
rl.r

. I ~~~~ I "? i -.

GMIS: AN EXPERIMENTAL SYSTEM
FOR DATA MANAGEMENT AND ANALYSIS

by

John J. Donovan and Henry D. Jacoby
M.I.T.

Energy Laboratory in Association with
the Alfred P. Sloan School of Management and IBM*

Working Paper No. MIT-EL-75-OllWP

September 1975

*This work is a result of an IBM/M.I.T. Joint Study.

.I

OUTLINE

ACKNOWLEDGEMENT

1. History and Purpose of GMIS

2. Overview of the System Architecture

2.1 Structured English Query Language (SEQUEL)

2.2 Multi-User Transaction Interface

2.3 User Interfaces

3. Sample Application of GMIS

3.1 Data Manipulation

3.1.1 Data Definition Facility

3.1.2 Bulk Loading Facility

3.1.3 System Inquiry Facility

3.1.4 Query Facility

3.2 Modeling and Analytical Functions

3.2.1 Validating Data

3.2.2 Reporting

3.2.3 Modeling

3.2.4 Stand-Alone Modeling Facility

4. Details of the GMIS Design

4.1 The Use of VM in the Software Architecture

4.1.1 Communication between VM's

4.1.2 Extensions of the Architecture

4.1.3 Degradation of Variable Cost with Multiple VM Operation
_..*·C~ ·- n st-·r -_a,,

4.2 Hierarchical Approach

4.3 Relational Technology

4.3.1 Advantages of the Relational Approach

4.3.2 Basics of Relational Operators

5. Further Research

5.1 Computer and Management Science Research

5.2 Studies of the Economics of Information System Design

(ii)

ACKNOWLEDGEMENT

The research reported here is being carried outas a joint project of

the M.I.T. Energy Laboratory and the Center for Information Systems Research

of the Alfred P. Sloan School of Management at M.I.T. The work was made

possible by support from an M.I.T./IBM Joint Study Agreement, the New

England Regional Commission [Contract No. 10530680], the Federal Energy Adminis-

tration [Contract No. 14-01-001-2040], and M.I.T. internal funds.

Members of the IBM Cambridge Scientific Center and of the IBM Research

Laboratory of San Jose have greatly contributed to this work. Those at IBM

whom we are particularly indebted to are: Dr. Ray Fessel for his ingenious

programming guidance, to Dr. Stuart Greenberg for his help with VM, and to

Dr. Frank King and his group for their work in implementing SEQUEL and for

their cooperation and responsiveness in adapting this experimental system

to meet the operational needs of GMIS.
the

At /New England Regional Commission thanks are due to Robert Keating

for his instructive guidance in the application of GMIS to energy problems

facing New England.

We wish to thank Dr. Robert Goldberg of Harvard for his comments in

reviewing this document.

We also wish to recognize the assistance of the several M.I.T. students

who have contributed to the research. In particular, credit is due to

Louis Gutentag, who has botne the major responsibility for the implementa-

tion of GMIS, and to Marvin Essrig, Peter DiGiammarino, and John Maglio,

who assisted in the preparation of this document.

(iii)

GMIS: AN EXPERIMENTAL SYSTEM FOR DATA MANAGEMENT AND ANALYSIS

John J. Donovan
Henry D. Jacoby

How many people would climb aboard a trans-Atlantic flight if they

thought the airline lacked the capability to process volumes of weather

and traffic data, and to plan a safe route? Not many, for most of us

have come to expect that the very best information processing services

will be applied in this circumstance. Yet public policymakers and corporate

executives are regularly faced with far more complex and serious problems

(perhaps with risks that are less immediate and obvious), and must make

decisions without the capacity to manage and analyze the pertinent infor-

mation. This happens for several reasons: Circumstances arise unexpectedly,

and under current technology there simply is not time to construct the

necessary software, or decisions may not occur regularly enough to justify

the cost of a normal information management system, particularly when its

useful life may be cut short by changing circumstances. In this paper we

report on an effort to design and implement tools appropriate to this cir-

cumstance.

The system under development is called GMIS (Generalized Management

Information System), and we present the underlying architecture of the

system and its rationale, along with a sample demonstration of its char-

acteristics. We begin, in Section 1, with a brief history of the effort

and a summary statement of what the system is designed to do. In order

to give a quick summary of how the system works, Section 2 is an overview

of the software architecture; and then Section 3 uses a sample application

-2-

to an energy analysis problem in order to describe how the system is used

and what some of its more important features are. For the reader interested

in details we return in Section 4 to more discussion of the techniques and

methods used in building GMIS. Finally, since this is a report of research

in process, a summary of topics of continuing research is given in Section 5.

-3-

1. HISTORY AND PURPOSE OF GMIS

GMIS is being developed at the M.I.T. Energy Laboratory in conjunc-

tion with the Sloan School's Center for Information Systems Research and IBM,

The project started in 1973 based on ongoing research in the Sloan School on

file systems [Madnick, 1970] and operating systems [Donovan, 1972; Madnick

and Donovan, 1974]. However, it has been the urgency of particular appli-

cations to energy problems that has shaped the work and quickened its pace.

During the energy crisis of the winter of 1973/74, policymakers in

New England were handicapped by a lack of information about the region's

energy economy. In response to this circumstance, the New England Regional

Commission (NERCOM) initiated a project to develop a New England Energy

Management Information System (NEEMIS). The initial plan was to develop a

"crisis management" system to assist in the handling of fuel oil allocation,

but over time (though the original function remains an important one) the

needs have grown and the emphasis shifted. Problems of the economic impact

of high oil prices have taken on more importance along with policies and

programs to foster energy conservation. New issues have arisen concerning

the location of major energy facilities, bringing a need for analysis of

associated economic and environmental issues.

Growing experience with the data also brought more demands on the

system design. The data are of varying quality; data collection procedures

are changing over time, with series being dropped and added and definitions

being revised. The requirements for protection have proved complex, for

they vary with levels of aggregation and time. (For example, an oil company

-4-

may be willing to give out data on its aggregate transactions, but not on

details that may help a competitor.) Finally, the need for a facility to

apply various analytical models to the data has become more apparent.

In this circumstance, our approach has been to develop a general set

of tools for speedy construction and easy modification of management infor-

mation systems. Essentially, the need is for a software facility suitable

for situations where the problem addressed is constantly changing, or

where an information system is in its formulative stages and users are

unable to specify exactly what they want the system to do, or precisely

what the data streams will look like in the future.

To meet these requirements, certain characteristics of the system

seem essential: it needs to be multi-user and interactive; it should be

capable of storing, validating, and retrieving data; and it ought to have

the capability to respond to changing data and data structure, and to vary-

ing protection requirements. It should provide tools for constructing

analytical and statistical models to be applied to the data, but a facility

to construct these models from scratch appears insufficient. Many econo-

mists and modelers have strong preferences for particular modeling facili-

ties such as TROLL [NBER, 1973], XSIM [Dynamics Association, 1974],

TSP [Hall, 1975], PL/I, EPLAN [Schober, 1974], and FORTRAN; large invest-

ments have been made in packages using these languages, and access to these

facilities can save tremendous costs in retraining personnel and converting

existing models.

Existing commerical data base systems -- e.g., IMS [IBM, 1968], DBTG

[Association for Computing Machinery, 1971], System 2000 [MRI Systems, 1974],

TOTAL [Cincom Systems, Inc., 1974] etc. -- have proved their usefulness

-5-

in particular applications. But none has the range of desired charactersitics

outlined above. Some are lacking the statistical and modeling packages,

not all are interactive, and not all can allow multiple users to access

the same data base. Most important, none was designed for a changing

environment. As detailed below, the GMIS system has taken a long step in

this direction. Using this facility, it is possible to construct an infor-

mation system in a matter of days. For example, in the course of work

on the NEEMIS System, chages in the New England energy situation made it

necessary to reconstruct the entire data base five times in one month

during the summer of 1975 -- once to incorporate additional data in existing

data series, twice for efficiency reasons, and twice because new data and

models had to be added as new problems became apparent.

In the sections that follow, we give a brief overview of the architec-

ture of the GMIS system and then illustrate the system characteristics

by means of an example drawn from one of its energy applications. For

the reader interested in the details of software design, the discussion

goes on to cover more of the details of the system and its various components.

Since the discussion cannot cover all aspects of the system, however, it

is useful to summarize the requirements that the GMIS system has been

designed to meet. First, in the area of data management the current system

has the following features:

- it allows on-line interactive data management as well as

a batch facility;

- it allows for storage of large quantities of various types

of data;

-6-

- it allows the changing of data, addition of new data series,

modification of tables (data structures);

- it gives the user simple and consistent view of the way

data is stored in the system;

- it permits several users to select and access data according

to many criteria, as it is impossible to specify in

advance all the ways the data will be used;

- it allows for easy viewing of data, and contains facilities for

validation of data;

- it provides facilities to interactively change data pro-

tection;

- it is able to store data about data (e.g., confidence

levels);

- it provides a mechanism for assuring the integrity of the

data; and

- it provides mechanisms for monitoring and tuning performance.

