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ABSTRACT

A STATISTICAL THEORY OF STRENGTH

FOR FIBER REINFORCED CONCRETE

by

ANTOINE E. NAAMAN

Cementitious matrices show in general similar
mechanical characteristics that distinguish them
from metallic and polymeric matrices, i.e. relatively
high compressive strength, poor tensile strength and
brittleness at failure. Putting steel fibers in
Portland cement concrete is meant to enhance its
tensile properties, delay cracking and increase its
toughness. Specific applications result, but are
limited by the current understanding of the composite's
response under load and the insufficient information
on which design properties can be assessed. The scope
of this sudy is to fill the existing gap by exploring
from the microscopic to the macroscopic level the
composite characteristics and presenting a rational
method to predict tensile properties of fiber rein-
forced concrete. A detailed analytical representa-
tion is developed and simultaneously supported by an
extensive experimental program.

The analytical representation is devoted to the
development of a causal mathematical model that si-
mulates the composite's response under tensile loading
by taking into consideration the statistical nature
of most variables involved and recognizing the extreme
value characteristic of tensile strength. As the
apparent ductile or brittle failure of fiber reinforced
concrete depends somehow on the ratio of the fiber
length to the member length, the proposed model is
divided into two major parts. The first one, dealing
with the ductile type failure, is based on the statis-
tical mechanics of composite materials. It explores
in detail all that is going on at the one fiber level
and extrapolates results to the macroscopic response
of the composite. The second part of the model covers
the brittle type failure incorporating a fracture



mechanics criterion in the analysis. Each formulation
leads essentially to the assessment of the composite
characteristic tensile strength and its distribution
functions. The chain weakest link concept of
reliability theory is then applied to bound the
overall model and provides results as modified by
the size of the tensile member.

The experimental program is divided in four parts
having various purposes as suggested by the mathemati-
cal formulation. The first part validates a major
assumption of the model related to the Poisson-like
distribution of the fibers in the concrete mass. The
second part deals with the assessment of the bond or
shear strength at the fiber matrix interface and its
variation with fiber orientation. The third part is
concerned with devising a reliable test to measure
some fracture properties of the composite such as
fracture toughness and pseudo plastic zone size. A
final part is devoted to testing tensile prisms of
fiber reinforced concrete where the influence of
major reinforcement parameters such as volume fraction
and aspect ratio of fibers is sought.

Experimental findings and consequent refinement
of some of the model's assumptions lead to the con-
clusion that it is possible to rationally predict the
tensile properties of fiber reinforced concrete using
the proposed model. They also suggest that the frame-
work of the mathematical formulation can be extended
to simulate the behavior of most discontinuous fiber
reinforced matrices.

Thesis Supervisor: Fred Moavenzadeh

Professor of Civil EngineeringTitle:



ACKNOWLEDGMENT

The author wishes to express his sincere appreciation

to Professor F. Moavenzadeh, his thesis advisor,

Professor F. J. McGarry and Professor M. Holley, members

of his doctoral committee for their time, support and

valuable guidance throughout this study.

He also wishes to thank Professor A. Argon who was

most helpful in initiating this research and Professor

J. Soussou who carefully reviewed the mathematical

formulation and patiently discussed major implications

and results.

The author is indebted to his wife, Ingrid Naaman,

for typing this thesis more than once and for contributing

more than her share in family affairs during his graduate

studies at M.I.T.



CONTENTS

Title Page . . . . . . . . . . . . .

Abstract

Acknowledgment . . . . . . . . . . .

Contents . . . . . . . . . . . . . .

List of Major Symbols . . . . . . .

Chapter 1.

Chapter 2.

Chapter 3.

Introduction . . . . . .

... .......... 12

... .......... 14

1.1 Effects of Fiber Reinforcement
Concrete . . . . . . . . . .

on
... ..... 15

1.2 Review of Analytical Models for
Strength Predictions . . . . . . .

1.3 On Statistical Solutions to Strength
Characterization of Materials . .

1.4 Objective and Scope of Study . . . .
1.5 The Structure of the Thesis . . . .

Framework of the Model's Mathematical
Formulation . . . . . . . . . . . . .

2.1 The Approach . . . . . . . . . . . .
2.2 General Assumptions .. * . .
2.3 Mathematical Implication of the

Weakest Link Hypothesis . . . . .
2.4 Assessment of the Number of

Links N .
2.5 Validation of the Assumption on the

Poisson Distribution of Fibers

Probabilistic Modeling of the Ductile
Type Failure in Fiber Reinforced
Concrete . . . . . . . . . . . . . . .

3.1 Definition of Relevant Data . . . .
3.2 Number of Fibers per Unit Volume

and Corresponding Number of
Fibers Intersecting a Unit Area

3.3 Characterization of Relevant
Variables Associated with a
Fiber in a State of Pull-Out . .

3.4 Statistical Characterization of the
Pull-Out Force F Associated
with a random fibr . . . . . . .

. . 16

. 20

. 25
.29

. . 30

. . 30

. . 34

. . 36

. . 36

. . 38

. . 43

. . 45

. . 46

.. 48

.. 52

Page



CONTENTS - continued

Chapter 3.

Chapter 4.

Chapter 5.

3.5 Determination of the Link Post-
cracking Strength and Toughness

3.6 Estimation of the Link Strength
at Cracking . . . . . . . . . . . .

3.7 Determination of the Chain Strength.

A Simulation Model for the Brittle
Type Failure in Fiber Reinforced
Concrete . . . . . . . . . . . . . . . .

4.1 Some Background on Fracture Mechanics.
4.2 Fracture Behavior of Concrete and

Fiber Reinforced Concrete as
Compared to Other Materials . . .

4.3 Proposed Fracture Model and Major
Assumptions . . . . . . . . . . . .

4.4 Distribution of Largest Inherent
Weak Areas in a Link Cross Section

4.5 An Example of Application to Fiber
Reinforced Concrete . . . . . . . .

Experimental Program ... . . . . . . . . .

5.1 Matrix Composition and Curing History.
5.2 Pull-Out Tests on Fibers . . . . . . .
5.3 Tensile Tests on Fiber Reinforced

Concrete Prisms . . . . . . . .
5.4 Cleavage Specimens . . . . . . . . . .

Chapter 6. Experimental Results - Discussion and
Correlation with Model's Predictions

6.1 Results of Pull-Out Tests ....
6.2 Description of Global Results

on Tensile Tests . . . . . . . .
6.3 Discussion and Correlations with

Model's Predicted Values on
Tensile Strengths . . . . . . .

6.31 On the Postcracking Strength
6.32 On the Cracking Strength
6.33 On the Energy Absorbed at

Failure . . .........

6.4 Results of Double Cantilever
Cleavage Beams . . . . . . . . .

6.5 Recapitulation of Major Results
as per Chapters 3 and 6.

. . .110

S. .110

S .115

. . .116

S. .122
• . .130

. ..139

. . .141
S. .143

Page

. 60

. 64

. 67

. 71

* 71

. 74

. 79

. 83

* 93

. 97

* 97
. 98

.100
.106



CONTENTS - Continued

Chapter 7. Conclusion . . . . . .

7.1 Conclusions . .
7.2 Recommendations .

Bibliography . . . . . . . . . . .

Biography

Appendix A

Appendix B

Appendix C

. . . . . . . . . . . 145

. . . . . . . . . . . 145

. . . . . . . . . . . 149

. . . . .. . . 151

. . . . . . . . . . . 159

. . . . . . . . . . . 161

A.1 The Weakest Link Concept and
Weibull's Approach . . . . . . .

A.2 Mathematical Basis to the
Distribution of Fibers in the
Concrete Mass Following a
Poisson Process . . . . . . . .

A.3 The X2 Goodness-of-Fit Test
Used to Validate the Assumption
on the Poisson Distribution of
Fibers . . . . . . . . . . . . .

A.4 On the Cracking Strength of Fiber
Reinforced Concrete . . . . . .

Tables of Results . . . . . . . . . .

Additional Figures . . . . . . . . . .

. . . 162

S. . 166

. 169

S. . 182

. .. 191

S• . . . . .

. . . . . . . . . . .



LIST OF FIGURES

1 Typical Stress Strain Diagrams of Fiber
Reinforced Concrete as Compared to Most
Fiber Reinforced Plastics

2 Typical Stess Elongation Curves as Influenced
by Fiber Length

3 Framework of the Mathematical Formulation

4 a) Typical Cross Section of Fiber Reinforced
Mortar

b) Example of Counting Grid for Determination
of Fiber Distribution

5 Poissonlike Distribution of the Fiber Inter-
sections in a Cross Section

6 Logical Approach to Modeling Ductile Failure

7 Typical Representation of a Fiber in Space

8 Distribution Functions of the Ratio of a
Fiber Pull-Out Load to its Maximum Pull-Out
Load

9 Normalized Probability Density Functions of
Chain Strength

10 Normalized Cumulative Functions of
Chain Strength

11 Distribution of Longitudinal Stress Ahead
of a Crack in a Fiber Reinforced Concrete
Composite

12 Assumed Critical Crack Model Controlling
Fracture of Fiber Reinforced Concrete

13 Monte Carlo Simulation for the Distribution
of Weak Areas

14 Typical Distribution of Largest Crack Length
Associated with Largest Weak Area as
Generated by Simulation

15 Typical Preparation and Testing of Pull-Out
Specimens



LIST OF FIGURES - continued

16 Dimensions of Tensile Specimen

17 a) Typical View of Tensile Specimen and Grips
b Typical View of Cleavage Specimen and Mold

18 Cleavage Specimen

19 View of Double Cantilever Cleavage Type Beam
under Test

20 Typi8al Fiber Pull-Out Curves for Zero and
30 Orientation Angle

21 Variation of Bond Strength with Fiber Orientation

22 Tensile Stress at Cracking - Least Square Fitting
Lines if Mortar Matrix Point is Not Included

23 Maximum Postcracking Stress versus Volume
Fraction of Fibers

24 Tensile Stress at Cracking versus Aspect Ratio
of Fibers

25 Maximum Postcracking Stress versus Aspect Ratio
of Fibers

26 Energy Absorbed to Failure versus Volume Fraction
of Fibers

27 Typical Fracture Surfaces of Fiber Reinforced
Concrete Showing Matrix Disruption at the
Base of the Fibers

28 Comparison of Predicted and Observed Postcracking
Strength

29 Bond Deterioration with Density of Fibers

30 Postcracking Strength with Typical Limits
of Theoretical and Observed Variations

31 Apparent Increase in Matrix Tensile Strength
Due to the Presence of Fibers, Extrapolated
tO Vf = 0

32 Tensile Stress at Cracking - Least Square
Fitting Lines if Mortar Matrix Point is
Included



10

LIST OF FIGURES - continued

33 Least Square Fitting Line of Slope Coefficients
versus Aspect Ratio of Fibers

34 Average Observed and Assumed Pull-Out Load
versus Distance for a Random Fiber

35 Typical Load Displacement Curve of Cleavage
Specimen up to Complete Separation

Appendix A

Al Poisson-like Distribution of the Fiber
Intersections in a Cross Section

Appendix C

Cl Typical Average Load Elongation Curves of
C4to Fiber Reinforced Concrete Specimens in

Tension - Series A, B, C, D

C5 Typical Load Displacement Curve of Cleavage
Specimen



11

LIST OF TABLES

1 Reinforcement Parameters - Tensile Tests

2 Derivation of Theoretical Chain Post-
cracking Strength

3 Assessment of Empirical Relation between
Bond Deterioration and Density of Fibers

Appendix B

Bl Results of Pull-Out Tests on Fibers

B2 Results of Tensile Tests on Fiber
Reinforced Concrete Prisms

B3 Surface Energy and Toughness of
Fiber Reinforced Concrete as
Deduced from Results of Tensile
Tests



LIST OF MAJOR SYMBOLS

Efu ultimate tensile strain of fiber

afu ultimate tensile strength of fiber

Emu ultimate tensile strain of matrix

Omu ultimate tensile strength of matrix

Ec composite modulus of elasticity

Vc composite Poisson ratio

Vf volume fraction of fibers

Sfiber length

fiber diameter

bond or shear strength at the fiber matrix inter-
face

A cross section area of member or link

N number of links in the chain model

Ns  number of fibers intersecting a unit area

Nv  number of fibers per unit volume of composite

x pull-out length of a random fiber - also used
as a variable

angle of orientation of the fiber axis with the
loading direction

y efficiency factor of orientation = ratio of
pull-out load resisted by a fiber oriented
at eo to that oriented at zero degrees -
also used as a variable

p ratio of pull-out force associated with a random
fiber to its maximum pull-out force

Fp pull-out force associated with a random fiber

R pseudo-plastic zone radius in plane



LIST OF MAJOR SYMBOLS - continued

6 radius of an inherent weak area in a plane

a = 6 + R - also used as slope of a line

acc composite cracking strength

acu postcracking strength

G toughness of the matrix
mu

Gcu toughness of the composite

Yc composite surface energy = 1/2 Gcu

K plane stress fracture toughness

Kic plane strain fraction toughness

PDF probability density function

CF cumulative function

PMF probability mass function

f(a) PDF of link strength

F(a) CF of link strength

g(a) PDF of chain strength

G(a) CF of chain strength

E(X) expected value of variable x

Var(x) variance of variable x

SD(x) standard deviation of variable x



14

CHAPTER 1

INTRODUCTION

Fiber reinforced concrete is a composite material made

with two major components: a Portland cement based matrix

(mainly mortar) and randomly oriented and distributed short

fibers (generally steel fibers).

The aim of a composite is to obtain a material having

tailored properties within a range of values bound by those

of the two major components. Like fiber reinforced materials,

fiber reinforced concrete is both complex and versatile. It

is complex by virtue of its mechanical nature and thus should

be regarded not as a single material but as a materials

system. Its versatility stems from a wide choice of available

constituents and the variety of ways to combine them in order

to achieve desirable properties that cannot be obtained in

conventional Portland cement matrices. An overall efficiency

in terms of specific properties can therefore be achieved.

Historically fibers have been used in building materials

since ancient times such as the use of straw in sunbaked

bricks and in heavy walls made with a mixture of natural

lime and clay. The introduction of various types of steel

fibers in Portland cement based matrices seems to have

taken place in the second half of the nineteenth century.

As early as 1874, Berard [13] patented an "artificial stone"
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consisting of a hydraulic cement matrix reinforced with

granular waste iron. Early in the twentieth century, several

types of steel fibers of different shapes and purposes were

proposed as reinforcement or crack inhibitors for concrete

matrices. A review of some of these patents is made in [71].

The last two decades have seen a substantial growth of interest

in fiber reinforcement for concrete following a similar trend

in the development of fiber reinforced polymeric materials.

In the U.S. this interest has been mainly promoted by the

work of Romualdi and Batson [81].

The current trends in research include the use of natural

fibers like bagasse, jute, and bamboo L23,90], or the develop-

ment of multidimensional types of metallic fibers [711. These

investigations are encouraged by concurrent development in the

modification of Portland cement concrete matrices by addition

of polymers in order to increase their ductility and other

mechanical properties. Both types of developments are expected

to lead to a substantial increase in the efficiency of fiber

reinforcement.

1.1 Effects of Fiber Reinforcement on Concrete. Mixing steel

fibers with concrete matrices leads in general to an enhance-

ment of different material properties, mainly mechanical

properties such as strength, ductility, stiffness, etc.

Originally, however, the addition of steel fibers was meant

to increase the tensile strength of concrete with, as

ultimate objective, to replace continuous reinforcement in
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structural reinforced concrete members. This goal was far

from being reached, but some other beneficial effects of the

fibers were pointed out: they act as crack arrestors, they

increase drastically the material's toughness, they enhance

its wear resistance, they keep cracks from opening: their

application is beneficial in impact resistant structures,

linings subject to high temperature gradients, pavements [40],

nuclear power plant vessels, etc.

However, improving the tensile strength of concrete and

understanding the reinforcing mechanisms of the fibers remain

the major goal and focus of research in this matter.

1.2 Review of Analytical Models for Strength Predictions.

On the theoretical ground a first rough method of estimating

tensile strength of discontinuous fiber reinforced composites

has been to use the law of mixtures which gives in general

unrealistically high values. A second approach has been to

modify the law of mixtures by multiplying by an efficiency

factor the term corresponding to the fiber contribution [60].

Current studies of fiber reinforced materials, which

were mainly developed during the last two decades for

fiber reinforced polymers and metals, contain at least

three models for predicting the strength of discontinuous

fiber reinforced composites. These are the models of

Cox, Dow, and Rosen [ 24, 30, 85]. They are much more

realistic than the previously described models, but still



remain very restrictive: they mainly assume that the fibers

are all parallel aligned, that their length is higher than

the critical length, that the same strain exists in the fiber

and the composite, etc. Also, they apply only to the elastic

domain of loading and could be used as a first approximation

to predict, for example, the cracking strength of fiber

reinforced concrete.

