+e3A2;

** perform the matrix multiplication
g_body[0]=dcos[O]*gx + dcos[l]*g_y + dcos[2]*gz;
g_body[1]=dcos[3*g-x + dcos[4]*g*y + dcos[5]*gz;
gibody[21=dcos[6]*g-x + dcos[7*gy + dcos[8]*gz;

** pass the array

g-out = passArray(gjbody);

}

** If the dialog data is inconsistent for simulation, abort.
on checkdata

** Initialize any simulation variables.
on initsim
I
** Assume body coordinates line up with inertial coords at
** initialization.

eO = 1.0;
el = 0.0;
e2=0.0;
e3 = 0.0:

** allocate the arrays to be passed.
makearray(omega, 3);
makearray(dcos, 9);
makearray(gbody, 3);
)

** User clicked the dialog HELP button.
on help
{
showHelp();
}

page 194

Scc Merger

This block will merge the input from two semi-circular canals by weghing them
according to direction of rotation:

Output = topGain*topInput
+ botGain*botinput;

with appropriate sign dependence

Written by Nick Groleau 6/92

** SCO merger */
** totalSteps, curStep, totalTime, curTime, deltaTime */
** are defined by the system */

real gl, g2, sl, s2;
real m, p;

on checkdata

if ((con liin && novalve(topgain)) ** if connected and no gain entered,
11 (con2in && novalue(botgain))) ** abort!!

abort;
}

on initsim

gI = topGain;
g2 = botrain;

if (novalue(gl))
gi = 0.0;

if (novalue(g2))
g2 = 0.0;

** simulation part */
on simulate

sI = ConlIn/realabs(ConlIn);
if (ConlIn =0)

s1=7.0;
s2 = Con2In/realabs(Con2In);
if (Con2In ==0)

s2=0;

m = (gI -g2)/2;
p = (gl + g2)/2;

Con4Out = ConlIn*(p+m*s1);
Con5Out = Con2In*(p-m*s2);

page 195

Con3Uut = Con4Out + Con5Out;
}

on help
(
showHelpO;

page 196

Square Root

This block takes 1 number and returns the square root of the number.

Written by Nick Groleau September 1990

** square root*/
** totalSteps, curStep, totalTime, curTime, deltaTime */
** are defined by the system */

on checkdata
I

)
on initsim

I
)
** simulation part */
on simulate

I
SqrtOut=sqrt(Numberln);

on help
I
showHelpO;

page 197

Vector Amplifier

This amplifier is a summing amp, and will add the vectors from the input connectors
times their respective gains:

Output = topGain*topVector
+ midGain*midVector
+ botGain*botVector,

Written by Dan Merfeld October 1989
(Modified from ImagineThat amplifier block)
Modified by Dan Merfeld 7/21/90

** vector amplifier */
** totalSteps, curStep, totalTime, curTime, deltaTime */
** are defined by the system */

real gl, g2, g3;
real tempOut[];
real templIn[],temp2In[],temp3In[];

on dBs
(
** check for neg values */
if (not novalue(topGain) && topGain <0.0)

(
topinvert = TRUE; ** changes checkbox */
topGain = -topGain; ** corrects gain */
}

if (not novalue(midGain) && midGain <0.0)
{
midinvert = TRUE;
midGain = -midGain;
}

if (not novalue(botGain) && botGairn <0.0)
{
botinvert = TRUE;
botGain = -botGain;
}

** convert vals to dBs */
topGain = 20.0*loglO(topGain);
midGain = 20.0*loglO(midGain);
botGain = 20.0*loglO(botGain);
I
on value
I
** convert to value */
topGain = 10.0^(topGain/20.0);
midGain = 10.0^(midGain/20.0);
botGain = 10.OA(botGain/20.0);
}

page 198

on checkdata
I
if ((VectorlIn && novalue(topgain)) ** if connected and no gain entered,

11 (Vector2In && novalue(midgain)) ** abort!!
ii (Vector3In && novalue(botgain)))

abort;
}

on initsim
{
makearray(tempOut,3);
makearray(temp2In,3);
makearray(temp2In,3);
makearray(temp3ln,3);

if (dBs) **ifindBs only*/
I
** convert sim vals to values for simulation */
gi = 10.0(topGain/20.0);
g2 = 10.0^(midGain/20.0);
g3 = 10.0(botGain/20.0);
I

else
I
gI = topGain;
g2 = midGain;
g3 = botGain;
}

if (topInvert) ** is it inverted? */
gl=-gl;

if (midInvert)
g2 = -g2;

if (botInvert)
g3 = -g3;

if (novalue(g I))
gi = 0.0;

if (novalue(g2))
g2 = 0.0;

if (novalue(g3))
g3 = 0.0;

