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ABSTRACT

Forced-cooled systems for oil-filled pipe-type cable circuits have

recently been considered. In such systems the conduction resistance

through the paper insulation of the cables is the limiting thermal resistance.

Assuming bilateral symetry, steady-state conditions, and two-dimensional

heat transfer, a FORTRAN IV computer program was written to solve the heat

conduction problem in the cable insulation for arbitrary configurations

of a three-cable system.

For a steel pipe, a cable system is most susceptible to overheating

in the equilateral configuration with the three cables touching.

Proximity effects are very significant in forced cooling, especially

when cable a nt provided with a copper tape under the insulation moisture

seal assembly, accounting for as much as 21% of the total oil temperature

rise between refrigeration stations. This figure, however, is reduced to

8% when 0.005 inch thick copper tape is present.
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CHAPTER 1

INTRODUCTION

High-pressure oil-filled pipe-type cable circuits

have been used for underground electrical power transmission

for a number of years. Such circuits employ a steel conduit

inside which are several cables, each consisting of a copper

conductor wrapped with porous, oil-soaked paper insulation

and a protective outer covering. The space between the

cables and the pipe is filled with a dielectric oil which is

under high pressure. The oil, which impregnates the paper

wrapping on the cables, provides electrical insulation for

the cables and also transfers the heat generated by losses

in the cables to the conduit and the surrounding soil.

Pressurization of the oil prevents vapor formation in the

paper insulation and ensures proper electrical insulation of

the cables. In this non-circulating type of system, heat

which is generated in the cables is transferred from the

insulation to the pipe wall by natural convection through

the oil, and then from the pipe to the atmosphere by

conduction through the soil. The power-carrying capacity of

underground cables is limited by the maximum allowable cable

temperature, which depends on the rate of heat removal from

the system.

Force-cooled systems for oil-filled pipe-type

cable circuits, which appear to have power capacities sig-

nificantly larger than those of non-circulating systems,

12
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have recently been considered. In force-cooled systems,

chilled oil is circulated through the pipe, and heat is

transferred from the oil to the atmosphere at refrigeration

stations. Most of the heat is transferred from the cables

to the flowing oil, heat transfer to the soil being of

secondary importance [1]. The cable-to-oil temperature

difference for a given current and voltage is determined by

the overall cable-to-oil heat transfer resistance, which is

due to two effects: the resistance to conduction heat

transfer through the cable insulation, and the resistance

to convection heat transfer from the surface of the

insulation to the bulk of the oil. Based on results of the

natural convection experiments performed by Orchard and

Slutz [2], it is demonstrated in Appendix A that the

conduction resistance for the type of system which was

considered is an order of magnitude larger than the

convection resistance. Therefore the rate of heat removal

from the system depends primarily on conduction, and an

accurate conduction model of the cable insulation is

required in order to confidently predict the cable

temperature.

Conduction within the insulation is complicated by

the proximity of one cable to another. When two cables come

into direct contact, their mutual presence causes a large

increase in the resistance to heat transfer near the point

of contact. Consequently, the cable insulation near the

contact point experiences a sharp increase in temperature,



14

which in turn elevates the conductor temperature, and

thermal failure of the system will ensue unless the oil

temperature is appropriately adjusted. Given a system with

a maximum allowable cable temperature, it is therefore

desirable to know the maximum oil temperature which should

be allowed in order to avoid thermal failure of the system.

This involves determining the two-dimensional (i.e., radial

and circumferential) steady-state temperature distribution

within the cable insulation for various cable configurations,

especially those which produce the most severe operating

conditions. This heat conduction problem is too complicated

to be solved analytically. However, the solution for

arbitrary cable configurations is readily obtained by means

of numerical methods.

The particular system which was studied consists

of three circular conductors inside a circular conduit. The

dimensions of this system are shown in Figures 1.1 and 1.2.

In addition to the outer moisture seal, the cables are

wrapped with skid wires, which protect the cable coverings

and reduce friction when the cables are pulled into the

conduit. In order to simplify the geometrical problems

which arise in handling configurations of three cables, it

was assumed that the system possesses bilateral symmetry, as

shown in Figure 1.3. This assumption reduces the system to

one and one-half cables inside half a conduit, while

permitting arbitrary configurations of the one and one-half
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cables. As Figure 1.3 indicates, the half- and whole cables

are referred to as Cable 1 and Cable 2, respectively.

In Chapter 2 a complete formulation of the

conduction problem is presented, followed in Chapter 3 by a

discussion of the superposition methods which were employed

in obtaining final solutions. Chapters 4 and 5 are

concerned with discretizing the conduction model and with

translating the discretized model into a computer program.

In Chapter 6 the results of several problems are discussed,

and conclusions are stated.
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CHAPTER 2

FORMULATION

The Cable Insulation

In developing a conduction model for the cable

insulation, the following assumptions were made: any axial

conduction along the length of the cable is negligible, thus

reducing the problem to two dimensions; steady-state condi-

tions prevail in the system; the thermal conductivity

throughout the insulation is taken to be uniform. Using

these assumptions, an energy balance on an infinitesimal

element in a cylindrical coordinate system yields the

following expression, which is a special form of Poisson's

equation [3]:

1 T 2T 1 2T - (2.1)
2 2

r r 2+ 2 a2 (2.1)
ar 2 r ~$

This equation governs the temperature distribution in the

cable insulation, together with appropriate boundary con-

ditions which operate around the various portions of the

cable surface. The heat generation term q in Equation 2.1

is due to a dielectric loss which occurs throughout the

insulation.

The Inter-Cable Conduction Path

In order to model the situation which exists when

Cables and 2 are lying together in direct contact (skid

wires overlapping), a special conduction path was placed

19
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between the cable and half-cable. A conduction path was

used because there is a small region between the cables in

which the oil is essentially stagnant. The thermal conduc-

tivity of the path was taken to be the same as that of the

insulation. The width of the path is usually taken to be

the thickness of a skid wire, since this is as close as the

cables come to actually touching. As an estimate of how

large an angle the path should subtend along the cable

surfaces, it was decided to use the angle subtended by the

overlapping skid wires. For the system which was studied,

this angle is approximately 25°. The inter-cable conduction

path is thus an extension of the cable insulation, joining

Cable 1 to Cable 2, as depicted in Figure 2.1. Since no

heat sources are present within the conduction path, the

governing equation for its temperature distribution is

Laplace's equation [4:

a2T a 2T__ T a7 = ° (2.2)- + 2- 0,
ax ay

where x and y are the normal and tangential coordinates,

respectively, and where "normal" denotes an axis which joins

the cable centers.

The Solution Domain

Two additional assumptions underlie the conduction

model. The first is that the oil is assumed to be well-

mixed, so that the oil temperature outside the convective
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The Inter-Cable Conduction Path (Shaded)
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boundary layer is uniform at a given cross-section in the

system. The second is that, because of the very high

conductivity of copper, each conductor is assumed to be at a

single, uniform temperature (though the two conductor

temperatures are not, in general, equal). These two

temperatures are obtained from a knowledge of the losses at

each conductor, and this is discussed in Chapter 3 under the

subject of superposition. The point to be made here is that

the two conductor temperatures are not unknown quantities in

the temperature field. Therefore the conduction problem has

as its solution domain only the paper insulation surrounding

the conductors and the inter-cable conduction path. For

purposes of nomenclature, the insulation of Cable 1 is

referred to as D1 (Domain 1), that of Cable 2 is referred to

as D2 (Domain 2), and the region comprising the inter-cable

conduction path is called D (Domain 3). The solution

domains D D2, and D3, together with their associated

coordinate systems, are shown in Figure 22.

Boundary Conditions

The solution domains D1 and D are divided into

regions of varying size according to the type of boundary

condition which is acting at the cable surface. A set of

regional divisions for both cables is illustrated in

Figure 2.3, and the boundary conditions associated with the

various regions are listed in Table 1. Regions II of D1 and

D2 are not included in the table, because they join the

inter-cable conduction path and therefore have no surface
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FIGURE 2.2

Coordinate Systems in D1, D2, and D3
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FIGURE 2.3

Regional Divisions in D1 and D2

24
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TABLE 1

BOUNDARY CONDITIONS IN D1 AND D2

D1

Region I

Region III

Region IV

D2

Region

Region

Region

Region

Region

Region

I

III

IV

V

VI

VII

Convection

Convection

Cable-Conduit

(if used)

(if used)

Convection

Convection

Cable-Cable

Convection

Cable-Conduit

Convection
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boundaries. The cable-cable and cable-conduit boundary

conditions are depicted in Figure 2.4.

There are several different surface boundary

conditions, but it can be shown that they are all convective

in form. The convective boundary condition itself is

obtained from an energy balance at the cable surface:

q =-k h[T(r2,) - Toil] (2.3)

P21 r2

where r2 is the outer radius of the Cable 1 insulation, P is

the perimeter of the cable, and h is the local film coeffi-

cient, which may vary around the periphery of the cable.

The cable-cable boundary condition occurs when the

three cables are in an equilateral configuration. A small

arc along the surface of Cable 2 then lies immediately

adjacent to the line of symmetry. The arc length is taken

to be the same as that for the inter-cable conduction path.

Since no heat flow crosses a line of symmetry, this boundary

is taken to be an insulated one, which is just a convective

boundary with a local film coefficient of zero. While this

boundary condition differs considerably in form from the

conduction mechanism operating in the inter-cable conduction

path, both mechanisms have the same effect on the tempera-

ture distribution. For in the equilateral configuration,

symmetrical conditions on either side of the conduction path

act to prevent any flow of heat across the tangential axis
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(y-axis) of D3. The trilateral symmetry of an equilateral

configuration is thus preserved by modelling the cable-cable

effect as a convective boundary. An alternative method

would be to employ an optional conduction path for the

cable-cable effect, but this would introduce unnecessary

complication.

The cable-conduit boundary condition, which exists

when either cable is lying directly against the conduit, is

influenced by the following factors: convection cooling

near the point of contact; the thermal conductivity of the

conduit, which for steel is large; potentially large AC

losses in the conduit itself; and heat conduction from the

conduit to the adjacent soil. This situation is examined in

Appendix B, where a portion of the conduit wall is

thermally modelled as a fin, and the thermal resistance

through the fin is compared to the thermal resistance

across the cable insulation for a given set of AC losses.

In the most conservative case, the resistance from the fin

base to the oil is an order of magnitude smaller than the

resistance across the insulation. Thus the cable-conduit

boundary condition for a steel conduit is essentially a

convective one with a slightly modified film coefficient.

The arc on the cable surface affected by this boundary

condition is again taken to be the same as that for the

inter-cable conduction path.

There are two surface boundary conditions in D3,

each a convective one. These are depicted in Figure 2.5.
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CONVE(

FIGURE 2.5

Convective Surfaces of D3
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An energy balance at the surface of D3 gives

-k a sufc = +h[T(surface)- Ti] (2.4)ay surface ITol

where (+) and (-) apply for positive and negative y,

respectively, and h is a variable film coefficient.

In addition to the surface boundary conditions,

there are two internal boundary conditions. These are at

the line of symmetry and at the conductors. The symmetry

boundary condition occurs in Cable 1, where the line of

symmetry bisects the cable and forms a portion of the

insulation boundary. This boundary, of course, is perfectly

insulated. The boundary condition at each conductor, as was

stated previously, is one of uniform temperature.

The aforementioned governing equations and

boundary conditions, along with the requirement that the

temperature between D1 and D3 and between D2 and D3 be

single-valued, constitute a complete formulation of the

conduction problem.

Variations on the Problem Statement

Although the heat conduction problem was

originally posed with the oil temperature as the unknown

quantity, it is possible to specify the oil temperature and

solve for other quantities. Assuming that the voltage is

constant for a given system, there are three variables:

maximum allowable oil temperature, maximum cable temperature,
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and maximum allowable current. Given any two of these, the

third may be found. In subsequent discussions it will be

necessary to specify which of the three variables is

unknown, and so the following solutions are defined for

reference: Solution 1 finds the maximum cable temperature,

given the current in the circuit and the oil temperature;

Solution 2 finds the maximum allowable current, given the

oil temperature and the maximum allowable cable temperature;

Solution 3 finds the maximum allowable oil temperature,

given the current in the circuit and the maximum allowable

cable temperature.

Nondimensional Formulation

In preparation for numerical solution, the heat

conduction problem is cast into nondimensional form. Such

a formulation can be obtained by introducing the following

dimensionless variables:

- r - X ~~~~~~~~~~T T .l-r -- p -x - oil
r r2 P = x=2A Y 2D' W/k

(2.5)

where 2A denotes the minimum width of D3 (at the x-axis),

2D is the height of D3 (along the y-axis), and W is an

arbitrary loss per unit length (Btu/hr-ft). The form of the

governing equation in D1 and D2 is then

1 2~~~~2
-2 32e - 520 (r2 r)

2 q
2 r - - (2.6)

r 2 Dr 3~2 



whereas the governing equation in D3 becomes

D2a 4A2 a2e

;:X 2 2 2 2 ~-x D 2 ay
(2.7)

The form of the standard convective boundary condition

becomes

k 6

2 r

= he(1,4) (2.8)

3 



CHAPTER 3

SUPERPOSITION OF SOLUTIONS

General

In the solution of linear problems, such as this

problem of conduction with uniform thermal conductivity, it

is often convenient to employ the principle of superposition.

This reduces the overall problem to a number of simpler

problems, each having the same geometry as the overall

problem, whose individual solutions may be linearly combined

to form the overall solution. The required number of

separate solutions is equal to the number of nonhomo-

geneities, or potentials, in the overall problem. In the

conduction problem which has been posed, there are three

potentials: the two conductor temperatures and the

volumetric heating effect, The overall problem may thus be

decomposed into three component problems. Solutions to

these component problems need to be generated only once for

a particular cable geometry and voltage (dielectric loss);

the total solution for any arrangement of current-produced

losses can then be achieved by suitably combining the three

component solutions.

In the following sections the superposition

technique for obtaining Solution 1 (which finds the cable

temperature) is presented. It is then rigorously demon-

strated that the overall governing equation and boundary

conditions are obtained from a linear combination of the

33
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governing equations and boundary conditions of the three

component problems. For brevity the following notation is

introduced: x is a generalized position vector for the

overall solution domain (comprised of D1 , D2, and D3);

x C (x) denotes all points in the solution domain which
3-1,_

lie on the curve C (x); n is an outward normal to the curve

Ci(x); v2 is the Laplacian operator. The nine curves Ci(x)

which comprise the boundaries of the solution domain are

shown in Figure 3.1. The nine normals n are all dimension-
1

less: normals to curves in D1 are nondimensionalized with

r2, normals to curves in D2 with P2, and normals the two

curves in D3 with the length 2D.

The Overall Problem

The governing equation for the overall problem is

the following:

V20(x) = f(x) , (3.1)

where f(x) describes forcing effects throughout the domain.

