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ABSTRACT

Discharging heated water through submerged vertical round ports

located at the bottom of a receiving water body is a currently used

method of waste heat disposal. The prediction of the temperature

reduction in the near field of the buoyant jet is a problem of

environmental concern.

The mechanics of a vertical axisymmetric buoyant jet in shallow

water is theoretically and experimentally investigated. Four flow

regimes with distinct hydrodynamic properties are discerned in the

vicinity of the jet: the buoyant jet region, the surface impingement

region, the internal hydraulic jump, and the stratified counterflow

region. An analytical framework is formulated for each region. The

coupling of the solutions of the four regions yields a prediction of

the near field stability as well as the temperature reduction of the

buoyant discharge.

It is found that the near field of the buoyant jet is stable only

for a range of jet densimetric Froude numbers and submergences. A theor-

etical solution is given for the stability criterion and the dilution of

an unstable buoyant jet.

A series of experiments were conducted to verify the theory. The

experimental results are compared to the theoretical predictions. Good

agreement is obtained.
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I. Introduction and Background

With the increasing demand in electric power in the U.S., waste heat

disposal has become a problem of important environmental concern. Steam

electric power plants, both fossil-fueled and nuclear-fueled, require a

continuous cooling water flow to remove the waste heat from the steam con-

denser. Two modes of cooling water operation are possible: In a once-

through system, the cooling water is circulated through the power plant

only once and then discharged as heated water into an adjacent receiving

waterbody. In closed-loop systems, the cooling water is continuously re-

circulated, the heat being rejected directly to the atmosphere before the

water returns to the plant.

Due to the low efficiencies of existing power plants (determined by

the thermodynamics of the steam cycle), enormous quantities of waste heat

are discharged. In a nuclear fueled power plant, for every kilowatt of __

electrical energy produced, an equivalent of two kilowatts of energy is re-

jected to the environment in the form of heat.

The artificial heat addition into a natural water body has a definite

impact on the local ecological balance. Consequently decision makers as

well as ecologists are very concerned with the thermal effects in the nat-

ural waterway induced by various methods of condenser cooling water dis-

charges.

Common methods of waste-heat disposal for present once-through cool-

ing water systems can be classified into two categories:

a) Surface Discharge schemes: The condenser cooling water is discharged

through a canal or a number of pipes located at the water surface into the

neighboring waterway. This method of discharge usually results in a larger



surface area with elevated water temperatures, but has the advantage that

the heated water forms a stably stratified surface layer and the effect on

the bottom of the receiving water is reduced. Pilgrim Nuclear Power Sta-

tion in Plymouth, Mass. is one such example.

b) Submerged discharge schemes: Either single port or multiport submerged

discharges are in common application. Single port discharges involve a

single (or dual) outlet located at the bottom of the receiving water and

discharging either vertically or horizontally. Two examples of large

existing vertical single port outfalls on the Pacific coast are:

1. San Onofore nuclear plant. The cooling water flow from approximately

450 MW generation is 3.2 x 106 ft3/hr. discharged through a 14-ft. diam-

eter pipe 2600 ft. offshore, about 15 ft. below sea surface.

2. Redondo beach fossil fueled plant with 1612 MW capacity. One of the

two offshore outfall systems consists of a single 14-ft. diameter pipe

discharge 300 ft. offshore, about 16 ft. below water surface.

Recent innovations propose the use of multiport diffusers as an efficient

way of heat disposal. This consists of a long pipe with the condenser

flow discharged through many openings spaced along the pipe. The high

velocity jet discharges induce intense turbulent mixing with the ambient

water, thus achieving rapid temperature reduction of the heated discharge

within a relatively small area.

The ultimate heat sink is the earth's atmosphere. The entire temp-

erature distribution in the nearby waterway induced by the flow and heat

input of the condenser cooling water is governed by the interaction of a

variety of complicated physical processes and boundary conditions: turbu-

lent mixing of the discharge with the ambient water, the hydrodynamic

7
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conditions in the receiving water, conduction, convection, evaporation and

radiation to the atmosphere. For once-through cooling water systems the

receiving water can be broadly classified into two regions with respect to

the thermal effects of waste heat input: Far from the discharge the temp-

erature pattern is dependent on ambient processes and consequently is not

under the direct control of the engineer: the wind speed, the prevailing

direction and magnitude of the currents, the ambient temperature, humidity

and other meteorological conditions that govern the heat transfer between

the water surface and the atmosphere. Near the discharge the temperature

distribution is sensitive to the mode of discharge (surface discharge or

submerged discharge) as well as the design characteristics (orientation,

spacing, and number of discharge ports, diameter of port opening, size and

geometry of channel). The task facing the engineer is to produce the best

design with respect to specified thermal discharge criteria. The quantity

of interest is often an average dilution defined by the ratio of the temp-

erature rise across the condenser to the temperature rise above ambient

near the discharge. This serves as a general indicator of the effective-

ness of temperature reduction achieved by the discharge design. Other con-

siderations include the time of travel of organisms entrained in the dis-

charge, whether the near field is stratified- or fully mixed, the area of

a certain surface isotherm.

The discharge of heated water through a vertical round port located

at the bottom of the receiving water is a currently used method of waste

heat disposal. The temperature distribution induced by such a method of

discharge entails an understanding of the hydrodynamics of the physical

situation. The heated discharge entrains surrounding water by virtue of
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its momentum and its buoyant acceleration as it rises to the water surface,

with a corresponding dilution of the discharge flow. The mechanics of a

round buoyant jet in an infinite ambient field has been investigated by

many investigators. However, in many practical situations, these vertical

outfalls are situated in shallow water ( a physical parameter that meas-

ures the 'degree of shallowness' is the ratio of the water depth to the

port diameter). Near field dilution is usually computed by extending the

buoyant jet solution in an infinite field in some arbitrary way. An at-

tempt at a more refined treatment has been Trent and Welty's (1973) work

on numerical modelling of turbulent jet flows. These studies, however,

have neglected the important question of hydrodynamic stability of the

near field. The boundary conditions chosen always dictate a stable near

field, i.e., the heated water always form a stratified flow away and the

jet discharge is always entraining ambient cooling water.

The stability of the near field for a two dimensional slot, buoyant

jet was investigated by Jirka and Harleman. It has been found that the

densimetric Froude number, the submergence and the angle of discharge of

the jet are the governing parameters that determine the stability of the

near field. In an unstable near field, it is not possible to distinguish

an upper layer in the flow away zone, and there is continuous heat re-

entrainment into the jet. The dilution is hence decreased considerably as

compared to that obtained in a stable near field (fig. 1-1).

The objective of this thesis is to extend the physical and analyti-

cal notions of the two dimensional case to the simplest three dimensional

case - an axisymmetric vertical buoyant (round) jet in stagnant shallow

water. With the exception of two experimentally determined coefficients,
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a theoretical solution is derived to determine the near field dilution and

establish the criterion of the stability of the near field. If a stable

near field exists, the near field dilution is dependent solely on the near

field parameters (jet densimetric Froude numbers, submergence). In the

case of an unstable near field, the dilution is dependent on both the near

field parameters as well as the far field boundary condition.

A series of experiments were conducted to verify the theory.
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II. Theoretical Framework

Both the experiments done for a two-dimensional buoyant jet (Jirka

and Harleman, 1973) and the experiments carried out in this study for an

axisymmetric vertical buoyant jet in shallow water (ch. 3) suggest strong-

ly the classification of the near field into several distinct flow re-

gimes; (Fig. 2-1) A) Buoyant Jet Region: Before the bouyant jet rises to

the surface of the water, its behavior is postulated to be the same as that

of a buoyant jet in an infinite field. B) Surface Impingement Region: this

refers to the surface hump formed by the jet impingement on the free sur-

face, followed by horizontal spreading of the jet discharge. C) The

Internal Hydraulic Jump: An abrupt transition from the high velocity flow

in the surface impingement region to a lower velocity flow away occurs

some distance away from the jet axis, with a thickening and a correspond-

ing decrease of velocity of the upper layer. D) Stratified Counter-Flow

Region: the flow that occurs after the internal jump is described by a

stratified two-layered slowly varying flow.

Fig. 2-1 illustrated the flow details for the case of a stable near

field condition. In the case of an unstable near field continuous re-

entrainment of already mixed water into the jet region occurs. Hence a

large vertical eddy (of toroidal shape in the axisymmetric case) comprises

the near field region. Outside this region exists a stratified counter-

flow system as in the stable case.

The classification of the problem into distinct flow regimes with

appropriate assumptions renders the description of the flow field amenable

to analysis. In the following sections the properties of the flow and

temperature for each region will be analysed. The coupling of the
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analyses of the four regions yields the prediction of the near field

dilution.

Since the near field is of small areal extent, the heat loss from

the surface is excluded from the subsequent analysis. A scaling argument

demonstrates this assumption is well-justified under typical thermal dis-

charge conditions (Appendix F).

The flow is assumed turbulent for all the analytical treatment in

the following sections. No generality is lost by considering the specific

case of a hydrothermal jet. The words 'water' and 'density deficiency' can

be replaced by 'fluid' and 'concentration' without altering the method of

analysis.

2.1 The Buoyant Jet Region

2.1.1 Statement of the problem

Fig. 2-2 shows an axi-symmetric buoyant jet of fluid issuing from

a source of finite diameter vertically upwards into a denser homogeneous

ambient fluid (of infinite lateral extent) at rest. The physical varia-

bles of interest are the velocity and density of the jet at any particular

position (z,r) in a cylindrical co-ordinate system.
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1

Fig. 2-2. An axi-symmetric jet discharging vertically

u (z,r) : vertical velocity at (z,r)

p(z,r) : density of fluid at (z,r)

b(z) : width of jet

g : acceleration due to gravity, acting in
direction -z

Uo : exit jet velocity

O : initial jet fluid density

D nozzle diameter

Pa : density of ambient fluid

I
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2.1.2 General Characteristics of the Axi-symmetric jet

The general characteristics of the buoyant jet (or forced plume) in

a fluid of unlimited vertical extent are well established by extensive re-

search. In any given physical situation (convection induced by fires,

plumes rising from smoke stacks, sewage disposal from a submerged outfall),

the fundamental physical variable is the density of the issuing fluid (be

it due to a temperature difference or embodied pollutant), and the charac-

teristic dimensionless parameter that governs the mechanics of the buoyant
uo

jet is the exit densimetric Froude number as defined by F = APD

p
where Apo = a - o : initial density difference between jet and ambient

fluid. This parameter describes the ratio of the sum of all forces per

2 Apo
unit mass, - , to the buoyancy force per unit mass g-- of the fluid.

D P

When Fo + , inertia dominates, and the buoyant jet behaves like a pure

momentum jet. Conversely, when Fo is small, buoyancy dominates, and a

plume-like convective motion arises. In the intermediate case when Fo

has a finite value, both inertia and buoyancy effects are important. Near

the source the initial momentum dominates and the discharge behaves like

a pure jet. Far from the source buoyancy predominates and all buoyant

jets behave like plumes.