The modeling and analytical capabilities introduce several additional

features. Since GMIS provides access to such faciliites as APL, PL/I,

TSP, EPLAN, and FORTRAN, it provides the user with an efficient flexible

environment to specify, construct, and execute statistical analyses and

model studies, and to produce the associated plots and reports.

-7-

2. OVERVIEW OF THE SYSTEM ARCHITECTURE

Currently GMIS is implemented on an IBM System/370 computer. It uses

the Virtual Machine (VM) concept extensively.1 A virtual machine may be

defined as a replica of a real computer system simulated by a combination

of a Virtual Machine Monitor (VMM) software program and appropriate hard-

ware support. For example, the VM/370 system enables a single IBM System/370

to appear functionally as though it were multiple independent System/370's

(i.e., multiple "virtual machines"). Thus, a VMM can make one computer

system function as though it were multiple, physically isolated systems.

A configuration of virtual machines used in GMIS is depicted in

Figure 1, where each box denotes a separate virtual machine. Those vir-

tual machines across the top of the figure are executing programs that

provide user interfaces, whether they be analytical facilities, existing

models, or data base systems. All these programs can access data managed

by the general data management facility running on the virtual machine

depicted in the center of the page. A sample use of this architecture

might proceed as follows. A user activates a model, say in the APL/EPLAN

machine. That model requests data from the general data base machine

(called the Transaction Virtual Machine, or TVM), which responds by passing

back the requested data. Note that all the analytical facilities and data

base facilities may be incompatible with each other, in that they may run

under different operating systems. The communications facility between

1 The VM concept is presented in several places [Parmelee, 1972; Madnick and
Donovan, 1974; and Goldberg, 1973], and many of its advantages are articu-
lated elsewhere [Madnick, 1969; Buzen et. al., 1973]. The concept of
"virtual machines" has been developed by IBM to the point of a production
system release, VM/370 [IBM, 1972].

-8-

VM(4)

HIGH LEVEL
LANGUAGE
INTERFACE,
e.g., PL/I,
FORTRAN

VM(5) . VM(n)

TSP CUSTOMIZE
INTERFACE INTERFACE

WRITTEN IN

PL/I

Analytical
Virtual
Machines

VM(1)

Transaction
Virtual
Machine

Overview of the Software Architecture of GMIS

VM(2)

TRANSACT
INTERFACE

VM(3)

APL/EPLAN
INTERFACE

MULTI-USER
INTERFACE

RELATIONAL
DATA

MANAGEMENT
LANGUAGE
SEQUEL

i! 6J~

__
,

Figure 1:

-9-

virtual machines in GMIS is describedlin Section 4.1.1. Extensions to

this architecture to allow interfaces to other data base systems and other

computer systems are discussed in Section 4.1.2.

GMIS software has been designed using a hierarchical approach [Madnick, 1975,

1970; Dijkstra, 1968; Gutentag, 1975]. Several levels of software exist,

where each level only calls the levels below it. Each higher level con-

tains increasingly more general functions and requires less user;sophis-

tication for use. The transaction virtual machine depicted in Fgure 1

shows only two of these levels, the Multi-User Interface and SEQUEL

[Chamberlain, 1974]. The data base capabilities of this machine are based

on the relational view of data [Codd, 1970). In this section, each box

will be briefly described. In Section 4 we return to describe some of

the technologies used in implementing these boxes.

2.1 Structured English Query Language (SEQUEL)

We felt that the data management system would best be based on the

relational model and hierarchical construction as this offered data

independence, integrity, and a framework for reducing complexity. As

part of our research on this topic, we proceeded with an implementation of

an M.I.T. relational system [Smith, 1974]. However, in the current ver-

sion of GMIS the data management capability is based on an experimental

relational query and data definition language known as SEQUEL which has

been developed at the IBM San Jose Research Laboratory [Chamberlain, 1974].

In cooperation with the IBM Cambridge Scientific Center and the

IBM Research Laboratory at San Jose, we have extended this

experimental system by easing restrictions on the data types it could

-10-

handle and relaxing constriants on the number of columns allowed in a

table, and by increasing the allowable lengths of identifiers and charac-

ter strings. We also designed mechanisms for security and for handling

missing data, expanded the bulk loading facilities, added additional

syntax, and made several changes to improve performance.

2.2 Multi-User Transaction Interface

Two requirements of GMIS are that multiple users be able to access

the same data base and that different analytical and modeling facilities

be able to access the data base all at the same time. For example, one

user may want to build an econometric model using TSP while another user

will request the system to generate a standard report. Still a third user

may want to query the data base from an APL [Iverson, 1962; Pakin, 19723

environment. These requirements have been met with the design and imple-

mentation of the Multi-User Transaction Interface [Gutentag, 1975]. Each

GMIS user operates in his own virtual machine with a copy of the user

interface he requires. Each user transaction to the data base is written

into a transaction file, and that user's request for processing is sent

to the data base machine (Transaction Virtual Machine) as indicated in

Figure 1. The Multi-User Interface processes each request in a first-in/

first-out (FIFO) order, by reading the selected user's transaction file,

and writing the results to a reply file that belongs to the user. Each

user interface reads the reply file as if the reply had been passed

directly from the data base management system. This procedure is discussed

at greater length in Section 4.1.1 below.

-11-

2.3 User Interfaces

GMIS provides the capability for users to write their own interfaces

to communicate with the data base system. TRANSACT is a general user

interface that is designed to process transactions from most teletypewriters

and CRT terminals. It allows the user to direct transaction output to any

virtual device on the VM/370.

Interfaces to APL, TSP, EPLAN and PL/I are operational and enable

users to communicate with the Transaction Virtual Machine (Ftgure 1)

simultaneously with all other users. An interface to the TROLL econometric

modeling facility is in the design stage.

The architecture depicted in Figure 1 also allows the use of any of

these modeling or analytical facilities independent of the transaction

virtual machine. For example, functions may be written in APL to operate

on data stored in the APL's work space. TSP modeling and reporting capa-

bilities can operate on data stored in TSP's data base. FORTRAN or PL/I can

operate on data stored in the virtual machine that they are running. It

should be noted, however, that not using the general data base facility seriously

inhibits flexibility and makes the algorithms dependent on the physical

organization of the data but more importantly inhibits the community of

users as they cannot conveniently access the common data base.

-12-

3. SAMPLE APPLICATION OF GMIS

To demonstrate the characteristics of the existing GMIS System,

we use an example drawn from work done for the Federal Energy Adminis-

tration on the construction of indicators of domestic energy conditions

[M.I.T. Energy Laboratory, 1975].1 The object of this particular

indicator was to give a picture of future trends in gasoline consumption.

It was proposed that the indicator be depicted as a series or plot of the

average miles per gallon of each month's new car sales. Policymakers could

note if the average fuel efficiency of new cars was going down or up, hence

reducing or increasing future demand for gasoline.

The indicator is shown in Figure 2. Several points concerning the

figure and its derivation are worth noting:

(1) The plot covers the 15-month period from January 1974 to

March 1975. It is surprising to find that during the

"energy crisis" the average miles per gallon of new cars

sold actually went down! We had initially expected that

during that time people would have purchased smaller, more

efficient cars, resulting in an increase in average miles

per gallon, Why did it go down?

(2) Note that since the graph raises additional questions, it

becomes necessary, in order to resolves these questions, to

access and analyze the data in ways not originally

planned for.

1 Marvin Essrig is responsible for the initial construction of this example,

-13-

30 75 7 EP&T 'CARSSOLi) '

17.75-1

I

I

17.SO-I

I

17.25-I

17.00-1
I

I

1G .7 -I

16.S0-1

16.200-I

is.00-!
I I I

January 1974

I I I I I I I I I I

6 I o 12 1nths)

January 1975 (Months)

A¢CtISS · 1i;t.: S.?nI; FRO:: i27 1i

0 CAR3SOLD

Average Miles per Gallon of Cars Sold in a Month

t

c

Eo-

s..
eJ

uA

/i

i

· Fiaure. 2.

-14-

(3) The data from which the graph is derived :comes from a

variety of sources, each using different terminology and

dissimilar means of presentation.

(4) The data is both numeric and non-numeric (e.g., name

of models of cars).

The remainder of this section shows how GMIS was used to construct and

analyze this indicator. Two user interfaces of GMIS will be used:

(1) TRANSACT is an interface to the data management

level (SEQUEL), which includes a Data Definition Language

(DDL) and Data Manipulation Language (DML). This level

can be used to:

- restructure the data,

- input the data, and

- query data.

(2) APL/EPLAN is the anlaytical, modeling, and statistical

level, which resides above the multi-user interface

(Figure 1). EPLAN is a set of routines imbedded in APL

for doinq statistical functions and reportinq.

3.1 Data Manipulation

An example of creating a table and inserting data into it via

TRANSACT-SEQUEL will demonstrate how a user stores data in GMIS. Note

that all data are viewed as residing in tables, as in the relational model

of data [Codd, 1972]. The tables have columns whose entries come from sets

of elements called domains. Figure 3 is an example of a table.

1 EPLAN is now available as an IBM product under the name "APL Econo-

metric Planning Language" [IBM, 1975].

-15-

coumns

names o

Figure 3. Sample Table

3.1.1 Data Definition Facility

A data structure is created in TRANSACT by using SEQUEL commands by

first defining the desired domains, then declaring a group of columns

to be a table, and finally, inserting data into the table.

