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ABSTRACT

Forced-cooled syséems for oil-filled pipe—type cable circuits have
recently been considered. In such systems the conduction resistance
through the paper insulation of the cables is the limiting thermal resistance.
Assuming bilateral symmetry, steady-state éonditions, and two-dimensional
heat transfer, a FORTRAN IV computer program was written to solve the heat
conduction problem in the cable insulation for arbitrary configurations
of a three-cable system.

For a steel pipe, a cable system is most susceptible to overheating
in the equilateral configuration with the three cables touching.

Proximity effects are very significant in forced cooling, especially
when cablee aras nnt provided with a copper tape under the insulation moisture
seal assembly, accounting for as much as 21% of the total oil temperature
rise between refrigeration stations. This figure, however, is reduced to

8% when 0.005 inch thick copper tape is present.
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CHAPTER 1

INTRODUCTION

High-pressure oil-filled pipe-type cable circuits
have been used for underground electrical power transmission
for a number of years. Such circuits employ a steel conduit
inside which are several cables, each consisting of a copper
conductor wrapped with porous, oil-soaked paper insulation
and a protective outer covering. The space between the
cables and the pipe is filled with a dielectric oil which is
under high pressure. The o0il, which impregnates the paper
wrapping on the cables, provides electrical insulation for
the cables and also transfers the heat generated by losses
in the cables to the conduit and the surrounding soil.
Pressurization of the o0il prevents vapor formation in the
paper insulation and ensures proper electrical insulation of
the cables. 1In this non-circulating type of system, heat
which 1is generated in the cables is transferred from the
insulation to the pipe wall by natural convection through
the o0il, and then from the pipe to the atmosphere by
conduction through the soil. The power-carrying capacity of
underground cables is limited by the maximum allowable cable

temperature, which depends on the rate of heat removal from

the system.
Force-cooled systems for oil-filled pipe-type
cable circuits, which appear to have power capacities sig-

nificantly larger than those of non-circulating systems,

12



13

have recently been considered. In force-cooled systems,
chilled oil is circulated through the pipe, and heat is
transferred from the oil to the atmosphere at refrigeration
stations. Most of the heat is transferred from the cables
to the flowing o0il, heat transfer to the soil being of %
secondary importance [l1]. The cable-to-oil temperature
difference for a given current and voltage is determined by
the overall cable-to-oil heat transfer resistance, which is
due to two effects: the resistance to conduction heat
transfer through the cable insulation, and the resistance
to convection heat transfer from the surface of the
insulation to the bulk of the oil. Based on results of the
natural convection experiments performed by Orchard and
Slutz [2], it is demonstrated in Appendix A that the
conduction resistance for the type of system which was
considered is an order of magnitude larger than the
convection resistance. Therefore the rate of heat removal
from the system depends primarily on conduction, and an
accurate conduction médel of the cable insulation is
required in order to confidently predict the cable
temperature.

Conduction within the insulation is complicated by
the proximity of one cable to another. When two cables come
into direct contact, their mutual presence causes a large -
increase in the resistance to heat transfer near the point
of contact. Consequently, the cable insulation near the

contact point experiences a sharp increase in temperature,
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which in turn elevates the conductor temperature, and
thermal failure of the system will ensue unless the o0il
temperature is appropriately adjusted. Given a system with
a maximum allowable cable temperature, it is therefore
desirable to know the maximum oil temperature which should
be allowed in order to avoid thermal failure of the system.
This involves determining the two-dimensional (i.e., radial
and circumferential) steady-state temperature distribution
within the cable insulation for various cable configurations,
especially those which produce the most severe operating
conditions. This heat conduction problem is too complicated
to be solved analytically. However, the solution for
arbitrary cable configurations is readily obtained by means
of numerical methods.

The particular system which was studied consists
of three circular conductors inside a circular conduit. The
dimensions of this system are shown in Figures 1.1 and 1.2.
In addition to the outer moisture seal, the cables are
wrapped with skid wires, which protect the cable coverings
and reduce friction when the cables are pulled into the
conduit. In order to simplify the geometrical problems
which arise in handling configurations of three cables, it
was assumed that the system possesses bilateral symmetry, as
shown in Figure 1.3. This assumption reduces the system to
one and one-half cables inside half a conduit, while

permitting arbitrary configurations of the one and one-half
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Cable 1

\Lme of Bilateral Symmetry

FIGURE 1.3

Bilateral Symmetry of the Underground Cable System
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cables. As Figure 1.3 indicates, the half- and whole cables
are referred to as Cable 1 and Cable 2, respectively.

In Chapter 2 a complete formulation of the
conduction problem is presented, followed in Chapter 3 by a
discussion of the superposition methods which were employed
in obtaining final solutions. Chapters 4 and 5 are
concerned with discrétizing the conduction model and with
translating the discretized model into a computer program.
In Chapter 6 the results of several'problems are discussed,

and conclusions are stated.






CHAPTER 2

FORMULATION

The Cable Insulation

In developing a conduction model for the cable
insulation, the following assumptions were made: any axial
conduction along the length of the cable is negligible, thus
reducing the problem to two dimensions; steady-state condi-
tions prevail in the system; the thermal conductivity
throughout the insulation is taken to be uniform. Using
these assumptions, an energy balance on an infinitesimal
element in a cylindrical coordinate system yields the
following expression, which is a special form of Poisson's

equation [3]:

2 2 .
1 3"T _ _g
= e 4 —= + 5 =3 = T - (2.1)

or r~ 93¢

This equation governs the temperature distribution in the
cable insulation, together with appropriate boundary con-
ditions which operate around the various portions of the
cable surface. The heat generation term é in Equation 2.1
is due to a dielectric loss which occurs throughout the
insulation.

The Inter-Cable Conduction Path

In order to model the situation which exists when
Cables 1 and 2 are lying together in direct contact (skid

wires overlapping), a special conduction path was placed

19
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between the cable and half-cable. A conduction path was
used because there is a small region between the cables in
which the o0il is essentially stagnant. The thermal conduc-
tivity of the path was taken to be the same as that of the
insulation. The width of the path is usually taken to be
the thickness of a skid wire, since this is as close as the
cables come to actually touching. As an estimate of how
large an angle the path should subtend along the cable
surfaces, it was decided to use the angle subtended by the
overlapping skid wires. For the system which was studied,
this angle is approximately 25°. The inter-cable conduction
path is thus an extension of the cable insulation, joining
Cable 1 to Cable 2, as depicted in Figure 2.1l. Since no
heat sources are present within the conduction path, the
governing equation for its temperature distribution is

Laplace's equation [4]:

2 2
9—%+3—%=0, (2.2)
X oy

where x and y are the normal and tangential coordinates,
respectively, and where "normal" denotes an axis which joins
the cable centers.

The Solution Domain

Two additional assumptions underlie the conduction
model. The first is that the oil is assumed to be well-

mixed, so that the oil temperature outside the convective



CABLE 1

"4

FIGURE 2.1

The Inter-Cable Conduction Path (Shaded)

CABLE 2
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boundary layer is uniform at a given cross-section in the
system. The second is that, because of the very high
conductivity of copper, each conductor is assumed to be at a
single, uniform temperature (though the two conductor
temperatures are not, in general, equal). These two
temperatures are obtained from a knowledge of the losses at
each conductor, and this 1is discussed in Chapter 3 under the
subject of superposition. The point to be made here is that
the two conductor temperatures are not unknown quantities in
the temperature field. Therefore the conduction problem has
as its solution domain only the paper insulation surrounding
the conductors and the inter-cable conduction path. For
purposes of nomenclature, the insulation of Cable 1 is
referred to as Dl (Domain 1), that of Cable 2 is referred to
as D2 (Domain 2), and the region comprising the inter-cable
conduction path is called D3 (Domain 3). The solution
domains Dl' D2, and D3, together with their associated

coordinate systems, are shown in Figure 2. 2.

Boundary Conditions

The solution domains Dl and D2 are divided into
regions of varying size according to the type of boundary
condition which is acting at the cable surface. A set of
regional divisions for both cables is illustrated in
Figure 2.3, and the boundary conditions associated with the
various regions are listed in Table 1. Regions II of Dl and

D2 are not included in the table, because they join the

inter-cable conduction path and therefore have no surface

&
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FIGURE 2.3

Regional Divisions in Dl and D,



BOUNDARY CONDITIONS IN

’_l

Region
Region

Region

Region
Region
Region
Region
Region

Region

TABLE

i

I1T

Iv

I

IIT

IV (if used)
\Y

VI (1f used)

VII

D, AND D

Convection
Convection

Cable-Conduit

Convection
Convection
Cable-Cable
Convection
Cable-Conduit

Convection
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boundaries. The cable-cable and cable-conduit boundary
conditions are depicted in Figure 2.4.
There are several different surface boundary
conditions, but it can be shown that they are all convective
in form. The convective boundary condition itself is .

obtained from an energy balance at the cable surface:

q -x 9T
P k or

= hiT(r,,$) - T . ’ (2.3)
r2,¢ 2 011]

where r, is the outer radius of the Cable 1 insulation, P is
the perimeter of the cable, and h is the local film coeffi-
cient, which may vary around the periphery of the cable.

The cable-cable boundary condition occurs when the
three cables are in an equilateral configuration. A small
arc along the surface of Cable 2 then lies immediately
adjacent to the line of symmetry. The arc length is taken
to be the same as that for the inter-cable conduction path.
Since no heat flow crosses a line of symmetry, this boundary
is taken to be an insulated one, which is just a convective
boundary with a local film coefficient of zero. While this
boundary condition differs considerably in form from the
conduction mechanism operating in the inter-cable conduction
path, both mechanisms have the same effect on the tempera- i
ture distribution. For in the equilateral configuration,
symmetrical conditions on either side of the conduction path

act to prevent any flow of heat across the tangential axis



27

(odd)

1UNPUOD-9|gD2d

mma_aw
INPUOO-3i|gn2

i

! ‘ 3lgn3J — 3|gnd
NOILVHNOIANOD d31avdD NOLVENOIANOD 1vd3IvINO3

SUOT3TPUO) Axepunog 3JTNPUOD-3TGRD Pue dTqed-3Tqed 94l

P°C TdNODIA



28

(y-axis) of D3. The trilateral symmetry of an equilateral
configuration is thus preserved by modelling the cable-cable
effect as a convective boundary. An alternative method
would be to employ an optional conduction path for the
cable-cable effect, but this would introduce unnecessary
complication,

The cable-conduit boundary condition, which exists
when either cable is lying directly against the conduit, is
influenced by the following factors: convection cooling
near the point of contact; the thermal conductivity of the
conduit, which for steel is large; potentially large AC
losses in the conduit itself; and heat conduction from the
conduit to the adjacent soil. This situation is examined in
Appendix B, where a portion of the conduit wall is
thermally modelled as a fin, and the thermal resistance
through the fin is compared to the thermal resistance
across the cable insulation for a given set of AC losses.

In the most conservative case, the resistance from the fin
base to the oil is an order of magnitude smaller than the
resistance across the insulation. Thus the cable-conduit
boundary condition for a steel conduit is essentially a
convective one with a slightly modified film coefficient.
The arc on the cable surface affected by this boundary
condition is again taken to be the same as that for the
inter-cable conduction path.

There are two surface boundary conditions in D3,

each a convective one. These are depicted in Figure 2.5.



CONVECTION

CONVECTION.

FIGURE 2.5

Convective Surfaces of D3
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An energy balance at the surface of D3 gives

-k T = +h|T(surface) - T . ] , (2.4)
oil

9y surface

where (+) and (-) apply for positive and negative vy,
respectively, and h is a variable film coefficient.

In addition to the surface boundary conditions,
there are two internal boundary conditions. These are at
the line of symmetry and at the conductors. The symmetry
boundary condition occurs in Cable 1, where the line of
symmetry bisects the cable and forms a portion of the
insulation boundary. This boundary, of course, is perfectly
insulated. The boundary condition at each conductor, as was
stated previously, is one of uniform temperature.

The aforementioned governing equations and
boundary conditions, along with the requirement that the
temperature between Dl and D3 and between D2 and D3 be
single-valued, constitute a complete formulation of the

conduction problem.

Variations on the Problem Statement

Although the heat conduction problem was
originally posed with the o0il temperature as the unknown
quantity, it is possible to specify the oil temperature and
solve for other quantities. Assuming that the voltage is
constant for a given system, there are three variables:

maximum allowable o0il temperature, maximum cable temperature,
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and maximum allowable current. Given any two of these, the
third may be found. In subsequent discussions it will be
necessary to specify which of the three variables is
unknown, and so the following solutions are defined for
reference: Solution 1 finds the maximum cable temperature,
given the current in the circuit and the o0il temperature;
Solution 2 finds the maximum allowable current, given the
0il temperature and the maximum allowable cable temperature;
Solution 3 finds the maximum allowable oil temperature,
given the current in the circuit and the maximum allowable
cable temperature.

Nondimensional Formulation

In preparation for numerical solution, the heat
conduction problem is cast into nondimensional form. Such
a formulation can be obtained by introducing the following

dimensionless variables:

T-T .
=X 5= 2 X = = v = L = o1l
r rzl p pzl X 2A' Y 2Dl 8 w?k 14

(2.5)

where 2A denotes the minimum width of D3 (at the x-axis),

2D is the height of D3 (along the y-axis), and W is an

arbitrary loss per unit length (Btu/hr-ft). The form of the
governing equation in D1 and D2 is then
-2 3% _ = 38 . 3°9 (rzaz.
———2 + r — + > = - W ’ (2'6)

@
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whereas the governing equation in D3 becomes

2 2,2
R (2.7)
ax D™ 93y

The form of the standard convective boundary condition

becomes

k _ ‘
- = = h6(1,¢) . (2.8)



CHAPTER 3

SUPERPOSITION OF SOLUTIONS

General

In the solution of linear problems, such as this
problem of conduction with uniform thermal conductivity, it
is often convenient to employ the principle of superposition.
This reduces the overall problem to a number of simpler
problems, each having the same geometry as the overall
problem, whose individual solutions may be linearly combined
to form the overall solution. The required number of
separate solutions is equal to the number of nonhomo-
geneities, or potentials, in the overall problem. In the
conduction problem which has been posed, there are three
potentials: the two conductor temperatures and the
volumetric heating effect. The overall problem may thus be
decomposed into three component problems. Solutions to
these component problems need to be generated only once for
a particular cable geometry and voltage (dielectric loss);
the total solution for any arrangement of current-produced
losses can then be achieved by suitably combining the three
component solutions.