Kelly and Davies L55] proposed an elaborate study for a

model that applies to parallel oriented elastic fibers in

elastoplastic matrices. Their model is realistic and complete,

but cannot apply to fiber reinforced concrete due to two major

restrictions: first because concrete matrices are brittle

and do not show an elastoplastic behavior, second, in the

mathematical derivation the model basically assumes that the

ultimate tensile strain of the fiber is smaller than that of

the matrix, i.e. it considers continuity of the matrix up to

the ultimate resistance of the composite. Concrete has a

very small ultimate tensile strain, an order of magnitude

lower than the yield strain of a steel fiber (Fig. 1 ).

Therefore, at least two distinct stages have to be considered

in describing the composite behavior under tensile loading:

the precracking stage, where fibers and matrix are assumed

to work almost elastically, and the postcracking stage where

the fibers bridging the newly created surfaces resist the

load by breaking or pulling out. In currently observed

behavior and with the components' properties and proportions



18

c r 'fu

(- FIBER
ELASTO PLASTIC
MATRIX X

0- -- ------.-

efu

STRAIN

afu
HIGH STRENGTH
STEEL FIBER\

w- CONCRETE I

Hn MATRIX

I CRACKED MATRIX

I I

mu

mu Efu

STRAIN

FIG. I. TYPICAL STRESS-STRAIN DIAGRAMS OF FIBER-
REINFORCED CONCRETE AS COMPARED TO MOST
FIBER-REINFORCED PLASTICS.

;^ua^xu~u - - -r-_-- .. .-rr --̂-- i--lr~-- -i----i --YPI-X-XIX--OIII~I rrr~l~i~~.l~.CL~ -~b



19

used in practice, the steel fibers always pull out in the

postcracking stage, carrying a load that is only a small

fraction of their load carrying capacity.

Finally, the model proposed by Romualdi and Batson

[81,82] should be mentioned, which aims to predict the

composite stress at the first structural crack, i.e. at

the limit of the elastic behavior. Applying Griffith's

criterion of brittle fracture [41] to fiber reinforced

concrete, they proposed the following formula:

cc K

where acc = composite stress at first structural crack

K = material's constant

S = average fiber spacing in space.

It is easy to notice the similarity between the

proposed formula and a widely used fracture mechanics

criterion, K = aJ-r/, where K is the fracture toughness

of the material, a the nominal stress and 6 the crack

length or flaw size. Romualdi's formula created a contro-

versial issue at the theoretical and experimental level

among several investigators in the field [ 1,93]. The

main disagreement can be to attributing to the effect of
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spacing only the increase in cracking strength of the

composite. Clearly the formula suggests that very high

strength can be achieved when the fiber spacing decreases.

As experimental findings are far from approaching theo-

retical predictions, some researchers are skeptical about

the proposed theory [92,97].

Note that in a study of the yield strength of

silver matrices reinforced with metal fibers, Parikh

[2 ] observed some spacing effects but they were primarily

linear with a low rate of variation.

None of the models described above covers the post-

cracking behavior of the fiber reinforced member and

none predicts the postcracking strength, which is the

major variable of interest in continuously reinforced

concrete members.

1.3 On Statistical Solutions to Strength Characterization

of Materials.

The factors influencing the strength properties

and the behavior of material systems are numerous. They

include the nature of the material as well as the

geometrical configuration of the specimen. Among pro-

perties of interest are mechanical properties like

tensile and compressive strengths. Size effects are also

significantly pronounced in heterogeneous materials and



equivalently in composites.

A large number of theoretical investigations in

mechanics have been concentrated on the development of

a classical continuum concept by incorporating structural

or microstructural information. While these methods

have been of great help, the initiation of new approaches

based on the random occurrences of microscopic properties

may lead to closer expectation values and to a more

realistic assessment of expected variation. These

"statistical" approaches seem to have been initiated,

at least for the study of tensile strength in materials,

by Peirce in 1926 [75].

Peirce emphasized that any theoretical work which

discusses mechanical breakdown phenomena, must take

into account the fact that the observed tensile strength

of a material is not a volume average quantity but

rather an extremum quantity. This rule which we shall

refer to as "the weakest link hypothesis" has since

been thoroughly discussed and applied.

In fact, the assumption of a constant tensile

strength is not supported by experimental evidence.

Repeated measurements of the tensile strength of a

material often result in a wide spread of values.

In addition, the average tensile strength varies with



the specimen's volume or size. It is now accepted that

such variation is not only due to experimental error

but is rather a natural consequence of the probabilistic

nature of tensile strength.

One of the most famous contributions to the statis-

tical strength characterization of materials is that of

Weibull [101]. Using Peirce's model of the weakest link,

he assumed an a priori strength distribution function

for the link of a tensile member made, like a chain,

of a series of links. His hypothesis led to the well

known result, that the tensile strength ratio of two

tensile members made of the same material, is an

inverse function of the ratio of their volumes.

(Appendix A.1.)

Weibull's result on strength relation to size was

widely applied to homogeneous materials. Equivalently

successful was the weakest link concept which was applied

to predict failure phenomena in fibers [19], bundles of

fibers [27], and composite laminates [91 ]. These approaches

start almost invariably with a guess as to the a priori

strength distribution for a cross sectional plane in a

fiber. Then the mathematical apparatus of the weakest

link hypothesis is used to calculate the probability

that the weakest cross sectional plane, out of a very
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large sampling of planes, has a particular strength.

Comparing these methods with what could be done

with a material like fiber reinforced concrete, it is

evident that the a priori guess on the strength distri-

bution function of a cross sectional plane, i.e. a

link, shall take into consideration the fibers' content

and properties. A composite is different from a homo-

geneous material mainly in that one can exogeneously

change the proportions of the major components to

control the strength. Assuming that the matrix composi-

tion and properties are constant, it is clear that the

fibers' content and the fibers' geometrical and mechanical

properties shall directly influence any causal model that

aims to predict the strength distribution function of a

cross sectional plane.

Therefore, a number of technical questions arise

related to the distribution of the fibers in space,

the distribution of the fibers' intersections with a

cutting plane, the average and actual number of fibers

per unit volume, etc. Clearly, the mathematical

analysis of the structure of a discontinuous fiber

reinforced material like fiber reinforced concrete,

should start with the analysis of a network of
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random lines in space. This problem is one of geometrical

probability or statistical geometry. The basis to these

disciplines and some other scattered applications can be

found in [29,38,59].

In particular, let us mention a most successful study

and application that has been generated by Corte and Kallmes

L22,52] in their attempt to characterize the properties of

paper. They outlined the basic approach to a quantitative

description of a network of random lines in two dimensional

planes and formulated the mathematical model. Their aim was

to understand and correlate the controlling effect of some

physical parameters of the network, like mean number of

fiber crossings and mean free length, on the strength,

porosity and some other properties of paper. Their contribu-

tion suggests an objective approach to handling causal

relations between the fibers and the observed strength in a

discontinuous fiber reinforced material.

In view of the preceding remarks and discussions, it

seems that a newly developed model that predicts the strength

of discontinuous fiber reinforced materials, with a particular

emphasis on fiber reinforced concrete, will present a number

of improvements over existing ones and will be more realis-

tically descriptive of observed experimental results.
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1.4 Objective and Scope of Study.

The overall objective of this thesis is to develop an

analytical model to predict the tensile strength of fiber

reinforced concrete as a function of the characteristics

of its major components, focusing mainly on the reinforc-

ing mechanisms of the fibers. Specifically, the model

would predict the causal effect of given dominant variables,

like fraction volume and aspect ratio of fibers, bond and

tensile strength of the matrix, size of the structure, on

the composite strength through the use of dependent

variables derived from the data and from the assumptions

on which the model is based. Dependent variables are,

for example, the actual number of fibers per unit volume

of composite, the actual number of fibers intersecting a

unit area, the real distribution of the fibers in a con-

crete mass, the efficiency factor of orientation associated

with a random fiber, etc. As these dependent variables

are not directly controllable, the model necessitates the

use of statistical methods to represent them and will

therefore be probabilistic in nature.

The theoretical approach developed in this study

is primarily based on the mechanics of composite materials

and fracture mechanics: first, it takes into conside-

ration the statistical nature of the variables involved,

and, second, it recognizes the statistically extreme
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value of observed strength as stated in the chain's weakest

link hypothesis. As the observed response of fiber rein-

forced concrete tensile prisms is either brittle or ductile

depending on the ratio of the fiber length to the specimen

length under test, two different failure criteria were used

in the analysis: A composite material approach for the

ductile type failure, and a fracture mechanics approach for

the brittle type failure. Therefore, the analytical formu-

lation is divided in two major parts, simulating each type

of failure.

The mathematical formulation of the model leads to the

full determination of the characteristic strength distribution

functions of the material as related to a random cross section,

or link. Then the chain's weakest link method provides the

theoretical distribution functions of strength for a tensile

member of a given size. The expected value of strength as

well as other related variables, surface energy, fracture

toughness, etc. are given as a function of major input

parameters and the properties of the material components.

Some normalized distribution curves are also derived and

plotted as a means for rapid estimating purposes.

An extensive experimental program has been performed in

order to correlate theoretical predictions with experimental

observations. The first part of this program deals with the

experimental validation of one of the major assumptions of

the model related to the random distribution of the fibers



in the concrete mass following a Poisson process. Histo-

grams of the number of fibers intersecting a cutting plane

are plotted veruus the assumed theoretical distribution

and compared through a X2 goodness of fit test. Another

section of the experimental program deals with the determi-

nation of one of the most important exogeneous variables

assumed to be a given data in the model: the bond or shear

strength at the fiber matrix interface. A large number of

pull-out tests on single oriented fibers lead to the estima-

tion of the frequency distribution as well as the expected

value and variance of the bond strength. Similar pull-out

tests on inclined fibers covering a range of orientation

from zero to ninety degrees provide the relation between

pull-out force and fiber orientation. Most of this infor-

mation is used to assess values to the bond strength and

the efficiency factor of orientation involved in the

theoretical model, in order to correlate theoretical

predictions and observed results on tensile strength of

fiber reinforced concrete prisms.

The central part of the experimental program is con-

cerned with tensile tests of fiber reinforced concrete

specimens. It focuses first on the characterization of the

physical response of the material under tensile loading

and shape of the load elongation curve up to complete separa-

tion. Then, the influence of most important reinforcement

parameters, the fraction volume and the aspect ratio of the
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fibers are widely investigated. Four different values of

aspect ratios and corresponding to each, three different

fraction volumes of fibers are used. Relations between

these parameters and observed mean values of cracking

strength, maximum postcracking strength and toughness

are plotted and compared to theoretical predictions. Dis-

cussion of observed correlations or discrepancies between

both results and refinement of some of the assumptions

are a part of the model's validation.

A final part of the experimental program deals with

devising a new test to determine the fracture toughness

and the pseudo plastic zone size of fiber reinforced

concrete. These variables are in fact the only unknown

variables used in the second part of the mathematical

model, part which simulates the brittle type failure

in the composite. The main objective here is to propose

a successful testing method in order to experimentally

measure the above mentioned variables. This goal is

achieved through the use of cleavage or double cantilever

type beams.

The analytical model and the experimental methodology

developed herein may be used to characterize the tensile

behavior of most discontinuously fiber reinforced

materials having brittle matrices like ceramics or

brittle polymers. The framework of the mathematical
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formulation can be easily extended to cover the case of

ductile type matrices.

1.5 The Structure of the Thesis.

Chapter 2 describes the general framework of the

mathematical formulation, states the assumptions on which

the model is based and discusses their important implica-

tions. Chapter 2 provides the basic framework for Chapter 3

and 4 where the two distinct parts of the theoretical study

are presented respectively in detail. Chapter 3 treats the

case of the ductile type failure while Chapter 4 covers the

brittle type failure. Chapter 5 describes the experimental

program and related methods of testing. Chapter 6 discusses

observed results and correlates them with theoretical pre-

dictions. Finally, Chapter 7 summarizes the findings,

contains the major conclusions, and states recommendations

for future research.
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CHAPTER 2

FRAMEWORK OF THE MODEL'S MATHEMATICAL FORMULATION

This Chapter describes the framework of the mathematical

formulation which will be developed in full detail in the

following two chapters. It states the general assumptions

on which the theoretical model is based and discusses

some of their important implications. The last section is

devoted to the validation of the assumption on the Poisson

distribution of fibers in space.

The objective here is to characterize the tensile

behavior of a fiber reinforced concrete member by develop-

ing a mathematical representation of the fiber reinforced

material. We will therefore always assume in this study,

except when stated otherwise, that the applied loading is

of the tensile type.

2.1 The Approach.

The apparent brittle or ductile failure of fiber rein-

forced concrete under tensile loading is dependent on the

size of the specimen under test. More specifically this

scale effect is due to the ratio of the fiber length to

the length of the reinforced member. For relatively small

size members, the failure is ductile-like while for large

size members it looks brittle. It is easy to understand
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this observation by comparing the load elongation curve of

a mortar specimen reinforced with 0.75 inch steel fibers,

to that of a similar specimen of asbestos cement where the

fibers are less than a millimeter in length. (Fig. 2.)

In order to take into account these size effects, the

mathematical model is divided in two major parts. The final

solution to either part requires the synthesis of different

concepts and approaches.

The first part (developed in Chapter 3) covers the case

of a ductile failure and uses as basic criteria for analysis

the statistical mechanics of composite materials. It

explores in detail all that is going on at the fiber level,

assigns values to most relevant variables and extrapolates

results to the macroscopic behavior of the composite. In

this part, the precracking and postcracking stages, as ob-

served in the specimen behavior under loading, are treated

distinctly.

The second part of the model covers the case of a brittle

type failure where stress concentration effects take place.

A fracture mechanics criterion is used in the analysis and

no distinction is made between the precracking and post-

cracking behavior. The strength is defined as the nominal

stress at the onset of rapid crack propagation leading to a

complete separation of the material.

Each of these formulations leads to a determination of

the distribution function of strength for a cross sectional
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plane (or link) of the tensile member, assumed to be made like

a chain of a series of links. The chain's weakest link

concept of reliability theory is then applied to bound the

overall model and provide the distribution functions of

strength for the member.

The general framework of the mathematical formulation

and other relevant remarks or details, are shown in a flow

chart in Fig. 3 . This chart will help understand and keep

track of the logical steps followed in Chapters III and IV.

2.2 General Assumptions.

A number of assumptions are implicitly made throughout

the mathematical formulation. They are stated with some

explanatory remarks as follows:

1. The tensile member is assumed to be made like a chain

of a series of links. The mathematical implications

of this hypothesis and methods of estimating the

number of links are covered in the following para-

graphs.

2. The tensile and shear or bond strengthsof the concrete

matrix, whether given by a constant or a frequency

distribution, are assumed to be isotropic properties.

3. The reinforcing fibers have a constant length A

and diameter %. The model may be extended in order
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to handle other possible alternatives when A and f

are given by a distribution function.

4. It is assumed that under loading a crack will pro-

pagate along a smooth plane perpendicular to the

loading direction. The amplitude of the crack rough-

ness in relation to the fiber length is neglected.

In practice, this is realistic for fiber reinforced

mortar or paste but subject to limitations for fiber

reinforced concrete with relatively large size

aggregates.

5. The smaller portion x of a fiber length on either

side of a crack is uniformly distributed between

zero and half the fiber length that is 0 ( x 4< /2.

6. The fibers have an equal probability of making all

possible angles with any arbitrary chosen fixed axis

(for example, the loading direction). This is

realistic if no vibration or only a slight one is

applied during the pouring operation [32].

7. The fibers in the concrete mass and equivalently

their points of intersection with a cutting plane are

randomly distributed following a Poisson process.

The mathematical justification of this assumption is

given in Appendix A.2 and an experimental validation

is made in section 2.5 and AppendixA.3.
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2.3 Mathematical Implication of the Weakest Link Hypothesis.

We shall refer to Chapter 1 and Appendix A.1 to recall

the origin and the mathematical development of the weakest

link hypothesis. Here we will mainly use the major assumption

and the derived results as follows:

a. The tensile member under study consists of a chain

of N consecutive links in series.

b. The link strength has a statistical distribution

described by a probability density function (PDF),

f(a), and a cumulative function (CF),

F(a) = Prob.(L<a).

c. The probability distribution function and cumulative

function of strength for the chain are given respec-

tively by:

g(a) = Nf(a) [1. - F(a)]N -

G(a) = Prob.(o<a) = 1i. - [1. - F(a)] N

Therefore the determination of the link PDF and CF functions

will lead to the determination of the chain functions of inte-

rest, if the number of links N is known.

2.4 Assessment of the Number of Links N.

There are a number of ways to determine or at least to
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set bounds to the number of links N that make a tensile

member.

Sometimes the tensile member may naturally contain weak

sections that may be considered the center of a link slice.

Experimentally, as we did in our test, one can put notches

along the specimen creating very weak sections and so fixing

the desired number of links N.

If, however, a tensile prism of a constant cross section

and a given length is considered, an upper bound value to N

can be assessed. One can consider that the member is rein-

forced with the same fraction volume of fibers assumed

continuous and oriented in the loading direction. Using

existing reinforced concrete theories of cracking, it is

then possible to determine the average crack spacing and

so the average number of cracks developed along the loaded

member. This number may be considered as an upper bound

value to the number of links N.

