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Abstract

This thesis describes a 3D computer graphic animation system for use by
traditional character animators. Existing computer animation systems hinder
expression; they require the artist to manipulate rigid 3D models within complex
object hierarchies. A system has been developed that gives animators a familiar
means of specifying motion--the 2D thumbnail sketch. Using a simple
"flipbook" analogy, the user can quickly rough out a character's motion with
hand-drawn stick-figures. Information from the thumbnail sketches is
transferred to the user's 3D model by interactively positioning the model's 2D
projection. By calculating the amount of foreshortening on hand-drawn limbs,
the system is able to determine joint angles for the 3D figure. Automatic
inbetweens are created by interpolating along splines passed through the
model's joint nodes. The resulting 3D motion can be further edited from any
camera angle. By preserving the initial, most spontaneous stage of traditional
animation, this system enables users to produce more lifelike motion than is
possible with standard keyframing systems.
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1. Introduction

In its brief history computer animation has become a powerful form of film-mak-

ing. During the last ten years, it has brought about a revolution in the fields of

scientific visualization, medical imaging, and film special effects. A new class of

television advertising, the "flying logo", has developed around the slick imagery

characteristic of computer graphics. However, computer animation as a form of

popular entertainment is still something of a novelty. Too many computer

animated short films rely on flashy visuals to hide weak or nonexistent

storylines; they substitute chrome-plating and fancy texture-mapping for

personality and wit. Ironically, these qualities epitomize the computer-animated

short's predecessor, the traditional hand-drawn cartoon. The enduring

popularity of classic Disney and Warner Brothers cartoons testifies to the value

of character, plot, and pacing in a short film. Why has computer animation failed

to inherit these standards?

Perhaps the problem with computer animation stems not from ignorance of good

film-making practice, but from difficulties in working with the medium itself.

Computer animation systems are notoriously hard to use; they make the creation

of lifelike 3D characters nearly impossible. For example, positioning the hands

and feet of a jointed 3D figure can require the trial-and-error setting of up to



thirty-six joint angles. It's no wonder that classically trained character animators

avoid computer animation systems. In the time it takes a computer user to set up

a single 3D character pose, most animators can sketch out an entire motion

sequence. Of course, 3D models do have some inherent advantages over hand

drawings--once posed, models can be viewed from any camera angle. In

addition, the computer can automatically interpolate between poses, reducing

the amount of work for the animator. However, these advantages have not won

computer animation much support from traditional animators. The systems

remain too hard to use. The eighty year history of character animation has

provided these artists with a reliable means of self-expression, using a medium

they know and love-old fashioned pencil and paper. They are not about to

abandon that means in favor of object hierarchies and joint angles. As a result,

the only people willing to work with computer animation systems are

programmers and computer artists-people with little knowledge of the timing,

story, and character development that makes traditional animation so

interesting.

The appeal of high-tech photorealism is wearing thin; audiences grew weary of

flying logos soon after they appeared on television. With the success of Who

Framed Roger Rabbit and The Little Mermaid, traditional animation is enjoying a

second renaissance. If computer animation is to survive, it can no longer rely

solely on its novelty. In order to produce films with story, style and personality,

computer animators need tools that encourage improvisation and

experimentation rather than prevent it. What's more, they need a system that

will allow them to employ the basic principles of frame-by-frame character

motion. Eighty years of accumulated knowledge is too valuable to ignore; if the

computer can't learn those principles, then perhaps it can at least serve as a tool

for those who already know them.

This thesis demonstrates that traditional animation techniques can be used to

control the motion of 3D figures. A system has been developed which employs



the initial, most improvisational stage of character animation--the thumbnail

sketch sequence. Using a simple "flipbook" analogy, the user can quickly rough

out a character's motion as a series of stick-figures. Viewed in rapid succession,

these stick-figures approximate the 3D character's motion as seen from one

camera angle. The hand-drawn figures therefore serve as makeshift 2D

projections of the user's 3D model. Information from the thumbnail sketches is

transferred to the 3D model by interactively positioning the model's true 2D

projection over the sketches. Assuming the animator has a reasonable

knowledge of perspective and foreshortening, the system can work backward

from the 2D projection to recover a true 3D pose. The result is a skeleton that

moves exactly like the hand-drawn stick figures, only in three dimensions.

Although the conversion from 2-to-3D results in a single wire armature, the

armature can be fitted with a "costume" of polygonal solids. Whole object

hierarchies may be attached to any limb of the user's 3D skeletal model. In this

way the user may build up a library of movements and apply them to a wide

range of characters. Facial expression and any other detail movement occurring

within these hierarchies is accomplished via standard animation techniques, such

as keyframing.

The system developed as part of this research will be of the most use to

traditional animators. The tools themselves are simple in the same way as are

pencil and paper--your success with them depends on your ability to draw fig-

ures in motion. Even for novice users, however, this system should provide a

more intuitive means of manipulating 3D figures than is possible with standard

commercial animation products. And in the hands of a skilled animator, it is a

quite flexible tool, ideal for the animation of complex jointed figures.

This thesis is arranged as follows. Chapter 2 provides background information

on animation and presents the related work of other researchers. Chapter 3

describes in detail my approach to the 2D/3D conversion process. Chapter 4 dis-



cusses the development of the necessary software tools and their function within

a conventional keyframing animation program. Chapter 5 explains-the specific

implementation of the figure conversion algorithms. Chapter 6 presents results,

of the tools as well as initial animation tests. Chapter 7 concludes with a

summary and suggestions for future work.



2. Background and Related Work

2.1 The Principles of Character Animation

Although character animation is at every stage a two-dimensional process, the

final results often look very three-dimensional. Many animated characters,
especially those in Walt Disney's classic features, resemble moving sculptures as

much as drawings-probably because animators are trained to think of their

characters as solid, having mass and volume. The basic principles of animation

encourage the idea that animation drawings are projections of solid objects.

Animators are taught to draw with the entire character in mind, not just those

parts which are visible or moving. A short summary of the fundamental

techniques of character animation will reveal the substantial amount of 3D

knowledge that they assume. It may also explain why character animation is

inherently a frame-by-frame process and is therefore ill-suited to automation or

standard keyframing.

Frank Thomas and Ollie Johnston's Disney Animation: The Illusion of Life [1]
lists twelve fundamental principles that can be used to create lifelike, appealing

character motion. These principles are not necessarily "rules." Rather, they are

qualities or techniques that repeatedly turned up in the early Disney animators'

most successful experiments:

The animators continued to search for better methods of relating drawings
to each other and had found a few ways that seemed to produce a
predictable result. They could not expect success every time, but these
special techniques of drawing a character in motion did offer some
security. As each of these processes acquired a name, it was analyzed and
perfected and talked about, and when new artists joined the staff they were
taught these practices as if they were the rules of the trade. To everyone's
surprise, they became the fundamental principles of animation. (p. 47)



These are some of the principles "discovered" by those animators and how they

are usually applied to 3D animation:

Squash and Stretch - Objects, especially living things, QU05SH AND
rarely hold the same shape throughout a motion. A

bouncing ball looks more lively if it is drawn as an

elongated oval during its moments of great

acceleration and as a flattened lump when the ball rswD

actually hits the ground. This technique is especially F AZAMW

effective in the animation of living creatures; the

alternating extension and contraction of muscles in a Figure 1: Squash and Stretch

running figure can cause enormous changes in its shape. The typical notion of

squash and stretch does not translate well to computer graphics, however,

because 3D objects are rigid. The only convenient way to change a 3D object's

shape is to scale it, and scaled objects do not really look like they are

"squashing." Instead, squash and stretch of 3D figures can be achieved through

clever manipulation of the character's jointed body. In preparing for a jump,

people tend to draw their limbs together before leaping forward with all limbs

extended. This action simulates squash and stretch without actually changing

the shape of the limbs. Although the action is one of folding/unfolding more

than squashing/stretching, the effect is the same. John Lasseter uses this

technique impressively in Luxo, Jr. [2]--his hinged baby desk-lamp folds itself

together before springing open to jump across the floor.

Slow In and Slow Out -- When inbetweens are used in traditional animation, they

are rarely spaced evenly between the key drawings. Instead, the inbetweens

- >tend to cluster near one of

the two keyframes, with
fewer drawings near the

center of interpolation.

Figure 2: Linear vs. Slow In The technique is called



slow-in/slow-out because the action slows down as it approaches each keyframe.

The purpose of slow-in/slow-out is to emphasize the more important key

drawings while moving quickly between them. This is the one basic principle of

traditional animation that is very easy to apply to computer animation. Since

most computer-generated motion is interpolated, the user can easily apply

mathematical curves to the spacing of inbetweens. If this technique is over-used,

however, the motion tends to look erratic and mechanical.