In the following sections the superposition
technique for obtaining Solution 1 (which finds the cable
temperature) is presented. It is then rigorously demon-
strated that the overall governing equation and boundary

conditions are obtained from a linear combination of the
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governing equations and boundary conditions of the three
component problems. For brevity the following notation is
introduced: X is a generalized position vector for the
overall solution domain (comprised of Dl' D2, and D3);

X € Ci(§) denotes all points in the solution domain which
lie on the curve Ci(f); n; is an outward normal to the curve
Ci(g); v2 is the Laplacian operator. The nine curves Ci(§)
which comprise the boundaries of the solution domain are
shown in Figure 3.1. The nine normals n, are all dimension-
leés: normals to curves in Dl are nondimensionalized with
Ty normals to curves in D2 with Por and normals the two
curves in D3 with the length 2D.

The Overall Problem

The governing equation for the overall problem is

the following:
2 =
VUe(x) = £(x) , (3.1)
where f(x) describes forcing effects throughout the domain.

0 (x) also satisfies boundary conditions on the nine curves

Ci(x). On the curve Cl(x) the condition is
9 (x) | = 84y ¢ (3.2)

x€C, (x)

where 601 is some uniform (as yet unknown), dimensionless

temperature. On the remaining curves the boundary



35

Ce(X)

C,(x)

Cy(x)

FIGURE 3.1

Curves Ci(x) Comprising the Boundaries of

the Solution Domain



conditions are

36 (x)
an

* lxecy ()

36 (x)
on

> '§€C3(§)

36 (x)

on

> x€Cg (x)

e(§)|§€C6(§)

36

where 602 is a uniform (as yet unknown), dimensionless

temperature.

96 (x)

8n7

(x)

x€Cy (X

hr2
= - 4= 8(x) (3.3)
xeC, (X)
hr
= ——}-{-3 6(x)‘l (3.4)
Ty
=0 (3.5)
=0 (3.6)
= 8,y (3.7)
hp
) x€Co (%)
= _Z%E 0 (x) (3.9)
XeCgq (%)
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96 (x)
X _ _2Dh

9 §€C (x) §€C9(X)

The Component Problems

The overall problem is decomposed into three
component problems, each of which has only one potential and
is individually solvable. The component solutions are
6A(§), 6B(§), and 8C(§).

GA(§) is the solution for the physical situation
in which the Cable 1 conductor is hot, the Cable 2 conductor
is cold (at the o0il temperature) and in which there is no

dielectric loss. B6A(x) satisfies the homogeneous governing
equation

V26A(§) -0, (3.11)

and it satisfies the following boundary conditions:

| —
6A(§)gx€c (x) = AO , (3.12)
- where AO is some arbitrary dimensionless temperature.
- 96A (x) hr,
T = —T eA(i() (3.13)
2 xeC., (x)
§eC2(§) T2
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hr
= "T GA(X) (3.14)
- xeC 4 (x)

d0A (x)
an

xeCy(x)

36A(§)

5n =0 (3.15)

xeC, (x)

36A(§)

——5———1‘1 =0 (3.16)

xeC_ (x)

6A(§)|§€c6(§) =0 (3.17)

38A(§)
on

(3.18)

§6C7(§) ~ 7(~

86A(§)
on

-—355 eA(x)I (3.19)

~

(x) '§€C8(§)

]

xXeC

36A(§)

3ng

—3%5 GA(X)J
- C.(x)
g (X) xelg (X

(3.20)

xX€C

6B(§) is the solution for the physical situation
in which the Cable 1 conductor is cold (at the oil
temperature), the Cable 1 conductor is hot, and in which
there is no dielectric loss. The component solution 6B(§)

satisfies the homogeneous governing equation
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V26B(§) =0, (3.21)

as well as the following boundary conditions:

eB(f)lxeCl(x) =0 (3.22)
96B (x) hr2 ’
Bn'v = - ¥ GB(x)| (3.23)
L
2 x€C2(x) §&C2(§)
6B (x) hr2
—55 | = --—-k— SB(z() (3.24)
3 xeC, (x)
xeC3(x) ~ 730
36B (%) |
) ‘ =0 (3.25)
xXeC, (x)
~ 42
0B (x)
an =0 (3.26)
xeCs (x)
BB(§)|xec6(x) = B_, (3.27)
where BO is an arbitrary dimensionless temperature.
306B (x) hp2

x€C7(x) §€C7(§)



906B (x)
Toh, - - st
8 ~ IxeC, (x)
§eC8(§) ~ ~8'%
90B (x)
e - -5 enly)
9 ~ IxeC, (x)
x€C9(x) S92
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(3.29)

(3.30)

Finally, 6C(x) is the solution for the physical

situation in which both conductors are cold (at the oil

temperature), but in which there is a prescribed dielectric

loss. The component solution 6C(x) satisfies the nonhomo-

geneous governing equation

vZec(x) = £(x)

and the following boundary conditions:

eC(3.{)|xecl(x) =0
90C (x) hr2
——§—JL— = - —= 8C(x)
ny k ~ IxeC, (%)
x€C2(X) TEW2
96C (x) hr2 i
-—§~Jl— = - —= 0C(x
nj k ( )lxec (x)
x€C5(x) ~ 30~

(3.31)

(3.32)

(3.33)

(3.34)
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96C (x)
“Ty‘:_ =0 (3.35)
n
: X€C, (%)
36C (x)
__534;_ =0 (3.36)
> xeCg (%)
6C(§)|xec6(x) =0 (3.37)
96C (x) hp
—B'r'{:— = ——1?2' 6C (x) (3.38)
7 §€C7(§) §€C7(§)
36C (%)
e = _.Z.T{‘?E 9C(>~<)} (3.39)
8 §€C8(§) §6C8(§)
906C (x)
> _ - 2DB ooy | (3.40)
Bn9 k - |x C,. (x)
§6C9(§) 259 2

Validity of the Superposition Method

Having described the overall problem and the three
component problems, it remains to demonstrate the validity
of the superposition method. The three component solutions

are linearly combined to form the total solution according

to [5]:

6(§) = alBA(g) + azeB(f) + 8C(§) ’ (3.41)
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where a, and a, are two arbitrary constants, to be
determined from two additional boundary conditions in the
overall problem. That Equation 3.41 is indeed valid is
proven by substituting it directly into the overall
governing equation and boundary conditions. The following

results are then obtained:

V26 (x) = vz[aleA(f) +a,0B(x) +0C(x)] = £(x)  Check

(3.42)

8 (x) |§€Cl(§) = [aleA(f) +a,0B(x) +6C(x)] xec, ()

I

a.A Check, (3.43)
1o :

provided a AO = 601. This presents no problem, since 601 is

1

unknown, and a; and AO are both arbitrary.

a0 (')f) Py '
_353_ = 55; [aleA(g)-FazeB(§)-+ec(§)]
x€C, (x) X€C, (x)

hr2
= -5 [aleA(x)+-a29B(x)4-eC(x)]
) ) TxeG
hr2
= -T 6(>~<) Check (3.44)

xeC, (%)
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96 (x) 5
——ETB—— = 'é—n—?)‘ [aleA(i() +a2€)B(}~() + 6C(§)]
§ec3(§) §ec3(§)
hr2
= -5 [aleA(x)+-a26B(x)+-6C(x)]
- - - XEC3(§)
hr2
= ——]-(—' e(X) Check (3.45)
- x€C3(x)
ae(§)| 5
—gﬁz—\ = 55: [aleA(g)-+a28B(§)-+eC(§)]
§€C4(§) §€C4(§)
= 0 Check (3.46)
90 (x) 3
3n5 = 'é'r_f; [aleA(i() +a26B(}~<) + GC(?f)]
§eC5(§) §€C5(§)
=0 Check (3.47)
6 (x) | = [a,B8A(x) +a,06B(x) +6C(x)]
~ §€C6(§) 1 ~ 2 ~ ~ §EC6(§)
= a2BO Check, (3.48)
provided azBo = 602. This also causes no difficulty, since

602 is unknown, and a, and BO are arbitrary.
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30 (x) 3
BnN = 3o [aleA(}f) +a28B(§) + GC(?E)]
Flgec 0 xeC, ()
hp2
= - —= [a,BfA(x) + a,06B(x) + 8C(x)]
k 1 ~ 2 ~ -~
x€C7(x)
hp2
= - = 8(x) Check (3.49)
§€C7(x)
36 (x) 3
8n~ = 7 [aleA(x) +a,0B(x) + 6C(x)]
8 8 " - -
x€Cg (x) x€Cg (x)
= -2DB 1. 6A(x) + a. 6B (x) + 6C(x) ]
k 1 ~ 2 ~ -
xCCB(X)
= -Eg_fi 6 (x) Check (3.50)
T IxeC, (%)
~ 82
36 (x) | 5
- = — [a.0A(x) +a 6B(x)-+8C(x)]l
"o x€eCy () Mot T * - Txecy(x)
bl 9 ' ~ * T
- - _2.%1 [a,8A(x) + a,6B (x) + 8C(x)]
~ ~ ~ x€C9(§)
= -.EEE 6 (x) Check. (3.51)

x€Cq (x)
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It is thus established that the superposition technique just
described is indeed valid. However, the two conductor

temperatures 60 = a Ao and 602 = a2Bo have yet to be found.

01 1

Determination of Conductor Temperatures

All that has been said of the conductor
temperatures up to this point is that each one is uniform.
These two temperatures, though, are uniquely determined by
two additional conditions in Solution 1: the specified loss
per unit axial length at each conductor. Returning
momentarily to dimensional variables, let WCl and WC2 be the

specified conductor losses per unit axial length in Cables 1

and 2, respectively. Equating W to the total heat flow

Cl
per unit length transferred from the conductor of Cable 1,

the following result is obtained:

n
- - aT| _
q; = -k ST rid¢ = W,y . (3.52)
r1l¢
0
Likewise, for Cable 2
2m
- - aT _
PysC
0

These two expressions are rendered dimensionless and

rearranged to give
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mw
30 ToWe1
= d¢ = - =7 i (3.54)
or | = 1
0 rl'd)
2m
P W
36
= da = ——%;%3 i (3.55)
3P | = 1
O pl;O(,

Finally, in terms of the present vector notation,

Equations 3.54 and 3.55 become the following:

36 (%) W..Tr
X R
anl dCl(§) = + er , (3.56)
¢, (x) x=Cy (x)
{ 36 (x) W_., 0D
X 2P
= dC6(§) Wo (3.57)
6 xe€C, (X) L
C6(x) 27762

6 (x) may now be eliminated from these two equations in favor
of BA(x), 6B(x), and 6C(x) by substituting Equation 3.41

into Equations 3.56 and 3.57:
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)
53; [aleA(§)-+a26B(§)-+8C(§)] dCl(f)
Cl(f) §€Cl(§)
W, T
= + chi 2. (3.58)
1
2 [a,B8A(x) +a,0B(x) + 6C(x)] dcC, (x)
8n6 1 ~ 2 ~ ~ 6 '~
Ce (x) xeCe (x)
Wsp
c2%2
= 4+ — . (3.59)
Wpl

Since the component solutions eA(g), eB(§), and 8C(§) are
each known, Equations 3.58 and 3.59 are two simultaneous
eguations from which the arbitrary constants a; and a, are
determined. Furthermore, since AO and BO are known
gquantities (the arbitrary dimensionless temperatures which
were used in solutions eA(§) and SB(§), respectively), the
dimensionless conductor temperatures follow directly from
Equations 3.43 and 3.48: 601 = ale, and 602 = a2BO. This
then completes a description of the superposition technique
for Solution 1.

The technique for obtaining Solution 2 (which
finds the maximum current) is somewhat more complicated,

owing to the fact that current is then a variable. This

makes necessary a separation of current-produced losses from
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voltage-produced losses, as well as a subsequent procedure
for maximizing current with respect to the allowable cable
temperature and the o0il temperature. A full description of
this solution is presented in Appendix C. Solution 3 (which
finds the oil temperature) is nearly identical to Solution 1,
the former requiring only a minor extension of the latter.
In particular, Solution 3 is obtained by using an arbitrary
oil temperature in Solution 1 and then by equally incre-
menting all temperatures (including the arbitrary oil
temperature) until the maximum temperature in the field has
reached the prescribed allowable value. The two temperature
distributions therefore have the same shape, differing only

by a constant.
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CHAPTER 4

THE FINITE-DIFFERENCE METHOD

Discretization of Domains

The numerical method used to generate solutions
for the various component problems described in Chapter 3 1is
the finite-difference method. It has as its first basic
step discretizing the solution domain. Discretization is
the reduction of a continuous system into a system which has
a finite number of degrees of freedom. The basic approxi-
mation involves the replacement of a continuous domaln by a
network of discrete points within the domain. A one-
dimensional example of this is shown in Figure 4.1. Ins+ead
of obtaining a continuous solution defined throughout the
domain, approximations to the true solution are found only
at these isolated points.

Discretization of Dl and D2 is accomplished by
defining a network of radial and circumferential mesh points.
Since it is desirable in terms of computational labor for
the mesh to be as regular as possible, the following
conventions were adopted: points along a radius are
uniformly spaced, though the spacing in Dl may be different
from that in D2; circumferential spacing of points within a
particular region is uniform; the number of circumferential
subdivisions in both Regions II of D, and D, and the number

1 2

of tangential subdivisions in D3 are constrained to be equal,

thereby avoiding mismatches at the Dl—D3 and D2-D3

49



CONTINUOUS ONE-DIMENSIONAL
DOMAIN

B+ B Ba

DISCRETE REPLACEMENT OF ONE-
DIMENSIONAL DOMAIN

FIGURE 4.1

A Regular, One-Dimensional Finite-Difference Mesh
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interfaces. It should be noted that, just as the conductors

were not included in the continuous domains D1 and D2,

are they not included in the corresponding discrete domains.