Another, less constraining upper bound value is given

by the ratio of the member length to the fiber half length,

L/(t/2). This results from the assumption that the transfer

of load from the fiber to the matrix from an existing

crack is such that another crack will not develop along the

fiber embedded length. This bound may provide a realistic

value if fibers of average length are used.

A lower bound value to N seems to be realistically

defined as follows. Consider a crack across the member.
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The stress field is disturbed locally on either side of the

crack and becomes uniform only at a certain distance from the

crack. This distance can be estimated after Saint Venant as,

for example, twice the smallest dimension of the member d. The

corresponding link dimension is twice the value found.

Therefore N > L/(4xd).

Finally, the assessment of the number of links can be

made experimentally by determining in a sufficiently long

tensile prism the observed average number of cracks under

loading. This method implies that the postcracking stress is

higher than the cracking stress, such that more than one

structural crack develops. Similarly, an extensive experimen-

tal program may lead to some empirical formula relating

reinforcement parameters to average crack spacing, as in

conventional reinforced concrete members.

It seems a priori, that defining an upper and lower bound

to N if the exact value is unknown, can still provide a very

good estimation to the assessment of the strength distribution.

We will see later in this study that, if N is high, the

obtained normalized curves for g(c) and G(a) are much less

sensitive to an increase in N. (Fig. 9 and 10).

2.5 Validation of the Assumption on the Poisson Distribution

of Fibers.

This assumption is the most important stated and needs

experimental validation. It implies first that the fibers
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are distributed in the mass following a Poisson process,

second, that on the average, the number of fibers found in

a volume, is equal to the known average number of fibers

thrown into the matrix and directly related to the fraction

volume Vf, length t and diameter $ of the fibers.

Let's call Nv the number per unit volume of composite.

This is equivalent to saying that the fiber points

of intersections with a cross sectional plane are Poisson

distributed in the plane and that on the average the number

found per unit area is equal to the average theoretical

number, say Ns , directly derived from the knowledge of N v

However, these last two consequences are easier to

check experimentally.

Slices of fiber reinforced mortar specimens cut from

already tested beams with known reinforcement parameters

were analyzed.

For at least four different sections taken from diffe-

rent specimens of the same batch, the numbers of fiber

intersections were determined, added, and the average number

per square inch derived. In most instances the average found

was within a range of 154 of the theoretically predicted

values.

The random arrangement of the fibers over a cross

sectional area was verified by laying a grid of small squares

(Fig. 4b) on the section under study and showing that the

frequency of the fiber intersections per square is Poisson like.
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b) Example of Counting Grid for
Determination of Fiber Distribution
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In this case the theoretical curve to which the observed

histogram is compared, is obtained using as a parameter the

actually observed mean number of fiber intersections per

square. The X2 goodness-of-fit test was used on a large

number of histograms, to validate the hypothesis. In most

cases the 95% confidence level was passed and in many the

90% was passed. A typical example of a histogram and a

corresponding theoretical distribution of interest are shown

in Fig. 5 . Also an example of the X2 goodness-of-fit

test as applied in this study is treated in Appendix A.3.
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CHAPTER 3

PROBABILISTIC MODELING OF THE DUCTILE TYPE FAILURE

IN FIBER REINFORCED CONCRETE

This chapter describes the first part of the mathema-

tical formulation as shown on the flow chart, Fig. 3. It

applies to fiber reinforced members in which the ratio of

the fiber length to the member's dimensions is small, i.e.,

members that fail in a ductile manner. Two stages in the

material's response under tensile loading are identified:

the precracking and the postcracking stage. The latter will

be covered first in the following analytical treatment.

The major steps in the theoretical development are

described in detail in a flow chart, Fig. 6. Part I of the

chart is concerned with the assessment of the maximum post-

cracking strength of the material. It shows how the

relevant mechanical variables lead to the determination of

the maximum pull-out force for a random fiber. It also

shows how a random number of fibers in a state of pull-out

contribute to the link and chain strength.

In part II of Fig. 6, it is shown that the strength

at cracking is made up of the contribution of the two

major components, the fiber and the matrix. It is assumed

that the fiber contribution function contains the same para-

meters used to determine the pull-out force associated with
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a fiber but with different distributions or values. Re-

ferring to the upper branch of the figure, the efficiency

factor of, for example, orientation y, will be equal to

cos 2 rather than cos 0 in the precracking state. The

fiber contribution function before cracking is therefore

related to the pull-out force by a factor. Later on in this

chapter, we will discuss the matrix contribution to the

precracking strength.

3.1 Definition of Relevant Data.

Given data as used herein are in general independent

variables that are known or that can be controlled exoge-

neously. They describe mainly the component properties,

dimensions or proportions. Following is a list of the most

relevant variables, as used in this chapter.

Vf = fraction volume of fibers

t = fiber length inch

= fiber diameter inch

= bond or shear strength at the fiber matrix

interface psi

amu= ultimate tensile strength of the matrix psi

smu= ultimate tensile strain of the matrix

N = number of links of the tensile member

A = cross section area of the tensile member sq.inches.

From part of these data and the assumption on the

Poisson distribution of the fibers in space, we will first
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determine two endogeneous or dependent variables of interest,

the number of fibers per unit volume and the number of fibers

intersecting a unit area.

3.2 Number of Fibers per Unit Volume and Corresponding

Number of Fibers Intersecing a Unit Area.

Given the fraction volume Vf, the length A, and the

diameter 6 of the fibers, it is straightforward to deduce

the average number of fibers per unit volume as related to

these parameters

4vf
(1) Nv =

In fact, the real number of fibers found in a unit

volume of the composite, say R, is statistically distributed

and related to Nv by the following Poisson distribution

function
-N

(2) P(R) = R! .-

P(R) is the probability of finding exactly R fibers per

unit volume knowing that on the average there are Nv  fibers

per unit volume. The number of fibers intersecting a unit

area of a cutting plane, say Ns, depends on N

Assume the R fibers are randomly oriented with

uniform distribution over the hemisphere, and independent



of each other. Consider a cutting plane. If the center of

gravity of the fiber is at a distance t from the plane,

the probability that the fiber will

intersect the plane is related to

the ratio of areas of a zone on a 1/2

sphere to the sphere. The area of

a zone is proportional to the

height h, and we have the follow- N -

ing result:

Prob(fiber cut planejgiven its center is at dist t) = A/2

i.e. Prob(intersectl t) = 1 -2t for t < /2

= 0 for t > t/2.

Note that the distance t is uniformly distributed between

zero and A/2.

Considering a unit volume on one side of the plane, the

expected number of fibers intersecting an area A in the

plane is

/2 2t
/2 (1 )NvA dt = N A4

0

and for a unit area A = 1 - Nv4 .

Now if we consider the fibers on either side of the

plane, the expected number of fibers that intersect a unit

area on that plane is given by
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2V
(3) Ns =2N = N =2V.

As Nv is the mean value of a number R of fibers that

have a Poisson distribution, Ns is the mean value of a

number q of fibers that have also a Poisson distribution.

Therefore we have

-Ns

(4) P(q) =

This is the probability of finding exactly q fiber

intersections per unit area knowing that on the average there

are Ns fiber intersections.

3.3 Characterization of Relevant Variables Associated with

a Fiber in a State of Pull-out.

Let us consider a random fiber in space (Fig. 7 ), of

length A and diameter 3 constants, and let us define its

orientation by the angle e of its axis with the loading

direction zz. Also, let us describe the relative position

of the fiber with respect to a cutting plane normal to the

loading direction by a variable x. The cutting plane

materializes a cracking plane and x represents the smallest

length of the fiber on either side of the plane. It is the

fiber part that will pull out after cracking. We shall first

assess to each of these variables a distribution function,

; -li.----i--..-~~-X- r- ~ - -i _~-L- ._ 1-- . ._.. I ~__ _~I
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in order to be able to define the distribution function of

the pull-out load associated with one fiber.

3.3.1 Statistical Characterization of x

x is the smaller fiber length on either side of a

cracking plane. It has a uniform distribution between 0

and A/2.

So the probability density function of x

fx(xo) = 2dx = Prob(x < x < x0+dx)

and the cumulative function of x

F(x0 ) = 2 X0 1 0 = Prob(x < x0 ).

Values of interest are given below:

Expected value =

Second moment =

(5)

Variance =

Stand, deviation

E(x) =3 = I
0

x fx(x 0 )dx =

2 2
E(x 2 )

Var(x)= E(x 2 ) - E2 (x) 2

= SD(x) = VVar(x) =
4/7

3.3.2 Statistical Characterization of y.

y is defined as the efficiency factor of orientation.

It is the ratio of the pull-out load sustained by a fiber



51

oriented at an angle e to that of a fiber oriented at e=0.

For a fiber in a state of pull-out, y is theoretically

equal to cos e.

It was assumed earlier that the fibers in space have

equal probability of being oriented in any direction. So the

angle e in space has a uniform distribution between 0

and r/2. Therefore the PDF of e is:

2
fe(e0 ) de

and the CF is

F(eO) 2 8

Let's determine the PDF of y = cos 0.

f y(yo) = Prob(yO y y0 + dyO)

fy(Y0 ) = II 0

dee 1 1 1
dy sin 0 '- , cos 2 e -1 1Ly2

so fy(yo) 2 dy

1 y

and F(yO ) = fy(Y 0 )dy = sin 0 ).
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Values of interest are given below:

y = cos 0

E(y) = y =2

E(y )

(6)

var(y) - gf

3.4 Statistical Characterization of the Pull-out Force Fp

Associated with a Random Fiber.

In a most general form, the pull-out force associated

with one fiber can be written as follows:

(7) F = T~T xy .

We already mentioned that the diameter 6 is a given

constant. This section aims at characterizing the statistical

values of interest for Fp.

Let us note at this point that it is not necessary to

determine the full distribution function of F in order
p

to derive that of the link strength. As the link strength is

made up of the addition of pull-out forces associated with

a big number of fibers, and as these forces have the same

distribution, the central limit theorem of probability theory

tells us that the link strength distribution will be Gaussian.
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The Gaussian or normal distribution will be fully determined

if its two parameters, the mean and the standard deviation,

are determined. In our attempt to characterize Fp we

will mainly concentrate on determining these two parameters

when the full distribution function seems to be analytically

out of hand. We will distinguish a number of cases leading

us from a purely theoretical form to a form that is more

closely adapted to experimental observations.

3.4.1 Case where 7 = constant and y = cos e.

This case is based on the widely used assumption that

the shear or bond strength is a constant and that the

efficiency factor of orientation varies as theoretically

predicted following cos e. In this case

t t
F =n TTxy = c x xy = c x z

where z = xy and 0 < z < . We shall determine the2

distribution of z first in order to find that of Fp.

x and y are independent variables. Their joint

probability density function is equal to the product of

their individual PDFs . Therefore

fx,y(XYo) = fx(X)fy(Y) 4 1 dx dy
x~y~O-VO x0 y0 T'9 A--y2

with 0 < x </2 and O<y l .
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The method of solution [31] is to find first the Prob(z<zO),

i.e. the CF of z and differentiate it z 0

with respect to z to getthe PDF. In

order to determine the Prob(z <z) 1

we have to integrate the joint PDF

of x and y over the domain of

interest as shown in our sketch. 0 x L/2

Therefore:

4
Prob(z < z0 ) = 1.

0) TTA
dX J

x=z
0

1
Z1 dy

y=zO/xI

Integration gives the cumulative function

Prob(z <z) = F(z O) = 2

and by differentiating F(z) we obtain the PDF of z:

4
fz(Zo) - 4

I - ( z o0 //2)
1n dz

z0
0 <z < /2.

Values of interest for z are given below:

E(z) I

E(z = 6, 2)
6n

Var(z)= 2A2 1 5)
12nT

SD(z) = - 5
V/' 12 2

sin-i Z 2 Zo 1 l- - (z / )2

(8)
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As Fp = c t x z, the descriptors of interest for Fp are

directly derived below:

E(F ) =6 /

(9)2 21 1

Var(Fp) = (w7*221 - 5 ]

p l12w

Instead of deriving the PDF and CF of Fp, it seems of more

interest to derive those of a normalized variable p

defined as

Fp T jT z z
(0 P = Fpmax v7 y / 2 =/2

where F pmax is the maximum value that Fp can take, corres-

ponding to z = 1/2. From the PDF and CF of z we derive

the corresponding distribution functions for p as follows

1F(pO) = Prob(p<po) 2 sin-1(0) -p n ( -P

f (() - n (

with 0 < p < 1.

Normalized curves representing these two functions

have been plotted for use in Fig. 8.
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Note that

E(p) = = 0.318

(11) Var(p) =4( ) = 0.081
127

SD(p) = ar(p) = 0.284

3.4.2 Case where T is statistically distributed and

y = cos e.

Like any other property of the material, the bond

strength 7 as observed in practice is not a constant but

rather a statistically distributed variable. In general

we have at least a histogram of results for 7 from which

we can determine the expected value T and the variance

Var(T). These will allow us to derive the statistical

descriptors of interest for F p:

E(Fp) = 1 /2

Var(Fp) = (7r)2 Var(T)E(z 2 ) + Var(z)E(Tr )

+ Var(r) Var(z)]
(12)

SD(F ) = /Var(F )

E(F ) = Var(F) + (0 1/2)2
p p

Note that (2 = Var( + -2Note that E(2 ) = Var( ) + .
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3.4.3 Case where the product Ty can be represented by a

single variable, say u.

This case may result from the experimental determina-

tion of T versus the angle of orientation e. Defining y,

the efficiency of orientation, as the ratio of the bond

strength associated with a fiber pulling out at an angle e

over that of a fiber pulling out at e = 0, the product

Ty = u represents the experimental value of a bond strength

associated with a randomly oriented fiber. Assuming we know

the expected value u, and variance Var(u) of the

variable u, we can derive the statistical descriptors of

interest for Fp

E(Fp = 4 1 u

Var(F) = (7r)2 [Var(x)E(u2) + Var(u)E(x2)

(13) + Var(u) Var(x)]

-1= 2 E(u2 ) + 5 Var(u)]
48

3.4.4 Case where 7 is a function of the amount and

properties of the reinforcing fibers.

We have assumed so far in the model that the

apparent bond strength, whether given by a constant or by

a distribution, is independent of the reinforcement para-

meters. In a number of investigations dealing with the bond
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strength associated with conventional reinforcing rods in

concrete [106], it was pointed out that the observed result

was very dependent on the size of the embedding matrix

volume. Translating this to fiber reinforced concrete,

it is to be expected that the concentration and properties

of the fibers pulling out simultaneously from the same

surface, will directly influence the normalized pull-out load

per fiber and the apparent bond strength associated with it.

In practice we observe a high level of deterioration and

disruption of the matrix, on either side of a crack, after

the complete pull-out of the fibers. The level of deterio-

ration seems to be a function of the fiber properties

(length, diameter, flexibility), the number of fibers bridg-

ing the crack and the local resistance of the matrix. Given

a certain type of fiber, this observation suggests that the

apparent bond strength per fiber will be dependent on the

number of fibers pulling out per square inch. The a priori

and subjective relation is very likely to be a decreasing

function. Therefore, given the reinforcement parameters,

one can define ranges of values for the average number of

fibers per square inch, inside which the corresponding bond

strength will be assumed donstant. Then the final solution

to the pull-out force per fiber Fp will be similar to one

of the cases already treated.
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3.5 Determination of theLink Postcracking Strength & Toughness.

The maximum postcracking force FL associated with a

cracked cross section or link is made up of the sum of pull-

out forces Fp associated with a random number Nr of

(Poisson distributed) fibers bridging this section. As all

F have the same distribution function, FL will,after the

central limit theorem, have a normal distribution. Also the

maximum pull-out strength a cu which is equal to FL/A

where A is the cross section area, will have a normal

distribution. It will be fully defined if its two descriptors,

the mean and the standard deviation, are known. Normalized

standard tables then provide the full distribution functions.

In the most general case, the sum of a random number of

independent, identically distributed random variables has

the following moments:

E(FL) = E(Nr) E(Fp)

Var(FL) = E(Nr)Var(Fp ) + E2 (Fp)Var(Nr)

which give for the maximum postcracking stress

F N
E(cu) cu = E(--) = E() -A-)E(Fp) = NE(Fp)

N
Var(acu = Var(FL) - [Var(Fp) + E2(Fp)

Acu p p

that is
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2Vf

cu =  E(Fp) < f uVf

(15)
2V 1

Var(cu )  =[Var(F) + E2(F)]

Note the upper bound on acu as we are assuming that the

fibers are in a state of pull-out, otherwise the composite

postcracking strength will be equal to the load carrying

capacity of the fibers bridging a unit area.

For the theoretical case where the efficiency factor

of orientation y equals cos 0 and where 7 is assumed

constant or given by a frequency distribution, from (12)

and (15), the expected value of the maximum postcracking

stess is

j-u 1 a
Cu 7 r u f

Note that for the case where 7 is assumed constant, the

variance will be

(17) Var(acu) A V 2 1 1

where A is the area of the cross section under study.