0(x) also satisfies boundary conditions on the nine curves

Ci (x). On the curve C (x) the condition is

0(x)I XEC (x) = 01 , (3.2)
1 

where 01 is some uniform (as yet unknown), dimensionless

temperature. On the remaining curves the boundary
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C 2

FIGURE 3.1

Curves Ci(x) Comprising the Boundaries of

the Solution Domain

C.
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conditions are

ae x)

an2
XEC2 (x)

3 2x)

an3
xEC (x)~ 3 ~

ae(x)

an4

a (x)

n5

0(x) I

XEC4 (x)

XEC (x)

x 5 x)

nc 6 W

hr 2

hr2

k

e(x)

OC

(3.3)
ECC 2 

(3.4)
xEC (x)
~ 3 ~

= 0 (3.5)

= 0 (3.6)

(3.7)02 '

where 02 is a uniform
02

(as yet unknown), dimensionless

temperature.

hP2
k

xCc 7 

2Dh
- k 6(x)

O(x)
C 7(X)

xEC8 (x)
xeC (x)
~ 8 ~

ae (x)

an7

ae (x)

an 8

(3.8)

(3.9)



ao (x)

an9
xEC9 (x)

_ 2Dh (x)
k

The Component Problems

The overall problem is decomposed into three

component problems, each of which has only one potential and

is individually solvable. The component solutions are

OA(x), OB(x), and C(x).

eA(x) is the solution for the physical situation

in which the Cable 1 conductor is hot, the Cable 2 conductor

is cold (at the oil temperature) and in which there is no

dielectric loss. A(x) satisfies the homogeneous governing

equation

V2OA(x) = 0 , (3.11)

and it satisfies the following boundary conditions:

OA(x) (X) =A ' (3.12)

where A is some arbitrary dimensionless temperature.
0

a A(x)

n2
xEC 2 (x)

hr2
- k OA(x)

xEC2 (x)- 2 
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~xC9 (x)
(3.10)

(3.13)



3CA(x)

3 xEC3 (x)

a A(x)3n3
4 xEC4 4 (x)

aOA(x) )
an5

xeCc (x)

0A(x) [x£C6 ( x)XE 6 

OA(x)

an)an7
xEC7 (x)
- 7 

SeA(x)

an8
xeC (x)

a OA(x)

n9
x£C (x)
- 9 

hr2
- kOA (x)

xcC (x)
- 3 

= 0

= 0

= 0

hP2
- k GA(x)

xcC7(x)

2Dh OA(x)
xEC x)8 

2Dh 
- k GA(x)

x 9C (x)

OB(x) is the solution for the physical situation

in which the Cable 1 conductor is cold (at the oil

temperature), the Cable 1 conductor is hot, and in which

there is no dielectric loss. The component solution OB(x)

satisfies the homogeneous governing equation
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(3.14)

(3.15)

(3.16)

(3.17)

(3.18)

(3.19)

(3.20)



V OB(x) = 0

as well as the following boundary conditions:

= 0

hr

k

hr2

k

I

OB (x) 
'xEC (x)

- 2 

3B(x)
xEC3(x)xC 3(x)

= 0

x C 4 (x)

= 0

xc C(x)
- 5 

C C6 ( = B
0

where B is an arbitrary dimensionless
0 temperature.

aOB (x)

an7 1
XE 7 W

hP2
k OB(x)k
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(3.21)

xc1 (

~ 2 X

(3.22)OB(x) 

a0B (x)

an2

aOB (x)
n439B (x)

1Ian4 1I

DOB (x)

an

5B(x)

OB(x) 

(3.23)

(3.24)

(3.25)

(3.26)

(3.27)

(3.28)
xCC7 (x)



3eB(x)

8 xeC (x)

aeB (x)

an 9
~ c9_

2Dh
k eB(x)[

xEC (x)
8 

2Dh
2kh 6B(x)

x£C 9 (x)

Finally, C(x) is the solution for the physical

situation in which both conductors are cold (at the oil

temperature), but in which there is a prescribed dielectric

loss. The component solution C(x) satisfies the nonhomo-

geneous governing equation

V2 C(x) = f(x) (3.31)

and the following boundary conditions:

ec(x)IXEC(X) - 0 (3.32)

aec(x)

an2
xcC (x)XE 2 W

aec (x)

an 3
x£C3 (x)

hr2

2 

- kr2 e(x) 
- ~ xEC3 (x)
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(3.29)

(3.30)

(3.33)

(3.34)



a6c (x)

4xEC Wxn 4 -

OC (x)

5 xEC 5 (x)
-- ~5xc x

ec(x) EC () 0
- 6 

aOC (x)

an7
xeC (x)
- 7-

aec (x)
8 xeC Cx-an8

xC 8(

a OC (x)

an 9
xc9 (x9)

hP2
- 6 c (x)k ~C 

k ~ x£C 8 

2Dh I 8(x) 

_ 2Dh 0C (x)I
- xC9 (x)

Validity of the Superposition Method

Having described the overall problem and the three

component problems, it remains to demonstrate the validity

of the superposition method. The three component solutions

are linearly combined to form the total solution according

to [5]:

6(x) = a1 OA(x) + a2 OB(x) + C(x) ,

41

= 0 (3.35)

= 0 (3.36)

(3.37)

(3.38)

(3.39)

(3.40)

(3.41)
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where a1 and a2 are two arbitrary constants, to be

determined from two additional boundary conditions in the

overall problem. That Equation 3.41 is indeed valid is

proven by substituting it directly into the overall

governing equation and boundary conditions. The following

results are then obtained:

V 0(x) = V [al0A(x) +a 2 0B(x) +C(x)] = f(x)
- 1 _ 2 -

Check

(3.42)

e (x)I xC (x ) = [alA (x) +a 2 eB(x ) + C (x) ]jI
~ ~ ~ ~ ~ ~ -I x

= alA Check, (3.43)

provided alA = 01 This presents no problem, since 01 is

unknown, and a1 and A ° are both arbitrary.

XEC ()x)

2 -

a
- n [a1OA(x) +a2 6B(x) +C(x)]

~~~~~~~~xC2 E (x)

hr2
- -- [a OA(x) + a OB(x) + OC(x)]k 1 - 2 -

hr
= - k e (x)

xeC2 (x)
Check

xEC2

(3.44)
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hr2

hr2

k

ae (x)

xnC4 ()

[a1 OA(x) + a2 B(x) + 0C(x)] I

xeC

[a1 6A(x) + a2OB(x) + OC(x)]

0 (x)
xC 3(x)

[a1 A(x)

Check

_ J ~

xcC3 (x)

(3.45)

+ a2OB(x) +C(x)]

xcC (x)4-~

= 0 Check (3.46)

0e (x)

-an5

a
3n5

[a10A (x) + a2 B(x)

Check

= [a1 OA(x) + a2 eB(x) +

a2Bo
Check,

+ ec (x) ]
xC 5 x)

(3.47)

C(x) ] xC 6 (

(3.48)

provided a2Bo = 0 This also causes no difficulty,
02'

and a2 and B ° are arbitrary,

ae (x)
an 3

a
an 3

xEC (x)3-~

xEC5 (x)

= 0

6(x) I EC 6 (x)

since

(x) I.. , \,=

e02 is unknown,
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[a1OA(x) + a 2 B(x) +

hp2

k

hp 2

k

-n 
a8

ec (x)] 
xEC (x)
- 7-~

[alOA(x) + a2OB(x) + C(x) ]

6 (x)
xcC 7 (x)

Check

xEcC7 (x)

(3.49)

a1 GA(x) + a 2 B(x) +OC(x)]
xEC 8 (x)

2Dh
k

2Dh
k 8(x)

[a1eA(x) + a2OB(x) + OC(x)]
xC 8C (x)
-- 8 

CxC8 (x)
Check (3.50)

[a OA(x)a2x) +Bx) +C(x) ]l - 2 -
xEC9 (x)

=-2Dh
2kh [a1OA(x) + a2

2Dh 6 (x) 
k XEC 9 WxcC (x)

OB(x) + C(x)

Check.

a (x)

an7

ae(x)
an 8

xcc8 (x)

a (x)

an9
xC 9 (x)

an9
Dn 9

I
XC 9 (X)

(3.51)
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It is thus established that the superposition technique just

described is indeed valid. However, the two conductor

temperatures 01 = alA ° and 02 = a2B have yet to be found.

Determination of Conductor Temperatures

All that has been said of the conductor

temperatures up to this point is that each one is uniform.

These two temperatures, though, are uniquely determined by

two additional conditions in Solution 1: the specified loss

per unit axial length at each conductor. Returning

momentarily to dimensional variables, let WCl and WC2 be the

specified conductor losses per unit axial length in Cables 1

and 2, respectively. Equating W to the total heat flow

per unit length transferred from the conductor of Cable 1,

the following result is obtained:

, - ar r d1d=w Cl (3.52)

0

Likewise, for Cable 2

2Tr

= -k [ Pd = WC2 (3.53)

2~ ap Plia C
0

These two expressions are rendered dimensionless and

rearranged to give



0

2 7T

0 l

r2Wc
= r2 Clw

P2Wc2
da = -

1

Finally, in terms of the present vector notation,

Equations 3,54 and 3.55 become the following:

a (x)

an1xl xC (x)

- 1-

a0(x)

n
xC6 (x)

WCl r2
dC (x) = +Wr I

1

WC 2 P2
dC6(x) = + P

~~~~~

0(x) may now be eliminated from these two equations in favor

of OA(x), B(x), and C(x) by substituting Equation 3.41

into Equations 3.56 and 3.57:

46

(3.54)

(3.55)

cI(x)

C

(x)

(3.56)

(3.57)

3 8
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an- [al OA(x) + a2 B(x) + C (x)] dC1 (x)

c (x) 1(x)

WCl r2
=+ Wr- ' (3.58)

1

a [a OA(x) +a 2 OB(x) + 6C(x) ] dC6 (x)
an6 1 . ...

C C(x) C 6 
6 _

WC2 P2
0+ . (3.59)Wp1

Since the component solutions OA(x), B(x), and 6C(x) are

each known, Equations 3.58 and 3.59 are two simultaneous

equations from which the arbitrary constants a1 and a2 are

determined. Furthermore, since A and B are known0 0

quantities (the arbitrary dimensionless temperatures which

were used in solutions A(x) and B(x), respectively), the

dimensionless conductor temperatures follow directly from

Equations 3.43 and 3.48: 801 = alA and 602 = a2B. This
q ~~~~01 1 and 602 2 o*

then completes a description of the superposition technique

for Solution 1.

The technique for obtaining Solution 2 (which

finds the maximum current) is somewhat more complicated,

owing to the fact that current is then a variable. This

makes necessary a separation of current-produced losses from
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voltage-produced losses, as well as a subsequent procedure

for maximizing current with respect to the allowable cable

temperature and the oil temperature. A full description of

this solution is presented in Appendix C. Solution 3 (which

finds the oil temperature) is nearly identical to Solution 1,

the former requiring only a minor extension of the latter.

In particular, Solution 3 is obtained by using an arbitrary

oil temperature in Solution 1 and then by equally incre-

menting all temperatures (including the arbitrary oil

temperature) until the maximum temperature in the field has

reached the prescribed allowable value. The two temperature

distributions therefore have the same shape, differing only

by a constant.



CHAPTER 4

THE FINITE-DIFFERENCE METHOD

Discretization of Domains

The numerical method used to generate solutions

for the various component problems described in Chapter 3 is

the finite-difference method. It has as its first basic

step discretizing the solution domain. Discretization is

the reduction of a continuous system into a system which has

a finite number of degrees of freedom. The basic approxi-

mation involves the replacement of a continuous domain by a

network of discrete points within the domain. A one-

dimensional example of this is shown in Figure 4.1. Instead

of obtaining a continuous solution defined throughout the

domain, approximations to the true solution are found only

at these isolated points

Discretization of D1 and D2 is accomplished by

defining a network of radial and circumferential mesh points.

Since it is desirable in terms of computational labor for

the mesh to be as regular as possible, the following

conventions were adopted: points along a radius are

uniformly spaced, though the spacing in D1 nmay be different

from that in D2; circumferential spacing of points within a

particular region is uniform; the number of circumferential

subdivisions in both Regions II of D1 and D2 and the number

of tangential subdivisions in D3 are constrained to be equal,

thereby avoiding mismatches at the D1-D3 and D2-D3

49
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CONTINUOUS ONE-DIMENSIONAL
DOMAIN

j-1 Pj Pj+i..

DISCRETE REPLACEMENT OF ONE-
DIMENSIONAL DOMAIN

FIGURE 4.1

0 * *

One-Dimensional Finite-Difference Mesh

0 0

A Regular,
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interfaces. It should be noted that, just as the conductors

were not included in the continuous domains D and D2, so

are they not included in the corresponding discrete domains.

The dimensionless radial spacings h and h are

obtained from p
obtained from

1- r
h = -
r N1

1. - Pl
h = 1 - f

N2

where N1 and N2 are the number of radial subdivisions in

D1 and D2, respectively. The dimensionless circumferential

spacings h and h vary in magnitude depending on which.~~
region is involved, since the regions generally are of

varying size. Thus there are four values of h in D1 and

seven values of h in D2, or one for each region. A typical

spacing is calculated according to

(h ) n
_ n - n-l

M
n

(4.2)

where 4n and 4n-1 are the values of 4 at the bounding radial

lines of Region n, and M is the number of circumferential
n

subdivisions in Region n.

Discretization of the domain D3 is difficult

because of its irregular siape. For this reason it was

approximated by the more regular shape shown in Figure 4.2.

The nondimensional normal and tangential spacings h and h
x y

(4 1)
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FIGURE 4.2

Discretization of the Domain D
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are obtained by dividing the nondimensional width and height,

respectively, by the appropriate number of subdivisions. It

is seen in Figure 4.2 that these spacings are not uniform:

h depends on y and h is a function of x. Since changes in
x y

h are small compared to changes in h, a uniform, mean
yx

value for h was assumed. The linear dependence of h on y
y x

was retained in the model.

A subtlety regarding the two convective surfaces

of domain D3 is also mentioned here briefly. At each corner

of D3 there exists a discontinuity in the area available for

conduction heat transfer. This discontinuity is most

conveniently accounted for in the following manner: the

regular form of the governing equation, which itself assumes

no discontinuity in area, is applied at each corner point.

Four effective corner locations, which lie outside the

corner mesh points, are thereby established, and these

corner locations define the two effective surfaces for

convection in D3. The mesh points along either convective

surface thus lie inside the conduction path, rather than on

the boundary itself. Details of this modelling procedure

are discussed in the user's instructions in Appendix E.

The discretized domains are shown with a typical

mesh in Figure 4.3. The number of points to be used in a

given problem is dictated by the level of accuracy required

in the solution; as the mesh becomes finer, it more nearly

approaches the original continuous domain. Also it is

economical to use a coarse network in regions where the
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FIGURE 4.3

A Typical Mesh for the Equilateral Configuration
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temperature gradient is small, switching to a finer mesh

where there are rapid variations in temperature. Note, for

example, how the mesh points in Figure 4.3 are arranged:

since the temperature distribution away from points of

contact should be nearly one-dimensional, most of the points

are concentrated between the cables, where large gradients

are expected.

Difference Form of Governing Equations and Boundary

Conditions

The reduction of a governing equation and boundary

conditions for a continuous domain to those of its discrete

replacement may be accomplished physically or mathematically.

In the mathematical approach, which was used by the author,

the continuous formulation is reduced to a discrete

formulation by simply replacing derivatives with finite-

difference approximations. When this is done, the original

system of governing partial differential equations is

reduced to a set of n simultaneous algebraic equations,

where n is the number of discrete points in the mesh. Since

the original continuous system is linear, the algebraic

system will also be linear.

In preparation for replacing differential

equations with finite difference relations, two basic one-

dimensional finite-difference expressions are listed. The

extension to two dimensions is straightforward. In

Figure 4.1 let the points ... , Pj-l P Pj+1,..' be

separated by a dimensionless spacing h, and let the value of



56

'(z) at P. be denoted by .. Then the first and second
J '1

derivatives at P. may be ap,,roximated by the following
J

finite-difference expressions [6]:

(d,) 2j+l J- + (h2 ) ; (4.3)