SO

The dimensionless radial spacings hr and hp are

obtained from

h = 1 h = L (4.1)

where Nl and N2 are the number of radial subdivisions in

Dl and Dz' respectively. The dimensionless circumferential
spacings h¢ and ha vary in magnitude depending on which
region is involved, since the regions generally are of
varying size. Thus there are four values of h4> in Dl and

seven values of ha in D2, or one for each region. A typical

spacing is calculated according to

¢n——-——M————, (4.2)

where ¢n and ¢n—l are the values of ¢ at the bounding radial
lines of Region n, and Mn is the number of circumferential

subdivisions in Region n.

Discretization of the domain D3 is difficult
because of its irregular siape. For this reason it was
approximated by the more reguiar shape shown in Figure 4.2.

The nondimensional normal and tangential spacings hx and h
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2A= skid wir% thickness
C: 1‘cos(f—o-)]
B: L(a -ml) z
73 /Dz
., B
D:Fhsn?g

D2

DISCRETE MODEL

FIGURE 4.2

Discretization of the Domain D3
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are obtained by dividing the nondimensional width and height,
respectively, by the appropriate number of subdivisions. It
is seen in Figure 4.2 that these spacings are not uniform:
hx depends on y and hy is a function of x. Since changes in
hy are small compared to changes in hx, a uniform, mean
value for hy was assumed. The linear dependence of hx on y
was retained in the model.

A subtlety regarding the two convective surfaces
of domain D, is also mentioned here briefly. At each corner
of D3 there exists a discontinuity in the area available for
conduction heat transfer. This discontinuity is most
conveniently accounted for in the following manner: the
regular form of the governing equation, which itself assumes
no discontinuity in area, is applied at each corner point.
Four effective corner locations, which lie outside the
corner mesh points, are thereby established, énd these
corner locations define the two effective surfaces for
convection in D3. The mesh points along either convective
surface thus lie inside the conduction path, rather than on
the boundary itself. Details of this modelling procedure
are discussed in the user's instructions in Appendix E.

The discretized domains are shown with a typical
mesh in Figure 4.3. The number of points to be used in a
given problem is dictated by the level of accuracy required
in the solution; as the mesh becomes finer, it more nearly
approaches the original continucus domain. Also it is

economical to use a coarse network in regions where the
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FIGURE 4.3

A Typical Mesh for the Equilateral Configuration



55

temperature gradient is small, switching to a finer mesh
where there are rapid variations in temperature. Note, for
example, how the mesh points in Figure 4.3 are arranged:
since the temperature distribution away from points of
contact should be nearly one-dimensional, most of the points
are concentrated between the cables, where large gradients

are expected.

Difference Form of Governing Equations and Boundary

Conditions

The reduction of a governing equation and boundary
conditions for a continuous domain to those of its discrete
replacement may be accomplished physically or mathematically.
In the mathematical approach, which was used by the author,
the continuous formulation is reduced to a discrete
formulation by simply replacing derivatives with finite-
difference approximations. When this is done, the original
system of governing partial differential equations is
reduced to a set of n simultaneous algebraic equations,
where n is the number of discrete points in the mesh. Since
the original continuous system is linear, the algebraic
system will also be linear.

In preparation for replacing differential
equations with finite difference relations, two basic one-
dimensional finite-difference expressions are listed. The
extension to two dimensions is straightforward. 1In

Figure 4.1 let the points ..., Pj—l' be

Pj' Pj+l""
separated by a dimensionless spacing h, and let the value of
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P(z) at Pj be denoted by Wj' Then the first and second
derivatives at Pj may be approximated by the following

finite-difference expressions [6]:

Y =Y.
dy _ 73+l 9-1 L2
(§E>ﬁ - - + 0(n%) ; (4.3)
J

2y ] - 4
a“ Vagy TV T Va0 .
(._._%') = 52 =1, o(h™) ; (4.4)
dz /. h

J

where O( ) denotes the order of the error. With the
availability of these computational formulas, the process of
replacing the governing eguations and boundary conditions of
the heat conduction problem with approximate algebraic
equations is simple and cirect: at each internal point the
finite-difference approxiwiiion to the governing differ-
ential equation provides «. algebraic eguation connecting
the values of v at the several neighboring points.  For
example, a typical cquation al the point (j2,k2) in D2,

Region IV 1is:

-2 - -~ -} .:\2 -

Pis Py v , Fapo ta2
_d2__J2]g _ - o —d= LSk I DV L

n2  2ho [32-i k2 he 2 N -2 2a|"52+1,x2

p o Aiﬂ Lu4 41(_.!

1 1 5?293(é)j2 k2
el — - 7S
M el ISP RS U Bl AP P RS (4.5)
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where p, is the outer radius of Cable 2, (é)jz,kz is the
local volumetric loss, W is an arbitrary loss per unit
length, and the remaining symbols are explained in

Figure 4.4. This result was obtained by substituting the
two-dimensional forms of Equations 4.3 and 4.4 into a
typical governing equation, such as Equation 2.6.

Two types of exceptional situations can arise in
applying this equation. The first is that on the boundaries,
not all the neighboring points of a governing equation will
lie within the domain. It is then necessary to introduce
finite-difference approximations to the given boundary
conditions and thereby to eliminate the need for any point
that lies outside the domain. For example, the standard
convective boundary condition in Dl reduces to the following

equation after discretization:

2h hr
r

2 =
®51-1,k1 * [“‘T‘]Gjl,kl 811,k T 0 (4.6)

where ejl,kl 1s a temperature on the surface of Dl'
ejl+l,kl is then a fictitious temperature outside Dl'
However, when the governing equation is applied at the point
le,kl (whose temperature is ejl,kl)' there will then be two
simultaneous equations in the unknown ejl+l,kl’ and this
fictitious temperature may be eliminated in favor of real

temperatures within Dl‘ The same problem occurs at the

conductors, where a finite-difference expression for the
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FIGURE 4.4

Nomenclature in the Neighborhood of Pj2 K in D2
14

[y



‘e

59

first derivative is required. 1In this case, however, the
situation is less easily resolved. Since no governing
equation is applied at the conductor, there is no way of
eliminating a fictitious point within the conductor. This
problem is addressed in Appendix D, where a suitable
approximation to the conductor boundary condition is derived.
The basic method involves satisfying the boundary condition
at a slight distance from the conductor, and then relying on
the fact that the temperature distribution is nearly one-
dimensional in the immediate vicinity of the conductor.

The remaining exceptional case occurs at mesh
points whose neighboring points on either side have dif-
ferent dimensionless spacings. This happens for radial
spacings at the Dl-D3 and D2—D3 interfaces, and it happens
for circumferential spacings at the interfaces of all
adjacent regions in Dl and D2. In such situations it is
necessary to have finite-difference approximations which
have been modified to fit an irregular mesh. The
expressions for the first and second derivatives in a non-
uniform mesh which are used in this study are readily
derived, either from a Taylor's series expansion about the
central point or by deduction from the mean value theorem of

differential calculus. They are the following [7]:

h h.-h h
dy) _ 1 Y 2 2,
(HE)]. B [hz(hl+h2 ]“’j+1 +[hlh2 ]‘Pj [h AR [V5-1 o)
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2
_d.___Lk = 2 - 2 2 ]
(d22>- [h2 %P2 ]q)jJ“l [hlhz]wj +[h1 h +h, ]wj-l +0(h) ;
] ( )

(4.8)

where hl is the dimensionless spacing between wj—l and wj,
and h, is the spacing dimension between wj and wj+l Also
it is noted that these expressions reduce to the standard

form of Equations 4.3 and 4.4 when the dimensionless

spacings are uniform (hl = h2).



CHAPTER 5

THE COMPUTER PROGRAM

General

The result of transforming the continuous
formulation of the conduction problem into the corresponding
finite-difference formulation is a linear set of simul-
taneous algebraic equations. A FORTRAN IV computer program
written by the author generates this system if equations,
performs the matrix inversion and multiplication to obtain
various component solutions, and then combines component
solutions to produce a final solution according to the
superposition principle. User instructions for the program
are discussed in Appendix E, and a complete listing of the
source program is given in Appendix F.

The Coefficient Matrix

The set of simultaneous equations for the

conduction problem may be written in the form

[aj{e} = {B}, (5.1)

where [A] is an nxn matrix of coefficients, {6} is a vector
of n unknown dimensionless temperatures, and the right-hand-
side vector {B} is a vector of n forcing elements.

Referring back to Figure 4.4, a typical algebraic equation

was shown to be of the form

61
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( ) 6. + (a.

851,k O4-1,k T (35,0 8

+ ( )8 0.

i,k aj+lvk j+llk+ (ajrk-l) j k-1

+ ( ) 6

35, k+1' %5, x41 = Py, x ¢ (5.2)
where ej,k is the central point at which the governing
equation was applied, and the am'n are the coefficients
which were given in Equation 4.5. A typical equation thus
involves five points — a central point and its four
neighbors — and a typical row of the coefficient matrix
accordingly has five non-zero elements. However, the
application of a governing equation at certain mesh points
produces rows with fewer than five non-zero elements. These
situations are depicted in Figure 5.1, together with a
typical mesh point. In this figure, points P3 and P4
initially had the full complement of four neighboring points,
but fictitious points outside the domain were eliminated by
incorporating the boundary conditions at those locations
into the governing equations.

It is a simple métter to assemble the various
coefficients am,n into a matrix. The only requirement is
that the rows be arranged so as to place the coefficients of
central points (Pl, P2, P3, or P4 in Figure 5.1) on the main
diagonal of the matrix. Since a governing equation will
necessarily inﬁolve the central point at which it is applied,
it is therefore ensured that only non-zero elements will

appear on the main diagonal, a necessary condition prior to

matrix inversion.



& —MESH POINT
O — CONDUCTOR POINT

£0

PI_TYPICAL POINT WITH FOUR NEIGHBORING MESH POINTS

. P2—POINT WITH THREE NEIGHBORING MESH POINTS AND
ONE NEIGHBORING CONDUCTOR PQINT

F:;—POINT WITH THREE NEIGHBORING MESH POINTS

E;—POINT WITH TWO NEIGHBORING MESH POINTS

FIGURE 5.1
Points Affected by the Application of a Governing

Equation at Various Locations in a Discrete Network
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The coefficient matrix is inverted by the packaged
subroutine RMINV, which uses the standard Gauss~Jordan
algorithm. An automatic feature of this subroutine is the
calculation of the determinant of the matrix. In order to
keep the order of magnitude of this determinant within a
range acceptable to FORTRAN IV, each row of the matrix and
the corresponding elements of the forcing vectors are scaled
so that the largest element of every row is unity. Once the

matrix has been inverted, the temperatures {6} are available

from

{6} = (a1 (B}, (5.3)

where [A]ml denotes the inverse of [A].

Forcing Vectors

In the conduction problem the total heat flow is
comprised of the conductor losses, the dielectric loss, and
the sheath loss. This heat flow is driven by two types of
poténtials: the conductof temperatures and the dielectric
heating. These potentials are accounted for in the right-
hand-side vectors {B} of Equation 5.1. For purposes of
reference the following vectors are defined: {B}l is the
forcing vector for the component problem in which a
conductor temperature is driving the heat flow; {B}2 is the
forcing vector for the component problem in which the heat

flow is driven by dielectric heating.
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The procedure for generating {B}l is suggested by
point P, of Figure 5.1. The elements of {B}l are initially
all zero. However, when a governing equation is applied at

points adjacent to the conductor, such as point P one of

2t
the neighboring points.is the conductor itself. The
conductor temperature is not an unknown, though, and when
the governing equation is written in the form of
Equation 5.1, the term involving the conductor temperature
is carried over to the right-hand side and becomes a forcing
term. The non-zero elements of {B}l are therefore comprised
of conductor temperature-terms which have been referred to
the forcing vector.

The elements of {8}2 appear as volumetric heating
terms in the difference form of Poisson's equation,
Equation 4.5. It can be shown [8,9] that the dielectric

loss per unit volume is of the form:
.. _ C
We T 3 (5.4)
r

where C is a constant for a given system, and r is the
radius at a point in the insulation where the local dielec-
tric loss per unit volume is W Since the distribution of
the dielectric loss is known, it is possible to integrate
Equation 5.4 over any particular area to obtain the total
loss per unit axial length within that area. A typical

radial mesh and the areas associated with each mesh point
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are shown in Figure 5.2. The dielectric loss per unit

length in a typical area, say A is given by

2'

r r

3 3 ,
(Wy), = J wodA = [ (;C-Z-)(an)dr = 27C ln(;_—z-) . (5.5)
Y h ey

2 2

The total dielectric loss per unit length is:

6 r6
Wd = wddA = 21C 1n gl B0 (5.6)
r

The loss per unit length in any particular area may be
expressed as a fraction of the total loss per unit length

just from information about the radial mesh. For example,

=)
. ln —
.Y = Wa) o - r,

d)2 = Wd d) ——(%g} (Wd) . (5.7)
ln;—
1

The computer program distributes the dielectric loss in this
manner. The fraction of the total loss per unit length
which occurs in each discrete area is calculated from the
shape of the radial mesh. The dielectric loss per unit

length for each area is then obtained by multiplying the
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various fractions by the total loss per unit length, W a

q’
number which is supplied as input data. Each mesh point
therefore has an associated dielectric loss and the volumet-
ric loss terms in Equation 4.5 can be generated accordingly.
A question then arises, however, regarding the disposition
- of the loss in the innermost discrete area, Ay in Figure 5.2.
It is noticed in this figure that there is no mesh point
associated with Al; For this reason the loss which occurs
in Al is added to the current-produced heating of the conduc-
tor. This suitably accounts for the loss, providing a con-
servative approximation to the true dielectric distribution.
The sheath loss is a current-produced loss which
occurs on the surface of the cable. In the finite-
différence model, this loss is placed in the outermost
discrete area of insulation, which is associated with the
mesh point on the cable surface. 1In Figure 5.2, for

example, the sheath loss would be placed in A It is then

5
treated as a volumetric type of heating in addition to the
dielectric loss for that area. A third potential is thereby
introduced, which is accounted for in a third vector: {B}3
is the forcing vector for the component problem in which

sheath heating drives the heat flow.

