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ABSTRACT

Discharging ﬁeated water through submerged vertical round ports
located at the bottom of a receiving water body is a currently used
method of waste heat disposal. The prediction of the temperature
reduction in the near field of the buoyant jet is a problem of
environmental concern.

The mechanics of a vertical axisymmetric buoyant jet in shallow
water is theoretically and experimentally investigated. Four flow
regimes with distinct hydrodynamic properties are discerned in the
vicinity of the jet: the buoyant jet region, the surface impingement
region, the internal hydraulic jump, and the stratified counterflow
region. An analytical framework is formulated for each region. The
coupling of the solutions of the four regions yields a prediction of
the near field stability as well as the temperature reduction of the
buoyant discharge.

It is found that the near field of the buoyant jet is stable only
for a range of jet densimetric Froude numbers and submergences. A theor-
etical solution is given for the stability criterion and the dilution of
an unstable buoyant jet.

A series of experiments were conducted to verify the theory. The
experimental results are compared to the theoretical predictions. Good

agreement is obtained.
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I. Introduction and Background

With the increasing demand in electric power in the U.S., waste heat
disposal has become a problem of important environmental concern. Steam
electric power plants, both fossil-fueled and nuclear~fueled, require a
continuous cooling water flow to remove the waste heat from the steam con-
denser. Two modes of cooling water operation are possible: In a once-
through system, the cooling water is circulated through the power plant
only once and then discharged as heated water into an adjacent receiving
waterbody. In closed-loop systems, the cooling water is continuously re-
circulated, the heat being rejected directly to the atmosphere before the
water returns to the plant.

Due to the low efficiencies of existing power plants (determined by
the thermodynamics of the steam cycle), enormous quantities of waste heat
are discharged. In a nuclear fueled power plant, for every kilowatt of
electrical energy produced, an equivalent of two kilowatts of energy is re-
jected to the environment in the form of heat.

The artificial heat addition into a natural water body has a definite
impact on the local ecological balance. Consequently decision makers as
well as ecologists are very concerned with the thermal effects in the nat-
ural waterway induced by various methods of condenser cooling water dis-
charges.

Common methods of waste-heat disposal for present once-through cool-
ing water systems can be classified into two categories:

a) Surface Discharge schemes: The condenser cooling water is discharged
through a canal or a number of pipes located at the water surface into the

neighboring waterway. This method of discharge usually results in a larger
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surface area with elevated water temperatures, but has the advantage that

the heated water forms a stably stratified surface layer and the effect on
the bottom of the receiving water is reduced. Pilgrim Nuclear Power Sta-
tion in Plymouth, Mass. is one such example.

b) Submerged discharge schemes: Either single port or multiport submerged
discharges are in common application. Single port discharges involve a
single (or dual) outlet located at the bottom of the receiving water and
discharging either vertically or horizontally. Two examples of large
existing vertical single port outfalls on the Pacific coast are:

1. San Onofore nuclear plant. The cooling water flow from approximately

6 ft3/hr. discharged through a 1l4-ft. diam-

450 MW generation is 3.2 x 10
eter pipe 2600 ft. offshore, about 15 ft. below sea surface.

2. Redondo beach fossil fueled plant with 1612 MW capacity. One of the
two offshore outfall systems consists of a single 14-ft. diameter pipe
discharge 300 ft. offshore, about 16 ft. below water surface.

Recent innovations propose the use of multiport diffusers as an efficient
way of heat disposal. This consists of a long pipe with the condenser
flow discharged through many openings spaced along the pipe. The high
velocity jet discharges induce intense turbulent mixing with the ambient
water, thus achieving rapid temperature reduction of the heated discharge
within a relatively small area.

The ultimate heat sink is the earth's atmosphere. The entire temp-
erature distribution in the nearby waterway induced by the flow and heat
input of the condenser cooling water is governed by the interaction of a
variety of complicated physical processes and boundary conditions: turbu-

lent mixing of the discharge with the ambient water, the hydrodynamic
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conditions in the receiving water, conduction, convection, evaporation and
radiation to the atmosphere. For once-through cooling water systems the
receiving water can be broadly classified into two regions with respect to
the thermal effects of waste heat input: Far from the discharge the temp-
erature pattern is dependent on ambient processes and consequently is not
under the direct control of the engineer: the wind speed, the prevailing
direction and magnitude of the currents, the ambient temperature, humidity
and other meteorological conditions that govern the heat transfer between
the water surface and the atmosphere. Near the discharge the temperature
distribution is sensitive to the mode of discharge (surface discharge or
submerged discharge) as well as the design characteristics (orientation,
spacing, and number of discharge ports, diameter of port opening, size and
geometry of channel). The task facing the engineer is to produce the best
design with respect to specified thermal discharge criteria. The quantity
of interest is often an average dilution defined by the ratio of the temp-
erature rise across the condenser to the temperature rise above ambient
near the discharge. This serves as a general indicator of the effective-
ness of temperature reduction achieved by the discharge design. Other con-
siderations include the time of travel of organisms entrained in the dis-
charge, whether the near field is stratified or fully mixed, the area of
a certain surface isotherm.

The discharge of heated water through a vertical round port located
at the bottom of the receiving water is a currently used method of waste
heat disposal. The temperature distribution induced by such a method of
discharge entails an understanding of the hydrodynamiés of the physical

situation. The heated discharge entrains surrounding water by virtue of
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its momentum and its buoyant acceleration as it rises to the water surface,

with a corresponding dilution of the discharge flow. The mechanics of a
round buoyant jet iﬁ an infinite ambient field has been investigated by
many investigators. However, in many practical situations, these vertical
outfalls are situated in shallow water ( a physical parameter that meas-
ures the 'degree of shallowness' is the ratio of the water depth to the
port diameter). Near field dilution is usually computed by extending the
buoyant jet solution in an infinite field in some arbitrary way. An at-
tempt at a more refined treatment has been Trent and Welty's (1973) work
on numerical modelling of turbulent jet flows. These studies, however,
have neglected the important question of hydrodynamic stability of the
near field. The boundary conditions chosen always dictate a stable near
field, i.e., the heated water always form a stratified flow away and the
jet discharge is always entraining ambient cooling water.

The stability of the near field for a two dimensional slot, buoyant
jet was investigated by Jirka and Harleman. It has been found that the
densimetric Froude number, the submergence and the angle of discharge of
the jet are the governing parameters that determine the stability of the
near field. In an unstable near field, it is not possible to distinguish
an upper layer in the flow away zone, and there is continuous heat re-
entrainment into the jet. The dilution is hence decreased considerably as
compared to that obtained in a stable near field (fig. 1-1).

The objective of this thesis is to extend the physical and analyti-
cal notions of the two dimensional case to the simplest three dimensional
case - an axisymmetric vertical buoyant (round) jet in stagnant shallow

water. With the exception of two experimentally determined coefficients,
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a theoretical solution is derived to determine the near field dilution and
establish the criterion of the stability of the near field. If a stable
near field exists, the near field dilution is dependent solely on the near
field parameters (jet densimetric Froude numbers, submergence). In the
case of an unstable near field, the dilution is dependent on both the near
field parameters as well as the far field boundary condition.

A series of experiments were conducted to verify the theory.
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II. Theoretical Framework

Both the experiments done for a two-dimensional buoyant jet (Jirka
and Harleman, 1973) and the experiments carried out in this study for an
axisymmetric vertical bUYoyant jet in shallow water (ch. 3) suggest strong-
ly the classification of the near field into several distinct flow re-
gimes; (Fig. 2-1) A) Buoyant Jet Region: Before the bouyant jet rises to
the surface of the water, its behavior is postulated to be the same as that
of a buoyant jet in an infinite field. B) Surface Impingement Region: this
refers to the surface hump formed by the jet impingement on the free sur-
face, followed by horizontal spreading of the jet discharge. C) The
Internal Hydraulic Jump: An abrupt transition from the high velocity flow
in the surface impingement region to a lower velocity flow away occurs
some distance away from the jet axis, with a thickening and a correspond-
ing decrease of velocity of the upper layer. D) Stratified Counter-Flow
Region: the flow that occurs after the internal jump is described by a
stratified two-layered slowly varying flow.

Fig. 2-1 illustrated the flow details for the case of a stable near
field condition. In the case of an unstable near field continuous re-
entrainment of already mixed water into the jet region occurs. Hence a
large vertical eddy (of toroidal shape in the axisymmetric case) comprises
the near field region. Outside this region exists a stratified counter-
flow system as in the stable case.

The classification of the problem into distinct flow regimes with
appropriate assumptions renders the description of the flow field amenable
to analysis. In the following sections the properties of the flow and

temperature for each region will be analysed. The coupling of the
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analyses of the four regions yields the prediction of the near field

dilution.

Since the near field is of small areal extent, the heat loss from
the surface is excluded from the subsequent analysis. A scaling argument
demonstrates this assumption is well-justified under typical thermal dis-
charge conditions (Appendix F).

The flow is assumed turbulent for all the analytical treatment in
the following sections. No generality is lost by considering the specific
case of a hydrothermal jet. The words 'water' and 'density deficiency' can
be replaced by 'fluid’ and 'concentration' without altering the method of

analysis.

2.1 The Buoyant Jet Region

2.1.1 Statement of the problem

Fig. 2-2 shows an axi-symmetric buyoyant jet of fluid issuing from
a source of finite diameter vertically upwards into a denser homogeneous
ambient fluid (of infinite lateral extent) at rest. The physical varia-
bles of interest are the velocity and density of the jet at any particular

position (z,r) in a cylindrical co-ordinate system.
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2.1.2 General Characteristics of the Axi-symmetric ijet

The general characteristics of the buoyant jet (or forced plume) in

a fluid of unlimited vertical extent are well established by extensive re-

search. In any given physical situation (convection induced by fires,
plumes rising from smoke stacks, sewage disposal from a submerged outfall),
the fundamental physical variable is the density of the issuing fluid (be
it due to a temperature difference or embodied pollutant), and the charac-
teristic dimensionless parameter that governs the mechanics of the buoyant

H
)
jet is the exit densimetric Froude number as defined by F, = S

AP oD
ghPol

p
where Ap, = pg — po : initial demsity difference between jet and ambient

fluid. This parameter describes the ratio of the sum of all forces per

ul Apo
unit mass, ‘52_ , to the buoyancy force per unit mass gj;- of the fluid.
When F, + «, inertia dominates, and the buoyant jet behaves like a pure
momentum jet. Conversely, when Fo is small, buoyancy dominates, and a
plume-like convective motion arises. In the intermediate case when F,
has a finite value, both inertia and buoyancy effects are important. Near
the source the initial momentum dominates and the discharge behaves like
a pure jet. Far from the source buoyancy predominates and all buoyant
jets behave like plumes.