Near the source of a pure momentum jet, the sharp discontinuity in

velocity between the jet and the ambient fluid creates a region of high

shear. Such a region is highly unstable; eddies accompanied by turbulent

mixing result, with the effect that ambient fluid is entrained into the

jet, increasing the mass flux of the jet. The width of the jet, and hence

the dilution of the fluid increases in the direction of the discharge.

The momentum flux is conserved.
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For a pure plume, the discharge with no initial momentum is contin-

uously accelerated by the buoyancy force. A certain distance away from the

source, the plume will have acquired enough momentum to entrain the ambient

fluid; the basic turbulent mixing process that ensues after this point is

then similar to the momentum jet. The uo yancy flux is preserved in this

case, whereas the mass flux and the momentum flux increases in the direc-

tion of the discharge.

2.1.3 General Analytical Treatment

The structure of a submerged buoyant and non-buoyant jet has been

determined from a number of experimental investigations(e.g., Albertson,

Rouse and Yih, Morton):

1. Near the source, where turbulent diffusion of the momentum has not

penetrated to the center of the jet, the velocity profile consists of a

top hat portion, and a bell-shaped tail approximating the drop in velocity

due to the entrainment of the ambient fluid (Fig. 2-3).

2. A certain distance away from the discharge, where the central core of

constant exit velocity ceases to exist, the velocity profiles are of bell-

shaped form.

Gaussian profiles can usually be well-fitted to the experimental

results.

It can also be observed in experiments that the profiles of density

deficiency, defined as Ap(z,r) = Pa - p(z,r), are of bell-shaped form as

well. The rate of spreading, however, is larger, indicating that heat or

concentration of a pollutant diffuses faster than momentum.
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2.1.4. Governing equations:

A steady state formulation of the problem is presented in this

section:

Continuity: Invoking Boussinesq's(constant mass but variable weight);

r ar r u + a u(z,r) =

Integrating across the jet, we have:

dd uz(z,r)2rrdr = - 2irur(z,r) o

(2.1.1)

QQe

where Q = entrainment flux

The change in the volume flux of the jet is due to the entrainment

of ambient water.

Newton's 2nd Law of Motion:

Navier Stokes equation in the z-direction:

au, au a~rT aT_ Duap r_z zz
pr[U r -r z pgr + r [ ar a

where T , T are turbulent shear terms.
rz zz

Assuming zz rz , i.e., lateral variation of the turbulent shear
az ar

is much greater than the longitudinal variation and integrating across the

jet (invoking the Boussinesq assumption), we have

a o u rr) + 1 a U 2r
p [u r K- u au dr + --- f u rdr]a rz o o z Dr 2a z o z

= -_ a fr 0 TIo drz [ 0 rp dr] - o pgrdr + rz r 0 - f0 rz
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The boundary conditions are:

uz (z,O) = 

rz dr = 0 ; ZFinternal =0
O0

trz(Z,W) = 0 as no work is done at zero velocity gradient.

Assuming hydrostatic pressure distribution, we obtain

d f u2 2r dr = Pa (2.1.2)
dz o z 1 o g2rr dr (2.1.2)

P

The change in the momentum flux of the jet is due to that added by

buoyancy.

Heat Conservation:

[rpurT] + [rpuZT] = 0ar r + z[rT] -

Noting that T(z,) = Ta, it can be shown that

d [ o puz(T-Ta) 2r dr] = 0

where T(r,z) : temperature at (z,r)

Ta : ambient temperature

Alternatively the above heat conservation equation can be formulated

as an equation of conservation of density deficiency by noting that

p Pa and using the equation of state in linearized form

T - Ta = 8(P - P) for small AT ; 8 constant

dz [ O (P - P) u 2wr dr ] = 0dz o a z
(2.1.3)
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2.1.5. The Entrainment Principle

Experiments have shown that the bell-shaped distributions for both

velocity and density deficiency can be approximated by Gaussian functions:

Letting _r202

u z(,r) = u (z,o) e

-r2/x2b2

and Pa-p(z,r) = [Pa-p(z,o)] e

where 2 is the turbulent Schmidt number, a measure for the relative

diffusifities of momentum and heat (or mass).

Morton, Taylor et al (1956) assumed that the entrainment flux is

related to the centerline velocity uc and 'width' b of the jet via a

proportional constant:

Qe = 27cabu

a = entrainment coefficient.

Substituting the special forms of the velocity and density deficiency

profiles into eq. 2.1.1 - 2.1.3 and carrying out the integrations, the

following set of equations is obtained for the region of established flow:

d (ub) = 2abu (2.1.4)
dz c c

2 b2

d (ucb) = gX2b2A (2.1.5)
dz 2 p

d (ucb2 Ap) =O (2.1.6)

The problem can be solved numerically, taking care to transfer the

conditions at the source to the beginning of the region of established

flow. Nevertheless, there are two principal drawbacks. As will be shown

in a later section, the entrainment coefficient a is some function of
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the local densimetric Froude number of the jet. This is indicated by

experimental data: For an axisymmetric jet it varies from 0.085 for a

plume to 0.057 for a pure jet. Thus the assumption that a is a constant

is not a good one. In the mathematical solution employed in this study,

a better assumption is used to replace eq. 2.1.4.

For buoyant jets in deep water, the region of interest (water depth)

is large compared with the length of the zone of flow establishment Ze .

Neglecting buoyancy in the region of flow establishment, the constancy of

momentum flux yields the relationship between conditions at the source and

those at the end of the region of flow establishment. However, in many

practical cases of interest (e.g., continental shelf), the submergence

H/D is less than 50. The length of the region of flow establishment can

constitute a significant portion of the total water depth, and cannot be

conveniently left out in the analysis. In the theoretical solution of the

study, ze is derived as a function of the exit densimetric Froude number.

Special Cases:

Valuable information can be derived from eq. 2.1.4 - 2.1.6 by con-

sidering the limiting cases of a pure momentum jet and a plume -

a) Momentum jet: Fo + X

Setting Ap = 0 in eq. 2.1.4 - 2.1.6

it can be shown that

db,
db - 2a (2.1.7)dz

2 2
(2.1.8)

0o (az
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Hence in a momentum jet the width increases linearly with z, and

the jet angle is related to the entrainment coefficient. Consequently

the Reynolds number defined with respect to the centerline velocity and

the width of the jet is a constant.

b) Pure plume: F 0

In this sub-section it will be proved that at large distances from

the source, the local densimetric Froude number of all plumes approaches

an asymptotic constant value. The approach employed here is similar to

that by Jirka and Harleman (1973) for the two-dimensional plume.

The local densimetric Froude number is defined as

Uc
F =

/g P b

The change in the densimetric Froude number can be written as

dF F2 u du 
dF = { - dz (Apb) } (2.1.9)

u

It can be derived from eq. 2.1.4 - 2.1.6 that

gx2b22 _ u2bdbu dz
dz -udz b2 (2.1.10)

2 du 2 db 2
and b2u - + 2u2,b. = 2abu (2.1.11)

dz dz

Subtracting eq. 2.11 from eq. 2.10 and back substituting, we have

db 2a- 2/F22.1.13)
dz

gx2b2- _ u2b(2a-X2/F2)
Udz (2.1.14)'dz - b2
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Substituting the expression for u d and dz(Apb) into eq. (2.1.9), we

obtain

dF 2a _ F25
dz bF 4a

2 5X 2

Thus if Fo 4 the plume will be initially accelerated to in-

crease the local densimetric Froude number; conversely, if F2 > 5X 2
o 4a

the plume will be decelerated: in both cases an asymptotic densimetric

Froude number of F = 5x2 = 4.30 is approached at large distances
4a

from the source of buoyancy.

In the region where the asymptotic densimetric Froude number is

approached: db 6

dz 6 (2.1.15)dz 5
5/3

Ap = const x z (2.1.16)

_ 2/3
u = const x z

That the jet angle is approximately constant (or more correctly,

varies slowly with F) is easily shown by substituting the values of a ,

for the plume and the jet in eq. 2.1.7 and 2.1.15

db
Jet: a = 0.057 db 0.114

dz

Plume: a = 0.085 d 0.104
dz

It can be seen there is only a difference of less than 10% between

the jet angle for the two limiting cases.

In the mathematical formulation of the Buoyant Jet Region Solution

presented in the following section, a constant jet angle assumption is

used to replace eq. 2.1.4. Besides being a more accurate description of
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the physical situation, this has the further advantage that an analytical

solution is rendered possible.

2.1.6. Mathematical Formulation

In this section the assumptions employed to solve the problem of the

bouyant jet region in shallow water will be stated:

db
a) dz = = constant independent of the local densimetric Froude number

i.e., the spread of the standard deviation of the cross-sectional pro-

files is linear with z. In the region of established flow this assump-

tion is equivalent to that of a linear jet.

b) In the region of flow establishment, a linear spread is assumed for

the development of the central core region (Fig. 2-3).

uz(z,r) = uo r < b

= u-(r-b) 2 /b2 r > b

X = spreading
coefficient

Ap(z,r) = AP0 r < b

-(rb') 2/2b2= AP e r > b

The assumptions in the region of flow establishment are good only

when the exit densimetric Froude number is greater than the asymptotic

value of the plume. In laboratory practice laminar effects will come

into play near the nozzle for extremely low densimetric Froude numbers,

and jets with small F may possess a different turbulent structure

(Ungate, 1974). In such cases the above stated assumptions will break

down and there is no accurate analysis possible to determine the length
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of the region of flow establishment.