Straight Ahead Action and Pose to Pose -- These are two alternative methods for

producing frame-by-frame motion. Animation is called straight-ahead when the

animator begins with the first frame in a scene and works forward one frame at a

time--the results are loose, frantic, and unpredictable, since there is no overall

plan to the motion. In pose to pose animation the artist works out the sequence's

most important drawings first, then returns to fill in the motion. Neither of these

methods really applies to standard computer animation, because it isn't a frame-

by-frame process for the artist. The system described by this thesis restores the

frame-by-frame process, and so these two techniques again become relevant.

Anticipation -- This technique applies to any kind of animation, because it has

more to do with storytelling than drawing. Anticipation is merely a way of

letting the viewer know what is about to happen next. If a character is preparing

to pitch a ball, it will lean back with its leg in the air and its hand behind its head

before the actual throw. In reality the windup gathers momentum for the throw;

however, it also tells - -

the viewer that the -

pitch is coming. - P 7WARATORY
ON /s.5

Without that 057 A5

anticipatory move, the AS Pk"t
Mor/oM

throw has a very good F AII/

chance of being missed . C X . C . FAST

entirely. . .
Figure 3: Anticipation



Overlapping Action -- This is one of the most important concepts in character

animation. It is the idea that single bodies are actually comprised of several

moving parts and that those parts can move independently. When a character

comes to a sudden halt, its arms and legs may continue to move, as will any

loose flesh or baggy clothing. The overlapping action of these parts keeps the

animation "alive." Otherwise a still figure would be reduced to just a static

drawing. Overlapping action is harder to convey in computer animation, simply

because there aren't as many loose objects to swing around. Most computer-

generated figures have no moving clothing; their flesh looks like solid plastic.

However, overlapping action can still be applied to the movement of arms, feet,

or perhaps a tail. Its use almost always enhances the "life" of a character, so even

a little overlapping action is better than none.

- CLOTHES AND HAIR
Me OM ANIC CONTAIUE 10 MOVE AF R -

FMOLLWrUGHFULy wII- PRIMARY MOR/ON STPs.
VRY AC77N.

Figure 4: Overlapping Action

Solid Drawing - Disney artists are always encouraged to think of their characters

as three-dimensional. Every drawing should convey the correct weight, depth

and balance. During the course of an entire animation, a character is likely to be

seen from many angles. Being able to draw a character from multiple

perspectives is therefore a prerequisite for animators. This principle doesn't

really apply to most 3D computer animation, since the computer renders the

character and can do so perfectly from any angle. However, solid drawing is

vital to the success of this thesis, which relies on the animator's drawing ability

in order to determine 3D position.



The principles of character animation obviously contain a wealth of information

about conveying meaning through motion-information that applies to the 3D

world as well as the 2D. Why do computer animation systems seem to

deliberately discourage the use of this knowledge? Most of them make keyframe

definition such a chore that frame-by-frame character positioning becomes

impossible. Perhaps software designers assume that users are either unable or

unwilling to create an animation frame-by-frame.

At one time the only people with access to computer animation equipment were

programmers. Most programmers have little experience with traditional

character animation; hence, they are not particularly interested in a computer

animation system that requires a lot of drawing. They want the computer to do

the work! After all, one of the exciting things about computer animation is that it

eliminates the tedious, repetitive elements of animation--effectively minimizing

the work required of the user. Unfortunately, time-saving strategies are almost

always synonymous with a reduction in quality. Most computer animation is

lifeless, characterized by jerky interpolated motion and meaningless camera fly-

bys. Attempts to incorporate the principles of traditional animation in computer

animation have met with only limited success--computer animators are trying to

use frame-by-frame motion principles on systems with interfaces that prevent

the necessary user control.

Improving technology and dropping prices are making 3D computer graphics

available to an enormous number of people--many of them artists. It is no longer

necessary to ignore solutions simply because they require some minimum

amount of user skill. A growing number of computer users are both willing and

able to produce frame-by-frame 3D animation on a computer. The system

proposed by this thesis will hopefully give them the necessary tools.



2.2 3D Computer Animation Techniques

Realistic motion is a primary goal of nearly all computer animation research.

Even so, most of this work is being done within two very specific areas--dynamic

simulation and kinematics. Neither of these fields is closely related to traditional

animation; however, they are the only methods available to most users. A

description of them will clarify the need for new techniques.

Dynamic Simulation

Dynamic simulation is the use of numerical integration to calculate the exact

behavior of objects in a physical environment. In other words, it is the attempt to

simulate real-world situations on a computer. Objects in a dynamic simulation

have mass, density, and inertia; they respond correctly to the applied forces of

torque, gravity, and friction. Dynamic simulation can be broken into two

categories, forward and inverse dynamics. In forward dynamics motion is

calculated from a set of forces applied to an object or objects. Results of

animation produced in this way are unpredictable-the animator has control only

over the initial conditions. The results of inverse dynamic simulations are easier

to control, since the animator specifies a desired ending motion--the system's

task then is to find a set of applied forces that will act on the object in order to

produce that motion. A more comprehensive introduction to dynamic

simulation is found in Wittenberg's Dynamics of Systems of Rigid Bodies [3].

Motion produced via

dynamic simulation is

very realistic, usually far

beyond the abilities of a

traditional animator.

However, dynamics are

computationally IcORWARP NVERS)E |

expensive and Figure 5: Dynamic Simulation



tremendously difficult to control. Once a physical simulation is initiated, the

equations take over completely. The animator can't do anything but sit around

and wait for results. If there are any problems, the entire motion must be

simulated again with different initial conditions. This trial-and-error method of

animation is useless to a traditional animator. Cartoon characters have

personality and motivation--traits that require a great deal of user control to be

done believably. Unfortunately, dynamic simulation lacks that flexibility.

Kinematics

The other major form of motion research, kinematics, has slightly more in

common with character animation. At least, it is rooted in the traditional

animation idea of extremes and inbetweens. Kinematic animation systems are

based on the idea that the user need only specify a few "key" positions in a

jointed figure's motion. The intervening frames are called inbetweens-they are

computed automatically by interpolating between the user-specified key frames.

For this reason kinematics is often called keyframing. The notion of keyframing is

popular, for it dramatically reduces the amount of work required of an animator.

Unfortunately, many computer artists rely too much on the computer's ability to

generate inbetweens. They construct long animated sequences with only three or

four keyframes separating hundreds of inbetweens. As a result, the animation is

mechanical and lifeless--it looks like it was generated by a computer, because it

was. In traditional animation only three or four inbetweens separate the extreme

drawings. A computer animation with that ratio would stand a much better

chance of looking realistic. Unfortunately, such animation is impractical if not

impossible with most systems. Single keyframes take so long to establish that

animators have to settle for far fewer than are necessary.

There are two types of kinematics--forward and inverse. Forward kinematics is

probably the crudest, most difficult way of manipulating a 3D figure.

Unfortunately, it is the easiest method to program and is thus employed by most

animation systems. In a forward kinematic system, 3D figures are represented as



hierarchical object trees. The user creates motion

by recording a series of keyframes and

interpolating between them. The process of

Of,?A positioning such a figure in space can be

frustrating--placement of the feet alone requires

the trial-and-error setting of eighteen different

joint angles (X,Y, and Z for each of the hips,
knees, and ankles). More difficult is moving that

Figure 6: Kinematics figure's body while holding one of its feet still--

the fixed hierarchical structure prohibits even that simple action. Complex

character animation with these systems is rarely attempted. Even basic anima-

tion tasks-for example, a character walk cycle--are extremely difficult to

implement. The reason--changing hierarchical joint angles is just not a natural

way to position the limbs of a 3D figure.

Forward kinematic techniques have also been used procedurally to create

realistic motion. Zeltzer[4] describes a system using kinematics to simulate the

walk cycle of a human figure. While this approach is fairly successful at

achieving realistic motion, it shares the problem of dynamic simulation--the

animator has very little control over the figure's movements.

Inverse kinematics is probably the best existing method for manipulating a 3D

character. It does not require angle settings for all of the joints on a limb. Instead

the user can simply position the limb endpoint. The intervening joint angles

between the end of a limb and its base are computed automatically. To animate

a figure's leg, for example, the animator can interactively grab a foot and move it

around on the screen. The knee joint angle is computed automatically. Girard

and Maciejewski's PODA system demonstrates the use of inverse kinematics to

aid the positioning of jointed figures for keyframing [5]. Their successful results

are showcased in the animated film "Eurythmy" [6].



Of the available methods for computer animation, inverse kinematics seems -to

offer the most control without overwhelming the user in tedious detail. Unfortu-

nately inverse-kinematic animation systems are a rarity; mathematical instability

of the procedures and the difficulty of deriving single solutions have kept this

technique experimental. The unavailability of these systems is not their only

disadvantage. Even the best inverse-kinematics animation program does not

offer the immediate feedback or flexibility of a hand-drawn flip-book. Three-D

models are rigid; they do not "squash" and "stretch." Existing 3D animation

systems, no matter how sophisticated, have a common limitation--they force the

user to work in three dimensions to create something that is ultimately two-

dimensional. A 3D animation system for use by character animators should not

have this limitation. It should allow them to work, at least initially, in a more

familiar medium.