Near the source of a pure momentum jet, the sharp discontinuity in
velocity between the jet and the ambient fluid creates a region of high
shear. Such a region is highly unstable; eddies accompanied by turbulent
mixing result, with the effect that ambient fluid is entrained into the
jet, increasing the mass flux of the jet. The width of the jet, and hence

the dilution of the fluid increases in the direction of the discharge.

The momentum flux is conserved.
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For a pure plume, the discharge with no initial momentum is contin-

uously accelerated by the buoyancy force. A certain distance away from the
source, the plume will have acquired enough momentum to entrain the ambient
fluid; the basic turbulent mixing process that ensues after this point is
then similar to the momentum jet. The hio yancy flux is preserved in this
case, whereas the mass flux and the momentum flux increases in the direc-

tion of the discharge.

2.1.3 General Analytical Treatment

The structure of a submerged buoyant and non-buoyant jet has been
determined from a number of eiperimental investigations(e.g., Albertson,
Rouse and Yih, Morton):

1. Near the source, where turbulent diffusion of the momentum has not
penetrated to the center of the jet, the velocity profile consists of a
top hat portion, and a bell-shaped tail approximating the drop in velocity
due to the entrainment of the ambient fluid (Fig. 2-3).

2. A certain distance away from the discharge; where the central core of
constant exit velocity ceases to exist, the velocity profiles are of bell-
shaped form.

Gaussian profiles can usually be well-fitted to the experimental
results.

It can also be observed in experiments that the profiles of density
deficiency, defined as Ap(z,r) = pg - p(z,r), are of bell-shaped form as
well. The rate of spreading, however, is larger, indicating that heat or

concentration of a pollutant diffuses faster than momentum.
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2.1.4. Governing equations:

A steady state formulation of the problem is presented in this
section:

Continuity: Invoking Boussinesq's(constant mass but variable weight);

1 9 3
v [ ¢ uz(z,r)] + Iz uz(z,r) =0

Integrating across the jet, we have:

E% gm uz(z,r)Zvrdr = - 2nrur(z,r) lo
(2.1.1)

where QE = entrainment flux
The change in the volume flux of the jet is due to the entrainment
of ambient water.

Newton's 2nd Law of Motion:

Navier Stokes equation in the z~direction:

du, Ju dt 9T
) —Z 1. 3P _ Iz  _ zz
pr[ur or + u, 9z l=-rx oz pgr + r [ ar T oz ]
where T s T are turbulent shear terms.
Tz zZ
Assuming aTzz << BTrz , i.e., lateral variation of the turbulent shear
9z or

is much greater than the longitudinal variation and integrating across the

jet (invoking the Boussinesq assumption), we have

3 (u_r)
o L r 1393 o 2
Pa [uruzr Io - fo u, °T dr + 2 3% fo u, rdr]

P ) - o
=-3, [/, mdr] - J pgrdr + Ty r|o

QO
-/ T dr
o rz
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The boundary conditions are:

u,(z,@) =0

(- -]
g Trz dr =0 3 ZFinternal =0
rrz(z,m) =0 as no work is done at zero velocity gradient.

Assuming hydrostatic pressure distribution, we obtain

d o 2 G ( ..)
dz fo u, 2rr dr = fo Pa7P’ g2nr dr (2.1.2)

Pa

The change in the momentum flux of the jet is due to that added by

b uoyancy.
Heat Conservation:

_9 9 -
or [rpurT] t 3z [rpuzT] =0

Noting that T(z,«) = T_, it can be shown that

a,
L P u(T-T) 2rr dr] = O
dz o z a

where T(r,z) : temperature at (z,r)

Ta : ambient temperature

Alternatively the above heat conservation equation can be formulated
as an equation of conservation of density deficiency by noting that

p = Pa and using the equation of state in linearized form

T - Ta = B(p - pa) for small AT ; 8 constant

E% ( f: (pa - p) u, 2nrdr'] =0 (2.1.3)
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2.1.5. The Entrainment Principle

Experiments have shown that the bell-shaped distributions for both
velocity and density deficiency can be approximated by Gaussian functions:

Letting 2

rzb

uz(z,r) = uc(z,o) e

—r2 /2212
and 0,70 (z,1) = [p,~p(z,0] &% /*P

where A2 is the turbulent Schmidt number, a measure for the relative
diffusifities of momentum and heat (or mass).

Morton, Taylor et al (1956) assumed that the entrainment flux is
related to the centerline velocity u, and 'width' b of the jet via a

proportional constant:
2mabu

L
i

entrainment coefficient.

Q
I

Substituting the special forms of the velocity and density deficiency
profiles into eq. 2.1.1 - 2,1.3 and carrying out the integrations, the

following set of equations is obtained for the region of established flow:

d 2,
iz (ucb )y = ZabuC (2.1.4)
2
usb2
E% ( ; y = gAZbZA% (2.1.5)
—g'(bzA)-O (2.1.6)
dz ‘UcP AP T T

The problem can be solved numerically, taking care to transfer the
conditions at the source to the beginning of the region of established
flow. Nevertheless, there are two principal drawbacks. As will be shown

in a later section, the entrainment coefficient a 1is some function of
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the local densimetric Froude number of the jet. This is indicated by

experimental data: For an axisymmetric jet it varies from 0.085 for a
plume to 0.057 for a pure jet. Thus the assumption that o 1is a constant
is not a good one. In the mathematical solution employed in this study,
a bet;er assumption is used to replace eq. 2.1.4.

For buoyant jets in deep water, the region of interest (water depth)
is large compared with the length of the zone of flow establishment z, .
Neglecting buoyancy in the region of flow establishment, the constancy of
momentum flux yields the relationship between conditions at the source and
those at the end of the region of flow establishment. However, in many
practical cases of interest (e.g., continental shelf), the submergence
H/D is less than 50. The length of the region of flow establishment can
constitute a significant portion of the total water depth, and cannot be
conveniently left out in the analysis. In the theoretical solution of the

study, z, is derived as a function of the exit densimetric Froude number.

Special Cases:

Valuable information can be derived from eq. 2.1.4 - 2.1.6 by con-
sidering the limiting cases of a pure momentum jet and a plume -
a) Momentum jet: F o+
Setting Ap = 0 in eq. 2.1.4 - 2.1.6

it can be shown that

L -2 2.1.7)
2 2 '
&) = o (2.1.8)
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Hence in a momentum jet the width increases linearly with z, and

the jet angle is related to the entrainment coefficient. Consequently
the Reynolds number defined with respect to the centerline velocity and

the width of the jet is a constant.

b) Pure plume: F - O

In this sub-section it will be proved that at large distances from
the source, the local densimetric Froude number of all plumes approaches
an asymptotic constant value. The approach employed here is similar to
that by Jirka and Harleman (1973) for the two-dimensional plume.

The local densimetric Froude number is defined as

The change in the densimetric Froude number can be written as

2

d@F _ F_,uda _ Fgd
iz 2 {F & 20 az (8°D) } (2.1.9)

It can be derived from eq. 2.1.4 - 2.1.6 that

g}\szAB - qud_b_
o)

du dz
Lo > (2.1.10)
b
and 2o & 2039 - 2gpu? (2.1.11)
dz dz

Subtracting eq. 2.11 from eq. 2.10 and back substituting, we have

_g_z_ = 20 - AZ/FZ (2.1.13)
glzbzAg - u2b(Za—A2/F2)

du _ P

o = (2.1.14)

b2
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Substituting the expression for u %E- and Eg{bpb) into eq. (2.1.9), we
obtain
dF _ 20 522 2
iz = oF Caa - )
o 2 5A2 .
Thus if Fo < “%a the plume will be initially accelerated to in-
2
crease the local densimetric Froude number; conversely, if F§ > é%;- ’

the plume will be decelerated: in both cases an asymptotic densimetric

Froude number of F = v 5)2 = 4,30 is approached at large distances

4o
from the source of buoyancy.

In the region where the asymptotic densimetric Froude number is-

approached: db
2 =% (2.1.15)
_5/3
Ap = const x z (2.1.16)
_2/3
u = const x z

That the jet angle is approximately constant (or more correctly,
varies slowly with F) is easily shown by substituting the values of a ,

for the plume and the jet in eq. 2.1.7 and 2.1.15

db

Jet: a = 0.057 et 0.114
z
Plume: o = 0.085 gz'= 0.104

It can be seen there is only a difference of less than 107 between
the jet angle for the two limiting cases.

In the mathematical formulation of the BuOyant Jet Region Solution
presented in the following section, a constant jet angle assumption is

used to replace eq. 2.1.4. Besides being a more accurate description of



the physical situation, this has the further advantage that an analytical

solution is rendered possible.

2.1.6. Mathematical Formulation

25

In this section the assumptions employed to solve the problem of the

bouyant jet region in shallow water will be stated:

b

dz "€~ constant independent of the local densimetric Froude number

a

i.e., the spread of the standard deviation of the cross-sectional pro-

files is linear with z. In the region of established flow this assump-

tion is equivalent to that of a linear jet.
b) In the region of flow establishment, a linear spread is assumed for

the development of the central core region (Fig. 2-3).

u, (z,r) = uj r<b
—Ar=h' 2 '
=u0e(rb)/b r>b
A = spreading
' coefficient
Ap(z,r) = Ap, r<b>b

—(rh'V2/2212
= Apoe (r-b )"/2% r '

The assumptions in the region of flow establishment are good only
when the exit densimetric Froude number is greater than the asymptotic
value of the plume. In laboratory practice laminar effects will come
into play near the nozzle for extremely low densimetric Froude numbers,
and jets with small Fo may possess a different turbulent structure
(Ungate, 1974). In such cases the above stated assumptions will break

down and there is no accurate analysis possible to determine the length
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of the region of flow establishment.