J

'+ = 1-22 + O(h (4. 4)
~~~h2

2

where O( ) denotes the order of the error. With the

availability of these computational formulas, the process of

replacing the governin ec1.,,tion and boundary conditions of

the heat conduction roblem with approximate algebraic

equations is simple and irect: at each internal point the

finite-difference aproxii,:.i.rion to he governing dffer-

ential equation p,(v)Msi d :. l_-n.graic equatlon connecting

the values of u at ti. sex.' J .. r1iqborn points. For

example, a typical equation a. the poLnt (j2,k2) in D2,

Region IV is:

2 ,2 - 2

+ __ r : 40+rL e- -22tj, 4 L 2hJ j2 2-liik 2 [i2 2 j2+lk2+ 4

-2 2'

+h-- -ej2,k2_ + h2 j2,k2+i Wf'

Ot4 0~~4
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where 2 is the outer radius of Cable 2, ()j2,k 2 is the

local volumetric loss, W is an arbitrary loss per unit

length, and the remaining symbols are explained in

Figure 4.4. This result was obtained by substituting the

two-dimensional forms of Equations 4.3 and 4.4 into a

typical governing equation, such as Equation 2.6.

Two types of exceptional situations can arise in

applying this equation. The first is that on the boundaries,

not all the neighboring points of a governing equation will

lie within the domain. It is then necessary to introduce

finite-difference approximations to the given boundary

conditions and thereby to eliminate the need for any point

that lies outside the domain. For example, the standard

convective boundary condition in D1 reduces to the following

equation after discretization:

[2h hr2.6

ejl-l,kl + k 1jl,kl + ajl+l,kl = (4.6)

where jlkl is a temperature on the surface of D1.

6jl+lkl is then a fictitious temperature outside D1.

However, when the governing equation is applied at the point

Pjlkl (whose temperature is jlkl), there will then be two

simultaneous equations in the unknown jl+l,kl' and this

fictitious temperature may be eliminated in favor of real

temperatures within D1. The same problem occurs at the

conductors, where a finite-difference expression for the
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J2,k2 +1

1'

FIGURE 4.4

Nomenclature in the Neighborhood of P j2k2 in D2

I
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first derivative is required. In this case, however, the

situation is less easily resolved. Since no governing

equation is applied at the conductor, there is no way of

eliminating a fictitious point within the conductor. This

problem is addressed in Appendix D, where a suitable

approximation to the conductor boundary condition is derived.

The basic method involves satisfying the boundary condition

at a slight distance from the conductor, and then relying on

the fact that the temperature distribution is nearly one-

dimensional in the immediate vicinity of the conductor.

The remaining exceptional case occurs at mesh

points whose neighboring points on either side have dif-

ferent dimensionless spacings. This happens for radial

spacings at the D1-D3 and D2-D3 interfaces, and it happens

for circumferential spacings at the interfaces of all

adjacent regions in D1 and D2. In such situations it is

necessary to have finite-difference approximations which

have been modified to fit an irregular mesh. The

expressions for the first and second derivatives in a non-

uniform mesh which are used in this study are readily

derived, either from a Taylor's series expansion about the

central point or by deduction from the mean value theorem of

differential calculus. They are the following [7]:

dzj [h2(hl+h2)] j+l + [12 2 ] j - hlh+h2 j- 1 + ) ;h

(4.7)
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-F 2 [2] + 2 jp + 0(h) ;
dz 2 = 1 2h2 *j+ [lh 2ih(hlh2 ]-i

(4.8)

where h1 is the dimensionless spacing between j-1 and j,

and h2 is the spacing dimension between ij and j+l Also

it is noted that these expressions reduce to the standard

form of Equations 43 and 4.4 when the dimensionless

spacings are uniform (h1 = h2 ).



CHAPTER 5

THE COMPUTER PROGRAM

General

The result of transforming the continuous

formulation of the conduction problem into the corresponding

finite-difference formulation is a linear set of simul-

taneous algebraic equations. A FORTRAN IV computer program

written by the author generates this system if equations,

performs the matrix inversion and multiplication to obtain

various component solutions, and then combines component

solutions to produce a final solution according to the

superposition principle. User instructions for the program

are discussed in Appendix E, and a complete listing of the

source program is given in Appendix F.

The Coefficient Matrix

The set of simultaneous equations for the

conduction problem may be written in the form

[A]{e} = {B} , (5.1)

where [A] is an nxn matrix of coefficients, {} is a vector

of n unknown dimensionless temperatures, and the right-hand-

side vector {B} is a vector of n forcing elements.

Referring back to Figure 4.4, a typical algebraic equation

was shown to be of the form
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(ajlk) jl,k + (ajk) jk +(aj+l,k) j+l,k+(ajk) jk 1

+ (a. 52k+ l j,k+l jk+ bj,k '(5.2)

where jk is the central point at which the governing

equation was applied, and the an are the coefficients
m,n

which were given in Equation 4.5. A typical equation thus

involves five points - a central point and its four

neighbors - and a typical row of the coefficient matrix

accordingly has five non-zero elements. However, the

application of a governing equation at certain mesh points

produces rows with fewer than five non-zero elements. These

situations are depicted in Figure 5.1, together with a

typical mesh point. In this figure, points P3 and P4

initially had the full complement of four neighboring points,

but fictitious points outside the domain were eliminated by

incorporating the boundary conditions at those locations

into the governing equations.

It is a simple matter to assemble the various

coefficients a into a matrix. The only requirement ism,n

that the rows be arranged so as to place the coefficients of

central points (Pi, P2' P3, or P4 in Figure 5.1) on the main

diagonal of the matrix. Since a governing equation will

necessarily involve the central point at which it is applied,

it is therefore ensured that only non-zero elements will

appear on the main diagonal, a necessary condition prior to

matrix inversion.
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-MESH POINT

O CONDUCTOR POI

P,TYPICAL POINT WITH FOUR NEIGHBORING MESH POINTS

P2 -POINT WITH THREE NEIGHBORING MESH POINTS AND
ONE NEIGHBORING CONDUCTOR POINT

P3-POINT WITH THREE NEIGHBORING MESH POINTS

P-POINT WITH TWO NEIGHBORING MESH POINTS
4

FIGURE 5.1

Points Affected by the Application of a Governing

Equation at Various Locations in a Discrete Network

P.4
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The coefficient matrix is inverted by the packaged

subroutine RMINV, which uses the standard Gauss-Jordan

algorithm. An automatic feature of this subroutine is the

calculation of the determinant of the matrix. In order to

keep the order of magnitude of this determinant within a

range acceptable to FORTRAN IV, each row of the matrix and

the corresponding elements of the forcing vectors are scaled

so that the largest element of every row is unity. Once the

matrix has been inverted, the temperatures {} are available

from

{8} = [A] {B} ,(5.3)

where [A]- 1 denotes the inverse of [A].

Forcing Vectors

In the conduction problem the total heat flow is

comprised of the conductor losses, the dielectric loss, and

the sheath loss. This heat flow is driven by two types of

potentials: the conductor temperatures and the dielectric

heating. These potentials are accounted for in the right-

hand-side vectors {B} of Equation 5.1. For purposes of

reference the following vectors are defined: {B}1 is the

forcing vector for the component problem in which a

conductor temperature is driving the heat flow; {B}2 is the

forcing vector for the component problem in which the heat

flow is driven by dielectric heating.
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The procedure for generating {B}1 is suggested by

point P2 of Figure 5.1. The elements of {B}1 are initially

all zero. However, when a governing equation is applied at

points adjacent to the conductor, such as point P2, one of

the neighboring points is the conductor itself. The

conductor temperature is not an unknown, though, and when

the governing equation is written in the form of

Equation 5.1, the term involving the conductor temperature

is carried over to the right-hand side and becomes a forcing

term. The non-zero elements of {B}1 are therefore comprised

of conductor temperature-terms which have been referred to

the forcing vector.

The elements of {B}2 appear as volumetric heating

terms in the difference form of Poisson's equation,

Equation 4.5. It can be shown [8,9] that the dielectric

loss per unit volume is of the form:

W _ = -C (5.4)Wd 2 '
r

where C is a constant for a given system, and r is the

radius at a point in the insulation where the local dielec-

tric loss per unit volume is wd. Since the distribution of

the dielectric loss is known, it is possible to integrate

Equation 5.4 over any particular area to obtain the total

loss per unit axial length within that area. A typical

radial mesh and the areas associated with each mesh point
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are shown in Figure 5.2. The dielectric loss per unit

length in a typical area, say A2, is given by

~~~~Cr 3

(Wd)2 = {dd= (A)(2rr)dr = 2C ln (5.5)
(d)2 = d W d d A r=

r2 Jr2

The total dielectric loss per unit length is:

r6

Wd = wddA = 2C ln(r)6 (5.6)

1

The loss per unit length in any particular area may be

expressed as a fraction of the total loss per unit length

just from information about the radial mesh. For example,

ln (__3)
(Wd)2 Wd ( (5.7)

rl

The computer program distributes the dielectric loss in this

manner. The fraction of the total loss per unit length

which occurs in each discrete area is calculated from the

shape of the radial mesh. The dielectric loss per unit

length for each area is then obtained by multiplying the
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& MESH POINT

FIGURE 5.2

A Radial Mesh Illustrating the Area Associated

With Each esh Point
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various fractions by the total loss per unit length, Wd, a

number which is supplied as input data. Each mesh point

therefore has an associated dielectric loss and the volumet-

ric loss terms in Equation 4.5 can be generated accordingly.

A question then arises, however, regarding the disposition

of the loss in the innermost discrete area, A1 in Figure 5.2.

It is noticed in this figure that there is no mesh point

associated with A1. For this reason the loss which occurs

in A is added to the current-produced heating of the conduc-

tor. This suitably accounts for the loss, providing a con-

servative approximation to the true dielectric distribution.

The sheath loss is a current-produced loss which

occurs on the surface of the cable. In the finite-

difference model, this loss is placed in the outermost

discrete area of insulation, which is associated with the

mesh point on the cable surface. In Figure 5.2, for

example, the sheath loss would be placed in A5. It is then

treated as a volumetric type of heating in addition to the

dielectric loss for that area. A third potential is thereby

introduced, which is accounted for in a third vector: {B}3

is the forcing vector for the component problem in which

sheath heating drives the heat flow.

Verification

During the course of developing the computer

program, periodic tests were performed to ensure its

correctness. One general technique used to verify a

computer program is to solve a problem with it whose
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solution is already known and then to compare the two

results. Several such problems, as well as a simpler

checking procedure, were employed in this study.

The first major verification was a check on the

coefficient matrix. This test was accomplished by printing

out the matrix for a 111-point mesh and then by verifying

each element by hand computation. The 111-point mesh was of

sufficient size for the matrix-generation portion of the pro-

gram to pass through all its decision branches. This test

was repeated for meshes of decreasing size, until the matrix

for the smallest possible mesh had been verified. In partic-

ular, the coefficient matrices for the following mesh sizes

were verified: 111-point, 57-point, 24-point, 17-point, and

16-point. Forcing vectors were checked in a similar manner.

The second major verification of the computer pro-

gram was accomplished by solving the following problem: the

conductor of Cable 2 was maintained at a specified hot tem-

perature, while that of Cable 1 was maintained at the oil

temperature. Sheath and dielectric losses were not included.

The height of the inter-cable conduction path was chosen so

as to include an angle of 6 in either cable. This angle

was judged to be sufficiently small so as to minimize the

thermal effect of Cable 1 on Cable 2. Temperatures in

Cable 2 diametrically opposite the intercable conduction

path (and hence far-removed from the limited two-dimensional

effect) were then compared to corresponding analytical tem-

peratures from the one-dimensional solution. This comparison
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was repeated for successively finer meshes in order to

examine the convergence of the solution. In performing the

test, temperatures at similar radial points were compared,

and a root-mean-square error was defined:

.1/2
I N~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~N

[(Tj)computer- (T j)analytical]

RMS-error (F) = j-l . . N

N

(5.8)

where N is the number of mesh points along a radius in

Cable 2. This error was then expressed as a percentage of

the total temperature drop through the insulation. The re-

sult for five different mesh sizes is shown in Figure 5.3.

The errors demonstrate the typical (1/h2)-dependence on mesh

size, which is expected, since nearly all the finite differ-

2ence expressions used in this problem are (h ) approxima-

tions. It is further seen that the computer solution clearly

converges to the analytical solution, having less than one

percent error in temperature with as few as three radial sub-

divisions. A final run was then made with this problem to

check whether a symmetrical cable configuration would produce

a symmetrical temperature distribution. A coarse mesh of

18 points was used with a cable geometry such that the line

joining the cable centers was a line of symmetry. In the

resulting temperature distribution, the seven temperatures

-1 -

i

r
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above the line of symmetry agreed with their mirror images

to six significant figures.

The third major verification of the program was a

cross-check, using the output from Solution 1 (which finds

temperature) as the input for Solution 2 (which finds

current). For this test a 79-point mesh was employed, and

all losses in both cables were included. Using an oil

temperature of 140°F and a current of 942 amperes in each

cable, Solution 1 predicted a maximum temperature of

189.451°F for the system. This maximum temperature,

together with the oil temperature of 140°F, was then used as

input for Solution 2, which predicted a maximum allowable

current of 942 amperes in each cable. The solutions

mutually agreed to six significant figures, thereby demon-

strating the reciprocal validity of the program.

The final major verification procedure was to

approximate the one-dimensional solution for a single cable

with all losses, by shrinking to a minimum the height of the

inter-cable conduction path. In the computer program the

conduction path is presumed to have some non-zero height, so

the included angle in either cable was taken to be 2°.

Again temperatures in Cable 2 opposite the inter-cable

conduction path were compared to corresponding analytical

temperatures, and the same error criteria (RMS-error as a

percentage of the total drop through the insulation) were

employed. The test was made for three cases: dielectric

loss only, conductor losses only, and then all losses.
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Using a mesh comprised of four radial subdivisions in the

insulation, the following results were obtained: dielectric

loss only - 2.6% error in temperature solution; conductor

losses only - 0.4% error in temperature solution, 1.0% error

in current solution; all losses - 0.8% error in temperature

solution, 2.0% error in current solution. Temperatures in

the dielectric solution are elevated above their analytical

counterparts because of the referral of loss near the

conductor into the conductor itself. However, when the

dielectric loss is considered proportionately with all other

losses, the temperature error is observed to be reasonably

small (less than one percent for this mesh). The currents

predicted in this test are seen to be less accurate than the

corresponding predicted temperatures. This circumstance,

though, reflects a limitation of the test itself rather than

one of the model. That is, the temperature distribution

is expected to smooth out into a one-dimensional form in a

region far-removed from disturbing effects. However, the

current solution depends on the entire temperature distri-

bution. Since an inter-cable conduction path of any

non-zero size will inevitability produce local distortions

in the temperature distribution, it is ultimately futile to

expect very close agreement with a one-dimensional current

solution. Agreement could be demanded if the size of the

conduction path could be made identically zero, but the

model does not possess this capability, having been designed

for the solution of real two-dimensional problems. Given
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this limitation, the current solutions demonstrate excellent

agreement with the one-dimensional results. The credibility

generated by this test, together with all the evidence

previously stated, suffices to establish the validity of the

computer program.
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CHAPTER 5A

COPPER TAPE EFFECTS

Effective Conductivity

Many cable systems used in the underground power transmission have a

thin copper tape wrapped around the cable insulation directly under the

moisture seal assembly. The tape is included to circumferentially smooth

out the electric potential and to provide electric ground. Having a very

high thermal conductivity the copper tape provides a mechanism for trans-

ferring heat away from high temperature regions. It therefore causes a

redistribution of the temperature, tending toward the one-dimensional form.

Order of magnitude calculations indicate that the presence of a five mil

(t = 0.005") copper tape (thermal conductivity k = 220 BTU/hr ft°F) under
CU

the moisture seal assembly have a significant effect on the temperature

distribution of the cable:

Consider a typical system of Fig. 5A.1,

r = 0.9125 in

r2 = 2.0675 in

k = 0.1153 BTU/hr ft°F

The thermal resistance per unit length in the circumferential direction without

the tape R is approximately
c

R = 1 = 90 hr°F/BTU
c k(r2 -rl)

The circumferential thermal resistance including the copper tape R is
c



74.2

1 
k(r2-r 1-t) + kt

Cc

. 1R = 1 9.7 hr°F/BTU
c k(r2-r1-t) + kth t-

Since R and R' are significantly different, the presence of a highly con-
c c

ductive medium under the cable moisture seal assembly must be taken into account.