2.1.7 Mathematical Solution

An analytical solution is given in this section for the region of

established flow and the region of flow establishment. The basic assump-

tions are the same as used by Abraham (1963). The analytical treatment,

however, is different in two respects:

1. The assumptions that lead to the evaluation of the length of the zone

of flow establishment is explicitly stated. In his evaluation of ze 

Abraham evaluated the buoyancy flux using Albertson's result that assumes

a constant momentum flux. The buoyancy flux is correctly evaluated in

present solution.

2. Two boundary conditions are invoked to couple the solution of the

region of established flow with that of the region of flow establishment:

The resulting differential equations are then explicitly solved subject to

the boundary conditions rather than using an integral approach as employed

by Abraham.

Region of established flow

In the region of established flow assumption (a) can be used along

with eq. 2.1.5 - 2.1.6 to yield an analytical solution.
1

By employing a change of variables m3 = uc and solving the

transformed equations, the following solution can be obtained:



3X 2
A p 2 1/3 27

1 3 3 gueJZ e 2 2
u(z) = {uz + (z (2.1.17)
c - z ee 2 a -e) 

2
u Ap z

Ap(z) e e e {3z3 +
z ee

3gX2ue z 2 2 -1/3

(Z -Ze) 

2pa
a

where ue = UC(z = ze)
e c e

Ape = AP0 by definition

Hence uc, Ap in the region of established flow are reduced to a

function of z and ze. It is evident that eq. 2.1.17 and eq. 2.1.18

exhibit the expected behavior of a buoyant jet. For z sufficiently large,

_1 5
u c z T and Ap - z 3 ; this agrees with the behavior of a plume. For

Z Ze' Uc Z , resembling the motion of a momentum jet.

Assuming that the velocity profile is Gaussian at z = ze (density

deficiency), heat conservation gives

Heat flux at z = z (density) = Apu2wrdr =Ap -D2u°

this gives 2 D2Uo(l+X2) (2.1.17a
e e422

Also, it can be shown that

u z M
ee e 1
u D [ M 22 ]

o o

2

2

where Me : momentum flux at z = ze(density)

M : initial momentum flux
O

(2.1.18)

)

(2.1. 18a)
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Substituting eq. 2.1.17aand eq.2.1.18a into eq. 2.1.17- 2.1.18 yields

3/21M
u D ( e 
Uo z 2M

O

+ 3(1+X2) { ( z )2_( e ) } ]

8E2F D D

1/3

Ap = ( +) D [( )(Apo (2) D 2M + 3(+X 2 ) { ()2 1
Apo 4X: 2 Z 2e2M 8c 2 F 2 D I

0 0

(2.1.19)

(2.1.20)

Determination of the Length of Flow Establishment

Referring to Fig. 2-3 for the region of flow establishment:

By similarity b' = (1- z/ze)
Z e

The momentum flux at z = z
Ze

M = M + f
e o o co (Pa -p )g2 wrdr dz

By invoking assumption (b) the bouyancy contribution to Me can be evaluated

as

z
foe0 f0 Apg 2rdr

gX232z3 Ze
2 + e + -D- }= p {( _2 Ze

.2 3 326

Hence Me/Mo can be expressed as

Me 4 c i A£ 2 X2£2 3
= _ + 4 [12 + 12 + c ]M 2 1 2 12 c3-

0

(2.1.21)

where c = ze (density)/D

At z = 1
e Apo
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eq. 2.1.20 then gives

1 M 1+ I 2 1 1
(2.1.22)( 2E2 M ) = 2 4 2 c (2.1.22)

Equating the expressions for Me/Mo derived from eq. 2.1.21 and eq. 2.1.22

we have

4 {c / _ c 2 X2C2 3 1+%2 2 2 2

F2 12 2+ 12c + c } = z4X2 2 (2.1.23)

0 c

Eq. 2.1.23 describes c as a function of the exit densimetric Froude

number. In the limiting case of a momentum jet F + = 1 

This value is similar to that given by Albertson et al (1950).

Given F (e and X are approximately constants) equation 2.1.23 can

be solved numerically. Fig. (2-4) shows the value of c as a function of

F0 for X = 1.14 and = 0.109 (these are respectively intermediate values

for the jet-plume range:plume = 1.12, jet = 1.16, jet = 0.114,

Splume = 0.104). It can be seen c increases rapidly from zero for

Fo = 0.0 to an asymptotic value of 5.74 for F beyond 25.0. The region

of interest for buoyant jet applications is 4.3 < F < X where 4.3 is

the asymptotic value for the densimetric Froude number of the pure plume.

2.2 The Surface Impingement Region

When the buoyant jet impinges on the free surface, the surface

pressure, documented as a surface hump, causes horizontal spreading of

the heated discharge. Intense turbulent mixing occurs in this region
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and a detailed analysis of the exact flow and temperature distribution

within this region is deemed impractical. Instead a control volume ap-

proach is taken to couple the flow conditions just before and after im-

pingement.

A definition sketch is given in fig. 2-5. The heated flow enters as

a jet through section i and leaves the control volume at section I. Flow

is assumed to be fully established in section i. Let RI be the radial

position at which the free surface returns to level . RI is related to

the standard deviation of the incoming jet flow by RI = aobi , and ao is

evaluated from experiments. Let uI and hI be the velocity and depth of

the upper layer and uniform distributions over the thickness hI are

assumed.

2.2.1 Analysis of the Control Volume

Continuity:

Neglecting entrainment in the surface impingement region and invok-

ing the Boussinesq assumption, one obtains

b i i = 2 a h I uI

Heat Conservation:

Assuming the linearized equation of state and equating the inflow

and outflow heat fluxes:

B Pa 0 u Ap2wrdr = PT u 2rdr - wbiPi(2aohIIU)TI

section section

i i
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FIGURE (2-5) THE SURFACE IMPINGEMENT REGION
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Invoking continuity, we have

X2

Conservation of energy:

In a conservative buoyant force field an energy potential Apgz can

be defined.

Assuming an energy loss of the form Kx(Kinetic energy flux lin)

where KL is a head loss coefficient, conservation of energy then gives

2 2ui UI hI
(1 - KL) 6g = 2g + g

Recapitulating the complete set of equations for the Surface Impinge-

ment Region:

bi u1 = 2hiuIa 0 (2.2.1)

APi = API (2.2.2)

P u U2 Ap

2- (1-A) Pa 2g I h (2.2.3)2g Va2g 1-2 I

Eq. 2.2.1 - 2.2.3 can be solved iteratively with eq. 2.1.19 - 2.1.20

to find hI and the densimetric Froude numbers of the upper and lower

layers at the end of zone 2 (Fig. 2-1).

2.2.2 Limiting Cases

Insight can be gained by considering the two limiting cases of a

momentum jet and a plume:
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A. Momentum Jet: Setting Ap = 0 in eq. 2.1.1-2.1.3 gives

/ 3

Ih 4(1-KL)a2O
(2.2.4)

Substituting dz= 

obtained.

into eq. (2.2.4) the following equation is

hI

H
1

2 /(-KL),2
3 3

For a momentum jet a = 0.057 -= 0.114

Evaluating hI for different values of KL and ao,
H

KL = KL = 0.2

0.09

0.05

0.0994

0.06

we have

KL = 0.4

0.113

0.07

ao =1
= 1.73

ao = 1.73 corresponds to a RI where the vertical velocity is 5% of

the centerline velocity.

B. Plume: Assuming the asymptotic value of the local densimetric Froude

number is reached before impinging the free surface

2 512
Fi - 4a

From eq. 2.1.15 bi = 6 (H hI )i 5 I

Substituting bi into eq. 2.2.1 - 2.2.3, we obtain

2 (1-KL)
Fi {

1 3

bi 2 1 2 1
I 4a2 1+ X (bi/hI)( ~ )~~~

4or

h I

H Lo
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For a plume X = 1.12, a = 0.082

By iteration, we get

KL =O KL = 0.2 KL = 0.4

hI 0.081 0.091 0.107 a = 1

H 0.048 0.053 0.06 a = 1.73

The above analysis demonstrates the weak sensitivity of hI/H to the

range of densimetric Froude numbers. This approximately constant value

can serve as a useful starting point in the numerical solution of

eq. 2.2.1 - 2.2.3 and 2.1.19 - 2.1.20.

Lower bounds for the densimetric Froude numbers of the respective

layers after surface impingement are given for the case of the plume as

F1 = 4.12, F2 = 0.21 where subscript 1 refers to the upper layer and 2

the lower layer in the impingement zone.

In the theoretical solution K L = 0.2 is assumed for a 90° bend and

a wide range of curvature (Jirka and Harleman, 1973). As it is experi-

h
mentally observed that I 0.1, a = 1 is assumed in the subsequent

H 0

analysis. Thus, the outer radius, section I, of the surface impingment

region is assumed to be equal to the radius of the jet at section i.

2.3 Radial Stratified Flow

In this section the basic equations that govern the flow of a

stratified two-layered system are derived and presented. A slowly-

varying flow situation with a distinct interface is schematized as shown

in fig. (2-6). For a two layer system with low densimetric Froude numbers

there is very weak turbulent entrainment from the lower layer into the
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upper layer (Ellison and Turner, 1959). The densities of the two layers

can hence be regarded as constants. The Navier Stokes equations are aver-

aged in the vertical direction, and the resulting equations are further

developed for the internal hydraulic jump as well as the stratified counter-

flow in later sections.

