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ABSTRACT

A CONTINUOUS SEISMIC PROFILING SURVEY OFF
THE COAST OF LEBANON

by

Donald Hugh Carlisle

The bathymetric results from a geophysical reconnaissance
survey off Lebanon show that the continental shelf of Lebanon is generally
narrow, with broadenings off Damour and between Tyr and Saida. The
dip of the slope increases northward from 6 degrees at Tyr to 30: degrees
at Beirut. South of Beirut, and possibly north of it, the slope is incised
with canyons. Seismic profiling results show that a deep, ubiquitous,
possibly Upper Cretaceous reflector forms the surface of an old slope
off Lebanon and extends into the Eastern Mediterranean as far west as
Cyprus and as far south as Port Said. On the outer shelf, this surface
is overlain by a layered sequence of sediments as thick as 0. 83 seconds
and by an upper veneer of sediments as thick as 0. 008 second. The
continental rise is composed of mostly inhomogeneous sediments south
of Beirut and a thick sequence of layered sediments north of Beirut.
The area is surrounded by layered, mostly Nile-derived sediments.

It is suggested that the present shelf was formed by deposition of
sediment on the ancient slope, and was later eroded. The eroded
material, along with land-derived material, now constitutes the sediments
of the rise.

Thesis Supervisor: Dr. J. B. Hersey
Senior Scientist
Woods Hole Oceanographic Institution
Woods Hole, Massachusetts

and

Professor of Oceanography
Department of Geology and Geophysics
Massachusetts Institute of Technology
Cambridge, Massachusetts
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CHAPTER I

INTRODUCTION

In the summer of 1964, the R/V CHAIN (Cruise 43) conducted a

two-day reconnaissance survey of the continental shelf, slope, and rise

off Lebanon, making seismic profiling, bathymetric, gravitational, and

magnetic measurements. One camera and two dredge stations were made.

Except for a study of shelf sediments, no other work has been done off-

shore of Lebanon.

The object of this thesis is to present and interpret the seismic

profiling and bathymetric data. The results of the lowerings will also

be described. The gravitational and magnetic results have not been

reduced by the writer, and therefore are not presented here, but they

have been examined qualitatively during the analysis of the seismic

profiling data.



CHAPTER II

METHODS OF OBSERVATION AND ANALYSIS

I. OBSERVATIONS

The Continuous Seismic Profiler

The Continuous Seismic Profiling system will be described here

briefly. Complete descriptions of the theory, instruments and techniques

employed can be found in J. Ewing (1963), Hersey (1963), Curry et al.

(1964), Hoskins (1964a, 1965), Shor (1963), Caulfield (1962), and

Caulfield et al. (1965).

The Continuous Seismic Profiler, used for mapping geologic

structures under water-covered areas, produces a record displaying a

profile of the sea floor and of acoustic discontinuities beneath the sea

floor. If the discontinuities, which often appear as layers, represent

lithological changes in sediments, (i. e. boundaries between different

sediment layers), then the record is analogous to a geological cross

section. The record is different from a geological cross section because

it plots travel time against elapsed time, (corresponding to the distance

the ship advances), rather than true depth against linear horizontal

distance.

A. 'Design of Profiler:

The -design of the profiling system used at the Woods Hole Oceano-

graphic Institution is shown in the schematic diagram in Figure 1. The

apparatus consists of a sound source and a receiver, both towed behind

I



Figure 1. Schematic of profiling electronics.

Figure 2. Arrangement of ship, source, and
receiver for seismic profiling.



the ship, (see Figure 2), and a recorder for registering travel time. The

source, triggered synchronously with the sweep of the recorder, generates

a short pulse of high energy at regular intervals. The subsequent pulses

and echo trains received. from the sea floor, deeper interfaces, and other

discontinuities are received by a hydrophone array and converted into

electrical signals. These signals -are passed through a broad-band ampli-

fier, filtered for both a lower and a higher frequency presentation, and

fed to two separate recorders.

The strengths of the signals are recorded as variations in the

darkness of the line produced by the sweep-action of the recorder.

Moreover, the recorder provides automatic correlation of trains of waves

from successive sound pulses. As the ship moves over a continuous

reflecting surface, the successive pulses reflected from that surface

appear side by side along the length of the record, producing a line or

curve as the paper advances through the recorder. A profile is thus

built up as the ship proceeds.

Concurrent with. these recordings, magnetic tape recordings of

the unfiltered output of the preamplifier of the hydrophone are made.

This combination of recording allows the data to be replayed and auto .

matically correlated -on other recorders at a later time (Bunce and Hersey,

in' preparation).

- 10 --



The components of the system are subject to some basic limita-

tions. A high-energy source is required for penetration of the sound to

deep reflectors. The sound pulse must be of short duration to obtain

resolution between finely-spaced layers. The emitted sound pulse,

moreover, must have most of its energy below 800 c. p. s. (Hersey and

Ewing, 1949), preferably in the range of 10 to 150 c. p. s. (Hersey, 1963),

because higher-frequency energy is preferentially absorbed by sediments.

A compromise must thus be made between resolution and penetration in

choosing the output wave form (Hoskins, 1965). The receiver must be

pressure-sensitive and acceleration-insensitive, as well as having a linear

response over a large dynamic range, and should have band-pass charac-

teristics favorable to frequencies below 400 c. p. s. Finally, the recorder

must have a precision time base keying the sparker and the recording

sweep simultaneously on a repetitive basis. The accuracy of the recorder,

and hence the straightness of the scale lines along the record, is deter-

mined by the consistency of its sweep rate over long periods of time.

Throughout this survey, the sparker was used as a source, (Caul-

field, 1962; Caulfield et al., 1965). The sparker produces a shock wave

which decays exponentially, followed by several bubble pulses alternating

1800* in phase. With a sour ce depth of 12. 5 feet, the total length of the

pulse train, incduding a surface reflection, is about 33 milliseconds. The

peak output pressure of the system, operating at 100,000 joules, (10 kilovolts

- 11 -



and2000 farads), is 134 db. above 1 dyne/cm2 at one yard. In this

survey, the source was operated at 8. 0 kilovolts and 2000/' farads

(64,000 joules), and was triggered once every 10 seconds.

Recordings were obtained on the Precision Graphic Recorder

(PGR), (Knott and Witzell, 1960; Knott and Hersey, 1956). The PGR

was operated on the 1000 fathom scale, which has a sweep rate of 2. 5

sec., and was gated to record every fourth sweep. The resulting

vertical-to-horizontal exaggeration of the record is about 20:1.

The signal recorded on the two PGR's was filtered in frequency

bands of 15 to 50 cycles per second and 100 to 200 cycles per second

respectively by means of Allison rnodJl 2AR passive filters.

The tape recorder used was a 4-track Crown recorder (model

800). On the first track, CSP data were recorded; on the second, voice

announcements; on the third, scale lines; and on the fourth, the 60

cycle signal which formed the time basis of the PGR.

The receiving sensor consisted of a 15-foot, neutrally buoyant

Alpine array, having five equally-spaced variable-reluctance hydrophones.

The frequency response of this array is peaked at 120 c. p. s. (W. Dow,

personal communication).

In some places, penetr ation of sediments to about 40 feet was

achieved with a .high- resolution, short-pulse echo- sounding technique

employing a 12 K. C. pulse of 0. 1 to 0. 2 milliseconds duration. In these

studies, a POR sweep of 0. 25 seconds was used.

- 12 -



B. Capabilities of Recorder

The capabilities of the seismic profiler can be demonstrated by

considering the r ?sults of the theory of sound propogation. Sound

propogation is governed by the Rayleigh wave equation. When the sound

strikes a boundary, (i. e. water-air, water-sea floor, sediment, or rock

boundaries), its reflection is governed by the corresponding boundary

conditions. In the case of a plane wave striking a plane boundary separ-

ating two materials of constant density and sound velocity (Officer, 1958),

the main conclusions of interest are:

1) A wavefront striking the air-water interface undergoes a 1800

phase shift and almost total reflection.

2) Sound will not reflect from an interface unless there is a

contrast in acoustic impedance between the materials on

either side.

Given the right conditions, a geologic interface may not reflect

sound at all; similarly, an acoustic reflection may not correspond to a

lithologic change. It is generally found, however, that when an echo train

has been compared with layering in cores, (Nafe and Drake, 1957; Shumway,

1960), the marked changes in porosity and lithification are evident on the

reflection record.

In any C'ase, a seismic profile will show only the presence of re-

flecting surfaces within the ocean floor; this information alone provides

- 13 -



inferences of a limited morphological type, such as

1) the lateital extent of layering and its relief,

2) the shapes of sediment bodies,

3) unconformable and conformable relationships between reflecting

horizons,

4) the probable location of outcropping of layers,

5) the relationship of topography and structure; for example,

whether topographic benches represent the outcropping of

resistant layers.

No direct inferences can be made as to the copposition of the layers.

The special capability of the seismic profiler is delineating the geometrical

relations of reflecting interfaces (Hoskins, 1965).

C. Interpretatiot of Records:

The interpretation of CSP records in this paper is largely limited

to the identification-of reflecting surfaces by the correlation of individual

echo sequences from successive pulses (a typical echo sequence is that

formed by the succession of echoes reflected once by the sea floor) (Bunce

and Hersey, in preparation).

It is necessary to identify false echo-sequences on the record which

can not only be mistaken for real reflectors, but which can mask interfaces

whose returns arrive concurrently with the interfering signals. Common

among these signals are:

- 14 -



1) . So-called multiple reflections from the sea floor and deeper

layers, involving repeated transits of the water colunitn by the sound pulse.

2) Side echoes from reflectors on or below the sea floor which

are not directly below the line of the source and the receiver. Although

these returns contain information about the topography'or subbottom

structure, they should not be interpreted as coming from a vertical

reflection.

3) Noise generated outside the profiling system, such as power-

line cross-feed, or ship-generated, water-bourne noise.

Multiple sea bottom reflections can easily be recognized. For

instance, the first multiple bottom reflection will appear at twice the

depth and have double the slope of the sea floor reflection. In shallow

water, lines appearing after the first multiple bottom reflection were

generally not trusted in this interpretation.

Topographic side echoes can be distinguished from subbottom

reflectors by replaying the recordings through a filter which has a low

frequency cut-off at 1000 c. p. s. or greater. Because of the preferential

absorption of higher-frequency sound by sediment, the side echoes will

be recorded but returns from true subbottom reflectors will not.

Noise generated outside the profiling system can often be recog-

nized by exarmining the record at a timne when the source was off or at

-"5 -



times between the initiation of the pulse and the sea floor reflection

(Hersey, 1963).

After these unwanted signals are removed, it must be kept in mind

that the resolution of individual layers on the recording is determined by

the width of the band of parallel dark and light lines which represent a

single reflecting surface. The width of this group of lines depends on:

1) The duration of the outgoing pulse.

2) The superposition of the pulses travelling along four separate

source-reflector-receiver paths, which are determined by the relative

positions of the source and receiver with respect to the sea surface and

the sea floor. This process will not only widen the band of lines rep-

resenting a single reflector but can also produce lines on the record which

appear to represent additional reflectors. The resolution of individual

reflecting surfaces has been estimated by Hoskins (1965) to be 50 milliseconds.

3) The width of the bandpass presented.

4) The recovery characteristics of the filters.

An examination of phase continuity and interference can be helpful

in distinguishing individual reflectors in a series of layers which are spaced

closer in time than the duration of the outgoing signal. The ability to

correlate corresponding events on successive sweeps is determined by the

- 16 -



Figure 3. Correction curve used in obtaining true
water depths from seismic profiling records.



Figure 4. Corrected ship's tracks of echo-sounding survey.



rafio of the sweep-speed of the recorder to the wave period of the signal

(Curry et al., 1964).

II. METHODS OF ANALYSIS

The following steps were taken in the analysis of the data:

TOPOGRAPHIC DATA

A. Adjustment of ship's Tracks:-

Track plots were prepared by the deck officers showing the

position of the ship's tracks based on radar fixes. All the survey tracks

were plotted on a grid which was 2. 5 times larger than the original. The

position of the time marks occurring between fixes was corrected to allow

for variations in the ship's speed. The tracks were then adjusted, using

the depths shown at each five-minute mark and the topographic maxima

and minima which occurred between these marks, so that the depths at

each intersection of the tracks agreed. Along some lines, the echo-

sounder was not operational; in this case, depths were computed from the

sea floor depths shown on the higher-frequency presentation of the seismic

profiler using a hyperbolic curve (Figure 3 ). This curve compensates

for the fact that the source-receiver travel path is not near-vertical in

water shallower than 400 fathoms. The curve was calculated assuming

a source and receiver depth of 15 feet, and a source-receiver separation

of 800 feet. The correction curve was compiled so as to agree with other

concurrent seismic profiling and shallow-water echo-soundings. At the

time, the ship was maintaining a constant speed of eight knots; hence, the

t.g
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variations in source and receiver depths should be small. The maximum

disagreement between depths obtained by seismic profiling and echo-

sounding, including the error of zero-registering the scale lines and

reading the records, is estimated to be 15 fathoms.