The interactive session to create the table presented in Figure 3

is found in Figure 4, where the commands shaded are user inputted.

The first four commands establish the existence of the four domains:

(models), (vol), (date), and (mpg). The domain 'model' will hold information

stored as characters, while 'date', 'vol', and 'mpg' will consist

of numeric data.

A complete syntax description of TRANSACT and SEQUEL commands is
available in a GMIS Primer [M.I.T. Energy Laboratory, 1975].

Model Date Sales MPG

Cadillac 1/74 9,948 10.9

Vega 1/74 33.600 30.2

Pinto 1/74 35,531 28.0

Pontiac 1/74 10,170 13.8

entr es

-16-

DOMAIN DEFINITION WAS SUC

rcarti' der. 1ia hi hriodo l!cia
DO14AIII EFI IiTIIJJ WAS UC

rcate d or. l n vo.'I n. W .. ;:SUCi
DOMAIN1 DEFINITION 1iAS SUC(

rOA teaAoraq I ,.u.,

DOIIAIli DEFINITION tlAS SUCI

READY:

* .-: :ode[-d.ato
e s-; (vol)
r I-~ L-ll\ ~.Z.:· W

TABLE DEFIIItI I Ti 'Wl [IAS'SUC Et'SFI; .

READY;

UEWEJno sdate s...a1s y
INSERTIOIJ IIAS SUCCESSFUL.

READY; T

v~ ct4 I i SETS ATA I;J TO A TA3L

MODEL DATE SALES MPG

VEGA 7401 33455 302

READY; _____aL

UPDATE IAS SUCCESSFUL.

,.READY; __.... . ___ ~ (UPDATE DATA ALREAY PRESEINT
N A TABLE

MODEL DATE SALES MPG

VEGA 7101 33600 302

READY;

Figure 4. Example of Table Creation and Data Entry

-17-

The next command creates a table called CARSALES. The first column

is labelled MODEL, and entries in this column will be classified as

belonging to the set (or domain) model. The other three columns

are defined in a similar fashion, where entries in the column sales are

the volume of cars sold during the month entered in the column date,

The INSERT statement of Figure 4! results in the insertion of one

entry into each column of table CARSALES. The SELECT * command results

in the printing of all entries in table CARSALES. The UPDATE command

results in changing one entry in the table. Note that the change is

reflected in the output from the next SELECT command.

3.1.2 Bulk Loading Facility.

Suppose that a great deal of data were to be loaded into table

CARSALES. Inputting it via the console, as in the previous example,

would be prohibitively slow and costly. A bulk loading facility has

been implemented to reconcile this matter. A series of data cards and

their appropriate header cards for input into the bulk loader are

shown in Figure 5. The bulk loader will accept these cards, define the

indicated domains, create the table, and insert the data into the appro-

priate columns of the table. For a complete explanation of formats and

uses of the bulk loader, see the "GMIS Primer" [M.I.T. Energy Laboratory,

1975].

-18-

carsales data

SDEFDOM
$DEFDOM
$DEFDOM
SDEFDOM
$DEPTAB

$PRIKEY
$LOADTAB

$ENDCOL
CHEVROLET
CORVETTE
CHEVELLE
CHEVY NOVA
SPORTVAN
MONTE CARLO
CAMARO
VEGA
PONTIAC
GRAND PRIX
FIREBIRD
VENTURA
OLDSMOBILE

MODEL
VOL
PG

DATE
CARSALES
MODEL
DATE
VOLUME
MPG
MODEL
CARSALES
MODEL
DATE
VOLUME
M PG

CHIR

NUM J
MODEL
DATE
VOL
MPG
DATE

1

1

1

1

1247401
1547401
1797401
1877 40 1
1527401
1 497401
1797401
3027401
1387401
1037401
1797401
1217401
1107401

DEFINING

THE DOMAINS

DEFINING THE TABLE
INCLUDING THE COLUMNS

AND THE PRIMARY KEYS

1

20
28
17

1

1

1

1

15 FORMAT CARDS

23 DESCRIBING
34 DATA
19

33108
2078

21175
21464
1370

15668
8787

38455
10170
4042
3666
4890

10533

SINDLOAD
$ DIN P

Figure 5. Example of a File Ready for Bulk Loading

A

-19-

3.1.3 System Inquiry Facility

The TRANSACT-SEQUEL level has a number of "system commands" for

inquiring about tables as opposed to their contents. For example,

Figure 6 demonstrates some of these commands. The first command lists all

tables that have been created. Note that the system created three tables

(INTEGRTY, DOMCAT, and CATALOG) for its own use. The next command lists

information about the table, CARSALES, where the system response lists the

name of each column, the domain from which the entries for that column are

taken, and the data type of each column (either "CHAR" or "NUM"), The next

command lists information about domains,

3.1.4 Query Facility

Figure 7 illustrates queries to the tables that have been created.

All queries start with the word SELECT. The first two queries ask the

system to list the contents of the tables CARSALES and MILEAGE. The rest

of the queries contain a "WHERE" clause which allows the user to select

only data that meet certain requirements. Note that the SELECT command

may be used to specify queries that require data from more than one table.

The general form and syntax of the SELECT command is found in the "GMIS

Primer" [M.I.T. Energy Laboratory, 1975],

-20-

Command to list all tables
READY;

LIST OF TABLES

INTEGRTY DOMCAT CATALOG CARSALES MILEAGE

Response:
List of

tablcs

CADRDATA

Command to describe
table named CARSALES

DESCRIPTION OF TABLE CAFSAIES
NAME DOMAIN TYPE

1MODEL

DATE
SALES
MPG

MODEL
DATE
VOL
MPG

CHAR
NUM
NUM

NUM

READY-
.' tUst - - _

LIST OF DOMAINS: NA ME

RELNAME
CN AM E
COLN A ME

DOMN AM E

S! SC H AR
SYSNWU

DATE
MODEL
VOL
MPG
MAKE
MFPG

TYPE

CHAR
CHAR
CHAR

CH AR
CHAR
WUM
NTUM

CHAR
NUM
NUMl

CHAR
CHAR

Figure 6. Examples of Inquiries about Tables

-21-

Display all entries n
table named CARSALES

DATE SALES MPGMODEL

7401
7401
7401
7401
7401
74C1
7401
7401
7401
7401

VEGA
CHEV ROLET
CORVETTE
CHEV FLL.
CHEVY NOVA
SPORTV AN
MONTE CARLO
CAMARO
PONTIAC
GRAND PRIX

·. ,..
':.: ::''. :::, :::'"" :,:"::::::'. ~ ::': ~ ,*.:: '":::::::::::::: ::::;"::"'::$:i::::::'"::::::: ::':: ~:

YEAR MPGCITY

1975
1975
1975
1975
1975
1975
1975
1975

19
18
14
16
19
16
12
11

Figure 7. Sample Table Queries

33600
33108
2078

21175
21464

1370
15668

8787
10170
4042

30.2
12.4

15.4
17.9
18.7
15.2
14.9
17.9
138
103

MOD L MPGHWI

GRE LIN
HORNET
MATADOR
APOLLO
SKYHAWK
CENTU Y
LESABRE
ELECTRA

IPGAVG

210
203
159
179
213
188
135
125

24
24
19
21
25
24
16
15

::-12".W~~~~~~~~~~~~~~~~~~~~~~~~ "~~r··.·· r 'i~~~~~~~~~~~~~~~~~~~~~",. :jA-Mawat-01 ft- .00~~~~~

-22-

"-R, A '......... i .S.........
M il~Y~ssril~* ?::~ " : - ''

List all models where

average mileage is
between 20.0 and 30,0

MODEL BPGAVG

GREMLI N
HORN ET
SKYHAWK

MONZA
PINTO
dUSTANG
STARFIRE
VALIANT
ASTRE
MUSTANG
PI TO

210
203
213

222
209
209
213
200
222
247
280

READY ; .*::. 2.*. .

il
THE ESULT OF YOUR QUERY IS:

155

READY;
,:5iiii~i*~4e::y
tree £fe9

ii~5~iSii;* .,,- i -sf: , :wt. :·2~~~:~~~? "...
.N.

MODEL YFAR

VEGA 1974

Figure 7 (cont'd). Sample Table Queries

MPGAVG
_ ____

30.2

ss ,%WW,

.

AVG OF P

IS 15.5

-23-

3.2 Modeling and Analytic Functions

3.2.1. Validating Data. The data for this example indicator came

from many sources. Data in the table CARSALES came from "Ward's Auto-

mobile Reports" [Ward's, 1975]. The data in the table MILEAGE came from

two Environmental Protection Agency documents [EPA, 1974; EPA, 1975];

1974 data was found in the "1974 Gas Mileage Guide for New Car Buyers,"

and the 1975 data was from a similar document entitled "1975 Gas Mileage

Guide for New Car Buyers."

The data stored in the MILEAGE table was entered (using the bulk

loading facility) as it appeared in the 1974 and 1975 EPA documents.

However, inconsistencies resulted from two factors:

(1) Miles per gallon (mpg) for 1974 data was a single number averag-

ing city and highway driving, whereas data for 1975 was two num-

bers reflecting both city and highway driving.