}

** simulation part */
on simulate

{
GetPassedArray(Vectorl1n,temp1In);
GetPassedArray(Vector2Ln,temp2ln);
GetPassedArray(Vector3ln,temp3In);

tempOut[0] = temp1In[O]*g1+temp2ln[0]*g2+temp3ln[0I*g3;
tempOut[1]= temp1 In[1]*g 1+temp2In[1]*g2+temp3In[1]*g3;
tempOut[2j]= temp1In[2]*g1+temp2Ln[2]*g2+temp3ln[2]*g3;

VectorOut = passArray(tempOut);

page 199

}

on help
(
showHelpO;
}

page 200

Vector Differentiator
The differentiator outputs the first order backward difference of a three element vector:

out = gain*(newInVector-oldInVector)/deltaTime;

Written by Dan Merfeld October 1990
(Modified from Imagine That scalar differentiator)
Modified by Dan Merfeld 7/21/90

real tempIn[];
real tempOut[];
real oldln[3];

** This message occurs for each step in the simulation.
on simulate
(
** call getPassedArray
GetPassedArray(NewIn,tempIn);

** perform the calculations three times
tempOut[0] = gain*(tempIn[O]-oldIn[O])/deltaTime;
oldln[0] = tenipIn[0];
tempOut[1]= gain*(tempIn[I1]-oldIn[I1])/deltaTime;
oldIn[1] = templn[1];
tempOut[2] = gain*(tempIn[2]-oldIn[2])/deltaTime;
oldIn[2] = templn[2];

** pass the array
ConOut = passArray(tempOut);
I

** If the dialog data is inconsistent for simulation, abort.
on checkdata
(
if (noValue(gain))

abort;
I

** Initialize any simulation variables.
on initsim
(
makearray(templn,3);
makearray(tempOut,3);
oldln[0] = 0.0; ** initial values are zero
oldIn[1] = 0.0;
oldln[2] = 0.0;
}

on createBlock
I

page 201

an = 1.0; ** initial value

** User clicked the dialog HELP button.
on help
(
showHelpO;
}

page 202

Vector Integrator

Gain is in voltsOut per volt-second in. The integrator output voltage is set to the initial
condition at the start of simulation. You can select between the Euler and Trapezoidal
methods. The Trapezoidal method is more accurate, but has more delay. This block
calculates the integral of a three component vector input.

Written by Dan Merfeld October 1990
(Modified from ImagineThat scalar integrator)
Modified by Dan Merfeld 7/21/90

real a[4],b[4],c[4];
real templn[];
real tempOut[];

on createmodule
=

initi = 0.0;
init2 = 0.0;
init3 = 0.0;
Gain = 1.0;
)

on checkdata
I
if (novalue(initI1+gain))

abort;
if (novalue(init2+gain))

abort;
if (novalue(init3+gain))
abort;)

on initsim

makearray(tempn,3);
makearray(tempOut,3);

integrateInit(a, init/gain);
integrateInit(b, init2/gain);
integratelnit(c, init3/gain);)

on simulate

GetPassedArray(VectorIn,templn);

if (euler)

tempOut[]= gain*integrateEuler(a, tempIn[], deltaTime);
tempOut[0JI= gain*integrateEuler(b, templn[1, deltaTime);
tempOut[2] = gain*integrateEuler(c, tempIn[2], deltaTime);

else
tempOut[0] = gain*integrateTrap(a, templn[0], deltaTime);

page 203

tempOut[l)= gain*integrateTrap(b, tempIn[JI], deltaTime);
tempOut[2] = gain*integrateTrap(c, tempIn[2], deltaTime);

}

VectorOut = passArray(tempOut);

on help

showHelpO;
I

page 204

Vector to Components
This block accepts a three element vector as its input. It then breaks this vector into its
three scalar components.

Written by Dan Merfeld October 1989
Modified by Dan Merfeld 7/21/90

real dummy [];
real g..xout,g-yout,g-zout;

** This message occurs for each step in the simulation.
on simulate
I
** call get PassedArray with the connector and the array that it
** will be assigned to.

GetPassedArray(Cosineln,dummy);

** break out the three components
gx-out = dummy[0];
gy-out = dummy[1];
gz-out = dummy[2];

)

** If the dialog data is inconsistent for simulation, abort.
on checkdata
I

}

** Initialize any simulation variables.
on initsim

I

makearray(dummy, 3);

}

** User clicked the dialog HELP button.
on help

showHelpO;
}

page 205

Matrix Multiply

This block accepts the error vectors as inputs. It multiplies these error vectors by the
feeback matrix to yield the error input to the internal model.