Due to the large number of intersections, most of which occur at

oblique angles, and the large changes of depth over a relatively short

horizontal distance, the depths of the intersections agree on the average to

within 20 fathoms. The maximum deviation of a track from its original

position based on fixes, is about 0. 75 miles.

B. Preparation of Topographic Map:

From the resulting track network (Figure 4 ), a topographic map

of the sea floor was prepared (Figure 6 ). Since the ship was not allowed

within the three-mile limit of Lebanon, most of the depths obtained are

deeper than 200 fathoms. Topographic lines shallower than this are

obtained from a chart by Boulos (1962), who shows in some detail

individual soundings along the continental shelf and upper slopes. It is

not known whether these soundings were obtained by echo-sounder or

cable lowerings during dredge stations. Due to the detail of echo-sounding

lines south of Beirut and their relative scarcity north of Beirut, the

southern part of the topogra~phic map is much more accurate than the

northern.

- 20 -
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The unit of depth used in the presentation and discussion of the

topographic data is uncorrected fathoms.

SEISMIC PROFILING DATA

1. The chart of the echo-sounding tracks, along which the seismic

profiling records were taken, was reduced to the same scale as the

geological map of Lebanon (Plate 1 ).

2. Tracings were made from the records of the survey and from

subsequent records, which were obtained by replaying magnetic tapes

when details on the original records were not clear. These appear in

Figures 9 to 32

3. The tracings were re-proportioned using a flow camera

(Hoskins, 1964b) so that, while the vertical scale across the width of the

records was constant between tracings, the horizontal scale, along the

length of the record, was changed from a constant-time basis to a constant-

distance basis. At the same time, by reducing the overall scale of the

tracings, their horizontal length between successive fixes was made equal

to the corresponding lengths of ship's track on the scale of the geological

map of Lebanon (Plate 1 ).

4. A model using the re-proportioned tracings was made in three

dimensions, as an aid to interpretation (Plates 2 to 11i). This model,

- 21-
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constructed on the same lateral scale as the geologic map of Lebanon

(Plate 1 ), allowed the writer to determine whether stratigraphic,

topographic, or structural features seen on land could be extrapolated

seaward to the area shown by the model.

5) The seismic profiling results presented here are the repropor-

tioned tracings. Several photographs of the model are included to assist

the reader in following the description of the results. A solid line

represents an easily recognized succession of echoes. A dashed line

represents successions which are less conspicuous. A dashed line with

a question mark suggests the continuation of a layer between two points

where it can be seen.

In these tracings, the attitude of the reflectors is based on the

assumption that the velocity of the seismic pulse is always the same as

the velocity of sound in water (i. e. 1500 meters/second); but the pulse

travels through sediments in which the velocity of sound is greater than that

in water. No correction is made for the greater velocity of sound in

sediments, since no information is available on this point in the area

surveyed. The effect of such a correction on the dip of an interface is

shown in Figure 5 . As a result, the dips of buried interfaces on the

reflection recordings are reduced on the shelf and exaggerated on the slope.

(Hoskins, 19651. If a layer crops out in a canyon, the velocity difference

- 23 -



between water and sediment can be used to calculate either the dip of

the layer or the velocity of sound in the overlying material (Hoskins, 1964;

Roberson, 1964); the calculation of one quantity assumes a value for the

other. Such calculations, were tried assuming horizontal layering. These

results will be indicated in the discussion of the profiling data.

Arc-swinging to determine the true position of the layers (Hoskins,

1964) was considered unneccessary. To be of value, the arc 7 swinging

must take into account the velocity of sound in sediment, and this quantity

is unknown.

In the discussion of the geological interpretation of the results,

layer thicknesses will be reported as the difference in total travel time

between echoes below and above the layer, and similarly, depths below

the sea floor. The context will indicate whether layer thickness or depth

is intended (as in Bunce and Hersey, in preparation).

- 24 -





CHAPTER III

PRESENTATION AND DESCRIPTION OF RESULTS

I, TOPOGRAPHIC RESULTS

The topographic contour map (Figure 6 ) describes the continental

shelf, slope, and rise off Lebanon. On this map, solid contours, mostly

south of Beirut and outside the three-mile limit, indicate where the

topography has been well-established by echo-sounding lines. Dotted

contours, mostly north of Beirut and inside the three-mile limit, indicate

where the topography has been inferred from available echo-soundings

and soundings given by Boulos (1962) to 200 fathoms.

The nearshore information given by Boulos indicates that except

where broadenings of the shelf occur (these features will be discussed in

the following paragraphs), the shelf is generally 3 to 7 km. wide, with a

shelf break at a depth of about 50 fathoms.

A detailed description of the topography south of Beirut will now

be given. In this area, much of the continental slope is incised by

canyons, and relevant information on them is given in Table I. The

seaward extension of lines A to E on the contour map are good reference

points for a detailed discussion of the topography because they roughly

define the areas containing interesting topographic features.

Between lines A and B off Tyr, the shelf break appears to be about

25 fathoms deep, approximately 4. 5 kilometers off shore. The continental

slope between the 100-fathom and 500-fathom contour lines has an average

7-6



declivity of 60. In the north half of the area, three canyons are recognized

between the 200-fathom and 600-fathom contour lines.

Between lines B and C, a feature exists which will be called the

Tyr-Saida Bank. The shelf of this bank extends farther seaward than the

adjacent shelves, and has an average slope of 2. 50 between the 100-fathorn

and 200-fathom contour lines. The shelf break occurs at a depth greater

than 200 fathoms, approximately 14 kilometers from shore. The slope

fronting the bank has an approximate declivity of 120 between the 200-

fathom and 600-fathom contour lines. Only one canyon cuts across the

slope. Near the edge of the shelf, the canyon is represented by a 30-fathom

depression, but is cut much deeper farther down the slope. From the

shelf break down to 400 fathoms, the canyon is sinuous; deeper than 400

fathoms, it curves slightly in a WSW direction.

In the area between lines C and D the slope to the north at the

Tyr-Saida Bank is deeply incised by canyons. Four systems of canyons

are recognized: the southern one has four tributaries; the next northward

has three; the other two are single canyons. All but the northernmost of

these canyons appear to stop at the base of the continental slope.

Opposite Damour (between lines D and E), as in area B to C, the

shelf is again wider than in the adjacent areas. Its average slope is 3. 5*

between the 100 -and 200-fathom contour lines. The shelf break occurs at

I W-w . MR
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a depth of 220 fathoms (410 meters), approximately 10 kilometers from

shore. The average declivity of the slope steepens from 90 in the south

to 130 in the north. Although this feature is bounded to tle north and

south by canyons, none cut across the embankment.

North of line E., near the Beirut peninsula, a marked increase in

the declivity of the continental slope is seen; it increases to 20 0 on the

west side of the peninsula, and to 30* on the north. Several canyons

are seen near the peninsula; a major one, named Beirut Canyon by

Emery et al. (in press), is fed by several tributaries from the south.

These canyons all extend to the continental rise.

South of Beirut, the base of the continental slope, following

approximately the 700-fathom line, is marked by hills typically 20 meters

high, which extend perhaps a kilometer seaward to the 750-fathom contour

line. Between the 750 and 800-fathom contour lines, the upper continental

rise is characterized by long rolling hiUs and a smooth sea floor. Out-

side the 800-fathom line, variations in topography become slight and the

sea floor descends westward in a long concave arc (Emery et al. , in press).

North of Beirut, only two sounding lines across the rise and lower

slope define the topography. The available information suggests that the

slope is steep (on the order of 150), and variations in both the shallow-

water and the depp-water soundings indicate that the slope is incised by

canyons.
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IL SEISMIC PROFILING RESULTS

When a seismic profiling survey along the edge of a continental

margin is laid out so that the survey lines are at right-angles to the shore,

the change in the configuration and sequence of sediments can be traced

from the continental rise to the continental shelf. The data can often then

be grouped into the physiographic divisions of continental shelf, slope,

and rise. This reconnaissance survey, however, was run mostly parallel

to the shore, with the result that many of the north-south profile lines

cross the continental margin obliquely. Moreover, along the coast of

Lebanon, a number of structural or topographic units extending seaward

from the shelf to the rise complicate the organization of the data into

divisions of shelf, slope, and rise. Nevertheless, for purposes of com-

parison, this classification has been used. Fortunately, most of the

structural and topographic units can be discussed satisfactorily within

this framework. In many cases, the profiles will be grouped to illustrate a

structural or topographic feature. Consequently, the profiles illustrating

one type of structure will often be chosen to overlap the profiles illustra-

ting the neighboring structure in order to point out the relation between

the two. The profiles will be referred to by upper case letters; particular

points of interest will be indicated by Greek lower case letters. Photo-

graphs of the model constructed from the reflection profiles will assist the

reader in identifying profile lines and will show the various structures in

three dimensions.
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Figure 7. Seismic reflection profiling lines made in survey area,
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Figure 8. Sesimic reflection profiling lines made outside survey area.
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Plate 2. View of model showing adjacent geology of Lebanon.



Plate 3. View of model showing adjacent structures of Lebanon.



Plate 4. View of survey area south of Beirut.

Plate 5. Tyr-Saida Bank.



Plate 6. Detail of bedding on shelf and slope of Tyr-Saida Bank.

Plate 7. Detail of bedding on wide part of shelf opposite Damour.
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Plate 8. Slope and rise at south end of survey area.

Plate 9. Continental rise between Beirut and Tyr-Saida Bank.



Plate 10. Slope and rise between

Plate 11. Three-dimensional view of sediment-filled depressions
beneath continental rise, between Beirut and Batroun.

Beirut and Tripoli.
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The area which will be called the survey area is shown in Figure

7. This area includes the continental shelf., slope, and upper rise of

Lebanon. Other profile lines near the survey area are shown in Figure 8

Tracings of some of the profiling results obtained south and west

of the survey area (Figure 8) will be presented in order to indicate the

relationship of the Lebanese continental margin to the adjacent areas of

the Mediterranean.

A. RESULTS OBTAINED TO THE SOUTH AND WEST OF SURVEY
AREA

1. Profile AA5 extends from a point 20 kilometers north of Tel

Aviv to Tyr along the coast of Israel. A tracing of the seismic reflection

records from its northern portion, Profile A 1 A5 , is shown in Figure 9.

The three principal reflecting units which are seen along profile AA5

all appear in profile AIA 5 .

a) The deepest reflector, an apparently continuous

acoustic interface, is found as far south as point oaL (Figure 8) where

it appears at 1. 25 seconds in 650 fathoms of water. It runs horizontally

until point c4 , rises gradually 0. 25 seconds and continues horizontally

to point o43, where it disappears (Figures 8 and 9).

b) Above this reflector, a second reflector, identified by

its characteristic strong reflection, is seen not only throughout the area

east of Port Said but also throughout the Lebanese coast survey. South of

Lebanon, the reflections seem to come from a continuous, single interface.

r-7
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In shallow water (75 meters) under an embankment 20 kilometers north

of Tel Aviv (at point A), the layer lies at 0. 75 second below the sea floor

and shows marked undulations: a "hill" 750 meters high is crossed in a

horizontal distance of 20 kilometers. To the north, in deeper water (550

to 700 fathoms), the layer lies between 0. 5 and 0. 75 sec. below the

bottom, showing slight undulations; the amplitude of the largest is 0. 125

second. Under the slope of the Tyr-Saida Bank, the layer rises to 0. 66

second under the continental slope in 300 fathoms of water (point A4 ).

At the same time, the acoustic character of this layer changes from that

of a uniform continuous reflecting surface to that of a rough surface,

characteristic of the entire Lebanese coast south of Beirut. The nature

of this reflector inside the survey area, where it will be called the deep

reflector, will be discussed in the next section.

c) The upper stratigraphic unit along profile AA5 is a

section of gently rolling, laterally discontinuous layers. These layers

form a complicated pattern: each layer fills in the depressions and laps

up against the elevations of the layer beneath it. The lateral extent of

individual layers range from 0. 8 to 12. 0 kilometers. The lowest layers

in this series appear to follow the topographic variations of the reflector

underlying the unit. Because of the filling-in of depressions, the topo-

graphic variations of the layers diminish upwards. These layers are

characterized by a "patchy" appearance on the records as the amplitude
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of the reflections from an apparently continuous surface varies greatly

laterally. Under an embankment 15 miles north of Tel Aviv (at point A)

the thickness of the section is 1. 25 seconds in 40 fathoms of water; north-

ward, in 700 fathoms of water the thickness decreases, varying between

0. 50 and 0. 75 second; finally, the section ends abruptly at point &u1

in disturbed sediment at the base of the Tyr-Saida Bank. The thickness

of individual layers increases wi th depth, ranging from 0. 0 8 second to

0. 2 second.