2.3 Related Research

This thesis proposes the use of traditional character animation techniques as a

means of producing 3D animation. I am unaware of any other research projects

with the same goal. However, many animators incorporate the basic principles

of hand-drawn animation in their work. In addition, some researchers have

attempted to construct kinematic and dynamic simulation systems with built-in

knowledge of those principles.

John Lasseter

The best computer animators strive to give their work the spirit and personality

of hand-drawn cartoons. Of these animators, Pixar's John Lasseter is the most

well-known-and arguably the most talented. Lasseter worked as a character

animator for Walt Disney Studios on several feature films, including The Fox and

the Hound and The Black Cauldron. While at Disney he participated in The

Wild Things Test, a project combining hand-drawn characters with 3D computer

generated backgrounds. However, Lasseter gained his reputation in the



computer animation field for the work he did later at Pixar, the computer

division of Lucasfilm. As the director of several short films, Lasseter established

the standard for 3D character animation. One of those films, Luxo, Jr., has the

"honor" of spawning the most derivative sequels in the industry's short history--

for good reason. The two-and-a-half minute short is probably the finest example

of traditional animation techniques applied to 3D computer graphics. In 1989

another Lasseter film, Tin Toy [7], became the first computer-generated short to

win an Academy Award. These films demonstrate the overwhelming

importance of character, story, and timing to the success of an animation.

How does Lasseter give life to his characters? They have a real screen presence

surpassing that of most traditional cartoon characters. He has said that all it

takes is knowledge of good filmmaking and basic animation techniques.

Although Pixar's animation software is not available to the public, Lasseter

claims that a standard kinematic keyframing system is sufficient to duplicate his

techniques. His "secret" seems to be his willingness and ability to spend an

inordinate amount of time to do 3D character animation the "right way". For

example, some of the sequences in Luxo, Jr have no inbetweens whatsoever.

That is, Lasseter explicitly defined the character's position at every point in the

motion--thirty frames per second of screen time. Most computer animators

would balk at the prospect of creating thirty keyframes for every second of

screen time--they are too reliant on interpolation. Perhaps if 3D figures were

easier to manipulate, more animators would be willing to spend the extra time.

This thesis aims to make character manipulation more efficient-the idea is not to

eliminate keyframing altogether, just to make it less of a crutch for animators.

Witkin and Kass

Andrew Witkin and Michael Kass's spacetime constraint system [8] takes the

opposite approach to 3D character animation. It assumes that the so-called

"principles" of animation are merely by-products of physically accurate motion.

Squash and stretch, anticipation, and overlapping action are all observable in



real-world phenomena. Witkins and Kass propose a dynamic simulation system

in which 3D characters exert their own forces to accomplish user-specified goals.

The user gives the character something to do; the system figures out how to do

it, given the character's physical structure and available resources-muscles,

springs, motors, etc. The result is computed motion that exhibits the principles

of hand-drawn animation.

Spacetime constraints are probably the most effective available means for

producing character animation automatically. To demonstrate their system,

Witkin and Kass model the jumping desk lamp from Pixar's Luxo, Jr. Their

results are comparable to Lasseter's; in addition, they achieve several interesting

variations on the same jumping motion simply by changing the simulation's

initial conditions. For example, they model the desk lamp with a base five times

heavier than normal; as a result, the little lamp has to yank upward much harder

to make the jump. A traditional animator would have to start over from scratch

in order to make the heavy-base modification.

Unfortunately, spacetime constraints have not been incorporated into any

commercial animation packages; the techniques are still relatively experimental.

Also, in comparison with Lasseter's original, the Witkin/Kass desk lamp looks a

little stiff and unnatural. Traditional animators tend to exaggerate the most

appealing characteristics of a motion. The result is something that actually looks

more realistic and natural than the physically correct motion. The spacetime

constraint system cannot account for this tendency toward exaggeration. Future

research may correct the problem; if so, spacetime constraints will offer future

animators an exciting alternative to the traditional frame-by-frame approach.

Not all animation is realistic, however, and a system offering frame-by-frame

character positioning will always be valuable to those who want to do it "the

hard way."



Scripting by Enactment

Since film/video animation is a two-dimensional medium, perhaps it makes

sense to work with 3D objects via their 2D screen projections. For example, Delle

Maxwell's "graphical marionette" project [9] attempts to animate a 3D figure by

automatically matching it to video source material of a human "puppeteer" in a

body-tracking suit. Recovering 3D information from video seems like the ideal

way to script animation--how better to describe a motion than to enact it?

Maxwell's thesis describes a computer animation system that receives its input

from 3D body-tracking hardware. The hardware records 3D motion by

analyzing video of a human performer in a body-suit. LED's on the body suit

identify the performer's major limbs and joint positions. As the performer enacts

a motion, the 3D position of each LED is determined automatically. That

information is used to calculate positional and rotational limb transformations,

which are applied to the user's jointed 3D character.

Maxwell's ultimate goal is similar to my own-that is, to produce the motion of a

3D jointed figure from a 2D projection. However, her source material is video--

she is confronted with an abundance of image-processing problems before

2D/3D conversion even becomes an issue. The task of this thesis is more

straightforward--I am not attempting image-recognition. The user does the work

of matching 2D skeleton projections to hand-drawn frames--a task surprisingly

difficult for the computer but fortunately very simple for the user. Thus I am

able to completely bypass the

image-processing problem that

has hindered Maxwell and

others.

Scripting by enactment projects

are a form of 3D rotoscoping, in

which the movements of a live Figure 7: Scripting by Enactment



model are transferred frame-for-frame to the animated character. In many

Disney films hand-drawn rotoscoping is used to perfect the movements of

human characters. The graceful dancing sequences in Cinderella, for example,

were created by tracing live film footage as each frame was projected onto the

animators' drawing boards. Rotoscoping in 3D is more difficult, because the

process is automatically performed by a computer. In addition, the task is more

complex than simply tracing the silhouettes of filmed performers. A computer

rotoscoping system must recover true 3D limb position and rotation data. This

information cannot be recovered from a single camera view; a perpendicular two

camera setup is required. Coordinating the two views is a major problem--the

occlusion of lights, combined with differences in perspective and speed, often

prevent the recovery of reliable 3D data. These problems, plus the awkward,

expensive hardware requirements, have prevented the widespread use of

computer rotoscoping.

2.3 Why Character Animation?

Why is actual character animation a better solution than those described above?

Is drawing each frame by hand really the best way to create motion? Perhaps

not, if the systems described above were fully reliable, easy-to-use, and readily

obtained. Unfortunately, they are not. Scripting by enactment is a great idea,

but it does require an awkward setup. Also, it's really only practical for the

animation of real-world objects. If your character has six legs, two wings, and a

tail, finding a live model to videotape is going to be pretty tough. Witkin and

Kass' system is certainly interesting, and it may eventually allow a novice to rival

the work of master animators. However, the system is still experimental--and for

now, at least, their results pale beside Pixar's original.

Although traditional animation is probably the most time-consuming way to

make a film, the initial stages of motion development are actually quite efficient.

A character animator can often rough out several seconds of action in an



afternoon. This may seem like a lot of time to devote to three or four seconds of

footage; however, by the time those four seconds make it to film, at least four

other people will have spent a week inbetweening, inking, and painting the final

frames. In comparison the animator's single afternoon seems mercifully short.

That extra week of detail work contributes very little to the meaning or character

of the sequence. After all, the whole point of the thumbnails is to quickly,

efficiently summarize the scene. This thesis adapts that initial, most creative

stage of character animation for use in a 3D environment.



3. Approach

Perhaps three dimensional control is unnecessary to describe the

motion of a jointed figure; an interactive projection of the figure

may suffice. This chapter presents an approach to transforming 2D

stick-figures into 3D jointed models. The explanation is divided

into four parts. The first is a description of this system's

representation of 3D models. The second section explains how

such a model can be positioned interactively over a hand-drawn image. The
third section describes in detail the algorithm used to manipulate 3D models
via their 2D projections. In the last section, a method is proposed for attaching
polygonal objects to the moving skeletons.

3.1 The 3D Model

This research proposes a new tool for animating 3D models. In order to fully
understand its implementation, one must first be familiar with the
construction of the 3D models themselves. Computer models are very
different from cartoon characters; models don't "squash" or "stretch." Their
bodies are made up of rigid pieces, which link together like the limbs of a
plastic doll. That analogy is appropriate, because 3D figures are positioned in
the same way as are dolls--by bending their limbs at the joints formed by the
intersection of two rigid body parts. In this respect, a 3D character can be
envisioned as a siinple stick figure with a suit of objects attached to it. The

objects themselves don't change shape--they just rotate with respect to the
other body pieces.

Extended Figure 1: In the upper-right corner of the next thirty pages you will find three images of a
jumping figure. The top image is hand-drawn by the animator. The mIddle image is the system's
attempt to match that sequence in 3D. The lower image is the same 3D sequence as seen from the
front. By slowly flipping the pages from back to front, you will see the figures execute their jump.