The work at fracture per unit area, Gcu, called

also the toughness, can be calculated as the sum of the

(16)
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work to fracture the concrete matrix

and the frictional energy dissipated

by the pull-out of the fibers up to P

complete separation. Assuming that

the pull-out force decreases linearly

with the pull-out distance, the x

frictional work associated with one

fiber can be written as follows

(18) G F x2

For a random number of fibers Nr intersecting an area A

we have in the most general case

pr = Nrp

E(Gpr) = Gpr =E(Nr)E(Gp)

(19)
Var(Gpr) = E(Nr)Var(G p ) + E (G p)Var(Nr

and the normalized values per unit area will be

G NG

Gps _F

E(G ps )= ps NsE(G )

(20) N
Var(Gps =  [Var(G ) + E2(G)] .VErG 5 APs p p
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For the theoretical case where y = cos e and 7 is

constant or given by a distribution function we have

(21) ps i 7 Vf 2

For 7 = ct the variance takes the following form

r Vf 2 1 4

(22) Var(Gps) =320 A
320 A

In order to calculate the energy at fracture or

toughness of the composite (Gcu), we have to take the matrix

contribution G into account
mu

E(Gcu) = E(Gmu) + E(Gps)

(23) Var(Gcu) = Var(Gmu) + Var(Gps)

For the theoretical case of y = cos a and 7 constant or

statistically distributed

(24) -cu - - 2
Gcu = Gmu + f = 2Yc

where yc is the expected surface energy of the composite.

From the values of Gcu or v- one can directly

derive the expected value of the composite fracture toughness

as follows
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for plane stress Kc = J2c c

(25)- cEc
plane strain K = 2i- c1- V

where Ec and vc are the composite modulus of elasticity

and the Poisson ratio, respectively.

3.6 Estimation of the Link Strength at Cracking.

The cracking strength of fiber reinforced concrete is

made up of the contribution of the matrix and the fibers,

respectively. As the matrix is assumed to have isotropic

properties, its contribution to the composite strength is

generally given by jmu(1-Vf). The fiber contribution, however,

requires more consideration.

An attempt has been made (Appendix A.4) to predict the

cracking strength of fiber reinforced concrete using a

composite material approach similar to that of Kelly and

Davies but taking into account the randomness of the fibers

in space. The model assumes that the tensile stress in the

fiber is induced by a minimum differential strain at the

fiber matrix interface, which will allow the full develop-

ment of the bond or shear strength. This also means that a

minimum tensile strain shall be inflicted on the composite

in order to allow the shear stress at the interface to

reach its maximum value. Corresponding calculations lead to
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the conclusion that the necessary strain to be applied on

the composite is an order of magnitude higher than the

ultimate cracking strain of the concrete matrix alone.

Therefore this method cannot currently be applied to concrete

matrices and will be best suited to matrices having a higher

tensile strain at ultimate.

However, in order to realistically estimate the fiber

contribution in the precracking stage, the following assump-

tion is made: the term corresponding to the fiber contribution

shall contain the same major variables as in the postcracking

strength, but with different distributions. For example,

variable x will be replaced by 4/2, y will be equal to

cos2 0 instead of cos 8, and T will be partially present.

Therefore, the fiber contribution in the precracking stage

will be equal to the postcracking strength multiplied by a

factor. This factor can be experimentally estimated, as was

done in Chapter VI for the tensile prisms tested in this

study.

In view of the preceding remarks the expected value

of the composite cracking strength has the following

general form

(26) acc = mu(l-Vf) + a'cu - mu(1-Vf) +  fuVf

that is

cc = mu( - Vf) + -- Vf
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or

(27) cc = mu(l-Vf) + a y Vf

subject to a 7 < afu.

This last constraint limits the contribution of the

fiber to that obtained by continuous reinforcement.

Assuming that the variance of the matrix tensile

strength has been experimentally determined and that it is

independent of the fiber reinforcing parameters; we have

(28) Var(acc) = (l-Vf) 2 Var(amu) + a, 2 Var(acu )

where Var(acu ) has been calculated in section 3.5

Furthermore the cracking stress a cc may be assumed to be

made up of, for example, a big number of cracking forces

associated with elemental areas containing on the average

one random fiber. The distribution of acc will therefore

be Gaussian, as that of acu"

In fact some experimental observations L15,16,65,70]

show a significant relation between reinforcement parameters

and the apparent cracking strain of the matrix. This seems

to result from the high distribution of the fibers in the

matrix. In general the apparent cracking strain increases

with Vf and and therefore the cracking stress of the

matrix shall be modified correspondingly. The following
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formula is appropriate

(29) = m(1-Vf) + a Vf
cc mu

where a*S is the modified matrix strength.mu

The determination of a* may be obtained bymu

measuring the apparent tensile strain of the composite at

cracking and the elastic matrix modulus, or by extrapolating

results obtained on cracking stress versus Vf and L/$.

In the case of fiber reinforced concrete Vf and J/ have

relatively small values. Moreover, they cannot have a large

range of variation without modifying the matrix strength

through addition of water for mixing purposes. Therefore

formula (27) is still useful for a first approximation

estimation.

3.7 Determination of the Chain Strength.

Most of this chapter has been devoted to prove that

the link's pre- and postcracking strengths are normally

distributed and to determine their statistical descriptors,

the expected value and the standard deviation. These para-

meters allow us to fully determine the strength distribution

functions PDF and CF or to refer to normalized standard

tables to determine them. The distribution functions of the

chain strength have been given in function of those of the
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link in section 2.3. Note that there is no direct formula

to determine the expected value of the chain strength, but

it can be calculated numerically. It is given by:

+00 +N-
(30) E(acu chain = a g()da = N al-F(a)N-Lf(a)da.

In order to present an easy-to-use tool, some normalized

curves of probability density functions and cumulative func-

tions of the chain strength have been numerically calculated

and plotted. (Fig.9 and 0), for a chain having various numbers

of links. The normalized variable used is the normalized

Gaussian variable z and it is defined by

a - E(a)N=l
(31) z = SD(a)N=

Let us note that for N = 1 the PDF curve is symmetrical

(normal distribution), while for N > 1 it is not, even

though it gives that impression on the graph.
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CHAPTER 4

A SIMULATION MODEL FOR THE BRITTLE TYPE FAILURE

IN FIBER REINFORCED CONCRETE

This chapter is concerned with the second part of the

mathematical formulation as shown on the flow chart Fig. 3

Its objective is to present what the author considers basic

principles and physical observations involved in understand-

ing the way fiber reinforced cementitious materials fracture,

with a particular emphasis on fiber reinforced concrete. It

begins with a very brief review of fracture mechanics and

its application to homogeneous and composite materials. A

description of the fracture behavior of concrete and fiber

reinforced concrete, necessary for the full understanding of

the proposed model, follows. The proposed model for the

brittle fracture of fiber reinforced concrete is then pre-

sented and solutions proposed either through a mathematical

lower bound solution or by a simulation method. A final

section is devoted to discussing a specific example with fiber

reinforced concrete.

4.1 Some Background on Fracture Mechanics.

The body of knowledge known as fracture mechanics is a

relatively new one and there are many problems of concern

that remain unsolved. Moreover, the analysis of fracture
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in composites is one of great complexity [4 ,10,77] involv-

ing many possible failure mechanisms and the process is by

no means completely understood.

Fracture mechanics started with the famous relationship

on energy balance in brittle homogeneous materials provided

by Griffith [41] using an available stress analysis developed

by Inglis. An extension of the result by Orowan, Irwin, and

co-workers led to the following relation that applies to an

infinite plate containing a sharp crack and subjected to

tensile loading

2E y

(1) 0nom.crit. =

where

anom.crit = nominal stress at fracture

E = elastic modulus

yp = plastic work term

c = half the crack length.

Note that this equation can be rewritten as

Snom.crit"(7c) = (2Ey p) separating materials properties E

and yp from geometric properties. The quantity (2Ey )i

is called the notch toughness and is commonly designated by

Kc. At fracture

(2) Kc = Cnom.crit. ( Tc)
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K is also commonly called fracture toughness or stress

intensity factor. For levels of stresses a below the

anom.crit. required for crack extension, K is defined

as the stress field intensity parameter and is equal to

K = a,/ i. In its most general form, however, the notch

toughness is given by a /aF where a is a factor dependent

on specimen geometry and boundary conditions. For relatively

large size members a is taken equal to unity. The critical

value of K in the opening mode (tensile field) is called

Kic where the subscript I denotes that the applied stress

causes the crack to "open".

The notion of stress intensity factor, which was mainly

developed for the two dimensional case of a crack in a plate,

has been extended by Sneddon [6,94] to the tridimensional

case of a circular disk crack of radius c in an infinite

solid subject to a uniform tension normal to the crack plane.

His result for the crack tip stress expansion leads to the

following expression

(3) KIc = a nom.crit. "

The principles of linear elastic fracture mechanics can

be used [99] to relate the critical value of K to the criti-

cal value of G, where G is the work done per unit area of

crack formed during the separation process. Note that Kc

characterizes a critical stress field intensity while Gc

characterizes a critical energy release rate. Depending whether



conditions of plane stress or plane strain exist Kc and

Gc are related as follows

(4) for plane stress Kc = J/Yc

for plane strain Kc =FG
1-v

where E and v are the elastic modulus and Poisson's

ratio of the material.

A review of the application of fracture mechanics to

concrete as well as determination of the critical values of

K, y and G is made in [68]. More general applications

to composite materials can be found in [ 8,10,723.

4.2 Fracture Behavior of Concrete and Fiber Reinforced

Concrete as Compared to Other Materials.

A general feature of the fracture process in cementitious

matrices is the accumulation of very fine porosities or holes

into larger faults. According to Griffith's theory these

holes are far too small to enlarge rapidly. In particular,

the fracture of concrete involves three processes:

a) The initial growth of microcracks at low stresses

[36, 50, 54].

b) The linking of microcracks with other microcracks

of similar size under increasing stress or strain

to form a macrocrack.

c) The unstable propagation of a macrocrack up to
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complete fracture.

A macrocrack can be visualized as the concentration of

holes or weak adhesion portions.

One way of increasing the strength of cements and

concretes is to increase the dissipation of energy at

fracture which can be done by inserting fibers. Apparently

the presence of numerous and fine fibers constrains local

failures at weak portions and enables cementitious matrices

to display higher strains and/or stresses at fracture.

Therefore the statistical distribution of weak portions could

be considered as an important parameter in determining the

strength.

There has been a limited amount of theoretical work on

the extension of fracture mechanics to fiber reinforced

materials L4,66,72]. Presently the analyses applied are

those of homogeneous fracture mechanics modified to

simulate more closely a typical composite. A very crucial

point is in general concerned with the determination of the

composite's toughness which is intimately related to not

only the behavior and properties of the individual components

but to their mutual interaction. Frequently a distinction

is made whether the fiber and the matrix are brittle or

ductile, whether the fiber will break or pull out under

loading, whether there is debonding or delamination along a

certain portion of the fiber before fracture, etc. A summary
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of available information on the subject is made by

Tetelman in [98].

Describing fracture in fiber reinforced concrete it can

be said that fracture is generally initiated by a matrix

tensile fracture followed by an interface shear fracture or

fiber debonding. Debonding adds a significant amount to the

energy absorbed or toughness of the composite.

The analysis of the stress field at the tip of an

advancing crack in homogeneous materials identifies in

general two zones of interest: the plastic and the elastic

zone. Immediately surrounding the tip of the crack the

plastic zone represents a region where high strains are

induced and where the material has yielded locally. Outside

the plastic zone, the elastic zone represents the portion of

material in which the elastic stress field predicted by the

theory exists. Conventionally, the plastic zone in a homo-

geneous isotropic material has been estimated by computing

the distance from the crack tip to the point where the

longitudinal stress equals the tensile yield strength of

the material [ 6, 7]. Depending on the degree of brittleness

of the material, the plastic zone size may be very small.

For example, it is of the order of one millimeter in brittle

steel while in ductile steel it is an order of magnitude higher

[74,76]. In composite materials a pseudo plastic zone

is generally visualized where miniature tensile specimens

represented by the fibers are assumed to contribute to the



toughening mechanisms [72,57]. Here too the analysis is

different whether the fibers debond, delaminate or break.

In fiber reinforced concrete the plastic zone represents

an area where the matrix is cracked and where the fibers

are in a local state of pull-out. An attempt has been made

to describe qualitatively in Fig.11 the stress distribution

in the two zones of interest. In the plastic zone the

material is locally in its "postcracking state" as compared

to the "precracking state" which characterizes the elastic

zone. Note that the stress distribution in the plastic zone

is not uniform but reflects the relationship between the

pull-out resistance of the fibers and the crack tip opening.

However, an average stress value can be assessed to simplify

the problem. In order to estimate the size of the plastic

zone in a fiber reinforced material where fibers pull out

a s in concrete, one can use a cleavage specimen [46,66] and

measure the crack extension for an opening at the crack tip

equal to half the fiber length. Therefore, depending on the

fiber length and other geometrical and material characteris-

tics, the measured plastic zone size will be more or less

important. For fiber reinforced concrete it is certainly

of the order of a few inches while for asbestos cements it

may be an order of magnitude smaller.
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4.3 Proposed Fracture Model and Major Assumptions.

The proposed model is based on the understanding of

some of the remarks and observations made earlier. Due

to the small volume fraction of fibers generally used, it is

assumed that the crack initiation and extension process in

fiber reinforced concrete is qualitatively similar to that

of concrete alone. Macrocracks in the matrix are going to

form and extend under loading but complete fracture of the

composite cannot occur without the necessary energy to pull

out the fibers.

Another important consideration relates to the distri-

bution of "inherent weak areas" in the composite. An

inherent weak area is defined herein as a portion of the

member cross section where there is no fiber intersection.

In a more general definition, it is an area where the number

of fiber intersections is less (

than or equal to a minimum

value characteristic of the

material. This value corres- ri

ponds to the critical volume

fraction [55] in discontinu- m - Vf

ous fiber reinforced composites o 
1fmin

and is explained on the sketch o

on the right. The existence of Fraction Volume
of fibers

inherent weak areas is due to
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the random nature of the fiber distribution. The distribution

of largest weak areas in the links of a chain member may have

a critical importance on the observed composite strength.

Therefore the following assumptions are made:

1. Potential cracks are more likely to generate in portions

of the link cross section containing no or a small

amount of fibers depending on the material character-

istics.

2. The minimum length of a crack 2a that may become

critical is very likely to be at least equal to the

plastic zone length 2R plus the diameter of the

largest inherent weak area 26. (Fig. 12). Including

the plastic zone size in the value of the critical

crack length is a consequence of the fact that the

matrix is really cracked in the pseudo plastic zone

described earlier.

3. The strength of the fiber reinforced member is assumed

to be controlled by the worst "crack", the one having the

largest diameter, among the large number present.

Assumption 2 allows us to estimate a lower bound on the

length of the worst crack as 2a = 26 + 2R and its

distribution can be determined from that of 6 assuming

R constant for a given composite.

4. The fundamental fracture mechanics relation, relating

half crack length a = 6 + R, strength a

and the fracture toughness K c,
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in the tridimensional case holds, that is

(5) K = a P '+(5)Ic nom.crit. .

5. The fracture toughness Kic (or equivalently GIc) as

well as the plastic zone radius R can be determined

experimentally for a fiber reinforced material. For

given component proportions and characteristics Kic

and R are considered average composite material

properties.

6. From assumptions 3, 4 and 5 an upper bound distribution

on the link strength at composite fracture can be

established. Note that the probability that the link

strength is less or equal to 0O is equal to the pro-

bability that the radius of the largest critical crack

a is higher or equal to aO.

7. The distribution functions of strength for the chain

can then be derived numerically from those of the link

as described in 2.3.

Let us note that we have stated an upper bound value

criterion on the composite strength. This is not the only

upper bound however. The value of the composite strength

derived in Chapter III is also an upper bound solution as it

considers the ideal case where a crack propagates instanta-

neously through the matrix and where a perfect redistribution

of load between all fibers and equal strain on the link cross
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section exist. These two values can be compared and the

lowest one used. Moreover, a lower bound value on the

strength can be obtained by using the anom.crit. of the

non-reinforced matrix.

Let us finally mention that the only experimental

values that are needed for the proposed model are the

fracture toughness KIc and the plastic zone radius R

and they can be obtained by running a single experiment,

that is a double cantilever cleavage type beam [66,67].

The determination of the distribution of 6, the radius of

the largest inherent weak area, is treated in the next

section. Depending on the relative magnitude of R and 6,

the fracture process may be more or less influenced by one

term or te other. If 6/R is high, the statistical distri-

bution of the inherent weak portions will have a major

influence on the fracture process while if 8/R is small

only the plastic zone size will be important.

4.4 Distribution of Largest Inherent Weak Areas

in a Link Cross Section.