Verification

During the course of developing the computer
program, periodic tests were performed to ensure its
correctness. One general technique used to verify a

computer program is to solve a problem with it whose
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solution is already known and then to compare the two
results. Several such problems, as well as a simpler
checking procedure, were employed in this study.

The first major verification was a check on the
coefficient matrix. This test was accomplished by printing
out the matrix for a lll-point mesh and then by verifying
each element by hand computation. The 1lll-point mesh was of
sufficient size for the matrix-generation portion of the pro-
gram to pass through all its decision branches. This test
was repeated for meshes of decreasing size, until the matrix
for the smallest possible mesh had been verified. In partic-
ular, the coefficient matrices for the following mesh sizes
were verified: 1lll-point, 57-point, 24-point, 17-point, and
l6-point. Forcing vectors were checked in a similar manner.

The second major verification of the computer pro-
gram was accomplished by solving the following problem: the
conductor of Cable 2 was maintained at a specified hot tem-
perature, while that of Cable 1 was maintained at the oil
temperature. Sheath and dielectric losses were not included.
The height of the inter-cable conduction path was chosen so
as to include an angle of 6° in either cable. This angle
was judged to be sufficiently small so as to minimize the
thermal effect of Cable 1 on Cable 2. Temperatures in
Cable 2 diametrically opposite the intercable conduction
path (and hence far-removed from the limited two-dimensional
effect) were then compared to corresponding analytical tem-

peratures from the one-dimensional solution. This comparison
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was repeated for successively finer meshes in order to
examine the convergence of the solution. In performing the
test, temperatures at similar radial points were compared,

and a root-mean-square error was defined:

1/2

N
2
. Z [(Tj) computer (Tj)analytical]
RMS-error (°F) i=1

I
P

& ’

N

(5.8)

where N is the number of mesh points along a radius in

Cable 2. This error was then expressed as a percentage of
the total temperature drop through the insulation. The re-
sult for five different mesh sizes is shown in Figure 5.3.
The errors demonstrate the typical (l/hz)—dependence on mesh
size, which is expected, since nearly all the finite differ-
ence expressions used in'this problem are O(hz) approxima-
tions. It is further seen that the computer solution clearly
converges to the analytical solution, having less than one
percent error in temperature with as few as three radial sub-
divisions. A final run was then made with this problem to
check whether a symmetrical cable configuration would produce
a symmetrical temperature distribution. A coarse mesh of

18 points was used with a cable geometry such that the line
joining the cable centers was a line of symmetry. 1In the

resulting temperature distribution, the seven temperatures
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above-the line of symmetry agreed with their mirror images
to six significant figures.

The third major verification of the program was a
cross-check, using the output from Solution 1 (which finds
temperature) as the input for Solution 2 (which finds
current). For this test a 79-point mesh was employed, and
all losses in both cables were included. Using an oil
temperature of 14b°F and a current of 942 amperes in each
cable, Solution 1 predicted a maximum temperature of
189.451°F for the system. This maximum temperature,
together with the o0il temperature of 140°F, was then used as
input for Solution 2, which predicted a maximum allowable
current of 942 amperes in each cable. The solutions
mutually agreed to six significant figures, thereby demon-
strating the reciprocal validity of the program.

The final major verification procedure was to
approximate the one-dimensional solution for a single cable
with all losses, by shrinking to a minimum the height of the
inter-cable conduction path. In the computer program the
conduction path is presumed to have some non-zero height, so
the included angle in either cable was taken to be 2°.

Again temperatures in Cable 2 opposite the inter-cable

conduction path were compared to corresponding analytical
temperatures, and the same error criteria (RMS-error as a
percentage of the total drop through the insulation) were
employed. The test was made for three cases: dielectric

loss only, conductor losses only, and then all losses.
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Using a mesh comprised of four radial subdivisions in the
insulation, the following results were obtained: dielectric
loss only — 2.6% error in temperature solution; conductor
losses only — 0.4% error in temperature solution, 1.0% error
in current solution; all losses — 0.8% error in temperature
solution, 2.0% error in current solution. Temperatures in
the dielectric solution are elevated above their analytical
counterparts because of the referral of loss near the
conductor into the conductor itself. However, when the
dielectric loss is considered proportionately with all other
losses, the temperature error is observed to be reasonably
small (less than one percent for this mesh). The currents
predicted in this test are seen to be less accurate than the
corresponding predicted temperatures. Thils circumstance,
though, reflects a limitation of the test itself rather than
one of the model. That is, the temperature distribution

is expected to smooth out into a one-dimensional form in a
region far-removed from disturbing effects. However, the
current solution depends on the entire temperature distri-
bution. Since an inter-cable conduction path of any
non-zero size will inevitability produce local distortions
in the temperature distribution, it is ultimately futile to
expect very close agreement with a one-dimensional current
solution. Agreement could be demanded if the size of the
conduction path could be made identically zero, but the
model does not possess this capability, having been designed

for the solution of real two-dimensional problems. Given
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this limitation, the current solutions demonstrate excellent
agreement with the one-dimensional results. The credibility
generated by this test, together with all the evidence

previously stated, suffices to establish the validity of the

computer program.
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CHAPTER 5A

COPPER TAPE EFFECTS

Effective Conductivity

Many cable systems used in the underground power transmission have a
thin copper tape wrapped around the cable insulation directly under the
moisture seal assembly. The tape is included to circumferentially smooth
out the electric potential and to provide electric ground. Having a very
high thermal conductivity the copper tape provides a mechanism for trans-
ferring heat away from higﬁ temperature regions. It therefore causes a
redistribution of the temperature, tending toward the one-dimensional form.
Order of magnitude calculations indicate that the presence of a five mil
(t = 0.005") copper tape (thermal conductivity k= 220 BTU/hr ft°F) under
the moisture seal assembly have a significant effect on the temperature
distribution of the cable:

Consider a typical system of Fig. 5A.1,

r, = 0.9125 in
r, = 2.0675 in
k = 0.1153 BTU/hr ft°F

The thermal resistance per unit length in the circumferential direction without
the tape Rcis approximately

1

c k(rz—rl

R 90 hr°F/BTU

The circumferential thermal resistance including the copper tape Ré‘ is
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l ~ — -
= k(r2 r, t) + kcut
- ~ l o
R = ~ 9,7 hr°F/BTU

c k(rz—rl—t) + kcut

Since Rc and R‘; are significantly different, the presence of a highly con-
ductive medium under the cable moisture seal assembly must be taken into account.
An order of magnitude calculation also indicates that the copper tape
effect in the radial direction is negligible: whereas in the circumferential
direction the resistance of copper and insulation are parallel, in the radial

direction the two resistances are connected in series. The radial thermal

resistance per unit length without the tape Rr is

R_=1nr,/r, = 1.129002568 hr °F/BTU

- — Y

2m k

The radial thermal resistance per unit length including the tape, R ;, is

r -t r
. 1n-2 1n —2—
R = r, + r2—t = 1.12900432 hr°F/BTU
2Tk 2Tk
cu

Since the tape is very thin only the mesh points located around the outside
circumference of the cable insulation are affected. In Fig. 5A.1 the thermal
conduction path between point 0 and 1 consists of the copper tape (thickness t)

and a layer of insulation (thickness Lr-t). The path length is L The

ul'

thermal resistance of the two conducting media R~ is

La
R - k(Lr_t) + kcut = keffLr




. 7~
\I\nsllisaog/ Copper tape

Circle A
\
-
-7 \ length L
- \\ eng 02
angle th\
4
. 4
angle h r
— ol/
\\\j / lengthLG1

]

Fig. 5A.1. Development of the expression for the combined
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where ke is the effective conductivity of the entire thermal conduction

ff
path betwee 0 and 1.

In the computer program Lr = (rz—rl)/N; where N is the number of radial

divisions.
Hence,
r. - r
kKt + k(—=—2=> - 1)
Kk _ _cu N
eff r2 - rl (5A.1)
N

Equation (5A.1) applies only for points on the insulation outer circumference
and in the circumference direction only, al other mesh poinst are unaffected.

Finite Difference Equations

For the mesh points located on the outside circumference some of
the findsc 2iffcrconcc cuxpracsions (4.3) (4.4) or (4.8) usad in discrotizing
of the governing equation (2.6) and the boundary condition must be adjusted
to account for the higher conductivity in the circumferential direction.
Thus for the point 0 in Figure 5A.1 the finite difference approximations

in non-dimensional form (L =hr_., L =hr.)
r r 2 o a2

220 _ 0" 2@0 +0,
Brz h2

r
50 94 7 93
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2

3% T2 “ o 1
3o 2 2
ha
(5A.2)
2
09 2 0, - —2— 0 + 2 0
¥ ¥
302 hOQ(halhOQ) 2 hoﬂ_hOQ 0 hOll(hOElh(}Z) 1
CT-T
where O is given by (2.5) and 0~ = ors .
W/keff

Then using (5A.2), the equation (2.6) about a regular boundary point 0

(hol = hoa) becomes,
- - o 2-
@4 2@0 + 93 _ 64 93 C] 5 200 + 0 1, (rzr) q (5A.3)
r- [ 1+ [ 1+ [ ] =
2 2h 2 W
h r h
r a
For a boundary point at a regional interface (hogl # hocz):
A T T 2 .- 2 .
A e @ w31 %, " w5, %0
h r T 02" d o2 ol o2
-2
2 - C275) 4
ol "ol o2
The boundary condition (2.8) is unaffected for all boundary points:
Ck %
2 2h 0 (5A.5)
r T

Eliminating 94 from (5A.3) and (5A.4) using (5A.5) and noticing that from

AT . AT
0=k 0 = ke w

0" = —— (5A.6)
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Hence for hol = h02 = h0
2h hr -2 - Kk —
2 r r eff , 2 2r
-[——= ( ) + =) + S-lo, +
ko2 2h_ ko2 2 0
T o r
k —2 (r T
eff , 1 eff . 1 2r DI
h h
[0} Y
and for hocl # th
2h, hr, 2 T a2 Kerr
T Gt ) e T 19,
h r h ol o2
r r
Kk k 2
eff 2 eff 2 27
0. + + =
b E m it T TGy e T 1%
o = -~ - - - r
LT 2
-(27) ¢ (5A.8)
W

Computer Program Modification

From (5A.7) and (5A.8) it is apparent that to account for the presence
of a thin high-conductivity tape under moisture seal of the cable insulation

it is only necessary to multiply the original coefficients (corresponding to
K

eff

k

the homogeneous insulation material) of Gl's and @2'3 by and to add

k
2 1 - eff

hcﬂth k

) to both (5A.7) and (5A.8) for if h01 = h02 = h(x’ it

: 2
follows that nn X The simple complementation of this procedure

ol o2
can be eased a by the following manipulation.
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k
From (5A.8) the coefficients of el's and @és for Eff = 1 (original coefficient
for hol = hdz = h(f reduces to *15- which are the original coefficients of

h
a
@1'3 and @2'5 in (5A.7). It is possible therefore to use (5A.8) for all

circumferential boundary points.

Further, let the original coefficients of Gl's and @2'3 be

2
=0
+ L]
hoa(hoa hCQ) 1 (5A.9)
2 -0
+
hoa(halhoa) 2

Also, let the new coefficients of Ol's and 62'5 be

2 -
=P =0_f
+
hocl(hoa th) 1 1
(5A.10)
2 f
=P =0,f
+
hOQ(hal hdz) 2 2
here _ keff
whe f K
Let Q = ———2——-(1 - f) = factor to be added to the original coefficient of
h _h
ol o2
@2'3
2
Then from (5A.9) and(5A.10) 0 + =P
+
1 hOll(hOtZ hO&) 1
ot b 2(1 -t)
0; - F)) (———h +1) =7 = Q (5A.11)
o2 ol o2
th
and similarly (O2 - Pz) ( E—~') =Q (54.12)

ol
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Eliminating ho& and th between (5A.11) and (5A.12) obtain,

=0, +0_ -P -P
Q 01 02 1 2 (5A.13)
Thus to modify the original matrix of coefficients of O's it is necessary

keff
k

add the difference (0l - Pl) and (02 - PZ) between the original coefficient

to multiply the original coefficients of Gl's and @z's by £ = and to

1 1 . . — -
01 and 02 of Ol s and OZ-S and the new coefficients Pl = Olf and P2 = Ozf

to the original coefficients of Oo's. An important property of the matrix

Awas used to find the locations of Oo's, @l's and @z's: the numbering

system is such that all coefficients of O_'s lie on the main diagonal and

0

the coefficients of @1'5 immediately precede Oo's in each row and the
coefficients of 62'5 immediately follow Go's in each row with the exception
OI the row correspondilng to the governing equatlon written apout the point
in cable 2 at an angle 0o = 0. Also all 90'5 are circumferential boundary

points.

Verifications

The first major verification was a check on the coefficient matrix.
This test was, as in Chapter 5, accomplished by printing out the matrix for
a 42 and 17-point mesh and then by verifying each element by hand computations.
The second major verification was an energy balance performed on
selected mesh elements, again by hand computation. The final major verification
was accomplished by solving the following problem: the intercable conduction
path was reduced to a very small size so that approximately uniform convective
boundary conditions existed at every circumferential point. The problem
was run with and without the tape and both solutions were converging to the

1-D solution as the intercable conduction path was being reduced.