2. Profile BB2 (Figure 10 ), oriented westward starting at a point

22. 5 kilometers west of Beirut, generally shows the same reflecting units

as profile AA5. The echoes from the upper unit, a layered sequence 0. 5

seconds thick, are much weaker than those from the corresponding unit

south of Tyr. The returns from the reflectors can scarcely be seen in

the frequency range 15 to 50 cycles per second. In the 100 to 200 cycle

per second range, the acoustic "patchiness' seen in profile AA5 is observed.

The amplitude of the undulations of the layers is less in profile BB 2 '

oriented east-west, than in profile AA5 , oriented north-south. This unit

overlies a continuous reflector which has the strong reflectivity of the

reflector underlying the layered unit on profile AA5 This reflector rises

from 0. 85 sec. below the sea floor in 900 fathoms of water at point B to

0. 5 seconds below the sea floor at point rf , westward of which it follows

the bottom topography closely. East of point e discrete reflectors



underlie the upper continuous surface of this reflector. Eastward of

point , a third deeper continuous reflector appears, 0. 1 second

below the second deepest reflector. The relationship between this third

reflector and the individual reflectors below the second reflector east

of ,is not clear; they may be the same reflector.

Profiles AA 5 and BB 2 illustrate the nature of the reflecting units

outside the Lebanese coastal survey area. The top layered unit stops at

the base of the continental slope of Lebanon; a deeper reflector continues

into the coastal area; the third, a deepest layer may continue into the

coastal region but hints of it are seen only occasionally.

The upper two units of the reflectors seen along profiles AA and

BB 2 , that is, the layered unit and the reflector underlying it, are also

observed along profiles extending from Port Said to Tel Aviv and along

a westward extension of profile BB 2 to a point 120 miles due west of

Beirut and 60 miles south of Larnaca, Cyprus. A suite of flat-lying

reflectors is also seen on the Nile Delta just north of Baltim, 80 miles

west of Port Said. Generally, however, west of a line joining Larnaca

and Port Said, the layers are disturbed by folding and faulting.

B. RESULTS OBTAINED INSIDE SURVEY AREA

The deepest reflecting surface inside the survey area appears

everywhere along the coast of Lebanon. This interface will be called

- 52 -
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the "deep reflector". South of Beirut, it has a characteristically strong

echo, returned from an acoustically rough surface. The echo in some

places appears to come from discrete reflectors on the surface of the

deep reflector. Generally, individual reflectors are hard to identify, and

the reflecting surface, although rough, appears to be continuous. The

return is further confused by secondary reflections apparently coming from

below the top surface of the layer: the entire wave train is often 0. 25

seconds long. These secondary echoes often appear to represent discrete

reflectors, and have been shown as such on the tracings by small cres-

centic arcs; they cannot be correlated into a continuous sub-surface. Part

of the wave train may also be due to reverberation between the surface of

the deep reflector and reflectors beneath it.

To the north of Beirut, the acoustic character of the deep reflector

changes markedly. Here, the reflector is recognized by characteristic,

individual crescentic echoes which represent discrete reflectors, and the

strength of the returned pulse is considerably weaker. In some places,

returns from the-deep reflector are not seen between these echoes. In

such cases, the dotted lines which represent the deep reflector on the

tracings are intended only to infer that the crescentic echoes which they

join belong to the same reflector. On the most seaward profiles north of

Beirut, the deep'reflector is often not seen at all, presumably because the

thick sediments which overlie it absorb most of the energy from the acoustic

pulse.



Despite the apparent change in the reflectivity from the deep

reflector north and south of Beirut, the reflector can be followed from

one area to the other.

As explained before, the discussion of the seismic profiling results

inside the survey area will be organized into the divisions of continental

shelf, slope, and rise.

1. Continental Shelf

Profiles cross portions of the Continental Shelf at three places,

all located south of Beirut:

(1) At the Tyr-Saida Bank,

(2) At an area south of the bank, near point D (Figure 7 ),

(3) At the wide portion of the shelf south of Beirut.

It appears that similar stratigraphic units may be common to

all three areas.

a.) Tyr-Saida Bank

The Tyr-Saida bank is the best-mapped area in the coastal survey.

Profiles EC, FF 1 , and GG 1 , (Figures 11 , 12 , and 13 ) cross the

shelf of the Tyr-Saida bank, approximately parallel to its strike; profile

A 6 A4 (Figure 14 ) crosses the seaward slope of the bank; and profiles

H1 G and HG 1 (F-igures i5 and 16 ) run east-west (down dip) across the

shelf and upper slope. Plates 4 , 5 , and 6 show the three-dimensional

relationships of the profiles.
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On the shelf of the bank, the following stratigraphic units are

recognized:

(1) The deep reflector rises under the bank from the north, south,

and west Starting from a maximum depth of 0, 725 second below the

bottom in 750 fathoms of water to the north, (Profile GG 1 , Figure 13 ),

and 0. 7 second below the bottom in 650 fathoms of water to the south

(Profile A 6 A 4 , Figure 14), the deep reflector rises to a maximum

elevation along a line projected seaward through point Y , (Figure 7 ).

(2) The deep reflector is overlain by a wedge of seaward-dipping,

conformable layers, thickening seaward along profile G1 H from 0. 3

second at point H to 0. 83 second at point H. These layers, sloping sea-

ward under the shelf with a dip of 4. 7' (uncorrected), are truncated at a

surface 12 meters below the present shelf surface and parallel to it.

The separation between the four or five layers shown in the upper part

of this sequence, typically 0. 025 second, is less than the resolution of

the seismic profiling system, (50 milliseconds). Because the first

multiple bottom reflection masks returns from the lower part of this unit,

it is not possible to determine whether the lower part of the unit is layered,

or whether the unit is conformable with the deep reflector.

At the north end of the Tyr'-Saida Bank, the upper layers of this

unit crop out. These sediments appear to have prograded, or built out,

northward off the shelf, as the following argument will indicate. A
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calculation of the velocity of sound in these layers, assuming that they

are horizontal and that their apparent downslope dip is due to the differences

between the velocities of sound in seawater and in sediment (Roberson,

1964) yielded velocities between 6. 5 and 7. 0 kilometers per second. These

velocities, much greater than those expected for sediments with this depth

of overburden (Nafe and Drake, 1957) result from the assumption that the

layers are horizontal. In fact, they do appear to possess a downslope dip

which has resulted, presumably, from progration off the edge of the shelf.

(The organization of this thesis suggests that it is better to include argu-

ments concerning the dip of layers in this section, rather than in Chapter.4)

At the south end of profile EE 1, the upper layers of this sequence

appear to have slumped toward the canyon at the south end of the bank.

On Profile A6 A4 , across the seaward slope of the Tyr-Saida Bank,

the upper layers in the sequence which overlies the deep reflector appear

to have-been disturbed or eroded. The lower layers, which directly over-

lie the deep reflector, are thicker than the layers seen on the shelf. They

may represent the seaward continuation of layers on the shelf which are not

seen because they have been obscured by multiple reflections. In the

absence of a downslope pitofile from the shelf to the rise, it is hard to

correlate the layering on Profile GG1 , across the shelf, with the layering

on Profile A6 A4 , across the slope.

- 56 -



(3) A veneer of layers having a maximum thickness of . 008 sec,

is seen on profile FFI with the short-pulse, 12 k. c. echo-sounder (Figure

17 ). As many as four layers are seen, apparently prograding into the

canyon to the north. These layers are seen extending to depths of 300

fathoms on the upper wall of the canyon, disappearing when the slope of

the sea floor reaches 7*. On the shelf of the Tyr-Saida Bank, side echoes

from the deepest layer indicate that it might be rock. Buried lenses of

material lie on this lowest interface. Due to a high gain setting, these

layers are not seen with the echo-sounder on the adjacent profiles across

the shelf, but their existence is inferred from the rather long pulse

returned from the bottom.

Farther out to sea, Profile A 6 A 4 (Figure 14), across the slope

of the Tyr-Saida Bank, shows that the interval between the bottom and the

deep reflector does not possess the finely-layered character of the

corresponding interval on the shelf. At the south end of the profile, the

upper 0. 3 second of this unit consists of discontinuous, possibly disturbed,

layers. Below these layers and above the deep reflector, three continuous

layers are recognized, spaced between 0. 08 and 0. 18 second apart. The

total thickness of the unit above the deep reflector reaches a maximum

of 0. 66 second. If layering exists in the northern part of this profile, it

is obscured by side echoes.
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b.) Wide Part of Shelf Opposite Damour

Profile J2 JJ1 (Figure 18 and Plate 7 ) shows a portion of the

shelf and upper slope at a wide portion of the shelf south of Beirut. Profile

JJ1 runs north-south along the strike of the shelf; profile J2 J runs down-

slope at the north end of profile J J.

On the shelf, a stratigraphic unit 0. 35 second thick overlying the

deep reflector is similar in its finely-layered character to the corresponding

sedimentary unit on the Tyr-Saida Bank. This unit may actually represent

two or more sequences, as the layers in the upper 0. 13 second of the unit

are not conformable with the layers below them. Because the echo-

sounder was inoperative in this area, it is not known whether the veneer

of layers found on the shelf of the Tyr-Saida Bank also exists here.

An attempt to calculate velocities of sound in the layers which

appeared to crop out at the south end of profile JJI, assuming that these

layers are horizontal, indicated that the average velocity of sound in the

unit lies between 2. 5 and 3. 0 kilometers per second. This figure seems

slightly high, but not unreasonable for sediments with this depth of over-

burden (Nafe and Drake, 1957), indicating that these layers may be nearly

horizontal.

Under the slope, the deep reflector descends in two steps. The

over-lying unit pinches. out downslope. Sever al layers in the upper part

of the unit appear to crop out in the upper part of the slope, between 230
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and 300 fathoms below the apparent shelf-slope break. At the bottom of

the slope, the deep reflector crops out.

c.) Continental Shelf Opposite Tyr

On a portion of the continental shelf, at the south end of profile HD

(Figure 19 )., a stratigraphic unit having fine layering similar to that on

the Tyr-Saida Bank overlies the deep reflector. This unit differs from

similar units seen on other parts of the shelf because it is thinner,

(0. 075 second) and is apparently conformable with the deep reflector.

Echo sounding records reveal that a layer . 0025 second thick

overlies the stratified unit.

2. Continental Slope

Those portions of the continental slope which have not already been

described previously in connection with the shelf sediments will be

discussed here. The sediments overlying the deep reflector on the slope

appear to fall into recognizable groups.

a.) Slope Opposite Tyr

At the south end of the survey profiles CC1 and DD, (Figures 20

and 21 ; Plate 8 ) run downslope from near the shelf-slope break to the

continental rise, Profile A4 A 3 crosses the sediments at the base of the

slope, and intersects profiles CC1 and DD1 .
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Under the slope, the deep reflector descends seaward with an

uncorrected slope of 6* from the shelf-slope break to the base of the

slope, beyond which it is almost horizontal. On profile DD 1 , one of the

few indications of a reflecting interface below the "deep reflector" is

observed. This strong reflector is defined by a series of crescentic echoes,

It appears at 0. 15 second below the deep reflector in 575 fathoms of water

at the base of the slope, rises parallel to the deep reflector for 1. 0 second,

and is lost in multiple bottom reflections.

A wedge of material thickening from 0. 3 sec. near the top of the

slope to 0. 75 second at the base overlies the deep reflector. On profile

CC 1, this interval shows little, if any, layering; on profile DD 1 , patches

of material reflect sound. Except possibly for the lowest layer, no

obvious stratification appears in this wedge. It is possible, however,

that the reflecting patches represent some sort of discontinuous layering.

Seaward of the base of the continental slope, the sediments on the

slope are replaced by material peculiar to the continental rise. This

material will be described in the next section.

b.) Slopes in Rugged Canyon-Eroded Areas

Profiles which cross rugged, canyon-eroded parts of the continental

shelf and slope, were made in three areas:

(1) Just south of the Tyr-Saida Bank,
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returns from the deep reflector are partially masked by side echoes, this
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(2) North of this bank to Damour,

(3) At the north end of the survey, between Batroun and Tripoli.

Area 1 is represented by profiles HD and LC (Figures 19 and 23

Plate 5 ); area 2 is represented by profiles JH and KKl, (Figures 24

and 25 ; Plate 9 ); and area 3 by profiles RR 2 and Q3Q1 (Figures 26 and

27 ; Plate 10 ). The profiles in the first two areas are approximately

parallel to the strike of the slope. The north ends of the profiles in the

third area are closer to the shore than the south ends, so that the sea

floor rises toward the north.

In all these profiles, the interval between the bottom and the deep

reflector is largely without reflections; that is, it is nearly transparent.