(2) There was a 5% change in the method used by the EPA to determine

the mileage values from 1974 to 1975.

Let us demonstrate the interaction between a modeling facility and

the data base facility by normalizing the data to reflect the inconsistency

in (1) above, thus allowing fair comparison between 1974 and 1975 mpg data. We

perform the following three steps using the APL level: (The reader

should keep in mind Figure 1, depicting the relationship between the two

virtual machines, one running APL and the Transaction Virtual Machine).

(1) Extract data from the data base facility.

(2) Perform a correcting function on it.

(3) Insert the corrected data back into the data base facility.

-24-

Figure 8 exhibits the console session to perform the above three

tasks. Our strategy is to convert for each model the two 1975 numbers

(mpg in city driving, mpg on the highway) into one comparable to the one

1974 number.

(1) To extract the data (city mq, highway mpq for each model

for 1975) we use the QUERY command of Figure 8. The QUERY com-

mand is a function that has been added to APL to interface

between the two virtual machines. The APL QUERY function passes

the given SEQUEL command in quotes to the Transaction Virtual

Machine. The TVM then gets the data and passes it back to the

APL workspace and APL prints the names of the vectors passed

back, in this case MODEL, CITYMPG, and HWYMPG. The software

mechanisms for accomplishing this communication are transparent

to a user at the APL level. They are described later in Section 4.1.1.

(2) The following function was performed on city miles per gallon,

and highway miles per gallon to get one value that was consistent

with 1974 values.

Avg. MPG =
1

.45 + .55
HWYMPG CITYMPG

In Figure 8 function (1) was envoked by typing its name, 'CHANGE'.

For the reader's information we listed the APL implementation of

function (1), Note that the APL implementation not only performed

function (1), but it also created the necessary QUERY command to

insert the new data back into the data base.

(1)

-25-

RETURNED VECTORS
CONTAINING INFORMATION
.0 MILES PER GALLON .

FUNCTION "CHANGE"
ie r ~ TO CORRECT

AVG MPG DATA AND

VCI.AIIr ;A;P;C;P;r;

A1U -A S
As ' UPDA TF ' RSSv
C'*' W HERE !!OPDC, =
E'- AP) VF,'l = 19'
L4: :f+O. 45*l'1,:ry.Pj
m1i0O. 5 5 4C.T,'YPr r:

f!4-I #f
P*-vl!
P " " I (T RUPC !'ODI
QUFRY A,B,C,1,E

(prtPGA rVG) IL 4

INCREMENT COUNT
[AND GO BACK TO

STATEMENT [5][6
IUNTTl FTUTcurn

CREQUEST LISTING

OF APL
FUNCTION CHANG

!,'PA VC =

/CONCENTRATE FUIL UDPATE
SEQUEL COMMAND (COMMAS
PERFORM CONCATENTATION)
AND PASS QUERY TO SEQUEL
FOR INSERTION OF COR-
RECTED VALUES BACK_; .ONCE~fRATE FU):L UDPATE~I

vl·· · r··J"Li I?

Figure8: Example Cleaning of Data

II][23
(23

[63
[73
[8(
(93

t123
[3]

PL)~

-

-26-

The reader who is not familiar with APL can use the comments of the

listing. It is not necessary for readers of this paper to thoroughly

understand APL. For those who wish to do so, the references [Iverson, 1962;

Pakin, 1972] can be consulted.

A similar function was applied to correct the 5% difference in data

reporting of (b) above.

3.2.2 Reporting

A GMIS user has the full reporting capabilities of any of the modeling

or analytical facilities at his disposal. For example, a GMIS user can

employ the APL/EPLAN facility as a report generator and to produce plots.

To produce the indicator plotted in Figure 2, the following steps were

followed.

(1) Use the QUERY command to extract the desired data
an

(2) Execute/ APL function to calculate the average miles per gallon

of all cars sold during a given month from the data in the three

created tables using the following formula:

E Vol i x Mpg i

Average Mpg. All Cars =

Volj

(3) Convert the resulting vector into a time series.

(4) Use the EPLAN plot facility to produce the PLOT of Figure 2.

-27-

As was discussed in Section 3, this plot raises several questions.

Why did the average miles per gallon of all cars sold during the months

of the energy crisis go down? We had expected that it would go up because

people would have bought high mileage cars during a shortage of gasoline.

One possible explanation is that the wealthy were relatively

unaffected by the energy crisis and thus they continued to buy large,

luxurious, lower mileage cars. This may have resulted in a dispropor-

tionate smaller number of compact, low-mileage cars sold. Another

explanation might be that the car dealers, seeing an end to the popularity

of large cars, lowered prices on these models greatly, thus inducing a

larger than expected sale of these cars. Another is that foreign compacts

(which we did not include) encroached on the sale of American compacts.

In order to resolve these questions, it becomes necessary to access

the data in a different way than we had initially expected. A plot of

the sales of a luxury car (e.g., Cadillacs) and the sales of a compact

(e.g., Valiants) over the same period would indicate how the sales of

these groups behaved during that period.

Again, operating on the modeling level, the following three steps

are taken (the corresponding console session is shown in Figure 9).

(1) Extract the data using QUERY commands

(2) Convert the data from a vector to a time series using the

APL DF function1 , e.g.,

MA

(3) Use the EPLAN P L 0 T function to produce the desired plot,

In APL all function names, such as DF and PLOT, are underlined, as can be
seen in Fgiure 9. Since variable names cannot have spaces in them, under-
scores also are commonly used to clarify variable names, as has been done
with CADILLAC_SALES in the figure.

-28-

Activate .PLHc

S VEP 13:45:9 06/02/75 i Extract data on volume
of Cadillacs sold

VOLUM (Change data to tme
series for plotting

___ ..SAM:S- VOLa

VOLUME
Similar procedure

ror~t-wss~for Valiants

30 75 5 j2,' 'QCAILLACS,I;.LS,VAIA:I,'_ALZo"

5oooo000-

Plot Function

!
40000oooo- I

30000-1

20000-

10000-

I

O .- ------------------- .--- -------------------- ___---__-

I I I I I I I I I I I I I
o 2 4 6 8 10 12 14

Jan 75
A3SCIS3A Tl'.!!,. TAR?2I' .'?O:i 1741 1

o : f~nADLrIt,_C - Plotting Cadillai
r* . 'tlz.lrliTSAE L Valiant sales

...

Months

'c and

Figure 9. Using the Plotting Function for Reporting Data

#AL(-
0
-I

0,a 001
v

l or _o

-29-

Note that the plot has car sales on the vertical axis and months on

the horizontal axis. The 'o' denotes Cadillac sales, the '*' denotes

Valiant sales. Figure 9 reveals that the sales of Valiants showed a

definite downward trend starting from about the fifth month of 1974,

while the sale of Cadillacs remained relatively constant.

3.2.3 Modeling

In recent years increasing emphasis has been placed on the use

of models to aid in policy decision making. A model is roughly defined

as an incomplete representation of a system, where the purpose of the

model governs which elements of a model can be adjusted to simulate a

real world change in policy. The results of the simulation can then

be studied and compared with other simulated courses of action before

a final decision to effect change in the actual system is made.

Another useful feature of a model is that it serves as a facility

through which relationships between elements of a system can be explored.

We can illustrate this capability by performing a simple analysis of the

data already introduced in this example. Suppose one wanted

-30-

to investigate the mathematical relationship between average

miles per gallon of all cars sold in a month with that of all cars sold in

some previous month. A correlation matrix depicting the strength of the

relationship between average miles per gallon of all cars sold in a month

with that of the previous month, and with that of two and three months ago,

gives an insight into how a mathematical model of this relationship might

behave. The EPLAN C 0 R and L A G functions have been applied to the available,

data resulting in the correlation matrix show in Figure 1e.

MPGt

MPGt-1

MPGt-2

MPGt.3
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~i ;

MPGt MPGt_1 MPGt_2 MPGt_3

1

.62 1

-. 04 .54 1

-.09 .39 .88 1

Figure 10: Correlation Matrix

Inspection of Figure 10 reveals that one ought to expect that the

average miles per gallon of all cars sold in a month is somehow strongly

related to the average miles per gallon of all cars sold in the previous

month, but does not appear to be highly correlated with the figures from

two or three months ago (a correlation coefficient close to +1 is regarded

as an indication of a strong relationship between two variables, whereas

a value of 0 indicates a weak relationship). To explore this relationship

further, an ordinary least squares regression analysis is applied to the

two variables using the EPLAN R E G function (Figure 11). More precisely,

we seek an equation of the form:



-31-

AVG MPG of CARSSOLDt = o(+ o(,' AVG MPG of CARSSOLDt_1

The estimated values of the coefficients d0 and o/l from the table in

Figure 11 are 4.928 and 0.706, with standard errors of 3.2 and 0.2, res-

pectively. The fourth column of the figure depicts the T statistic for the

estimated values of 0 and 0(li

WITH:

COEL'/VALUE/ST ERR/T-STAT

1 4.92827 3.19856 1
2 0.70615 0.19011 3

0JO OF VARIABLES .........
NO0 OF OSEi?VATIOS ......
SS DU' TO RER, 'SSIO ....
SS DUE' TO i'SIDUALS.....
F-STA TISTIC ............
STANA.RD ERROR..........
R* 2 -STATISTIC ..........
R* 2 CORRECTED ........
DURB3I WA TSOH STATISTIC.
CARSSOLD+ ( 4.928

.54078

.71443

1.00000
13.00000
1. 2 9 4 1 3
1 03177

13 .79701
0.30626
0.55640
0.55640
1 .10338
T 1 ) 2 ( 0.706 (1 LA . CASSOL50))

Figure 11: Sample Regression

of
Based on the results/this initial exploration, more complex formulations

may be devised to help explain the behavior of the sales of different car

models over this period, and all would be constructed in the manner shown

in Figure 11. Moreover, once underlying behavioral relations had been

estimated, it might be desirable to build a simulation model to forecast



-32-

automobile fuel consumption in the future. Once again, all the programming

tools and higher-order simulation languages could be made

available through the system outlined in Figure 1, with access to all the

data and estimated relations produced in the course of the analysis.