CHAPTER 6

RESULTS AND CONCLUSIONS

Evaluation Criteria

As a first criterion for evaluating the severity
of a given set of system operating conditicns, the numerical
solutions produced by the computer program are compared to
the corresponding analytical solutions for a single, undis-
turbed cable. The one-dimensional temperature and current
solutions for a single cable are presented in Appendix G.
Since the undisturbed cable represents an optimum operating
condition, the one-dimensional solution provides an upper
hound for svstem performance.

A second criterion for evaluation may be obtained
from a modification of the one-dimensional solutions, in
which a conservative allowance for two-dimensional effects
is made. This modification is effected in the following
manner: it is reasoned that an effect on any portion of the
cable surface which disturbs the one-dimensional temperature
distribution is less severe than the effect of insulating
that portion of the surface. The conservative approximation
is then made that such disturbances do indeed effectively
insulate appropriate portions of the surface, and that the
entire sector defined by such an insulated arc is likewise
insulated. All losses which would have occurred in the
insulated sector are then placed into the undisturbed frac-

tion of the cable, and the one-dimensional solutions are



76

employed with appropriately scaled-up losses. This proce-
dure is explained fully in Appendix H, where the conserva-
tive approximations for maximum temperature and current are
derived. Since by physical argument the disturbed portions
of the cable surface cannot have a more stringent condition
imposed than that of being insulated, the approximate
formulas of Appendix H provide a lower bound for system
performance.
Results

While the primary product of this study is the
computer program itself, a total of 16 cable problems were
solved by the author in order to provide preliminary infor-
mation about some typical operating conditions. These
16 problems break down into the following: Solution 2 (for
maximum current) and Solution 3 (for maximum oil temperature)
were employed for four configurations of cables, and two
cable systems were considered. The four cable configura-
tions were equilateral, cradled, open, and equilateral-pipe.
These are depicted in Figure 6.1. The systems considered
were a 2500 MCM system (System 1) and a 2000 MCM system
(System 2). Values for the physical parameters associated
with these two systems are listed in Table 2. The thermal
parameters were taken to have the following values for all
16 problems: 0.1153 Btu/hr-ft-°F for the thermal conduc-
tivity of the insulation, and 5.0 Btu/hr-ft2—°F for the
thermal film coefficient in convective regions. Also the

conservative assumption of a thermally nonconducting conduit
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Values for The Physical Parameters

TABLE 2

of Systems 1 and 2

Inner Radius
of Cable Insulation (in)

Outer Radius
of Cable Insulation (in)

Skid Wire Thickness (in)

DC Resistance
of Conductor (UR/ft)

AC/DC Ratio
at Conductor

AC/DC Rarin

at Sheath

Typical Dielectric
Loss (watts/conductor-ft)

Typical Current (amps)

Thermal Conductivity of
Insulation (BTU/hr-ft°F)

Thermal Conductivity of
Copper Tape (BIU/hr-ft°F)

Copper Tape Thickness (in)

System 1

0.9125

2.0675

0.10

5.36

1.19

1.24

3.18

942

0.1153

220.0

0.005

System 2

0.8155

1.9675

0.10

6.63

1.13

1.18

3.18

888

0.1153

220.0

0.005
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was made. This latter assumption is significant only for
the cradled and equilateral-pipe configurations, where the
cables actually touch the conduit wall. A nonconducting
wall substantially increases the thermal resistance in the
vicinity of the contact point, thereby producing a local
region of high temperature and hindering the removal of heat
from the cable.

Results for the 16 problems are given in
Tables 3-6. In these tables the first column of percent-
ages is a comparison of computer solutions to corresponding
one-dimensional solutions. These negative percentages are a
measure of how much worse the given operating condition is
than the best pnssihle condition. The second column of
percentages is a comparison of computer solutions to the
conservative approximate solutions from Appendix H. These
percentages, which are positive, provide a measure of how
much better the given operating condition is than the
estimated worst condition.

Upon examining the four tables, the equilateral-
pipe configuration is immediately identified as the most
severe operating configuration. This is expected, since the
greatest obstruction of cable surface area occurs in this
configuration. The other configurations follow in logical
sequence: equilateral, cradled, and open. It is shown in
Appendix B and also in the heat transfer report [2] that a
steel pipe is very effective in conducting heat away from

the cables to the bulk of the oil. So had the problems
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TABLE 3

Solution 2 For Four Cable Configurations -

System 1
I-1
I-T
1-D *
I (amps I1-—D L
Open -- no tape 10754 -5.0% +0.27%
Open —-- tape 1105.0 -2.47% +0.37%
Cradled
(Nonconducting Pipe) -- no tape 1030.2 ~9,0% +2.0%
Cradled
(Nonconducting Pipe) -— tape 1086.0 -4.,1% +7.5%
Equilateral -- no tape 978.2 -13.6% +3.7%
Equilateral -- tape 1071.3 -5.47 +13.5%
Equilateral-Pipe
(Nonconducting Fipe, —- no tape 946.4 -16.4% T3.6%
Equilateral-Pipe
(Nonconducting-Pipe) -- tape 1057.0 -6.6% +21.3%
One-Dimensional (1132.1) - -

140°F

Toi1

T
max

185°F
I - current from computer solution

Il n "~ current from one~dimensional solution

I, - current from conservative approximate solution
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TABLE 4

Solution 3 For Four Cable Configurations -

System 1
Toit™ %11’ 1-p To11™ i1’
T °F - -
oil CF) To (Toil)l—D To (Toil)*
Open -- no tape 148.3 -8.97% 0.0%
Open -- tape 149.9 -4.2% +4.47
Cradled
(Nonconducting Pipe) ~- no tape  145.7 -16.6% +2.8%
Cradled
(Nonconducting Pipe) -- tape 148.9 -7.1% +10.7%
Equilateral -- no tape 142.4 ~26.47 +4.8%
Equilateral =-- tape 148.1 -9 57 +17.87
Equilateral-Pipe
(Nonconducting Pipe) —-- no tape 140.3 -32.6% +11.5%
Equilateral-Pipe
(Nonconducting Pipe) -- tape 147.3 ~11.9% +25.4%
One-Dimensional (151.3)- - -
I = 942 amps
T = 185°F
max
Toil - 0il temperature from computer solutions
(Toil)l—D - 0il temperature from one-dimensional solution
(Toil)* - 0il temperature from conservative approximate solution

T0 - conductor temperature



TABLE 5

Solution 2 For Four Cable Configurations -

System 2
-1, o I-I,

I {(amps) __jjiﬂl I*
Open -- no tape 950. 2 -5.07% +0.3%
Open —-- tape 975.3 -2.5% +3.0%
Cradled
(Nonconducting Pipe) -- no tape 911.9 -8.8% +2.47
Cradled
(Nonconducting Pipe) —-- tape 959.2 -4.,1% +7.7%
Equilateral -- no tape 864. 6 -13.6% +4.0%
Equilateral -- tape 946.6 -5.47 +13.9%
Equilateral-Pipe
{Nonconducting Pipe) -- no tape 837.2 ~-16.3% +9.3%
Equilateral-Pipe
(Nonconducting Pipe) ~- tape 938.8 -6.7% +21.9%
One-Dimensional (1000.4) (0.0%) -
Toil = 140°F
T = 185°F
max
I - current from computer solution
Il—D - current from one-dimensional solution
I, - current from conservative approximate solution

*



Solution 3 For Four Cable Configurations -

TABLE 6

System 2
Toit™ Toi)1p Toin” Tosr+
° - —(T
Toil CF) To (Toil)l—D o ( oil)*
Open -- no tape 144.4 -8.8% +0.3%
Open ~- tape 146.1 -4.37 +4.5%
Cradled
(Nonconducting Pipe) -- no tape  141.8 -15.8% +3.4%
Cradled
(Nonconducting Pipe) —- tape 145.1 -7.0% +10.87%
Equilateral —— no tape 138.2 -25.5% +5.8%
Equilateral —- tape 144.2 -9.4% +17.9%
Equilateral-Pipe
(Nonconducting Pipe) -- no tape 136.0 -31.4% +12.47
Equilateral-Pipe
(Nonconducting Pipe) —- tape 143.3 -11.8% +25.47
One-Dimensional (147.7) - -

I = 888 amps
T 185°F

max

Toil

(Toil)l—D

(T ). - oil temperature from conservative approximate solution

oil’ *

To - conductor temperature

oil temperature from computer solution

- o0il temperature from one-dimensional solution

83
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been solved using a thermally conducting conduit material such as steel,
then the results for the equilateral-pipe configuration would have been
essentially the same as those for the equilateral case, and the latter
would have been the most severe configuration. A complete temperature
distribution for the equilateral-pipe configuration without the high
conductivity tape under the cable moisture seal agsembly of System 1

is displayed in Figure 6.2.

Two observations are made regarding the conservatije approximate
solutions. The first is that in cases without tape they are reasonably
accurate, being conservative by 9.3% in the least accurate case (Solution
2, System 2, Equilateral-Pipe). They are therefore useful whenever a
highly refined solution is not required. The second observation is
that the conservative solutions become less accurate as the configurations
hecome more severe. This tendency is readilv explained. for as the sur-
face area of a cable is increasingly obstructed, two-dimensional effects
grow stronger. Since the conservative approximations are based on the
one-dimensional solutions, they become increasingly deviant with the
severity of the configuration. So despite the conservative naturé of
the approximate solutions, they are not recommended for design purposes.

Also it is noticed that there is a large discrepancy between cor-
responding percentages in Solution 2 and Solution 3: temperature
deviations are somewhat larger than current deviations. Such a dis-
crepancy, however, should not be a surprising one. Consider that both
solutions are applied to a given configuration. 1In Solution 3 the heat
flow is constant, and the temperature distribution must be linearly

adjusted so as to account for the two-dimensional constraints imposed
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by the configuration. In Solution 2, though, the heat flow is the adjustable
quantity of the total heat flow, only the current-produced fraction (usually
about 2/3) is variable, and thus the current-produced losses must be dis-—
proportionately adjusted so as to align the overall heat flow according

to the two—-dimensional constraints of the configuration. Furthermore, the
current itself varies as the second root of the variable heat flow. Therefore
the relationship between the two solutions is a complicated one, and there

is no reason to expect any similarity between their respective deviatioms.

Finally, it is evident from the tables that cable proximity effects
are very significant in forced cooling especially for cables without the
high thermal conductivity tapes. In System 2 with no tape, for example,
the maximum allowable oil temperature is 11.7°F lower for the equilateral-
pipe configuiairion thau f0I the one-dimensional case.

Since force-cooled systems are typically designed for an axial oil
temperature rise of about 45°F between refrigeration stations, the 11.7°F
difference itself would accout for 267 of the axial oil temperature rise.

On the other hand, in the same system with the tape present the maximum
allowable oil temperature is only 4.4°F lower than in ID case, or about

10% of the axial Qil temperature rise. For the more realistic equilateral
configuration the same figures are 9.5°F or 21.6% without the tape and 3.5°F
or 8% with the tape. This means that depending on whether the tape is or is
not present under the cable moisture seal assembly System 2 in the equilateral
configuration would require either an 8% or 21% higher flow rate, or

either an 87 or 217% shorter axial distance between refrigeration stations

then the same system in a completely free (one-dimensional) configuration.
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Approximate allowance for cable proximity effects must therefore be made
in the overall design of force-cooled systems. Since there is a sig-
nificant improvement in the results when the copper tape is wrapped
around the cable insulation, such cables are from thermal considerations,
the more suitable for force-cooled power transmission work.

Isothermal lines for the four oil temperature solutions of System 1
are shown in Figures 6.3 - 6.7. One-dimensional portions of the various
solutions may readily be identified in these figures by isotherms which
are circular arcs. As expected, all the distributions smooth out into
one-dimensional form away from points of cable contact and conduit
contact. Regions of high temperature within the insulation are identi-
fied by isotherms which depart significantly from the circular shape,
protruding outward from the cable centers. This effect is observed to
be most prevalent in the equilateral-pipe configuration, decreasing in
strength in the equilateral, cradled, and open configurations, respectively.
Thus the isothermal lines in themselves provide a vivid illustration of
the severity of the various configurations. Shown with the isotherms are
adiabatic lines. These lines are everywhere normal to the isotherms,
and they represent curves along which the heat flow travels. It is noted
that not all adiabatic lines originate at the conductors. This circum-
stance is attributable to the dielectric heating, which occurs within

the insulation itself.
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Conclusions

On the basis of the results discussed, the following conclusions

are drawn:

1. For a thermally nonconductiong conduit, a cable system is most
susceptible to thermal failure in the equilateral-pipe config-
uration. For a thermally conducting conduit, the equilateral-
pipe and equilateral configurations are equally severe, and the
latter represents the worst operating configuration.

2. The conservative approximate solutions developed in Appendix H
are useful for obtaining good estimates of maximum temperature
and current. However, recourse should be made to the computer
solutions whenever design information is required.

3. Cable proximity effects are important in forced cooling. The
cable configuraticn can zccount fox 217 {oquilateral configuration

with no copper tape) to 267 (equilateral-pipe configuration with
no tape) of the total oil temperature rise between refrigeration
stations.

4. The presence of a thin copper tape in the cable insulation moisture
seal assembly significantly smooths out the temperature distribution
in the cable insulation and thus higher maximum allowable oil
temperature and higher currents are permitted than if a homogeneous
cable insulation is used. Numerically the improvement is from
about 4.37 for the oil temperature and approximately 9.57 for the

current. If this figure is unacceptable, thicker copper tapes would

smooth out temperatures even more.

e
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Recommendations for Further Work

In order to fully exploit the convenlence of having a separate region
associated with each boundary condition, a provision should be written
which would allow Regions IV and VI of Domain 2 to be used simultaneously.
Such a provision does not presently exist, because there is only one
configuration for which it would be desirable. However, the exceptional
configuration is the equilateral-pipe case, in which both cable-cable
and cable-conduit boundary conditions act simultaneously. Since this is
the most severe condition for a thermally nonconducting conduit, it is
expected that this configurétion will be frequently used, and the change
is probably warranted. It is noted, however, that in the present program
all boundary conditions are independently specified by means of a variable
film coefficient. The equilateral-pipe configuration can therefore be
modelled as accurately as the user desires, and the proposed modification
represents only a convenience in laying out the system geometry and mesh
size., Instructions for implementing the change are given in Appendix E.