An order of magnitude calculation also indicates that the copper tape

effect in the radial direction is negligible: whereas in the circumferential

direction the resistance of copper and insulation are parallel,in the radial

direction the two resistances are connected in series. The radial thermal

resistance per unit length without the tape R is
r

R = in r/r = 1.129002568 hr F/BTU

2 k

The radial thermal resistance per unit length including the tape, R ' is

~~~~~~~~~~~~~r2_r -t r
in i~n

R r + r -t = 1.12900432 hr°F/BTU
r 1 2

2 rk 2 k
cu

Since the tape is very thin only the mesh points located around the outside

circumference of the cable insulation are affected. In Fig. 5A.1 the thermal

conduction path between point 0 and 1 consists of the copper tape (thickness t)

and a layer of insulation (thickness L -t). The path length is L . The
r

thermal resistance of the two conducting media R is

L
- = k(Lr-t) + k t = k LR rCU eff r

____
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A

Oil

Circle A

angle

angle

-_ I

4

th Lo l

Fig. 5A.1. Development of the expression for the combined
effective conductivity of a layer of the cable insulation and
the thin copper tape.
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where k ff is the effective conductivity of the entire thermal conduction

path betwee 0 and 1.

In the computer program L = (r -rl)/N; where N is the number of radial
r 21

divisions.

Hence,

rk t+k(2 -r t)
k - cu N

eff r2 - r1 (5A.1)

N

Equation (5A.1) applies only for points on the insulation outer circumference

and in the circumference direction only, al other mesh poinst are unaffected.

Finite Difference Equations

For the mesh points located on the outside circumference some of

h -J 4t ._O z 4 r i

of the governing equation (2.6) and the boundary condition must be adjusted

to account for the higher conductivity in the circumferential direction.

Thus for the point 0 in Figure 5A.1 the finite difference approximations

in non-dimensional form (L = hrr2, L = h r2)
r r 2 a a 2

a20 40- 200 + 03

r2 2

r

04 - 034 3
2h

r
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a20 0 2 - 20% + 0
a _= 2 0 1

~-ct-2 h2

(5A.2)

2

h 0 (h cl+h )
2

2 h alh o9
0 + 2
0 h o (h a+h a2)

where 0 is
T- Toi

given by (2.5) and O = W/k
W/keff

Then using (5A.2), the equation (2.6) about a regular boundary point 0

(h = h ) becomes,

-2 0 -200 +
r [4 2 03

r

_-0 02 - 20 + + r [ 4 ] + I['12h 2r h .

(r2r) 2
(5A.3)

For a boundary point at a regional interface (ho # ho ):

-2 4 - 200
L L h2

h

+ 03
J

r

2

h (h +h )

- 4 -03 2
r [ 2h ] +h (hDi+h02)

r ocio

2

-2
(r 2 r) 

1 W

The boundary condition (2.8) is unaffected for all boundary points;

k 04 - 3
k2~ ~= h2r
2 2h 0r r

I
0

(5A.4)

(5A.5)

Eliminating 04 from (5A.3) and (5A.4) using (5A.5) and noticing that from

0= k AT e AT
0 = keff W

keff 0
k

obtain

0'-= (5A.6)

le
II
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Hence for h = h = h

2hhr 2(-2 - k -2

rk 2( eff ) + 2r +
k (h2 2h k

r a r

k k 2(r 2r) qeff [1 + eff I 2 r] (5A.7)

k k h 2 h (5A.7)

h hhrcx cx r

and for h h2

2h hr -2
r 2( + ) + 2r + eff 2 )1® +

+-[ ff k h k 2 2h h2+ k h ah , 3kh r ft lc
r r

k k -_ _ ~ r r 2r -k_ _ _ _+eff 2 ( h +h )®1+ eff 2 ]9 +[2 ] 0 -
k h,1 (h + h k ,o 2]2 ] 2

r

-2 .
_(2 ) q (5A.8)

W

Computer Program Modification

From (5A.7) and (5A.8) it is apparent that to account for the presence

of a thin high-conductivity tape under moisture seal of the cable insulation

it is only necessary to multiply the original coefficients (corresponding to

! k~~~ eff
the homogeneous insulation material) of ®1' s and 2's by k and to add

k

2 (1 eff) to both (5A.7) and (5A.8) for if h = h =h , it
ftih ft k e c2

2 2
follows that h -hcfollowsth t f 2. The simple complementation of this procedure

can be eased a by the following manipulation.
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k
From (5A.8) the coefficients of 0 's and O's for eff = 1 (original coefficient

1 2 k

for h h= h h reduces to 2 which are the original coefficients ofci ~~~~~~~~h2
hc

0l'S and 02 s in (5A.7). It is possible therefore to use (5A.8) for all

circumferential boundary points.

Further, let the original coefficients of 's and 0 's be
1 2

2 =0

h Ul(hc+h ) 1 (5A.9)

2 =0

h o2 (h +h o) 2

Also, let the new coefficients of 0 l's and 2's be
1 2

2 f =P =o.
h (h D+h a ) P1 01

(5A. 10)

2 f P 0

h2 (h l+h ) 2 2 f

keff
where f- k

k

2
Let Q = h h (1 - f = factor to be added to the original coefficient of

alo02

02's.
2

Then from (5A.9) and(5A.10) 0 + = P
1 hCa (h o2+h ) 1

or h 4 h 2(l -t)
(01 - P1) (- + 1) h Q (5A. 11)

h
and similarly (2 - P2) ( ) = Q (5A.12)

(12
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Eliminating h and h between (5A.ll) and (5A.12) obtain,

Q = 01 + 02 -P1 - P2 (5A.13)

Thus to modify the original matrix of coefficients of O's it is necessary

I!I keffto multiply the original coefficients of Ol's and 02 s by f = k and to

add the difference (1 - P1) and (2 - P2) between the original coefficient

0 and 0 of 0 1's and 0 's and the new coefficients P 0 f and P = 0 2f
1 2 1 2 1 1 2 2

to the original coefficients of 0 s. An important property of the matrix
0

Awas used to find the locations of s, 's and 0 s: the numbering

system is such that all coefficients of 0 's lie on the main diagonal and
0

the coefficients of 0 's immediately precede 0's in each row and the
1 ~~~~~~0

coefficients of 02 's immediately follow O 's in each row with the exception
2 0

or tne row corresponding to the governing equation written about the point

in cable 2 at an angle = 0. Also all 's are circumferential boundary
0

points.

Verifications

The first major verification was a check on the coefficient matrix.

This test was, as in Chapter 5, accomplished by printing out the matrix for

a 42 and 17-point mesh and then by verifying each element by hand computations.

Tha second major verification was an energy balance performed on

selected mesh elements, again by hand computation. The final major verification

was accomplished by solving the following problem: the intercable conduction

path was reduced to a very small size so that approximately uniform convective

boundary conditions existed at every circumferential point. The problem

was run with and without the tape and both solutions were converging to the

1-D solution as the intercable conduction path was being reduced.



CHAPTER 6

RESULTS AND CONCLUSIONS

Evaluation Criteria

As a first criterion for evaluating the severity

of a given set of system operating con.ditions, the numerical

solutions produced by the computer program are compared to

the corresponding analytical solutions for a single, undis-

turbed cable. The one-dimensional temperature and current

solutions for a single cable are presented in Appendix G.

Since the undisturbed cable represents an optimum operating

condition, the one-dimensional solution provides an upper

bnini fnr system performance.

A second criterion for evaluation may be obtained

from a modification of the one-dimensional solutions, in

which a conservative allowance for two-dimensional effects

is made. This modification is effected in the following

manner: it is reasoned that an effect on any portion of the

cable surface which disturbs the one-dimensional temperature

distribution is less severe than the effect of insulating

that portion of the surface. The conservative approximation

is then made that such disturbances do indeed effectively

insulate appropriate portions of the surface, and that the

entire sector defined by such an insulated arc is likewise

insulated. All losses which would have occurred in the

insulated sector are then placed into the undisturbed frac-

tion of the cable, and the one-dimensional solutions are

r7 P.
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employed with appropriately scaled-up losses. This proce-

dure is explained fully in Appendix H, where the conserva-

tive approximations for maximum temperature and current are

derived. Since by physical argument the disturbed portions

of the cable surface cannot have a more stringent condition

imposed than that of being insulated, the approximate

formulas of Appendix H provide a lower bound for system

performance.

Results

While the primary product of this study is the

computer program itself, a total of 16 cable problems were

solved by the author in order to provide preliminary infor-

mation about some typical operating conditions. These

16 problems break down into the following: Solution 2 (for

maximum current) and Solution 3 (for maximum oil temperature)

were employed for four configurations of cables, and two

cable systems were considered. The four cable configura-

tions were equilateral, cradled, open, and equilateral-pipe.

These are depicted in Figure 6.1. The systems considered

were a 2500 MCM system (System 1) and a 2000 MCM system

(System 2). Values for the physical parameters associated

with these two systems are listed in Table 2. The thermal

parameters were taken to have the following values for all

16 problems: 0.1153 Btu/hr-ft-°F for the thermal conduc-

tivity of the insulation, and 5.0 Btu/hr-ft2-°F for the

thermal film coefficient in convective regions. Also the

conservative assumption of a thermally nonconducting conduit
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Nomenclature for Cable Configurations

77

OPEN



78

TABLE 2

Values for The Physical Parameters

of Systems 1 and 2

System 1 System 2

Inner Radius
of Cable Insulation (in) 0.9125 0.8155

Outer Radius
of Cable Insulation (in) 2.0675 1.9675

Skid Wire Thickness (in) 0.10 0.10

DC Resistance
of Conductor (/ft) 5.36 6.63

AC/DC Ratio
at Conductor 1.19 1.13

at Sheath 1.24 1.18

Typical Dielectric
Loss (watts/conductor-ft) 3.18 3.18

Typical Current (amps) 942 888

Thermal Conductivity of
Insulation (BTU/hr-ft°F) 0.1153 0.1153

Thermal Conductivity of
Copper Tape (BTU/hr-ft°F) 220.0 220.0

Copper Tape Thickness (in) 0.005 0.005
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was made. This latter assumption is significant only for

the cradled and equilateral-pipe configurations, where the

. t cables actually touch the conduit wall. A nonconducting

wall substantially increases the thermal resistance in the

vicinity of the contact point, thereby producing a local

region of high temperature and hindering the removal of heat

from the cable.

Results for the 16 problems are given in

Tables 3 -6. In these tables the first column of percent-

ages is a comparison of computer solutions to corresponding

one-dimensional solutions. These negative percentages are a

measure of how much worse the given operating condition is

than the best pssihl nondi;on. The second column of

percentages is a comparison of computer solutions to the

conservative approximate solutions from Appendix H. These

percentages, which are positive, provide a measure of how

much better the given operating condition is than the

estimated worst condition.

Upon examining the four tables, the equilateral-

pipe configuration is immediately identified as the most

severe operating configuration. This is expected, since the

greatest obstruction of cable surface area occurs in this

configuration. The other configurations follow in logical

sequence: equilateral, cradled, and open. It is shown in

Appendix B and also in the heat transfer report [2] that a

steel pipe is very effective in conducting heat away from

the cables to the bulk of the oil. So had the problems
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TABLE 3

Solution 2 For Four Cable Configurations -

System 1

1-D I-I

I (amps) 1-D *

Open -- no tape 1075.4 -5.0% +0.2%

Open -- tape 1105.0 -2.4% +0.3%

Cradled
(Nonconducting Pipe) -- no tape 1030.2 -9.0% +2.0%

Cradled
(Nonconducting Pipe) -- tape 1086.0 -4.1% +7.5%

Equilateral -- no tape 978.2 -13.6% +3.7%

Equilateral -- tape 1071.3 -5.4% +13.5%

Equilateral-Pipe
(Nonconducting Pipe) -- no ape 946.4 -16.4% To .6

Equilateral-Pipe
(Nonconducting-Pipe) -- tape 1057.0 -6.6% +21.3%

One-Dimensional (1132.1) -

T = 140 °F
oil

T = 185°F
max

I - current from computer solution

I - current from one-dimensional solution

I* - current from conservative approximate solution
I,- current from conservative approximate solution



TABLE 4

Solution 3 For Four Cable

System 1

Configurations -

Open -- no tape

Open -- tape

Cradled
(Nonconducting Pipe) -- no tape

Cradled
(Nonconducting Pipe) -- tape

Equilateral -- no tape

Eqi-I1teral -- tape

Equilateral-Pipe
(Nonconducting Pipe) -- no tape

Equilateral-Pipe
(Nonconducting Pipe) -- tape

One-Dimensional

Toil (F)

148.3

149.9

145.7

148.9

142.4

168.

140.3

147.3

(151.3)'

T .- (T il)l DUj-j- oil -D

To (Toil)l-D

-8.9%

-4.2%

-16.6%

-7.1%

-26.4%

-9 r

-32.6%

-11.9%

Toil- (T oil) *

T- 
o (Toil) *

0.0%

+4.4%

+2.8%

+10.7%

+4.8%

+17.8%

+11.5%

+25.4%

I = 942 amps

T = 185°F
max

Toi - oil temperature from computer solutions
oil

(Toil)l D - oil temperature from one-dimensional solution

(Toil)* oil temperature from conservative approximate solution

T - conductor temperature
O
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TABLE 5

Solution 2 For Four Cable Configurations -

System 2

I (amps)

Open -- no tape

Open -- tape

Cradled
(Nonconducting Pipe) -- no tape

Cradled
(Nonconducting Pipe) -- tape

Equilateral -- no tape

Equilateral -- tape

Equilateral-Pipe
(Nnn-onductin_ Pine) -- no taDe

Equilateral-Pipe
(Nonconducting Pipe) -- tape

One-Dimensional

950. 2

975.3

911.9

959.2

864. 6

946.6

837.2

938.8

(1000.4)

I-ID
1-DIi_ D

-5.0%

-2.5%

-8.8%

-4.1%

-13.6%

-5.4%

-16.3%

-6.7%

(0.0%)

T = 140 Foil

T = 185°F
max

I - current from computer solution

I1-D - current from one-dimensional solution

I* - current from conservative approximate solution

I-I*1-

I*

+0.3%

+3.0%

+2.4%

+7.7%

+4.0%

+13.9%

+9.3%

+21.9%
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TABLE 6

Solution 3 For Four Cable Configurations -

System 2

Toi- (Toi) _ T -(T Oil-(T ilD oil -D(Toi l)*

Toil (°F) T -(T il)l D T -( oiloil o oil~~T l-D (Toil),

Open -- no tape 144.4 -8.8% +0.3%

Open -- tape 146.1 -4.3% +4.5%

Cradled
(Nonconducting Pipe) -- no tape 141.8 -15.8% +3.4%

Cradled
(Nonconducting Pipe) -- tape 145.1 -7.0% +10.8%

Equilateral -- no tape 138.2 -25.5% +5.8%

Equilateral -- tape 144.2 -9.4% +17.9%

Equilateral-Pipe
(Nonconducting Pipe) -- no tape 136.0 -31.4% +12.4%

Equilateral-Pipe
(Nonconducting Pipe) -- tape 143.3 -11.8% +25.4%

One-Dimensional (147.7) -

I = 888 amps

T = 185°F
max

T il = oil temperature from computer solution
oil

(T il)l D - oil temperature from one-dimensional solution

(T il)* -oil temperature from conservative approximate solution

T - conductor temperature
O
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been solved using a thermally conducting conduit material such as steel,

then the results for the equilateral-pipe configuration would have been

essentially the same as those for the equilateral case, and the latter

would have been the most severe configuration. A complete temperature

distribution for the equilateral-pipe configuration without the high

conductivity tape under the cable moisture seal assembly of System 1

is displayed in Figure 6.2.

Two observations are made regarding the conservatke approximate

solutions. The first is that in cases without tape they are reasonably

accurate, being conservative by 9.3% in the least accurate case (Solution

2, System 2, Equilateral-Pipe). They are therefore useful whenever a

highly refined solution is not required. The second observation is

that the conservative solutions become less accurate as the configurations

become more severe. This tendency is readily exnlained. for as the sur-

face area of a cable is increasingly obstructed, two-dimensional effects

grow stronger. Since the conservative approximations are based on the

one-dimensional solutions, they become increasingly deviant with the

severity of the configuration. So despite the conservative nature of

the approximate solutions, they are not recommended for design purposes.

Also it is noticed that there is a large discrepancy between cor-

responding percentages in Solution 2 and Solution 3: temperature

deviations are somewhat larger than current deviations. Such a dis-

crepancy, however, should not be a surprising one. Consider that both

solutions are applied to a given configuration. In Solution 3 the heat

flow is constant, and the temperature distribution must be linearly

adjusted so as to account for the two-dimensional constraints imposed
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by the configuration. In Solution 2, though, the heat flow is the adjustable

quantity of the total heat flow, only the current-produced fraction (usually

about 2/3) is variable, and thus the current-produced losses must be dis-

proportionately adjusted so as to align the overall heat flow according

to the two-dimensional constraints of the configuration. Furthermore, the

current itself varies as the second root of the variable heat flow. Therefore

the relationship between the two solutions is a complicated one, and there

is no reason to expect any similarity between their respective deviations.

Finally, it is evident from the tables that cable proximity effects

are very significant in forced cooling especially for cables without the

high thermal conductivity tapes. In System 2 with no tape, for example,

the maximum allowable oil temperature is 11.7°F lower for the equilateral-

pipe configuaLiolL haff ot the one-dimensional Cat.

Since force-cooled systems are typically designed for an axial oil