The steady state Navier-Stokes eq. in the radial direction in a cyl-

indrical co-ordinate system (z,r) is

au au zr
p( u + z )= a + p (2.3.1)

pu ar az

q = (u,w) : velocity vector at (z,r)

p = pressure

T = turbulent shear stress
zr

The kinematic and dynamic boundary conditions are:

A) Kinematic Boundary Condition:

Surface w = u a(hl+2
s s ar

Interface ah2

Wi = i ar
Bottom wb = 0 (no bottom slope)

B) Dynamic Boundary Condition:

Surface P = 0 (free surface)

Ts PE p au T l
s = z j rz 

Interface

i Pi a Trz
Bottom au

Tb H fz azb rz b

where Ts = surface shear

Ti = interfacial shear

Tb = bottom shear
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Defining the average velocities of the two layers as:

Upper layer =

Lower layer =

where

1 1 hl+h2

l =1 h= h h2

q2 1 h2

2 h2 h2 o

ql' q2

udz

udz

are flow per unit width of the respective layers

ql = 2r

Q2
q2 2rw Q1' Q2 are constants

h = upper layer depth

h2 = lower layer depth

Assuming hydrostatic pressure distribution; we have

upper layer =

lower layer =

p= plg (h1 + h2 - z)

p= p1g h + p2g (h2 - z)

P1 = density of upper layer

P2 = density of lower layer

By continuity:

a8u aw
u ( + + a )Dr r a = -

therefore

au2 au auw-u ar +3r Dr 9z
aw

u a
au2 auw u2

ar az r

Integrating eq. 2.3.1 in the z-direction over the upper layer
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2 h h I+ h hlh 2 au 1 + 2 auw h 1h 2 u2 hl+h 2 t ahdz + f h2 u dz -d = 2
h2 ar h2 z r h2 r Pa h2 ar r

au~ ~ ~~ara
+ ( u hl+h2

z aZ h
2

a hl+h2 2 a(h1+h2 ) 2 a (hl+h2)
u dz - u ar + Usws

arh2

a 2
a arlTh P a hl +

2
U

-u.w. + 1 h
1 1 r 1r hl

T -T.
S 

0a

Carrying out a similar integration for the lower layer and invoking the

kinematic and dynamic boundary conditions at the points of discontinuity,

the following equations of motion for the two layers are obtained by ne-

glecting surface shear ( Ts= 0).

Upper layer:

Q 1 2 1 Dh 1 P1 3(hl+h 2) Ti

(2= r h + (2.3.2)
Lo lay1 a a

Lower layer:

Q2 2 1 h 2 1

(2-~rr) [- ar + rh22 2
2

ah1 h2 (Ti-Tb)

- I a 1 r + p2 Dr I h2 (2.3.3)a a
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The internal hydraulic jump in a two-dimensional two-layered system

has previously been treated by Yih (1955), Jirka and Harleman (1973). For

an axi-symmetric jet in shallow water, a two-layered counterflow system

consisting of a heated flow away in the upper layer and an ambient inflow

induced by jet entrainment in the lower layer is set up in the near field.

If a stable near field exists, an internal jump is always observed. The

transition is accompanied by an energy loss and possibly turbulent entrain-

ment at the interface. An approximate analysis is presented in this sec-

tion to solve for the conjugate jump heights of the respective layers.

These represent two possible dynamic states for the same given momentum

flux. A simplified asymptotic solution is also derived as a special appli-

cation to submerged discharge problems.

As a first approximation, a momentum analysis of the two layers is

carried out by neglecting shear stresses. Because of the expanding cross-

sections of a radial system, this assumption may introduce a substantial

error in the computation of the exact conjugate jump height. It will be

seen that this simplified analysis still gives valuable insight into the

stability of the near field.

With the above-stated assumptions, the vertically averaged equations

of motion for the radial stratified flow of an axisymmetric two-layered

system eq. 2.3.2 - 2.3.3 become
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1 dhl
[ 2 drh

1 dh2
[ 2 dr

2

+ 1 P 1 d (hl+h2)

1 a

-1+ 1 rh2
dh dh

= [P + P2 -d2
p 1 dr 2 dra

where Q1 , Q2 are flows in the respective layers.

Noting that

1 1dhl 1
[ -- dr rh] dr

E.24bcmh1 1

Eq. 2.4.1 becomes on simplification

Q1 2 rh1

2')r dr

P1 d(hl+h2)
Pa dr r

from r to r2assming 2
Integrating from r 1to r2 assuming r 2 and an average head

hl+h2
h = in the interval, we have
(1 h 2

Q [Ph1 -,rh] = g (rl+r2) (h1+h -hh 2)

Pa
(2.4.3)

where h , h are the conjugate jump heights of the respective

layers

A similar integration for the lower layer then gives

Q 2
2)

2ir

1 1 (h 2+h2) (rl+r 2 ) P
[ rh 2 r2h] = g 2 2 { (hi-hl)+ (h2-h2)}(2.4.4)rlh2 '2h2 2 2 a a

Q1 2

Q27rr
(2wfr)

42

(2.4.1)

(2.4.2)
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Defining free surface Froude numbers as:

Ql 2, 2
-(2nrlh

gh1

Q2 2

,2 (2Tn h2

2 gh 2

Equation 2.4.3-2.4.4 can then be reduced to:

Upper Layer:

rp, , 1 
*22 h 1 p1 r1' +r2 (2.4.5)21 a 2 2 

Lower Layer:

*2 2 1 1 (h2+h2) (rl+r2 ) P1 p

2 r 2 2 P P] r2 rlh 2 r2h ] 2 2[-h-hl+ p (h -h ) (2.4.6)lh2 '2ia a 2 2 hi

Eq. 2.4.5 and 2.4.6 constitute an approximate momentum analysis of

an internal hydraulic jump in a general two-layered system. Most sub-

merged discharge designs, however, are characterised by small density dif-

ferences and negligible free surface Froude numbers, but finite densi-

metric Froude numbers. An asymptotic solution can be obtained as follows:

Rearranging eq. 2.4.5 and eq. 2.4.6 we have

21 r2 h 1 ph r2h r2 h; h; h2 h

F1 [1- 2r 2h*2 l2F [1 r h (1- h- + (1- 7 -) 1A[ r2hl [1+ r 1 2] [1 hi h' 2

F;2 [1- 2h ; 1 [2h- r 2 h r2 h' h +
2 [ r lh 2 4 p rlh[1 + ] [1+ P h h 12 h2 

On further algebraic manipulation we obtain

4F12[ -1 + h2] - lh2 [1h----1 2 + (- h hl +h(2.4.7)
h2 r2 "1] hi] h2[- A P2 ["+ r2 t"+

p rlhl rl hI



4*'2 h h24F~2[- +rhhI2 rh 2 1

r2h2
rlh 2

[ 1+ ] [+
- 1Ti

h2
IF (1 -
2

A)
p

h hgh2 
+ (1-1 h

2 1
1 +1

(1- P

It can be derived from eq. (2.4.7)

A h 2

hi-hl

*2
4F1 r- 

iL1

r2h;
rlhI [1 + 2 ][1ri

(2.4.9)

h
h2

Two alternative expressions can be derived from eq. (2.4.8)

B hI

-h-h (1 - .)
p

- (1- a)

and

(hi-h2) (1 - AP)

(1- AP)B hI

44

(2.4.8)

that

where

- 1

r 2h 
+ ]

rlhl
A

h1
(1 - A)

p

(2.4.10)

hl-hh2-h2
h{-h (2.4.11)

-

h"-hl
hj-h1

-(h'-h )



r2 h h2
[- 1+ r h2 ] 

r1h 2 h1
r 2

[ 1 + r]--[1
1

h !

+ 2] [_1-Ap ]
2I P2

Subtracting eq. 2.4.9 from eq. 2.4.10 we get

*2 r2h; h

1 [ rh h2 h2

r2hh' '-h
[i APrl (1+ (1+ h1 -hl

p r 1h1 r 1 h1

*2 2h h2
4F2 1]

2 h2 2

rh2 (1+ -
rlh2 r h2

+ Ap

p

Subtracting eq. 2.4.9 from eq. 2.4.11 we obtain an independent eq.

*2
4F1 [1

r h'
p r 1h1

r2h;

rlh 1
r2 h' h

(1+-) (1+ ) (1- )
r1 h1 h~1

r2h2 2 h2
_rh2 ( 1+ (h2(1-
r1h2 r1 h2

r2h
4F*2 (1-2
2 rh12

In the limit when Ap+ 0,

h (

2

2h 2 2h
rlh2 (+r h2)rlh 2 ri h2

Li'h2
(1- 2)

2

F1, F2 + 0

where

*2
4F22

r2h2

rlh2

45

h1

(h;-hl)

(2.4.12)

- 1 =

(2.4.13)



*2

F2 1

p
P

*2
F2 2

2 Ap

P
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finite

Eq. 2.4.12 and 2.4.13 reduce to

4F1

r 2h 1
[ 1+

[1 r11

rl] + hi ] [

- 1=
hi
h1

4F2 1-2 2
2 rh 2 hi

r 2h2

rlh2

r2
(1+ -)(1+

r1

(2.4.14)
hi hi

h2 h1

r2 hi
[ r-l (1+

1 h1

h )4F (1-
hI

hl

(1-h1

2( r2h2 
- 4F 2 (1- r1h2)

rl'h2

r 2h
2lh1

1 1

16 F2 F2 [
1 2

r2h2 r2
r1lh 2 1)

r2h;

rlh1

h+ 2 1h
)(1 (2- -4.15)

(2.4.15)

r2hI
1- 2

rh2

These 2 equations describe an asymptotic solution to the radial in-

ternal jump problem. Given the densimetric Froude numbers of the respec-

tive layers, a numerical solution can be determined by relating the jump

length (r2-r1) to the jump height (h{-hl).

The radial free surface hydraulic jump has been studied by

Sadler et al (1963). The momentum equation assuming a finite jump length

for this case is

T r·y 1 2ifgry

2
= r2Y2

2

+ o
2rgr2y2

This can be gotten from eq. 2.4.4 by setting Pl=0 P2= Pa Q2 =Q

and
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In the free surface case an experimentally determined coefficient of 4 is

found for the ratio of the jump length to the jump height. The theoretical

investigations of a radial two-layered system in the next section, however,

shows a drastic difference in its behavior as compared to the free surface

counterpart. No attempt is hence made in using this coefficient.

Valuable insight can be obtained by treating the case of negligible

jump length, i.e., r2 = rl. A main concern of this study is to determine

the criterion of the near field stability, that is, the locus of (Fo, H/D)

that characterises a stable-unstable near field transition. In view of the

exclusion of shear stress in the momentum equations and the unknown rela-

tionship between jump length and jump height, it is judged that the solu-

tion of the radial internal jump problem in the context of a negligible

jump length should furnish adequate information concerning the existence

of a jump.