2.1.7 Mathematical Solution

An analytical solution is given in this section for the region of
established flow and the region of flow establishment. The basic assump-
tions are the same as used by Abraham (1963). The analytical treatment,
however, is different in two respects:

1. The assumptions that lead to the evaluation of the length of the zone
of flow establishment is explicitly stated. In his evaluation of zy >
Abraham evaluated the buoyancy flux using Albertson's result that assumes
a constant momentum fluk. The buoyancy flux is correctly evaluaged in
present solution.

2. Two boundary conditions are invoked to couple the solution of the
region of established flow with that of the region of flow establishment:
The resulting differential equations are then explicitly solved subject to
the boundary conditions rather than using an integral approach as employed

by Abraham.

Region of established flow

In the region of established flow assumption (a) can be used along
with eq. 2.1.5 - 2.1.6 to yield an analytical solution.
1
By employing a change of variables m3 = u, and solving the

transformed equations, the following solution can be obtained:
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u (z) = l {11323 + Mﬁgz_e (22 - Zz) } (2.1.17)
[ z e e 2pa e e
2 2 2
ulbp z 3gh4u Ap z -1/3
po(z) = === {uzz: + e ee (zz—zi)} (2.1.18)
2p
a
where u, = uc(z = ze)
Ape = Apo by definition

Hence U.s Ap in the region of established flow are reduced to a
function of z and z, It is evident that eq. 2.1.17 and eq. 2.1.18

exhibit the expected behavior of a buoyant jet. For z sufficiently large,
5

-1 -2
u, "z 3 and Ap ~ z 3 ; this agrees with the behavior of a plume. For

~ ~

-1 . . .
z "z, u, z =, resembling the motion of a momentum jet.

Assuming that the velocity profile is Gaussian at z = z, (density

deficiency), heat conservation gives

2
o TD“u
= i = = (o)
Heat flux at z ze(den31ty) é Apu2nrdr Apo——z——
o oi D2u_ (1+A2
this gives uezi = of ) (2.1.17a)
4r2g2

Also, it can be shown that

1
u z M 2
e e e 1
uD [« M ) 2e2 ] (2.1. 18a)
o o
where Me : momentum flux at z = ze(density)

Mo : initial momentum flux
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Substituting eq. 2.1.17aand eq.2.1.18a into eq. 2.1.17-2.1.18 yields

3/2

1M 2 z 2 1/3

u D e 3(14+29) z (2 e
o= 21 ¢ ) o+ {()-(=)11 (2.1.19)
Yo z 252M 8€2F D

(o) o

112 IM -1/3

o R D e )+-—(——ll+* {()—()}1 (2.1.20)
Po  422¢2 2e2M 8¢ F

Determination of the Length of Flow Establishment

Referring to Fig. 2-3 for the region of flow establishment:

By similarity b' = 12’- (1 - z/zg)
The momentum flux at z = z,

e o
M = M + fo fo (pa—p)32wrdr dz

By invoking assumption (b) the bouyancy contribution to Me can be evaluated

as

- R R

f, [, bog 2rrdr = gmho_ {(2_) 3 + 3 + /1 e 5 g—-}
Hence Me/Mo can be expressed as

£43—1+5‘—[—‘i+""?"E 2 4 A2 3, (2.1.21)
M- 2 12 12 3 =

(o]

where c¢ = z, (density)/D

At z = z Lo .,
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eq. 2.1.20 then gives

1
M. — 2
1 e 17 1 % (2.1.22)

(Zez ¥, A2 GeZ

Equating the expressions for Me/Mo derived from eq. 2.1.21 and eq. 2.1.22

we have
4 ¢ YT Ae 2 Ae2 3 0 14A% (2 262
Lt gty o 5= Go) T (2.1.23)
(o]

Eq. 2.1.23 describes ¢ as a function of the exit densimetric Froude
number. In the limiting case of a momentum jet Fo >
This value is similar to that given by Albertson et al (1950).

Given FO (e and X are approximately constants) equation 2.1.23 can
be solved numerically. Fig. (2-4) shows the value of ¢ as a function of
Fo for A = 1.14 and € = 0.109 (these are respectively intermediate values

for the jet-plume range:X =1.12, Ajet = 1.16, ejet = 0.114,

plume

€olume 0.104). It can be seen c increases rapidly from zero for
F, = 0.0 to an asymptotic value of 5.74 for F0 beyond 25.0. The region
of interest for b ugyant jet applications is 4.3 < Fo < » where 4.3 is

the asymptotic value for the densimetric Froude number of the pure plume.

2.2 The Surface Impingement Region

When the bugyant jet impinges on the free surface, the surface
pressure, documented as a surface hump, causes horizontal spreading of

the heated discharge. Intense turbulent mixing occurs in this region



30

H38WNN

30N0Y4 OJIMLIWISNIQ 1IX3 IHL 40 NOILONNS ¥
SV IN3WHSITEVLSI MONd 40 3INOZ 40 HIONIT (+-2) JuNold

o-._ . aom
ot ce G2 02 Gl 0l G
_ 1 T T _ _ _
INNT ¥ ]
40 3NVA
J1L0LdWASY
/.'
1
601I'0=3  bl'l=X Q/s%z:=3 _




31
and a detailed analysis of the exact flow and temperature distribution

withrin this region is deemed impractical. Instead a control volume ap-
proach is taken to couple the flow conditions just before and after im-
pingenment.

A definition sketch is given in fig. 2-5. The heated flow enters as
a jet through section i and leaves the control volume at section I. Flow
is assumed to be fully established in section i. Let RI be the radial
position at which the free surface returns to level . Ry is related to
the standard deviation of the incoming jet flow by RI = aobi » and a, is
evaluated from experiments. Let uy and hI be the velocity and depth of
the upper layer and uniform distributions over the thickness hI are

assumed.

2.2.1 Analysis of the Control Volume

Contipuity:

Neglecting entrainment in the surface impingement region and invok-
ing the Boussinesq assumption, one obtains

bi u; = 2 ao_h u

I I

Heat Conservation:

Assuming the linearized equation of state and equating the inflow

and outflow heat fluxes:

00 00
B o, fo u Ap2nrdr = paTa fo u 2mrdr - wbipI(ZaothI)TI
section section

i 1
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Invoking continuity, we have

Ap

Conservation of energy:

33

In a conservative buoyant force field an energy potential Apgz can

be defined.

Assuming an energy loss of the form KLX(Kinetic energy flux lin)

where KL is a head loss coefficient, conservation of energy then gives

uf
1 - K ) 62

2
S S
2g 2 “Pr8

Recapitulating the complete set of equations for the Surface Impinge-

ment Region:

biu1

]

Api

paui _
g KD S

ZthIao (2.2.1)
1+22
2
0 1, 21 h (2.2.3)
a2g 2 I

Eq. 2.2.1 - 2.2.3 can be solved iteratively with eq. 2.1.19 - 2.1.20

to find hI

layers at the end of zone 2

2.2.2 Limiting Cases

Insight can be gained

momentum jet and a plume:

and the densimetric Froude numbers of the upper and lower

(Fig. 2-1).

by considering the two limiting cases of a



A. Momentum Jet: Setting Ap = 0 in eq. 2.1.1-2.1.3 gives

/ 3
h, = /W (2.2.4)
Substituting %% = ¢ into eq. (2.2.4) the following equation is
obtained.
by 1
y 1+ -g- /(1-KL)al

3

For a momentum jet o = 0.057 € = 0.114

Evaluating by for different values of K. and a,» we have

if- L
KL =0 KL = 0.2 KL = 0.4
h 0.09 0.0994 0.113 a =1
1 o
e 0.05 0.06 0.07 a, = 1.73

a, = 1.73 corresponds to a RI where the vertical velocity is 5% of

the centerline velocity.

B. Plume: Assuming the asymptotic value of the local densimetric Froude
number is reached before impinging the free surface
2 _ 5A2
F{ 7 &4

= b
From eq. 2.1.15 bi =3 (H hI)

Substituting bi into eq. 2.2.1 - 2.2.3, we obtain
2

(1K) b, 2 4 A2 1
F; 13 - (5 = s 1nz (by/h))
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For a plume A = 1.12, a = 0.082

By iteration, we get
KL =0 , KL = 0.2 K = 0.4

h 0.081 0.091 0.107 a
0.048 0.053 0.06

-
(e
0
-

&l

1.73

The above analysis demonstrates the weak sensitivity of hI/H to the
range of densimetric Froude numbers. This approximately constant value
can serve as a useful starting point in the numerical solution of
eq. 2.2.1 - 2.2.3 and 2.1.19 - 2.1.20.

Lower bounds for the densimetric Froude numbers of the respective
layers after surface impingement are given for the case of the plume as
Fl = 4.12, F, = 0.21 where subscript 1 refers to the upper layer and 2
the lower layer in the impingement zone.

In the theoretical solutionKL = 0.2 is assumed for a 90° bend and
a wide range of curvature (Jirka and Harleman, 1973). As it is experi-
mentally observed that gl - 0.1, a, = 1is assuﬁed in the subsequent

analysis. Thus, the outer radius, section I, of the surface impingment

region is assumed to be equal to the radius of the jet at section i.

2.3 Radial Stratified Flow

In this section the basic equations that govern the flow of a
stratified two-layered system are derived and presented. A slowly-
varying flow situation with a distinct interface is schematized as shown
in fig. (2-6). For a two layer system with low densimetric Froude numbers

there is very weak turbulent entrainment from the lower layer into the
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upper layer (Ellison and Turner, 1959). The densities of the two layers

can hence be regarded as constants. The Navier Stokes equations are aver-
aged in the vertical direction, and the resulting equations are further
developed for the internal hydraulic jump as well as the stratified counter-
flow in later sectioms.