temperature rise of about 45°F between refrigeration stations, the 11.7°F

difference itself would accout for 26% of the axial oil temperature rise.

On the other hand, in the same system with the tape present the maximum

allowable oil temperature is only 4.4°F lower than in ID case, or about

10% of the axial oil temperature rise. For the more realistic equilateral

configuration the same figures are 9.5°F r 21.6% without the tape and 3.5°F

or 8% with the tape. This means that depending on whether the tape is or is

not present under the cable moisture seal assembly System 2 in the equilateral

configuration would require either an 8% or 21% higher flow rate, or

either an 8% or 21% shorter axial distance between refrigeration stations

then the same system in a completely free (one-dimensional) configuration.
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Approximate allowance for cable proximity effects must therefore be made

in the overall design of force-cooled systems. Since there is a sig-

nificant improvement in the results when the copper tape is wrapped

around the cable insulation, such cables are from thermal considerations,

the more suitable for force-cooled power transmission work.

Isothermal lines for the four oil temperature solutions of System 1

are shown in Figures 6.3 - 6.7. One-dimensional portions of the various

solutions may readily be identified in these figures by isotherms which

are circular arcs. As expected, all the distributions smooth out into

one-dimensional form away from points of cable contact and conduit

contact. Regions of high temperature within the insulation are identi-

fied by isotherms which depart significantly from the circular shape,

protruding outward from the cable centers. This effect is observed to

be most prevalent in the equilateral-pipe configuration, decreasing in

strength in the equilateral, cradled, and open configurations, respectively.

Thus the isothermal lines in themselves provide a vivid illustration of

the severity of the various configurations. Shown with the isotherms are

adiabatic lines. These lines are everywhere normal to the isotherms,

and they represent curves along which the heat flow travels. It is noted

that not all adiabatic lines originate at the conductors. This circum-

stance is attributable to the dielectric heating, which occurs within

the insulation itself.
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Conclusions

On the basis of the results discussed, the following conclusions

are drawn:

1. For a thermally nonconductiong conduit, a cable system is most

susceptible to thermal failure in the equilateral-pipe config-

uration. For a thermally conducting conduit, the equilateral-

pipe and equilateral configurations are equally severe, and the

latter represents the worst operating configuration.

2. The conservative approximate solutions developed in Appendix H

are useful for obtaining good estimates of maximum temperature

and current. However, recourse should be made to the computer

solutions whenever design information is required.

3. Cable proximity effects are important in forced cooling. The.able ..-iguration, _r .- BV .. , ... . o21 configuratin
with no copper tape) to 26% (equilateral-pipe configuration with

no tape) of the total oil temperature rise between refrigeration

stations.

4. The presence of a thin copper tape in the cable insulation moisture

seal assembly significantly smooths out the temperature distribution

in the cable insulation and thus higher maximum allowable oil

temperature and higher currents are permitted than if a homogeneous

cable insulation is used. Numerically the improvement is from

about 4.3% for the oil temperature and approximately 9.5% for the

current. If this figure is unacceptable, thicker copper tapes would

smooth out temperatures even more.
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Recommendations for Further Work

In order to fully exploit the convenience of having a separate region

associated with each boundary condition, a provision should be written

which would allow Regions IV and VI of Domain 2 to be used simultaneously.

Such a provision does not presently exist, because there is only one

configuration for which it would be desirable. However, the exceptional

configuration is the equilateral-pipe case, in which both cable-cable

and cable-conduit boundary conditions act simultaneously. Since this is

the most severe condition for a thermally nonconducting conduit, it is

expected that this configuration will be frequently used, and the change

is probably warranted. It is noted, however, that in the present program

all boundary conditions are independently specified by means of a variable

film coefficient. The equilateral-pipe configuration can therefore be

modelled as accurately as the user desires, and the proposed modification

represents only a convenience in laying out the system geometry and mesh

size. Instructions for implementing the change are given in Appendix E.

Finally, some improvement could be effected in the input-output

formats of the computer program. Throughout the development of the program,

attention was continually given to simplicity of I/O procedures and to

ease of user operation. Yet certain aspects of the final I/O formats are

less convenient than is desirable. Suggestions for their improvement

are offered, again in Appendix E.
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APPENDIX A

THE RELATIVE MAGNITUDE OF CONDUCTION

AND CONVECTION RESISTANCES

The equation which defines the resistance per unit

length to heat transfer is the following:

AT
q AT (A.1)

where q is the total heat flow per unit axial length, AT is

the temperature difference driving the heat flow, and R is

the resistance per unit length to heat transfer.

The heat flow per unit length due to convection

from the outer surface of the insulation to the oil is [10]

q = 2fr h(AT) , (A.2)
0

where h is the convective film coefficient, and r0 is the

outer radius of the insulation. The convective resistance

per unit length is therefore

1
- h 2rr~h (A.3)

-h 2ffr h'0

The heat flow per unit length due to conduction in

the cable insulation, which is assumed to be one-dimensional

in this type of calculation, depends not only on AT, but
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also on the distributed dielectric loss. Because of this

additional dependence on the dielectric loss, it is not ana-

lytically possible to model the conduction path as a simple

resistance. However, a conduction resistance may be ob-

tained numerically, by substituting appropriate values into

Equation A.1. The (AT) for a given set of losses (q) is

available from the one-dimensional solution presented in

Appendix G. A typical set of values for (q) and (AT) yields

AT hr-ft-°F
R (q) = 0.93 Btu ' (A.4)

where AT is the temperature drop across the insulation, and

(q) is the heat flow per unit length emanating from within

the insulation (the conductor and dielectric losses).

The corresponding value for Rh from Equation A.3

is

1 hr-ft-°F
Rh 2r h 0.18 Btu (A.3)

0

where the most conservative value for the natural convection

film coefficient (5.0 Btu/hr-ft -°F) was used [2]. The

relative magnitude of the two resistances is therefore

Rh _ 0.18 (hr-ft-°F/Btu) _ 19 A.50.93 (hr-ft-01F/Btu)-*(.5)Rk 0.93 (hr-ft-°F/Btu)
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Thus the natural convection resistance, which is always

larger than the combined forced and natural convection re-

sistance, is small when compared to the conduction re-

sistance, and the latter is the limiting resistance to heat

transfer.



APPENDIX B

INVESTIGATION OF THE CABLE-CONDUIT

BOUNDARY CONDITION

In order to examine the cable-conduit boundary

condition described in Chapter 2, a portion of the conduit

wall is thermally modelled as a fin. The geometry from

which to determine a fin length is shown in Figure B.1. It

is based on a cradled configuration of cables, since that

configuration produces the largest conduit loss. Of the two

possible lengths L and L2, the latter is chosen so as to

maximize the temperature drop through the fin. L2 is found

from the following relations:

r2 + 2
sin 1 R -r 0.660 , (B.l)

p 3

from which

-l
= sin (0.660) = 41.3° . (B.2)

1

Then

2 = 180- 2Bl = 97.4 (B.3)
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FIGURE B.1
Fin Geometry for the Cable-Conduit Boundary Condition
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and

L2 = (Rp + = 8.92" (B.4)

One end of this fin is insulated by symmetry, and as a

conservative approximation, the side of the fin which is

adjacent to the earth is likewise taken to be insulated.

Furthermore, the pipe loss is taken to be concentrated at

the end of the fin which touches the cable (again to maxi-

mize the temperature drop through the fin). This thermal

model is illustrated in Figure B.2. Considering the heat

flow to be one-dimensional, the fin temperature is governed

according to [11]

d2T h P-2- (T-T ) =0 (B.5)
dz kA oildz p

where P is the convective perimeter, and A is the cross-

sectional area. Using the dimensionless variables

T-Tz T oil
n = ' e = W/k (B.6)

2' p p

Equation B.5 becomes the following:

d2 _2 eh Pd2 -9-- 0 = 0 . (B.7)
- 2 k A( B 7

d-- - p
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Wp PIPE LOSS/I UNIT LENGTH
kp - THERMAL CONDUCTIVITY OF PIPE

FIGURE B. 2

Thermal Model of the Conduit Wall
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Making the substitution

2 ~h P2 2 hp
m = L2 k'

Pp

the governing equation is just

2
d20 2
--- - m 0 = 0 .
dn

The boundary conditions are

-k t dT
P dz 1z=O0

(B.8)

(B.9)

(B. 10)= W
p

and

dT 

dz z=L 2

= 0 . (B.il)

These are rendered dimensionless to give

da 
a -TIIr 

and

dO!

7,1

(B.i2)
L2

-= 0 . (B. 13)

n=1
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The general solution of Equation B.9 is

a () = Cle-m + C2em
(B.14)

The two arbitrary constants C1 and C2 are found from the

boundary conditions to be

L2
tm(l-e-2m) '

L2
C 2 =-

tm(e2m-1)
(B.15)

When these are substituted into the general solution,

Equation B.14 can be manipulated into the following form:

( =L2 cosh[m(1-n) ]
tm sinh (m) (B.16)

The following values are then taken:

h = 3.3 Btu/hr-ft 2-F (conservative, based on [2])

P = 1 ft
P = 1 ft

k = 25 Btu/hr-ft-°F (1% C steel)

A = 0.0208 ftP
A = 0.0208 ft2

(B.17)

Equation B.16 finally becomes

6(n) = 5.73 cosh[l.92(1-n)] . (B.18)
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It is desired to know the temperature drop from the fin base

to the oil, so it is now convenient to return to the form

W

T(rl) -Ti = 5.73 - cosh[1.92(l-ri) (B.19)
oil k

p p ~~~~~~~(B.19)

The desired quantity is obtained by evaluating Equation B.19

at = 0 and by substituting W (8.85 watts/system-ft).

The quantity in parentheses is a typical loss value, which

is divided by 6 to account for the 3 cables and for the

splitting of the heat flow to either side at the poin of

cable contact. The temperature drop is then

1
1 (8.85 watts/ft) (3.413 tu)

T(0)-T = 5.73 25.413 Btu) cosh(.92)
oil (25 Btu/hr-ft- F) (watt-hr)

= 3.9°F . (B.20)

It is now desired to compare this temperature drop

to the drop across the cable insulation. Using once again

the one-dimensional solution for a caole with all losses

(Appendix G), the temperature distribution in the insulation

is given by

W d (W +W (W +W +W )
O~)d 21 (+2 Wdc++Wcd(~ (ln E)2 d c in ~ 4± c d s k4fW(ln 2irW 2-7Whr2

(G.16)
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where Wd, Wc, and W are the dielectric, conductor, and
s

sheath losses per unit length, respectively, and W is an

arbitrary loss per unit length. The dimensionless

temperature drop across the insulation is given by

ln 1 Wd\
(~1) -86(1) = - 2W +W . (B.21)

61 2TrW (2 c)(.1

Returning to the dimensional temperature by means of

Equation G.6, this result becomes:

ln ~1 /W d
T (1) -T(1) = -- W ) ) (B.22)

The dielectric and conductor losses corresponding to the W
P

used previously are 3.18 and 5.66 (watts/conductor-ft),

respectively. These values, together with

k = 0.1153 (Btu/hr-ft-°F) give

T(Ci) - T(1) = 31.1°F . (B.23)

The relative magnitude of the two temperature

drops is therefore

(AT) fin390(Afin = 3.90 F = 12.5% . (B.24)
(AT) insulation 31.-10F
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It may be inferred from this result, which represents the

most conservative comparison of the two effects, that

contact between the cables and the steel conduit does not

significantly alter the overall temperature distribution.

The cable conduit boundary should thus be modelled as a

convective one, with at most a slightly modified film

coefficient.
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APPENDIX C

THE SOLUTION FOR MAXIMUM CURRENT

The Superposition Method for Solution 2

In Solution 2 it is necessary that current-

produced losses be treated separately from voltage-produced

losses. This makes it possible to distinguish the variable

component of the temperature distribution from the

stationary component, and subsequently to adjust the

variable component so as to maximize the current. When the

losses are so separated, there are two complete problems,

each one having three components and resembling the problem

presented in Chapter 3. In fact, the solution in Chapter 3

for (x) may be taken as one component of Solution 2,

provided that the forcing term f(x) is clearly identified,

either with stationary losses or with variable losses.

Accordingly, let f(x) describe all forcing effects in the

domain which are attributable to current. The solution (x)

then denotes that part of the total temperature distribution

which is current-dependent.

It is now necessary to determine the stationary

portion of the temperature, that portion which depends on

voltage. Let this part of the total temperature solution be

called D(x). The solution D(x) satisfies the governing

equation

V2 OD(x) = g(x) , (C.1)
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where g(x) describes all forcing effects in the domain which

are attributable to voltage. D(x) also satisfies the

following boundary conditions (using the notation introduced

in Chapter 3):

D(X)l xEC (x)
1 - = D1 

(C.2)

where D01 is some unknown dimensionless temperature.

OD (x)

xcC2 (x)

a ED(x)an2

xEC (x)
- 3-

a D(x) Ian4
3n4 xC (x)

-CC 4 W

DOD(x)

an 5
xcc5 (x)

hr2
- k OD(x)

x eC (x)
2 

hr2
= -- OD(x)

k xcC (x)
- 3 

= 0

= 0

8D( x)xeC6(x) = 8D02
- 6 -

(C.3)

(C.4)

(C.5)

(C.6)

_ _

(C.7)
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where OD02 is some unknown dimensionless temperature.

3aOD(x)

an7

7 

a OD(x)

an8
xC8 C8(x)

aOD(x)
-mxDn9

xEC9 (x)

hp2
= - -- OD(x)

x C7 (x)

2Dh OD(x)i
xkCc (x)8 D

2Dh [D (X C(- 2kh OD(x) 
I xC (x )- 9 -

As before, OD(x) may be decomposed into three

component problems. However, it is not necessary to

introduce three new components, for the solutions A(x) and

eB(x) of Chapter 3 already describe the homogeneous

components required. So only one additional component is

needed, and let it be referred to as E(x). This component

satisfies the nonhomogeneous governing equation

V2OE(x) = g(x) (C. 11)

The boundary conditions satisfied by OE(x) are identical to

those satisfied by OC(x), Equations 3.32- 3.40.

(C.8)

(C.9)

(C.10)
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Once again the three component solutions are

linearly combined according to

OD(x) = b OA(x) + b2 OB(x) + OE(x) ,1 2 _ 
(C.12)

where b and b2 are two new arbitrary constants. The

validity of Equation C.12 is readily established by direct

substitution into the appropriate governing equation and

boundary conditions, Equations C.1- C.10. Since this

procedure is identical to that followed in Chapter 3 (see

Equations 3.42 -3.51), it is not repeated here. The two

constants b and b2 are again determined from a knowledge of

the losses at the conductors. By analogy with

Equations 3.56 and 3.57,

a3OD (x)

3n1
xEC (x)
- 1 _

OD(x) I

an6 ()
XE 6 W

dC(x) = 0 ,

dC (x) = 0 .
6 

The zero right-hand sides of these equations reflect that

there are no voltage-produced conductor losses. When

(C.13)

C 1 (x

and

C6 X

(C.14)
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Equation C.12 is substituted into Equations C.13 and C.14,

two simultaneous algebraic equations result which uniquely

determine b and b2. The stationary part of the total

temperature solution, OD(x), is therefore available.

Attention is now turned to the total solution,

0I(x), which includes both stationary and variable losses.

0I(x) satisfies the nonhomogeneous governing equation

V2 I(x) = f(x) +g(x) , (C.15)

as well as the following boundary conditions:

I(x)IxeC 1 (x)
= 01 ' (C.16)

where 01 is some unknown dimensionless temperature.

aoI (X I

an2 (x)
I xEC ( x)

aeI (x)
an3

xC3 ()

XEC4(
aeix cC (x)

hr I
= 2 OI (x)I

k 0~x IxfC (x)
- 2 

hr2
= k ei(x)

xC 3(x)

= 0

(C.17)

(C.18)

(C. 19)



3aI (x)

n5 C(x)
xc5 5

I (x) 
xcC (x)6 -

where eI02 is some unknown dimensionless temperature.

hp2

- k 61(x)

2Dh
k

2Dh
k

eI(x)[
XEC8 (x)

eO (x)

The total solution eI(x) is obtained as a simple

sum of the particular solutions 6(x) and 6D(x):

eI(x) = (x) + D(x) (C.25)

The validity of C.25 is established by direct substitution

into Equations C.15 -C.24:

2 2
V 6I(x) = V [0(x) + 6D(x)] Check (C.26)
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= 0

= 6 02

(C.20)

,01~~~ ~(C.21)

xEC7 (x)7 -
xc C7 (x)

TOI (x)

an7

M6I x)

an8

aeI (x)

an9

(C.22)

xEC (x)
-, 8 

(C.23)

xcC (x)
x C9 (x)

(C.24)

= f W + W