Finally, some improvement could be effected in the input-output
formats of the computer program. Throughout the development of the program,
attention was continually given to simplicity of I/O procedures and to
ease of user operation. Yet certain aspects of the final I/0 formats are
less convenient than is desirable. Suggestions for their improvement

are offered, again in Appendix E.
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APPENDIX A

THE RELATIVE MAGNITUDE OF CONDUCTION
AND CONVECTION RESISTANCES

The equation which defines the resistance per unit

length to heat transfer is the following:

q= —ﬁ' ’ (A-l)

where q is the total heat flow per unit axial length, AT is
the temperature difference driving the heat flow, and R is

the resistance per unit length to heat transfer.

The heat flow per unit length due to convection

from the outer surface of the insulation to the oil is [10]

q = 2mr_h(sT) , (A.2)

where h is the convective film coefficient, and r0 is the

outer radius of the insulation. The convective resistance

per unit length is therefore

’ Rh = 2rr_h ° (A.3)
o

The heat flow per unit length due to conduction in
the cable insulation, which is assumed to be one-dimensional

in this type of calculation, depends not only on AT, but
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also on the distributed dielectric loss. Because of this
additional dependence on the dielectric loss, it is not ana-
lytically possible to model the conduction path as a simple
resistance. However, a conduction resistance may be ob-
tained numerically, by substituting appropriate values into
Equation A.1l. The (AT) for a given set of losses (q) is
available from the one-dimensional solution presented in

Appendix G. A typical set of values for (gq) and (AT) yields

_ AT _ hr-ft-°F
Rk =@ - 0.93 —Btu '

(A.4)
where AT is the temperature drop across the insulation, and
(g) is the heat flow per unit length emanating from within
the insulation (the conductor and dielectric losses).

The corresponding value for Rh from Equation A.3

is

1 hr-ft-°F
Rh T 2mr h 0.18 Btu ' (A.3)

where the most conservative value for the natural convection
film coefficient (5.0 Btu/hr—ft2—°F) was used [2]. The

relative magnitude of the two resistances is therefore

Rh _ 0.18 (hr-ft-°F/Btu) _
R~ 0.93 (hr-ft-°fF/Btu) 0.19 . (A.5)
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Thus the natural convection resistance, which is always
larger than the combined forced and natural convection re-
sistance, is small when compared to the conduction re-

sistance, and the latter is the limiting resistance to heat

transfer.
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APPENDIX B

INVESTIGATION OF THE CABLE-CONDUIT
BOUNDARY CONDITION

In order to examine the cable-conduit boundary
condition described in Chapter 2, a portion of the conduit
wall is thermally modelled as a fin. The geometry from
which to determine a fin length is shown in Figure B.l. It
is based on a cradled configuration of cables, since that
configuration produces the largest conduit loss. Of the two
possible lengths Ll and L2, the latter is chosen so as to
maximize the temperature drop through the fin. L2 is found

from the following relations:

sin Bl = Rp-r3 = 0. , (B.1)
from which
By, = sin"1(0.660) = 41.3° . (B.2)
Then
32 = 180--28l = 97.4° , (B.3)
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FIGURE B.1

Fin Geometry for the Cable-Conduit Boundary Condition
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and

— t\ _ "
- L2 = 62(Rp+5) = 8.,92" . (B.4)

One end of this fin is insulated by symmetry, and as a
conservative approximation, the side of the fin which is
adjacent to the earth is likewise taken to be insulated.
Furthermore, the pipe loss is taken to be concentrated at
the end of the fin which touches the cable (again to maxi-
mize the temperature drop through the fin). This thermal
model is illustrated in Figure B.2. Considering the heat
flow to be one-dimensional, the fin temperature is governed

according to [11]

2 hp
dT_ P (p- -
a2 KX (T-Tyq1) = 0 (B.5)

where P is the convective perimeter, and A is the cross-

sectional area. Using the dimensionless variables

= 2 = oil
P n= L2 ’ 8 W..p.jngp—— ’ (B.6)

2 h_P

‘e _ .2 _

T L, 5 6 =0. (B.7)
n P
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Making the substitution

me = Lg i (B.8)

5—2 - m6 =0 . (B.g)
i

—x t 4T -w (B.10)
p dz'Z_O P
and
dr) = 0. (B.11)
dzi -1,

These are rendered dimensionless to give

L

3g |
a8y - -2 (B.12)
dn[nzo T
and
}
de =0 . (B.13)
dn
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The general solution of Equation B.9 is

-mn mn

8 (&) Cle + C2e (B.14)

il

The two arbitrary constants Cl and C2 are found from the

boundary conditions to be

_ 2
c, = el C,) = ——. (B.15)

When these are substituted into the general solution,

Equation B.1l4 can be manipulated into the following form:

L
_ 2 coshm(l-n)]

The following values are then taken:

hp = 3.3 Btu/hr-ft2—°F (conservative, based on [2])
P =1 ft

(B.17)
k = 25 Btu/hr-ft-°F (1% C steel)

e}

A = 0.0208 ft°

Eguation B.16 finally becomes

6(n) = 5.73 cosh(1.92(1-n)] . (B.18)
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It 1is desired to know the temperature drop from the fin base

to the 0il, so it is now convenient to return to the form
W
™) -T .. = 5.73 k—E cosh[1.92(1-n)] . (B.19)
P

The desired quantity 1is obtained by evaluating Equation B.19
at n = 0 and by substituting Wp = % (8.85 watts/system—-£ft).
The quantity in parentheses is a typical loss value, which
is divided by 6 to account for the 3 cables and for the
splitting of the heat flow to either side at the point of

cable contact. The temperature drop is then

It

(8.85 watts/ft) - .
5.73 (3.413 Btu)

1
6 cosh(1.92)
0il (25 Btu/hr-ft-°F) (watt-hr) a

T(0)-T

It

3.9°F . (B.20)

It is now desired to compare thilis temperature drop
to the drop across the cable insulation. Using once agaln
the one-dimensional solution for z capble with all losses
(Appendix G), the temperature distribution 1in the insulation

is given by

+W ) I +W_+W )
W (W WC) (mc+ gtWg)

0(g) = ! (in % - gnw In & + ITWhT,

41w (1n gl)

K,

(G.16)
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where Wd, WC, and WS are the dielectric, conductor, and
sheath losses per unit length, respectively, and W is an
arbitrary loss per unit length. The dimensionless

temperature drop across the insulation is given by

1n gl (Wd )
6(51) -e(l) = "W —2~—-+WC . (B.Zl)

Returning to the dimensional temperature by means of

Equation G.6, this result becomes:

T(E,) =T(l) = - n gl <Wd4-W ) (B.22)
1 B 2tk \2 "¢/ ° :

The dielectric and conductor losses corresponding to the W
used previously are 3.18 and 5.66 (watts/conductor-ft),
respectively. These values, together with

k = 0.1153 (Btu/hr-ft-°F) give

T(El)-'T(l) = 31.1°F . (B.23)

The relative magnitude of the two temperature

drops is therefore

(AT) .. °
— fin T s I VR-T (B.24)
insulation
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It may be inferred from this result, which represents the
most conservative comparison of the two effects, that
contact between the cables and the steel conduit does not
significantly alter the overall temperature distribution.
The cable conduit boundary should thus be modelled as a
convective one, with at most a slightly modified film

coefficient.
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APPENDIX C

THE SOLUTION FOR MAXIMUM CURRENT

The Superposition Method for Solution 2

In Solution 2 it is necessary that current-
produced losses be treated separately from voltage-produced
losses. This makes it possible to distinguish the variable
component of the temperature distribution from the
stationary component, and subsequently to adjust the
variable component so as to maximize the current. When the
losses are so separated, there are two complete problems,
each one having three components and resembling the problem
presented in Chapter 3. 1In fact, the solution in Chapter 3
for 6(§) may be taken as one component of Solution 2,
provided that the forcing term f(§) is clearly identified,
either with stationary losses or with variable losses.
Accordingly, let f(g) describe all forcing effects in the
domain which are attributable to current. The solution 6(5)
then denotes that part of the total temperature distribution
which is current-dependent.

It is now necessary to determine the stationary
portion of the temperature, that portion which depends on
voltage. Let this part of the total temperature solution be

called 6D(x). The solution 6D(x) satisfies the governing

equation

V26D (x) = g(x) , (c.1)
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where g(x) describes all forcing effects in the domain which
are attributable to voltage. 6D(x) also satisfies the

following boundary conditions (using the notation introduced

in Chapter 3):

eD(i‘"xecl(x) = %Dy - (C.2)

where eDol is some unknown dimensionless temperature.

36D (x)

on

hr
- ——— 9D (x)

(C.3)

xecz(x) §€C2(§)

hr

- x o)

(C.4)

xeCq(x)

..__5_1:1._—-— =0 (C.5)

96D (x)

—5— =0 (C.6)

x€Cq (%)

GD(§)]§€C6(§) = 6D, « (C.7)
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where 6D02 is some unknown dimensionless temperature.

96D (x) hp2
FTv = -4 D (x) (C.8)
7 §€C7(§) xeCo (%)
96D (x) .
- = _Z%E eD(§)} (C.9)
8 Txecg () xeCq (%)
96D (x) | .
= - -2h eo(§)| (C.10)
9 §eC9(§) §EC9(§)

As before, 6D(§) may be decomposed into three
component problems. However, it is not necessary to
introduce three new components, for the solutions 6A(§) and
6B(§) of Chapter 3 already describe the homogeneous
components required. So only one additional component is
needed, and let it be referred to as 6E(§). This component

satisfies the nonhomogeneous governing equation

V29E(§) = g(x) . (C.11)

The boundary conditions satisfied by 6E(x) are identical to

those satisfied by 6C(x), Equations 3.32 - 3.40.
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Once again the three component solutions are

linearly combined according to

6D(x) = blOA(f) + bzeB(g) + 9E(§) , (c.12)

where bl and b2 are two new arbitrary constants. The
validity of Equation C.12 is readily established by direct
substitution into the appropriate governing equation and
boundary conditions, Equations C.1l-C.10. Since this
procedure is identical to that followed in Chapter 3 (see
Equations 3.42 - 3.51), it is not repeated here. The two
constants b1 and b2 are again determined from a knowledge of

the losses at the conductors. By analogy with

Equations 3.56 and 3.57,

86D(§)
on

dCl(x) =0, (C.13)
1 <
C1(§)

xeC, (x)
and

96D (x) |

6
Cg (x) x€Cg (x)

The zero right-hand sides of these equations reflect that

there are no voltage-produced conductor losses. When



112

Equation C.12 is substituted into Equations C.13 and C.14,
two simultaneous algebraic equations result which uniquely
determine bl and b2. The stationary part of the total
temperature solution, 6D(§), is therefore available.
Attention is now turned to the total solution,
BI(§), which includes both stationary and variable losses.

8I(x) satisfies the nonhomogeneous governing equation

v2eI(x) = £(x) +q(x) , (C.15)

as well as the following boundary conditions:

eI(§)l§€C1(§) = 01, . (C.16)

where 6101 is some unknown dimensionless temperature.

361(§)' hr

!
2 i
= = —= 0I(x) (C.17)
on k el
2 $§eC2(§) §€C2(§)
901 (x) hr2
__554;_ = - = eI(§) (C.18)
P lxecy () et
30T (x) o
an4 =0 (C.1 )

xeC, (x)



113

901 (x)
8n5 = 0 (C.20)
x€Cq (%)
6I(§)[§€C6(§) = 81, , (C.21)

where 8102 is some unknown dimensionless temperature.

3071 (x) hoz

—-———an~ = -——]-{— 61()5) (C.22)
7 x€C., (x) xeCo (%)

901 (x) |

— = —3%9 O (x) | (C.23)
8 xeCg (x) x€Cg (%)

301 (x)

—— = —Zgh 91(5), (C.24)
9 x€C9(x) §tc9(§)

The total solution 6I(x) is obtained as a simple

sum of the particular solutions 6(x) and 6D(x):

BI(x) = 6(X)-+6D(§) . (C.25)

~

The validity of C.25 is established by direct substitution

into Equations C.15-C.24:

VZGI(g) = V2[6(§)-+8D(§)] = f(§)-kg(§) Check (C.26)
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8I(x) | [6(x)+6D(x) ]| = 6,.. +0D Check ,

§ccl(§) §ccl(§) 01 01

(C.27)

provided eIOl = 001-+6D01 = (al+bl)Ao. This result follows

directly from the linearity of the problem: a, and bl were

determined by the variable and stationary components,
respectively, of the loss at the conductors. Since the
variable and stationary losses may be added to give the

total loss at the conductors, the temperatures ale and

blAO may likewise be added to give the true conductor

temperature.
BGI(X) ) !
T:— = == [6(x) +6D(x)]
2 xeC, (x) 2 ) ) ‘xeC, (%)
~ 2% T2
hr, i
= -5 [6(x)+GD(x)]%
~ ~ 'xecz(x)
hr2 |
= - = 6I(x) Check (C.28)

§EC2(§)
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861(5)

2
T ——a'ﬁ; [6(§)+6D(§)]
§ec3(§) §ec3(§)
hr2
= —-k— [e(X) + eD(X)]
~ ~ xeC, (x)
TV 3N e
hr2
= - X 81 (x) Check (C.29)
T xeCy(x)
861(5) 5
S5 = sgz [9(§)-+9D(§)]
§€C4(§) §€C4(§)
=0 Check (C.30)
96T (x) 3
anS = SH; [9(§)-+8D(§)]
xeCy (x) x€Cq (x)
=0 Check (C.31)
61 (x) |§€C6(i‘) (6 (x) +6D(§)]|§€C6(§) = 6y, +9D,, Check,

(C.32)

provided 8102 = 602-+ D02 5

analogous to Equation C.27, again following from linearity.