Written by Dan Merfeld 7/21/90

real s[],gfl;
real gout[],ssout[];

** This message occurs for each step in the simulation.
on simulate
I

GetPassedArray(sserrorjin,s),
GetPassedArray(gserrorjin,g);

** perform the matrix multiplication
s_out[O]=kl1*s[O]+k12*s[1]+k13*s[2]+kl4*g[O]+k15*g[1I+k16*g[21;
s_out[1]=k21*s[OI+k22*s[1]+k23*s[2]+k24*g[O]+k25*g[1]+k26*g[2];
s_out[2i=k31*s[0]+k32*s[1]+k33*s[2]+k34*g[O]+k35*g[1]+k36*g[2];
g-out[0]=k4i*s[0]+k42*s[l]+k43*s[2]+k44*g[O]+k45*g[l]+k46*g[2];
g.out[1]=k5I*s[O]+k52*s[1]+k53*s[2]+k54*g[O]+k55*g[1]+k56*g[2];
g-out[2]=k61*s[0]+k62*s[1]+k63*s[2]+k64*g[O]+k65*g[1]+k66*g[2];

** pass the array
s_errorout = passArray(s,_out);
gserrorout = passArray(g-out);
}

** If the dialog data is inconsistent for simulation, abort.
on checkdata
(

I

** Initialize any simulation variables.
on initsim
I

** allocate the arrays to be passed.
makearray(s, 3);
makearray(g, 3);

makearray(sout, 3);
makearray(g.out, 3);
I

** User clicked the dialog HELP button.
on help

page 206

U00 mm

APPENDIX F

SIMULAB Modeling Code

This code implements the vestibular model and all the necessary sub-components in

MATLAB/SIMULAB 1.1. The model is somewhat difficult to read but rather efficient.

page 208

aock To Workspace

Sine Wave

F[0,0;.6,.6;6,.6s
From Workspace

o WorkspWor o Workpace s To Workspace2
a=g-f/

- omega - -- erro
omega g vector gain error

TMux error2

w-y 1/s ds
Mux SU vector vector y dot

5.7s int. diff.4 pace8w-z T okpc8

i0

err
To Workspace6

-I-

sum

... w cap

sum 1/s s

5.7s vector vector
int.2 diff.2

To Workspace3

gcap

s To Workspace5

a? omega gvector gaini

F:
CD

C)

C

CD
p
C

0

Os

Omega G

Written by Nick Groleau 4/92

q3

---- Mux1

quatemion g-head
Integrnion

page 210

Quaternion Integration

Written by Valdrie Bilien 2/92

Produt

Product1

Prodct2

Product2

WH

E l
WY

Wz

Xi

~. 0.5

Swm Gain Integrator q

qiuaternion[1]

xi1

To Workspace9

X2

Su-n Gn -

Suml Gin1 Integrator1

* I. ~

+I1 X3

+ 0.5 -
I - sI - SumZ Gain2 Itgao2

Product4

Prodict5:

Product6

*

Product87

oduct8

int
Product9

Product10I

q2

quaternion[2]

X2
To Workspacel 0

q3

quatenion[3]
X3

To Workspacel I

+ 0.5

Sum3 Gain3 Integrator3 cpjternion[4]

To Workspacel 2

page 211

d~4-

u[1]A2+u[2]A2-u[3]A2-u[4]A.
dcos[0]

2*(u[2]*u[3+u[1]*u[4])
dcosMux

2*(tu 4-u[2]1]*:[3)
dcos[2]

u[1]*gx+u[2]*gy+u[3]*gz

.X
F

-OE2*(,r2j*u[3]-u[1]*u[4])
dcos[3]

- I u[]^2-u[2]^2+u[3]^2-u[4]^u[1]*gx+u[2]*gy+u[3]*gz
dcos[4] Mux2 g y

2*(u[3]*u[4]+u[1]*u[2])
dcos[5]

-#2*(u[1]*u[3]+u[2]*u[4])

dcos[6]

- 2*(u[3]*u[4]-u[1]*u[2])_ --- -0
dcos[7] Mux3

'-Ou[1]^2-u[2]A2-u[3]2+u[4]A

dccs[7]1

]

'c

C)

out.1

-4'
out_2

out_3

i-1'

Li-.
in-'

3-3

gn_4

Mux 1-

Mux

u[1]*gx+u[2]*gy+u[3]*qz

g-z

0

Product

Del~x Mx1

Dn _r
u x P o u c lU AV * a / m a g o u t _ 1

Cross Product Prullt

vector0
magnitude

CHnsta1

vector magnitude Constant Prouct3 .