By setting r2 = r1 in eqs. 2.4.14-2.4.15 we obtain

2 1 h ' h'

1 1 2 1 2 2
2F (1+ ) (1 (h1 (2.4.16)1 h hi hh' h h

1 1 <+ 12 2 22
h2 h2 hI

[h(l) -2F 1 ] [ h - 2F2 ] = 4 F F2 (2.4.17)
h1 hI 1 2 h 2 2 1 2

The above equations are the same solution obtained for a two dimen-

sional internal jump by Jirka and Harleman (1973). Combining the two

eqs. we get

h' 4 +F F 2
4+1)F2 + F2 (2.4.18)

2 2 h h' 2

h 1 18



From eq. (2.4.17), we have

'i h' h' h h h
2 1 -1) 2 11(-l + 1) - 2 F2 1

= 1 1+

~2 ~-2 F2 hl (1+h
2 II I1

h2 h'
Substituting the value of (-- 2 + 1)

h2 h2
following relationship is obtained

in eq. 2.4.18 into eq. 2.4.19 the

h' h' h
1 -

h 2 h1 h2

or h + = h2 + h

Under such limiting conditions the total water depth

Substituting the value of h in terms of h into eq.

single asymptotic form:

hl 32 1 h h 2
I hi 1 -2 4 ] [hj-(h + 1) - 2 F ]=

which has been given by Jirka and Harleman (1973).

In the limiting case of a critical section h

(2.4.20)

remains unchanged.

2.4.17 we have the

h' h;
h-(hf + 1)2F2 (2.4.21)

= h eq. 2.4.21 reduces

to

2 2
F + F21 2

1 (2.4.22)

Eq. 2.4.22 can be viewed as a defining statement of a critical section in

a two-layered system.

For some combinations of F F2, jh , eq. 2.4.21 does not yield a
h2

solution. This indicates a hydrodynamically unstable situation: even the

longest waves at the interface amplify in magnitude; the excess kinetic

energy is dissipated by turbulent diffusion over the near field region,

leading to heat re-entrainment into the jet.

48

(2.4.19)
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The implicitform of eq. 2.4.22 is plotted for a typical stable case

and a typical unstable case (Fig. 2-8). In the case of a stable near

field, two roots are always detected, the root with the larger value being

disregarded by energy considerations. Numerical experience have shown

that solving eq. 2.4.16 - 2.4.17 always gives the correct conjugate jump

height.
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2.5 Stratified Counterflow Region

When an unstable near field is present, there is heat re-entrainment

of the jet, and a critical section is established near the discharge (at

the critical section there is a sharp change in the interface)(Fig. 2-9).

The subsequent fluid motion is described by a stratified counter-flow

system. In the following sections the basic mechanics of the flow is dis-

cussed with respect to a far field condition similar to that in the experi-

mental set up of this study (no imposed physical boundaries; ambient fluid

at rest). In the prototype heat loss effects may govern the far field

boundary condition. The fundamental behavior of the governing equations

are presented and contrasted with the two-dimensional counterpart. Finally

the predictions of the near field dilution for unstable jets are given.

2.5.1 The Momentum Equation for Axi-symmetric Stratified Flow

Noting that P2 = Pa P = a - AP > 0, eq. 2.3.1-2.3.2 can be

simplified to give:

*2 dh 1 h 1 d(h +h) T
F1 [jh- + 1 (1 - dr +pgh (2.5.1)

r dr gh

*2 dh2 h2 d(h1+h2) p dh (TT
F2 [ + 2 d 2 - - (2.5.2)

dr r dr P dr pgh2

*2 *2
Under the limiting conditions Ap + 0 , F1 , F2 + 0. It was shown

in a previous section that the total water depth is a constant

d(hl+h2 )
dr~+h = 0 (2.5.3)dr
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Substituting eq. (2.5.3) in eq. 2.5.1-2.5.2 and rearranging, one obtains

the following expression governing the radial variation of the interface

dh2 2 *2 2 h2 *2 h1 Ti (Ti-T)
d2 [o _ F* _ F ] = F - - F - -+ ib
dr 1 2r 1 r pgh1 Pgh2

Remembering F = 2 A
1 

2 2 / F , we get

2 h2 2 h1 T. (ri-Tb)F F + p+ b(2.5.4)
dh2 F2 r F 1 r+ pgh1 Ap pgh2

dr = 2 2
1 -F1 - F2

At the critical section, the sharp change in the interface can be

dh2
described mathematically by dr + o , giving again the critical condition

2 2
F + F = 1.
1 2

The interfacial and bottom shear are related to the velocities in

the two layers in the usual quadratic friction relationships:

' f 2 Pfi Q, Q2
2 1

Til -8 (Ul-u2)2 i Q8 1 Q2 F2r
{Ti 8 - '8 ( h1 2 (2rr)2

Prefixing the known directions of our counterflow system, one obtains

Pfi Q1 2 1 Q 2 h 1 2

i =8- 2 r- ) Q > 
8 2-Q2 Ql 2 Q >

Similarly
Pfo Q2 2 1

o= 8 2wrr h2

Substituting the expressions for Ti and T o into eq. (2.5.4) we obtain

the radial variation of the interface in the stratified counterflow

system: h h n 2 LL 2 "1 L 2 I~ ~~lL-~

dh2

dr

F 2 2 2 1 +i 2(1+ 1 -1 + o 2
F2r 1 r 8 1 h2 Qh2 8 2

1 2 21 - F F2
1 2

(2.5.5)
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2.5.2 Behavior of the counterflow system

The entire physical situation can be described by eq. 2.5.5 subject

to a far field boundary condition which will be discussed later. At the

2 2
critical section r = r , the critical flow condition F1 + F2 = 1 has to

c 1 2

be satisfied.

In the sequel, the essential features of eq. 2.5.5 are discussed by

considering the special case of equal counterflow Q1 = Q2 which indeed

represents the case of high dilutions. For this case the problem can be

shown to be dependent on a single dimensionless parameter.

2 Q 2
Defining F as (2ir H)r constant densimetric Froude number based

c the total water depth

g H

the problem can be cast in dimensionless form:

F2

dH dFH
dH2

(l-H 2 ) 2 Rc 2

(I- H2 ) + o2
H2 8 H22

dR R Rc2 c2

1- F2 R F2 R
1 -F (-H 3 F H 3

s.t. at the critical section Rc

H2 satisfies

2 1 1

H (1-H2)3 H3
2 H2

where H2 = h2/H R = r/H R = rc/H

The radius rc is to be determined from experimental results.

For a given FH , H2(r = rc) can be found by solving the critical

flow condition. One H2c is known, eq. 2.5.6 can then be solved numerically
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as an initial-value problem, using numerical methods, such as a fourth

order Runga-Kutta scheme . Since the derivative dH2 is infinite at the
dR

starting point, the first few points of the interface is found by inverting

the derivative and solving the inverse problem with dH ; after marching

a few steps out, the formal derivative can be used again.

The change in the interface for different values of FH and different

friction coefficients is illustrated in fig. (2-10). Two remarks can be

inferred:

1) For small R and in particular, R - 0(1), which is experimentally ob-
c c

servedthe inclusion of frictional effects has a negligible effect on the

shape of the interface. In such cases the radial inertial effects pre-

dominate, and a frictionless flow situation can be adequately assumed.

2) The interface always approaches an asymptotic value horizontally. The

value increases as FH increases. In the limit as FH approaches 0.25, the

interface attains a maximum asymptotic value of 0.5 in the far field.

These behavior can be readily explained by studying eq. 2.5.5 in

detail. For Rc~ 0(1) and H2 finite the numerator of the derivative

approaches zero as r + . Hence H2 attains a constant value for large r.

Insight into the mechanics of the flow can be gained by contrasting

eq. 2.5.5 with a radial free surface inward flow and a two-dimensional

stratified counter-flow system. Sadler et al (1963) have derived the

free surface curve for frictionless radial inward flow to be

dy F2 Y
dR 1 - F2 R (2.5.7)

where F = free surface Froude number

y = water depth
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This can be attained from the more general eq. 2.5.5 by setting At= = 1
O P

f. = f = 0 and F1 = 0.

It can be seen from eq. 2.5.7 that for subcritical flow (F < 1) the

water depth is always increasing with dy= 0 is asymptotically approacheddR

in the far field.

Jirka (1973) treated the two-dimensional counterpart of the present

problem. For r + o eq. 2.5.5 reduced to this two-dimensional case,

namely f 2 fi 2 1 h 2 H
dh2 =8 2 8 1 (1- Qrh2 ) h2 5.8)

dx 2 2

where Qr = Q1/Q2

Again eq. 2.5.8 can be obtained directly from eq. 2.5.5 by neglect-

ing the radial components. In fact, equation 2.5.5 can be made to exhibit

a two-dimensional behavior by artificially setting Rc very large, thus

destroying the radial dependence of the equation. As illustrated in

fig. (2-11), in these cases a second critical section is always found by

marching out the solution. The interfacial height at this second critical

section is approximately conjugate to the starting point. The physical

implication is that in subcritical flow roughness effects always tend to

raise the interface; however, because of the physical constraint imposed

by the free surface, a critical section has to be formed some distance

from the starting point.

In a radial stratified counterflow system with Rc - 0(1), however,

the radial expansion allows one more degree of freedom; this stabilizes

the flow and a second critical section is not formed near the starting

point.

For the range of interest, 0.4 < R < 2 strong self-similarity is
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found in the behavior of eq. 2.5.5. All the information can be summarized

by plotting h2 against r/rc (Fig. 2-12).

In the general case of non-equal counterflow the problem can be

2 Q2 2

shown to be dependent on F2H and Qf where F2H = (2rH)

The shape of the interface as a function of Q is illustrated
rQ 2

in fig. (2-13).

2.5.3 Critical Flow in a two layered system:

Since the critical flow condition is vital to the understanding of

many stratified problems, and is very much related to the prediction of

dilution in this study, a short discussion is deemed appropriate.