Let us recall that "inherent weak area" refers to

portions of the link cross section containing no fiber inter-

sections or a number less than or equal to a required minimum;

we are interested in defining the distribution of the largest

weak portion in a link cross section, knowing the area of the
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link and the average number of fiber intersections per square

inch. In the following section an attempt is made to define

a mathematical lower bound solution, as the exact solution

is of extreme complexity. However, a fairly good solution

can be obtained through a Monte Carlo simulation model

which is explained in section 4.4.2.

4.4.1 A Lower Bound Mathematical Solution.

The definitions of major terms as used in this

section are:

A = cross sectional area of the prismatic member

or the link in square inches

Ns = average number of fiber intersections per square
2Vf

inch N = 2V

A = elemental area containing on the average one fiber

intersection

eO = weak area assumed to be a crack nucleus. It

contains zero fibers or depending on the material,

a proportion of fibers less than or equal to a

minimum characteristic value, pn 0.

nO = number of elemental areas contained in the basic

grid under consideration. Also, equal average

number of fiber intersections in a square of the

basic grid.
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In order to simplify the following computations it is

assumed that the link cross section is square. The method

described can be applied to other forms of sections.

Let us divide the cross sectional area of the link,

say A, into small square areas called "elemental areas",

say A, containing on the average one fiber intersection.

The distribution of fibers in the cross section of a link

as well as in the elemental areas, is of Poisson type.

Similarly, one can consider

dividing the link cross section

into larger squares of area nOg -- no -

and containing on the average

nO fiber intersections. We

are interested in the probabi-

lity of finding in the link

cross section a "weak" area of

size n? larger than or equal

to n.O. Here "weak" means empty or containing a number of

fiber intersections r less than or equal to pn O , assum-

ing pn 0  rounded to the closest integer, and p is a fixed

proportion assumed to be characteristic of the material.

Let us lay a grid on the link cross section made of

squares of size no0 , i.e. nO times the elemental area.
NL

There will be L- such squares in the link cross section.
no



Also, let us consider the actual

number of fiber intersections r

in a random sample of these

squares. We have the following

n r-n

pr(r) = 0 r.

This is the probability of finding

r fiber intersections knowing

that on the average there are nO

fiber intersections. Therefore

0 -n0
0 Onoe -n O

Pr(0) = 0. = e

pn0 -pn0n e

pr(pn) pn

Prob( r<pn 0 )

Note that for r = 0

pn r -nonoe

r=0

P = e-no

Let us then perform the following Bernoulli test on

each of the squares of size nO? of the given grid:

x=l x

x=0
0

success: area of size n0  contains

a number of fiber intersections < pn0

failure: it contains more than pn O.

0

.

. . I . •IS *• •

S 4 * 0

and

(6)



where x is the Bernoulli variable.

Let S be the sum of NL independent Bernoulli
nO

random variables x. The probability mass function (PMF)

of S is described by the binomial PMF which in terms of

our variables is given as follows

N L SO NL/nO -SO
pS(SO) = 0(Po) (1 _p LO-

We are mainly interested in the probability of S > 1, i.e.

in the probability of finding at least one "weak" area of

size larger than or equal to nO . Therefore

Prob(S>l) = 1i. - Prob(S=O)

but Prob(S=O) = (1. -Po NL / n O

NL/n.
So Prob(S>l) = 1. - ( 1 .- Po)NL/nO

In terms of the size of the weak area of interest e we have

Prob(S>l) = Prob(e>eO ) = Prob(nA >noA) = Prob(n>no).

So the final expression in terms of nO  is

-n
pn0 nre 0 NL/n

(7) Prob(e>e0 ) = Prob(n>n0 ) = .- (1. - r!
r=Note that this is a very lower bound value as the scheme of

Note that this is a very lower bound value as the scheme of
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the grid may be modified. The point of origin of the grid

may be chosen in no  different ways inside a square of

size nO (see sketch), the

orientation of the grid axis may

be changed and the forms of the

basic areas of size nO may

be modified to rectangles or

otherwise. The problem becomes O

extremely intricate and no

exact mathematical solution

seems to be possible. Further-

more, any mathematical attempt at

a solution is made more difficult as dependencies exist

between events if more than one grid scheme is considered.

Another lower bound value, based on the strong assump-

tion that independence exists between two overlapping squares
NL

of two different grid schemes, leads to consider no x nOO
Bernouilli tests and therefore

-n
pn0 nr e -n

(8) Prob(e>eO) = Prob(n>no) = 1. - (1. ., ) L
r=O

In order to derive the distribution function of the

crack radius associated with a weak area, one can, for

example, make the following assumption: the crack size 26

is equal to the diameter of the circle having the same
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area as the square under considera-

tion. Therefore

0 = nOA = w6sO

1 2and as Ns = - nO = r Ns 80 '

So we replace in equation (7) no

of 60.

by its value in function

In the particular case where it is known that the plastic

zone size R of the composite is negligeable or very small

one can directly assess the cumulative function of link

strength a by replacing a = 80

function of KIc and g0,

by its value in

that is:

2
n = TT N
0 s 0

and from equation (5) we get

(9) 2 ,2K 4

and

T3  K 4
(10) no 1- Ns(=

so that
NL 3

Prob(c<oO ) = 1. - (1. - P) S0 0

(K )4
0 /

NL
and as = area of the link cross section A, we end up with

S
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A 3 KIc Y4

(11) Prob(a<a ) = . - (1. -P 0 ) O

where P0 is given in function of a0 ' -no
For the particular case where PO = e , i.e. where

the weak areas are completely empty we will have

T3 4 3 K 4
- -N s 7_ Ai3(K (

(12) P(<a0 ) = 1. - 1. - e 0 0

4.4.2 Simulation Model for the Determination of the

Distribution of Largest Weak Areas in a Link Cross Section

As it is impossible to derive an exact mathematical

solution to the distribution of the largest weak portions

in a link cross section, a simulation method is proposed

in order to get at least a numerical solution to the problem.

This is achieved by the Monte Carlo simulation method. The

Monte Carlo method [44,62] is a simulation technique that

has been used in a variety of disciplines to study and

predict the behavior of both deterministic and stochastic

phenomena. With the development of high speed computers

and the random number generation routines, this method has

become an invaluable tool in the fields of operations

research and systems engineering. Its application to civil

engineering problems in order to take into account



CF

ix
w0:aD

O0 z
zo
4

I I
I I

I I

no = AVERAGE NUMBER OF FIBER INTERSECTIONS PER SQUARE

r : ACTUAL NUMBER OF FIBER INTERSECTIONS PER SQUARE

FIG. 13. MONTE CARLO SIMULATION FOR THE
OF WEAK AREAS.

91

... .... .... .. ... .. ... .. ... ....... .... ..

..... .. . .. .. . ..... : :: :

:A~M ---- -----M 44....ii.i [.Wi i4

.iiiii.i.iii.iiiii. .*iiiii -.ii.i . ......

DISTRIBUTION



material and structural variabilities is relatively recent

L 21 5410od.

This method as used herein is relatively very simple.

The problem is to find the distribution of largest weak

portions in the link cross section. As we know a weak

portion is an area containing no fibers or a number of

fibers less or equal to a specified limit, say pn0  rounded

to the closest integer. We also know that the fibers are

Poisson distributed in the link cross section. Given data

related to cross section area A (assumed square, for

example), and average number of fibers per square inch Ns,

the method involves the following steps:

1. Divide the link cross sectional area by a grid of a

relatively large number of small squares that will

contain each on the average nO  fiber intersections.

2. Calculate the probability that each of these squares

contains a number of fiber intersections less than or
-n

equal to pnO , i.e. pn 0 nre 
0

r=O

3. Generate a random number RN, with a uniform probability

distribution between zero and one. (Fig. 13)

4. Compare result.
-nO

pn n-renO

If RN > 0 r fill corresponding square
rwith a starr=0

with a star



n0 nre-n0
If RN < -, leave blank

r=0

5. Repeat steps 3 and 4 for every small square of the

cross section.

6. Repeat step 3, 4, 5 for a big number of runs, say 100,

of the same cross section.

7. Analyze results as directly drawn on paper (Fig. 13)

by a computer routine. Find the frequency distribution

of largest blank areas. Limit search, for example,

to convex areas with ratio of diagonals between one

and four.

Having the distribution of the largest weak portions

one can derive the distribution of the largest radius 6

associated with them and then, using equation (5) derive

the distribution function of strength knowing Kic and R.

4.5 An Example of Application to Fiber Reinforced Concrete.

The manner by which the proposed model can be applied

to steel fiber reinforced concrete is demonstrated by a

simple example below.

The distribution of the largest diagonal 26 associated

with the largest weak area in a link cross section has been

obtained using the simulation program described earlier for

the following particular data:



Link area = 20 x 20 = 400 square inches

Average number of fiber intersections

Ns = 100/Square inch

Critical proportion p = 0.2.

The frequency distribution of 26 as obtained is drawn

on Fig. 14. It shows that 28 varies mainly from 0.3 to

1.6 inches with a peak value at around .7 inches.

The plastic zone radius R can be estimated from the

cleavage tests described in the following chapter. The

test results suggest that for a specimen reinforced with

35 fibers having a diameter of 0.006 inch and a length of

0.5 inch, the plastic zone radius R is of the order of

20 inches. Therefore the ratio 6/R for a representative

fiber reinforced concrete sample, is negligeable and one

can ignore the value of 8 in the calculations.

For a value of R assumed constant and equal to 20

inches, and a value of Kic of the order of 5000 psi,,/Th

(TableB3 Appendix B) equation (5) indicates that an upper

bound value of the link strength will be given by

S= = 5000 960 psi

Note that a second upper bound value on the strength

as predicted by equations (3.16) or (3.27) is in the order

of 400 psi. (The highest result of the two equations is

considered.)
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Finally, a lower bound value can be assessed using

the strength of the non-reinforced concrete matrix that

is of the order of 300 psi.

It can be concluded that the overall model leads to

rather realistic bounds in predicting the strength charac-

teristics of the material.



CHAPTER 5

EXPERIMENTAL PROGRAM

The experimental program described in this chapter

comprises three types of experiments: pull-out tests on

fibers, tensile tests on fiber reinforced concrete prisms

and cleavage beam tests. Pull-out tests as well as

cleavage beam tests are mainly concerned with assessing

experimental values to important variables or parameters

given as input data in the analytical model. Tensile tests

represent the major part of the experimental program,

results of which will be correlated with theoretical pre-

dictions in Chapter 6.

5.1 Matrix Composition and Curing History.

Essentially the same mortar matrix was used throughout

this investigation. High early Portland cement type III

and fine graded Ottawa silica sand (ASTM C-109) were mixed

with water in the following proportions: water to cement

ratio by weight = 0.6, sand to cement ratio by weight = 2.5.

The high water-cement ratio was necessary to keep the mix

workable when fibers were added.

The fibers were thoroughly mixed with the mortar

matrix using a food mixer with a pan capacity of approxi-

mately five gallons.
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All specimens were poured into especially designed

plexiglas molds, except the pull-out specimens for which

standard ASTM briquette molds were used.

Less than twenty-four hours after pouring, specimens

were removed from their molds, cured in a moisture room at

1004 relative humidity and 750 Fahrenheit for six days and

tested on the seventh day. In the case where specimens

had to be cut and/or notched, these operations were performed

under wet conditions, sometime during the curing period.

5.2 Pull-out Tests on Fibers.

The method used to perform the pull-out tests was

chosen in order to simulate closely the way the fibers

pull out in the postcracking state. It was achieved by

using ASTM standard molds for tensile briquettes in which

only one half of the specimen was poured, the other half

being closed with a styrofoam sandwich holding the fiber.

Some experimental details of preparation and testing are

shown in Fig. 15.

The experimental program included a large number of

tests on single oriented fibers in order to assess as

precisely as possible the mean value of the bond strength T

at the fiber matrix interface. The influence of the angle

of orientation 0 on the bond strength was also investi-

gated by testing in pull-out a group of two symmetrically
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Fig. 15 Typical Preparation and Testing
of Pull-Out Specimens



oriented fibers. The values of the angle e were chosen

as 15, 30, 45, 60, and 75 degrees. In all cases the

fiber diameter and the embedded fiber length were taken

equal to 0.01 and 0.50 inches, respectively. As in a first

series of experiments the fibers oriented at 60 and 75

degrees either broke or slipped out of the tightening jaws

under loading, it was decided to prepare them differently,

using a two step pouring procedure. The first step was

similar to the one described earlier. The second consisted

in taking out the styrofoam pieces after twelve hours,

putting a piece of polyethylene separator along the middle

section of the briquette and pouring mortar into the second

half. For these specimens the standard ASTM grips for

briquette were used for testing. In general extreme care

was taken in handling the specimens in order to avoid torsion

or twisting of the fibers and ensure reliable results.

All results, mean values, and standard deviations are

given in Appendix B Table B1. Their interpretation is dis-

cussed in 6.

5.3 Tensile Tests on Fiber Reinforced Concrete Prisms.

Most investigators in the field of steel fiber rein-

forced concrete derived tensile properties indirectly from

observations on flexural or splitting cylinder tests. The

objective here was to obtain the direct tensile properties



through pure tensile tests. As no standard shape specimen

of a reasonable size was available, it had to be especially

designed for the experiment. The shape and dimensions chosen

are described in Fig. 16. Corresponding plexiglas molds and

wedge type grips were built to perform the experiment

(Fig. 17a).

The molds were designed so that a 7-inch-thick block

profile was poured at a time, from which 3 two-inch-thick

slices, representing each a specimen, were cut with a thin

diamond saw under wet conditions. Endpieces of ~ 3/8 inch

thickness were disregarded. This slicing method was chosen

in order to facilitate pouring conditions, decrease variabi-

lities, and diminish the influence of the mold sides on the

orientation of the fibers. Furthermore, on the two opposite

sides of the middle part of each specimen, that were not

sawed, three 1/4 inch deep notches, spaced one inch apart,

were cut. The purposes of these notches are the following:

first, to ensure that a nice plane crack developes at

fracture along one of the notched sections, second, to

guarantee that inside this section the fibers would all be

randomly oriented (as the influence of the sides of the

molds is eliminated), third, to simulate a chain member made

out of three consecutive links, and finally, to allow the

measurement of the composite surface energy from the

recorded load elongation curve.

Four series of experiments indentified as A, B, C, and
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FIG. 16. DIMENSIONS OF TENSILE SPECIMEN.
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(a) 103

(b)

Fig. 17 a) Typical View of Tensile Specimen and Grips

b) Typical View of Cleavage Specimen and Mold
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D were performed. The description of reinforcement para-

meters and other relevant variables as described in this

study is given in Table 1. The four series of experiments

correspond to four different fiber aspect ratios (three with

the same fiber diameter). For each aspect ratio three

different volume fractions of fibers were used. An average

of six to eight specimens was prepared for each sample.

Testing was performed on the INSTRON universal testing

machine, using the 10,000 pound load cell. The load was

applied at a rate of 0.05 inch per minute for a chart speed

of 2 inches per minute and a full scale of 2,000 pounds.

Load elongation curves were automatically plotted on a chart

recorder. The elongation observed is the sum of the specimen

elongation and that of the testing system. Its value is

therefore comparative but not absolute. Average load

elongation curves for the different series are plotted in

Appendix C, Figures C1l to C4.

Relevant results on load at the first structural crack

(through the matrix crack), maximum postcracking load, and

the energy absorbed at failure are given in Table B2,

Appendix B. Due to the stress concentration at the tip

of the notched sections, the stress at first crack is

expected to be a more relative than absolute value. Dis-

cussion and correlation of observed results with theoretical

predictions are in 6.



S Fiber Fiber * Aspect Speci- Per- Per- Mean# Mean# Mean Mean
diam. length ratio men cent* cent of of spacing spacing
inch inch A/p type fibers fibers fibers fiber in plane in

e by by /cubic inter- inch space
s weight volume inch sections inch

/sq.inch [81]

Al 3.41 1. 256 64 0.125 0.138

A 0.010 0.50 50. A2 6.65 2. 512 128 0.0884 0.097
A3 9.78 3. 768 192 0.0722 0.079

B1 3.41 1. 170 64 0.125 0.138

B 0.010 0.75 75. B2 6.65 2. 340 128 .o0884 0.097

B3 9.78 3. 510 192 0.0722 0.079

C1 3.41 1. 128 64 0.125 0.138

C 0.010 1.0 100. C2 6.65 2. 256 128 .o0884 0.097

C3 9.78 3. 384 192 0.0722 0.079

D1 3.41 1. 708 177 0.0751 0.083
D 0.006 0.50 83.3 D2 6.65 2. 1416 354 0.053 0.058

D3 9.78 3. 2124 531 0.043 0.048

* Based on specific gravity of 140 lbs/cub.ft. for mortar and 490 lbs/cub.ft, for steel

** Brass plated, round, low carbon high strength steel fibers

Reinforcement Parameters - Tensile TestsTABLE 1
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5.4 Cleavage Specimens.