The steady state Navier-Stokes eq. in the radial direction in a cyl-

indrical co-ordinate system (z,r) is

(v 4 g, -2 Tar (2.3.1)
e r 0z or P 3z e
E = (u,w) : velocity vector at (z,r)
P = Dpressure
Tor = turbulent shear stress

The kinematic and dynamic boundary conditions are:

A) Kinematic Boundary Condition:

hyth
Surface w_=u 9(71 12
8 s or
Interface _ dhy
Vi =% or
Bottom vy = 0 (no bottom slope)

B) Dynamic Boundary Condition:

Surface P = 0 (free surface)
s e z 9z 's - 'rz l
s
Interface - e ég-l' ) Im
i P€i 3z 11 = Tyz 1
Bottom - . u I ) |
s PEr %z b = Trz lp
where Ty = surface shear
;= interfacial shear

Tp = bottom shear
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Defining the average velocities of the two layers as:

Upper layer = u; = EI- = EI- ho udz
92 1 h

Lower layer = u, = 3~ = 'h—foz udz
2 2

where 9;> 4, are flow per unit width of the respective layers

!
9 2rw
Qa
= 0
9% = Fzn s Q2 are constants

h1 = upper layer depth

= lower layer depth

Assuming hydrostatic pressure distribution; we have

upper layer p=r;8 (h; +h, - 2)

p= 018 by + 0,8 (b, - 2)

lower layer

Py = density of upper layer

Py = density of lower layer

By continuity:
du + 8 ow = 0

ulgrtrta
therefore
u? - u du . duw _ a ow _ auz 4 Quw gi
ar or 9z 2z or z r

Integrating eq. 2.3.1 in the z-direction over the upper layer
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h,4h 2 h,+h h.+h 2 h.+h d3h, oh
12 54 172 3uw 12 u -g 172 1 2
S —dz + S —dz + S —dz = S (o (—+=—))dz
ho ar h2 9z h2 r Pa h2 1%r or
au . {f1thy
+ (e, =)
z 3z h
2
2
h,+h 9 (h,+h,) 3(h,+h,) u
a_ .12 2 2 172 2 172 1
oY fhz udz - us 3r + ui or + usws - uiwi + r hl
2
3p, h 9(h,+h,) T -1
-2 1f, g MY T
p or 2 o} 1 ar 1 p
a a a

Carrying out a similar integration for the lower layer and invoking the
kinematic and dynamic boundary conditions at the points of discontinuity,
the following equations of motion for the two layers are obtained by ne-
glecting surface shear ( t4= 0).

Upper layer:

Q, 2 oh o} 3(h,+h,) Ts
( 1 [l_ _._1_ + i. ] = g__l —1_2_h +—-];- (2.3.2)
2nr 2 or th o ar 1 p
h1 1 a a
Lower layer:
Q, 2, dh, 1 dh dh (t,-1)
2 2 - 8 _2 _ b
(Zﬂr [;2' ar + ;Hj pa[ P1 or + P2 or ] 2 a (2.3.3)



2.4 The Radial Internal Hydraulic Jump 40

The internal hydraulic jump in a two-dimensional two-layered system
has previously been treated by Yih (1955), Jirka and Harleman (1973). For
an axi-symmetric jet in shallow water, a two-layered counterflow system
consisting of a heated flow away in the upper layer and an ambient inflow
induced by jet entrainment in the lower layer is set up in the near field.
If a stable near field exists, an internal jump is always observed. The
transition is accompanied by an energy loss and possibly turbulent entrain-
ment at the interface. An approximate analysis is presented in this sec-
tion to solve for the conjugate jump heights of the respective layers.
These represent two possible dynamic states for the same given momentum
flux. A simplified asymptotic solution is also derived as a special appli-
cation to submerged discharge problems.

As a first approximation, a momentum analysis of the two layers is
carried out by neglecting shear stresses. Because of the expanding cross-
sections of a radial system, this assumption may introduce a substantial
error in the computation of the exact conjugate jump height. It will be
seen that this simplified analysis still gives valuable insight into the
stability of the near field.

With the above-stated assumptions, the vertically averaged equations
of motion for the radial stratified flow of an axisymmetric two-layered

system eq. 2.3.2 ~ 2.3.3 become
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<_?_L)2 PR S WO St b3 h (2.4.1)
27r i th p dr 1 ©Ur
hl 1 a
Q 2 dh dh dh
2 1 2 1 _ 1 2
G 2 & Y "o e w (2.4.2)
h2 2 a
where Ql s Q2 are flows in the respective layers.
Noting that
1
d(—=—
1Mo ™
[ 7.7 7ar th, | dr
h 1
1
Eq. 2.4.1 becomes on simplification
1
a(=)
(?l 2 rhy _ 1 d(h1+-h2)rh
27 dr g Py dr 1
_ r1+r2
Integrating from r; tor,, assuming r = 3 and an average head
. h1+h
h1 = 2 in the interval, we have
|
(ﬁ)2 I S WL D1 1ty Gty (b +h~h, -h.,) (2.4.3)
1 e X
27 rlhl r2h1 P, 2 2 1727172
where hi R hé are the conjugate jump heights of the respective
layers

A similar integration for the lower layer then gives

Q, 2 (h,+h)) (r,+r,) o 0
2 1 1 2772 12" P1., 2,
@z po(himhy )+ (o)) H(204.)

] = 8 {
by Tohy 2 2 p
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Defining free surface Froude numbers as:

Q, 2
Gt
F*z - 211r1h1
1 ghy
(o2 )’
2 . i i
2 gh2

Equation 2.4.3-2.4.4 can then be reduced to:

Upper Layer:

2 p, r.,+r, h +h'
* 2 _1 1 1 2,,1 "1
[ --——]———( ) ( ) [ hy+hy-h, h]—3— (2.4.5)
1 rlh1 2h1 Pa 2 2 2 1
Lower Layer:

2 (h,+h)) (r,+r,)) o p
22 2712 172
et 111' 1= = 2 l(h hy )+ S2(hy-hy)] = (2.4.6)

12 22 Pa g

Eq. 2.4.5 and 2.4.6 constitute an approximate momentum analysis of
an internal hydraulic jump in a general two-layered system. Most sub-
merged discharge designs, however, are characterised by small density dif-
ferences and negligible free surface Froude numbers, but finite densi-
metric Froude numbers. An asymptotic solution can be obtained as follows:

Rearranging eq. 2.4.5 and eq. 2.4.6 we have

r,h! r,h} T ! h
* Taly T2t 2 2
12[1 5 %‘[1- A%l o [+ 10+ ——1 [(1- :1) + (1- Z)h ]
Im 11 1 1 1 2 1
r,h) r.h! r h, h' h, h!
* Tah)
R (- =21 =+ Z20 1+ e ] (a- 2y a- Bt + a- A1
B ) 172 1 1 2 2
On further algebraic manipulation wé obtain
r, h! h,
271 1
hy 4F1{l+rh]ﬁ; h! by
£ . : -+ (1- —-—)—+ 1 (2.4.7)
K p-) 21, T2 0 TR
p rihy [ r hl
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w2 T2% 1 B
] - 1 + T 1
h 2 r.h h h, h :
1 12 M b (1o 22 1
_1;_ = h' h! (1- h_)h— ___A"— + 1 (2.4.8)
r r Ap.
1 272 2 2 Ap. 2™ 1-H
.h [1+?-][1+E_] 1 - p)
172 1 2
It can be derived from eq. (2.4.7)
'-
that hy=hy Ah,
e o - 1 (2.4.9)
171 171
2 r,h! h
where 4F [‘1""’2“];] L
1 r,h h
A = 171 2
r h! T h!
2l n+din+d a-
171 1 1
Two alternative expressions can be derived from eq. (2.4.8)
h!-h Bh
ot e - a8 (2.4.10)
171 171
and
- 1 - Ap.
hé h2 (hz h2) (1 p)
h!_h Ap ' (2-4.11)
11 (1- —p-)B hl - (hz-hz)
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W 22 | 2
2 i T
where B = 7
Tyhy ) b, Ap
—1[1+-—1 [1-2
ryhy b,

Subtracting eq. 2.4.9 from eq. 2.4.10 we get

] 1]
x2 Tohy b, 452 rohy hy
4Fl Fn - U 1 h GEIs - U g
1 1 2 2 172 1 1
r, r, h! h!-h r h! T h! (h )
p-f2 2 e Bardh T B2 ar BHar D "1
by 1 1 ryhy 51 2
(2.4.12)
Lt
)

Subtracting eq. 2.4.9 from eq. 2.4.11 we obtain an independent eq.

%2 r.hl

4R [1- 2
r.h
1 -
r, h' r, h' h'
a- 8 22 ar Bor Ha- D
ohy T N
(2.4.13)
r,h! r h' h'
ohy
h (DA £ (- 1) (- B
1M 1y by
r.,h! r.h! r h' h'
* Iry
2 a- 25 22 arHar Ha- )
172 172 l 2
In the limi 8 5o, w, F 0
n the imit when _D > Fl’ 2 -
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*2
and Fl
F2 = finite
1
Ao
P
*2
2 Fz
F, ™y
P
Eq. 2.4.12 and 2.4.13 reduce to '
_ r?_h’ 41',2[ 1- 2h2] _13_2_
472 L 18 ! 2
1 - 1= i M (2.4.14)
rzhi h' h' 2h2 r, h' h' U
[1+—][1+h 1@- —] .o —")(1"' ——)(l- "—)
1 1 172 T 2 1
r,hl r, h' h' r,h} T h' h'
2
(=2a+r Dar Ha- ) G- 50 1 TR D A g an gh-
11 l 1 1M1 T1M2 1
(2.4.15)
t,h} r,h! rh!
2h2 16 ¥ ¥ [ 1- rzhlll 1- —2111—2-]
1% 11 b )

These 2 equations describe an asymptotic solution to the radial in-
ternal jump problem. Given the densimetric Froude numbers of the respec-
tive layers, a numerical solution can be determined by relating the jump
length (rz-rl) to the jump height <hi-h1)'

The radial free surface hydraulic jump has been studied by
Sadler et al (1963). The momentum equation assuming a finite jump length

for this case is

2
2 , ¢ . 2 Q
1rr1y1 2ngry TI¥ + anrzyz

This can be gotten from eq. 2.4.4 by setting p1=0 Po= P, Q,=Q
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In the free surface case an experimentally determined coefficient of 4 is

found fér the ratio of the jump length to the jump height. The theoretical
investigations of a radial two-layered system in the next section, however,
shows a drastic difference in its behavior as compared to the free surface

counterpart. No attempt is hence made in using this coefficient.