In open channel flow, as well as in two-layered systems, a critical

section is often formed by an imposed control such as at a free overfall,

sudden expansion from confinement into infinite space, etc. It has an

implication on flow geometry, namely - a sharp change in the interface

position. For the case of equal counterflow, the same governing condition

can be derived from an independent energy principle (Appendix D). With

respect to submerged buoyant discharges and other stratified flow problems

the critical condition has the further implication of limiting the ex-

change flow. Consider the general case of a counterflow system:

At the critical section:

2 2
F1 +F = 1
1 2

2 Qr 1
or F2H [ )3 + ] = 1 (2.5.9)

(-H 2 H2
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where

Fig. 2-14

values of

exchange f

eq. 2.5.9

Q2 2

F2 2r H Qr Q1/Q2 

shows the variation of H2c as a function of F2H for different

Qr For a given ratio of flows in the two layers, Q a maximum

'low Q1 + Q2 corresponds to a maximum FH. By rewriting eq.

as

and setting the

2H H2 H3 3

QrH2 + (1-H )3

dF2
derivative H to zero we have

dH2

(2.5.10)

H2 1

l+Qr

Substituting eq. 2.5.11 into eq. 2.5.10 we obtain

2 = + 1

2H - [1+ Q1/2 ]
r

(2.5.11)

(2.5.12)

Hence for a given Qr we can compute the value of F2H that will give the

maximum exchange flow. In the special case of an equal counterflow Q r=l

F2H = 0.25 is the limiting condition when a maximum exchange

flow is created.

In a two-dimensional two-layered system friction effects tend to

oppose a. condition of maximum exchange flow. The radial expansion of the

flow in the three dimensional case (in the absence of physical boundaries),

however, enhance the formation of such a condition at the critical section.
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2.5.4 Behavior of Flow at large distances

Fig. 2-10, 2-12, shows that at 'large distances' (r 1OH) from the

jet discharge, an asymptotic behavior of the interface is approached. In

the absence of any physical boundaries and ambient currents in the far

field, flow is postulated at minimum energy dissipation.

The rate of energy dissipation, or work done against dissipative

forces, can be expressed as:

fi l3 3 fo 3
Ediss P8 (u1 + u2) + P u 2

Q1 Q2
1 2rh 1 2 2wrh 2

Assuming h1 + h2 = constant,

dEdiss
= 0 gives

dh2

4 fi 2 2 2

hl f [Qrh2 + h] Qrh2 - h] =O (2.5.13)

For the case of equal counterflow Q = 1 this reduces to

hi 4 f. h2 4 hl 4
j-) )i = (0 (2.5.14)

Since the interfacial shear is always about 4 times that of bottom

shear (fi 0.5 f (2u)3 8u3 ), a limiting approximation of f/f + o

gives h1 h2 Fig. 2-15 illustrates the weak sensitivity of

H H

h2/H to fi/fo.



I I I I I_

w

z

HZ_0
LiiIL o

-

z
o I°

Z Z
0 Z

C-

w
O~~D~ :

(D
C\i LL.

0

O co r(D t C

C--

I

66



67

In the prototype far field (r >> H) the boundary condition may be

determined by heat loss effects. In view of the small areal extent within

which asymptotic behavior of the interface is established, the boundary

condition presented in this section is judged to be independent of heat

loss in the far field.

2.6 Summary of Theoretical Framework

The coupling of the theory outlined for the four regions to give the

near field dilution is described in the following sections.

2.6.1 Definition of the Near Field Dilution

The near field dilution S is defined volumetrically as the ratio of

the flow away in the upper layer to the initial jet discharge flow,

S = Q/Qo . In the absence of heat losses, heat conservation implies this

definition is equivalent to S = A , where
AT

AT = temperature rise above ambient in the near field

AT = discharge temperature rise above ambient

2.6.2 Stable Near Field Dilution

For a given (Fo, H/D) the velocity and the upper layer thickness in

the surface impingement region can be obtained by solving eq. 2.2.1-2.2.3

in conjunction with eq. 2.1.19-2.1.20. By visual observation, confirmed

by temperature data, it is found that the internal jump occurs at

rj = 0.57 H from the jet axis. F1, F2 and hl/h2 can then be computed and

used as input to the internal jump equations. Existence of a conjugate
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height implies a stable near field.

It can be inferred from the two-dimensional buoyant jet experiments

done by Jirka and Harleman (1973) that the ratio of the jump length to

jump height is approximately 4. It is expected that this number is smaller

for a three dimensional buoyant jet. Unfortunately, the arrangement of the

temperature probes in the near field is not dense enough to resolve the

shape of the jump interface from temperature data. A zero jump length is

assumed as a first approximation in the theoretical solution. This is

chosen in light of the stability analysis, with the main purpose of evalu-

ating the near field stability rather than the exact shape of the internal

jump region.

For submergence (H/D) less than the length of the zone of flow estab-

lishment, the theory outlined in sec. 2.1 is not directly applicable. A

simplified analysis based on the assumption of a momentum jet is substi-

tuted as an approximation in this range (Appendix C).

If a stable near field exists, the dilution is given by the solution

of the surface impingement region. A different theory for the prediction

of near-field dilution is posed in the next section for the case of an

unstable near field.

The prediction of the near field stability is shown in fig. 2-16

along with the near field dilutions. For H/D > 6.0 the stability transi-

tion can be described by the criterion

F = 4.4 H/D (2.6.1)

In view of the assumptions embodied in the analytical framework, the

stability criterion should be interpreted as a narrow band rather than a
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single line delimiting the stable region on the graph from the unstable

region. The 'transition' from a point in the stable region to one in the

unstable region is continuous in nature, as exemplified by the weak insta-

bility (submerged jump) observed (Ch. 3). The same statements apply to

the two-dimensional case (Jirka and Harleman, 1973).

For low submergences (H/D < 5), the stability criterion is determined

by a line with a different slope. This is due to the fact a different

model is assumed for the zone of flow establishment.

Fig. 2-17 illustrates the sensitivity of the stability criterion to

the assumed location of the internal jump at r. As this is well estab-

lished from experimental data, this sensitivity should not have an impor-

tant effect of the overall prediction.

2.6.3 Unstable Near Field Dilution

Based on the theoretical discussions presented in sec. 2.5, two

assumptions are made:

1) the radial variation of the interface can be described by a

frictionless flow situation.

2) at large distances from the jet, bottom shear is negligible

compared with interfacial shear.

2.6.4 Equal Counterflow

For the case of high dilutions, an equal counterflow system can be

assumed: the far field boundary condition is = 0.5; given the behavior
H

of the interface, a limiting condition of FH = 0.25 has to be established
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at the critical section r in order to match the boundary condition at

large distances. This has the physical implication that a maximum exchange

flow is generated in the counterflow system. By definition

2 Q) 23 F 2F = - R =r /H
H APg H 64R2 (H/D)5 c c

P c

The solution for high dilutions is given by the limiting condition

2 2
F (0.25) = 1/16.
H

4 R2 (H/D)5 1/3
C

i.e. S = [ ] (2.6.2)
F2

0

R is the second experimentally determined coefficient.
c

2.6.5 Non-equal Counterflow

For low dilutions the equal counterflow approximation is not valid

and the general case of non-equal counterflow has to be considered.

The formal approach is to assume a starting value for the dilution,

solve the initial value problem defined by eq. 2.5.5 iteratively until the

asymptotic value of h2 in the far field matches with that obtained by

solving the far field boundary condition. The large numerical efforts

involved is deemed not necessary. Instead a concept derived in the equal

counterflow case is postulated to carry over to the non-equal counterflow

case: a condition of maximum exchange flow has to be created.

By definition

2 S(S-1) 2 F2
F2 = (2.6.3)
2H 64R 2 (H/D)5

c
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Combining eq. 2.6.3 with eq. 2.5.12 and noting that Q = S the
d dilution for unstable buoyant jets can be solved n erically.

near field dilution for unstable buoyant jets can be solved numerically.
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III. Experimental Investigation

A series of experiments were conducted to test the behavior of the

axisymmetric buoyant jet in stagnant ambient water. In an experimental

basin of limited extent boundary effects will influence the stratified

flow pattern in the far field. In order to minimize these effects a plane

of symmetry was assumed at one basin wall and a half jet in lieu of the

full round jet was used. This has the additional advantage of being able

to visually observe the physical phenomenon through the water and the plane

of symmetry.

3.1. The Experimental Setup

The experiments were carried out in a 37' x 18' x 1' hydraulic model

basin. Fig. 3-1 illustrates the general experimental setup. To ensure

good heat insulation, the bottom of the model basin was covered with 1"

thick styrofoam material. A plastic liner was laid on top of the insula-

tion material to prevent any possible leakage of water. An additional

layer of 1" thick styrofoam and 1 " thick concrete blocks formed a false

floor.

Near one wall of the basin a partition was constructed along the

whole length of the model. This created a 16' x 34' area on one side of

the partition. In order to visualize the flow pattern of the jet,the cen-

ter portion of the partition was constructed of two 6' x 10" plexiglass

pieces ( 1" thick). The rest of the partition was made from 14" high

plywood sheets and styrofoam material, both of which were braced and weigh-

ted by concrete blocks. The partition formed a plane of symmetry of the

axi-symmetric jet.
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An existing circulating water system capable of generating currents

across the model was used to mix the water in the basin. This ensured a

uniform ambient water temperature before the experiment starts. Two

4" x 14.5' diffuser pipe manifolds were installed in two 1.3' wide channels

at either end of the basin. The two pipe manifolds were connected by 3"

PVC piping to a flow meter system. Flow is generated by a large pump

(25 HP, 500 GPM). The lateral uniformity of the crossflow was improved by

horsehair matting and vertical slotted weirs at the basin ends.

The flow injection device for the half-jet is a rectangular plexi-

glass box composed of two parts, as illustrated in fig. 3-2. Flow enters

the box at one end and exits upwards through a semi-circular hole. Fig.

3-2a illustrates the core part of the box. The other part consisted of a

glass plate of the same thickness as the upper face of the central core

with a semi-circular hole cut in fig. 3-2b. Different pieces of semi-

circular plexiglass with the desired semi-circular opening (0.25", 0.5",

1") cut at the center can then be fitted onto the glass plate. A half-jet

of a desired diameter is formed by fitting the appropriate glass plate on-

to the core part and sealed with construction sealant. A " x 6" slot is

cut off the center portion of the partition. The injection device was

then sealed onto the plexiglass wall by fitting it inside the slot and

aligning the dividing line E-E of the box with the inner edge of the plexi-

glass wall. The device was then installed in place such that the upper

face of the box is level with the floor. Jets of different diameters are

obtained by changing the plexiglass piece. To avoid flow separation the

exit section of the half jet was rounded off smoothly.