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I(x) Ix(c (X) = [(x)+(x)x) ]lX C(x) = 1 + 0Dl Check,

(C.27)

provided 01 01 + OD0 =(a 1+b1)A0. This result follows

directly from the linearity of the problem: al and b were

determined by the variable and stationary components,

respectively, of the loss at the conductors. Since the

variable and stationary losses may be added to give the

total loss at the conductors, the temperatures alA and

l~~~~~~~~oblA° may likewise be added to give the true conductor

temperature.

36I(x) 3
an2I=) -n 2 [0(x) + D(x)] 

x¢ 2 ( x'C2 (x)

hr22 2E 2x
- [6(x) + D(x)]

'x~C2 (X)

hr
2 6I(x)i Check (C.28)
k x (EC2 ()

x£ 2 (x



30I (x)

an
xcC3 (x)

[ (x) + OD (x)]

~C 3 x)

hr2
2
k

hr2

k

aOI (x)

xC 4 (x)

a
3n4

[0(x) + ED(x) I

OI (x)
xeC3 (x)

xC 3 (x)

Check

[0(x) + D(x)]

xEC4 (x)

= 0 Check

M6I (x)

9n5
xEC 5 (x)x 

_a [8(x) + D(x)]

= 0 Check

01(x)j xE C = [0(x) + D(x)] XC 6(x)
6 

= 02 + 0D02

provided e102
= 002 + D02 = (a2 +b 2 )Bo. This result

analogous to Equation C.27, again following from linearity.
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(C.29)

(C.30)

XEC5 (x)

(C.31)

Check,

(C. 32)

is



aeI (x)

dn7
xEC (x)
- 7 -

a

an7

hp .

h p2

aOI (x)

an8
xC 8 (x)

I
an8

[0(x) + OD(x)]

[6 (x) + OD(x)]

I I- I (x)i
I C (x)7 -

0(x) + eD(x) ]

Ix,C (x)-.. ,,,.,

[6 (x) + 6D(x)]

6I (x) 
ix C8 (x)

8 

XEC 8(X)

Check

[6(X) + D(x) ]

xcc 9 (X)

[6(x) + D(x)
xC 9 (x)

6I (x) 
XtC 9 (X)

9 -

Check

116

xCC (x)

C7 (x)

Check (C. 33)

2Dh

2Dh
k

aeI (x)

an9

(C. 34)

XEC9 (x)

n_ 9
3n9

2Dh
k

2Dh
k (C. 35)

]i
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It is thus established that the overall solution OI(x) is

available from its stationary and variable components

according to Equation C.25. It now remains to adjust the

variable component (x) so as to maximize current with

respect to the allowable cable temperature and the oil

temperature.

Maximizing Current in Solution 2

The current I is introduced into the temperature

solution through the relation

O(x) = 1(x)I
2 (C.36)

where yl(x) is a constant of proportionality whose magnitude

depend on position x. Equation C.36 follows directly from

two elementary facts: 1. Because of linearity, the cable

temperature is directly proportional to the cable loss.

2
2. Current-produced losses are directly proportional to I.

It is now recalled that the solution (x) is available,

provided that the current-produced losses (and hence I) have

been specified. Accordingly, let I be an arbitrary current
0

from which a temperature distribution e0o(x) is determined.

Then from Equation C.36,

e0 = y (W)I0 , (C.37)0oX = ¥1(x I2
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and hence

e (x)

l = 2I 0

(C. 38)

Equations C.38, C.36, and C.25 may be combined to give the

result

2
6 I( = (x) 2 + (x) ,

0

(C.39)

where (x), I, and D(x) are all known.

It is desired to have I(x) take on some maximum

allowable value, say max . Inserting this value into
maxEquation C.39,

Equation C.39,

(C.40)
2

mx= o (x) + D (x) .
0

Upon rearrangement this relation yields

I

o

m - D (x)max ) 
0 -

(C. 41)

where the dimensionless scalar (x) has been introduced for

brevity. 6(x), which is known throughout the domain,
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determines the ratio I /I2 which will produce a temperature
0

of max at the location x. It is now necessary to choose
max~

the particular ratio I2/I2 (and hence the particular value

of 6(x)) which will yield a maximum temperature in the~ max
distribution C.39. This is accomplished simply by taking

2 2
the smallest possible ratio I/I Let denote the minimum

0

over all x of 6(x). The desired temperature distribution is
~ .~

then

0I(x) = 60 (x) + D(x) (C.42)

Proof is as follows: let x be the location at which the
o

minimum value of 6(x) occurs:
~

= 6(xo ) (C.43)

It then follows from Equation C.41 that

eI(x ) = . (C.44)
o max

Now consider any other location in the domain, say x1. It

is known from the definition C.41 of 6(x) that

6(x1)0o(x1) +D(x 1) = max (C.45)
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It is also known that

< 6(x 1 ), (C.46)

m

since 6 is the minimum over the entire domain of 6(x). It

then follows directly from the relations C.45 and C.46 that

6o6(x1) + D(x1) = I(x1) < 6max (C. 47)

The distribution C.42 is therefore proven to be the correct

one, and the maximum allowable current is determined from

Equation C.41 with 6(x) = 6:

I = i / . (C.48)0
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APPENDIX D

THE DIFFERENCE FORM OF THE

CONDUCTOR BOUNDARY CONDITION

In Chapter 3 the heat flow emanating from the

conductor of Cable 1 was given as

Tar

=~~~q= -kf rirlrd = wCl .(3.52)

0

It is now convenient to express this in the dimensionless

form

7rI_~8 ld~ - WC
e rldP - w (D.1)

0 rl1

where r1 denotes the dimensionless inner radius of the

insulation. As the discussion of Chapter 4 indicated, a

problem is incurred in the discretization of this boundary

condition. For if the standard central difference approxi-

mation 4.3 is substituted for the derivative at the

conductor, a fictitious temperature within the conductor is

introduced. Since no governing equation is applied at the

conductor, there is no way to eliminate such a fictitious

temperature. In approximating the boundary condition D.1,

121
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it is therefore necessary to have a difference expression

which involves only real temperatures.

There are a number of methods for approximating

this boundary condition. As a reasonable compromise between

accuracy and simplicity, the following method is chosen,

where reference is made to Figure D.l: some central

location r in between r and r2 is sought, at which

location a good approximation to the derivative can be

achieved. The boundary condition D.1 is then satisfied at

the location r, rather than at the conductor:

n 8 r~d% ~ WC1[ l| _ WCl (D.2)
0 r,

The difference form of the derivative is constructed

according to

a| ~ l,kl 01 (D.3)

ar r,,~ r -r
2 1

where 01 denotes the conductor temperature. In order

to ascertain the location r, attention is turned to the

corresponding one-dimensional problem. The analytical

temperature distribution for the half-cable with prescribed

conductor loss W is readily found to be

�I_



123

1

)k1

FIGURE D.1

Nomenclature for the Discretized

Conductor Boundary Condition
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0(r) = W (k n ) . (D.4)- Cl - kn r (. 4

With the distribution D.4, a criterion for determining the

location r is available: r* is chosen such that, as the

true temperature distribution approaches the one-dimensional

solution (which it does in the vicinity of the conductor),

the difference form of Equation D.2 becomes exact. This is

accomplished by replacing the discrete temperatures of

Equation D.3 with their analytical expressions and by then

substituting the result into Equation D.2. The difference

form of Equation D.2 is

(kl - r*(Al)kl = -W (D.5)

kl \ 2-r1

Replacing the discrete temperatures with analytical ones

gives

... ()r* ( A )| W (D.6)
kl r2-rl

Upon expanding through Equation D.4, this becomes

CWE1 A)l ln - W.K r1-l r = -l1 (D.7)
kl L\ rW-r1
kl r2_ r1

-
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Since the term in brackets does not depend on kl, the

summation can be carried out. Equation D.7 then yields,

upon rearrangement,

- r2 r1
r= i (D.8)

in r - in r1

When this result is substituted back into Equation D.5, the

difference form of the conductor boundary condition becomes

6 lkl- 01 WCl
wmm~N ~~~ m - -- 1 1

kl in r 2-n r1 Akl]

The procedure is of course analogous for Cable 2:

alk2 0
J02 WC2

E [(1'k - (Aa)k2 =- W (D.10)
k2 ln 2 -ln P J

The results D.9 and D.10 need not be weakened by

the assumption that the temperature distribution becomes

one-dimensional near the conductor. The distribution is

always one-dimensional right at the conductor, since it has

a uniform temperature. So the only requirement is to choose

the radial mesh size so as to place r* out of the range of

strong two-dimensional effects. This choice is a matter of

judgment, and it depends on the given problem.
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APPENDIX E

USER INSTRUCTIONS

Geometry and Mesh Size

In setting up a problem for computer solution, it

is necessary to provide information about the region size

within the cables and about the number and distribution of

mesh points. This section discusses specification of region

size, subdivision of regions, special considerations for D3,

and weighting of the mesh so as to have a good expression

for the gradient at each conductor.

Reference is now made back to Figure 2.3, where a

set of regional divisions is depicted, and to Figure 2.2,

which shows the origin of cylindrical coordinates for both

cables. The domain D1 always has four regional divisions.

The domain D2 employs only six regional divisions, since

Regions IV and VI are never used simultaneously. The angles

included by the various regions are determined from the

azimuthal coordinates of their bounding radial lines. For

example, the angle ~1 specifies the location of the boundary

between Regions I and II in D1, and it thus determines the

size of Region I. The angle ~2 likewise specifies the

location of the boundary between Regions II and III of D.

The angle included by Region II is then (c2 -~1). The sizes

of all the regional divisions are therefore specified by

three angles in D and by five angles a in D2. However,

since D1 and D2 share a single inter-cable conduction path,
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only six of the above eight angles are independent. The

orientation of the two cables is determined by al and 2 (or

by ~1 and ~2) . Specifically, the orientation angle is

(1/2) (a1+a2). The convention of establishing regional

divisions within the cables actually has two purposes. It

first of all provides a way to clearly identify a given

portion of the cable surface with a given boundary condition.

The second purpose of the divisional convention is to

provide a mechanism for varying the azimuthal distribution

of mesh points, so that they may be concentrated where the

largest gradients are expected.

Mesh points inherently exist at all regional

boundaries. They are placed inside a given region by

specifying the number of subdivisions within that region,

both in the radial and in the azimuthal direction. Here the

term "subdivision" denotes the smallest element of the

region, rather than the act of subdividing. Thus if a

region has three azimuthal subdivisions, it is uniformly

divided into three sectors by two radial boundaries, and two

azimuthal mesh locations within the region are thereby

introduced. The number of radial subdivisions does not vary

from region to region; it is uniform within a particular

domain. Thus a choice of four radial subdivisions in D2

places four uniformly spaced radially points at every

azimuthal location in D2. Placement of mesh points inside

D3 proceeds in similar fashion, by specifying the number of

normal and tangential subdivisions within the domain. In

-~~~~__11
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the computer program the various numbers of subdivisions

throughout the solution domain are denoted by the variables

N(J) and M(J). These are described in Table 7, together

with a column containing the minimum allowable value of each

variable. It is noted that the variables M(2) and M(11)

cannot be chosen to be less than two. This is necessary in

order to preserve the basic trapezoidal structure of D3.

Attention is now returned to the discretized model

of D3. The width of D3 is taken to be equal to the skid

wire thickness, a number supplied directly as input data.

The height of D3 is determined from the outer cable radius

and the angle (a2- 1), as was shown in Figure 4.2. However,

as the discussion of Chapter 4 indicated, the height so

designated is only an apparent height and not the effective

height. For when the regular form of governing equation is

applied at the four corner points of D3, four effective

corner locations are produced which lie outside the corner

mesh points. These effective corner locations then define

two effective surfaces, as shown in Figure El. The

effective upper and lower surfaces of D3 extend halfway to

the neighboring mesh points above and below the domain, as

suggested by the figure. A conduction resistance based on

this extended length is implicitly added in series with the

convection resistance for boundary points in the numerical

model. Of primary concern to the user is that an appro-

priate allowance must be made for this extension in

specifying the height of D3 Say, for example, that each
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UPPER SURFACE

FF.

LOWER SURFACE

H = APPARENT HEIGHT

HEFF = EFFECTIVE HEIGHT

FIGURE E. 1

Effective Surfaces of D3
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TABLE 7

SPECIFICATION OF SUBDIVISIONS THROUGHOUT D

IN TERMS OF THE COMPUTER VARIABLES

D2 AND D3

N(J) AND M(J)

Type and Location
of Subdivision

Number of
Subdivisions

Minimum
Allowable Value

Radial -

Azimuthal -

D1:

Region I

Region II

Region III

Region IV

D2:

Region I

Region II

Region III

Region IV

Region V

Region VI

Region VII

Normal - D3

Tangential - D3

N(1)

N(2)

1

1

M (1)

M(2)

M(3)

M (4)

1

2

1

1

M(5)

M(2)

M(6)

M(7)

M(8)

M(9)

M(10)

M(11)

1

2

1

1

1

1

1

2

2

D1

M(2)
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azimuthal subdivision in Figure E.1 happens to be 10 in

size. The effective height of D3 is then based on an

included angle of 50°, whereas the apparent included angle

is only 40°. So in order to achieve this true included

angle of 50°, the apparent angle (a2-al) = 40° would have

been specified, and the mesh points above and below D3 would

have been chosen so as to place neighboring points at an

azimuthal distance of 10°. An additional consideration is

that the four surface mesh points in D1 and in D2 which are

adjacent to the corner mesh points of D3 should be

reasonably symmetrical about the y-axis of D3. This is

necessary so that the effective surfaces of D3 remain

parallel or nearly parallel to the normal axis. Some degree

of foresight is therefore required in laying out the

regional divisions and in choosing appropriate numbers of

subdivisions.

The final topic of this section concerns the

conductor boundary condition. It is recalled that the

discrete form of this boundary condition involves a

summation of temperatures around the innermost discrete ring

of mesh points. In the summation each temperature is

weighted according to the azimuthal sector associated with

the given mesh point. Attention is now called to the

physical circumstance that Regions II of D1 and D2 are

regions of elevated temperature, owing to the presence of

the inter-cable conduction path. The temperature trails off

rapidly on either side of these regions, tending toward the

- :
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one-dimensional distribution. Since the gradient at the

conductor is constructed numerically by means of summing

discrete temperature differences around the cable, it is

essential that a good sampling of temperatures near

Regions II of D1 and D2 be taken. This ensures that the

elevated temperatures in those locations will not be unduly

weighted. Based on comparisons with one-dimensional

solutions, the following convention for weighting mesh

points has been found to produce a sufficiently accurate

numerical expression for the gradient at the conductor: the

number of azimuthal subdivisions in Regions I and III is

chosen so as to place a minimum of two radial mesh locations

adjacent to Regions II, each at an azimuthal spacing equal

(or nearly equal) to the azimuthal spacing of points within

Regions II. In Figure E.1, for example, this means that

there should be a minimum of two 10°-sectors on both sides

of both Regions II. This convention should also be followed

for all regions whose surfaces are insulated, for the same

argument then applies.

Input Variables

The input variables used by the computer program

are listed in Table 8, together with a brief description of

each variable.

The five angles ALPHA(J) of D2 are specified

sequentially, skipping over any region not present. So if

Region IV is used, ALPHA(3) denotes the III- IV boundary
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TABLE 8

INPUT VARIABLES FOR THE COMPUTER PROGRAM

Variable Name Description and Units ( )

ALPHA (J) = the five angles a which specify the boundaries

of the six regions of D2.

FILMP (J)

(degrees)

= the variable film coefficients for the surface

mesh points of D2.

FILMR(J)

(Btu/hr-ft 2-F)

= the variable film coefficients for the surface

mesh points of D1.

FILMX3 (J)

(Btu/hr-ft2- F)

= the variable film coefficients for the mesh

points on the upper surface (+y) of D3.

(Btu/hr-ft2-OF)

FILMX4(J) = the variable film coefficients for the mesh

points on the lower surface (-y) of D3.

(Btu/hr-ft2-°F)

IPARAM = 1 or 2: 1 denotes that Region VI of D2 is

present; 2 denotes that Region IV of D2 is

present. (unitless)

IPROB = 1, 2, or 3, corresponding to Solution 1 (for

maximum cable temperature), Solution 2 (for

maximum current), or Solution 3 (for maximum

oil temperature). (unitless)

M(J) = various numbers of subdivisions, as per

Table 7. (unitless)

N(J) = various numbers of subdivisions, as per

Table 7. (unitless)

PHI(3) = the angle in D1 which specifies the boundary