Valuable insight can be obtained by treating the case of negligible
jump length, i.e., r, =15, A main concern of this study is to determine
the criterion of the near field stability, that is, the locus of (Fo’ H/D)
that characterises a stable-~unstable near field transition. In view of the
exclusion of shear stress in the momentum equations and the unknown rela-
tionship between jump length and jump height, it is judged that the solu-
tion of the radial internal jump problem in the context of a negligible
jump length should furnish adequate information concerning the existence
of a jump.

By setting T, =1 in eqs. 2.4.14-2.4.15 we obtain
2hy BB

2
h! h! F, o D) A-70)
g2 _ 1. 1 1 2 by
P-tard - - . 2 2 (2.4.16)
1 1 2 2 1, M
& 1+ Q-5
2 9 1
h' hl h' hl
Lo+ - ordy) [ 2a+ 2 - 27 1= 4 FEF2 (2.4.17)
n, Y E 1 g O g 2 1Py

The above equations are the same solution obtained for a two dimen-
sional internal jump by Jirka and Harleman (1973). Combining the two

eqs. we get

h) h} 4 F

2 2

R, @, D

2 2 2+ -28
171

+ 2 F

2
9 (2.4.18)
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From eq. (2.4.17), we have

K} h! h! h, h! h!
2, 1 2 1
: 22 D P e D - 2 F ]
h2 h2 h2 h1 hl h1 hl 1
= = 1+ " = (2.4.19)
2 2 1 1
-2 FZ _}-1— (1+ B—)
1 1
h) h!
Substituting the value of-ﬁg(ﬁg.+ 1) in eq. 2.4.18 into eq. 2.4.19 the
2 2

following relationship is obtained

1 ]
2oL, e
TSV,
2
1 [ -
or hy; + h) h2+h1 (2.4.20)

Under such limiting conditions the total water depth remains unchanged.

Substituting the value of hé in terms of hi into eq. 2.4.17 we have the
single asymptotic form:

h! h 2 h! h! h! h!
1 1 3 1 1,71 2 1,1

[{=-1) —~ 3} -1 [==G=+1) - 2F, ]= —(G=+ 1)2F, (2.4.21)
hy h, 2 4 hy hl, 1 h, 'hy 2

which has been given by Jirka and Harieman (1973).
In the limiting case of a critical section hi = hl eq. 2.4.21 reduces

to

2
F1 + F2 = 1 (2.4.22)

Eq. 2.4.22 can be viewed as a defining statement of a critical section in
a two-layered systemn.

For some combinations of F%, Fg, %l » eq. 2.4.21 does not yield a
2

solution. This indicates a hydrodynamically unstable situation: even the
lungest waves at the interface amplify in magnitude; the excess kinetic
energy is dissipated by turbulent diffusion over the near field region,

leading to heat re-entrainment into the jet.



49

The implicitform of eq. 2.4.22 is plotted for a typical stable case
and a typical unstable case (Fig. 2-8). 1In the case of a stable near
field, two roots are always detected, the root with the larger value being
disregarded by energy considerations. Numerical experience have shown
that solving eq. 2.4.16 - 2.4.17 always gives the correct conjugate jump

height.
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2.5 Stratified Counterflow Region

When an unstable near field is present, there is heat re-entrainment
of the jet, and a critical section is established near the discharge (at
the critical section there is a sharp change in the interface)(Fig. 2-9).
The subsequent fluid motion is described by a stratified counter-flow
system. In the following sections the basic mechanics of the flow is dis-
cussed with respect to a far field condition similar to that in the experi-
mental set up of this study (no imposed physical boundaries; ambient fluid
at rest). In the prototype heat loss effects may govern the far field
boundary condition. The fundamental behavior of the governing equations
are presented and contrasted with the two-dimensional counterpart. Finally

the predictions of the near field dilution for unstable jets are given.

2.5.1 The Momentum Equation for Axi-symmetric Stratified Flow

Noting that Py =P, s Pp =P, ~ Ap  Ap > 0, eq. 2.3.1-2.3.2 can be

a a

simplified to give:

F*Z [._dil_]; + h] = (1_&)@ + Ti (2 5 1)
1 T T P dr pagh1 o
F*z dh2 . .EZ ) d(h1+h2) ) Aﬂ.dhl _ (Ti~Tb) 2.5.2)
2 [dr r ] dr p dr pgh2 o

*9 %2

Under the limiting conditions Ap - 0 , F1 s F2 <+ 0. It was shown

in a previous section that the total water depth is a constant

d(h,+h,)
s i L
—5= =0 (2.5.3)
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Substituting eq. (2.5.3) in eq. 2.5.1-2.5.2 and rearranging, one obtains

the following expression governing the radial variation of the interface

dh, [AQ F*z_F*2] ) F*Z.hl i F*z E.1_+ T4 +(Ti-'rb)
dr 1 2 2 r 1 r pgh1 pgh2
. 2 _ %2, 2 %25
Remembering Fl =F /62. F, = F, /g2 , we get
FZ EZ._ FZ El + ‘i b 4 ffi:fk? (2.5.4)
dh 2 r 1r pgh Ap pgh o
2 _ 1 2
dr 2 2
1 - Fl - F2
At the critical section, the sharp change in the interface can be
dh
described mathematically by —3%-+ © , giving again the critical condition
2, 2 '
Fl + F2 = 1.

The interfacial and bottom shear are related to the velocities in

the two layers in the usual quadratic friction relationships:

pf, pf, Q. Q, 2
It.] == (u;-u 2 = A 22, 1
i 8 172 8 h1 h2 (Z“I)Z

Prefixing the known directions of our counterflow system, one obtains

of. Q 2 Q 2
i 1 1 2
T, = —( 5= —(1--—-—) Q, >0 Q, >0
i 8 27 h Ql 2 2 1
pf Q
2
Similarly 7, = % () i
2

Substituting the expressions for Ty and T, into eq. (2.5.4) we obtain

the radial variation of the interface in the stratified counterflow

system:

h h, f, hy 2 £,
) 2™ 5 Qhy
dh By -~ et 8F(1+h)(1Q )+8 F2
2 _ 2 )
dr N (2.5.5)
2 2
1-F -5
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2.5.2 Behavior of the counterflow system

The entire physical situation can be described by eq. 2.5.5 subject
to a far field boundary condition which will be discussed later. At the
critical section r = rc, the critical flow condition Fi + Fg = 1 has to
be satisfied.

In the sequel, the essential features of eq. 2.5.5 are discussed by
considering the special case of equal counterflow Q = Q, » which indeed

represents the case of high dilutions. For this case the problem can be

shown to be dependent on a single dimensionless parameter.

Defining F2 as C——g——)z s constant densimetric Froude number based
H 2nr H
c the total water depth
Ap
&5 H
the problem can be cast in dimensionless form:
R R_2 R 2 (1-H,) R
ey 2 2 "¢ 2. ¢ _ 27 9 ey 2
2 @) By B U, f B Q- £ o)
Fp— 3 Q) - xR )ty 3 ® t 8 TH 3
de ) H2 (1-H2) (l—Hz) 2 H2
drR Rc 2 Rc 2
) &)
2 'R 2 R
l-Fy——3 - Fg—3 —
(l—Hz) HZ
s.t. at the critical section Rc
H2 satisfies
FIZi L s+ ; - 1
(1—H2) H2
where H, = h2/H R =r/H Rc = rc/H

The radius T, is to be determined from experimental results.
For a given FH , Hz(r = rc) can be found by solving the critical

flow condition. One H, is known, eq. 2.5.6 can then be solved numerically

2c
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as an initial-value problem, using numerical methods, such as a fourth
order Runga-Kutta scheme . Since the derivative g;l is infinite at the
starting point, the first few points of the interface is found by inverting
the derivative and solving the inverse problem with g%é s after marching
a few steps out, the formal derivative can be used again.

The change in the interface for different values of FH and different
friction coefficients is illustrated in fig. (2-10). Two remarks can be
inferred:

1) For small Rcand in particular, Rc~ 0(1), which is experimentally ob-
served the inclusion of frictional effects has a negligible effect on the
shape of the interface. In such cases the radial inertial effects pre-
dominate, and a frictionless flow situation can be adequately assumed.

2) The interface always approaches an asymptotic value horizontally. The
value increases as FH increases. In the limit as FH approaches 0.25, the
interface attains a maximum asymptotic value of 0.5 in the far field.

These behavior can be readily explained by studying eq. 2.5.5 in
detail. For Rc ~ 0(1) and Hz finite the numerator of the derivative
approaches zero as r + » , Hence H2 attains a constant value for large r.

Insight into the mechanics of the flow can be gained by contrasting
eq. 2.5.5 with a radial free surface inward flow and a two-dimensional

stratified counter-flow system. Sadler et al (1963) have derived the

free surface curve for frictionless radial inward flow to be

2
dy _E b4
®R “ -7 R (2.3.7)

where F free surface Froude number

y = water depth
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This can be attained from the more general eq. 2.5.5 by setting ég1=%-= 1

f.=f =0and F, = 0.
i o 1

It can be seen from eq. 2.5.7 that for subcritical flow (F < 1) the
water depth is always increasing with %§'= 0 1is asymptotically approached
in the far field.

Jirka (1973) treated the two-dimensional counterpart of the present

problem. For r - » eq. 2.5.5 reduced to this two-dimensional case,

£ £,02 lh
namely o2 i H_
dhy, g Pty B - &hy) g
= - (2.5.8)
1-F -1

where Q. =‘Q1/Q2

Again eq. 2.5.8 can be obtained directly from eq. 2.5.5 by neglect-
ing the radial components. In fact, equation 2.5.5 can be made to exhibit
a two-dimensional behavior by artificially setting Rc very large, thus
destroying the radial dependence of the equation. As illustrated in
fig. (2-11), in these cases a second critical section is always found by
marching out the solution. The interfacial height at this second critical
section is approximately conjugate to the starting point. The physical
implication is that in subcritical flow roughness effects always tend to
raise the interface; however, because of the physical constraint imposed
by the free surface, a critical section has to be formed some distance
from the starting point.

In a radial stratified counterflow system with Rc ~ 0(1), however,
the radial expansion allows one more degree of freedom; this stabilizes
the flow and a second critical section is not formed near the starting
point.

For the range of interest, 0.4 < Rc < 2 strong self-similarity is
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found in the behavior of eq. 2.5.5. All the information can be summarized

by plotting h, against r/rC (Fig. 2-12).