In order to describe the motion of a 3D figure, it is unnecessary to

see its hands, feet, torso, etc. A simple stick-figure representation

will suffice. For this reason I have separated the 3D character

description into two structures--the costume and the skeleton. The

costume is the set of rigid polygonal solids that normally constitute

a 3D character--its clothes, arms, legs, shoes, hat, etc. The stick-

figure, on the other hand, is the character's structural description.

It isn't a visible part of the character; rather, it is a symbolic

representation illustrating the figure's limbs and joints.

4
4

Although the skeleton is nothing more than a series of 3D points connected by
segments, it's actually the most important part of the whole animation process.

One premise of this thesis is the idea that 3D character motion can be completely

represented by stick-figures--a user should be able to animate characters of great

complexity simply by describing the motion of their skeletons. If so, the

conversion from 2D to 3D is greatly simplified. That process no longer involves

image or shape recognition; it is just a problem of assigning depth information

to a 2D stick-figure. Using skeletons instead of full figures is also beneficial to

the artist. With this system an animator does not have to draw "real" characters,
with flesh, clothing, facial expressions, etc. All that is necessary is a thumbnail

stick-figure indicating the position and angle of each limb. The system can't

model complex attributes like baggy clothes
RADDEL5 anyway--it can only pose the 3D skeleton and

, cTE then fit the "costume" of objects onto it. A simple
stick-figure is easy to draw and provides the

system with the limb angles necessary to position

a 3D jointed figure. Thus, the representation of

0 3D characters as nothing more than costumed
THE SKELETONS

stick-figures simplifies the animator's job as well
Figure 8: 3D Figure Models as the computers.



Usually 3D jointed figures are constructed as object hierarchies. In

a hierarchical model, the most stable part of a character--usually the

torso-- is designated as the root node of a tree. The figure's arms

and legs form descending branches of the tree. An arm, for

example, forms at least a three level hierarchy below the torso,
consisting of the shoulder, elbow, and wrist. Transformations

applied to one level of the hierarchy automatically affect lower

levels. Thus, rotating an arm at the shoulder automatically causes 4
the forearm and hand to swing along with the upper arm. The

hereditary nature of such transformations is generally considered to be the

greatest advantage to tree structures. If the hand didn't move with the rest of the

arm, creating any kind of animation would be tremendously difficult. Ninety-

nine percent of an animator's time would be spent keeping the character's limbs

attached to each other.

However, hierarchies can be extremely problematic--often for the very same

reasons they are useful. With a typically constructed 3D figure, bending the legs

upward from the hips is very simple maneuver. It requires changing a single

rotation variable. However, getting that same figure to bend over at the hips,
keeping its legs rigid, is usually much more difficult. These two operations,

which seem almost identical, are very different with respect to the figure's fixed

tree structure. The first operation--

bending a leg--requires the 1.WES SlAIfY

transformation of one branch of the //,1EW A&(V 1 HfR
tree. The second--bending over--

requires that the whole tree revolve

around a single branch. Techniques A

for rerouting the structure of a tree

TUHARIE EVL.

hierarchy are fairly common, but they P/FICULt

have yet to be incorporated into a Figure 9: The Problem with Standard Models

conventional animation system.



The two figure manipulations described above seem quite similar--

they should be similar operations on an animation system. The

simple skeletal representation I have chosen for my 3D figures

provides that flexibility, although perhaps at the expense of

structural heredity. The 3D skeleton is not hierarchical--it's merely

a list of points and segments. The concept of "changing the

shoulder angle" is not relevant to such a representation--joint
angles are determined by the relative positions of limb endpoints.

Also, changing the position of a shoulder does not guarantee that the elbow and

hand will move along with it. While this loss of transformation heredity may

seem unfortunate, in the context of character animation it is not so important.

This unusual figure representation has been chosen because it is more applicable

to the requirements of character animation. Traditional animators do not think

about shoulder or elbow angles; they just draw what looks right. This system

must adapt that "what you see is what you want" mentality. Perhaps if a

drawing does "look right," then it can be interpreted by the system as an actual

2D projection of the character. That is the premise of this thesis. By interactively

aligning the true projection of a 3D skeleton with a hand-drawn estimation, the

animator can easily create frame-by-frame motion sequences.

3.2 The Interactive Projection

The above description suggests that the animator's hand-drawn frames are really

nothing more than guides for positioning the character skeleton-and that's

exactly what they are. In this system, hand-drawn figures are not really

"converted" into 3D models; there is no image processing or shape recognition

performed. Hand-drawn animation merely provides a flexible, extremely simple

means of "roughing out" motion. The animator could easily use digitized film or

video as an alternate motion source. Character animation is used in this system

because it can be used to create motion "from scratch." This system is self-



contained. Also, following the basic principles of traditional

animation insures that the motion will look reasonably three-

dimensional. The 2D/3D "conversion," if it can be called that,

occurs as the user interactively positions the character skeleton over

the drawings. The process is really a form of 3D rotoscoping, only

without the need for two camera views.

This system allows a 3D skeleton to be positioned interactively

onscreen as though it were a 2D rubberband stick-figure. Instead of

changing nine different joint angles to position a figure's hand, the animator can

just grab the hand with the cursor and drag it to the right place. For every frame

in an animation sequence, the animator must position the skeleton's limbs over

the corresponding drawn lines. Although this operation is essentially 2D, the

skeleton is actually being positioned in 3D. How is the system able to

manipulate a 3D figure-as though it were flat? It uses elementary trigonometry

combined with knowledge of the figure's fixed 3D structure.

?D0 3.3 The Reverse Projection

.§$ Algorithm

The heart of this system is a

0 C3aaa routine that performs a reverse

geometric projection. Given a

set of connected 2D points--a

stick-figure--the system
Figure 10: Foreshortening reconstructs the 3D skeleton.

Obviously a 2D projection alone does not contain enough information to

reconstruct the 3D model from which it was made, especially if the "projection"

is only a hand-drawn estimation. In fact, any one 2D stick-figure maps backward

into an infinite number of 3D models, because the stick-figure has no depth

information. The main problem, then, is recovery of the correct depth values for

these 2D points.



How does the system recover depth information that is not present

in the animator's hand-drawn frames? By comparing those frames

to the known 3D model and its true projection. Wherever the

animator has drawn a limb shorter than its actual length, the
system assumes that the limb is foreshortened--that is, tilted toward

or away from the user instead of lying directly within the screen

plane. Animators always incorporate foreshortening in their

drawings--it's an attribute that gives their characters solidity. This

system relies on that user knowledge in order to recover 3D angle information
from flat thumbnail sketches. In fact, the system can determine the exact angle of
rotation for a limb simply by comparing its drawn length with its true length.
The two measurements are used as the scalar values in a dot product:

X = cos.1 Ldrawn
Lmeasured J Equation 1

where Ldrawn is the length of the hand-drawn limb, Lmeasured is the limb's true

length, and a the angle at which the limb is tilted toward or away from the

viewer. In-screen limb rotations--i.e., rotations occurring within the viewing

plane--are determined by measuring the planar angle between the hand drawn

limb and the line formed by the true limb's 2D projection onto the camera plane.
The equation for measuring the angle between two 2D lines is:

a = cos-1(aia 2 + bib2) Equation 2

where the normalized line equations are a1x + b1y + c1 = 0 and a2x + b 2y + C= 0.

Figure 11 illustrates the use of this algorithm. Segment A is a 3D cylinder,
defined by the user. Segment B is a hand-drawn line indicating the desired

rotation of the bar. Using Equation 2, the bar is aligned within the screen plane

28



... I R.E... . . by rotating it 60 degrees around the Z
PRoYEcT/ON axis. Notice that the drawn line is

substantially shorter than the 3D bar,

se rient A indicating foreshortening. Using

Equation 1, the system determines

that the bar is rotated 45 degrees

either toward or away from the

viewer. Figure 12 shows the two

possible final positions of the bar.

Figure 11: Reverse Projection

Obviously there are major holes in this argument, if the above algorithm is to be

used to convert entire jointed figures. For example, in order for the above

equation to work, one of the segment endpoints must already be fixed in space.

Also, deciding whether the limb is tilted into the screen or out of it can be a major

problem. These problems are substantial--it may not yet be clear how an entire

3D figure can be converted. Nevertheless, this simple algorithm--determining

the rotation and 3D position of a limb through estimation of its foreshortening--is

the primary basis for my 2D to 3D conversion. The rest of this chapter deals with

the questions just raised and others involving the conversion of an entire figure.

A requirement for using the above algorithm is that one of the limb's endpoints

be fixed--that is, one joint's position must already be known in order to

determine the two possible positions of the other
ff5H1,r/VF sF&m1fNT.

joint. How can this algorithm possibly be of any use CAV BE D/RACTZV. 1ZM
OUT OF 771F SCREN PL4A'6.

for posing a figure with ten to twenty joints, all of

their positions unknown? If all of the figure's joint

positions are really unknown, then it's true--this -

algorithm can't be used. However, if even a single

joint is fixed in space, or just constrained to moving :

within a defined plane, this algorithm can be used Figure 12: Ambiguous Orientation



recursively to convert an entire jointed figure. A visual example

may help to explain the process more easily than text alone.