between Regions III and IV. (degrees)

RAD1 = the inner radius of the insulation of Cable 1.

(inches)

��1�1111111�1111--1 ------
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TABLE 8

(Continued)

Variable Name Description and Units ( )

RAD2 = the outer radius of the insulation of Cable 1.

(inches)

REST1 = the DC resistance of the conductor of Cable 1.

(Q/ft)

REST2 = the DC resistance of the conductor of Cable 2.

(pa/ft)

RHO1 = the inner radius of the cable insulation of

Cable 2. (inches)

RHO2 = the outer radius of the cable insulation of

Cable 2. (inches)

SKID = the skid wire thickness. (inches)

TMAX = the maximum allowable temperature in the cable

system. (F)

TOIL = the oil temperature outside the convective

boundary layer. (°F)

WD1 = the total dielectric loss per unit length in

Cable 1. (watts/ft)

WD2 = the total dielectric loss per unit length in

Cable 2. (watts/ft)

XHFILM = the thermal film coefficient for the

one-dimensional solution.

XI = the current in Cable 1.

XI2 = the current in Cable 2.

(Btu/hr-ft2-oF)

(k-amps)

(k-amps)

XI20I1 = the ratio of the current in Cable 2 to the

current in Cable 1. (unitless)

XK = the thermal conductivity of the insulation.

(Btu/hr-ft- °F)

-
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TABLE 8

(Continued)

Variable Name

YC1

YC2

YS1

YS2

ICUTAP

THICK1

THICK2

XKCU1

XKCU2

Description and Units ( )

= the AC/DC ratio at the conductor of Cable 1.

(unitless)

= the AC/DC ratio at the conductor of Cable 2.

(unitless)

= the AC/DC ratio at the sheath of Cable 1.
(unitless)

= the AC/DC ratio at the sheath of Cable 2.

(unitless)

= 0 denotes that no tape is present; any other integer

indicates that tape is wrapped around either Cable (unitless)

= thickness of tape wrapped around Cable 1 (in)

= thickness of tape wrapped around Cable 2 (in)

= conductivity of tape wrapped around Cable 1 (BTU/hr-ft°F)

= conductivity of tape wrapped around Cable 2 (BTU/hr-ft°F)

_�__�___l_·___rl _�_______
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line. All angles ALPHA(J) are measured from the vertical,

as was shown in Figure 2.2.

For all the variable film coefficients FILMP(J),

FILMR(J), FILMX3(J), and FILMX4(J), a separate value is

specified for each convective boundary point. The total

number of values specified in each case is thus determined

by the total number of mesh points on the respective

surfaces. The sequence for specifying the various coef-

ficients is as follows: FILMR(J) starts at = 0 and

proceeds clockwise around D1; FILMP(J) starts at = 0 and

proceeds clockwise around D2; FILMX3(J) starts at (-A,D) and

ends at (+A,D); FILMX4(J) starts at (-A,-D) and ends at

(+A,-D) The inter-cable conduction path is merely skipped

over in specifying FILMR(J) and FILMP(J).

The variable IPARAM specifies whether Region IV or

Region VI of D2 is present. It is convenient to use

IPARAM = 1 for the cradled configuration and IPARAM = 2 for

the equilateral configuration, even though those boundary

conditions have not been implicitly programmed. For the

open and equilateral-pipe configurations the choice is

arbitrary, because the strict correspondence between regions

and boundary conditions then no longer applies.

Of the 11 variables M(J), only ten are specified

as input. The omitted region of D2 is skipped over, and the

program subsequently assigns a value of zero subdivisions

for the region not present.

-
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Of the three regional angles in D1 , it is only

necessary to specify PHI(3). PHI(l) and PHI(2) are deter-

mined automatically from ALPHA(l), ALPHA(2), and the outer

radii of the two cables.

It is noted that the variables REST1 and WD1

describe only half a cable. So if Cable 1 and Cable 2 had

identical properties and losses, REST1 and WD1 would be

exactly half of REST2 and WD2, respectively, The variables

XI1, YC1, and YSl are not affected by this distinction.

Should it be desired to compute the total

dielectric loss per unit length Wd rather than to specify

it directly, the following integrated-out form is avail-

able [12]:

2 -12
Wd = t(7-354)(101) (SIC)(df) watts (E 1)

3 log10(D) conductor-ft'

where

VZk = line-to-line voltage (volts)

w = 2f = frequency (Hz)

(SIC) = specific inductive capacitance, or relative

dielectric constant

(df) = dissipation factor

d = inner radius of insulation

D = outer radius of insulation.

_ _I___~
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The conductor and sheath losses are computed according to

W I2RY (E.2)
c c

and

W =I2R(YY ) , (E.3)
s $ c

respectively, where R is the DC resistance per unit length

of the conductor, Y is the AC/DC ratio at the conductor,
c

and Y is the AC/DC ratio at the sheath.

Output Variables

A listing and brief description of the output

variables from the computer program are presented in Table 9.

In the computer printout six values of ALPHA(J)

are written rather than five. However, two of the six are

always equal, reflecting that one of the regions in D2

(either Region IV or Region VI) has an ncluded angle of

zero degrees.

Because of the matrix scaling method employed in

the program, it is expected that the determinant o the

coefficient matrix will never attain an unwieldy order of

magnitude. The variable DETEP4 is nevertheless rinted out

so that its magnitude may be onitored for each problem.

The user need not be concerned with this variable so long as

-50 +r50 f 
it lies in the general range 10 50 to 10 5 . However, if it

takes on values significantly outside this range, another

matrix scaling procedure may be required in order to avoid

an underflow or overflow. If the value of DETERM is ever
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TABLE 9

OUTPUT VARIABLES FROM THE COMPUTER PROGRAM

Variable Name Description and Units ( )

ALPHA(J) =

DETERM =

the regional angles of D2, as per Table 8.

(degrees)

the determinant of the coefficient matrix.

(unitless)

IERR = 0, 1, or 2 This is a condition code from the

matrix inversion subroutine. IERR = 0 denotes

no difficulties encountered in the inversion.

IERR = 1 denotes that the matrix is not

dimensioned correctly or that the subroutine

is not called correctly. IERR = 2 denotes a

singular matrix. (unitless)

M(J) = various numbers of subdivisions, as per

Table 7. (unitless)

N(J) = various numbers of subdivisions, as per

Table 7. (unitless)

PHI(J) = the regional angles of D1 , as per Table 8.

(degrees)

TAMAX1 =

TAMAX2 =

TANALl(Jl) =

the maximum (conductor) temperature from the

one-dimensional solution, based on the

properties of Cable 1 - Solutions 1 and 3

only. (F)

the maximum (conductor) temperature from the

one-dimensional solution, based on the

properties of Cable 2 - Solutions 1 and 3

only. (F)

the analytical temperature distribution from

the one-dimensional solution, based on the

properties of Cable 1. (F)

--
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TABLE 9

(Continued)

Variable Name Description and Units (

TANAL2(J2) =

TCON1I =

TCON2I =

TCOND1 =

the analytical temperature distribution from

the one-dimensional solution, based on the

properties of Cable 2. (F)

the conductor temperature of Cable 1 -

Solution 2 only. (F)

the conductor temperature of Cable 2 -

Solution 2 only. (F)

the conductor temperature of Cable 1 -

Solutions 1 and 3 only. ()

TCOND2 = the conductor temperature of Cable 2 -

Solutions 1 and 3 only. (F)

THETA(J) = the temperature distribution for the entire

solution domain - Solutions 1 and 3 only.

(°F)

THETAI(J) = the temperature distribution for the entire

solution domain - Solution 2 only. (F)

TOIL = the maximum allowable oil temperature -

Solution 3 only. (°F)

XANAV1 =

XANAV2 =

the maximum allowable current from the

one-dimensional solution, based on the

properties of Cable 1 - Solution 2 only.

(k-amps)

the maximum allowable current from the

one-dimensional solution, based on the

properties of Cable 2 - Solution 2 only.

(k-amps)

)
-
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TABLE 9

(Continued)

Variable Name Description and Units ( )

XIlMAX = the maximum allowable current in Cable 1 -

Solution 2 only. (k-amps)

XI2MAX = the maximum allowable current in Cable 2 -

Solution 2 only. (k-amps)

. ~ ~ ~ ~ "~---I--
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identically zero, the matrix is then singular. Provided no

underflow has occurred, the probable cause is either that

the matrix has been dimensioned incorrectly, or that the

calling statement for RMINV is not corrects

The printout of the M(J) includes all 11 values,

with a null value inserted for the region not present.

All three regional angles PHI(J) of D are printed

out.

The analytical temperatures TANALl(Jl) and

TANAL2(J2) are printed out for each radial mesh point in D

and D2, respectively, They are written sequentially, moving

radially outward; the first temperature in each sequence is

the conductor temperature.

The complete temperature distributions THETA(J)

and THETAI(J) are printed out in the following sequence:

starting with the mesh point nearest to the origin of

coordinates, all temperatures in D1 are written, the

azimuthal index moving through its entire range for each

increment of the radial index; the identical procedure is

then followed for all temperatures in D2; finally, all

temperatures in D3 are printed, beginning in the lower left-

hand corner of the domain (-x,-y) and moving through the

entire range of the normal index for each increment of the

tangential index.

Array Dimensions

A number of subscripted variables, or arrays, are

used in the computer program. These arrays and the

_ __
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variables which determine the size are listed in Table 10,

together with their dimensions in the present program. For

brevity the following computer variables have been used in

the table:

M14 = M(1) + M(2) +M(3) +M(4) ; (E.4)

M5210 = M(5) +M(2) +M(6) +M(7) +M(8) +M(9) +M(10) ; (E.5)

NM3 = N(l)x[M14l4+ 1] +N(2)xM5210+ [M(2) + l]x[M(11) - 1 o

(E.6)

Arrays or portions of arrays which have no variable

dimension listed in the table have been permanently

dimensioned at their present size.

Data Card Assembly

Instructions for assembling data cards for the

computer program are listed in Table llo While most of this

table is self-explanatory, a few additional remarks are

offered here.

Attention is called to the integer variables N(J)

and M(J), which employ the I-format for their input. It is

necessary that all these entries be right-justified to their

respective columns.

Values of the variable film coefficients FILMR(J),

FILMP(J), FILMX3(J), and FILMX4(J) begin on card 9, as the

table indicates. The total number of cards required for

these variables depends on the mesh size chosen for the

�I
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TABLE 10

ARRAY DIMENSIONS

Name of Array Variable Dimension (s) Present Dimension(s)

ALFNT (J)

ALFSQ (J)

ALFTN (J)

ALPHA (J)

ClFRAC (J)

C2FRAC(J)

COEFF (J,J)

FACTOR(J)

FILMP (J)

FILMR (J)

FILMX3(J)

FILMX4(J)

IWORK(J,K)

M(J)

N(J)

P(J)

P1(J)

P2(J)

P1HX (J)

P2HX (J)

P3HX(J)

P4HX (J)

PALF (J,K)

PALFNT(J,K)

J = M14 +2

J = M5210

J = NM3

J = NM3

J = M5210-M(2) - 1

J = M14-M(2)

= M(11) - 1

= M(il) - 1

J = NM3

J = N(2)

J = N(2)

J = N(2)

J = M(2)

J = M(2)

J = M(2)

J = M(2)

J = N(2)

+1

+1

+1

+1

+1

+1

+1

+1

J = N(2) + 1

PHI (J)

PHINT (J)

PHISQ (J)

PHITN (J)

J = 7

J = 7

J = 7

J= 6

J = 20

J = 36

J = 168

J = 168

J = 33

J = 16

J =1

J =1
J = 168

K= 2

J = 11

J = 2

J = 5

J = 5

J = 5

J = 3

J = 3

J = 3

J = 3

J = 5

K = 7

J = 5

K = 7

J = 3

J = 3

J = 4

J = 3
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TABLE 10

(Continued)

Name of Array Variable Dimension(s) Present Dimension(s)

PMID (J)

R(J)

R1(J)

R2 (J)

RlFRAC (J)

R2FRAC(J)

R1HX (J)

R2HX (J)

R3HX (J)

R4HX (J)

RATIO1 (J)

RATIO2 (J)

RMID (J)

RPHI (J,K)

RPHINT(J,K)

TANALl (J)

TANAL2 (J)

THET1 (J)

THET2 (J)

THET3 (J)

THET4 (J)

THETA (J)

THETAD (J)

THETAI (J)

VECTR1 (J)

VECTR2(J)

VECTR3(J)

VECTR4(J)

XHALF (J)

XHPHI (J)

J = N(2)

J = N(1) + 1

J = N(1) + 1

J = N(1) + 1

J = N(1) + 1

J = N(2) + 1

J = M(2) + 1

J = M(2) + 1

J = M(2) + 1

J = M(2) + 1

J = N(1) + 1

J = N(2) + 1

J = N(1)

J = N(1) + 1

J = N(1) + 1

J = N(1) + 1

J = N(2) + 1

J = NM3

J = NM3

J = NM3

J = NM3

J = NM3

J = NM3

J = NM3

J = NM3

J = NM3

J = NM3

J = NM3

J = 4
J = 5
J= 5

J = 5

J = 5

J = 5

J = 3

J = 3

J = 3

J = 3

J = 5

J = 5
J = 4

J = 5

K= 4

J= 5

K= 3

J= 5

J= 5

J = 168

J = 168

J = 168

J = 168

J = 168

J = 168

J = 168

J = 168

J = 168

J = 168

J = 168

J = 7

J = 4

------
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TABLE 10

(Continued)

Name of Array Variable Dimension(s) Present Dirrmension (s)

J = M(2) + 1

J = M(2) + 1

J = M(2) + 1

J = N 3

XHX (J)

XHXHY (J)

XHXSQ (J)

XIVAR (J)

XM (J)

XN (J)

J = 3
J = 3

tj = 1 , 

= 11

= 2

_ .- - - -
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TABLE 11

DATA CARD ASSEMBLY

Card (s)

1

2

3

Column (s)

1

2

1- 10

11- 20

21- 30

31 - 40

41- 50

51- 60

61 - 70

71- 80

1- 10

11- 20

21- 30

31- 40

41- 50

51 -60

61 - 70

4, Solution 1

4, Solution 2

4, Solution 3

1 - 10

11- 20

21- 30

1- 10

11 - 20

21- 30

1- 10

11- 20

21 - 30

Variable

IPROB

IPARAM

SKID

RAD1

RAD2

RHO1

RH02

XK

REST1

REST2

YC1

YC2

YS1

YS2

WD1

WD2

XHFILM

XI1

XI2

TOIL

TMAX

XI20I1

TOIL

XI1

XI2

TMAX

Format

I
I

FF

F

F

F

F

F

F

F

F

F

F

F

F
F

F

F

F

F

F

F

F

F

F

F

_� _� _ ^1·----^---1�------· 11(111�8
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TABLE 11

(Continued)

Variable

ALPHA (1)

ALPHA (2)

ALPHA (3)

ALPHA (4)

ALPHA (5)

PHI (3)

N (1)

N (2)

M (1)

M (2)

M (3)

isi (4)

M (5)

M (6)

M (7)or(8)

M (8)or (9)

M (10)

M (11)

FILR (J)

FLIMP (J)

FLIMX3(J)

FLIMX4(J)

ICUT AP

XKCU1

XKCU2

THICK1

THICK2

Format

F

F

F

F

F

F

I

I

I

I

I
I

I

I

I

I

I

I

F

F

F

F

I

F

F

F

F

Column(s)

1 - 10

11 - 20

21- 30

31 - 40

41 - 50

1 - 10

1 -5

6 - 10

1-5
6 - 10

11 - 15

6lb - 20

21 - 25

26 - 30

31 - 35

36 - 40

41 - 45

46- 50

Card(s)

5

6

7

8

9- (10)

(11-13)

(14)

(15)

(16) 1-

11 -

21 -

31 -

41 -

10

20

30

40

50

__C I I __ �_ _ __
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particular problem. The individual coefficients are entered

sequentially across each data card, with each value

occupying ten columns. When all the values of a particular

variable have been specified, the next variable begins on a

new data card. The numbers in parentheses in the Card(s)-

column are typical for common mesh sizes.

If it is desired to run more than one problem at a

time, data decks may be assembled in series. Each separate

deck should be arranged according to Table 11.

A final data card having a zero in columns one and

two must always be placed at the end of the overall data

deck. This double-zero card tells the program that there is

no more data to be transmitted.

Example Problem

This section illustrates the solution of a

particular cable problem using the computer program. For

the example problem it is desired to know the maximum

allowable oil temperature for an equilateral-pipe configu-

ration of System 1 cables, given their current and the

maximum allowable system temperature. In particular let the

current in each cable be 942 amperes, and say that the

maximum allowable system temperature is 185°F. The thermal

conductivity of the insulation is taken to be

0.1153 Btu/hr-ft-°F, and the film coefficient on convective

surfaces is taken as 5.0 Btu/hr-ft2-°F. Also the con-

servative assumption of a thermally nonconducting conduit is

made. A complete set of input data for this problem is

�1_1
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listed in Table 12, and the resulting discrete model is

depicted in Figure E.2.

A number of observations are made about the

discrete model used in this problem. The effective included

angle in either cable associated with the inter-cable con-

duction path is seen to be 30°, a slightly conservative

angle. An insulated arc of this size is centered about the

point of cable-conduit contact which, from elementary

geometrical calculations, is found to occur at a = 220 °.

Also it is seen that there is no particular association

between regions and boundary conditions: Region III of D2

is primarily concerned with the cable-cable effect, while

Region V is involved with the cable-conduit interaction.

This breakdown of convention is necessary in modelling the

equilateral-pipe configuration, because in that configu-

ration there are too many separate effects operating around

D2 for the available number of regions. (It is noted,

however, that the thermal model is equally effective.) The

angle PHI(3) = 170° is likewise arbitrary in this problem,

since there is no cable-conduit contact on the surface of

D1. The radial mesh size of four subdivisions has been

found from experience to be sufficiently fine to produce an

accurate solution; use of a finer radial mesh does not

significantly alter the temperature distribution. It is

finally noted that the azimuthal distribution of mesh points

adjacent to insulated regions follows the convention out-

lined in the first section of this appendix; such a
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ONAL DIVISION
_ATED

FIGURE E2

A Discrete Model of the Equilateral-Pipe

Configuration
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TABLE 12

INPUT DATA FOR EXAMPLE PROBLEM