-33-

4. DETAILS OF THE GMIS DESIGN

There are three basic features of the GMIS system that give it its

flexibility: (1) an overall system architecture making use of the

(largely untapped) power of VM, (2) construction of the system within a

hierarchical framework, and (3) the use of a relational representation

of data. Section 2 gave a brief introduction to these features, and

here we discuss the role of each in greater detail.

4.1 The Use of VM in the Software Architecture

Through the use of the VM concepts and the proposed architecture of Figure 1,

a number of the important features of GMIS become possible, or much

easier to implement:

(1) Multi-user coordination of access and update to a central data

base.

(2) An environment where several different modeling facilities can

access the same data base.

(3) An environment where several different and potentially incompati-

ble data management systems can all be accessed by the same user

models or facilities.

(4) Increased security and reliability [Donovan and Madnick, 1975].

VM also has disadvantages, the primary one one being the potential increase

in overhead costs associated with the synchronization and scheduling

of the VM system.



-34-

Figure 1 depicts a configuration of virtual machines operating on a

single real computer. At the present time PL/I, FORTRAN, EPLAN/APL, and

TSP are the only facilities interfaced with the data management system.

Work is under way to bring TROLL to this status. Some of these modules

operate under a different operating system but are made to run on the same

physical machine using VM/370. All the modeling or analytic virtual machines

may request data from the general data management system. In this section

we discuss the techniques we used to facilitate the communications between

these virtual machines, performance analysis, and proposed extensions

.to this architecture.

4.1.1 Communication between VM's

As part of the IBM/MIT Joint Study a multi-user interface on the data

base machine has been implemented [Gutentag, 1975]. This

interface allows several users (programs running on the VM's) to access the

single data base system. Note that for this section a distinction is made

between a human user and a "user" of the multi-user interface, which is

usually another program.

Essentially what is needed is a means of passing commands and data

to the data base machine, returning data, and a locking and queueing

mechanism. One way to pass data is to use virtual card readers and card

punchers. The data base virtual machine would be in wait state trying. -

to read a card from its virtual card reader, the analytical machine would

punch the commands on the virtual card reader that would be read by the data

base VM. This mechanism is inefficient, however, and does not allow flexi-

ble processing algorithms.



-35-

The mechanism implemented in GMIS is as follows (note that this

mechanism is invisible to a modeler when he envokes the APL/EPLAN level

command QUERY, as this command automatically envokes the mechanism), Each

user virtual machine (UVM), which is accessed by logging on to a separate

account ID under VM/370, sends transactions to the Transaction Virtual

Machine through a communications facility (described below). The Multi-

User Interface (MUI) stacks these transaction requests and processes them

one at a time. The results of each transaction are passed back to the

virtual machine that made the request through the same communications

facility. Replies to the transactions may be processed with any software

interface that is requi'red for the application. The APL/EPLAN interface

discussed earlier has been implemented in this manner.

The best way to explain how the MUI works is to follow a user's

virtual machine's transaction through each processing step. Refer to

Figure 12 for an illustration of the transaction processing scheme de-

scribed below. Each user virtual machine must have a small virtual mini-

disk attached to it that has been supplied with a multi-write password.

This password allows more than one virtual machine to link to the disk

with read/write privileges (otherwise, VM/370 only allows one user at a

time to link to a disk with writing privileges).

When a user's virtual machine wants to send a transaction to the data

base, it writes the transaction onto its multi-write disk in a CMS1 file

that is reserved for transactions (steps 1 and 2 of Figure 12). The user's

1 CMS [IBM, 1974] is an operating system commonly run under VM/370,

-



-36- O UVM SIGNALS TVM BY PUNCHING
A CARD SPOOLED TO TVM'S VIRTUAL
CARD READER

VIRTUAL VIRTUAL
CARD CARD

READ/PUNCH READ/PUNCH

TRANSACTION ENTERED © TVM READS CARD AND
FROM CONSOLE TO UVM GETS ID OUT OF THE

UVM AND REPLY FILE
FORMAT

USER TRANSACTION
VIRTUAL VIRTUAL

CONSOLE MACHINE

(UVM) / (TVM

/ 

(2) UVM WRITES THE / TVM LINKS TO
TRANSACTION TO / UVM'S TRANSACTION
A FILE ON ITS/ DISK AND READS
TRANSACTION /MII-DISK FO / TRANSACTION GMIS
FILE TRANSACTION i// FILE DATA

AND REPLY BASE
FILES

Figure 12a. Sending a Transaction Request

VIRTUAL
CARD

READ/PUNCH

_LI
UVM

UVM READS REPLY
FILE, FORMATS
OUTPUT, RETURNS
TO USER

TVM SIGNALS UVM THAT TRANSACTION
HAS BEEN PROCESSED BY PUNCHING
CARD AS IN STEP (3) ,__.

I

/

/
/ �1

/
/ (D

/ RESULT WR
TO UVM RE

FILE BY TVM

RA1SACTIO /
MINI-DISK

VIRTUAL
CARD
READ/PUNCH1

TVM

.L ®
TRANSACTION
PROCESSED BY

ITTEN TVM USING
PLY SEQUEL

GMIS
DATA
BASE

Figure 12b. Returning Data

CONSOLE 

0

, _

--I 

1

i

I



-37-

virtual machine must then signal to the MUI that it wants its transaction

to be processed. This is done by directing the VM/370 Control Program (CP)

to send all output from the user's virtual card punch to the virtual card

reader of the Transaction Virtual Machine (TVM). The user's virtual machine

then punches a single virtual card containing two items of information:

the ID of his virtual machine, and a code indicating the type of file

format that the MUI must use when passing the transaction reply back to

the user virtual machine (step 3).

Each card punched by a user is actually a request to the MUI to

process a transaction residing in the user's transaction file. These

cards are stacked in the card reader of the TVM, and are processed one at

a time, where the first card stacked is the first to be processed (FIFO)

(step 4).

The MUI is always running in a wait state or processing transactions.

When a card is received by the TVM's virtual card reader, an interrupt is

generated that activates the MUI to begin reading from its card reader.

To read the user's transaction, the MUI must first access the user's

transaction file. This is done by first linking to the multi-write disk

of the virtual machine given by the ID on the transaction request card.

(The multi-write disk is always attached at the same virtual address; in

the current implementation, disk address 340 is used for all transaction

files.) The disk is then accessed by the MUI, and its SEQSTAT SEQUEL

file is read (step 5). It should be noted that the SEQUEL software level

provides a file reading capability,



-38-

After the transaction has been processed by SEQUEL in the usual

manner (step 6), the MUI writes this reply on the user's multi-write disk

in a file called SEQUEL REPLY (step 7). One of several file formats may

be used, depending on the user's software environment. Three general

formats have been proposed that will satisfy all currently anticipated

GMIS requirements. One format is to be read by APL programs, another

format will be compatible with TROLL files, and a third format will be

compatible with any language that can process sequential CMS files (e,g.,

PL/I, FORTRAN). The user's transaction request card indicates which file

format is to be used by the MUI.

The TVM then punches a virtual card to the UVM to signal completion

of transaction processing (step 8), Finally, the UVM reads its SEQUEL REPLY

file, and processes the transaction result in its own environment (step 9).

4.1.2 Extensions of Architecture

The following three extensions to the architecture of Figure 1 merit

further investigation.

Incompatible Data Systems. Figure 13 depicts an extension of the

architecture that would allow different and perhaps incompatible data

base systems to be accessed by the modeling facilities. The general data

base system would act as a catalog for data stored in the decentralized

system. The data management virtual machine acts as an interface,

analyzing the data query and funneling it to the appropriate data base

management system. These mechanisms could be made invisible to the user,

who can use the system as though he had all the data in one "virtual"

data base. The implication of this extension on synchronization, data

updating, and performance must be further researched.



-39-

User 1 User 2 User 3

/r

data base management machines

Figure 13: External Architecture

Modeli

C 

e 

6@

)



-40-

Ctfrandardi7atinn nf data hacp vctpmc_ Tt mav hp iICfill tn nlara

user interfaces that are syntactically and semantically equivalent to existing

data management systems (e.g., IMS, TOTAL) above the general data base

system of Figure 1. This would allow data to be inputted and validated in

a data system with which a user is familiar, and then stored in a stan-

dardized general data base system.