In the two more southern areas and on the shoreward side of the northern

areas, the apparent lack of layering in this interval may not be real,

since the record is crowded wi th side- echoes from hilly topography in

the region. On the more seaward profile in the northern area, however,

the interval overlying the deep reflector is clearly transparent.

c. ) Continental Slope Between Beirut and Batroun

Profile SM1 extends across the strike of the continental slope

between Beirut and Batroun. On the slope, the deep reflector forms

depressions whose depths range between 0. 4 and 0. 88 second. As the
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reflector can be recognized only by its characteristic individual echoes,

which are joined by dotted lines on the tracing.

The depressions are apparently filled with sediments. The southern-

most and deepest depression contains a series of nearly-horizontal, con-

formable layers, spaced typically 0. 06 second apart. There are too

many side echoes obscuring the returns from the other depressions to

determine if there. are similarly layered sediments in them.

3. Continental Rise

In the survey area, nearshore profiles cross the continental rise

in the area at the south end of the survey and along a line extending

southward to Damour from a point 10 kilometers north of Beirut. A long

profile, farther offshore, extends from Tripoli to the Tyr-Saida Bank.

The areas of the rise south of the Tyr-Saida Bank and between Beirut

and the Tyr-Saida Bank will be described here.

a.) Continental Rise Opposite Tyr

At the base of the slope, along profiles DD and CC (Figures 21

and 20 ), and along profile A4 A 3 (Figure 22), a wedge of material

0. 75 second thick, overlies the deep reflector. This unit, in which

random discrete reflectors are seen is interpreted as being composed of

disturbed sediments. This wedge separates the disturbed slope material

from the layered reflectors to the south and west of the survey area.

Plate 8 shows the relationship between profiles DD1 and A4 A 3 '
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b.) Continental Rise Between Beirut and Tyr-Saida Bank

The continental rise in this area is represented by the nearshore

profile M 1 MJ 2 (Figure 29 ) the more offshore profile PF (Figure 30).

Profile M 1 M extends 9. 5 kilometers seaward from the base of the

continental slope and profile MJ 2 extends across the continental rise.

Profile PF is oriented north-south, 6 kilometers seaward from profile

MJ 2. On the rise, two sequences of reflecting interfaces are recognized:-

the deep reflector, and overlying sediments.

(1) The deep reflector slopes gently seaward along profile M 1 M,

then steepens seaward from profile MJ 2 to profile PF. Moreover,

although the deep reflector is continuous on the inshore profile, it appears

on the more seaward profile as discontinuous sections of strongly-reflecting

material similar to that seen earlier on the continental slope south of

Beirut.

(2) The unit overlying the deep reflector appears to have the same

acoustic characteristics along both profiles MJ2 and PF . It is thought

to be composed of apparently disturbed sediments, in which only sparse

and broken layering is seen in the top 0. 25 sec. This unit thickens sea-

ward. At MI, the deep reflector crops out; on the base of the slope along

profile MyM only a few meters of sediment overlie the deep reflector;

and along profile MJ 2 the maximum thickness of the sedimentary unit is



0. 18 second. However, 6 kilometers seaward, along profile PF , the

thickness of the material overlying the deep reflector ranges between

0. 37 second and 0. 90 second.

c.) Continental Rise Between Beirut and Batroun

Profiles Q2 Q and R1R 3S (Figures 31 and 32; Plate 10 ) repre-

sents the continental rise between Beirut and Batroun. Under the rise, the

deep reflector forms large depressions. These depressions are bounded

to the north and east by the descent of the deep reflector under the

continental slope. Near Batroun, the boundary is quite steep (20 *, un-

corrected). Farther seaward, the depressions are separated by deformations

of the deep reflector which are dome-like in cross-section. At least two

domes are seen along profile Q2Q. The deep reflector can only be seen

on the records in the domed areas; under the deepest parts of the basins,

its position is inferred from the shape of the overlying sediments. Since

this area has not been surveyed in detail, it is not possible to correlate these

domes with structures closer to shore, either on the rise or on the slope.

These deformations, then, may be quite localized.

The depressions are filled with conformable, nearly-horizontal

layered material extending from the sea floor down to the deep reflector.

These layers are interpreted as stratified sediments. They are very

similar in their layered nature to sediments which fill a more shoreward
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depression on the continental slope (profile SM1 ). In places, the thickness

of these sediments is as great as 1. 0 second, and may be greater. The

thickness of individual layers ranges from 0. 0125 second to 0. 2 second,

being typically 0. 05 second. The layers, which in cross-section are dish-

shaped in the depressions, lap up against the sides of the domes.

III. STATION RESULTS

1. Station 77 (Camera Station)

Approximate location: 33 0 55'N, 35 0 22'E, just westward of the

base of the continental slope off Beirut, located between two

submarine canyons.

Depth:. 700 fathoms.

Reported as: A few acres of monotonous mud flats, with animal

holes. One beer bottle of undetermined age.

2. Station 78 (Rock Dredge with Bag)

Approximate location:- 33022. 5'N, 35 0 101'E, southern part of' Tyr-

Saida Bank, on shallow, flat part of shelf.

Depth:: 30 fathoms.

Reported as: fine, dark-grained mud, many shells of great variety

(including murices), and three or four coral bank fragments.

Writer's'examination of sample confirms this, except that no mud

samples could be found from this station at WHOI.
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3. Station 79 (Rock Dredge with Bag)

Approximate location: 33023. 5'N, 35 7. 5'E. Southern part of

Tyr-Saida Bank, just seaward of shelf break.

Depth: 300 fathoms.

Reported as: Chunks of dark-grey clay.

Dr. W. A. Berggren of the Oasis Oil Company in

Libya has examined the benthonic and planktonic

foraminifera of this sample. He calls it an

homogeneous silty clay-stone, of probable Quaternary

age.
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CHAPTER IV

DISCUSSION

In this section, the results from the previous discussion will be

summarized and interpreted. As a background to this discussion, a

detailed description of the geology of Lebanon is presented 'in the Appendix

to this thesis. The reader's attention is particularly directed to the

geological map of Lebanon, (Plate 1 ), a structural map, (Figure 36 )

stratigraphic columns for various areas of Lebanon near the coast,

(Figure 37 ), and descriptions of erosional and sedimentary processes

on land which effect the offshore survey area.

I. Topographic data presented in the previous section, show

that the continental shelf off Lebanon is generally narrow, between 3

and 7 kilometers, with the shelf-slope break occurring at a depth of about

50 fathbms . Broadenings of the shelf occur between Tyr and Saida and

off Damour. The slope, which steepens from 50 near Tyr to nearly 300

near Beirut, is incised with canyons, most of which are deeply cut to

the base of the continental slope. The slope off the north coast of Israel

is as steep or steeper than it is at Tyr, reaching a maximum of 80. Along

the south coast of Israel, it decreases to 2. 70, where sediments from

the Nile h ave built out the c ontinental slope (Emer y et al. , in press).

An echo-sounding survey along the shelf of Israel indicates that the system of

canyons found along the Lebanese coast does not appear to the south

(Emery and Neev, 196i0}. Emnery et al. have found only two large canyons
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off Israel: one at the Lebanon-Israel border, the other off Gaza. The

continental slope in this area, however, has not been thoroughly surveyed.

II. From the seismic profiler survey, the following stratigraphic

units were recognized:

A. A deep strongly-reflecting surface is found both south

and west of the survey area, where it is underlain by a still deeper

reflecting surface, and inside the survey area, where it is commonly

the deepest reflecting layer seen. Outside the survey area, to the west

of Beirut, this reflector slopes gently westward, and lies 0. 5 second

below the sea bottom; south of the survey area, off the coast of Israel,

it shows gentle undulations beneath the continental rise, and marked

deformations beneath the continental shelf near Tel Aviv. Inside the

survey area, the deep reflector rises from a level of 0. 725 seconds

below the sea-floor in 900 fathoms of water beneath the continental rise

to a minimum noted depth of 0. 075 second below the sea-floor in 40

fathoms of water on-the continental shelf. Along profiles parallel to the

coast across the -shelf and upper slope, south of Beirut, the surface of

the deep reflector has minor irregularities, but is generally horizontal;

farther downslope, along north-south profiles, these minor irregularities

are superimposed on much larger- scale hills and depressions. Between

Beirut and Batroun, on the upper slope, the deep reflector forms small



Figure 33. Contour map of deep reflector between Tyr and Saida.



depressions. North of Batroun, on the slope, a pattern of minor irregu-

larities appears again.

Beneath the continental rise, along a north-south profile just

seaward of the base of the continental slope off Beirut, the deep reflector

is continuous and horizontal. Four kilometers seaward of this point,

along a north-south profile, the deep reflector is deformed. South of

Beirut, it is discontinuous, suggesting that either (a) it has not been

deposited in the places where it is not seen, (b) that it has been subjected

to erosional or faulting processes or, (c) that acoustical properties may

not distinguish it, although it may still be present. North of Beirut,

it forms large depressions which, off Batroun, extend shoreward to

where the deep reflector rises under the continental slope. These

structures may extend even further to the upper slope, where small

depressions appear.

This deep reflector may represent an old slope which in places

has been eroded or deformed. A contour map of the deep reflector

between Tyr and Saida has been calculated with an assumed velocity of

sound in the overlying sediments of 1. 7 kilometers per second. The

map was prepared using this velocity at the suggestion of Dr. K. O.

Emery, before later calculations for sediments on the shelf off Damour

indicated that velocities of 2. 0 to 2. 5 kilometers per second might be
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more appropriate. Subsequent calculations of the position of the deep

reflector was made along one profile using several velocities up to

3. 0 kilometers per second. These calculations indicate that the effect

of the various velocities in the overlying sediment is to change the

overall computed depth of the reflector but not its computed shape.

Since the shape of the deep reflector is the quantity of interest here, it

is felt that the present contour map is satisfactory for purposes of

discussion.

The map shows that south of the Tyr-Saida Bank, the deep

reflector falls seaward with an average slope between 6* and 120. On

the Tyr-Saida Bank, the seaward slope of the deep reflector between

400 and 600 fathoms is 4*. At greater depths the slope steepens slightly

at the north and south ends of the bank, but becomes flatter in the

center. A canyon is seen to the north of the bank, and north of this

feature, the slope steepens to 15*. These slopes vary in the same

way as present topographic slopes in the same regions, and suggest that

the Tyr-'Saida Bank existed as a topographic feature at a time when the

deep reflecting surface formed the sea bottom. This suggestion is

supported by the conclusion reached in the last section that the sediments

overlying the deep reflector have prograded off the shelf. It appears

that they were deposited on the old Tyr-Saida Bank.
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On the basis of the following information, an age of Upper

Cretaceous is suggested for the rocks whose upper surface forms the

deep reflector.

(1) Cenomanian rocks crop out all along the coast. The exten-

siveness of the rocks along the coast would explain the similar continuity

of the deep reflector.

(2) In particular, at Beirut, where the deep reflector lies close

to the sea floor on the continental rise, the Cenomanian rocks which

form the seaward side of the Beirut headland are faulted against younger

Miocene rocks.

(3) A seaward projection of the formations shown on Section CC1

in Plate 1 to the profile line nearest to shore places the top of the

Senonian at 750 meters and the top of the Cenomanian at 1100 meters

below sea level on Profile JH1 . The deep reflector, at the point of

intersection on Profile JHI, lies at 910 and 1100 meters, assuming

that the velocity of sound,in the overlying sediments is 1. 7 and 2. 5

kilometers per second respectively. Projections of this kind are specu-

lative because no nearshore reflection profiles have been made. More-

over, the dips of the formations on land are assumed to continue seaward,

and no allowance is made for possible faulting of the coastline. Never-

the less, These rough projections may be good enough to indicate that a

,pp"Flo .1. . .RR-mw lam.
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likely age for the deep reflector is Upper Cretaceous. It may correspond

with the top surface of the thick Cenomanian limestone mass.

The geological map of Lebanon (Plate 1) shows that a great number

of east-west faults which cut into Eocene and Cretaceous sediments

extend to the coast. It is possible that the deep reflector on the upper

slopes has been cut by a seaward extension of this fault system. In

particular, the depressions on the slope between Beirut and Batroun may

be fault-formed. This interpretation seems to be the most probable

one for the origin of these features. It is unlikely that they are formed

by folding, as the axes of the folds would extend east-west from the

coast. No corresponding folding is noted on shore; the folds which do

exist near the coast have north-south-oriented axes. If these depressions

on the slope are formed by faulting, then they are probably not related

to the dome-bounded larger depressions under the rise, although they

appear to be filled with the same kind of layered sediments.