The geometry and the dimensions of the double canti-

lever cleavage type beam used are shown in Fig. 18. This

particular design was chosen after a number of less

successful trials. The longitudinal reinforcing rods

were provided in order to avoid flexural type cracks

during testing and to supply enough shear resistance at

the gripping supports. Note that the compliance of the

specimen is modified by only a few percent due to the

presence of the steel reinforcement. The notches shown

were cut before testing using a diamond saw under wet

conditions. The larger notch was necessary to allow

for enough light for observation during testing.

The testing apparatus and a typical specimen under

test are shown in Fig. 19. Note the simplicity and

effectiveness of the gripping system. A 5x magnifier

was used to follow the extension of the crack along the

beam, during loading. The load rate applied on the

INSTRON testing machine was chosen equal to 0.01 inch

per minute.

As these experiments were mainly intended to

devise a reliable testing method in order to determine

some fracture properties of the material, no attempt

has been made to perform a complete and systematic

experimental program. Only six beams containing 3 /0
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CROSS SECTION

FIG. 18. CLEAVAGE SPECIMEN.

11
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Fig. 19 View of Double Cantilever Cleavage Type Beam
under Test
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fibers of the following characteristics were used:

(0 = 0.010", t = 0.50"), (36 = 0.010", t = 0.75"),
and (g = 0.006", & = 0.5"). A typical load dis-

placement curve is presented in 6.
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CHAPTER 6

EXPERIMENTAL RESULTS - DISCUSSION AND CORRELATION

WITH MODEL' S PREDICTIONS

This chapter presents the results of the experimental

program described in Chapter 5. The first section is

devoted to pull-out tests. The second section presents

the tensile test results correlating them with those pre-

dicted by the model and using observed differences as

feadback information to restructure some of the model's

underlying assumptions. A third section deals with the

cleavage beam tests.

6.1 Results of Pull-Out Tests.

Pull-out experiments were performed in order to provide

information on the average bond or shear strength at the

fiber matrix interface and to clarify the relation between

the pull-out load and the angle of orientation of the fiber.

These results are presented in detail in Table 1 Appendix B.

The average value of bond strength observed from 54

pull-out specimens with orientation angle e = 0 is found

equal to 380 psi. Typical pull-out load versus pull-out

distance curve is plotted on the upper part of Fig. 20. It

is observed that, after reaching a peak value, the load

decreases drastically, and tends slowly to zero. On the
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lower part of Fig. 20 is shown a typical pull-out load versus

pull-out distance curve for an oriented fiber with 9 = 300

It can be seen that here, after reaching its peak value, the

load decreases and levels off to a kind of plateau value

before dropping suddenly to zero at complete pull-out. The

"final plateau value" of the load is due to a pseudo "pulley"

action that bends the fiber and induces a friction point

during pull-out operation. Similar

behavior is observed for all

e > 0. In Fig. 21 the peak

value and the final plateau

value of the pull-out load

(or associated bond stress)

are plotted versus the angle

of orientation 6. Note that

the final plateau value in-

creases linearly with 0 while

the peak value follows an unpredictable path. It is rather

difficult to interpret this behavior. A number of para-

meters seem to be involved such as the flexibility of the

particular fiber under pull-out, the local resistance of

the matrix, and a possible change in the bond failure mode

due to the fiber orientation. Finally, on the same Figure

is plotted in dashed form the theoretically assumed variation

of peak load versus the angle of orientation 0. It is of
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the form F = Fe=0 cos 0 where cos 0 represents the

efficienty factor of orientation. By comparing the theore-

tical and the observed curve, it can be seen that the

expected values of bond strength for a randomly oriented

fiber as derived from either curve are not very different.

This somewhat simplified observation is made more attractive

for practical purposes when one observes the scatter of the

experimental results, Table 1 Appendix B. In some cases the

standard deviation is as high as 504 of the mean value

observed, indicating that care must be excercised in using

and interpreting the results. In fact, if the mean theore-

tical value of bond strength for a randomly oriented fiber

is close to the observed mean value, it is not because the

assumed theoretical mode of failure is exact. It is only

because the pull-out load for inclined fibers is influenced

by some additional action - the "pulley" action described

earlier - and that on the average the results turned out to

be similar. Also note that, for example, for 0 = 150,

Fig. 21, where the "pulley" action is less important, the

peak load observed drops drastically and in a very different

way from the cos 0 variation theoretically predicted.

Finally, note that these experiments were conducted on

only one or two symmetrical fibers, pulling out from a one

square inch cross section of the matrix. If the density of

fibers pulling out increases to about 100 or 200 fibers, the
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expected value of bond strength per fiber may decrease

drastically due to local failures in the resistance of

the surrounding matrix and other possible stress concentra-

tion effects. In the next section we will see how this can

influence the observed postcracking strength of the

composite.

6.2 Description of Global Results on Tensile Tests.

In describing the observed behavior of fiber reinforced

concrete under tensile loading a distinction must be made

between the precracking state and the postcracking state

which are separated by the occurrence of the first struc-

tural crack. On the load elongation curve the first crack

occurrence induces a drastic change in material response

(Figures C1 to C4, Appendix C). Before the first crack the

composite may be described as an elastic material. After

cracking the fibers bridging the cracked surfaces pull out

under load and the material is in a somewhat pseudo-plastic

state. Theoretically the postcracking strength may be

lower or higher than the cracking strength. In general it

is higher for long or continuous fibers. Consequently, in

characterizing the strength of the composite one must specify

whether it is equal to the recorded cracking or maximum

postcracking stress. This distinction has been made in the

manner tensile test results are presented.
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The observed values of average cracking and postcrack-

ing strengths for the four aspect ratios tested are plotted

versus the volume fraction of fibers, in Figures 22 and 23.

They are also plotted versus the aspect ratio for a given

volume fraction of fibers in Figures 24 and 25. Finally,

in Figure 26 the surface energy of the composite is plotted

versus the volume fraction of fibers for the four aspect

ratios used. As only one crack developed at fracture the

surface energy per unit nominal cracked area has been de-

rived from the total energy absorbed as corresponding to the

area under the load elongation curve. Detailed computations

are shown in TableB3 Appendix B.

6.3 Discussion and Correlations with the Model's Predicted

Values of Tensile Strengths.

In this section we will try to compare the average

observed values of cracking strength, postcracking strength,

and energy absorbed with those predicted by the model pro-

posed in Chapter III. Similarities will be noted and

discrepancies will be explained to the best possible extent.

They will be used as feedback information to restructure

some of the assumptions used in the model.
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6.3.1 On the Postcracking Strength.

Let us reproduce here equation 3.16 that predicts the

postcracking link strength of the composite, that is

- 1 - -
acu = T T Vff .

This relation suggests that for a given T and t/j the

postcracking strength varies linearly with the volume

fraction of fibers and similarly, given - and Vf, acu

varies linearly with t/#.. These theoretical trends are

strikingly reflected in the experimental observations on

series A, B, C using fibers of the same diameter with

aspect ratios of 50, 75, and 100 (Figures 23, 25). Results

of series D using a fiber diameter of 0.006 and an aspect

ratio of 83.3, follow the linear trend but do not seem to

fit between those of series B and C with aspect ratios

of 75 and 100, as they should theoretically do. Looking

back at Table 1 it can be noted that an important conse-

quence of the difference in fiber diameter between series

A, B, C, and series D is apparent in the average number of

fiber intersections per square inch of composite. For a

given Vf, this number is almost three times higher in

series D than in series A, B, and C. Equivalently this

also means that the average number of fibers pulling out

from the fracture surface of a type D specimen is almost
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three times higher than that associated with a type A, B,

or C specimen. Having this observation in mind, it has been

hypothesized that the difference between theoretically pre-

dicted and observed postcracking strengths may be a direct

consequence of a decrease in the pull-out resistance per

fiber when the density of fibers per square inch increases.

This hypothesis is furthermore supported by observing that

the composite fracture surfaces sustain a very high matrix

deterioration which takes place at the base of the fibers

(Fig. 27). One can almost correlate this deterioration to

the crushed particles of the matrix that separate from the

fracture surface by collecting and weighing these particles.

The theoretical mean values of postcracking link

strength as given by equation 3.16, and the corresponding

three link chain strengths are derived in Table 2, for

series A, B, C, and D, assuming 7 = 380 psi as in

section 6.2. The chain strength values obtained are plotted

in Figure 28 for series A, B, C versus fraction volume of

fibers and compared to observed experimental results.

Predicted results are consistently higher than observed

ones, and the difference seems to increase with the volume

fraction of fibers. If we attribute these differences, as

hypothesized earlier, to a deterioration in the pull-out

load or bond strength per fiber due to a high density of

fibers, some useful empirical relation to the bond deterio-

ration can be assessed. In Table 3 a AT decrease in bond
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(b) SD(a C)N=l

1 -
T = 380 psi

as per equations 3.(15), 3.(12)

(c) Corresponds to normalized variable z =-2.13

and 3.(8) for

a-E(a cu)N=
, z = SD(acu)N

(d) Corresponds to normalized variable z = 0.33,

(e) Corresponds to normalized variable z = -0.8,

A = 3 sq.inches.

= Fig. 9 & 10
1

= Fig. 9 & 10

= Fig. 9 & 10

TABLE 2 Derivation of the Theoretical Chain Postcracking Strength

ul

Speci- Fiber Volume Link - Theoret. Chalin(3 links) Theor. Chain- observed

men aspect fract. E(acu) sD(a cu )  5% a95% E(acu) E(acu) SD(acu)
type ratio Vf psi psi fract. fract. psi psi psi

/# psi ps
(a) (b) (c) (d) (e)

Al 1. 60.5 7.4 44.7 62.9 54.5 53.3 26.
A2 50 2. 121. 11. 97.6 124.6 112. 85. 57.
A3 3. 181.5 12.8 154.3 185.7 171.5 124. 52.

B1 1. 90.7 8.6 72.4 93.5 83.7 77. 49.
B2 75 2. 181.4 12.2 155. 185.4 171.4 130. 33.
B3 3. 272.2 15. 240. 277.2 260. 191. 63.

C1 1. 121. 15. 89. 126. 109. 100. 75.
02 100 2. 242. 21. 197. 249. 225. 172. 75.
03 3. 363. 26. 308. 371.6 342. 243. 82.

D1 1. 100.8 7.4 8 . 103.2 95. 125. 63.
D2 83.3 2. 201.6 10.4 18 . 203.2 196. 147. 61.
D3 3. 302.4 12.7 281. 306. 292. 184. 95.
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Speci-
men

Type

Al

A2

A3

Theor.
chain

Observ.
chain

strength strength

(a) (b)

54.5

112.

171.5

53.3

85.

124.

Differ.
AG

(a)-(b)
psi

1.2

27.

47.5

AT

psi

7.5

85.

100.

Fiber
density
N
s

/square
inch

64

128

192

B1 83.7 77. 6.7 28. 64

B2 171.4 130. 41.4 87. 128

B3 260. 191. 69. 97. 192

Cl

C2

c3

109.

225.

342.

100.

172.

243.

9.

53.

99.

28.

83.

104.

64

128

192

Suggested
average

relationship

N
s

0
64

128
192

AT

0
21
85

100

T* = -0.52N s

> 0

j measured

from pull-out

test on one

fiber

DI 95. 125. -30. -113. 64 Fitting line
suggests that

D2 126. 147. 49. 92. 128 T for the 0.006

inch diameter
D3 292. 184. 108. 135. 192 fiber 2 600 psi

* AT = T t

TABLE 3

from Equation 3.16

Assessment of Empirical Relation between

Bond Detioration and Density of Fibers N
s

- -- 1_4111I
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strength has been caluculated from the Aa difference

in strength observed between theoretical and experimental

results. Also, a column is devoted to showing the average

number of fiber intersections per square inch, Ns , for

each specimen. It can be noticed that for series A, B,

and C which use the same fiber diameter, the AT calculated

decreases consistently when Ns increases. An average

value of AT versus Ns for series A, B, C is then

calculated.

The upper part of Figure 29 shows a plot of the actual

bond strength T* = N=l - AZ = 380 - AT to be associated

with one fiber versus the density of fibers Ns per square

inch, for the 0.01" fiber diameter used. The lower part of

Figure 29 shows a similar relation derived from results on

series D that uses a 0.006" fiber diameter. Both curves

indicate a linear behavior.

In general the decrease in bond strength as a function

of the density of fibers N is expected to depend on a

number of parameters such as the flexibility of the fiber,

its length and the local resistance of the matrix. There-

fore some prior experimental observations must accompany

any specific composite design. From the particular results

of series A, B, C with the 0.01" fiber diameter used, the

empirical relation that will predict the bond strength to

be assessed versus the density of fibers per square inch
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seems to be well approximated by

7* = 7 - 0.52 Ns

where ?* = modified bond strength to be used > 0 psi

S= average measured bond strength from

pull-out tests on one fiber psi

Ns = number of fiber intersections per square

inch, = 2Vf/v 2

So far we have mainly discussed similarities and

differences between experimental and theoretical mean

values. A word on their respective spread seems to be

necessary. In general the observed coefficient of varia-

tion defined as the ratio of the standard deviation to

the mean value was, contrary to theoretical predictions,

very high and of the order of 50 . Theoretical and observed

spreads are shown schematically in Figure 30 for the results

of series A experiments.. The drastic difference between

them can only be explained by variations such as mixing,

pouring or curing procedures and the inherent variability

of strength encountered in Portland cement concrete matrices.

6.3.2 On the Cracking Strength.

The two formulas of interest derived in Chapter 3

concerned with predicting the composite cracking strength
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are

3.(27) c = (mul-Vf) + a Vf

and/or

3.(29) cc = u (l-Vf) + a Vf .

These relations are linear functions of , Vf or t/O,

respectively. They are different in that 3.(27) does not

take into consideration the modification of the ultimate

tensile strain of the matrix due to the presence of the

fibers while 3.(29) does. The second term of these equa-

tions represents the fiber contribution to the cracking

strength. It has been suggested in 3.6 that the value of

u and a be determined experimentally.mu

Referring back to Figures 22 and 24 where the average

observed cracking strength for series A, B, C, D has been

plotted versus volume fraction Vf and aspect ratio of

fibers t/, note that the linear trends predicted by the

theory as to the influence of the fiber contribution are

strikingly verified. Contrary to what was observed on the

postcracking behavior, there is no apparent deterioration

of strength due to an increase in the density of fibers per

unit area or volume. Results of series D, using a fiber

diameter of 0.006 inch and an aspect ratio of 83.3, fall

well between those of series B and C using 0.010 inch fiber
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diameter and aspect ratios of 75 and 100. Bond strength

deterioration as a function of the number of fibers pulling

out per unit cracked area (described in 6.3.1) seems to be

characteristic of the state and conditions of pull-out.

Apparently it is not felt in the precracking or elastic

state.

Figure 22 shows the least square regression lines that

have been fitted to the results from which the tensile

strength of the non-reinforced mortar matrix have been

excluded. The purpose was to find out from the intercepts

of these lines the modified matrix strength as given in

3.(29). The equations of these lines are given below:

Series _/ Least Square Lines - Cracking Strength

A 50 y = 240. + 2250. Vf

B 75 y = 259. + 3100. Vf

D 83.3 y = 273. + 3050. Vf

C 100 y = 283. + 3350. Vf

and 3.(29) cc = Thu(l-Vf) + a t V

where a = a =7 = slope of lines.

Assuming that (1-V) 1 as Vf is in general less than

5% for steel fiber reinforced mortar, one can plot the

increase in matrix tensile strength versus the aspect ratio

of the fibers as extrapolated to Vf = 0, that is

A = * - m . Figure 31 shows the results to be an
mu mu mu
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almost linear relation. For t/ = 50, Amu - 0 such

that apparently for ./$ S 50 it can be stated that no

significant improvement in matrix strength is incurred.

Figure 31 also suggests that for very high aspect ratios

of fiber reinforcement the modified matrix tensile strength

or strain may show drastic increases.

In fact, it is difficult, in practice, to incur a wide

range of variation in the reinforcing parameters Vf and

&/p, without changing the matrix properties by addition

of water in order to maintain workability. Furthermore,

for current values of t/ of less than 100, the preceding

results indicate that the apparent increase in matrix strength

is less than 185 of the non-modified mortar matrix. These

observations suggest that for practical purposes and within

the limitations described, it may be more useful to use

equation 3.(27) in which it is assumed that the tensile

ultimate strain or strength of the matrix remain constant

with the addition of fibers.

In Figure 32 cracking strength results for series A,

B, C, D are plotted again and fitted by least square

regression lines, including the matrix point. Equations

of these lines are given as follows:
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Series / Least Square Lines - Cracking Strength

A 50 y = 243. + 2150. Vf

B 75 y = 24 8 . + 3550. Vf

D 83.3 y = 252.8 + 3930. Vf

C 100 y = 255.7 + 4520. Vf

and 3.(27) "CC = amu(l-Vf) + a - Vf

where a = a 7 = slope of lines.

Note that the slopes of these lines seem to increase

linearly with t/$ (Fig. 33) and another least square

line has been used to represent the relation between them,

that is

a = -28. + 46.3 46.3 .

as in general 4/ > 40.