In the general case of non-equal counterflow the problem can be

2

2 Q)

shown to be dependent on F,, and Q, where Fy, = (37 H)
géﬁﬂ

Q
The shape of the interface as a function of Q, = -1 is illustrated

Q2
in fig. (2-13).

2.5.3 Critical Flow in a two lavered system:

Since the critical flow condition is vital to the understanding of
many stratified problems, and is very much related to the prediction of
dilution in this study, a short discussion is deemed appropriate.

In open channel flow, as well as in two-layered systems, a critical
section is often formed by an imposed control such as at a free overfall,
sudden expansion from confinement into infinite space, etc. It has an
implication on flow geometry, namely - a sharp change in the interface
position. For the case of equal counterflow, the same governing condition
can be derived from an independent energy principle (Appendix D). With
respect to submerged buoyant discharges and other stratified flow problems
the critical condition has the further implication of limiting the ex-
change flow. Consider the general case of a counterflow system:

At the critical section:

2 2
Fl + F2 = 1
2
2 Qr 1
or FZH [—"——~—§' + 3 1 = 1 (2.5.9)
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Q2 9 63
_(2wr H)
where Fou = c Q. = Q/Q; .

g" B

Fig. 2-14 shows the variation of Hp, as a function of Fyy for different

values of Qr . For a given ratio of flows in the two layers, Qra maximum
exchange flow Ql + Q2 corresponds to a maximum Fy. By rewriting eq.

eq. 2.5.9 as

2 By (1-,)°
Fou = 3 3 (2.5.10)
QHy + (1-H,)
sz
and setting the derivative —H to zero we have
dH2
H, = ———!;3—-
2 i (2.5.11)
1+ Qz
T

F2 SENI S (2.5.12)

4
2H 1+ ql/?%
T
Hence for a given Qr we can compute the value of Foy that will give the
maximum exchange flow. In the special case of an equal counterflow()r=1

F,.. = 0.25 is the limiting condition when a maximum exchange

2H
flow is created.

In a two-dimensional two-layered system friction effects tend to
oppose a condition of maximum exchange flow. The radial expansion of the

flow in the three dimensional case (in the absence of physical boundaries),

however, enhance the formation of such a condition at the critical section.
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2.5.4 Behavior of Flow at large distances

Fig. 2-10, 2-12, shows that at 'large distances' (r “~10H) from the
jet discharge, an asymptotic behavior of the interface is approached. In
the absence of any physical boundaries and ambient currents in the far
field, flow is postulated at minimum energy dissipation.

The rate of energy dissipation, or work done against dissipative

forces, can be expressed as:

£, £
I 3 o 3
Egiss = Pg(up Y up)” +og vy
Q Q,
u., = u. =
17 Zarh; 2~ Znrh,

Assuming h1 + h2 = constant,

dEdiss o o
dhz = gives
£
L 20 w2 - w2y =
hy - £ [Qhy +h17[Q h; - BJT =0 (2.5.13)

For the case of equal counterflow Qr =1 this reduces to

h. 4 f hy 4 hq 4
_i i 2 1 -

Since the interfacial shear is always about 4 times that of bottom

shear (f, ~ 0.5 fo s (2u)3 z 8u3), a limiting approximation of fi/f0 >

i
gives h

-

hy Fig., 2-15 illustrates the weak sensitivity of
— = 0.5.
H

il

hz/H to fi/fo.
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In the prototype far field (r >> H) the boundary condition may be
determined by heat loss effects. In view of the small areal extent within
which asymptotic behavior of the interface is established, the boundary
condition presented in this section is judged to be independent of heat

loss in the far field.

2.6 Summary of Theoretical Framework

The coupling of the theory outlined for the four regions to give the

near field dilution is described in the following sections.

2.6.1 Definition of the Near Field Dilution

The near field dilution S is defined volumetrically as the ratio of
the flow away in the upper layer to the initial jet discharge flow,
S = QllQo . In the absence of heat losses, heat conservation implies this

AT,

definition is equivalent to S = , Where

AT

temperature rise above ambient in the near field

]

ATo discharge temperature rise above ambient

2.6.2 Stable Near Field Dilution

For a given (Fo, H/D) the velocity and the upper layer thickness in
the surface impingement region can be obtained by solving eq. 2.2.1-2.2.3
in conjunction with eq. 2.1.19-2.1.20. By visual observation, confirmed
by temperature data, it is found that the internal jump occurs at
rj = 0.57 H from the jet axis. Fl’ F2 and h1/h2 can then be computed and

used as input to the internal jump equations. Existence of a conjugate
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helght implies a stable near field.

It can be inferred from the two-dimensional buoyant jet experiments
done by Jirka and Harleman (1973) that the ratio of the jump length to
jump height is approximately 4. It is expected that this number is smaller
for a three dimensional buoyant jet. Unfortunately, the arrangement of the
temperature probes in the near field is not dense enough to resolve the
shape of the jump interface from temperature data. A zero jump length is
assumed as a first approximation in the theoretical solution. This is
chosen in light of the stability analysis, with the main purpose of evalu-
ating the near field stability rather than the exact shape of the internal
jump regiom.

For submergence (H/D) less than the length of the zone of flow estab-
lishment, the theory outlined in sec. 2.1 is not directly applicable. A
simplified analysis based on the assumption of a momentum jet is substi-
tuted as an approximation in this range (Appendix C).

If a stable near field exists, the dilution is given by the solution
of the surface impingement region. A different theory for the prediction
of near-field dilution is posed in the next section for the case of an
unstable near field.

The prediction of the near field stability is shown in fig. 2-16
along with the near field dilutions. For H/D > 6.0 the stability transi-

tion can be described by the criterion
FO = 4.4 H/D (2.6.1)

In view of the assumptions embodied in the analytical framework, the

stability criterion should be interpreted as a narrow band rather than a
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single line delimiting the stable region on the graph from the unstable
region. The 'transition' from a point in the stable region to one in the
unstable region is continuous in nature, as exemplified by the weak insta-
bility (submerged jump) observed (Ch. 3). The same statements apply to
the two-dimensional case (Jirka and Harleman, 1973).

For low submergences (H/D < 5), the stability criterion is determined
by a line with a different slope. This is due to the fact a different
model is assumed for the zone of flow establishment.

Fig. 2-17 illustrates the sensitivity of the stability criterion to
the assumed location of the internal jump at rj. As this is well estab-
lished from experimental data, this sensitivity should not have an impor-

tant effect of the overall predictionm.

2.6.3 Unstable Near Field Dilution

Based on the theoretical discussions presented in sec. 2.5, two
assumptions are made:
1) the radial variation of the interface can be described by a
frictionless flow situation.
2) at large distances from the jet, bottom shear is negligible

compared with interfacial shear.

2.6.4 Equal Counterflow

For the case of high dilutions, an equal counterflow system can be
h

assumed: the far field boundary condition is 2 - 0.5; given the behavior

of the interface, a limiting condition of F, = 0.25 has to be established

H



100

H/D

10

T TTTT]

.|

T Ty

1 1111l 1 1 Pt 1111l 1 1

1

71

L 111}

10 100
FO

FIGURE (2-17) SENSITIVITY OF STABILITY TRANSITION
TO THE LOCATION OF THE JUMP TOE



72

at the critical section T, in order to match the boundary condition at
large distances. This has the physical implication that a maximum exchange

flow is generated in the counterflow system. By definition

Q 2
(Zﬂr H) 3 g2
F; .~ ¢ _ _sf R =1 /H
g A% H 64R§ /D)’ ¢ ¢

The solution for high dilutions is given by the limiting condition

rﬁ = (0.25)2 = 1/16.
1
4 Ri @/my> /3
i.e. s =1 — 1 (2.6.2)
F
(o]

Rc is the second experimentally determined coefficient.

2.6.5 Non-equal Counterflow

For low dilutions the equal counterflow apprdximation is not valid
and the general case of non-equal counterflow has to be considered.

The formal approach is to assume a starting value for the dilution,
solve the initial value problem defined by eq. 2.5.5 iteratively until the
asymptotic value of h2 in the far field matches with that obtained by
solving the far field boundary condition. The large numerical efforts
involved is deemed not necessary. Instead a concept derived in the equal
counterflow case is postulated to carry over to the non-equal counterflow
case: a condition of maximum exchange flow has to be created.

By definition

s(s-1)2 ¥2

F = — (2.6.3)
2y 6 "Rcz E/p) 5
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Combining eq. 2.6.3 with eq. 2.5.12 and noting that Qr = , the

S
s-1

near field dilution for unstable buoyant jets can be solved numerically.
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I1II. Experimental Investigation

A series of experiments were conducted to test the behavior of the
axisymmetric buoyant jet in stagnant ambient water. In an experimental
basin of limited extent boundary effects will influence the stratified
flow pattern in the far field. 1In order to minimize these effects a plane
of symmetry was assumed at one basin wall and a half jet in lieu of the
full round jet was used. This has the additional advantage of being able
to visually observe the physical phenomenon through the water and the plane

of symmetry.

3.1. The Experimental Setup

The experiments were carried out in a 37' x 18' x 1' hydraulic model
basin. Fig. 3-1 illustrates the general experimental setup. To ensure
good heat insulation, the bottom of the model basin was covered with 1"
thick styrofoam material. A plastic liner was laid on top of the insula-
tion material to prevent any possible leakage of water. An additional
layer of 1" thick styrofoam and 1 % " thick concrete blocks formed a false
floor.

Near one wall of the basin a partition was constructed along the
whole length of the model. This created a 16' x 34' area on one side of
the partition. In order to visualize the flow pattern of the jet, the cen-
ter portion of the partition was constructed of two 6' x 10" plexiglass
pieces ( %-" thick). The rest of the partition was made from 14" high
plywood sheets and styrofoam material, both of which were braced and weigh-

ted by concrete blocks. The partition formed a plane of symmetry of the

axi-symmetric jet.
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An existing circulating water system capable of generating currents

across the model was used to mix the water in the basin. This ensured a
uniform ambient water temperature before the experiment starts. Two

4" x 14.5' diffuser pipe manifolds were installed in two 1.3' wide channels
at either end of the basin. The two pipe manifolds were connected by 3"
PVC piping to a flow meter system. Flow is generated by a large pump

(25 HP, 500 GPM). The lateral uniformity of the crossflow was improved by
horsehair matting and vertical slotted weirs at the basin ends.