The writer has not been able to extrapolate faults seen on shore

to these depressions. This observation, however, does not discount

the possibility that the slope is faulted. Nearshore profiling may reveal

extensions of continental faults which are not seen farther seaward,

The domed structures beneath ithe continental rise do not appear

to be related to the volcanic intrusives which are seen to the north at
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Tripoli (Dubertret, 1949), as they are not associated with a magnetic

anomaly. It is possible that these structures are diapiric, related to

some deep incompetent layer. The Triassic, which in Israel is com-

posed of anhydrite (Ball and Ball, 1953) could provide a source of salt

for such domes. A good check for such an hypothesis would be a low

gravity reading over the domes. Unfortunately, the ship's gravity

meter was inoperative at the time. Further speculation on the origin

of these domes seems futile in the absence of information about the

rock beneath the deep reflector.

B. The sediments which overlie this deep reflector

appear to fall into the following groups.

1. Area South and West of Survey Zone

To the south and west of the survey zone, a series of layered,

horizontally- discontinuous sediments overlies the deep reflector. The

thickness of these sediments in most places is greater than 0. 5 second.

If the deep reflector is of Upper Cretaceous age, as has been suggested

earlier, then these sediments are of Eocene to Recent age.

These sediments could have had several sources:

(1) The seas which covered the land areas could have provided

biogenous material from the settling organic material and from bottom-

growing organisms.. This sort of deposition was predominant in Lebanon

through the Jurassic and Cretaceous,
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(2) Since the end of the late Cretaceous, when the first Alpine

orogenies started, material could have been provided to the Mediter-

ranean by the erosion of uplifted land areas (i. e. the mountains in Lebanon).

(3) The most probable source for much of the .material contributed

to the Eastern Mediterranean since the Miocene is the Nile River.

Enough material has been dumped into the Eastern Mediterranean to

form the Nile Cone, which extends from the Nile Delta northward past

Lebanon to the Herodotus Abyssal Plain. (These features are defined

by Emery et al. , in press.) Cutting of the Nile valley began in the Miocene,

ceased in the Pontian (Mio-Pliocene), and resumed at the end of the

Pliocene (Harrison, 1955). The Nile deposits are thus of two different

ages. Emery et al. have estimated that perhaps 100 meters of material

have been deposited in the Pleistocene.

It is suggested that much of the material forming the layered

sediments is Nile-derived. In fact, the layered sediments can be

traced to Port Said, near the mouth of the Nile. The same layered

series may occur north of Baltim, opposite the central mouth of the

Nile. The layers may have been laid down in successive fluxes of the

Nile. The lateral variations in the reflectivity of an apparently continu-

ous layer suggest that the composition of the layers changes laterally.

These variations may result from the mixing of Nile-derived lutite,

deposited by general diffusion, and Nile-derived sands and silts, deposited



by turbidity currents (Emery et al. , in press).

These sediments, seen near the Israeli coast south of Tyr and

westward of a point that is 18 kilometers west of Beirut, surround the

survey zone, but are not seen inside it. This information indicates that

the Nile does not contribute much sediment to the shelf, slope, and upper

rise of Lebanon in comparison with other sources. The same conclusion

has also been reached by Emery and George (1963) for the beaches of

Lebanon.

2. Inside the Survey Area

a) Continental Shelf and Slope

1. The youngest sediments which are seen on the contin-

ental shelf appear on the outer part of the Tyr-Saida Bank as a veneer

of thinly-layered sediments up to 0. 008 second thick, and on the wide

part of the shelf off Damour as a single layer 0. 00 3 second thick. If

the surface of the shelf on which these sediments are deposited was cut

in the Pleistocene at a time of lowered sea level (Dietz and Menard,

1951), then these sediments are probably of late Pleistocene to Recent

age. On the Tyr-Saida Bank, the lenses of material overlying the

lowest layer may represent buried sand dunes; sand deposits are exposed

on the shallow portions of the inner shelf directly adjacent to the coast

(Boulos, 1962). On the outer parts of the shelf, the topmost layer of
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these sediments is mud (Boulos, 1962). This latter observation is con-o

firmed by the dredging of mud from the top of the shelf (Station 78). An

homogeneous silty clay-stone of Quaternary age (Station 79), dredged

just seaward of the shelf break may have sampled these sediments where

they have prograded off the edge of the shelf.

The fact that these sediments appear to prograde towards the edge

of the shelf indicates that on the outer shelf of the Tyr-Saida Bank,

sediments have been accumulated rather than eroded since the Pleistocene.

2. The next deepest stratigraphic sequence, a wedge of

finely layered sediments overlying the deep reflector, appears in places

on the continental shelf and upper slopes. The thickness of this unit

varies: on the shelf off Tyr, the unit is 0. 075 second thick; on a wider

part of the shelf off Damour, the unit has a maximum thickness of 0. 35

second and crops out downslope; on the Tyr-Saida Bank, the unit thickens

seaward from 0. 3 second to 0. 8 second.

This unit is interpreted as being a stratified wedge of sediment

or rock. If the cutting of the surface which truncates the sediments on

the shelf of the Tyr-Saida Bank occurred in the Pleistocene, and if the

age of the deep reflector is really Upper Cretaceous, then the age of

these sediments ranges from Eocene to Pleistocene.

Although the layered, conformable, and uniform nature of the

continental shelf deposits suggest that they may be related to the
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similarly layered, conformable rocks on the adjacent coastal plateaus,

no attempt is made to correlate the shelf deposits with the rocks seen

on land. The many fluctuations of sea-level which have occurred since

the end of the Cretaceous (see Appendix, pp.111 to 112) imply that

erosional and depositional processes were different on the shelf than on

the land areas. For instance, while lagunar material was being deposited

on the shore (i. e. during part of the Vindobonian), neritic deposits were

probably being formed on the shelf. One notable feature of the shelf

deposits is that, except for their upper truncated surface, they show no

recognizable unconformities which might represent a surface of erosion,

whereas the land areas do show these surfaces. Dubertret (1954)

points out that a Miocene surface of erosion cuts across the stratigraphic

surfaces on the coastal plateau adjacent to the Tyr-Saida Bank. No

sign of this severe erosion is seen in the shelf deposits.

Possible sources of the material which forms the shelf deposits

have been the following:

(1) Detrital material derived from erosion of the land areas (see

Appendix, pp. 113 to 115). This erosion began in the Senonian, when the

horsts in Lebanon were uplifted, and was greatly increased in the

Miocene, when this uplifting was accentuated (Dubertret, 1954). Erosion

has been effected mostly by rivers which have cut deeply into the mountain



blocs and coastal plateaus, bringing the eroded material to the coast.

During the various transgressions of the sea, wave-cut material could

also have been put into suspension and supplied to the shelf.

(2) Biogenic deposits from bottom-growing organisms and

animals which were deposited by settling-out.

(3) Nile-derived material, which could have been brought north-

ward along the coast by offshore currents. Emery and Neev (1960)

suggest that this sort of transport occurs along the coast of Israel.

Emery and George (1963) find that the present contribution of Nile-

derived material to the beaches of Lebanon is small.

It is not known from the available seismic profiling information

whether the layered sediments which are found along the broader portions

of the shelf also exist where the shelf is narrower. A few speculations

are offered here. The seismic profiling data from the portions of the

shelf which have been examined suggest that the present shelf resulted

from deposition of sediments which were laid down where the deep

reflector was horizontal or gently dipping. Conceivably, the shelf may

have formed in this way all along the coast. Although layering cannot

be seen in the sediments which overlie the deep reflector in the canyon-

eroded portions of the upper slope, these sediments could be eroded,

outcropping shelf sediments. Such outcropping occurs on the continental
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slopes fronting the shelf off Damour, and possibly on the Tyr-Saida Bank.

The layered unit, therefore, may constitute the shelf and upper slope

along'much of the coast.

One place on the slope where shelf sediments do not appear to

crop out, however, is the area at the south end of the survey. The

"patchy" reflections from the slope material in this region suggest that

slipping or slumping of once--layered slope sediments has occurred.

The factor which determines the stability of slope sediments in this

area may be the dip of the deep reflector on which they are deposited.

The contour map of the deep reflector shows that the dip of the deep

reflector in the area at the southern end of the survey, where slope

sediments may have been disturbed, ranges between 6 and 12 degrees.

On the seaward slope of the Tyr-Saida Bank, where the slope sediments

are stable, it is about 4 degrees. Estimates of the maximum angle

of stability of slope sediments vary. Athearn (1963) has found that

carbonate sediments are stable on slopes up to 12*, and Moore (1961)

has found that wherever deposition is slow and clay content is high,

sediments will develop stability on slopes up to 14*. However, such

stability would not occur during a time of lowered sea level, when the

edge of the shelf was agitated by surf or even exposed. In any case, it

is not inconceivable that sediments on a 6 to 12 degree slope will slump

or slip.
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b) Continental Rise

On the continental rise, three different areas of sedimentation

were noted:

1. At the south end of the survey, a wedge of sediments

0. 75 second thick, showing no recognizable layering, separates the slope

sediments from layered sediments which are found in the Mediterranean

to the south and west of the survey area.

2. West of Beirut, the sediments overlying the deep

reflector thicken from a few meters near the slope-rise break to as

much as 0. 90 second, 4 kilometers seaward. These sediments, which

are apparently disturbed since they show broken layering, can be

traced on the most seaward north-south profiles from Beirut to the

Tyr-Saida Bank.

3. Between Beirut and Batroun, conformable, finely-

layered, nearly horizontal sediments, reaching thicknesses up to 1

second, fill deep depressions formed by the deep reflector. These

sediments are similar to those found in shallower depressions on the

continental slope.

None of these sediments show the lateral variations in reflectivity

which were noted in the sediments outside the survey area. Instead, the



above observations indicate that material is being transported down the

continental slope and is being deposited on the rise.

In the area at the south end of the survey, the thick pile of

inhomogeneous sediments at the base of the slope appears to be material

that has slid to the bottom of the slope. West of Beirut, material trans-

ported down the slope appears to have been carried beyond the base of

the slope, where scarcely any sediment overlies the deep reflector.

It has been deposited farther seaward, where the deep reflector reaches

its maximum depth and becomes horizontal. North of Beirut, the

material transported downslope has accumulated into layered deposits

in depressions formed by the deep reflector. The similarity of these

sediments on both the slope and the rise indicates that the material

forming these sediments is land-derived.

The apparent sources of this material are the canyons which

are known to incise the slope south of Beirut, and which may exist to

the north. The fact that neither seismic profiling nor short-pulse

echo-sounding has revealed any filling of these canyons may indicate

that they are being regularly flushed. The topographic map (Figure

6 ) suggests that the canyons are related to the deeply cut rivers
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which reach the coast, implying that not only material eroded from the

shelf and slope, but also that land-derived material eroded from the

mountains and coastal plateaus of Lebanon, is deposited at the base of

the slope. The boundaries of the sediments on the rise are not well

enough delinated to make a calculation comparing the minimum volume

of sediments deposited on the rise with the maximum amount of material

which could have been eroded from the shelf and slope, as Hoskins has

done (Hoskins, 1965). However, the severe erosion of the mountains

and coastal plateaus of Lebanon (Renouard, 1956; and Dubertret, 1949,

1954, Appendix, p. 113) has produced huge quantities of material which

must have been deposited somewhere. On the east side of the Lebanese

mountain chain, this material has been dumped on to the Bekaa plain;

on the west side, the material which has not been deposited on the

coastal plateaus appears to have been eventually transported to the

continental rise.

There are several mechanisms which could transport this material.

Some of these have been observed by Dill (1964), who made intensive

underwater studies of erosion in Scripp's Canyon. This canyon, like the

canyons off Lebanon, is steep-walled, cutting into a steep slope, and is

located near to shore. Dill finds that the head of Scripp's Canyon is

filled with a thick sedimentary deposit made up of interbedded layers of

I; OF

- 83 -



sand, detritus, and a mat of interwoven plant material. This material

is continually removed from the canyon head by three processes:

(1) Slow gravity creep, at the rate of about a foot per month,

results from a decrease in the shear strength of the sediment due to the

decay of the organic material in it and the generation of gas during this

decay.

(2) When the external and internal stresses acting on the

sediment exceed its shear strength, slumping and sliding occurs over

short distances. Minor slumping affects the top three or four feet of

sediment fill. Major slumping, in many cases triggered by minor

slumping, can remove much of the fill in a canyon head. Dill reports

an instance where 35 feet of fill was removed in two days.

(3) Material can also be transported seaward by downslope flow

of sand. Heezen (1956, 1963) has claimed that turbidity current flow

is the mechanism whereby land-derived material is deposited over

large areas of the Atlantic Ocean. He has also suggested (Heezen, 1956)

that turbidity currents were active in the submarine canyons adjacent

to the Congo River and to the Magdalena River in Columbia. The layering

in the sediments on the rise north of Beirut may represent sharp

lithological changes similar to those found in Atlantic Ocean sediments

which have an apparent turbidity current origin (Ericson et al. , 1952,
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1961). Dill has found, however, that the occurrence of turbidity currents

in Scripp's Canyon is unlikely. The cohesive nature of the sedimentary

fill and its lack of a metastable structure prevent spontaneous liquefaction

(as defined by Terzaghi, 1956), and hence the formation of turbidity

currents, when lateral stresses are suddenly applied.