Decentralized/centralized data bases. The advantages of decentra-

lized data bases are that they are usually maintained by the people that

are using them. The advantage of a centralized data base is that many

groups of people can access it. The above architecture may be extended

to interface not only with data base and modeling systems running in
but to other remote computers

other virtual machines,/including non-IBM equipment. The implication of

this extension on data updating and networking problems must be investi-

qated with further research.

I

I

I
i



-41-

4.1.3 Degradation of Variable Cost with Multiple VM Oeration

The construction of a system of communicating VM's brings great

advantages, but these come at the expense of some sacrifice in performance.

Various performance studies of VM's are available in the literature

[Hatfield, 1972, Goldberg, 1974], and we are engaged in a theoretical

and empirical analysis of the degradation of variable cost performance

as a function of the number of modeling machines [Donovan, 1975]. The

direction of this work can be seen by considering a configuration as in

Figure 1, where several modeling facilities, each running on a separate

virtual machine, are accessing and updating a data base that is managed by

a data base management system running on its separate virtual machine. What

is the degradation of performance with each additional user? What

determines the length of time the data-base machine takes to process a

request? What is the best locking strategy?

An access or update to the data-base machine may be initiated either

by a user query, which would be passed on by- the modeling machine, or by

a model executing on the modeling machine. In either case, the data-base

machine while processing a request locks out (queues) all other requests.

The analysis is further complicated by the fact that as some VM's become

locked, then others get more of the real CPU's time, and therefore

generate requests faster. However, the data-base VM gets more of

Here we are addressing the issue of variable costs. Later in Section 5.2
we address the more important issue, fixed costs, for applications like
those addressed by the GMIS system.



-42-

the CPU's time thereby processing requests faster. For example, if there

are ten virtual machines, each one receives one-tenth of the real CPU.

However, if seven of the ten are in a locked state, then the remaining

three receive one-third of the CPU. Thus, these three run (in real time)

faster than they did when ten were running.

To try to analyze this circumstance for the uses outlined in this

paper, we have assumed that the virtual speeds of VM's are constant and

equal. However, when some VM's (including the data-base VM) are allo-

cated a larger share of CPU processing power, they become faster in real

time. We assume that each unblocked VM receives the same amount of

CPU processing power and at the initial state m machines are running

(i.e., the data base machine is stopped if no modeling machines are

making requests). 'X's the request rate of each modeling VM when there are

m VM's running. 'Y ' is th-aerylce ratAat Awhch the date base vtrtusl

machine s running when there are m-l modeling VM and one data base VM

running. Thus, we may write the relations:

= mi (i = 1, 2, ...,m)

m Am A (1 1 , 2, ... e)
A i

m-i+l



-43-

where i is the number of modeling VM's being blocked. Using a birth/death

process model [Drake, 1967], and using a queueing analysis [Little, 1961],

we get the following for the response time of the model: where Pi is the

steady state probability that there are i modeling machines waiting, and

'N' is the number of modeling machines.

m-1

T model ' " o

\ Et
JU

T overhead
= constant

T wait-for-data
= N 

m
£ iPi

i=1

m
E i.P.

i=1 1 *

T total T overhead + T model + T wait-for-data

Figure 14 illustrates the total time to execute three different models

as a function of the number of modeling VW's. Let us consider some of the

implications of the above analysis.

m
i m

Pi m Xj A



-44-

X = speed of model

p = speed of TRANSACT

.--. /' /
* ~~//

/ 
,., /.-

-,' A/=1.

-I XvI 

T'total

/V
/

5

Ir I

10
a -15

15

Number of Modelling Machines or VMs

Figure 14. Total Elapsed Times for a VM Configuration

Y

T' total

100.0

50.0

0

--

- _ _ _ _ _ ___

i



-45-

First, for a A/ = .1, a model executing in a configuration of one modeling

machine takes 110 units of time to execute. When the same model, run in

an environment of 10 modeling machines all executing similar models, takes

approximately 135 units of time to execute -- a degradation of performance

of slightly more than 15 percent. Intuitively, X denotes the speed of the

modeling machine, and 1i is the speed of the data base machine. Thus a

situation where A/ = .1 indicates that the data base machine is ten times

faster than the modeling machine, From the same figure with ratio of X/1 = 1,

a model executing with a configuration of one modeling machine takes 20 units

of time where with ten machines the same model takes approximately 90 units

of time -- over four times longer.

If such a degradation of performance is not tollerable, there are

several ways to improve performance. The theoretical study would indicate

that increasing for a given configuration helps performance. Practically

this could be done by changing the processor scheduling algoirthm of VM

so that the real processor was assigned to the data base management VM

more often, thus speeding it up and increasing .

Observing the equation for Ttota above, another way of reducing

total is to reduce wait'for data One way to reduce T'waitfor data

is to extend the VM architecture of Figure 1 to allow multiple data base

machines. In this configuration T'wait for data could be reduced by locking

out all data base machines only when one modeling machine is doing a write.

For all read requests the multiple data base machines would operate without

locking. Shared locks between machines would have to be created as well

as a mechanism for keeping a write request pending until all data base

machines can be locked.



-46-

A way of improving performance further would be to extend the single

locking mechanism used in the above multi data base machine configuration

to handle multiple locks. Locks would be associated with groupings of

data, e.g., a table. The locking policy would be to have all machines only

locked out of a portion of the data when one machine was writing into that

portion. Thus requests could be processed simultaneously for reads into

tables not being written in and for reads to different tables. Thus

adding another real processor to the multiple lock VM configuration could

greatly improve performance.

There is a trade off with the multilocking scheme between increases

in overhead time in maintaining multiple locks versus increases in wait

time for locked data bases. We have not yet extended the theoretical

analysis to quantify this trade off.

Other theoretical extensions and analyses of this synchronization

model would include extending the model to cover a more common VM operating

circumstance -- namely, that where the GMIS system (multiple modeling

machines and one data base machine) would have to share the physical

machine with other users, also executing under VM, e.g., a payroll program

under VS2 under VM, multiple CMS users, etc.

In conclusion, we observe that there may be a degradation in per-

formance with multiple users but that there are mechanisms for ameliorating

the effects of this degradation.

4.2 Hierarchical Approach

We have used the design and implementation techniques of hierarchical

decomposition extensively in our implementation. The hierarchical approach



-47-

has been used in operating systems [Dijkstra, 1968; Madnick and Donovan, 1974]

and in file system design [Madnick, 1970], The essential idea of this

approach is to decompose a system into functional levels. Interfaces of

each level consist of a series of operators. Each level can only call

levels below it.

The levels we are using for the GMIS system are the following:

- a modeling level

- a data definition and data manipulation language level

- a relational level (operators)

- a file system

- the operating system

Further decompositions of the file system level and operating system

level are outlined in [Donovan and Jacoby, 1975] and of the relational

level in [Madnick, 1975].

The key advantage of this approach is that it reduces complexity

by decomposing the problem into a series of manageable sub-problems. As a

consequence of this reduction in complexity, the time to implement an

entire system is greatly reduced. Another advantage is that the efficiency

of the system can be increased. These improvements in efficiency come

from the fact that a system so constructed can be analyzed and tuned for

performance because each level can be thoroughly understood and analyzed.

For example, as new software algorithms are invented, their place in

the hierarchy can be identified and then can be easily incorporated without

redesigning the entire system. As new hardware technologies become opera-

tional, their relevance to information systems can be assessed within the



-48-

the framework of the hierarchy, and incorporated where applicable.

Given inherent parallelism in information systems, the hierarchical

approach also can capitalize on new technologies to increase the performance,

reliability, and integrity of information systems. An example of such a

technological development is the advent of low-cost microprocessors, These

devices (which are the "computers" used in hand calculators) are becoming

less expensive each year and have the computational capability of many

standard computers, e.g., arithmetic and logical operations, memory, and

registers. To capitalize on this new technology, each level of the hierarchy

could be examined for operators that could be executed asynchronously with

each other. These operators, as well as the control logic and synchroniza-

tion mechanisms, could be performed by multiple microprocessors,

Figure 15 depicts an example of such a hierarchical decomposition

using microprocessors where the vertical stacks of boxes denote requests

in the form of operators, and each group of horizontal boxes denotes

microprocessors to perform the desired operation. At the top of Figure 15

a list of queries enters the system (e.g., the SELECT commands of Figure 7).