Figure 13 shows a series of linked segments, all of the same length.

These segments have been created in 3D by the user; therefore their

joint positions are known in x, y, and z. Of course, the illustration

is only a 2D projection of those segments; the view has been

selected by the user as one appropriate for animation of the object.

Now, suppose the system is told to position those segments in 3D

so that they match the second drawing in Figure 13. Node 1 is in the same 2D

position in both drawings; it is assumed to be fixed in the third dimension as

well. Using Equation 1, the system can determine that Segment A is tilted 45

degrees into or out of the screen plane. For now just assume that all

foreshortened segments tilt inward. The x,y,z position of Node 2 is therefore

established. With Node 2's position known, the same calculation can be applied

to Segment B; it is found to be tilted inward 10 degrees. In addition, equation 2

determines that Segment B is rotated 60 degrees within the screen plane itself.

Node 3 is now fixed. Following the same algorithm the system is able to convert

the remaining segment.

AN S: tep -

-Qch Seg A M/c Se< 8 /atcheq C
C by Whn - tilt in /o no tt or

A 2 IAB-A - --
A-

Figure 13: An Example of the Reverse Projection Algorithm

The above example assumes, for the sake of simplicity, that foreshortened limbs

tilt toward the viewer. Obviously foreshortened limbs are just as likely to tilt

away--how is the system supposed to decide which- direction is correct? One flat



drawing really doesn't provide enough information--however, by
looking at the previous frames in the sequence, it is easy to make an

educated guess about the limb's orientation. If a limb has been

pointed in the same direction for multiple frames, then it is likely to

remain that way. Therefore, each time the animator advances to a
new frame, the 3D figure's limb orientations are copied from the

old frame. On the screen limb orientations are differentiated by
color; segments pointing toward the viewer are brighter than those '
pointing away. If a limb is pointing the wrong way, the animator

can reverse it by pressing a key. Thus, the problem of foreshortened limb
orientation has been solved by a combination of automatic frame inheritance and
manual user control.

The foreshortening algorithm described above can be used recursively to handle
most 2D/3D conversions. However, there are several exceptions which require
special treatment. They are examined in the following examples.

What happens if the hand-drawn line is actually longer than the original 3D limb?
Excluding the effects of visual perspective, there is no way to rotate a 3D
segment so that its 2D projection appears longer than the segment itself. In this
case the system assumes the longest possible limb projection, which is directly
parallel to the viewing plane. Remember that when actually operating this

system, the animator must interactively position the figure's 2D projection. Each
skeletal limb is positioned by hand over the corresponding hand-drawn limbs.

In this case, when the drawn limb is impossibly long, the skeletal node will

simply stop moving when the limb has reached its maximum length.

Sometimes an animated figure does not have any fixed points. The limbs of a

running man, for example, are continuously in motion. As his feet hit the

ground, his whole body rocks back and forth, leaving no "anchor" points for the

conversion algorithm described above. In such cases, the animator is required to



restrict the movement of at least one joint on the character, so that

the system will have a reliable 3D starting point. Restricting a

joint's movement does not mean that the point must be immobile.

It means that the system must be able to determine the point's true

3D position, given only a 2D screen coordinate. A logical way to

implement this restriction is to "lock" the point to a specific 3D

plane. For example, the running character in Figure 3 can be

constructed with its torso locked to the XY plane. The two torso

endpoints are free to move parallel to the viewing plane, but their Z

values are fixed. With the 3D positions of those two points established, the

system can work outward to convert the rest of the figure using the

foreshortening algorithm.

X . The ability to lock a point to a plane can also reduce

errors due to imperfect drawing. Variance in the

length of hand-drawn segments can cause a figure's

limbs to jitter back and forth noticeably--the

foreshortening algorithm incorrectly converts those

length differences into angle changes. However, if the

limb has been locked to movement within a specific
Figure 14: Plane-Lock plane, those changes will be ignored. Plane-anchored

points are the first ones converted to 3D; therefore they take precedence over the

normal, free-floating points. By locking the most important, stable parts of the

character, the animator can minimize the errors caused by imprecise drawing.

Care must be taken not to overuse the plane-locking feature. If a skeleton has too

many restrictions on its movement, it may be impossible to satisfy all the

constraints. This often happens when the user plane-locks both endpoints of a

single segment. Figure 15-1 shows a segment locked between two planes.

Suppose the animator wants to align that segment with the hand-drawn line in

Figure 15-2. The 3D segment formed by intersecting point A with plane A' and



point B with plane B' is much longer than the limb's fixed length.

The system is caught between matching the limb to its

corresponding hand-drawn line, placing the endpoints on their

respective planes, and keeping the limb length fixed. How does

the system resolve the opposition of these constraints? In this

implementation, limb length is the only absolute constraint; the

system will not position a joint so that its attached limbs are

distorted. With that rule in mind, the system does its best to satisfy
the other constraints. In the case of a segment with two plane-

locked points, the system can probably PLANE OCK I
lock one of the points, getting as close

to the other plane as the fixed limb

length will allow. Figure 15-3 shows

that solution.

3.4 Attaching the Costume Objects

Once a skeleton's 3D pose has been

established, the system can similarly

position the figure's object costume.

This operation breaks down into one of

simple 3D object transformation. AA
7?20 Ri WINAA

When the user first constructs a 3D LMIN L/A

figure, polygonal solids may be placed

over the lines and nodes of the figure's

skeleton. Each time an object has been

correctly positioned, it can be symboli-

cally "attached" to the corresponding

skeleton limb. Thereafter, when the

skeleton limb changes position or
PCPOIAr CONS

rotation, the object or objects attached

to that limb will move also. The user is Figure 15: Plane-Lock P:roblems

1;kt



essentially posing the entire character by dragging points on the

skeleton.

The algorithm used to effect these object transformations is very

simple. By measuring how much a limb has changed from its

starting position, the system knows how to transform the limb's

attached objects. The changes are computed as standard 4x4

matrices, which can be applied to those objects. For each new

frame in an animation, the system computes the transformation

matrices for all of the limbs on a figure. Those matrices are then

costume of objects.

used to pose the

The transformation matrix for a single limb is computed as follows. The limb's

initial and current position are represented as 3D vectors. The 2D/3D

conversion algorithm insures that they have the same length; they differ only in

XYZ rotation and position. Initial 3D rotation and position values are assumed

to be zero. In the first frame, attached objects are already in the right place, so no

action is needed to position them. The problem is to determine the XYZ

translation and rotation for the current frame. The following equations are used

to recover those unknowns:

Oinitial = tan~'(a 1 )

Ocurrent = tan-'(bi)

final --= Ocurrent - einitial

Q initial = sin '(a 2 )

4 current = sin -1(b2

4 final = 0 current - 0 initial

Equation 3

Equation 4

Equation 5

Equation 6

Equation 7

Equation 8

Equation 9translation x,y,z = current x,y,z - initial xyz



where A = ali+ a2j+ a3k and B = bii+ b2j+ b3k are the limb vectors

for the initial and current frames. The variables currentxyz and

initialx,y,z are the tail points for those vectors. efinal and $final are

the spherical rotation angles that describe the difference in

orientation between the initial and current limb frames. These

equations correctly position the object relative to the current limb.

The above equations leave unspecified the transformed object's

cylindrical rotation--that is, the rotation of the object about the axis formed by the

limb. The system really has no way of knowing or computing that value--it's a

problem inherent in the simple skeleton representation. The skeleton's limbs are

composed of line segments, which by definition have no cylindrical rotation. For

many costume objects this is not necessarily a problem--often a character's arms

and legs are simple cylinders, which look the same at

However, attaching asymmetrical objects to a 3D fig-

ure's limbs may produce unexpected changes in the

object's rotation. If this happens, the animator can

control the object's rotation manually using

keyframes. This solution is admittedly far from

perfect; future work may concentrate on finding a

way for the animator to indicate cylindrical rotation

during the drawing or interactive projection phase.

any cylindrical rotation.

SS6GAEGN75 HAVfE

NO TICKA/ESS.

THqY N/AVF No D/SRTE

C/L/NyDR/cAL Rol-Ar/OM
Figure 16: Cylindrical Rotation

Using the techniques described above, this system allows animators to

manipulate 3D figures as if they were 2D "rubberband" skeletons. The algorithm

automatically computes foreshortening when a rubberband line is too short, and

it prevents the animator from positioning rubberband lines that are too long.

However, even with built-in constraints on the figure's movement and

knowledge of the figure's fixed structure, the system is likely to find several



"correct" 3D interpretations of any single 2D projection. Sometimes

a figure looks perfect from the initial angle but is unrecognizable

from another. Also, hand-drawn sequences may appear realistic

even when the drawn frames vary wildly in scale and limb length.