Trigger mechanisms which could initiate both turbidity currents

and slumps could be earthquakes, high bedload discharge of rivers,

hurricanes impinging on the shore, or failure resulting from the gradual

over-steepening of a depositional slope (Heezen, 1963). Earthquakes

are apparently common in Lebanon. An earthquake is known to have

destroyed Baalbek, and Ball and Ball (1953) mention that earthquakes have

been recorded in Israel for the last 2000 years. Gutenberg and Richter

(1941) note that several severe, intermediate-depth earthquakes have

occurred along the Levantine coast for the last 80 years. In Scripp's

Canyon, however, Dill has noted that earthquakes cause little slumping

in the canyon sediments. Slumping is initiated instead by the failure

of the organic sediment fill when a load of shore-derived sand is suddenly

deposited on it. This movement is especially noticeable after storms.

Discharge from the rivers off Lebanon may thus provide an important

source and triggering movement for the seaward transportation of sediments.

There is no obvious explanation for the difference in the character

of the rise sediments to the north and south of Beirut. Although both
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sets of sediments are thought to have, originated from movement of

material down the slope, the differences in the layering of these sedi-

ments may reflect differences in transport mechanisms. The broken

appearance of the sediment overlying the deep reflecto- between Beirut

and the Tyr-Saida Bank may also be the result of faulting in the layers

below the deep reflector.

The sediments in the depressions to the north of Beirut are

dish-shaped in cross-section, lapping up against the sides of the domes

which are formed by the deep reflector. This observation alone is not

sufficient enough to determine whether the sediments are older or younger

than the domes. If the sediments are younger, then the dish-shaped

appearance could have resulted from differential compaction of the

sediments as they were deposited; if they are older, then the increase

of slope of the sediments toward the edge of the basins could have

resulted from the upward displacement of these sediments as the domes

were formed (Hersey, 1962).

III. POSSIBLE AGE OF SUBMARINE CANYONS

Although Little data are available for determining the age of the

canyons off the Lebanese coast, the following argument may indicate

that some of the canyons were cut in the Pleistocene. In the previous
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section, it was found that sediments which crop out in a cahyon at the

southern part of the broadening of the shelf off Damour may be nearly

horizontal. This implies that the canyons were cut into the sediments

rather than that the sediments were deposited on the shelf after the

canyons had formed (in which case, they would have a real dip, as the

layers on the Tyr-Saida shelf seem to have). Thus the canyons

would be younger than the sediments which they have eroded. If the

age of the upper sediments in the layered sequence is upper Pliocene

or lower Pleistocene, then the canyons are of post--Pliocene age.

Variations of sea level in the Pleistocene seem to have been

considerable, and part of the canyons may have been cut at a time of

lowered sea level. Dubertret (1954) has noted six Quaternary erosional

terraces near Beirut and three near Saida, the highest of which was

100 meters above sea level.

Some canyons may have been cut as early as the Upper Cretaceous.

The contour map of the deep reflector, which may represent an Upper

Cretaceous layer, shows a canyon-like feature on the north side of the

Tyr-Saida plateau.

This sparse set of observations suggests that the cutting of the

canyons along the coast of Lebanon may have started as early as the end

of the Cretaceous, and that intense cutting of the canyons may have
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occurred in the Pleistocene. As an alternative point of view, Emery

et al. (in press) point out that stratigraphic evidence from wells drilled

on land in Israel suggest that a canyon off Gaza has been cut into

Cretaceous and Eocene strata and filled with Miocene and Pliocene

sediments.

IV. ORIGIN OF CONTINENTAL MARGIN

Guilcher (1963), Shepherd (1963), Dietz (1952, 1964), and others

have reviewed possible theories for the formations of continental margins.

In view of the tectonic influences which have acted on Lebanon (see

Appendix, pp. 118 to 122), a structural origin for the Lebanese continental

margin seems most probable. In particular, if vertical movements of

the basement are responsible for the north-south linear faults and

resulting horst and graben structures which characterize Lebanon

(Henson, 1951; Dubertret, 1954; Renouard, 1956) then the continental

margin may represent a deep fault along which blocks of the basement

have moved. The deformations of the deep reflector on the upper rise

may be the surface manifestation of such a fault. If this is the case,

then the deep reflector, which extends from the Mediterranean basin to

the top of the continental shelf, may be the surface of a flexure which

was formed when vertical uplifting occurred under an originally flat-

lying layer of sediment. Angenieux (1951) suggests that the flexures
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which border the west side of the Lebanon mountains originated from

such a process. The faulted continental margin would then be a west-

ward extension of the structural features seen on land. Movement

along the Levantine north-south faults started in the Jurassic; uplift of

the torsts which form the mountains in Lebanon occurred at the end

of the Senonian and was accentuated in the Miocene (Dubertret, 1954).

The formation of the Lebanese continental margin, if it is structurally

related to these features, may have occurred at the same time.
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CHAPTER V

SUMMARY AND CONCLUSIONS

I. The continental shelf of Lebanon is generally 3 to 7 kilometers

wide, with broadenings at Damour and between Tyr and Saida to as much

as 14 kilometers. The shelf break is about 50 fathoms deep in the narrow

regions of the shelf, and about 200 fathoms deep in the broader regions.

The slope steepens northward from 6 degrees near Tyr to 30 degrees

at Beirut. South of Beirut, canyons as deep as 270 fathoms incise the

slope.

II. The deepest reflector seen in the survey area is ubiquitous,

and is considered to be an old slope. Possibly, it represents a flexure

which was formed when the continental margin was block-faulted. Out-

side the survey area, the deep reflector extends as far westward as

Cyprus, and as far southward as Port Said. 'South and west of the

survey area, it is underlain by a still deeper reflector.

Overlying this deep reflector, the following sequences of sedi-

ments are seen:

(1) South and west of the survey area, a sequence of horizon-

tally-discontinuous sediments, presumed to be mostly Nile-derived, extend

from Beirut to Cyprus, and from Beirut to Port Said. This sequence is

at least 0. 5 second thick. It is not seen inside the survey area.
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(2) Inside the survey area,

(a) The broad portions of the shelf, where observed,

consist of

(i) A veneer of sediments as thick as 0. 008 second,

probably of Pleistocene to Recent age.

(ii) A sequence of layered, conformable sediments,

as thick as 0. 83 second, possibly of Eocene to

Upper Pliocene or Pleistocene age.

(b) The slope, where observed, consists of

(i) Outcroppings of the layered shelf sediments, on

the slopes fronting the Tyr-Saida Bank and the

shelf near Damour, and possibly in other, canyon-

eroded areas.

(ii) Possibly slipped or slumped layered sediments,

at the south end of the survey.

(iii) Conformable, layered sediments filling depres-

sions formed by the deep reflector, between

Beirut and Batroun.

(c) The rise, where observed, consists of

(i) A pile of inhomogeneous sediment at the base of

the slope, in the southern part of the survey.
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(ii) Sediments showing either no layering or broken

layering and thickening seaward, between Beirut

and Saida.

(iii) A sequence of conformable, layered sediments

filling deep depressions formed by the deep

reflector, between Beirut and Batroun.

III. These observations indicate that the shelf was formed as the

result of the deposition of land-derived material, and, along with the

slope, has since been eroded by canyons. The eroding mechanisms may

be slumping and turbidity currents.

IV. The rise has probably been formed by the deposition of

eroded material from the adjacent land areas, and from the shelf and

slope. Since the conformable layering in the shelf sediments show little

if any subaerial erosion, and because the adjacent land areas have under-

gone intense erosion, most of the sediments on the rise consist of land-

derived material. This material probably began to be deposited on the

rise at the end of the Cretaceous, and has been more heavily deposited

during and since the Miocene. Sediments from the Nile may constitute

part of the rise deposits.

Since the layered sediments which appear in the Mediterranean

outside the survey area are seen as close to Lebanon as 18 kilometers,
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most of the material which is dumped into the Mediterranean from

Lebanon inay remain fairly close (18 kilometers) to shore.

V. According to Dietz (1952) the continental margin of Lebanon

is in a stage of early maturity. As erosion of the mountain areas of

Lebanon continues, it is expected that the rise sediments will build

seaward and also will begin to encroach upon the base of the continental

slope.



APPENDIX A

GEOLOGY OF LEBANON AND ITS RELATIONSHIP TO SURROUNDING
AREAS

As a background to the present study, a summary of the geology

of Lebanon and its relation to the regional geology of the Middle East

and the Mediterranean Sea will be presented in this chapter. Since a

comparison of the results of the CSP survey to the accompanying land

geology was attempted, particular attention will be paid to the coastal

regions of Lebanon.

I. GEOLOGY OF LEBANON

The numerous geological studies which have been made about

Lebanon have culminated in a set of geological maps (scale of 1:50,000),

published by Louis Dubertret, covering about three-quarters of the

Lebanese territory; these maps in turn have been assembled into two

maps (scale 1:200,000), dealing with the areas south and north of

Beirut respectively. These maps, kindly provided to the writer by

Professor Raven of the American University of Beirut, are accompanied

by explanatory notes. Of the 1:50,000 - scale maps covering the coast

of Lebanon, only the Saida sheet was available to the writer. However,

the 1:200,000 - scale maps and their accompanying texts present the

existing geological information and indicate stratigraphic and structural

possibilities in considerable detail Among the more general papers on

Lebanon, Renouard, (1956), provides information from two wells drilled



Figure 34. Main structural units of Lebanon.
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in Lebanon and clarifies some of Dubertret's earlier work. Dubertret

(1947) and Gibert (1949) discuss the outstanding stratigraphic and

structural problems of the Levant.

A. Main Structural Units. (Figure 34 )

The topography of Lebanon is dominated by two chains of moun-

tains. the Lebanon and Anti-Lebanon mountains. They are parallel

to the coast, and are separated by the high plain of Bekaa.

The Lebanese chain extends from Homs Gap in the north to

Marjayoun at the border of Israel, where it gradually ends. In the

north, a narrow coastal plain lies between the Lebanese chain and the

sea:: the plains of Koura and Akkar. In the south, the plateau of Tyr-

Nabatiye (as named by Reynouard, 1956), stretches out between the

coast and a line from the mouth of the Nahr Damour through Roum

and Marjayoun, to the frontier of Israel on the west edge of the Dead

Sea rift. Lebanon is cut transversely by the Baidar Gap through which

run the roads connecting Damascus and the Bekaa plain with Beirut,

North of this gap, the high mountain is really a plateau, culminating

at 3084 meters, whereas in the south a narrow chain rises with

relatively sharp summits.

The Anti-Lebanon Mountains are composed of two structurally

different units: the Anti-Lebanon in the north (sensuo stricto), and the
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presented afterwards.
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mountain group of Hermon in the south. The Damascus-Beirut road

forms an approximate separation between these two units. Renouard

(1956), has pointed out that these three chains are actually the radii of

a wide fan-shaped system, whose prolongation is the Damascene-South

Palmyrene range in Syria, and whose convergence is the shelf which

separates the Houle depression from the Bekaa, These different

radii, diverging toward the north, are gradually separated by a high

plain, the Bekaa. This plain, closed at the south by the convergence of

the mountain system, widens northward to a width of 20 km. at

Baalbek. Beyond the Syrian border to the north, it gradually mingles

with the wide sub-desert plain of Homs.

B. General Tectonics and Resulting Structural Units

Descriptions of both tectonics and of the resulting main struc-

tural units will be presented in this one section, since the two are

closely inter-related.

Both faulting and folding occur in Lebanon, and as a result,

there are many opinions on which mechanism is the most dominant.

The discussion which follows will be derived mostly from the point of

view of Dubertret, who favours faulting. Other viewpoints will be



Although Plate I seems to imply extreme dislocation in the

geology of Lebanon, the tectonics are actually dominated by the faults

and flexures which trend NNE - SSW. These features appear to be

related to the Dead Sea rift valley system, which in turn can be traced

southward to Aqaba. The major extension of the west flank of the rift

valley is the fault of Yammoueth, which runs as far northward as the

Taurus Mountains in Turkey. Its throw reaches 3000 meters in the

South Bekaa, whereas it is only 500 meters near the Qornet es Saouda.

The fault of Roum is a branch of the Yammoueth fault; its throw reaches

2000 meters. It is limited in extent, and toward the north it becomes

a flexure. The fault of Hasbaya, also related to this system, has weak

throws. The eastern border of the Dead Sea rift is continued northward

by the fault of Chebaa-Rachaya, which has a 600 meter throw toward

the east. The fault of Serrhaya, related to the latter fault, has a

throw to the west. The flexures shown in Figure 36 are similarly

related to this fault system. The flexures on the seaward side of

Lebanon are an extension of the Roum fault, and the western flexure of

the Anti-Liban is part of the Chebaa-Rachaya fault system. Dubertret

(1954), considers that these flexures are actually the surface repre-

sentations of sediment-covered, deep- seated vertical faults. Angenieux

(1951) has proposed a mechanism whereby a deep-seated fault appears

as a flexure at ground level.
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Figure 35. Main structural units of Levantine coast
between Israel and Turkey.
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By dividing the contryside longitudinally NNE - SSW, this

tectonic system determines the main structural units not only of

Lebanon, but also of the entire coast as far north as Turkey. (See

the over-simplified diagram in Figure 35 ).