$) = (a2+b )BO. This result is



001 (x)
on

001 (x)

on

36T (x) |

on

(x)

xeC

§€C8(§)

(x)

xeC

a |
53; [9(§)~+6D(§)]
xcC, (x)
hp2 ’
- [6(§)+-9D(x)]
TxCo(x)
hp2 [
i 91(§)f Check
'§6C7(x)
2 [ax) + 6 |
ang X D(§)1|
I:’f‘cg(f)
2D :
=228 (o) + 6000 11
2Dh
T BI(~)! Check
‘§:C8(x)
]
5= [6(x) +6D(x) ]
n9 ~ ~
x€Cq (%)
2D} |
-5 [6(x) + 8D (x) ]|
'x:Cq (%)
2Dh o
——k— 91(1(); Check
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(C.33)

(C.34)

(C.35)
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It is thus established that the overall solution 6I(x) is
available from its stationary and variable components
according to Equation C.25. It now remains to adjust the
variable component 6(§) sO as to maximize current with
respect to the allowable cable temperature arnd the oil
temperature.

Maximizing Current in Solution 2

The current I is introduced into the temperature

solution through the relation
2
6(x) = yv,(x)I7, (C.36)

where Yl(§) is a constant of proportionality whose magnitude
depend on position X. Equation C.36 follows directly from
two elementary facts: 1. Because of linearity, the cable
temperature is directly proportional to the cable loss.

2. Current-produced losses are directly proportional to I".
It is now recalled that the solution 8(5) is available,
provided that the current-produced losses (and hence I) have
been specified. .Accordingly, let IO be an arbitrary current
from which a temperature distribution eo(§) is determined.

Then from Equation C.36,

_ 2
8,(x) = Yl(g)lo , (C.37)
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and hence

Equations C.38, C.36, and C.25 may be combined to give the

result

I2

81(5) = eo(f) = + eD(§) , (C.39)

I
o

where eo(x), Io’ and 6D(x) are all known.

It is desired to have 08I (x) take on some maximum

allowable value, say emax' Inserting this value into

Equation C. 39,

0 =6 (x) 17 + 6D(x) . (C.40)
%) 2 X
(0]

Upon rearrangement this relation yields

53 — emax_-eD(§)

Ig 60(5)

6(§) ' (C.41)

where the dimensionless scalar §{x) has been introduced for

brevity. §&(x), which is known throughout the domain,
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determines the ratio Iz/Ii which wi}l produce a temperature
of emax at the location X. It is now necessary to choose
the particular ratio 12/12 (and hence the particular value
of 6(§)) which will yield a maximum temperature emax in the
distribution C.39. This is accomplished simply by taking

the smallest possible ratio Iz/Ii. Let § denote the minimum

over all x of §(x). The desired temperature distribution is

then
I (x) = Seo(}f) +6D(x) . (C.42)

Proof is as follows: let X be the location at which the

minimum value of 8 (x) occurs:
§ = 6(xo) . (C.43)
It then follows from Equation C.41 that

GI(XO) = emax . (C.44)

Now consider any other location in the domain, say Xq- It
is known from the definition C.41 of ¢(x) that
6(xl)60(x1)-+eD(xl) = emax . (C.45)
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It is also known that

§ < 8(xy) (C.46)

since 8§ is the minimum over the entire domain of §(x). It

then follows directly from the relations C.45 and C.46 that

ﬁeo(xl)-feD(xl) = eI(xl) < emax . (C.47)

The distribution C.42 is therefore proven to be the correct

one, and the maximum allowable current is determined from

Equation C.41 with §(x) = §:

I =1 /f%— . (C.48)






APPENDIX D

- THE DIFFERENCE FORM OF THE
CONDUCTOR BOUNDARY CONDITION

In Chapter 3 the heat flow emanating from the

conductor of Cable 1 was given as

q, = -k — r1d¢ =W . (3.52)

It is now convenient to express this in the dimensionless

form

- rld¢ = = —_—, (D.l)

where ;l denotes the dimensionless inner radius of the
insulation. As the discussion of Chapter 4 indicated, a
problem is incurred in the discretization of this boundary
condition. For if the standard central difference approxi-
mation 4.3 is substituted for the derivative at the
conductor, a fictitious temperature within the conductor is
introduced. Since no governing equation is applied at the
conductor, there is no way to eliminate such a fictitious

temperature. In approximating the boundary condition D.1,
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it is therefore necessary to have a difference expression

which involves only real temperatures.

There are a number of methods for approximating
this boundary condition. As a reasonable compromise between
accuracy and simplicity, the following method is chosen,
where reference is made to Figure D.l: some central
and r

location r, in between r , is sought, at which

1

location a good approximation to the derivative can be
achieved. The boundary condition D.l1 is then satisfied at

the location r,, rather than at the conductor:

28 T,d¢ z - =% . (D.2)
a -
0 r r*l¢

The difference form of the derivative is constructed

according to

d 1,k1
38 y =t oL, (D.3)
or ;*’¢ r, - r

where 601 denotes the conductor temperature. In order

to ascertain the location r,, attention is turned to the
corresponding one-dimensional problem. The analytical
temperature distribution for the half-cable with prescribed

conductor loss WCl is readily found to be
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FIGURE D.1

Nomenclature for the Discretized

Conductor Boundary Condition
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|
8(3) = _“CWL (E—}E—--ln E) i (D. 4)
2

With the distribution D.4, a criterion for determining the
location r, is available: r, is chosen such that, as the
true temperature distribution approaches the one-dimensional
solution (which it does in the vicinity of the conductor),
the difference form of Equation D.2 becomes exact. This is
accomplished by replacing the discrete temperatures of
Equation D.3 with their analytical expressions and by then

substituting the result into Equation D.2. The difference

form of Equation D.2 is

8, .0 W
E ek 01Nz e | = - . (D.5)
k1 ™t

Replacing the discrete temperatures with analytical ones

gives

6(xr,)-6(r )\ _ W
Z 2 Lz a0, | =-=. (D.6)
k1 2701

Upon expanding through Equation D.4, this becomes

WCl 1n rl—ln Y - (50)
W z -7 * kl
k1 275

(D.7)
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Since the term in brackets does not depend on kl, the

summation can be carried out. Egquation D.7 then yields,

upon rearrangement,

. — . . (D. 8)

When this result is substituted back into Equation D.5, the

difference form of the conductor boundary condition becomes

6 -6 W,
2 1,k1 03 (88, = -_C1 . (D.9)

X1 1n rz—ln rl

The procedure is of course analogous for Cable 2:

6 -9 i W

E Lik2 02 ) (noy | = -2 . (D.10)
A\1ln p,-1n p J W

k2 2 1

The results D.9 and D.10 need not be Weakened by
the assumption that the temperature distribution becomes

R one-dimensional near the conductor. The distribution is

always one-dimensional right at the conductor, since it has

sn

a uniform temperature. So the only requirement is to choose

the radial mesh size so as to place E* out of the range of

strong two-dimensional effects. This choice is a matter of

judgment, and it depends on the given problem.






APPENDIX E

USER INSTRUCTIONS

Geometry and Mesh Size

In setting up a problem for computer solution, it
is necessary to provide information about the region size
within the cables and about the number and distribution of
mesh points. This section discusses specification of region
size, subdivision of regions, special considerations for Dj»
and weighting of the mesh so as to have a good expression
for the gradient at each conductor.

Reference is now made back to Figure 2.3, where a
set of regional divisions is depicted, and to Figure 2.2,
which shows the origin of cylindrical coordinates for both
cables. The domain Dl always has four regional divisions.
The domain D2 employs only six regional divisions, since
Regions IV and VI are never used simultaneously. The angles
included by the various regions are determined from the
azimuthal coordinates of their bounding radial lines. For
éxample, the angle ¢l specifies the location of the boundary
between Regions I and II in Dl’ and it thus determines the
size of Region I. The angle ¢2 likewise specifies the
location of the boundary between Regions II and III of Dl’
The angle included by Region II is then (¢2—¢l). The sizes
of all the regional divisions are therefore specified by

three angles ¢ in D1 and by five angles o in D However,

5
since Dl and D2 share a single inter-cable conduction path,
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only six of the above eight angles are independent. The
orientation of the two cables is determined by ay and a, (or
by ¢1 and ¢2). Specifically, the orientation angle is
(1/2)(a1+a2). The convention of establishing regional
divisions within the cables actually has two purposes. It
first of all provides a way to clearly identify a given
portion of the cable surface with a given boundary condition.
The second purpose of the divisional convention is to
provide a mechanism for varying the azimuthal distribution
of mesh points, so that they may bg concentrated where the
largest gradients are expected.

Mesh points inherently exist at all regional
boundaries. They are placed inside a given region by
specifying the number of subdivisions within that region,
both in the radial and in the azimuthal direction. Here the
term "subdivision" denotes the smallest element of the
region, rather than the act of subdividing. Thus if a
region has three azimuthal subdivisions, it is uniformly
divided into three sectors by two radial boundaries, and two
azimuthal mesh locations within the region are thereby
introduced. The number of radial subdivisions does not vary
from region to region; it is uniform within a particular
domain. Thus a choice of four radial subdivisions in D2
places four uniformly spaced radially points at every
azimuthal location in D2. Placement of mesh points inside
D3 proceeds in similar fashion, by specifying the number of

normal and tangential subdivisions within the domain. In
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the computer program the various numbers of subdivisions
throughout the solution domain are denoted by the variables
N(J) and M(J). These are described in Table 7, together
with a column containing the minimum allowable value of each
variable. It is noted that the variables M(2) and M(1l1)
cannot be chosen to be less than two. This is necessary in
order to preserve the basic trapezoidal structure of D3.
Attention is now returned to the discretized model
of D3. The width of Dy 1s taken to be equal to the skid
wire thickness, a number supplied directly as input data.
The height of D3 is determined from the outer cable radius
and the angle (az-al), as was shown in Figure 4.2. However,
as the discussion of Chapter 4 indicated, the height so
designated is only an apparent height and not the effective
height. For when the regular form of governing equation 1is

applied at the four corner points of D four effective

3’
corner locations are produced which lie outside the corner
mesh points. These effective corner locations then define

two effective surfaces, as shown in Figure E.l1. The

effective upper and lower surfaces of D, extend halfway to

3
the neighboring mesh points above and below the domain, as
suggested by the figure. A conduction resistance based on
this extended length is implicitly added in series with the
convection resistance for boundary points in the numerical
model. Of primary concern to the user is that an appro-
priate allowance must be made for this extension in

specifying the height of D Say, for example, that each

3
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Here

EFFECTIVE

LOWER SURFACE

H = APPARENT HEIGHT

Herp = EFFECTIVE HEIGHT

FIGURE E.1

Effective Surfaces of D3
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TABLE 7

SPECIFICATION OF SUBDIVISIONS THROUGHOUT Dl' ot AND D3

IN TERMS OF THE COMPUTER VARIABLES N(J) AND M(J)

D

Type and Location Number of Minimum
of Subdivision Subdivisions Allowable Value
Radial -
Dl N(1) 1
D2 N(2) 1
Azimuthal -
Dl:
Region I M(1) 1
Region IT M(2) 2
Region II1I M(3) 1
Region IV M(4) 1
D2:
Region I M(5) 1
Region II M(2) 2
Region III M(6) 1
Region IV M(7) 1
Region V M(8) 1
Region VI M(9) 1
Region VII M(10) 1
Normal - D3 M(11) 2

.

Tangential - D3
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azimuthal subdivision in Figure E.l happens to be 10° in
size. The effective height of D3 is then based on an
included angle of 50°, whereas the apparent included angle
is only 40°, So in order to achieve this true included
angle of 50°, the apparent angle (az—al) = 40° would have
been specified, and the mesh points above and below D3 would
have been chosen so as to place neighboring points at an
azimuthal distance of 10°. An additional consideration is
that the four surface mesh points in Dl and in D2 which are
adjacent to the corner mesh points of D3 should be
reasonably symmetrical about the y-axis of D3. This is
necessary so that the effective surfaces of D3 remain
parallel or nearly parallel to the normal axis. Some degree
of foresight is therefore required in laying out the
regional divisions and in choosing appropriate numbers of
subdivisions.

The final topic of this section concerns the
conductor boundary condition. It is recalled that the
discrete form of this boundary condition involves a
summation of temperatures around the innermost discrete ring
of mesh points. In the summation each temperature is
weighted according to the azimuthal sector associated with
the given mesh point. Attention is now called to the
physical circumstance that Regions II of Dl and D2 are
regions of elevated temperature, owing to the presence of
the inter-cable conduction path. The temperature trails off

rapidly on either side of these regions, tending toward the
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one-dimensional distribution. Since the gradient at the
conductor is constructed numerically by means of summing
discrete temperature differences around the cable, it is
essential that a good sampling of temperatures near

Regions II of Dl and D2 be taken. This ensures that the
elevated temperatures in those locations will not be unduly
weighted. Based on comparisons with one~dimensional
solutions, the following convention for weighting mesh
points has been found to produce a sufficiently accurate
numerical expression for the gradient at the conductor: the
number of azimuthal subdivisions in Regions I and III is
chosen so as to place a minimum of two radial mesh locations
adjacent to Regions II, each at an azimuthal spacing equal
(or nearly equal) to the azimuthal spacing of points within
Regions II. In Figure E.l1, for example, this means that
there should be a minimum of two 10°-sectors on both sides
of both Regions II. This convention should also be followed
for all regions whose surfaces are insulated, for the same
argument then applies.

Input Variables

The input variables used by the computer program
are listed in Table 8, together with a brief description of
each variable.