Hot water obtained from a heat exchanger flows to a discharging
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Fig. 3-2(c) The Flow Injection Device
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piping system that consists of a bypass and a connection to the flow in-

jection device via a flexible tygon tubing and copper fittings. Depending

on the amount of flow needed, two types of flowmeters were used to monitor

the flow. For flows higher than 0.5 GPM, a calibrated Brooks rotameter is

used. A different type of rotameter (Brooks, Model 1560) was used to mon-

itor flows below 0.5 GPM accurately.

Forty-four Yellow Springs therimistor probes (Series 701, Time Con-

stant = 9.0 sec., accuracy 0.30 F) for temperature measurement were set up

and mounted at the same horizontal level on a wooden platform supported on

four screw jacks. The probes were identically mounted on four different

radial lines, as shown in fig. 3-3. Six additional probes were used to

monitor the discharge and ambient water temperature at fixed positions.

Temperature readings were recorded by an electronic scanner and printed on

paper to the nearest 0.01 F. By turning the screw jacks manually, the

elevation of the wooden platform can be adjusted. Thus through the move-

ment of the wooden platform vertical temperature profiles can be taken.

Temperature data was punched on cards and processed by a data reduc-

tion computer programme that prints out the experimental run parameters

and the temperature excess along the radial lines for different vertical

positions (see Appendix E).

3.2. Experimental Procedure

Before the start of each run the circulating water system was oper-

ated to mix the water in the basin. Hot water was allowed to flow through

the bypass at the desired rate until a steady desired hot water tempera-

ture was attained. The depth of the water in the basin was measured by
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taking readings with a point gauge.

When the temperature scanner indicated a uniform ambient temperature,

the bypass was turned off and the jet discharge was initialized. Shortly

after the experiment started, dye was injected to observe the flow pattern.

The first scan of the surface temperatures was started when the dye front

had gone past a substantial area. After two or three surface scans had

been taken, the wooden platform was then lowered to record vertical temp-

erature profiles. The experiment was stopped shortly after the dye cloud

had reached the basin boundaries. This took about 20 minutes for the

majority of runs. Since the response time of the thermistor probes is

9 sec., 15 sec. was allowed to elapse after each adjustment of the platform

before starting the scan.

To ensure that some kind of quasi-steady state situation was reached

in the experiment, a surface scan was always taken at the end of the exper-

iment. In all the runs the temperature recordings of the last surface

scan in the near field were very close to those of the first few initial

scans. As a confirming check, a particular run was carried out for as

long as an hour. Fig. 3-4 illustrates that the near field temperature re-

duction remains fairly stable with time.

As no suction device had been installed to withdraw the basin water,

the water depth was increasing during the course of the experiment. Due to

the large size of the basin, the maximum and average relative deviation in

water depth was only 0.04 and 0.01 respectively for the range of water

depths and flow rates used in the set of experiments performed.
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3.3. Experimental Program

Experiments were conducted for a sufficiently wide range of densi-

metric Froude numbers and submergence in order to cover the stable-unstable

transition region. Runs were made in the highly unstable region to obtain

experimental comparison with the theoretical prediction of near field dilu-

tion for unstable jets.

The summary of run parameters and observed near field dilution for

the experiments performed in this study is presented in Table 3-1. The

near field dilution corresponds to the temperature recordings of the therm-

istor probes at the nearest radial position (2" from the jet axis).

3.4. Experimental Observation

Dye injections were used to visually observe the flow pattern of the

jets. However, due to the oblique angle of observation it was difficult

to obtain good quality photographs of the cross-sectional flow profile

through the water and the plexiglass partition.

A turbulent jet is always observed for the range of the Reynold's

numbers tested. The erratic, eddying motion of the fluid particles ac-

company the linear spread of the jet. As the jet impinges on the free

surface, a surface boil is observed, which fluctuates in intensity, creat-

ing a disturbance that generates easily observable circular wave fronts on

the free surface.

As outlined in Ch. 2, the stability of the near field depends on two

dimensionless parameters, the submergence of the jet H/D and the discharge

densimetric Froude number F . For high submergence and low Froude num-

bers, a weak surface boil is observed, followed by a jet like horizontal
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spreading, usually accompanied by a weak jump. As the submergence is de-

creased and (or) the Froude number is increased while still maintaining

near field conditions, the near field structure is even more clearly ob-

served, namely a thin upper layer of approximately 1/10 of the total water

depth in the surface impingement region is found. This thin layer spreads

out horizontally with no apparent change in thickness, and an internal

jump is always observed at a radial distance of approximately 0.6 H.

As H/D is decreased further and (or) Fo is increased, a weak insta-

bility is observed in the near field. This is characterised by a thicken-

ing of the upper layer in the near field, followed by an internal jump pos-

sessing a conjugate depth that touches the bottom (submerged jump). Weak

re-entrainment of the upper layer water is observed. The region of insta-

bility extends some distance off the jet axis, and a critical section is

observed at the end of the field of instability.

For sufficiently high Fo and (or) low H/D an instantaneously unstable

near field is observed. Intense re-entrainment occurs and the linear

spread of the jet is no longer visible. The region of instability is con-

centrated near the jet axis, with the establishment of a critical section

at some distance from the jet. The intense instability creates a strong

counterflow system which results in a critical section close to the jet.

The observations are schematized in Fig. 3-5.

Fig. 3-6 shows temperature transects for a typical case of each of

AT
the three cases mentioned above. The normalized temperature rise AT is

plotted beside the location of each thermistor probe.

Radial symmetry of the dye pattern was not obtained in all runs.

For runs with an unstable near field, reasonable symmetry was observed.
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For runs with a stable near field, protruded fronts near the partition and

normal to it are frequently observed, with a slight dent in a narrow por-

tion of the circumference, as illustrated in fig. 3-7. Possible explana-

tions for this phenomenon are: the presence of the basin boundary has the

effect of creating a recirculation into the near field, causing the ob-

served dent, fig. 3-8. Constrained by the model geometry, the exit section

of the injection device (0.5" long) is not large compared with the jet

diameter. The exit flow may have a stronger component in the forward

direction ( = 90°), again creating a weak recirculation into the near

field for a narrow portion of the circumference.

In every case the temperature rise of the four radial lines for dif-

ferent vertical positions delimits very distinctly the three cases of a

stable, weakly stable (submerged jump) or an unstable near field.

The effect of the partition wall, which was located at one jet sym-

metry plane, can be assumed as negligible for the submergence tested

(max. 32). This is based on a consideration of the wall jet data on

centerline velocity by Rajaratnam (1974), which can be compared to the

free jet solution by Albertson et al. (1950), as shown in fig. 3-9. For

the range of submergence tested, the deviation due to additional wall

shear can be neglected.
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Fig. 3-7: Observed Indentation:

Slight Asymmetry of The Dye Front
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IV. Comparison of Theory and Experimental Results

The experimental observation of the near field dilution in relation

to the theoretical prediction outlined in Ch. 2 is discussed in the sequel.

The results of the theoretical solution are then compared with experimental

data and empirical coefficients are evaluated.

4.1. Near Field Stability

The prediction of the near field stability as discussed in sec. 2.6.

is compared with experimental data in fig. (4-1). It can be seen that the

stability is well-predicted by the theory.

4.2. Near Field Dilution

The theoretical predictions for the near field dilutions are evalua-

ted for the exact densimetric Froude numbers and submergences of the ex-

perimental runs. The results are compared with the observed near field

dilutions in Table 4-1.

Stable Jets: In general reasonable agreement is obtained. Observed dilu-

tions are always higher than predicted. This may be ascribed to additional

entrainment in the surface impingement region and the weak re-entrainment

on the surface caused by the slight asymmetry observed.

Unstable Jets: Using experimental results of runs with an unstable near

field and near field dilution greater than 3.0, an average value of

Rc = 0.47 is obtained by fitting the data with eq. 2.6.2. Theoretical

predictions computed with this value of Rc are compared to the observed

dilutions.
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Although the coefficient Rc is derived from experimental results

with dilutions greater then 3.0, very good agreement is obtained with data

characterised by dilutions less than 3.0. This confirms the validity of

the postulated structure of the theory for the stratified counterflow sys-

tem in an unstable near field.

Although the theory requires two experimentally determined coeffic-

ients: namely the location of the jump R for a stable near field and the

length of the mixing region for an unstable near field R, the near field

dilution predictions as well as the experimental data demonstrate a con-

sistent trend which could be understood in terms of our physical notions

of buoyant jets in shallow water.

As a turbulent jet was always observed for the range of Reynold's

number tested and frictional effects are shown to be unimportant at large

distances from the jet (sec. 2.5, stratified counterflow region), the find-

ings of this study can be extended to prototype conditions.

The experimental data is compared with the general theoretical pre-

dictions in fig. 4-2.
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V. Conclusion

The mechanics of a vertical axisymmetric jet in stagnant water is in-

vestigated both theoretically and experimentally. Four flow regimes with

distinct hydrodynamic properties are discerned in the near field of the

jet: the Buoyant Jet region, the Surface Impingement region, the Internal

Hydraulic Jump region, the Stratified Counterflow region. The mechanics of

the flow in each region are formulated analytically. Insight is gained by

examining in detail the mathematical behavior of the theoretical framework.

The solutions of the four regions are coupled to give a prediction of the

near field stability and the near field dilution as a function of the jet

characteristics. To verify this theory, a series of experiments were

carried out with a half-jet.

It is found that the near field stability is dependent on the densi-

metric Froude number and the submergence of the jet. For certain combina-

tions of the two, an instability is detected. The criterion that governs

the stable-unstable transition is found to be F = 4.4 H/D for H/D > 6.
0

In the case of a stable near field, the dilution is governed only by the

jet characteristics. When an unstable near field exists, there is heat

re-entrainment from the stratified flow away, and the dilution is corres-

pondingly lessened. In this case the dilution is governed by the far field

boundary condition in addition to the jet characteristics. The basic

mechanics of the flow for an axisymmetric buoyant jet can be understood

in terms of the theory developed in this study.