Such variances can destroy the system's chances of correctly

interpreting the drawings. For this reason the technique described

above is very much an interactive one. The user must be able to

recognize and fix mistakes made by the automatic conversion

algorithm. Of several possible solutions to a frame conversion, the

user must help the computer identify the correct solution.

Luckily, animation is

THFRONT VIEW. REVAL$ ,AMY 1//18 OI[NAf/o1 6TMk.5 never an automatic

process. The editing
decisions necessitated by

the above problems are

not too much to ask of an

animator who is used to

drawing hundreds of

frames per animation

Figure 17: Orientation Problems sequence.



4. Program Design and Operation

The results of this research are a set of animation tools which have

been installed within the author's animation program new. New is a A

keyframe-based animation system, written in C for the Hewlett

Packard series 9000 computers. The system provides for the

animation of both 2D and 3D object types, including flat polygons,

bitmaps, typography, hand-drawn cels, 3D polygonal solids, light

sources, and cameras. It is intended for use by non-programmers and has a user-

friendly interface design, requiring very little keyboard input. The program uses

the author's BadWindows windowing system, which allows direct access to the

Hewlett-Packard's high level graphics functions. The system's integration of 2D

and 3D animation, as well as its existing tools for hand-drawn animation, make it

an excellent base platform for this research. This chapter begins with a descrip-

tion of the 3D skeleton object and its associated tools for figure creation. After

that, the system's cel objects are introduced, with an explanation of how they can

be used to create thumbnail flipbooks. The next section describes how these two

object types are used

together to produce

3D animation. The

last part of this

chapter describes how

these tools have been

incorporated into a

keyframing

environment and how

keyframing may be

used for detail

animation.
Figure 18: New Interface



4.1 3D Skeleton Construction

The 3D skeleton structures introduced in Chapter 3 are

implemented within the animation system as an object type. In

order to create a 3D figure for animation, the user selects "skeleton

object" from new's object menu. On the screen appears a 3D

viewport, with a large vertical grid at the origin. Using the

Hewlett-Packard's knob box input device, the user can position and

rotate the grid in 3D. In addition, the grid's dimensions--width,

height, and resolution--can be set via the skeleton object's onscreen control

menu. This grid is the construction tool used to specify points on the character's

skeleton. By positioning the cursor at one grid point and dragging it to another,

the user can create 3D segments. A point gravity function allows new points to

be connected easily to already existing skeleton nodes; as the segment

rubberband line passes near a node point, it will lock on to that point until the

cursor has moved further away.

Once a skeleton node has been created, it can be repositioned using the move

mode. In move mode the cursor appears as a tiny outstretched hand. Clicking

on a skeleton node and moving the cursor causes the

node to be repositioned at the intersection of

the cursor and the construction grid. Points SKELETN

can be cut from the skeleton using edit

mode. In edit mode the cursor becomes

a tiny pair of scissors, which can be

positioned over any part of the skeleton.

Clicking on a segment or node causes it

to be deleted. Points and segments can

also be destroyed from the skeleton control

window.
Figure 19: Skeleton Construction



The skeleton control menu has a numbered listing of all the skeleton's

points and segments. By clicking on the listing for a particular

point or segment, the user can see a menu of operations which can

be applied to it. Plane-locking is one of the operations which may

be selected from this menu. Choosing Plane-lock for a particular

point restricts it to the plane currently occupied by the construction

grid. Segment Hookup is another menu option, applicable to

segments. Segment Hookup allows the user to select another 3D

object and symbolically "attach" it to the chosen segment. Once

attached, that 3D object will maintain its position relative to the segment,
translating and rotating with the segment as it moves. An entire costume of

objects may be built for a character, by positioning one or more objects over each

skeleton segment and symbolically linking them together.

Using the tools described above, the animator may construct a 3D skeleton with

any number of points and segments. The finished model can then be viewed

from any 3D angle. Sliding the mouse back and forth pivots the camera

viewpoint around the model. In this way the animator may find a suitable angle

for drawing the thumbnail flipbook.

4.2 Flipbook Creation with Cel Objects

The program new contains an extensive set of tools for creating traditional frame-

by-frame character animation. The user interface for these tools bears a very

close resemblance to the traditional animator's pegboard light-table. The current

drawing is displayed on-screen, with previous and following drawings barely

visible in a lighter color. This "onion-skin" effect helps the animator coordinate

character movements from one frame to the next; it also makes inbetweening

very simple. The animator's input device is a Wacom cordless pressure sensitive

graphics tablet; in conjunction with custom antialiased line drawing software, it

is an adequate substitute for a pencil or brush. Pressure-sensitivity in the stylus



is mapped to varying line width, giving lightly sketched lines the

appearance of a hard-lead pencil. On the other hand, varying the

pressure over the length of a stroke will result in a pen-and-ink or

paintbrush effect. Drawings are recorded and stored in the system

as a list of individual pen strokes. Each time the screen is refreshed,
the HP's line-drawing hardware redraws every line in the image--

even for complex characters this operation takes only a fraction of a

second, usually less time than it would take to redraw a bitmap.

This stroke-based image representation is far more memory

efficient than storing each drawing as a raster bitmap. The animator can work on

sequences with hundreds of drawings without approaching the machine's

memory limit.

This system adopts the

traditional process of

developing a motion

sequence, that of quickly

sketching and flipping

between drawings in a

TRADIrTOVA L fI/PB00K METAPHOR A5 USER JN1IRFACE scene. On the computer,
Figure 20: Skctch Layers in New this process has been

preserved and even improved. An animator using new is able to work quickly,

sketching with one hand and flipping "pages" with the other by tapping keys on

the keyboard. This method is preferable to pencil and paper, because the

animator can hold down the keys and scan continuously through an entire scene.

With paper it is only possible to flip back and forth between four or five

drawings at a time.

Cel layer objects in new can be used to develop finished, painted character

animation. However, for the purposes of this thesis they are only needed as

thumbnail sketch flipbook tools. Using a cel setup like the one described above,



the animator can quickly rough out the motion of a stick-figure.

New is capable of simultaneously displaying 2D and 3D objects;

therefore, any important 3D information, such as background

scenery or the initial 3D skeleton, may be displayed while the

animator is drawing. This feature is especially useful for

establishing a camera position prior to drawing. The 2D/3D

conversion algorithm needs a 3D camera specification from which

to work backward; choosing one beforehand is better than trying to

pick a 3D camera setup that will match a set of existing drawings.

By creating a skeletal figure and viewing it from several angles, the animator can

decide which is best suited for the series of drawings that will follow.

A finished set of flipbook drawings should correspond pretty closely to what the

animator wants the final motion to look like. However, the animator does not

have to draw every single frame in a sequence; only the "keyframes" are

absolutely necessary. The intervening frames can be automatically computed by

interpolating along splines passed through the model's joint nodes once the

2D/3D conversion has been completed. Care should be taken not to overuse the

spline-inbetweening, or else the animation will lose its spontaneity.

Creating a set of flipbook drawings that can be used as reliable 2D projections is

not easy. Even very experienced animators find it hard to correctly account for

the perspective effects of a true 3D camera. Many hand-drawn attempts at 3D
motion may seem realistic by themselves but look horribly distorted when

compared to the real thing. Therefore, the animator must plan each sequence

carefully, simplifying the character design as much as possible and picking a

camera angle that will minimize perspective distortions. The ideal camera angle

is one that offers a clear, unobstructed view of the character's whole body

throughout its entire range of motion. If the character's whole body is in motion,
the animator must remember that some point on the figure's body will have to be

locked to a plane in order for the 2D/3D conversion to occur. If possible, that



these individual poses by creating a new copy of the 3

each frame. Thus, for every frame in the

animator's flipbook there exists a matching 3D

skeletal model. The idea is similar to claymation,

in which a single character may actually consist of

dozens of nearly identical clay models, each with a

slightly different pose or expression. However, a

computerized system employing this idea has the

distinct advantage that new models may be created

instantly by copying the previous pose. In

addition, the computer is able automatically calculate

D skeleton structure for
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Figure 21: Interactive Projection

any number of inbetweens

for every user-defined frame. The timing of a scene may be altered smoothly by
inbetweening various segments of the motion.

As the animator positions the skeleton nodes for each frame, the system is

continuously running the 2D/3D conversion process. Each time a new cursor

point snouia De tne most important one on the character, so that it
will have the best chance of being placed correctly. If the most

important part of the character is not in the right position, others
are likely to be even farther off. Keeping these factors in mind, the

animator should be able to create an flipbook sequence that will

translate well into 3D.