The microprocessor of level i+2 performs the necessary syntactical analysis

and translation to produce a list of relational operators (operators on

tables will be discussed in the next section). This list of functions com-

posed of relational operators are processed by the microprocessors at level

i+l. They in turn generate a number of requests to read tables stored in the

main or secondary memory. Level i receives those requests and generates

the appropriate operating system functions to fulfill the request. The

last group of microprocessors performs the desired operating system func-



-49-

e.g., list
of queries

. . . Level

L�I2�
relational functions

] . . Level i+l
I,, ~ ~ il · · i

. Level i
* ~~~~~~~~I.

operating
system -iEE Processor!

] X . Level i-

Figure 15.

i+2 (e.g., query
language
Drocessor)

(e.g., relational
operators)

(e.g., file system
operators)

1 (e.g., operators
of an operating
system)

Hierarchical Function Decomposition Using
a Microprocessor Complex

!~~ X 
I



-50-

tions and passes back the results to level i. The results are used by

level i to produce its results, and then passed up to level i+l until the

top level gets all the information to satisfy the query.

One of the properties of implementation using hierarchical function

decomposition is that all processors are anonymous and act as interchange-

able resources (within a function level). Thus, if a processor malfunc-

tions or must be removed from service, the system can continue to function

without interruption. After a reasonable amount of time has elapsed,

the higher level processors that had generated requests that were being

performed by the defective processor merely need to reissue the same

requests. Alternatively, the reissuing of requests could be accomplished

automatically by the inter-level request query mechanism.

Although the details are not elaborated in this paper, it can be

argued that extensive parallelism, throughput, and reliability can be

attained by means of a multiple processor implementation of the hierarhical

function decompostion.

4.3 Relational Technology

This section presents an intuitive understanding of relational

operators, of the approach, and its usefulness to information systems of

the type we address in this paper.

The language that a user would use to query, insert, and update data

is called a Data Manipulation Language (DML). The language used to define

tables, domains, and charactersitics of the data is called a Data Definition

Language (DDL). The user of GMIS can view all data stored in the system

in the simple form of a table (relation), as in Figure 3, This view of

data is called the relational model of data [Codd, 1970].



-51-

If one were to view data as being stored in tables, then the process

of querying the data could be broken down into two functional levels. The

first is composed of mechanisms to recognize the constructs of the query

(e.g., a SELECT command), which takes place at level i+2 in Figure 15, and

the second where the appropriate operations are performed on the tables to

satisfy the SELECT command (level i+l in Figure 15).

Part of our research has been to determine the "appropriate" operations

of level i+l needed to query, update, and define data. In an early imple-

mentation of GMIS we implemented twelve operators [Smith, 1975]. These

operators included those of Codd [Codd, 1970] (in some cases modified for

use or performance reasons) as well as three additional operators, compaction,

difference, and ordering.

4.3.1 Advantages of the Relational Approach

A very attractive aspect of the relational approach is its clear,

well-defined interface that fits into the hierarchical approach and hence

permits the attainment of all the benefits of the previous section, A

distinction should be made (which is not often made in the literature)

between the DDL/DML level and the relational operator level. As we shall

see, the relational model of data allows us to implement an interactive

DDL/DML easily. We recognize that other data models (e.g., network,

hierarchicall, or tree structures) could also be used at alower level to implement

the same DDL/DML, only not in as satisfactory a manner, and with a certain

loss of capabilities.

Our experience in using a relational base data management system is

that there is a real comparative advantage for its use in systems where

the logical data structure keeps changing. Its advantage is the low cost

Note the term hierarchical here refers to a tree structure, which is different
from the "hierarchical" approach.



-52-

of adapting to changing data structures and further, in its use in GMIS,

in not having to redo all existing modeling programs, It has a comparative

advantage for implementing an interactive DDL/DML. Its comparative advan-

tage,in applications where the types of queries are not all defined before

implementation,lies in the inherent property of allowing selective access

to any data in the data base. As we will discuss at the end of this

section, we recognize the present limitations of the relational approach

and do not necessarily advocate it for all data management applications.

4.3.2 Basics of Relational Operators

Let us take an example and demonstrate two relational operators,

"restriction" and "projection". Assume that data exists as in Figure 3

and a query is made, "SELECT the model of car that receives 30.2 miles per

gallon". The query processor (level i+2 of Figure 15) would translate this

query into a series of operators on the table CARSALES. Basically, once

the query is recognized there are two operations that could give the de-

sired information: (1) find all entries that have mph equal to 30,2;

(2) list the models in those entires.

Figure 16 demonstrates these two operations on the table. All rela-

tional operations create new relations. The first operator used is

called "restriction", whose function can be intuitively defined as,

"produce a relation containing all elements of a table that match par-

ticular restricting conditions." Thus, restricting the relation at the

top of Figure 16 by the condition MPG = 30.2 produces the relation con-

taining the single tuple:

vega, 1/74, 37600, 30.2



-54-

MODEL YEAR VOLUME MPG

CADILLAC I/ 74 9,94 8 10.9

VEGA 1/74 33,600 30.2

PINTO 1/74 35,531 28.0

PONTIAC 1/74 10,170 13.8

RESTRICTED BY (MPG 30.2)

VEGA 1 1/74 1 33,600 1 30.2

PROJECTE

i1

I VEGA

) (MODEL)

1

FIGURE 16

RESTRICTION AND PROJECTION OPERATORS

I nl I



-55-

There have been several experimental implementations of the relational

view of data. For example, ISG [Smith, 1974], MACAIMS [Goldstein, Strnad,

1971], SEQUEL [Chamberlain, 1974], Colard [Bracchi, 1972], RIL [Fehder,

1972]. In GMIS we are using an extended version of SEQUEL discussed in

Section 2.1.

Our experience leads to several conclusions: From a user view the

primary advantage of SEQUEL and other relational systems is that they can

be interactive, and have a simple, consistent way of viewing data, From an

implementor's view the relational implementaion of SEQUEL fits into a

hierarchical approach, the operations are consistent, and it provides a

framework in which to examine performance. We recognize the present

limitations of the experimental SEQUEL for real applications. We list

some of those here (not as a criticism of the implementors of SEQUEL, for

their purpose was to demonstrate feasibility not an operational system)

to guard against the danger that our enthusiasm for this approach will

lead to an overoptimistic picture of SEQUEL.1

1 Some of the extensions we have had to incorporate in order to make SEQUEL
more operational for our applications are the following: (1) Added a
facility for multi-user to access the same data base, (2) Added inter-
faces so that users can use a variety of terminals, (3) Modified SEQUEL
to accept the unary + and - operators as prefixes to numeric literals,
and to handle DECIMAL constants, (4) Extended SEQUEL implementation re-
strictions on maximum degree of a table, maximum length of an identifier,
and maximum size of a character string constant, (5) Re-wrote output
formats for generality, (6) Implemented a macroprocessor capability that
allows users to write prepackaged series of queries, (7) Made changes to
increase performance, (8) Added the capability to interface modeling and
analytic facilities, (9) Enhanced the bulk loading facility, (10) Designed
mechanisms for haF*ing null or missing data, (11) Designed backup
facilities, (12) Designed security mechanisms, (13) Designed additional
SEQUEL operators (e.g., GROUP BY). The documentation of these changes
as well as others is found in a NEEMIS Progress Report [M.I.T. Energy
Laboratory, 1975].



-56-

We feel that an operational relational data management facility needs

to be implemented and incorporated into a system that has analytical capa-

bilities. We strongly believe that such a development must be done in close

cooperation with real applications. Further, we feel that those applica-

tions should be chosen in areas where this technology has a clear advan-

tage, that is, for systems where the problems keep changing Ce,g., public

policy systems) or where the system is not well-defined e.g., breadboarding

systems), and not to application areas that are currently being satis-

factorily met by other approaches.



-57-

5. FURTHER RESEARCH

There are several types of research that need to be pursued so that

these tools can be made available at reasonable cost, and so they can be

used in the most effective manner. Some of that further research has

been discussed in the last section.

5.1 Computer and Management Science Research

Optimal Hierarchical Decomposition. To gain insights as to what would

be the best hierarchical decomposition, research should be undertaken to

define measures that would allow the construction of proofs that a par-

ticular decomposition of a hierarchy is optimal.

Performance. Each level of the hierarchy needs both a theoretical

study and an empirical study. At each level the impact of new operators

should be investigated, along with formalizations for equivalence between

sets of these operators and performance implications of new operators.

Mechanisms for reducing expressions to equivalent but more efficient expres-

sions should be explored. For example, at the DDL and DML, level algorithms that

heuristically take advantage of certain query patterns to make subsequent

queries more efficient must be studied. At the relational level ways

of simulating certain relational operations when the full operator is not

called for must be investigated. Theoretical bounds on computation of

relational operations as function of a size of tables must be developed.