Therefore, if we replace a by 46.3 t/$ we end up with

46.3 = a 6 = a = 380- 0.122.

Therefore, the empirical value of the coefficient a that

best fits the results leads to the following relation:

acc = mu(l-Vf) + 0.122 T Vf .

Note that in this formula the bond strength 7 is not

modified by the density of fibers, and therefore 7 should
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be used directly as observed from pull-out tests on single

fibers.

6.3.3 On the Energy Absorbed at Failure.

It has been explained in 3.5 that the energy absorbed

at failure of the composite is made out of two terms

corresponding to the matrix and the fiber contribution.

The fiber contribution consists of the work of friction

of the fibers during the pull-out process. Therefore the

relation between pull-out load and pull-out distance is of

importance. This relation has been assumed to be linear

in 3.5. On the other hand pull-out tests on fibers have

suggested another type of relation. Both are plotted for

the average random fiber as derived from the pull-out

experiments in Figure 34. It can be seen that even though

these relations are conceptually different, they lead to

almost the same value of energy as the energy is measured

by the area under the curve. Therefore, the value pre-

dicted by equation 3.(21) can be used for practical purposes

to estimate the fiber contribution in the energy term,

that is:

G 2

ps 6 T cu 7

Note that in this equation we have used the modified value
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of the bond strength T* as influenced by the density of

fibers under pull-out per unit cracked area.

6.4 Results on Double Cantilever Cleavage Beams.

The objective of these tests was to devise a method

by which the fracture toughness of the material as well as

the pseudo-plastic zone R as defined in this study, can

be measured experimentally. This goal was successfully

achieved using double cantilever cleavage type beams as

described in Chapter 5.

A typical load displacement curve is shown in

Figure 35. (Also reproduced in Figure C5 Appendix C, is

the first part of the curve, amplified.) It can be seen

that the test did not provide all the information that it

usually does. The crack in the matrix extended all the

way along the beam, that is 8 inches before complete pull-

out of the fibers at the tip of the crack. For this

particular specimen, the corresponding opening at the

crack tip was approximately .1 inch. By extrapolation

one can say that for an opening of 0.25 inch, corresponding

to a complete pull-out, the crack will travel approximately

20 inches. This result suggests that the pseudo-plastic

zone extension R is of the order of 20 inches and that

beam lengths of at least twenty inches shall be used in

future investigations using a-half-inch long fibers. One
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can argue that fracture properties KIc or y can be

assessed using notched tensile specimens similar to the

tensile tests used in this study. However, the determina-

tion of R is not possible by the tensile test method.

Moreover, one cleavage specimen provides as much informa-

tion as several tensile specimens combined and is therefore

more efficient [67,96].

For fiber reinforced cementitious materials, such as

asbestos cements, full testing efficiency can be achieved

using the double cantilever beam method as the pseudo-

plastic zone radius R is expected to be small. In

conventional steel fiber reinforced concrete the method

will be useful only if the size of the member is important

enough. For in-between cases the equations predicting the

strength in Chapter 3 can be used as a close upper bound

estimation to the composite strength. Note however that

an advantage of the cleavage test is that by determining

the average surface energy y, it automatically takes

into consideration parameters such as bond strength, bond

deterioration, fiber orientation, volume fraction, aspect

ratio and so on, as discussed in 6.3.

6.5 Recapitulation of Major Results as per Chapters 3 and 6.

The average value of the composite postcracking strength,

assuming one link, can be predicted as follows:
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1- v
cu 'Ir'

psi

where V = volume fraction of fibers

t/3 = aspect ratio of fibers

* = modified bond strength as a function of the

average number of fibers pulling out per unit

cracked area psi

Example: "" = " - 0.52 Ns

= average bond strength as derived from pull-out

tests on single fibers psi

The mean cracking strength of the composite can be

predicted by

c = mu (1-v ) + 0.122 T Vf

where u is the average tensile strengthmu

psi

of the

matrix psi.

The average surface energy of the composite can be

assessed by

2

mu + 7f f T MU
+ u
cu 6

= matrix surface energy pound/inch.where y mumu
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CHAPTER 7

CONCLUSIONS

7.1 Conclusions.

The conclusions can be conveniently categorized

into two groups, the first dealing with the advantages

and validity of the proposed analytical model, the second

dealing with the results of the experimental program and

their correlation with the model's predicted values.

The following features characterize the mathematical

model developed to simulate the response of fiber rein-

forced concrete under tensile loading.

1. The model provides a full understanding of the

composite behavior under loading by identifying

the relevant variables and parameters involved.

2. It takes into consideration the statistical nature

of these variables.

3. It distinguishes between ductile and brittle fractures

which are observed in real fiber reinforced cementitious

materials, and solves each case using relevant criteria

of composite materials and fracture mechanics studies.

4. For the ductile type failure, it identifies the pre-

cracking and the postcracking states and in each case

points out the influencing parameters on observed

strength.
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5. For the brittle type failure it introduces a new

concept related to the statistical distribution of

inherent weak areas (i.e. areas without fibers) in

a discontinuous fiber reinforced composite, and

discusses the potential effect of these areas on

the composite strength.

6. After assessing the characteristic strength of the

material it accounts for size effects by introducing

the weakest link concept in the analytical formulation.

7. The analytical formulation is flexible enough to allow

possible modifications in the distribution functions

of major variables.

8. It finally provides reasonably realistic and simple

expressions predicting mean strengths and toughness

of the composite as a function of the characteristics

of the components.

9. By providing the full distribution functions of the

predicted design properties it allows for a better

understanding of statistical variations observed in

experimental results.

The experimental program features per se a number of

tests that are relatively new in the area of fiber rein-

forced concrete: these are, for example, pull-out tests

on symmetrically oriented fibers, pure tensile tests on

notched prisms simulating a chain member, and the double
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cantilever beam or cleavage tests. On the basis of the

experimental results the following conclusions are drawn:

a) It can be assumed with reasonable confidence that the

random distribution of the fibers in the concrete mass

is described by a Poisson process.

b) The bond or shear strength observed at the fiber matrix

interface in fiber reinforced concrete shows a large

variation and therefore cannot be considered as a

constant.

c) The pull-out load of a fiber oriented at an angle e

is not necessarily smaller than that of an aligned

fiber. The effect of an additional term associated

with a pseudo "pulley" action under load and with the

fiber flexibility suggests that a randomly oriented

fiber may be as or more efficient than an aligned one.

d) There is strong evidence that the bond strength which

is measured from a pull-out test on one fiber decreases

if the density of fibers increases. As a first appro-

ximation, the relation describing this behavior is

linear. It is therefore recommended to take into

account in the design the so modified value of the

bond strength.

e) Cleavage type specimens can be used to measure some

fracture properties of fiber reinforced concrete and

mainly estimate the size of a pseudo plastic zone
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corresponding to an area where the matrix is cracked,

the fibers are pulling out and the crack tip opening

is equal to half the fiber length.

f) For a fiber of 0.5 inch length the observed pseudo

plastic zone radius in fiber reinforced concrete is

found to be of the order of 20 inches. This suggests

that, unless shorter fibers are used, the solution

simulating brittle type failure applies only to

rather large size structures.

g) Experimental results indicate, in close correlation

with the model's predictions, that the cracking and

the postcracking strength of fiber reinforced concrete

increase linearly with the volume fraction and aspect

ratio of the fibers.

h) Trends predicted by the model have been in general

observed in the experimental results. Even when dis-

crepancies exist, the model is flexible enough to

allow a feedback process, a refinement of the assump-

tions and an adaptation of major relations to simulate

more closely the experimental observations.

i) The overall solutions proposed to simulate the brittle

or ductile failure seem to provide rather realistic

bounds on strength predictions that can be beneficially

used for design purposes.
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7. 2 Recommendations.

The field of fiber reinforced cementitious materials is

still in its initial stage of investigation, therefore,

recommendations in this section will be restricted to only

those topics which have become evident during the course of

this particular study.

1. The variation of the bond strength versus the fiber

orientation should be investigated for a full range

of values covering variations of fiber diameters

and lengths as well as matrix properties.

2. The deterioration of bond strength per fiber due to

an increase in the density of fibers pulling out from

a unit area must be characterized in order to take

full advantage of the model's predictions on strength

and toughness.

3. The results presented in Chapter 4 of this study must

be substantiated by further testings, particularly with

larger test specimens or shorter fibers.

4. The use of double cantilever type beams to characterize

the fracture properties of concrete and fiber reinforced

concrete presents some promising capabilities and should

be widely investigated in future experiments.

5. It may be of interest to extend the formulation of

Chapter 4 to the case where the plastic zone size R

and the fracture toughness Kic are considered as



150

random variables with distributions that can be

determined experimentally.

6. The chain weakest link model of a tensile member

should be validated on fiber reinforced concrete

specimens by testing tensile members of different

length, i.e. having various number of links.

7. The analytical representation of the proposed model

is supposed to simulate the behavior of fiber rein-

forced cementitious and ceramics matrices. It should

be extended to fiber reinforced polymeric matrices

that show in general ductile properties.

8. The model developed in this study assumes that a

constant stress is applied on the composite. Extending

it to the case where stresses are stochastic in the

time domain will lead to a realistic assessment of the

reliability of a given structure.
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A.1 The Weakest Link Concept and Weibull's Approach.

The weakest link theory is an extreme value theory in

statistics. It assumes that a system (in our study a tensile

member) is made like a chain of a series of consecutive links.

The strength of each link is characterized by a statistical

distribution function and it is assumed that the chain will

break when the weakest link breaks.

Let us consider a population described by a probability

density function f(x) and its cumulative function:

x

F(x) = Prob(X x) = f f(x)dx .

Similarly: Prob(X>x) = 1. - F(x) .

Let us assume that we take a sample of size n drawn

independently and at random from this population, say

(xlX 2 ,...,Xn). Let us now define yn as the smallest

value of x in the sample. We have thus generated a new

population yn, the distribution of which is found as

follows:

Prob(y n >y) = Prob(All x>y)

= Prob(x l > y , x 2 > y , . .., x n > y )

= [1. - F(y)] n
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Then we define the cumulative function of y as given by

Gn(y) = Prob(yny) = 1. - [1. -F(y)] n

and the probability distribution function of y is obtained

by differentiation:

gn(y) = Gn(y) = nf(y) L1. -F(y)] n - 1

We have thus generated the probability distribution and

cumulative functions of the chain variable of interst,

knowing those of the link and the number of links. In our

case, the variable of interest is the strength of the

tensile member under consideration, say a.

I G (a) = Prob. of chain failure at stress aI

o -- ---- W---- ' --- --- F i -. a

I F(a) = Prob. of link failure at stress a

Weibull derived the probability distribution function of

the material strength considering the following point of view.

Assuming Prob( <ca) = F(a)

Weibull chooses to express the function F(a) as

F(a) = 1 - e- ( ) .
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Therefore

[1 - F(a)]n = e - n (a ) = e - n l o g ( l - F ( a ) )

The chain cumulative function becomes

Gn = 1 - e - n (a)

Weibull defined -n(ac) = -nlog Ll-F(a)] as the risk of

failure R and he assumed that the risk of failure dR of

an infinitesimal volume dV can be written as dR = f(a)dV;

since (1. -F(a)) depends only on the stress. For the

whole specimen

R = f(a)dV

V

and so the probability of failure of the whole specimen is

Gn(a) = 1 - Exp(-f f(a)dV)

V

Weibull further assumed that the function f(a) has the

following form

a- a m
f(a) = ( u)

where ou = stress below which there is a zero probability

of failure

Co = measure of the density of flaws in the material
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m = measure of the variability of flaws.

Note: ao and m are material constants.

This is the fundamental approach of Weibull's theory. In

the case of a pure tensile test, the stress is assumed

constant throughout the specimen and consequently

Gn(o) = 1 - Exp -(au) V

and it can be easily shown that for two specimens from the

same material with different volumes V1  and V2, we have

the following result

a m  V2

where a1 and a2  can be considered as the median tensile

strength for specimens of different volumes.
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A.2 Mathematical Basis to the Distribution of Fibers in

the Concrete Mass Following a Poisson Process.

Probability theory can best be applied to random or

independent events. In this study we will assume that the

fibers of a composite volume are formed into a network by a

random process which is fulfilled by the following conditions:

a. The fibers are deposited in the mass independent of

each other.

b. The fibers have an equal probability of landing at

all portions of the mass.

c. The fibers have an equal probability of making all

possible angles with any arbitrary chosen fixed

axis; that is the fibers have a random orientation.

It can be stated equivalently that, in relation with

conditions (a) and (b),the points of intersections of the

fibers with a cutting plane occur independently of each

other and have equal probability of landing on any part of

the plane.

Considering, for example, a cutting area of size A

square inches, divided into A x 1 squares, let us assume

that a fiber is represented by its point of intersection with

that area and let us materialize this point by a small disk.

When a given disk is dropped into the area of interest by a
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random process, the probability that its center lands within

and outside a given square are (1) and (1 1), respec-

tively. If a large number of disks NL is dropped onto

the area, the probability that R fibers land within the

given square is given by the binomial distribution

p(R) (= NL ) (1 - )NL R

1 L
If NL is large and is relatively small, -A- = Ns

would represent the mean number of fiber intersections per

square inch and p(R) reduces to the Poisson approximation

of the binomial distribution, that is

-Ns

p(R) =
R!

Note that p(R) is the probability of finding R fiber

intersections knowing that Ns is the average number of

intersections.

We can equivalently define Nv as being the mean

number of fibers per unit volume of the composite, and,

following the same reasoning, end up with

-N
NQe V

p(Q) = v
Q,

p(Q) is the probability of finding Q fibers in a volume

containing on the average Nv fibers.
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In view of the above assumptions, it seems a priori very

realistic to assume a Poisson type distribution for the

fibers in a fiber reinforced concrete member. This assump-

tion is furthermore made attractive as the average number of

fibers per unit volume Nv is easily derived from the given

independent and exogeneous variables of interest, the frac-

tion volume V, the length A, and the diameter 6 of

the fibers. Experimental justification of the Poisson like

distribution of fibers is made in Appendix A.3 .
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2
A.3 The X Goodness-of-Fit Test Used to Validate the

Assumption on the Poisson Distribution of Fibers.

2
The X goodness-of-fit test was used in this study

to determine whether a sample representing the fiber inter-

sections of a cross sectional area comes from a population

having a distribution of Poisson form.

Let us call Px(x) = XeLet us call p ( x ) = xx the theoretical Poisson

distribution function. Given a sample of observed data

represented by a histogram, one has to decide, at the

significance level a, whether these data constitute a

sample from the population with distribution function p (x).

Suppose the experimental sample values fall into r

categories. To compare the observed frequencies ni with

the expected theoretical frequencies xi we compute

2 r (ni - xi
X =

i=L x i

Let us state our nu1 hypothesis H as follows:

the fiber intersections are Poisson distributed in the cross

sectional area of the material. If the calculated value

2 exceeds 2 for f degrees of freedom, as given in

standard tables, we reject at the significance level a

the nullhypothesis.

The value of f is given as f = r- 1- g. If we can

specify the type and form of p,(x) before the experiment,
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but cannot specify it completely, then g stands for the

number of quantities necessary to complete the specification.

These quantities are obtained as estimates from the

experimental data themselves. In our case, we determine

from the experimental data the mean value of fiber inter-

sections per square, and we choose that value as the X

parameter of the theoretical distribution p (x). Therefore

for our test, g = 1 and f = r-2.

Let us finally note that the a level of significance

of the test means that if the nul hypothesis is true, there

is an a% probability that we will reject it (Type I error).

In practice, usual values of a are taken as 10%, 5%,

and 1c.

Let us give an example of how the X test has been

applied to validate the Poisson distribution of fibers.

For that we analyze a slice taken from specimen C3 (iden-

tified as slice 1 top face). We put on that section a grid

containing 8 x 8 = 64 small squares of dimensions

0.2 x 0.2 inches. We count the fibers inside each square

(Table 1) and plot the histogram. In order to show the

importance of the range r we run the test for two values

of r, one corresponding to one fiber interval and the

other to two fiber intervals (Tables 2 and 3). The result

may be a striking difference in the apparent goodness-of-fit

of the histogram as shown in Fig. Al and 5 . Also on

these figures are shown the theoretical distribution curve
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for the experimental mean observed and the theoretical curve

for the theoretical mean.

Number of fiber

TABLE 1

intersections observed

10

2

4

8

3

4

7

4

6

2

6

13

10

7

7

7

The observed mean number per square is X, = 5.3

The theoretical mean number per square is Xt = 7.6

So the curves drawn on Fig. Al and 5.

in grid
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S15 - THEORETICAL CURVE BASED ON
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OF INTERSECTIONS

o I0 -
ZEY 10

5 POINTS USED FOR
THE X2 TEST
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NUMBER OF FIBER INTERSECTIONS PER SQUARE

FIG. Al. POISSON-LIKE DISTRIBUTION OF THE FIBER
INTERSECTIONS IN A CROSS SECTION.
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TABLE 2

2
X test results for r = 13 categories and an interval

of one fiber intersection

Number
of fiber

intersections

Observed
number of

Normalized
theoretical

occurrences occurrences
ni x.