4.3 Translating 2D Sketches into 3D Motion

Hand-drawn stick-figure information is transferred to the animator's 3D skeleton

via the interactive projection method introduced in chapter three. Although the

on-screen image is a projection of a 3D skeleton, the animator is able to

manipulate it as though it were a set of linked 2D rubberband lines. The

animator steps through the sequence of flipbook frames, in each one positioning

the interactive 3D figure to match the drawn figure. The system remembers



location is read from the graphics tablet, the conversion algorithm

updates the selected joint position and then determines whether the
position is a valid one. If the system cannot figure out any way to

move the current joint to the new position, it will come as close as it

can. This effect is noticeable in the system when the animator

attempts to drag a limb farther than its maximum length. Once that

limit has been reached, the limb will cease to follow the cursor; the

animator will know to move back a little. Also, manipulating one

node may affect several others on the skeleton--for example,

dragging a knee node may cause the ankle and foot nodes to slide with it. These

visual cues are a beneficial side effect of the interactive conversion; they can be
helpful in determining how the program is interpreting the 2D projection.

Color is used in the interactive projection to indicate the direction of

foreshortened lines. Limbs directed toward the viewer are displayed as red lines;
those directed away from the viewer are purple. Since most foreshortened lines
can be interpreted as pointing either toward or away, the animator is responsible
for setting their directions. Usually this is not difficult, because limb orientations
for new frames are automatically copied from the previous frame. However, the
animator must always remain conscious of possible mistakes in limb direction. If
a limb is pointing the wrong way, it can screw up the conversion of the whole
figure. Determining a limb's 3D orientation can be a challenge for odd camera
angles. In order to maintain a clear understanding of the figure's true 3D
position, the animator may wish to have two 3D viewports on the screen at the
same time. The two viewports are given radically different camera angles.

Hence, one may used as a reference to double-check limb orientations. A limb

which is ambiguous from one camera angle may stand out clearly from another.

Positioning the 3D skeleton is essentially the last step in the animation process.

Once all the frames in a flipbook sequence have been transferred to 3D, the

animator just has to check for mistakes and smooth out noticeable aberrations in



the movement. Sometimes an animation which looks excellent in

skeleton form will not work when the character's full costume is

displayed. The animator must remember to provide ample space -

for thickly modeled body parts; otherwise, the finished animation

may be plagued by unsightly object intersections!

4.4 Keyframing and Detail Animation

All of the above tools are part of the animation program new, a

keyframing system. Yet the animation process described so far has very little to

do with keyframing. How do these two animation methods interact?

Keyframing has a number of potential uses within the context of this research-

the most valuable of these is for detail animation. Detail animation is any kind of

motion that cannot be easily expressed as part of the simple character skeleton--

for example, facial expression, finger movement, and cylindrical rotation around

a skeleton limb axis. Objects can be attached to a 3D skeleton and still exhibit

standard keyframed motion. For example, a pair of eyes may be programmed to

blink and look around while attached to the "head" limb of a 3D figure. The

hierarchical nature of new's object world allows this parallel animation of objects

to occur. A grouped object, by definition, follows both its own instructions and

those of parent objects above it.

Keyframe animation also becomes important when one considers producing a

finished animated short film. Jointed figures are usually not the only source of

movement in an animation. Camera pans, scenery, and props are better

animated with keyframing than with the technique proposed by this thesis. In

fact, for this research to have any practical application at all, it must function

within an environment that supports other methods of animation. New is ideal

in this respect, because it supports so many different types of animation-2D and

3D keyframing, cel, and even procedural animation. The ultimate goal of this

research has been to extend that list with a set of tools appropriate to the



animation of complex jointed figures. Those tools, though limited

in their application, enable certain types of 3D animation to be

easily produced that would otherwise be very difficult.



5. Implementation

This chapter discusses the actual implementation of my 2D/3D

conversion algorithm presented in Chapter 3. The procedure,

called InstantConversion, poses a fixed-length 3D skeletal node

structure based on its initial position and a single set of 2D

projection points. InstantConversion is aptly named--it is executed

every time the user makes a change to the 3D skeleton, yet the

conversion runs quickly enough for the entire process to be interactive. The code

is written in C for the Hewlett-Packard series 835 workstations. They each have

a RISC-based processor, two 24-bit high resolution frame buffers, and an

extensive 3D graphics library. Several of these library routines are used in the

low-level coding of the 2D/3D conversion algorithm--therefore, porting this code

to another machine would require that it have similar features.

5.1 InstantConversion

The conversion code is actually broken into two hierarchical routines, of which

InstantConversion is the higher level. InstantConversion manages the segment-by-

segment positioning of the 3D skeleton; it is the "director" function, deciding

which segments have changed and in what order they should be converted. The

function takes as arguments a 3D skeleton structure and a set of 2D points. The

skeleton structure is the character's initial position; the 2D points represent the

desired pose as seen from the current camera angle (see Figure 22). The

function's job is to return a new skeleton structure, whose connectivity and limb

lengths match the initial figure, but whose pose matches the 2D point set.

InstantConversion is performed in three steps. In the first,,the target skeleton is

created and "cleared"--its points and segments are all marked as unconverted.

Then, a reference 2D projection is created from the supplied 3D skeleton, using

the current 3D camera model. The result of this projection is a set of 2D points



very much like the one supplied to the function. By measuring the

differences between these two projections, the system can

determine how to transform the limbs of the 3D figure. Obviously,

2D points that do not change at all are easy to convert; in such cases

the system assumes that the 3D point is stationary. That point's X,

Y, and Z values are copied directly from the initial skeleton to the

target, and the new node is marked as converted.

In the second step of figure conversion, a recursive loop is used to
find and transform segments that have only one of their endpoints locked down.

Assuming there is at least one stationary point in the figure, this loop is

guaranteed to find a valid segment on its first iteration. Conversion of that

segment, by definition, will lock down its free endpoint. It follows that any other

limbs attached to the endpoint will be eligible for conversion on the next trip

through the loop. As each segment and node is converted, it is flagged. Only

when every limb has been marked will the system exit the loop.

Suppose that none of the skeleton points are stationary--the loop described above

will have no starting point. In this case plane-locking becomes important. Plane-
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Figure 22: InstantConversion



locked points can be converted at any time; the 2D projection

coordinate combined with node's specified plane-equation is

always sufficient to locate it in three-space. Any segment with a

plane-locked endpoint will be automatically converted as soon as it

is encountered in the loop. Plane-locked nodes thus have a higher

priority than ordinary ones.

The third and final step in InstantConversion is a cleanup operation.

It is possible for both endpoints of a segment to be locked down

separately, without the segment itself being sent to the line conversion routine.

This happens when a segment's two immediate neighbors get converted before

the segment itself. In such cases both nodes get marked, but the segment itself

does not. This situation usually results in the segment having the wrong length;

since the endpoints are positioned independently of each other, there can be no

attempt to maintain the fixed limb length. The "true" solution to this problem

would require a retransformation of all the neighboring segments. The system

would have to find a compromise that preserved limb lengths, while staying as

close as possible to the given 2D projection. This problem rarely occurs,

however, so a simpler, though technically incorrect, solution has been

implemented for the present. The system assumes that the segment length,

though invalid, is not really that far off. No attempt is made to change the length

or point positions. Instead, the system computes the appropriate 3D

transformation matrix for the segment's attached objects. The "broken" segment

has the wrong length, but its 3D orientation is still valid. If the mistaken length is

close to its correct value, the viewer is unlikely to see a problem. If larger errors

do occur, the 3D skeleton may be too distorted to use anyway--the "correct"

solution would require such a radical departure from the desired 2D projection

as to make it useless. This "solution" relies on the assumption that the animator's

drawings are reasonably accurate. If they are not, this technique is not going to

work very well anyway.



5.2 NewConvertLine

The second procedure described in this chapter is the actual low-

level segment conversion routine, NewConvertLine. This routine

performs the conversion of a single line from 2D to 3D. Given the

limb's initial 3D coordinates, a pair of 2D destination points, and

one 3D endpoint, NewConvertLine determines the unknown 3D

endpoint's position. The technique used to do this is introduced in

Chapter 3. However, the actual 2D/3D conversion code differs

somewhat from the algorithm explained previously. The algorithm

presented in Chapter 3 is a simplified version--it does not take into account the

distortion effects of a 3D perspective camera. Perspective is an important visual

cue, especially when working with 3D computer graphics. Therefore it is

essential that the tools developed in this thesis work

with perspective cameras. The fundamental

assumption of Chapter 3's conversion algorithm

.......- holds true for any camera model--a 2D line maps

backward to at most two 3D lines, given the camera

position and one of the 3D endpoints. However, for
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Figure 23: Perspective Effects length of a 3D line depends not only on its

foreshortened angle but also its distance from the viewer. A segment tilted

toward the viewer will appear longer than the same segment tilted the same

angle away from the viewer--perspective adds length to the first example and

subtracts length from the second.

The addition of perspective cameras complicates the reverse projection problem.

Fortunately, thanks to Hewlett-Packard's graphics library, that problem has a



simple solution. The Hewlett-Packards have a 3D transformation

engine that makes conversion between coordinate systems easy and

efficient. For example, the transform-point(WORLDTO_VDC)

command automatically computes the 2D projection coordinates of

any 3D world point. Even better, the

transform-point(VDC_T O_WORLD) command will return a valid 3D
point, given a 2D coordinate and a depth value relative to the

screen. If (x,y) is the screen coordinate of the unknown limb

endpoint, the 3D solution lies somewhere on the line passing

through (x,y) perpendicular to the screen. Using calls to the transform-point

function, it is possible to calculate the equation of that line. Two of those calls,

with arguments (x,y,zi) and (x,y,z2), will return a pair of 3D points on the

desired line. Any values can be assigned to z1 and z2, as long as they differ.