Card Column(s) Data

1 1 3

2 2

2 1 - 10 0.10

11- 20 0.9125

21- 30 2.0675

31- 40 0.9125

41- 50 2.0675

51- 60 0.1153

61 - 70 2.68

71 - 80 5.36

3 1 - 10 119

11 - 20 1.19

21 - 30 1.24

31 - 40 1.24

41 - 50 1.59

51 - 60 3.18

61 - 70 5.0

4 1 - 10 0.942

11 - 20 0.942

21 -30 185.0

5 1 - 10 20.0

11 - 20 40.0

21 - 30 120.0

31 - 40 190.0

41- 50 250.0

1 - 10 170.06
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TABLE 12

(Continued)

Card Column(s) Data

7 5 4

10 4

8 5 2

10 2

14,15 13

20 1

25 2

30 8

35 1

40 6

45 3

50 2

9 1-10 0.0

11- 20 0.0

21 - 30 5.0

31 - 40 5.0

41 - 50 5.0

51 - 60 5.0

61- 70 5.0

71 - 80 5.0

10 1- 10 5.0

11 -20 5.0

21- 30 5 0

31- 40 5.0

41 - 50 5.0

51- 60 5.0

61- 70 5 0

71 - 80 5.0
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TABLE 12

(Continued)

Card Column(s) Data

11 1- 10 5.0

11 -20 5.0

21- 30 0.0

31- 40 -

41- 50 0.0

51 -60 0.0

61 -70 0.0

71- 80 0.0

12 1- 10 5.0

11 -20 5.0

21- 30 5.0

31- 40 5.0

41- 50 US

51- 60 0.0

61-70 0.0

71- 80 5.0

13 1- 10 5.0

11-20 5.0

21- 30 5.0

14 1- 10 0.0

15 1- 10 0O0

16 5 0

001,217
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distribution should produce an accurate numerical expression

for the gradient at each conductor.

The computer solution for this problem is shown in

Figure E.3, where the desired oil temperature 140.3°F is

printed. The present version of the program requires

approximately 220 K of core memory for execution. It

requires 310 K of core memory for compilation on the

FORTRAN IV Gl-compiler; it is too large to permit

optimization on the FORTRAN IV H-compiler.

Capabilities and Limitations of the Computer Program

The present computer program has two notable

capabilities which have not yet been specifically mentioned.

The first is that Cables 1 and 2 need not be the same size.

In the case of unequal cable radii, the included angle

associated with the inter-cable conduction path is still

designated by ( 2-X1); the angle ( 2- ) is then auto-

matically adjusted so as to equalize the lengths of the

D1 - D3 and D2 - D3 interfaces. The second capability not yet

mentioned is that there is no restriction to alternating

current; either one or both of the two cables may carry

direct current. This is handled by merely setting to zero

the appropriate AC/DC ratios and dielectric losses. In

addition to these two features, it is noted that, while only

certain orientations of the two cables are physically

realizable, the computer program permits arbitrary configu-

rations. Finally, attention is called to two automatic

tests which will facilitate the location of certain input
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FIGURE E.3

Computer Solution Printout for Example Problem
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errors. Should the input specify that the maximum allowable system

temperature is less than or equal to the oil temperature, an appropriate

error statement is then printed, and the program passes to the next

problem. A similar procedure is followed if the maximum allowable system

temperature is too small for the given dielectric loss.

Two limitations of the computer program are also called to the

attention of the user. The first is that there are constraints on the

admissible size of D3 . In particular, the thickness of D3 must be non-

zero, and its included angle in D1, ( 2- )' must be less than two radians.

Secondly, the included angles of the various regions must all be non-zero.

Included angles of 2 have been used successfully by the author, but

regions smaller than this are not recommended.

Program Modifications

briez suggestions for effecting modifications in the present computer

program are offered in this section. The modifications to be considered

are the following: provision for simultaneous use of Regions IV and VI

or D2, and simplification of I/O procedures.

A modification which would permit simultaneous use of both Regions IV

and VI of D2 could be effected without much difficulty. However, before

making such a change, consideration should be given to the handling of

boundary conditions. Li the present program all boundary conditions are

specified by means of a variable film coefficient. This was done in order

to retain the greatest amount of flexibility in treating boundaries. If it

is desired to preserve this feature, then there is no substantial advantage

in performing the above modification. For when boundary conditions are

specified separately by means of the variable coefficient, regional divisions
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are important only in varying the azimuthal distribution of mesh points;

there need be no correlation between the various regions and specific

boundary conditions (as the example problem illustrated). If, on the

other hand, it is desired to treat some or all of the boundary conditions

implicitly, then the modification under consideration may be necessary.

Boundary conditions may be implicitly written into the program by inserting

the appropriate values of the various film coefficients directly into the

matrix-generation portion of the program. This would be convenient for

boundary conditions which never change from problem to problem. For example,

an insulated surface might be identified with a particular region (such as

D2, Region IV). Then upon specifying the size and location of that region,

the appropriate boundary would be inherently insulated. The number of such

permanent kinds of boundaries depends on the particular problems the user

elects to solve with the program. This method for handling boundaries,

though, would make it necessary to have seven available regions in D2 for

the equilateral-pipe configuration. The modification required for this

involves the input format for ALPHA(J) and the matrix-generation statements

for Region III through VII of D2 . Provisions for generating the variables

associated with all seven regions of D2 presently exist; certain statements

are merely bypassed at IPARAM-type decision branches. It would probably be

convenient to introduce a third category, IPARAM = 3, for a new branching

criterion. This criterion could then be used in the matrix generator to

choose such branches from the (IMARAM = )-type and (IPARAM = 2)-type tests

so as to move sequentially through all the regions of D2. The (IPARAM =3)-test

could likewise signal a special input format for ALPHA(J), indicating that

six rather than five angles are to be read. The program so modified would
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be most convenient, provided that boundary conditons were treated implicitly.

Finally, some brief suggestions are given for simplifying the I/O

procedures of the computer program. Concerning input, two primary areas

could be improved: specification of the variable film coefficients and

specification of the effective size of D3. The former is bothersome because

so many values must be entered, and because of the need to keep track of

all the individual surface mesh points. Implicit treatment of boundary

conditions would completely eliminate this inconvenience. If explicit

specification is retained, a provision might at least be written to simplify

the input. For example, it might be desirable to merely specify a single

coefficient and direct that it apply for all the mesh points of a given

surface (when appropriate). Or since most of the surface points are con-

vective, it might be more convenient to read in just the non-standard

coefficients. Specification of the height of D3 by means of the apparent

angle (- ) is akward; much foresight is required in order to end up with

the desired effective height. It would be much more convenient to work

with ( - ) as the effective included angle, referring the associated

aximuthal adjustments in D1 and D2 to the computer. Concerning output,

three suggested improvements are mentioned. First of all, in its present ver-

sion the program prints out very little of the input data. Such procedures

as solution identification, error location, and output analysis would be

facilitated if more of the original data were written. Secondly, it would

be a simple matter to include the conservative approximate solutions in the

program. These could be written alongside the one-dimensional solutions,

thereby making the upper and lower bounds for system performance immediately

available. Lastly, the overall temperature distribution is not very des-

-
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criptive in its present format. Separating the temperatures in the print-

out according to the three domains D1, D2, and D would present no problem,2 3
and this would help considerably in identifying features of the distribution.

Also effective use could be made of plotter routines for illustrating the

temperature distribution graphically.
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LISTING OF THE SOURCE

PROGRAM
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APPENDIX G

ONE-DIMENSIONAL SOLUTIONS FOR

TEMPERATURE AND CURRENT

The Temperature Solution

In Chapter 2 the equation which governs the

temperature distribution of the cable insulation was given

as

1 T + 2T
r 2r r2 ? 2 k

Considering now only the radial dependence of the

temperature, Equation 2.1 reduces to

1 dT + 2T 

rr dr 2 k (G.1)

and this may be consolidated to

1 d T rdr r drJ k (G.2)

Expressing the volumetric heating term q in terms of the

total dielectric loss per unit length Wd, the governing

equation G.2 becomes finally

220

(2.1)
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d dTr- =
dr dr

Wd

2rrk in )

(G.3)

where r1 and r2 denote the inner and outer radii of the

insulation, respectively. The boundary condition at the

conductor is

qc = -2Trlk dkr
1 dr

(G.4)= Wc
1

where W is the conductor loss per unit length. As for the

boundary condition at the surface, consider for the present

that the surface is at some arbitrary uniform temperature:

T(r2 ) = T .
2

(G.5)

A dimensionless formulation may be obtained by introducing

the variables

r

r2

T - Toi
6 W/k . (G.6)

where W is some arbitrary loss per unit length. The

governing equation is then



d d)
dE ( dE

Wd

27rW n 

where 1 = r/r 2, and the boundary conditions are

dO Wc
2-W~1

I

and

T -T .
e (1) = 0 - w/ko W/k'

The general solution to Equation G.7 is

Wd 2
6() 4rW in (ln ) + Cln + C2

Substituting this solution into the boundary conditions G.9

and G.10, the arbitrary constants C1 and C2 are found to be

1
Cl = -2-W (Wd+W) C2 = 00 (G.11)

Putting this result back into the governing equation gives

Wd )2 (Wd+W )
0(U~~ = e1 (ln ) -d ln + . (G.12)47W i n 21rW o

222

(G.7)

(G.8)

(G.9)

(G.10)
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Equation G.12 is then the temperature distribution for the

case in which the cable surface is at some arbitrary

temperature T . However, this arbitrary temperature may now
0

be eliminated by applying an energy balance at the cable

surface:

Wc +Wd +Ws = 2r 2h(T -Toil) (G.13)

where W is the sheath loss per unit length. The

nondimensional form of this is

W +Wd +W

W/k
= 2r 2 hO 0 

from which

(Wc+Wd+Ws) / k
6o= 2 W hr (G.15)

The one-dimensional temperature distribution for the cable

is therefore

Wd 2 (Wd+Wc)
4W=n (ln ) - Wn +
4W n 1 2W

(Wc+Wd+Ws) k

2TW hr2

(G. 16)

(G.14)
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In terms of dimensional temperatures,

Wd 2 (Wd+Wc)
T(~) - Toil 4rk ln (ln E) - 27rk in +

1

(Wc+Wd+Ws )
2wr2h

(G.17)

The Current Solution

In order to obtain the one-dimensional current

solution, the stationary and variable components of the

temperature distribution are again separated:

0(E) = D(i) + C(E) , (G.18)

where

Wd 2 Wd Wd k
OD(E) 4 W in 1 (in ) l2W in + (G. 19)

and

W n (w +w ) 
eC(E) = - 2wW in E + 2rW (G.20)

The current I is introduced into OC(E) following the

reasoning of Appendix C. By analogy with Equation C.39,

2

ec(E) = ec ( )
I0

(G.21)
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where Co(E) is the distribution obtained by using the

arbitrary current I0 in Equation G.20. The total solution

0() is then

2

e(E) = OD(E) + OC0 () 2 
I
0

(G.22)

Again it is desired to have O(E) take on some maximum value

emax . However, in the one-dimensional case, since there are

no heat sinks within the cable, 0max must occur at the
max

location = 1 (at the conductor). Substituting this

information into Equation G.22 gives

2

emax = D(g 1 ) + C( 1 ) .

0

(G.23)

Upon rearrangement, Equation G.22 yields the current

/I \ =
kIo

0max e-D(1)
eco ( (G.24)

It is then only necessary to insert the appropriate values

for D(C1 ) and C (C1) from Equations G.19 and G.20:

W d (k In 1)
2 emax 2 -W hr2 2)

I 2

20W -_ in E1 + so 2
27TW hr2 kwWhr 2

(G.25)
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where Wco and Wso are the conductor and sheath losses,

respectively, produced by the arbitrary current Io . This

expression may be simplified by using the relations

W = I2Ry W =2 IR(Y Y) (G.26)

where Y and Y denote the AC/DC ratios at the conductor
C S

and at the sheath, respectively. Making these substitutions,

Equation G.25 becomes

m d ( k ln

max 2TrW hr2 2

276 )w (-- 2)n(G.2 7)

(~ h 
c kFinally, in terms of dimensional temperatures, 2~rW h r 12 W F-2) 2

which may be further simplified to

2W - Wd h n l)
2 = (max l nr 2 2 (G.29)

R _ i= )(G.28)
/Ysk

RFr2- Yi

Finally, in terms of dimensional temperatures,

2,Fk(T -T )_ Wd~~i 1

max oil d -2 2
i2= ~~~~~~~~~~~~(G. 29)

/Ysk

Rhr2 Y nE



APPENDIX H

CONSERVATIVE APPROXIMATE SOLUTIONS FOR

MAXIMUM TEMPERATURE AND CURRENT

General

Conservative approximations for maximum

temperature and current in the two-dimensional conduction

problem may be achieved from a suitable modification of the

one-dimensional solutions presented in Appendix G The

conservative assumption to be employed is that cable-cable

and cable-conduit interactions effectively insulate

appropriate portions of the cable surface, thereby reducing

the perimeter available for heat transfer. Furthermore, it

is assumed that the entire cable sector subtended by an

insulated arc on the perimeter is also effectively insu-

lated. Any losses which occur in the insulated sector are

then referred to the remaining undisturbed portion of the

cable. Consider, for example, that a 60°-arc of the cable

perimeter is taken to be insulated. The perimeter available

for heat transfer is then reduced to (5) its original size,

and all losses in the ()-cable must be scaled up by () in

order to have the same heat flow or temperature as in the

original problem. The maximum current or temperature is

then computed from the one-dimensional solution, using (6)

of the original one-dimensional losses.

227
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The Temperature Solution

In Appendix G the one-dimensional temperature

distribution was given as

Wd 2 (Wd+W) (W +Wd+W )

oil 4Trk in 1 (n ) - 2k 2in r+ 2r2 h

(G.17)

The temperature drop from the conductor to the oil is then

in 1 (W W+Wd+W )
T() - Toil T - Toil = - 4Tk (Wd+2Wc) + 2 hr 1~~~~ 2~ihr2'

(H.1)

where T denotes the conductor temperature. It is noted in
0

Equation H1 that the temperature drop (T -T ) varies
o oil

linearly with the cable losses. Now let the cable perimeter

available for heat transfer take on the value P' = fP, where

P is the total perimeter, and f is some fraction. The

losses in the undisturbed portion of the cable are then

scaled up according to q' = ()q. Since the temperature

drop (T -T oil) varies linearly with loss, it too is scaledo oil
up by (/f), and the conservative expression is given by

(To-Toi = (o i) (H.2)
T0-Toil)* = (T 0-Toil 

where the temperature drop on the right side is that
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produced by the one-dimensional solution. Equation H.2 may

then be used to conservatively estimate either the maximum

allowable oil temperature or the maximum cable temperature

in the two-dimensional conduction problem.

The Current Solution

From Appendix G the one-dimensional current

solution is

2Tk(T -T ) _ W k in 1)
2 2Trk(Tmax oil hr 2 2

i2= l~sk \ . (G.29)
= nY n

Rth - Y n 1
hr 2 c1

Again consider that the effective perimeter takes on the

value P' = fP, and that the losses are scaled up according

to q' = ()q. Since current-produced losses vary as 12, the

latter quantity must itself be linearly scaled, along with

the dielectric loss, Inserting this into Equation G.29

gives the result

2 27Tk (T -T ) -d ( k in _I* max oil f hr* \~~~~h2
f /Y k JI t(H.3)

R s- Y in 
c 1 

1______1_111____�____----------.��--_111 ---------- �� _
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which may be rearranged to give

27kf(T -T ) W ( k _
2 max oil d)h-r2 2 i n 41

I.~~Y (H.4)
/Ysk

hr2 -Y in i

Equation H4 is then the conservative approximation for

current.

The Effective Perimeter

The size of the inter-cable conduction path is a

reasonable guide in selecting the amount by which to reduce

the cable perimeter for cable-cable and cable-conduit

interactions. This convention was followed in generating

the conservative comparisons tabulated in Chapter 6. For

those 16 problems the inter-cable conduction path was

chosen so as to subtend an angle of 30° on either cable

surface. The following cable perimeters were therefore used

for the various configurations: open - 330° effective;

cradled - 300° effective; equilateral - 270° effective; and

equilateral-pipe - 240° effective. It is noted that for an

effective perimeter of 360° (f = 1), the one-dimensional

solutions are recovered in Equations H.2 and H.4.