Normalized
square
deviation

(ni-xi)2
X.

'

0.30

1. o

0.051

0.003

0.595

0.920

0.337

0.322

0.228

2.95

0.125

2.080

0.320

3.20

0.30

1.70

4.48

7.83

10.50

11.20

9.82

7.45

4.94

2.95

1.54

0.75

0.32

0.20

z = 64

2The xo. 0, 11 = 17.3 X2 = 12.43 < 2 10,11 = 17.43

So with 90% confidence we cannot reject the null hypothesis.

0

3.

4.

8.

13.

8.

8

9

6

0

2

2 = 12.43

10

11

12

z = 64
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TABLE 3

2
X test for r = 7 categories and

an interval of 2 fiber intersections

Number
of fiber

intersections

Number of
occurrences
observed
n
i

Normalized
theoretical
occurrences

xi

Normalized
square

deviation

(n-xi) 2

xi

0 and 1

- 3

- 5

- 7

- 9

- 11

- 13

X = 2.21 < 0.10, 5 9.24

So with 90% confidence we cannot reject the null hypothesis.

3.

12.

21

17

6

4

112

2.02

12.40

21.66

17.30

7.80

2.28

0.54

64

0.475

0.013

0.020

0.005

0.005

1.300

0.392

X = 2.2164

_ __ ___
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A.4 On the Cracking Strength of Fiber Reinforced Concrete

The approach described herein is similar to that of

Kelly and Davies [55], but takes into consideration the

randomness of the fiber orientation and distribution in

space.

The model proposed simulates the composite by consider-

ing a small matrix prism containing one fiber. The compo-

nent's fraction volumes in the prism are identical to those

of the real material. Furthermore, it is assumed that if a

tensile strain (or stress) is applied on the matrix, it will

be high enough to develop the full value of shear or bond

strength at the fiber matrix interface.

Assume first that the fiber _-
Vf

is oriented in the loading direc- 3- -

tion. Let us apply a load Pc on Vm a(x)

the composite (model). We then have

Pc = Pf+Pm
,0 g

where the subscripts f and m

stand for fiber and matrix, respec- ,am(x)

tively. Along the fiber we have

(1) PC = Afof(x) + Amm(x).

Note that x is the abcissa from the edge of the fiber

and 0 < x < L/2.
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That is, the stress in the matrix decreases with x while

it increases in the fiber.

dP
(2) - = 0 = A dof(x) + Am dm(x).

The analysis of a pull-out load test on a fiber leads to

the following result

Afdaf(x) = Tnfdx

and for Af =

daf(x) = - dx

Af 4f
and from (2) do m(x) = - A dx.

Af Vf Vf
Note that the ratio m = 1-Vf We are interested in

A i £

the value of x for which the

matrix will crack. That is the

decrease in matrix stress from . mu7(X)

the point x = 0 should be at

least equal to the ultimate

tensile strength of the matrix. x0

The stresses in the fibers and in the matrix along

the fiber can be written as
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(3)

Saf(x) =7 x
(x) a Af

m(x) = am - K- af(x)

where aM is the stress in the matrix outside the region

covered by the fiber. We are interested in the value of x

for which am = amu, i.e. for which the matrix will crack,

and for am (x) = 0. Therefore

am(x) = 0 = mu

Af 4 x
M

1-V
and x 0 = amu ( Vf )

The critical length of the fiber is defined by

symmetry equal to 2x0.

Smu 4 (  ) "

Vf
a,

Note that the subscript o in

co refers to the fact that we fav-- ---

have been considering a fiber

oriented in the loading direction o = 2x0

i.e. with 0 = o.

A fiber oriented at an angle 6 to the loading

direction will have a modified critical length. In the

matrix a me = mo cos2 e, that means that the matrix will

apparently break at a lower stress relatively to the fiber.

1

So coco
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The critical length in this case is given by

l-V
(4) mu Vf )  2 e = co s 2

We are now interested in assessing the contribution of

the fiber to the cracking strength of the composite. For

this we need to calculate first the average stress in the

fiber, then multiply it by the expected number of fibers

intersecting per square inch of material. This is done,

step by step, in the following procedure.

Procedure Leading to the Determination

of the Composite Cracking Strength

1-V
a) Calculate co = mu 2 (f )

b) If A > co > Lce, we have for a fiber oriented at e

2T
afmax = ce

ce 2F (A ce
afav = fmax(l -- 2 - = - ( )

The expected value of afav can be written as follows:

2

(a - 2 ELc - ce]
E(efav) favo /2 ef a

The expected load taken by the fibers per square inch
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of composite

2V 2 V
E(F N - 2vff
E(F s ) = NsAfav 4 fav = - f a v

and the composite's expected cracking strength will be

V
E(acc) = c = mu( 1 - Vf ) + -f- f

c) If I < Aco then there exists certainly a e value,
2

say 8 , below which A > as Ac0 = A, cos e,

and 0 < cos2 e < 1. To determine e0 calculate

2 2_ 7 _Vf
cos 80 e(l (1-V )mu f

i) For 0 < 8 < 0

Therefore afmax

Sfav

E(a fa ) 10<0 <8

A <ce.

2i £
= -w -acos e

= afmax

= E(co )Cos2 
e

ii) For e0 < e < T/2

2F
fmax = -w ce

fa v 7= c(1e -1-)

c: 00 *

= ~fav

A > Ace
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E(a~av) fav "e6 e<</2

iii) The overall expected average fiber stress to be

used is given by

0o j1) n/2- O0
:fav T / fav r/2  fav

and the expected value of the cracking strength

of the composite will be

V
cc = mu(l - V f  -T fav

Application to the Special Case of Concrete

The maximum possible stress in the fiber corresponds

to the case where we have the same strain in the fiber and

the matrix, like in continuous reinforcement. Therefore

f Em m

and at cracking of the matrix, we have an upper bound

a* Ef a
f Em mu "

For average concrete we will have

a*~ 3010 6300 = 3000 psi.
3.10
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An example of afmax as derived from the model

assuming = 50 and I = 300 psi gives

afmax = 27 30,000 psi

This is an order of magnitude higher than the possible a*

and the model does not seem useful here. Note that this

discrepancy is due to the fact that we assumed that enough

strain is applied on the composite to develop the full shear

strength at the fiber matrix interface. If on the other

hand we put a limitation on the strain applied, it will not

be possible to assess how much of the bond is developed along

the fiber. An experimental investigation and analysis of

observed results, as was done in this thesis, may provide

a more realistic answer to the problem.
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APPENDIX B

TABLES OF RESULTS

Table B1.

Table B2.

Table B3.

Results of Pull-Out Tests on Fibers.

Results of Tensile Tests on Fiber Reinforced

Concrete Prisms.

Surface Energy and Toughness of Fiber

Reinforced Concrete as Deduced from Results

of Tensile Tests.
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TABLE B1

Results of Pull-out Tests on Fibers

Type pec. Peak Spec. Peak
no. Load no. Load Results of Interest

Pounds Pounds

1
Fiber

Straight
Pull-out

1
2
3
4
5
6
7
8
9
10
11
12

15
16
17
18
19
20
21
22
23

25
26
27

10.3
2.0
2.6
1.4
1.3
2.3
7.6
5.9
1.2
3.8
1.3
2.1

8.3
1.8
6.6
1.4
7.4

.6
5.0
3.9
6.6
9.1
2.6
2.6
2.8
3.9

28
29
30
31
32
33
34
35
36
37
38

41
42
43
44
45
46
47
48
49
50
51
52
53
5

9.5
5.9
6.5
9.2
7.5
7.6

11.8
8.1
9.5
9.8
7.3

.23
10,2

9.8
13.2

9.8
10.3
8.
12.
6.1
4.4
6.7
3.0
2.4
6.8
5.9

Mean Load = 5.97 pounds
St. Dev. = 3.27 pounds
Mean Bond

Stress = 380 psi
St. Dev. = 208 psi

_________________________________________________________-~ I _______________________ I __________________________________________________________________________
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TABLE B1 continuation

Peak Final
Type Load Load Results of Interest

Pounds (Plateau) Normalized per Fiber
Pounds

8.9 .8 Peak Load
7.1 Mean Load = 4.41 lbs
7.8 1.8 Standard Deviation = 2.98 lbs

11.6 2.0 Corresp. Mean Bond = 280. psi
7.1 2.8 Stan. Dev. Bond Stress = 189 psi

20.0 2.0
8.0 2.9

2 Fib. 20.6 4.0 Final Plateau Value
orient- 5.9 .8 Mean Load = 0.85 lbs

ed 3.8 1.0 Standard Deviation = .45 lbs
at 150 3.0 .6 Mean Bond Stress = 54. psi

1.6 1.0 Stan. Dev. Bond Stress = 28. psi
16.8 1.6
3.3 1.4
.9 1.6

17.5 *
6.7 1.6
4.3 1.4

11.5 1.8114.6 2.0 Peak Load Results:
4.6 2.0 Mean Load = 4.1 lbs
5.7 2.0 Standard Deviation = 1.75 lbs
5.7 1.8 Mean Bond Stress = 261. psi

2 Fib. 10.5 2.0 Standard Deviation = 114. psiorient- 12.8 5.0
ed 7.4 3.6e30 12.5 5.2 Final Plateau Results:

3.6 2t 30 12.5 5.2 Mean Load = 1.4 lbs
11.4 2. Standard Deviation = 0.59 lbs
3.7 2.4 Mean Bond Stress = 89. psi

11.3 2.4 Standard Deviation = 37. psi

6.0
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TABLE B1 continuation

Type Peak Final
Load Load Results of Interest
Pounds (Plateau) Normalized per Fiber

Pounds

8,8 3,9 Peak Load Results:
Mean Load = 5.0 lbs

9,2 4.1 Standard Deviation = 1.03 lbs
Mean Bond Stress = 318. psi

2 fib. 8,9 4.0 Standard Deviation = 65. psi
orient-

ed 12.0 4.0 Final Plateau Results:
at 450 Mean Load = 1.97 lbs

13.2 4.0 Standard Deviation = 0.09 lbs
Mean Bond Stress = 125. psi

8.0 3.6 Standard Deviation = 6. psi

l0.6 6.0 Peak Load Results:
Mean Load = 6.25 lbs

12.5 6.2 Standard Deviation = .83 lbs
Mean Bond Stress = 398. psi

2 fib. 15.3 * Standard Deviation = 52.8 psi
orient-

ed 12.6 7.0 Final Plateau Results:
at 600 Mean Load = 2.9 lbs

11.5 4.0 Standard Deviation = .64 lbs
Mean Bond Stress = 184. psi
Standard Deviation = 40. psi

12.2 8.0 Peak Load Results
Mean Load = 5. lbs

10.6 8.0 Standard Deviation = lbs
2 fib. Mean Bond Stress = 350. psi
orient- 10.6 7.0 Standard Deviation = 28. psi

ed
at 75 10.0 6.0 Final Plateau Results:

Mean Load = 3.62 lbs
11.6 * Standard Deviation = .48 lbs

Mean Bond Stress = 230. psi
Standard Deviation = 31. psi

(*) One fiber broke before end of test.
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TABLE B2

Results of Tensile Tests on Fiber-

Reinforced Concrete Prisms

Specimen Reinforce- Cracking Maximum Descriptors
ment Load Post- Mean Values and

Type Parameters Pounds cracking Standard Deviations
Load

Pounds psi

S= 0.50" 925 160985 50 Cracking stress =265
780 130 SD = 62

Al =0.01" 520 an
620 10 Postcracking

625 170 stress =53.3960 300 26
vf = 950 140 SD 26

Aver. 796 160
SD. 185 79

= 0.50" 1025 560 Cracking stress =282
95 13 SD = 76
65 1 0

A2 0 =  01" 520 95570 460 Postcracking
1000 130 stress = 85
970 265 SD = 57

f = 1085 270

Aver. 847 256
SD 227 171

540 530

a = 0.50 875 280 Cracking stress =310

A3 3 = 0.01" 1070 340 SD
1030 600 Postcracking

Vf = 3% 1270 190 stress =124
800 300 SD = 52

Aver. 932 373
SD 207 158

__ = , . .I
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TABLE B2 continued

Specimen Reinforce- Cracking Maximum Descriptors
ment Load Post- Mean Values and

Type Parameters Pounds cracking Standard Deviations
Load
Pounds

R = O.75" 1030 90A 0.75" 965 160 Cracking stress = 252 psi

750 80 SD = psi
B1 = 0.01" 1080 400

815 210 Postcracking
730 120 stress 77 psi
850 395 SD= 9 psi
880 460

Aver. 887 232
SD 127 147

a = 075" 1110 240A=01060 520 Cracking stress = 311 psi
B2 3 = 0.01" 1020 29051 psi

S= 2% 880 410 Postcracking
S= 2820 480 stress = 130 psi

720 410 SD = 33 psi

Aver. 936 390
SD 152 108

= 0.75" 910 435 Cracking stress = 357 psi

= 0.01" 1400 532 SD = 76 psi

B3 1050 470 Postcracking
f = 3% 930 850 stress = 191 psi

SD = 63 psi

Aver. 1072 572
SD 227 189
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TABLE B2 continued

Specimen

Type

Reinforce-
ment

Parameters

Vn = 0.01"
V = %A

Aver.
SD

Cracking
Load
Pounds

980
900

1000
1200

750
965

966
163

Maximum
Post-
cracking
Load
Pounds

320
90
370
700
200
115

299
225

Descriptors
Mean Values and
Standard Deviations

Cracking stress
SD

Postcracking
stress

SD

= 322 psi
= 54 psi

= 100 psi
= 75 psil

94" 1 69 Cracking stress = 339 psi
90 630 SD = 34 psi

C2 = 0.01" 920 720
C2 Z=0.01 1050 690 Postcracking

f = 2% 960 4'60 stress = 172 psi1200 140 SD = 75 psi

Aver. 1018 507
SD 100 226

= 1" 1130 500 Cracking stress = 389 psi
SD = 13 psi

C3 = 0.01" 1210 700 Posteracking

Vf = 3% 1160 990 stress = 243 psi
SD 82 psi

Aver. 1167 730
SD 40 26

- I I

-- -----L---1 ----- L-C~L-~-------- --- ---- -

__
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TABLE B2 continued

Specimen Reinforce-
ment

Parameters

Cracking
Load

Pounds

Maximum
Post-
cracking

Load
Pounds

Descriptors
Mean Values and

Standard Deviations

2 = 0.50" 890 4801175 430 Cracking Stress = 307 psi1175006" 000 SD = 57 psiD 1000 610
1050 190 Postcracking

f = 1% 630 170 stress = 125 psif920 375 SD = 63 psi
Aver. 920 376

SD 171 190

1165 310 Cracking stress = 328 psiS116 66 psi
D2 6 = 0.006" 950 630

1130 450 Postcracking
V = 2% 780 690 stress = 147 psi

720 330 SD =61 psi

Aver. 986 442
SD 198 183

S00.50 960 340 Cracking stress = 368 psiS1080 52630 SD 56 psi
D3 = 0.006" 1260 420

1310 1110 Postcracking
V = 3% 880 550 stress = 184 psif 1140 370 SD = 95 psi

Aver. 1105 553
SD 167 285

Type
1

-- --
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Average Correspon. Surface Toughn. Comp. Fracture
area total toughess

Speci- ea total energy - modulus toughne
peci- under energy G =2 2 

load y E V
Type lbs.inch cY K 1

curvelong lbs/inch lbsInda 106 psi - c
curve

psi/ inch

Al 2.57 12.85 2.14 4.28 3.76 4200

A2 2.78 13.90 2.32 4.64 4.03 4410

A3 3,28 16.40 2.73 5.46 4.30 4940

B1 3.95 19.75 3.29 6.58 3.76 5070

B2 4.93 24.65 4.11 8.22 4.03 5880

B3 6.62 33.10 5.51 11.02 4.30 7040

Cl 4.85 24.25 4.04 8,08 3.76 5610o

C2 6.70 33.50 5.58 11.16 4.03 6850

C3 8.20 41. 6.83 13.66 4.30 7820

D1 4.60 23. 3.83 7.66 3.76 5470

D2 5.11 25.55 4.25 8.50 4.03 5970

D3 5.43 27.15 4.52 9.04 4.30 6360

ontr. 1.15 5.75 .96 1.92 3.50 2640
trix

SE c = Em(1-Vf)+ EfVf = 3.5(1-Vf)+ 30. Vf

* c = 0.20

TABLE B3 Surface Energy and Toughness of
Fiber Reinforced Concrete as Deduced
from Results of Tensile Tests.
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APPENDIX C

ADDITIONAL FIGURES

Figs. Cl to C4.

Figure C5.

Typical Average Load Elongation Curves

of Fiber Reinforced Concrete Specimens

in Tension - Series A, B, C, D.

Typical Load Displacement Curve of

Cleavage Type Specimen.
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SERIES B. FIBER LENGTH 0.75"
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CONCRETE SPECIMENS IN TENSION.
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