The flow injection device for the half-jet is a rectangular plexi-
glass box composed of two parts, as illustrated in fig. 3-2. Flow enters
the box at one end and exits upwards through a semi-circular hole. Fig.
3-2a illustrates the core part of the box. The other part consisted of a
glass plate of the same thickness as the upper face of the central core
with a semi-circular hole cut in fig. 3-2b. Different pieces of semi-
circular plexiglass with the desired semi-circular opening (0.25", 0.5",
1") cut at the center can then be fitted onto the glass plate. A half-jet
of a desired diameter is formed by fitting the appropriate glass plate on-
to the core part and sealed with construction sealant. A %-" x 6" slot is
cut off the center portion of the partition. The injection device was
then sealed onto the plexiglass wall by fitting it inside the slot and
aligning the dividing line E-E of the box with the inner edge of the plexi-
glass wall. The device was then installed in place such that the upper
face of the box is level with the floor. Jets of different diameters are
obtained by changing the plexiglass piece. To avoid flow separation the
exit section of the half jet was rounded off smoothly.

Hot water obtained from a heat exchanger flows to a discharging
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piping system that consists of a bypass and a connection to the flow in-

jection device via a flexible tygon tubing and copper fittings. Depending
on the amount of flow needed, two types of flowmeters were used to monitor
the flow. For flows higher than 0.5 GPM, a calibrated Brooks rotameter is
used. A different type of rotameter (Brooks, Model 1560) was used to mon-
itor flows below 0.5 GPM accurately.

Forty-four Yellow Springs therimistor probes (Series 701, Time Con-
stant = 9.0 sec., accuracy 0.3°F) for temperature measurement were set up
and mounted at the same horizontal level on a wooden platform supported on
four screw jacks. The probes were identically mounted on four different
radial lines, as shown in fig. 3-3. Six additional probes were used to
monitor the discharge and ambient water temperature at fixed positionms.
Temperature readings were recorded by an electronic scanner and printed on
paper to the nearest 0.01 F. By turning the screw jacks manually, the
elevation of the wooden platform can be adjusted. Thus through the move-
ment of the wooden platform vertical temperature profiles can be taken.

Temperature data was punched on cards and processed by a data reduc-
tion computer programme that prints out the experimental run parameters
and the temperature excess along the radial lines for different vertical

positions (see Appendix E).

3.2. Experimental Procedure

Before the start of each run the circulating water system was oper-
ated to mix the water in the basin. Hot water was allowed to flow through
the bypass at the desired rate until a steady desired hot water tempera-

ture was attained. The depth of the water in the basin was measured by



82

PARTITION 1'/JET DISCHARGE -"
(7777 7777777777777 7777 T 777777777777 77 NTT T

30° }
45°
1
SECTION 1-1 PROBE LAYOUT ALONG A RADIAL LINE
B F—— % X X
rL 13’

FIGURE (3-3) SCHEMATIC OF TEMPERATURE PROBE
SET-UP



83
taking readings with a point gauge.

When the temperature scanner indicated a uniform ambient temperature,
the bypass was turned off and the jet discharge was initialized. Shortly
after the experiment started, dye was injected to observe the flow pattern.
The first scan of the surface temperatures was started when the dye front
had gone past a substantial area. After two or three surface scans had
been taken, the wooden platform was then lowered to record vertical temp-
erature profiles. The experiment was stopped shortly after the dye cloud
had reached the basin boundaries. This took about 20 minutes for the
majority of runs. Since the response time of the thermistor probes is
9 sec., 15 sec. was allowed to elapse after each adjustment of the platform
before starting the scan.

To ensure that some kind of quasi-steady state situation was reached
in the experiment, a surface scan was always taken at the end of the exper-
iment. In all the runs the temperature recordings of the last surface
scan in the near field were very close to those of the first few initial
scans. As a confirming check, a particular run was carried out for as
long as an hour. Fig. 3-4 illustrates that the near field temperature re-
duction remains fairly stable with time.

As no suction device had been installed to withdraw the basin water,
the water depth was increasing during the course of the experiment. Due to
the large size of the basin, the maximum and average relative deviation in
water depth was only 0.04 and 0.01 respectively for the range of water

depths and flow rates used in the set of experiments performed.
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3.3. Experimental Program

Experiments were conducted for a sufficiently wide range of dénsi—
metric Froude numbers and submergence in order to cover the stable-unstable
transition region. Runs were made in the highly unstable region to obtain
experimental comparison with the theoretical prediction of near field dilu-
tion for unstable jets.

The summary of run parameters and observed near field dilution for
the experiments performed in this study is presented in Table 3~1. The
near field dilution corresponds to the temperature recordings of the therm-

istor probes at the nearest radial position (2" from the jet axis).

3.4. Experimental Observation

Dye injections were used to visually observe the flow pattern of the
jets. However, due to the oblique angle of observation it was difficult
to obtain good quality photographs of the cross-sectional flow profile
through the water and the plexiglass partition.

A turbulent jet is always observed for the range of the Reynold's
numbers tested. The erratic, eddying motion of the fluid particles ac-
company the linear spread of the jet. As the jet impinges on the free
surface, a surface boil is observed, which fluctuates in intensity, creat-
ing a disturbance that generates easily observable circular wave fronts on
the free surface.

As outlined in Ch. 2, the stability of the near field depends on two
‘dimensionless parameters, the submergence of the jet H/D and the discharge
densimetric Froude number Fo . For high submergence and low Froude num-

bers, a weak surface boil is observed, followed by a jet like horizontal
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spreading, usually accompanied by a weak jump. As the submergence is de-

creased and (or) the Froude number is increased while still maintaining
near field conditions, the near field structure is even more clearly ob-
served, namely a thin upper layer of approximately 1/10 of the total water
depth in the surface impingement region is found. This thin layer spreads
out horizontally with no apparent change in thickness, and an internal
jump is always observed at a radial distance of approximately 0.6 H.

As H/D is decreased further and (or) F, is increased, a weak insta-
bility is observed in the near field. This is characterised by a thicken-
ing of the upper layer in the near field, followed by an internal jump pos-
sessing a conjugate depth that touches the bottom (submerged jump). Weak
re-entrainment of the upper layer water is observed. The region of insta-
bility extends some distance off the jet axis, and a critical section is
observed at the end of the field of instability.

For sufficiently high F, and (or) low H/D an instantaneously unstable
near field is observed. Intense re-entrainment occurs and the linear
spread of the jet is no longer visible. The region of instability is con-
centrated near the jet axis, with the establishment of a critical section
at some distance from the jet. The intense instability creates a strong
counterflow system which results in a critical section close to the jet.
The observations are schematized in Fig. 3-5.

Fig. 3-6 shows temperature transects for a typical case of each of
the three cases mentioned above. The normalized temperature rise %%5 is
plotted beside the location of each thermistor probe.

Radial symmetry of the dye pattern was not obtained in all rums.

For runs with an unstable near field, reasonable symmetry was observed.
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For runs with a stable near field, protruded fronts near the partition and

normal to it are frequently observed, with a slight dent in a narrow por-
tion of the circumference, as illustrated in fig. 3-7. Possible explana-
tions for this phenomenon are: the presence of the basin boundary has the
effect of creating a recirculation into the near field, causing the ob-
served dent, fig. 3-8. Constrained by the model geometry, the exit section
of the injection device (0.5" long) is not large compared with the jet
diameter. The exit flow may have a stronger component in the forward
direction (6 = 90°), again creating a weak recirculation into the near
field for a narrow portion of the circumference.

In every case the temperature rise of the four radial lines for dif-
ferent vertical positions delimits very distinctly the three cases of a
stable, weakly stable (submerged jump) or an unstable near field.

The effect of the partition wall, which was located at one jet sym—
metry plane, can be assumed as negligible for the submergence tested
(max. 32). This is based on a consideration of the wall jet data on
centerline velocity by Rajaratnam (1974), which can be compared to the
free jet solution by Albertson et al. (1950), as shown in fig. 3-9. For
the range of submergence tested, the deviation due to additional wall

shear can be neglected.



Fig. 3-7:
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95



96

MODEL BOUNDARY
LSS LSS LSS

(N3

FIGURE (3-8) WEAK ENTRAINMENT INDUCED
BY MODEL BOUNDARY




Vi

0
o

97

\

|

/ALBERTSON (FREE JET)

¥

I

|

x'- CENTERLINE DISTANCE
A - AREA OF NOZZLE

Umo—CENTERLINE VELOCITY
1 Vo-NOZZLE VELOCITY

| B .

1
10 20 30 40 50 60 70 80 90 100

X
VA

FIGURE (3-9) COMPARISON OF WALL JET DATA WITH

ALBERTSON'S FREE JET DATA: DECAY OF
MAXIMUM VELOCITY ALONG CENTER PLANE



98

IV. Comparison of Theory and Experimental Results

The experimental observation of the near field dilution in relation
to the theoretical prediction outlined in Ch. 2 is discussed in the sequel.
The results of the theoretical solution are then compared with experimental

data and empirical coefficients are evaluated.

4.1. Near Field Stability

The prediction of the near field stability as discussed in sec. 2.6.
is compared with experimental data in fig. (4-1). It can be seen that the

stability is well-predicted by the theory.

4.2, Near Field Dilution

The theoretical predictions for the near field dilutions are evalua-
ted for the exact densimetric Froude numbers and submergences of the ex-
perimental runs. The results are compared with the observed near field
dilutions in Table 4-1.

Stable Jets: In general reasonable agreement is obtained. Observed dilu-
tions are always higher than predicted. This may be ascribed to additional
entrainment in the surface impingement region and the weak re-entrainment
on the surface caused by the slight asymmetry observed.

Unstable Jets: Using experimental results of runs with an unstable near

field and near field dilution greater than 3.0, an average value of
Rc = 0.47 is obtained by fitting the data with eq. 2.6.2. Theoretical
predictions computed with this wvalue of Rc are compared to the observed

dilutioms.
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Although the ccefficient Rc is derived from experimental results
with dilutions greater them 3.0, very good agreement is obtained with data
characterised by dilutions less than 3.0. This confirms the validity of
the postulated structure of the theory for the stratified counterflow sys-
tem in an unstable near field.