Virtual Machines. On the VM interface level there is need for

investigation of efficient ways VM's can communicate with each other.

On the VM level more knowledgeable processor schedulers need to be developed.

And, as was discussed in Section 4.1, work must be done on synchronization

and locking policies of multiple VM configurations.



-58-

New Technologies. Investigation of the implications of the new

technologies (e.g., memory, networks, and microprocessors) on each level

in the hierarchy is called for.

Query Languages. On the DML level in addition to the extensions

we have made to the SEQUEL language eg,, multiuser interface, security,

additional computational capability, handling larger relations, larger

number of entries), new query language constructs ought to be investigated.

Realistic and operational implementations of a relational query language

should be undertaken.

Syncronization and Interlocks. Various interlock mechanisms must be

used in an information system to coordinate various independent update

operations. It is necessary to develop interlock techniques and policies

that lend themselves to a highly decentralized implementation without

adversely affecting performance or reliability. For example, under what

condition and for how long are the modeling machines locked out of the data

base machine? Is the data base machine just a catalogue for data stored

in the decentralized data base machines? If so, what are the performance

implications of always accessing data stored in a remote machine? Or is

the accessed data brought up to the data base or modeling machine in which

case what are the updating policies? What sort of hardware can best

support the proposed hierarchical structure and system structure?

5.2 Studies of the Economics of Information System Design

Traditional measures of performance (e.g., throughput, system utili-

zation, response time, turnaround time, etc.) are potentially misleading

and may be irrelevant for the class of information systems addressed here.



-59-

These measures address themselves only to the variable costs of an infor-

mation system. In the development of an information system there are

fixed costs (analysis cost, design cost, implementation cost of the soft-

ware, as well as the hardware costs) as well as variable costs (costs of

queries, execution of models and analytical functions). Much more research

is needed on the overall costs of information systems, on more general

concepts of "performance," and on the types of studies that should be

done in choosing a software system appropriate to the particular task at

hand.

To illustrate the point, take the simple example of the design of an

inventory control system for a large manufacturer on the one hand, and

a system of roughly the same character and complexity to serve as federal

energy policy on the other. The costs of developing such systems using

different sets of software tools are illustrated in Figure 17. The

solid lines show the fixed and variable costs of constructing either

of these two systems using a conventional package, say IMS. The dashed

line shows the cost of the same systems with tools such as those provided

by GMIS. For the more flexible GMIS-type system the fixed costs (and

thus the time to build the system) are much lower, but this advantage

comes at the expense of increased variable costs.

Provided the purposes for the two systems are well known and the

operating assumptions are fixed, the two systems break even at Point A.

It is likely that hardware will eventually be developed to support this
sort of system, and variable costs will be substantially reduced [Madnick,
1975].



-60-

System constructed with conventional information management

tools.

- - - - - - - - System constructed with GMIS-type tools.

A
$

!I

I
/ .- Fixed + Variable Cost

I

Fixed cost

# of queries

Figure 17

Fixed costs versus variable costs.

a I

/' I

I

I

I

A.

Iv

-

I· I _

'- ---·-- - --- -- - - ---- 

L . - -

I

I

t

i



-61-

If the application anticipates a large volume of queries as the inven-

tory example might, then the conventional approach is preferred,1

Of course, to the extent that information system purposes and operating

conditions change over time, the fixed costs of each system are multiplied

by some factor -- a condition which greatly favors the types of tools dis-

cussed above.

The economics of these choices are poorly understood, and the develop-

ment of better indices of system "performance" is a high priority item in

information systems research, When these comprehensive indices of per-

formance are developed, however, we expect that systems like GMIS will

receive high marks for a wide variety of applications. Already the system

is proving its worth in application to New England energy problems, and to

several areas of policy research in the M.I.T. Energy Laboratory, We hope

for continued progress on the issues and problems that remain, and look

forward to a new generation of information management and analysis systems

that are better suited to the fast-moving pace of many corporate and public

problems.

1 A GMIS-type system may still be a useful tool (as a breadboarding system)

in the optimization of the design of the data management facility, even

with the implementation to be carried out with some other package,



-62-

REFERENCES

Association for Computing Machinery, "DBTG CODASYL," New York, 1971.

Bracchi, G. et. al.: "A Language for a Relational Data Base Management
System," Proceedings of 5th Princeton Conference on Information
Science, 1972.

Buzen, J. P., P. Chen, and R. P. Goldberg: "Virtual Machine Techniques
for Improving System Reliability," Proceedings of the ACM Workshop
on Virtual Computer Systems, March 26-27, 1973.

Chamberlain, D. D. and R. F. Boyce: "SEQUEL: A Structured English
Query Language," Proceedings of 1974 ACM/SIGFIDET Workshop, 1974,

Cincom Systems, Inc.: TOTAL Reference Manual, Edition 2, Version II,
Cincinnatti, Ohio, 1974.

Codd, E. F.: "A Relational Model of Data for Large Shared Data Banks,"
Communications of the ACM, vol. 13, no. 6, June 1970, pp. 377-387.

Dijkstra, E.: "T.H.E. Multiprogramming System," Communications of the ACM,
May 1968.

Donovan, J. J.: Systems Programming, McGraw-Hill, New York, 1972.

Donovan, J. J.: "Use of Virtual Machines in Infomration Systems,"
Report CISR-10, M.I.T. Sloan School of Management Working Paper No,
790-75, May 1975.

Donovan, J. J. and H. D. Jacoby: "A Hierarchical Approach to Information
System Design," Report CISR-5, M.I.T. Sloan School of Management.
Working Paper No. 762-75, January 1975,

Donovan, J. J. and S. E. Madnick: "Application and Analysis of the Virtual
Machine Approach to Computer System Security and Reliability," IBM Systems
Journal, May 1975.

Drake, A. W.: Fundamentals of Applied Probability Theory, McGraw-Hill,
New York, 1967.

Dynamics Association: XSIM User's Guide, Cambridge, Mass,, 1974.

Environmental Protection Agency, 1975 Gas Mileage Guide for New Car Buyers,
2nd Edition, Washington, D. C., January 1975.

Environmental Protection Agency, 1974 Gas Mileage Guide for New Car Buyers,
Washington, D. C., January 1974.

Fehder, P. C.: "The Representation of Indepndent Language," IBM Technical
Report RJ1121, November 1972.



-63-

Goldberg, R. P.: Architecture of Virtual Machines," Proceedings 1973
AFIPS National Computer Conference, vol. 42, pp. 309-318, 1973,

Goldberg, R. P.: "Survey of Virtual Machine Research," Computer, vol, 7,
no. 6, June 1974, pp, 34-35.

Goldstein, I. and A. Strnad; "The MACAIMS Data Management System,"
M.I.T. Project MAC TM-24, April 1971.

Gutentag, L. M.: "GMIS: Generalized Management Information System --
an Implementation Description," M,S. Thesis, M.I.T. Sloan School of
Management, June 1975.

Hall R.: "TSP Manual," Harvard Technical Report No. 12, Harvard Institute
of Economic Research, Cambridge, Mass,, April 1975.

Hatfield, D. J.: "Experiments on Page Size Program Access Patterns,
and Virtual Memory Performance," IBM Journal of Research and Develop-
ment, vol. 16, no. 1, pp. 58-66, January 1972.

IBM: "IBM Virtual Machine Facility/370: Introduction," Form Number GC20-1800,
White Plains, New York, July 1972.

IBM: "IBM Command Language Guide for General Users," order no. GC20-1804-2,
White Plains, New York, 1974.

IBM: "IMS,"Form Number H20-0524-1," White Plains, New York, 1968,

IBM: "APL Econometric Planning Language," Form Number SH20-1620, Armonk,
New York, (Product # 5796PDW), 1975.

Iverson, K. E.: A Programming Language, John Wiley & Sons, 1962.

Little, J. D. C.: "A Proof of the Queueing Formula: L = Aw," Operations
Research 9, 1961, pp. 383-387.

Madnick, S. E.: "Design Strategies for File Systems," M.I.T, Project
MAC TR-78, October 1970.

Madnick, S. E.: "INFOPLEX -- Hierarchical Decomposition of a Large
Information Management System Using a Microprocessor Complex,"
Proceedings of 1975 AFIPS National Computer Conference, 1975.

Madnick, S. E.: "Time-Sharing Systems: Virtual Machine Concept vs.
Conventional Approach," Modern Data 2, 3, March 1969, pp. 34-36.

Madnick, S. E. and J. J. Donovan: Operating Systems, McGraw-Hill,
New York, 1974.

M.I.T. Energy Laboratory "Energy Indicators," Final Working Paper
submitted to the F.E.A. in connection with a study of Information
Systems to Provide Leading Indicators of Energy Sufficiency, Working
Paper No. MIT-EL-75-004WP, June 1975.



-64-

M.I.T. Energy Laboratory, "GMIS Primer," Working Paper No. MIT-EL-75-012,
September, 1975.

M.I.T. Energy Laboratory, "Progress Report on NEEMIS Task Order No. 4,"
Working Paper No. MIT-EL-75- , September 1975.

Morrison, J. E.: "User Program Performance in Virtual Storage Systems,"
IBM Systems Journal, vol. 12, no. 3, 1973, pp. 34-36.

MRI Systems: "System 2000 Reference Manual," Austin, Texas, 1974.

National Bureau of Economic Research: TROLL Reference Manual, Technology
Square, Cambridge, Mass., 1974.

Pakin, S.: "APL/360 Reference Manual," Science Research Associates,
Chicago, 1972.

Parmelee, R. P., T. I. Peterson, C. C. Sullivan, and D. S. Hatfield:
"Virtual Storage and Virtual Machine Concepts," IBM Systems Journal,
vol. 11, no. 2, 1972, pp. 99-130.

Popek, G. J. and C. Kline: "Verifiable Secure Operating Systems
Software," Proceedings of 1975 AFIPS National Computer Conference, 1975.

Schober, F.: "EPLAN -- An APL-Based Language for Econometric Modeling
and Forecasting," IBM Philadelphia Scientific Center, 1974,

Smith, G. M.: "Internal Intermediate Langauge, Version 2," MI,T,
Sloan School of Management, Management Science Group, November 1974,

Satty, T. C.: Elements of Queueing Theory, McGraw-Hill, New York, 1961,

WARD's Communications, Inc.: WARD's 1975 Automotive Yearbook, 37th Edition,
Detroit, Michigan, 1975.