The theory is solved on a generic basis and the general results pre-

sented. The characteristics of the four flow regimes and the phenomenon

of instability are experimentally confirmed. The observed near field
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dilution are compared with the theoretical predictions. Good agreement is

obtained.

Recommendations for future research include: investigation of the

behavior of buoyant jets in an ambient crossflow, the effect of the angle

of discharge on the near field stability, and testing the theory in this

study against experiments carried out with a full round jet.
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LIST OF SYMBOLS

Subscripts:

1,2

c

e

s,i,b

j
i

I

a

o

z

r

upper, lower layers in stratified flow

critical section in stratified flow

end of region of flow establishment

surface, interface, bottom boundary conditions

internal jump section in stratified flow

inflow section of impingement zone

outflow section of impingement zone

ambient variables

discharge variables

vertical direction

radial direction

jet width

width of mixing region in zone of flow establishment

dimensionless length of zone of flow establishment

specific heat

jet diameter

layer densimetric Froude number

densimetric Froude number based on total water depth

free surface Froude number

interfacial stress coefficient

bottom stress coefficient

acceleration due to gravity

total water depth

b

b'

c

c
P

D

F

FH

F

f.
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g
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h layer depth in stratified flow

h' conjugate jump height

hI thickness of jet impingement layer

KL head loss coefficient for impingement

M momentum flux

p pressure

Q layer flow in 2 layer system

Qe entrainment flux

Qr flow ratio in 2 layered system

q flow per unit width

qH heat flux

rc location of critical section for unstable jet

rj location of internal jump

r radial co-ordinate

R Reynolds number

RI radial position of outflow section of surface
impingement region

rlr2 toe and end of internal jump

S dilution

T temperature

T equilibrium temperaturee

(u,w) velocities in axisymmetric cylindrical co-ordinate
system

"u9u2 averaged layer velocities for stratified 2-layered
system

uc jet centerline velocity
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u. jet velocity at inflow section of impingement zone

y water depth for free surface flow

z vertical coordinate

entrainment coefficient

jet spreading angle

X jet spreading ratio between mass and momentum

AT temperature rise above ambient

AT discharge temperature riseo

Ap density deficiency

p density

rT shear stress

coefficient of thermal expansion
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Stable Near Field Solution:

The solution for the average dilution in a stable near field can be

obtained by solving eq. 2.2.1-2.2.3 in conjunction with eq. 2.1.19-2.1.20.

The following set of non-dimensionalized algebraic equations are arrived

at. These two equations are solved numerically by the Newton Ralphson

method.

3 1
1l+A2 11 3 (l+X2)I

u =L[-l+ { 1 2 + 3 2
o {z2H*2 c2} ]3

H*z X2 482 C

u2 (1-KL) 1 czu 2 (l-z)

I CM i +
6 z z(l-z)ao 2H (4e2 )z2F2u

where u- i z= /H z = = /D c = z /D
'IO 1 e

Having solved for u, z the densimetric Froude numbers of the upper

and lower layer can be computed and used as input for obtaining the con-

jugate jump height.

Assuming that the internal jump occurs atr=R.H from the jet axis,

and experimental observation indicates there is practically no change in

the thickness of the upper layer prior to the jump. The densimetric

Froude numbers of the respective layers can then be related to the jet

characteristics:

2 u 2 c z
L= _ (_2) 

A2p ; | = ( R.2 (1-z)3 H*

J

F2 =(Si2 (1-z)3 F2

2 S z 1
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Appendix B

The Internal Hydraulic Jump

The conjugate jump height of the radial internal jump can be solved

numerically by the Newton Raphson method. By assuming

r2 - r1 = T(h1 - h1) T constant

R* = r2 l+arl

I
h

(6 - 1)
hi

Th1where a =
rl

By rearranging eq. (2.4.14) and (2.4.15), we obtain the following set of

two algebraic equations.

F1 (X1 Y1 ) 

F2 (X1 Y) =

hi
X1 -'

4F -R*x] I
1 

R* (+R*)x (- )
-1-

4 2 -R y 12 h 1

R (I+R )yl(l+Yl)(1l-x)
= 0

4F2 yl(l+X) - R* (+R*)(l+xl)(ll)x 0

- 4F2 h1 (R*x )

9' 2
h2

Yl = h2

Having evaluated the partialderivatives of F(x 1, Y1) and F2(Xl, y1)

the two equations can be solved by iteration.

such that

where
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Appendix C

For H/D smaller than approximately 6.0 the theory outlined in ch. 2

and the previous appendix does not strictly hold as the flow is not fully

established when the jet reaches the free surface. By assuming momentum

dominates in such cases, a simplified analysis is done to derive an average

dilution in the near field.

From Albertson et al (1950),

z z2
Q/Qo = 1.0 + 0.083 + 0.0128

where Q is the total flow of the jet.

Assuming the depth of the upper layer = BH , the dilution in the near

field is given by

S = 1.0 + 0.083(1-8)H + 0.0128 (1-) 2H*2

Assuming that the jump occurs at rj=RjH from the jet axis, the den-

simetric Froude numbers of the respective layers prior to the internal

jump can be related to the jet characteristics and experimental coeffic-

ients:

2 1 S3F2
_U 1 1 _

1 g h 64 R2 H*5
2g hl J

2 u2 S-1 2 ()3 F2

p 2p

In the numerical solution B is assumed to be 0.1.
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Appendix D

Energy Approach to critical flow in a two-layered counterflow system:

It is well known that for open channel flows, the critical flow

condition can be interpreted as that which minimizes the specific energy

for a given flow. The following is an extension of the same principle to

a two-layered counterflow system.

) il ZA P-A

k
.I

r
! D 

v

The two dimensional case is treated here. However, the analysis is

also applicable to axi-symmetric flows.

Kinematic Boundary Condition:

free surface:

interface:

w = d(hl+h 2)
dx

dh2
wi Ui dx

A small fluid particle of mass pV possesses potential and kinetic

1 2 2energy: E6V = {pgz + 1 (u2 + w)} 6V2 u+ ) g

- - - - 0_ 1
I#

< . R,
Z 
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First Law of Thermodynamics:

DE = ( DE aE (Work)
Dt at ax azt6a= + ap ) 6V

ax az

Assuming steady state and neglecting friction losses: we have

(E+p)u + a (E+p)w = ax az

Integrating this vertically and applying Leibnitz rule:

d fhl+h 2
dx o {(E+p)u} dz - (E+p) u d(h + h2) + (E+p) w = 0

dx

Invoking the 'kinematic boundary condition at the free surface,

d fhl+h2{(E+)u}dz = 0

h2 (E+p)udz = fh2 {pgz + 1 p(u2+w2) + (p-Ap)gh1 + pg(h2-z)Judz

Assuming w << u
-3

and u u
2 2

we have

= Pu2 h + {pg(hl+h2) - Apg h } h2 nFor the counterflow system: we have q2
= [q2

For the counterflow system: we have q2 = - 121

therefore

fh2 (E+p) udz
o

3
1 q2 q2
2 P 2 h2 - pg(h +h2) - Apghl} h2(-2)

h3 h2



Similarly,

hl+h 2 hl+h2 2

(E+p)u dz = 2 u{-A)gz + PU +(-A)g(h+hz)}d
3

= ½p(--) h + (P-ap)g(hl+h2) (h-) h1
h1 1

ql> 0

Total energy at any x can be defined as:

3
q2

E(x) = - P2 - {pg(h
2

ql3
+ p() + (

h1

For extremum, E = 
ah1

-(p-Ap) g q2 + (p-Ap)

- pg q2
+ (p-Ap) g ql +

(1) - (2):

3 3-pq3 pq3

3 -3h h2

I+h2) - Apghl } q2

p-Ap)g(hl+h2) ql

aE
-= 0 WIah2

3
Pqlgq1

g( 1 - 3 = 0
h i

3
Pq2

3

2

= 

Apg q2 = 0

ql= q2 gives

2 2F + F2 = 1 .
1 2

e have

(1)

(2)
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Heat loss effects in the Near Field:

In this section it is shown that heat loss effects are insignificant

in the near field of the bouyant jet.

Neglecting molecular transport process, heat conservation implies:

aT aT T'u' T'w'u3 + w3 = -w (F.1)
r az r z

where u1 w' = velocity fluctuations

T' = temperature fluctuation

Integrating eq. F.1 vertically for the upper layer, using Leibnitz

rule and invoking kinematic boundary conditions at the free surface and

the interface (assuming no free surface slope) it can be shown that

d T1u -1d= TqHs-qHi
1 dr pch

where

qHs = surface heat flux

H = interfacial heat flux

T1 = average temperature of upper
layer

c = specific heat of water
P

Putting the heat fluxes in the form:

qHs = - k(T1 -T e)i

qHi = kz(T1 -T 2)



= surface heat loss coefficient

= interfacial heat loss coefficient

= average temperature of lower layer

= Equilibrium air temperature

Doing a scal

ambient AT1, we ha

*
* dAT1
u1

dr

ling and replacing T1 with the temperature excess above

lve

kR (T 1-AT) k R (T-AT) (AT-AT2 )
-[ PcHu ] * - [ c u ] (F

a p o h 1 a p o h

1 U l/U °

r = r/H

hI = h 1 /H

characteristic i

characteristic
of upper layer

AT1 = AT/AT

upper layer velocity

temperature excess above ambient

San Onofore Power plant, as an example of a submerged discharge

design, has a condenser flow rate of 3.2 x 106 cf/hr. Using the theory

outlined in this study, the upper layer velocity can be estimated to be

approximately 0.2 ft./sec. at r = 10. The values of the heat loss

coefficients are given by:

= 150 BTU/°F-ft.2-day

= 10- 4 ft2/sec

= 62.5 BTU/ft3

Jirka and Harleman ]
(1973)

where k

k

z
T2

T
e
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.2)

where

u :
0

AT :o

k

k
z

PCp
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Substituting these numbers into eq. F.2 the dimensionless parameters

in brackets can be shown to be 0.03 for the surface heat loss and 0.0001

for the interfacial mixing.

Hence heat loss effects are not important in the region of interest

(r < lOH) treated in this study.
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