Over this main NNE - SSW tectonic system, a secondary

structural network of faults was impressed. These faults appear in the

Lebanon mountain system striking E - W north of Beirut and NE - SW

south of Saida. Cutting diagonally across the mountain chains, the

faults divide the different longitudinal masses into slices. This

division was commonly accompanied by a lateral shift of the blocks

as if each of them had moved eastward along the side of the adjacent

block on the south. This pattern appears clearly on the horst of

Qartaba, where the throws are rarely more than 100 meters, except

at the crossing of the flexures where, due to lateral shift, the faults

appear locally as major movements.

The structural map (Figure 36 ), the geological map of Lebanon,

and sections A to D (Plate 1 ) show how the NNE - SSW faults and

flexures divide the country into structural units. These units will be

discussed briefly.

The mountains of Anti-Lebanon and Hermon, composed of

Cretaceous and Jurassic rocks, are bounded to the west by a flexure;

their slopes rise from the Bekaa without any sharp break. The



been raised as much as 2000 meters. This bloc, considered to be a

horst by Dubertret (1954), is a high Cenomanian plateau with a Jurassic
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Anti-Lebanon mountains are bounded on the east by a flexure. These

mountains, resembling a flattened arch with steep flanks and tabular

center, are similar in form to the northern Lebanon mountains. The

Hermon group, to the west, is faulted against younger sediments in the

north and against the Houaran basalts to the south. Between its eastern

and western limits, the Hermon is folded in an arch cut by vertical

faults. The intensity of folding of the arch increases toward the south,

(see sections A to D, Plate 1).

In the zone dividing the Lebanon and Anti-Lebanon mountains,

the plain of Lake Houle is considered to be a trench, bounded by the

extensions of the Dead Sea faults. It is not clear whether the Bekaa,

to the north, is a syncline or a fault-bounded trench. At any rate,

it is delineated on the east by the bordering flexure of the Anti-Lebanon-

Hermon regions, and on the west by the fault of Yammoueth.

The mountain chain of Lebanon, consisting of an elevated bloc

and a more seaward plateau, is bounded on the east by the Yammoueth

fault, whose throw ranges from 1000 to 2000 meters. This system is

divided into northern and southern sections at Beirut by faults. In the

northern section, the elevated bloc, delineated by a flexure extending

from north of Tripoli to the southern part of the Nahir Damour, has
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core running longitudinally north-south down its center. The Jurassic

mass in the center of the bloc is also a horst (Renouard, 1956). The

elevated plateau is tabular except near Beirut, where it developes high

peaks on its eastern flank. The lower plateau, lying between the

elevated bloc and the sea, slopes seaward with slight undulations. Its

average slope is the same as that of the elevated bloc (100 m. [km.).

Near the coast, the Cenomanian sediments disappear under terminal

Cenomanian (between Beirut and Jbail), Turonian (between Jbail and

El Heloue) or Neogene sediments (Koura plain), or extend to the coast

(between -El Heloue and Bartroun). Emery and George (1963) point out

that at many points along the coast, the slopes of the plateau are steep,

rising up 100 meters or more from sea level.

In the southern half of the Lebanon mountain chain, the elevated

bloc is bounded by the fault of Yammoueth to the east, and the fault of

Roum to the west. The Jurassic core is delineated to the east by a

flexure which, toward the south, unites with the Roum fault. The

elevated bloc, 24 kilometers wide at Beirut, narrows southward, ter-

minating at the bend of the Litani River. This elevated bloc is struc-

turally lower than the corresponding bloc to the north, and lacks the

latter's structural simplicity. Section C (Plate 1), shows that it is

both faulted and folded. The Tyr-Nabatiye plate au, lying between the
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sea and the fault of Roum, widens southward from its narrow northern

limit, the Beirut peninsula, to nearly 17 kilometers at the Lebanon-

Israel border. Its topographic character changes from north to south,

Between Beirut and Damour, where the plain is only 4 kilometers wide,

the plateau slopes toward the sea with a declivity of 100 m. [km., the

same as that of the coastal plateau north of Beirut; farther south, this

seaward slope decreases gradually to 25 m. [km. at Saida. At the

same time, the plateau becomes tabular. Its near-horizontal surface

is interrupted by faults and deep, river-cut valleys. Between Beirut

and Saida, the slopes of the Cenomanian plateau fall to the sea. In

this region, a series of east-west faults, whose north sides have

dropped, have produced a series of indentations in the coastline. Be-

tween Saida and a point 8 km. south of Tyr, the plateau is partially

covered by Eocene and Miocene sediments. The plateau slopes gently

seaward from 500 meters at the base of the elevated bloc to 180 meters

near the coast, then descends steeply to a narrow alluvial plain fronting

the coast. South of this point, in Lebanese territory, Cenomanian

rocks dip gently to sea level.

The above discussion summarizes the view of Dubertret, whose

emphasis on faulting as the dominant tectonic mechanism follows the

views of C. Diener (1886) and M. Blanckenhorn (1914). E. Krenkel
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(1924) claims that the main structural units are due to folding; according

to him, the Lebanon and Anti-Lebanon mountains would be truncated

anticlines belonging to the Syrian arc, which is in turn related to the

Taurus Mountains (Alpine) in Turkey. Vaumas (1947) generally supports

this latter opinion, suggesting, in addition, that the fault of Yammoueth

is a result of sinking of the edge of the continent, a process tending to

lower Lebanon with respect to Anti-Lebanon. Dubertret (1947) dismisses

the views of Krenkel and Vaumas as being incompatible with known

geological information.

C. Stratigraphy

With the exception of a few volcanic rocks, most of which are

interstratified, Lebanon is almost entirely formed of sedimentary rocks.

The known thickness of these rocks is more than 5000 meters, but the

total thickness is probably much greater, for the basement has not yet

been found and there is no sign of its proximity at the lowest level of

the stratigraphic scale.

Stratigraphic columns for North Lebanon, Hermon, and the Tyr-

Nabatiye plateau are presented in Figure 37 . The first two are by

Renouard (1956); the third, less detailed, has been compiled by the

writer from information in various papers by Dubertret. The following

discussion will point out the salient features of these columns in the
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North Lebanon and Tyr-Nabatiye regions, the areas of Lebanon of most

interest to this present study.

(1) Lower Jurassic- Liassic(?) - Triassic(?):- The oldest form a-

tion dated with certainty in Lebanon belong to the Bajocian (lower Jurassic).

It is possible that even older Liassic formations underlie the Nahr Ibrahim

in North Lebanon (Renouard, 1951). Moreover, Renouard (1956) believes

that an electrically conducting bed, 650 meters below the bed of Nahr

Ibrahim, :epresents the Triassic.

(2) Jurassic: The Jurassic, which has a measured thickness of

1600 meters in Lebanon, appears in the center of the elevated mountain

blocks. The middle and lower Jurassic unit (Lias(?), Bajocian, Bathonian)

exposed in North Lebanon and Hermon but not in the Tyr-Nabatiy4 plateau,

is a limestone and dolomite mass, 1200 meters thick. This sequence

is followed by Oxfordian-Lusitanian (Upper Jurassic) limestones and

marls, 130 meters thick in North Lebanon and 50 meters thick in South

Lebanon. The Kimmeridgian-Portlandian formations consist of littoral

limestones and marls. In North Lebanon, volcanic rocks, occurring

at the beginning of the Kimmeridgian, are interstratified with marls.

No corresponding volcanism is noted in South Lebanon.

(3) Cretaceous: A transition zone appears at the beginning of

the Cretaceous. At the end of the Jurassic, the sea regressed nearly

everywhere, and the Jurassic was covered with continental sandstone,
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(gres de base). This unit is 250 meters thick in South Lebanon and

thins northward.

The lower Cretaceous formations (Albian and Aptian) surround

the Jurassic masses in the mountain blocs. They are littoral deposits,

having a thickness of 430 meters in North Lebanon and 300 rneters in

South Lebanon. The transgression of the sea, which first appears in

the lower Aptian, is not well defined, Continental and littoral deposits

lie between the beds of clay, marl, oolithic limestone, and subreefal

limestone. Volcanic flows, interstratified with sediments, appear in

both North and South Lebanon.

The uniformity and thickness of the middle Cretaceous (Cenomanian-

Turonian) throughout Lebanon is proof of a general invasion of the sea

during this time. These formations, covering half of the Lebanese

territory, appear on the coastal plateaus.

Eroded fragments of the Upper Cretaceous (Senonian) are exposed

in Northern Lebanon between Beirut and Jbail, and in South Lebanon on

the western half -of the Tyr-Nabatiy 6 plateau. The stage is essentially

chalky, with intercalcated marls. Variations in the total thickness

occur, from 200 meters in Northern Lebanon and the western half of

the Tyr-Nabatiye plateau to 20 meters on the eastern edge of that plateau.
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(4) Eocene: Eroded but extensive Eocene formations on the Tyr-

Nabatiye plateau, consist of two stages: an Ypresian complex of limestone

and marls, and above this, a wide distribution of soft Lutetian limestone,

reaching a maximum thickness of 200 meters. Dubertret (1954) has

found a fragment of upper Lutetian consisting of breccia enclosed in

limestone. In North Lebanon, in the littoral region, some Ypresian is

recognizabel, but no Lutetian.

(5) Miocene: The Miocene in Lebanon consists of two types:

marine (Burdigalian and Vindobonian) and continental (Pontian). Eroded

fragments of marine Miocene are found at the seaward edge of the Tyr-

Nabatiye plateau south of Saida, and form headlands north of Beirut.

In this region, the Burdigalian (marly limestone) is 80 meters thick

and the Vindobonian (conglomerate overlain by limestone) is 100 meters

thick. North of Beirut a gap appears in this sequence: only the Vindo-

bonian is found. It is 265 meters thick, and is discordant on Eocene

formations. Pontian Miocene (torrential deposits and lacustrian mud)

is 225 meters thick on the Koura syncline.

(6) Pliocene: The Pliocene is not found in South Lebanon. In

North Lebanon, it begins with volcanics which form the vast flows in

the Horns-Tripoli trough. This is followed by marine deposits (rectal

limestone and mails, 40 - 60 meters thick) seen on the Kouna.
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(7) Quaternary: The Quaternary is represented in North Lebanon

by ancient dunes and by torrential deposits on the Koura, and in South

Lebanon, together with recent sedimentation, by arable plains extending

from Saida to a point five miles south of Tyr. Near Beirut, six Quaternary

terraces are observed, the highest being 100 meters above sea level;

three such terraces occur south of Saida. The position of the beaches

results from a combination of fluctuations of sea-level and movements

of the continental bloc during the Quaternary. Dubertret (1954)

indicates that the age of these terraces increases with height above

sea level, and using archaeological dating, correlates the terrace at

15 meters with the Riss-Wurm interglacial period.

D. Orogeny and Volcanism

If the sandstone and the lignite-bearing clays of the Syrian side

of Hermon are really pre-Bajocian, then in this period the Jurassic

began with a period of emergence. The 1200 meters of limestone

which follow, however, are marine deposits. In Anti-Lebanon, Hermon,,

and South Lebanon, the sea remained without interruption to the end

of the Jurassic, whereas in North Lebanon, from the Sequantian-

Kimmeridgian period onward, a subaerial and even continental period

occurs (Renouard, 1956). This emergence was accompanied by volcanic

activity, as the sediments are interstratified with basalt flows.
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It is possible that an orogenic crisis affected the Jurassic plat-

form. Dubertret (1954) shows that the NNE SSW faults delineating

the large structural units were active at the end of the Jurassic; later,

they were rejuvenated, cutting through the sediments which had covered

them. There are indications that the upper Jurassic surface was intensely

eroded. In Hermon, erosion penetrated to the middle Bathonian. In

Anti-Lebanon and South Lebanon, the ring of terminal Jurassic is

nearly intact.

With the "Gres de base" a continental system began with a few

slight marine incursions. These became more pronounced during the

Aptian and were predominant during and after the Aptian, Volcanism

persisted during the Lower Cretaceous with two particularly active

periods "Grbs de base" and upper Aptian.

Conditions in the Cenomanian-Turonian were similar to those

which produced the Jurassic limestone mass. At times, slight uplifting

caused the land to emerge. It is possible that similar uplift occurred

at the beginning of the Senonian, (Renouard, 1956). The end of the

Senonian, when this uplift is best known, marks the beginning of an

orogeny. At this time, the Lebanon and Hermon horsts were raised,.

and the bottom was deformed into gentle shoals and dppressions (Dubertret,

1954). Renouard (1956) suggests that at this time the east edges of what
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are now the Tyr-Nabatiy plateau and the Bekaa were eroded, while a

depression on the west side of the Bekaa was filled with the eroded

material. The irregular uplifting of the bottom did not happen every-

where at the same time.