Although the theory requires two experimentally determined coeffic-
ients: namely the location of the jump Rj for a stable near field and the
length of the mixing region for an unstable near field Rc’ the near field
dilution predictions as well as the experimental data demonstrate a con-
sistent trend which could be understood in terms of our physical notions
of buoyant jets in shallow water.

As a turbulent jet was always observed for the range of Reynold's
number tested and frictional effects are shown to be unimportant at large
distances from the jet (sec. 2.5, stratified counterflow region), the find-
ings of this study can be extended to prototype conditions.

The experimental data is compared with the general theoretical pre-

dictions in fig. 4-2,
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V. Conclusion

The mechanics of a vertical axisymmetric jet in stagnant water is in-
vestigated both theoretically and experimentally. Four flow regimes with
distinct hydrodynamic properties are discerned in the near field of the
jet: the BuOyant Jet region, the Surface Impingement region, the Internal
Hydraulic Jump region, the Stratified Counterflow region. The mechanics of
the flow in each region are formulated analytically. Insight is gained by
examining in detail the mathematical behavior of the theoretical framework.
The solutions of the four regions are coupled to give a prediction of the
near field stability and the near field dilution as a function of the jet
characteristics. To verify this theory, a series of experiments were
carried out with a half-jet.

It is found that the near field stability is dependent on the densi-
metric Froude number and the submergence of the jet. For certain combina-
tions of the two, an instability is detected. The criterion that governs
the stable-unstable transition is found to be Fo = 4.4 H/D for H/D > 6.
In the case of a stable near field, the dilution is governed only by the
jet characteristics. When an unstable near field exists, there is heat
re~entrainment from the stratified flow away, and the dilution is corres-
pondingly lessened. In this case the dilution is governed by the far field
boundary condition in addition to the jet characteristics. The basic
mechanics of the flow for an axisymmetric buoyant jet can be understood
in terms of the theory developed in this study.

The theory is solved on a generic basis and the general results pre-
sentéd. The characteristics of the four flow regimes and the phenomenon

of instability are experimentally confirmed. The observed near field
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dilution are compared with the theoretical predictions. Good agreement is

obtained.

Recommendations for future research include: investigation of the
behavior of buoyant jets in an ambient crossflow, the effect of the angle
of discharge on the near field sfability, and testing the theory in this

study against experiments carried out with a full round jet.
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Stable Near Field Solution:

The solution for the average dilution in a stable near field can be
obtained by solving eq. 2.2.1-2.2.3 in conjunction with eq. 2.1.19-2.1.20.
The following set of non-dimensionalized algebraic equations are arrived

at. These two equations are solved numerically by the Newton Ralphson

method.
1 142 1 1 : 31422 :
- — +A 1 + 2.%2 _ 2 3
v omweg [0 27 dd *ogearz FET -
2
vaky) ez 2, (1-2)
6 oz z(1-2)q, 21* (4e2)2%F2u
where u= -% z = zi/H H”® = H/D c=2z/D
u, e

Having solved for u, z the densimetric Froude numbers of the upper
and lower layer can be computed and used as input for obtaining the con-
jugate jump height.

Assuming that the internal jump occurs atrj=RjH from the jet axis,
and experimental observation indicates there is practically no change in
the thickness of the upper layer prior to the jump. The demnsimetric

Froude numbers of the respective layers can then be related to the jet

characteristics:
3 4 2apl
2 uz € Z u“SF
] T X pEA P R e
Aeh z.i (1—2) H
j e "1l r, )
]
2 _ ,8-1.2 1-z.3 _o
P, = G507 5D B
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Appendix B

The Internal Hydraulic Jump

The conjugate jump height of the radial internal jump can be solved

numerically by the Newton Raphson method. By assuming

1
r,-r; = T(h1 - hl) T constant
such that
]
x_ T2 _ - |
R” = T, =1l+a (h - 1)
Thy
where a= -—=
ry

By rearranging eq. (2.4.14) and (2.4.15), we obtain the following set of

two algebraic equations.

h

2. % 2 by
- y)=4F1[1—Rx1] L 42h[1Ry1] .
17 71 R*(1+R*)x1(1-gf) R (148" )y, (4y)) (1x,)

2 *

* %
Fz(xl, yl) = y1(1+y1) R (14+R )(1+x1)(l—yl)xl =0
- 4F 2 1 a <"z )
, , 1 h2 1
_h _ M
where x = EI y1 = Ty

Having evaluated the partial derivatives of Fl(xl, yl) and Fz(xl, yl)

the two equations can be solved by iteration.
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Stable Near Field Solution
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Appendix C

For H/D smaller than approximately 6.0 the theory outlined in ch. 2
and the previous appendix does not strictly hold as the flow is not fully
established when the jet reaches the free surface. By assuming momentum
dominates in such cases, a simplified analysis is done to derive an average
dilution in the near field.

From Albertson et al (1950),

2
z z
Q/Q, = 1.0 + 0.083 7 + 0.0128 .z
where Q is the total flow of the jet.
Assuming the depth of the upper layer = BH , the dilution in the near
field is given by

S=1.0+ 0.083(1-3)11* + 0.0128 (1-3)25*2

Assuming that the jump occurs at rj=RjH from the jet axis, the den-
simetric Froude numbers of the respective layers prior to the internal

jump can be related to the jet characteristics and experimental coeffic-

ients:
2 2
u
2 - —L . _1_ 5T
1 g B2 4 64R-83 H 3
p 1 J
2
P —2 o (S&L2 (843 g2
2 Ap S 1-8° "1
g phz

In the numerical solution B8 is assumed to be 0.1.
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Appendix D

Energy Approach to critical flow in a two-layered counterflow system:

It is well known that for open channel flows, the critical flow
condition can be interpreted as that which minimizes the specific energy
The following is an extension of the same principle to

for a given flow.

a two-~layered counterflow system.

i<

A, p-ap

5%
The two dimensional case is treated here. However, the analysis is

also applicable to axi-symmetric flows.

Kinematic Boundary Condition:

free surface: w = d(hl + h2)
s S
dh
- 2
Vi Y1 ax

interface:
p8V possesses potential and kinetic

A small fluid particle of mass

energy: E8V = {pgz + %-p(u2 + wz)} sV



First Law of Thermodynamics:

DE, _ (3B, 3E_ _3E . _ S8(iork)
pr V= (3gtugtwyy) dv= =0

9 d
e

Assuming steady state and neglecting friction losses: we have

2 2 -
= (EfP)u + = (Etp)w =0

Integrating this vertically and applying Leibnitz rule:

d_ hs+h
= 12
ax & {@pud dz - @) u ST g o -

dx

Invoking the kinematic boundary condition at the free surface,

—d ;h1+h) =
ax % {(E+DP)uldz 0
h
{2 ®roudz = [M2 {pgz + 3 o) + (o-80)gh, + pg(hy-2) Judz
Assuming w << u and ;g z E;B we have
= 1 3 -
= 3 pu2 h, + {pg(hl+h2) Apg hl} h2 T
For the counterflow system: we have q, = - [qzl
therefore 3
h . _ 1 Eg q
g 2 (E+p) udz = - E-phz h, - { pg(hl+h2) - Apghl} hZ(E§)
3

0
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Similarly,
hl+h2 hy+ho 2
i) (E+p)u dz = f u{ (p-Ap) gz + YBou™ +(p-2p)g(h, +h,-z) }dz
o} h2 1 2
3
LS 9
1

q, > 0

Total energy at any x can be defined as:

3
q
2
E(x) = -%p5 - {eg(hy+h)) - Mpghy 1 q,
h2
3
!
+% 0(3) + (p-8p)g(hy+hy) q
h
1
For extremum, JE _ 0 0E  _ 0 We have
dh ah
1 2
3
Pay
~(p=8p) & q, + (p-20) g ¢; - —3 = O
hl
3
Pq,H
- rgq, + (p-80) ggq; + —3 =0
h
2
1) - (2):
-pq3 pq3
- - —5 + fegaq, = O
h3 h3 2
1 2
q; < 49 gives
FParrr o= 1.
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Heat loss effects in the Near Field:

In this section it is shown that heat loss effects are insignificant
in the near field of the bouyant jet.

Neglecting molecular transport process, heat conservation implies:

T T _ T'a' T'w'
s Ve T T Tr N z (F.1)
where ui w' = velocity fluctuations
T' = temperature fluctuation

Integrating eq. F.1 vertically for the upper layer, using Leibnitz
rule and invoking kinematic boundary conditions at the free surface and

the interface (assuming no free surface slope) it can be shown that

d T g _—9y.
" 1 - Hg “Hj
1 dr p.ch
apl
where
9y = surface heat flux
S
@, = interfacial heat flux
i
T1 = average temperature of upper
layer
cp = sgpecific heat of water

Putting the heat fluxes in the form:

- k(T1 - Te)

kz(T1 - TZ)



130

where k = surface heat loss coefficient
kz = interfacial heat loss coefficient
T2 = average temperature of lower layer
Te = Equilibrium air temperature

Doing a scaling and replacing Tl with the temperature excess above

ambient ATl, we have

* AT AT kK R (AT -AT.
* dAT1 - kR ¢ Tl— e) _ Z Tl_ 2) (F.2)
Y * [p ¢ Hu ] * [ p ¢ Hu ] * :
dr ap (s} h ap (o} h
1 1
where % %
u = ullu ATl = AT/ATo
r* = r/H
*
hy = h1/H

u characteristic upper layer velocity

AT : characteristic temperature excess above ambient
of upper layer

San Onofore Power plant, as an example of a submerged discharge
design, has a condenser flow rate of 3.2 x 106 cf/hr. Using the theory
outlined in this study, the upper layer velocity can be estimated to be
approximately 0.2 ft./sec. at r* = 10. The values of the heat loss

coefficients are given by:

k = 150 BTU/°F-ft.’-day

-4 _ 2 [ Jirka and Harleman ]
k, = 10 ° ft"/sec (1973)
pc. = 62.5 BTU/ft3

P
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Substituting these numbers into eq. F.2 the dimensionless parameters

in brackets can be shown to be 0.03 for the surface heat loss and 0.0001
for the interfacial mixing.
Hence heat loss effects are not important in the region of interest

{(r < 10H) treated in this study.
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