Using the equation for a line through two points, it is trivial to locate the
unknown limb endpoint. One simply has to find any points on the line that are
distance d from the given endpoint, where d is the limb's length. The problem
breaks down into a standard quadratic formula.

v2= x2-x1 vy = y2-y1 vz = z2-zi Equation 10

x=xi+vyt y=y 1 +vyt z=zi+vzt Equation11

at 2 + bt + c = 0 Equation 12

a = vx2 + vy 2 + vz 2  Equation 13

b = 2 x (vxx1 + vyy 1 + vzzi) Equation 14

c = x1
2 + y 1

2 + z2 _ d2  Equation 15

-b b2 -4ac
2a Equation 16



The value t, when put back into Equation 11, will give the correct

x,y,z values for the limb endpoint. In these equations the 3D

endpoint has been translated to the origin, to make calculation

easier. The 3D line is translated by the same amount. The 3D

points resulting from these equations must naturally be offset by

the same amount, to account for the translation.

Notice that two solutions can exist, or a single solution, or none at all. These

cases result from three specific situations that commonly arise while running the

system. The existence of multiple solutions has already been discussed. There

can be two answers, because the limb can be in two different positions and still

match the drawing. If the segment is pointing toward the viewer, the correct

solution is the 3D point closest to the screen plane; if the segment is pointing

away, then the answer is the more distant point (assuming that the limb points in

the direction of its "free" node). When only one solution exists, the limb lies

directly within the screen plane; there is no foreshortening on the line. Finally, if

Equation 16 has no solutions, the line is too far away. The system must

compromise by again giving the limb no foreshortening and putting it within the

screen plane.

NewConvertLine is called repeatedly as InstantConversion runs through its

recursive loop. The two procedures are both relatively short, but together they

accomplish the main task of this project--2D/3D figure conversion.



6. Results

This chapter discusses the relative merits and drawbacks of the

tools presented in the preceding chapters, as compared to more

conventional systems. In addition, an animation sequence

produced with the system is presented and analyzed. Initial tests of

the system have been largely successful. The proposed method of

manipulating 3D figures seems well-suited to the existing work

practices of traditional animators. However, the system is far from

perfect. It relies too heavily on the animator's drawing ability, and conventional

operations such as rotation and translation are not integrated very well with the

interactive figure positioning tools. These problems were relatively unexpected--

they became evident when using the system for real animation production.

Although they do not prevent the use of this system in a production

environment, these problems certainly point the way for future research.

Probably the most successful elements of this system, in ease-of-use terms, are

the preparatory animation tools for 3D skeleton construction and hand-drawn

flipbook development. The construction-plane works very well as a means of

building a 3D skeleton. The ability to position it numerically is especially useful

for maintaining symmetry of the figure; in this respect it is quite similar to the

construction plane approach of many computer-aided design systems. One

could imagine using this tool in an architectural software package. Also, the

construction plane has dual functionality--it is used to constrain point movement

to specific 3D planes. Although users of the system have not encountered any

problems with this tool, one person familiar with more sophisticated 3D rotation

schemes suggested that quaternion rotations [10] could be used to position the

plane. Quaternion rotations are supposedly more intuitive than simple roll,

pitch, and yaw.

The hand-drawn animation tools used in this thesis have been employed in the



production of traditional animation in the Visible Language

Workshop for nearly two years; they are reliable and easy to use.

The flipbook format is simple enough for an eight-year old to learn

in a few minutes; yet the same tools can be used to produce

finished, professional quality character animation. All of the 2D

animation for the short film Grinning Evil Death [11] was produced

with this system. The only real problem with these tools is that

they do not provide enough computer assistance--there is no

automatic inbetweening or cel cleanup. The animator is still

required to draw every frame of an animation sequence. For the purposes of this

thesis, however, the lack of automation is not a major problem. The animator is

only drawing stick-figures, so inbetweening is easy and cleanup unnecessary.

Also, once the sequence has been converted to 3D, automatic inbetweening is

available.

The only substantial problems with this system occur during the 2D/3D

conversion stage. This isn't really surprising, given the novelty of the conversion

technique and its reliance on user drawing skill. Test animations performed with

the system reveal a tendency of the user to misjudge limb lengths in thumbnail

sketches. As a result, the conversion routines often assume foreshortening that is

not intended by the artist. A figure's limbs will swing unpredictably in and out

of the picture plane. These errors are not usually evident from the initial

viewpoint; they show up when the sequence is seen from a camera angle other

than the drawn one. The animator should therefore draw his or her animation

from the same angle that it will eventually be seen. Of course, that is not always

possible, particularly when a moving camera is desired. In such cases the only

real solution to the problem is trial-and-error editing of the motion. The

animator should pick two representative camera angles and edit with multiple

viewports onscreen. Thus the user can assure that any changes will look good

from both eye points.



The other problem with the 2D/3D conversion is the lack of

conventional figure positioning tools. Occasionally it is desirable to

manipulate an arm or leg with simple 3D rotation. Or the animator

may wish to slide the entire figure some distance along the Z axis.

In such cases standard 3D transformations would be more

appropriate than the thumbnail sketch metaphor presented here.

Fortunately, the 3D skeleton format used by this system does not

prohibit the use of conventional methods; the next step in this

research will be the incorporation of standard 3D and translation

capabilities with the interactive skeleton projection.

The problems with this system do not prevent its use as an effective animation

tool. The system is especially useful for the full-body animation of complex

jointed figures, since that type of motion is so difficult to produce otherwise.

Extended Figure 1 (at the top right of the page) is an example of a jumping

humanoid figure produced with this system. By slowly flipping the pages of this

thesis from back to front, you will see the standing figure crouch, leap into the

air, and land. The top image is the initial set of thumbnail sketches for this

motion. The middle image shows the motion applied to a 3D figure constructed

of spheres and cylinders, and the lower image is the same motion seen from a

different camera angle. This example was selected because it would be difficult

to duplicate on another system. During the crouching and landing stages of the

sequence, the character's body moves relative to its feet--ie, the feet hold still,

even though the legs are moving. As explained in chapter two, standard systems

would prevent this action--their hierarchical models do not allow figure

movement relative to end nodes. Extended Figure 1 is a full-body animation; at

some point in the sequence every node on the figure moves from its initial

position. In order to produce this motion, the character's torso was locked to the

vertical plane traveling along its path of movement. In other words, the ball

representing the character's body was allowed to move up and down along the

jumping path, but not side to side. The 3D version of this sequence matches the



hand-drawn flipbook very well, especially from the initial angle.

The front view reveals the problem described above, the animator's

tendency to misjudge limb length. Mistaken foreshortening causes

the character's left leg to kick outward; the problem occurs because

the sketched version of the leg has been drawn slightly shorter than

normal. From the initial angle the problem is not really noticeable;

it only becomes apparent when the scene is viewed from another

angle.

4



7. Conclusion

The basic principles of character animation are founded on the knowledge of 3D

motion. The technique presented in this thesis incorporates those principles into

a 3D computer graphic animation system. The system allows hand-drawn stick-

figure flipbooks to be used as guides for positioning the interactive projection of

the user's 3D model. The result of this work is a simple, intuitive interface for

the manipulation of 3D figures. In video tests the tools have proven successful

for a variety of animation tasks, including complex full body motion. The

animation process developed as part of this research is not meant to replace

existing techniques; it is designed to be used in conjunction with standard

methods to increase the tools available to the computer artist, and to expand the

range of applications appropriate to computer animation.

This project has great potential for future research, particularly in the area of

automatic sketch-recognition. The ideal system would be able to generate a 3D

moving figure automatically, given only a set of rough flipbook drawings. That

system is clearly a fantasy, at least for the immediate future. However, several of

its appealing features are definitely grounded in reality. For instance, image-

processing techniques, particularly energy minimization, could be used to aid

the animator in positioning the nodes of the interactive-3D projection. A system

employing such techniques would automatically place skeleton nodes by

allowing them to "migrate" towards areas of the source drawing with maximum

energy--ie, corners in the stick-figure. It is doubtful that the system would be 100

percent reliable, but even a small amount of computer assistance would be bene-

ficial.

The emergence of superior graphics capability in personal computers is making

computer animation a viable form of expression for a majority of their users. The

inevitable explosion in the number of amateur films is likely to bring about a



change in the standards by which they are judged. Flashy graphics will no

longer impress--the visual and technical sophistication that distinguishes the

very best films today will soon be commonplace. Style and content will take pre-

cedence over photorealism. New animation tools are needed, ones that

encourage artist-computer interaction over automation. This project has resulted

in one such set of software tools, which establish traditional character animation

as a practical and efficient user interface for computer animators.
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