At the beginning of the Nummulitic, the sea withdrew from South

Bekaa, but still remained on the northern coastal area until the end of

the Ypresian, and in South Bekaa and on the Tyr-Nabatiye plateau until

the end of the Lutetian. Finally, in the Neogene, the present topography

was formed. The Burdigalian Sea, which covered the lower Lebanese

plateaus and Syria, was forced back by the orogenic movements which

caused general uplifting and accentuation of the horsts. The coastal.

regions north of Beirut were raised somewhat during this orogeny,

but the corresponding regions south of Beirut were not. A subsequent

Vindobonian transgression and regression then occurred. The end of

the Neogene was marked by volcanism and a third final transgression

of the sea limited to the littoral regions of the Mediterranean. After

its regression in the Pliocene, the shoreline was fixed near its present

position (Dubertret, 1937).

Volcanism occurred again in the Pliocene, indicating that further

orogeny may have occurred, and in the late Quarternary.

C

4
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E. Sources of Supply to Offshore Areas of Lebanon

The previous discussion indicates that before the end of the

Cretaceous, much of the material supplied to the offshore areas was

biogenous, resulting from deposition of bottom-growing organisms and

from the settling out of animals which lived in the- seas covering the

land areas. Some of the offshore material, especially at the end of

the Jurassic and during the early Cretaceous, was derived from the

erosion of land areas.

The orogenies which have occurred since the end of the Cretaceous,

however, produced two new major sources of supply to the offshore

areas: material derived from the erosion of the uplifted horsts in

Lebanon, and material derived from the cutting of the Nile. A discussion

of these processes follows.

(1) Intense erosion has attacked all parts of Lebanon since the

end of the Eocene, for the last 30 million years. If Renouard's state-

ment that the Hermon would be 5000 meters high if erosion had not

affected it is correct, then the Hermon has lost up to 2200 meters of

rock. On the Tyr-Nabatiye plateau, Dubertret (1944) points out that the

erosion surface (probably Miocene) does not correspond with strati-

graphic surfaces, but cuts across them.

- 113 -
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The degree of erosion in various areas depends on the nature

of the rock. The limestone of the massifs is very permeable. Water

tends to be absorbed by them rather than running across their upper

surfaces, with the result that they are not as intensely eroded as the

less permeable marls and sandstones.

Erosion today is effected by several large rivers running from,

the mountains to the coast. These rivers have cut deeply into the

mountains and coastal plateaus. As well as being the chief erosional

agents, they bring much of the eroded material to the coast. They are

well supplied by rainfall, which, falling mostly between the months of

October and April, averages 1500 millimeters per year on the mountains

and 800 millimeters per year on the coast (Dubertret, 1949). The

rivers of Lebanon have various sources:

1. Water is supplied directly by rainfall,

2. Water which circulates underground acts as

a source for rivers near the edge of the

permeable limestone coastal plateaus,

3. The limestone massits, being very permeable,

act as resevoirs for water. As a result of

over-saturation, water is ejected at the base

of these mountains and forms rivers.
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4. Under the Tyr-Nabatiye plateau, water

absorbed in the limestone cannot rise to the

surface of the plateau because of the over-

lying, impermeable rock cover. Instead, it

flows seaward in an underground network,

finally forming offshore underwater springs.

Material put into suspension by wave- cutting of the land areas

during the various transgressions of the sea since the end of the

Miocene has also been supplied to the offshore areas.

Thus, it is apparent that since the Miocene, there have been

abundant sources on land for detrital material, and powerful agents of

transport to bring it to the coast Erosion is still active today. Emery

and George (1963) describe heavy erosion of sea cliffs and sand beaches

along the shores of Lebanon, and point out that large rivers, carrying

land-derived material, form alluvial fans at their mouths.

(2) The other major source of supply to the Eastern Mediterranean

is the Nile river. Enough material has been dumped into the Mediterran-

ean to form the Nile Cone, which extends from the Nile Delta to the

Herodotus Abyssal Plain, north of Lebanon (Emery et al. , in press).

Cutting of the Nile Valley began in the Miocene, ceased in the Pontian.

4 ~(Mio-Pliocene), and resumed at the end of the Pliocene. The Nile deposits
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Figure 38. Regional structutes- surrounding Lebanon.
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are thus of two different ages. On the basis of a rather uncertain figure

for the annual contribution of suspended sediments by the Nile River (57

million tons per year), Emery et al. (in press) have estimated that

perhaps 100 meters of material have been deposited in the Pleistocene.

Material ejected by the Nile is brought northward along the

Eastern Mediterranean coast by offshore currents. The contribution of

Nile sediments to the continental slopes of Israel is heaviest in the south,

where the slope is 203 and decreases toward the north, where the slope

is 8. 50 (Emery and Bentor, 1960). The contribution of these materials

to the beaches of Lebanon is small (Emery and George, 1963).

F. Offshore Geology

A map by Boulos (1962) showing the offshore sedimentation of

Lebanon indicates that a step in the continental shelf appears approxi-

eat the 100 meter contour. On the shoreward side of this contour,

rock, sands,, clays, gravel, and mud are found rather randomly dis-

tributed. On the seaward side of the contour, mud, with some clays

and sands, appears to cover the shelf. Neither the lithology nor the

age of the rock on the inner shelf is indicated.

4



- 118 -

II. STRUCTURAL AND SEDIMENTARY RELATIONSHIP OF LEBANON
TO SURROUNDING AREAS

The geological relationship of Lebanon to the areas which surround

it will be discussed from two points of view: structural relationships,

and sedimentary relationships. In the discussion of structures, emphasis

will be placed on the determining the tectonic forces which have acted on

Lebanon.

A. Structural Relationships

Figure 38 shows the place of Lebanon in the general structural

pattern-of the Middle East. In this large area, Baker and Henson (1952)

have identified three geologically distinct provinces:

(1) The massif zone, comprised of the Arabo-Nubian and Arabo-

Somali Pre-Cambrian shield.

(2) The Orogenic-Geosynclinal zone, caused by tangential com-

pression (Alpine orogenies) from the north, northeast, and east, and

now marked respectively by the Taurus, Zagros, and Oman ranges.

(3) The foreland shelf, bounded approximately by the shield

massifs, the Mediterranean, the orogenic belt, and the Gulf of Aden.

Lebanon lies on the north-eastern edge of the shelf province.

Generally, this shelf subsided slowly from Cambrian time until the

beginning of Cretaceous time, when the orogeosynclinal belt began to
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develop and to define the northern and eastern limits of the foreland proper.

Before intense late Tertiary thrusting and faulting occurred in the Taurus-

Zagros-Oman mountain belt, the shelf was characterized by a changing

pattern of gentle basins and swells which have been ascribed either to

incinient "Alpje comnression" or to verticn1 movements of the basement

or both. In addition, many anticlinal structures rose intermittently in the
Mi

foreland. There is much discussion as to whether these structures were

produced by uplift of basement blocks or by normal folding. For instance,

Ball and Ball (1953) have atiributed the generally NNE - SSW pattern of

anticlines in Israel to a long period of folding starting in the Carboniferous

and reaching its intensity in the late Cretaceous, followed by a relatively

short-term period of aulting. However, Henson (1951) has assigned

Israel, Lebanon, and Syria to an unstable portion of the foreland shelf

where movements were produced by taphrogenesis (vertical movement

with high-angle faulting) rather than by folding.

The Alpine orogeny produced large-scale structures near Lebanon.

The Taurus mountains in Turkey, lying to the north of Lebanon, extend

~1 westward in an accurate form through Greece and eventually join the Alps.

This range is fronted in Greece by an island arc. Just south of this arc

lies the Mediterranean Ridge (as defined by Emery et al. , in press),

bounded on each side by trenches or abyssal plains. This ridge, starting
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from Italy, passes between Crete and Lybia and curves sinuously north

to Cyprus. The ridge may be related to the Alpine-Taurus belt. Emery

et al. (in press) have suggested that it was formed in the Miocene

as a result of tensional opening of the earth's crust. Cyprus has igneous

intrusions which could be associated with an extension of the Mediterranean

Ridge. Harrison (1955) has suggested that these intrusions are related

to those of the Tripoli-Homs trough, at the north end of Lebanon, by a

line of weakness.

To the east of Lebanon lies the folded Damascus-Palmyra moun-

tain chain. Krenkel (1924) has suggested that this feature is a truncated

part of the Taurus mountains. Henson (1951) rejects this suggestion on

the grounds that the Taurus mountains, characterized by thrusting and

folding, were formed earlier than the Palmyrene mountains, which 4s

a whole, reveal horst and graben tectonics. Renouard (1956) suggesta

that the Damascus-Palmyra range is an extension of the linear fractures

which dominate Lebanon.

These are the structures near Lebanon which might have con-

ceivably been formed in the Alpine orogeny. Baker and Henson (1952),

Henson (1951), Renouard (1956), and Ball and Ball (1953) all point out

or infer that the Pre-Alpine crustal warpings and the subsequent Alpine

orogeny should not be regarded as separate phenomena, but as the various
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stages in a continuing disturbance of the earth's crust.

An apparently different form of deformation, however, is

represented by the great north-south faults which cut through Lebanon.

These faults extend from Turkey southward through the Jordon Valley

to the Red Sea, where they apparently continue as an axial rift, and

are ultimately related to the median rift valley system of the Carlsberg

Ridge (Ewing and Heezen, 1960). Drake and Girdler (1964) have

suggested that the Red Sea rift is due to tearing of the earth's crust by

the separation of Africa and Arabia. The Levantine faults appear to be

an extension of this tear.

De Boers (1965) accounted for all these tectonic features by

suggesting that Europe has moved eastward with respect to Africa and

Arabia through dextral wrench faulting. His hypothesis is based on

paleomagnetic and geological data.

The forces that could possibly act on Lebanon, then, are:

(1) East-west tensional forces, represented by north-south-

trending rift valleys and faults, possibly resulting from the separation

of Africa and India.

(2) Short-term intense compressive forces resulting from the

Alpine orogeny. The Taurus range represents forces from the north,

the Zagros ranges, forces from the north-east. It is not known whether

- 121 -

A



- 122 -

the Mediterranean Ridge represents compressional, tensional, or

shearing forces.

(3) Long-term gentle forces from Pre-Alpine movements. These

could either be vertical forces or, in the vicinity of Lebanon, generally

east-west forces, depending on whether the surface features are due to

vertical. movements of the basement or to folding,

Presumably, the forces in categories 2 and 3 have resulted in

the secondary E to W and NNE to SSW faults seen in the Lebanon ranges,

and in the broad folds seen in the Anti--Lebanon and Hermon ranges.

B. Sedimentary Relationships

The Middle East foreland shelf defined by Baker and Henson

(1952) subsided slowly from Cambrian time onward beneath shallow,

epi-continental seas. Generally, successive marine transgressions

occurred farther west and south until the late Eocene, when the reverse

process of regression began. As a result, thick layers of chemical sedi-

ments were deposited in Syria, Lebanon, and Israel. Renouard (1956),

comparing stratigraphic columns of Lebanon, Israel, Jordan, Turkey,

and Cyprus, has concluded that Lebanon is centered at the center of a

vast sedimentary basin whose main axis extends westward toward

southern Cyprus, and that consequently subsidence has been more active
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in Lebanon than in the surrounding areas. In the present survey, therefore,

we would expect to find the deep sedimentary section in Lebanon continued

westward.

The only known estimate of sediment thickness in the Eastern

Mediterranean has been obtained by Harrison (1955), who, on the basis

of several assumptions, found from gravity information that a depression

just seaward of the Nile contains about 3000 meters of sediment.

5,



APPENDIX B

TABLE 1

DATA ON CANYONS OFFSHORE OF LEBANON

Col. 1. Name of area (see Figure 5).

Col. 2. Name of canyon (see Figure 5)

Col. 3. Average seaward declivity of canyon axis, along axis, Depths

refer to interval in which declivity measured.

Col. 4. Local average maximum declivity of continental slope. Depths

refer to interval in which declivity measured.

Col. 5. Depth of canyon (elevation of canyon wall above canyon floor).

N and S refer to north and south walls of canyon. Depths

measured at actual crossing of canyon.

Col. 6. Depth of canyon axis corresponding to measurements in Col. 5.

angles to nearest half degree

depths in uncorrected fathoms

(1) (2) (3) (4) (5) (6)

A-B AB 1 90 (55-190) 12* 22S 55
22N

"7 " 15N 190

" AB 2 25N 200

" AS 3 5* (200-600) 7 1/2* (100-500) 23N 602
255
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