I [h /u[1Switch

vector magnitude2 Mux alpha

ATTENTION!!!!
in_2

u[1]=u[2]=O in space

dot product

Cross Product

Written by Nick Groleau 4/92

cross-product

Product +
.1 DeMux-A

In.1 Demux Product1

Product + Mux eb

* Sum6 Mux Out_1

Product3

2 DeMux Product +
in2 Demux1 * Sum7

Product5

page 214

Vector Magnitude

Written by Nick Groleau 4/92

Productsqrt

De*ux +f(U) 1

in_1 eu Product1 Sum2 Fcn Out_1

Product2

page 215

Dot Product

Written by Nick Groleau 4/92

Dex

in_1l
ProductD

Product2 Sum5 out_1

in_2 Demiux1 Product3

page 216

Vector Integrator

Written by Nick Groleau 4/92

I/s
Integrat

De~ux 1/s Mux 1

in_1 Demux ntegrator Mux out_1

1/s

Integrator2

page 217

Vector Differentiator

Written by Nick Groleau 4/92

Derivative

DeMix du/dt MWx 1

in.1 Dmx Derivative1 Mix out_1

du/dt

Derivative2

page 218

Vector Sum

Written by Nick Groleau 4/92

ku
In_1 vector gain

2 U> + 1l
In_2 vector gain1 + - Out_1

ku
in.3 vector gain2

page 219

Vector Gain

Written by Nick Groleau 4/92

Gain2

Dekix LAx a,

in_1 DnnxGain3 Mx out_1

Gain

page 220

APPENDIX G

The Course of Science: A Lighter Side

This diagram illustrates what many of us are doing but were afraid to ask.

page 221

From an Office Door in Buidling E10

sparse and Infrequent
Observations

Observation
Errors

Theoretical
MisunderstandingTheortIca -,

Computer Oversimplified
Models Model

Code Unrealistic Further R
Errors Assumptions Controversy of Unimpo

Crude Diagnostic Confusion Furth
Tools H Misunder

Coincidental Agreements
between Theory and Oservations

Tefiement
rtant Details

Publication

Cover-up of
Subsequent Results

page 222

Incorrect
Interpretation of

Observations

Management
Directives

ler
standing

I

APPENDIX H

Real Discovery is Maximized Intuition

I found this ad on an airplane back from Houston and found it so appropriate that I spent

some time making my own version of it.

page 223

Scientific American, June 1992, page 131

M5 ARE T7AN JuSr HARD hiAh AM) CPUMAIED
NUM&RS. Pt MAWiMIZED iIMfltJ/

irb CRMCA. THAT 1 MAKE
ir m 7VROWo AU$UsTPXf.

Is It before and after...

Ycur intullive manamwt skills can Write or faix todayI
be under0od. tau maximized intuitive managemer
for increased profitability, production m umbership or the
and efiency. G1o6a
Discover how at the 2nd Annual ATTN:
Clobal Intukion Network ive-
national Conference on Unive
InwIligence and intutlon
in Toronto August 20-22.

Global Intuition Network

IS IOk

for infomation about
nt skills, fin Network
Toronto Conference.

I Intuition Network
Dr. Weston H. Agor

Box 614
"sity of Texas-El Paso
L Paso, Texas 79968
FAX (915) 747-5111

Yor ai wiVO gemen s ib Wdn wrf
be -ne-rdcod. baugS., eAk ubSma kiOk d Sr0

-nh -how go* m Ck*
LWoAl knWA"e NOtW*r*TrMn
uaiakl CW rece AV
-- iagence and MUNNus

k 3mn FrNo u 3 -.

fox day f- r bnwmmat abs
mresamt 5b 1 Iaa Neo

Sm Fmsbi Geertn,

Loal Mntudtlon NetWo&
ATN: Dr. Nols Or)Sea

gs pa
bM'Sty .ofNomMe
Pap-AMo, CA 90M
FAX (419) Lf-GIII

Local Intuition Network

page 224

RIM .DrSCovEY
Vv3z7sr yhRP ZTA 40 CflAfiO
WAavPs. rfk bfMWNATUmg

In CRIr7CAI, TRA7-r#*f/rt.7
7-0 .194X&0 MT Vr.