The five angles ALPHA(J) of D, are specified

2

sequentially, skipping over any region not present. So if

Region IV is used, ALPHA(3) denotes the III - IV boundary
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TABLE 8

INPUT VARIABLES FOR THE COMPUTER PROGRAM

Variable Name

ALPHA (J)
FILMP (J)
FILMR (J)

FILMX3(J)

FILMX4 (J)

IPARAM

IPROB

M(J)

N(J)

PHI(3)

RAD1

i

H

]

Description and Units ( )

the five angles o which specify the boundaries

of the six regions of D (degrees)

2.
the variable film coefficients for the surface

2

mesh points of D (Btu/hr-ft“-°F)

2.
the variable film coefficients for the surface

mesh points of D (Btu/hr—ft2—°F)

1°
the variable film coefficients for the mesh
points on the upper surface (+y) of D3.
(Btu/hr-ft2-°F)

the variable film coefficients for the mesh
points on the lower surface (-y) of D3.
(Btu/hr-ft2-°F)

1l or 2: 1 denotes that Region VI of D, is
present; 2 denotes that Region IV of D2 is

present. (unitless)

1, 2, or 3, corresponding to Solution 1 (for
maximum cable temperature), Solution 2 (for
maximum current), or Solution 3 (for maximum

0il temperature). (unitless)

various numbers of subdivisions, as per

Table 7. (unitless)

various numbers of subdivisions, as per

Table 7. (unitless)

the angle in D1 which specifies the boundary

between Regions III and IV. (degrees)

the inner radius of the insulation of Cable 1.

(inches)
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TABLE 8

(Continued)

Variable Name Description and Units ( )

RAD2 = the outer radius of the insulation of Cable 1.
(inches)

REST1 = the DC resistance of the conductor of Cable 1.
(nQ/ft)

REST2 = the DC resistance of the conductor of Cable 2.
(uQ/ft)

RHO1l = the inner radius of the cable insulation of
Cable 2. (inches)

RHO2 = the outer radius of the cable insulation of
Cable 2. (inches)

SKID = the skid wire thickness. (inches)

TMAX = the maximum allowable temperature in the cable
system. (°F)

TOIL = the oil temperature outside the convective
boundary layer. (°F)

WDl = the total dielectric loss per unit length in
Cable 1. (watts/ft)

WD2 = the total dielectric loss per unit length in
Cable 2. (watts/ft)

XHFILM = the thermal film coefficient for the
2

one-dimensional solution. (Btu/hr-ft"-°F)
XI1 = the current in Cable 1. (k—-amps)
XI2 = the current in Cable 2. (k-amps)

XI20I1 = the ratio of the current in Cable 2 to the

current in Cable 1. (unitless)

XK = the thermal conductivity of the insulation.
(Btu/hr-£ft-°F)



Variable Name

YC1

YC2

¥s1

YS2

ICUTAP

THICK1

THICK2

XKCU1

XKCU2

il

TABLE 8

(Continued)

Description and Units ()

the AC/DC ratio at the
(unitless)

the AC/DC ratio at the
(unitless)

the AC/DC ratio at the
(unitless)

the AC/DC ratio at the
(unitless)

0 denotes that no tape

conductor of Cable 1.

conductor of Cable 2.

sheath of Cable 1.

sheath of Cable 2.

is present; any other

indicates that tape is wrapped around either

thickness of tape wrapped around Cable 1 (in)

thickness of tape wrapped around Cable 2 (in)

135

integer

Cable (unitless)

conductivity of tape wrapped around Cable 1 (BTU/hr-£ft°F)

conductivity of tape wrapped around Cable 2 (BTU/hr-ft°F)
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line. All angles ALPHA(J) are measured from the vertical,
as was shown in Figure 2.2.

For all the variable film coefficients FILMP(J),
FILMR(J), FILMX3(J), and FILMX4(J), a separate value is
specified for each convective boundary point. The total
number of values specified in each case is thus determined
by the total number of mesh points on the respective
surfaces. The sequence for specifying the various coef-
ficients is as follows: FILMR(J) starts at ¢ = 0 and

proceeds clockwise around D FILMP (J) starts at o = 0 and

17

proceeds clockwise around D FILMX3(J) starts at (-A,D) and

27
ends at (+A,D); FILMX4(J) starts at (-A,-D) and ends at
(+A,-D). The inter-cable conduction path is merely skipped
over in specifying FILMR(J) and FILMP(J).

The variable IPARAM specifies whether Region IV or
Region VI of D2 is present. It is convenient to use
IPARAM = 1 for the cradled configuration and IPARAM = 2 for
the equilateral configuration, even though those boundary
conditions have not been implicitly programmed. For the
open and equilateral-pipe configurations the choice is
arbitrary, because the strict correspondence between regions
and boundary conditions then no longer applies.

Of the 11 variables M(J), only ten are specified
as input. The omitted region of D2 is skipped over, and the
program subsequently assigns a value of zero subdivisions

for the region not present.
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Of the three regional angles ¢ in D it is only

17
necessary to specify PHI(3). PHI(l) and PHI(2) are deter-
mined automatically from ALPHA(l), ALPHA(2), and the outer
radii of the two cables.

It is noted that the variables REST1 and WDl
describe only half a cable. So if Cable 1 and Cable 2 had
identical properties and losses, REST1 and WDl would be
exactly half of REST2 and WD2, respectively. The variables
XI1l, ¥YCl, and ¥YS1 are not affected by this distinction.

Should it be desired to compute the total

dielectric loss per unit length W. rather than to specify

d
it directly, the following integrated-out form is avail-

able [12]:

v2 -12
v = Vap w(7.354) (1071 (s10) (af) watts

d 3 1o (2) conductor~ft ’
J10\ad

(E.1)

where

Vl£ = line-to-line voltage (volts)

w = 2mf = frequency (Hz)

(SIC) = specific inductive capacitance, or relative
dielectric constant
(df) = dissipation factor
d = inner radius of insulation

D = outer radius of insulation.
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The conductor and sheath losses are computed according to
2
W = IRY (E.2)
c c

and

- T2 - :
wS =1 R(YS JC) ' (E.3)

respectively, where R is the DC resistance per unit length
of the conductor, YC is the AC/DC ratio at the conductor,
and Ys is the AC/DC ratio at the cheath.

Output Variables

A listing and brief description of the output
variables from the computer program are presented in Table 9.

In the computer printout siz valuess of ALPHA(J)
are written rather than five. However, two of the siz are
always equal, reflecting that one of the regions in D2
(either Region IV or Region VI) has an included angle of
zero degrees.,

Because of the matriz scaling method employed in
the program, it is expected that the determirant of the
coefficient matrix will never attain an unwieldy order of
magnitude. The variable DETER!M is nevertheless nrinted out
so that its magnitude may be monitcred Zor each problem.

The user need not be concerned with this variable so long as
it lies in the general range 10—50 to 10+50. However, 1f it
takes on values significantly outside this range, another
matrix scaling procedure may be recuirec in order to avoid

an underflow or overfliow. If the wvalue of DETERM is ever
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TABLE 9

OUTPUT VARIABLES FROM THE COMPUTER PROGRAM

Variable Name

ALPHA (J)

DETERM

IERR

M(J)

N(J)

PHI (J)

TAMAX1

TAMAX2

TANALIL (J1)

Description and Units ( )

the regional angles of D2, as per Table 8.
(degrees)

the determinant of the coefficient matrix.
(unitless)

0, 1, or 2. This is a condition code from the
matrix inversion subroutine. IERR = 0 denotes
no difficulties encountered in the inversion.
IERR = 1 denotes that the matrix is not
dimensioned correctly or that the subroutine
is not called correctly. IERR = 2 denotes a

singular matrix. (unitless)

various numbers of subdivisions, as per
Table 7. (unitless)

various numbers of subdivisions, as per
Table 7. (unitless)

the regional angles of Dl’ as per Table 8.
(degrees)

the maximum (conductor) temperature from the
one-dimensional solution, based on the
properties of Cable 1 — Solutions 1 and 3
only. (°F)

the maximum (conductor) temperature from the
one-dimensional solution, based on the
properties of Cable 2 — Solutions 1 and 3
only. (°F)

the analytical temperature distribution from
the one-dimensional solution, based on the
properties of Cable 1. (°F)




Variable Name

TANAL2 (J2)

TCON1I

TCON2I

TCOND1

TCOND2

THETA (J)

THETATI (J)

TO1L =

XANAV1

XANAV2 =

TABLE 9
(Continued)

Description and Units ( )
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the analytical temperature distribution from

the one-dimensional solution, based on the

properties of Cable 2. (°F)

the conductor temperature of Cable
Solution 2 only. (°F)

the conductor temperature of Cable
Solution 2 only. (°F)

the conductor temperature of Cable

Solutions 1 and 3 only. (°F)

the conductor temperature of Cable

Solutions 1 and 3 only. (°F)

the temperature distribution for the entire

solution domain — Solutions 1 and 3 only.

(°F)

the temperature distribution for the entire

solution domain — Solution 2 only.

the maximum allowable oil temperatu
Solution 3 only. (°F)

the maximum allowable current from
one-dimensional solution, based on
properties of Cable 1 — Solution 2
(k-amps)

the maximum alliowable current from
one~dimensional solution, based on
properties of Cable 2 — Solution 2
(k~amps)

(°F)

re —

the
the
only.

the
the
only.



Variable Name

XI1MAX

XI2MAX

TABLE 9

(Continued)

Description and Units ( )

the maximum allowable current in Cable 1 —

Solution 2 only.

the maximum allowable current in Cable 2 -

Solution 2 only.

(k—amps)

(k-amps)

141
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identically zero, the matrix is then singular. Provided no
underflow has occurred, the probable cause is either that
the matrix has been dimensioned incorrectly, or that the
calling statement for RMINV is not correct.

The printout of the M(J) includes all 11 values,
with a null value inserted for the region not present.

All three regional angles'PHI(J) of D1 are printed
out.

The analytical temperatures TANAL1(Jl) and
TANAL2 (J2) are printed out for each radial mesh point in D1
and D2, respectively. They are written sequentially, moving
radially outwaré; the first temperature in each sequence is
the conductor temperature.

The complete temperature distributions THETA (J)
and THETAI(J) are printed out in the following sequence:
starting with the mesh point nearest to the origin of

coordinates, all temperatures in D, are written, the

1
azimuthal index moving through its entire range for each
increment of the radial index; the identical procedure is

then followed for all temperatures in D finally, all

X
temperatures in D3 are printed, beginning in the lower left-
hand corner of the domain (-x,-y) and moving through the
entire range of the normal index for each increment of the

tangential index.

Array Dimensions

A number of subscripted variables, or arrays, are

used in the computer program. These arrays and the
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variables which determine the size are listed in Table 10,
together with their dimensions in the present program. For

brevity the following computer variables have been used in

the table:

M14 = M(1l) +M(2) +M(3) +M(4) ; (E.4)

M5210 = M(5) + M(2) +M(6) +M(7) + M(8) + M(9) + M(10) ; (E.5)

NM3

N(1)x[M14 + 1] + N(2)xM5210 + [M(2) + 11x[M(11) - 1] .

(E.6)

Arrays or portions of arrays which have no variable
dimension listed in the table have been permanently
dimensioned at their present size.

Data Card Assembly

Instructions for assembling data cards for the
computer program are listed in Table 11l. While most of this
table is self-explanatory, a few additional remarks are
offered here.

Attention is called to the integer variables N(J)
and M(J), which employ the I-format for their input. It is
necessary that all these entries be right-justified to their
respective columns.

Values of the variable film coefficients FILMR(J),
FILMP(J), FIILMX3(J), and FILMX4(J) begin on card 9, as the
table indicates. The total number of cards required for

these variables depends on the mesh size chosen for the
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TABLE 10

ARRAY DIMENSIONS

Name of Array Variable Dimension(s) Present Dimension(s)
ALFNT (J) - J =17
ALFSQ (J) - J =17
ALFTN(J) — J =17
ALPHA (J) - J =6
C1FRAC (J) J = Ml4 +2 J = 20
C2FRAC(J) J = M5210 J = 36
COEFF (J,J) Jd = NM3 J = 168
FACTOR(J) J = NM3 J = 168
FILMP (J) J = M5210-M(2) -1 J = 33
FILMR(J) J = M14 - M(2) J = 16
FIIMX3(J) J = M(11) -1 J =1
FILMX4 (J) J = M(11) -1 J=1
IWORK (J,K) J = NM3 J = 168

- K =2

M(J) - J =11
N(J) - J =2
P(J) J = N(2) +1 J =25
P1(J) J = N(2) +1 J =5
P2 (J) J = N(2) +1 J =5
P1HX(J) J = M(2) +1 J =3
P2HX(J) J = M(2) +1 J =3
P3HX (J) J = M(2) +1 J =3
P4HX (J) J = M(2) +1 J =3
PALF (J,K) J = N(2) +1 J =25
- K =7

PALFNT (J,K) J = N(2) +1 J =5
- K =7

PHI (J) - J =3
PHINT (J) - J =3
PHISQ(J) - J =4
PHITN (J) - J =3




Name of Array

Variable Dimension(s)

(Continued)

TABLE 10
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Present Dimension(s)

PMID(J)
R(J)
R1 (J)
R2 (J)

R1FRAC (J)
R2FRAC(J)

R1HX (J)

R2HX (J)

R3HX (J)

R4HX (J)

RATIO1 (J)
RATIO2 (J)
RMID(J)
RPHI (J,K)

RPHINT (J,K)

TANAL1 (J)
TANAL2 (J)
THET1 (J)
THET2 (J)
THET3 (J)
THET4 (J)
THETA (J)
THETAD (J)
THETAI (J)
VECTRL1 (J)
VECTR2 (J)
VECTR3 (J)
VECTRA4 (J)
XHALF (J)
XHPHI (J)

g g9 9 49q 9 g g g gqoC9qg

(S

J

it

O 9 9 9 4qu g 49 9 4949yg

= N(2)

N(1) +1
N(1l) +1
N(l) +1
N(1) +1
N(2) +1
M(2) +1
M(2) +1
M(2) +1
M(2) +1
N(1l) +1
N(2) +1
= N(1)

N(1) +1

N(1) +1
N(1l) +1
N(2) +1
= NM3
= NM3
= NM3
= NM3
= NM3
= NM3
= NM3
= NM3
= NM3
= NM3
= NM3
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o
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168
168
168
l68
168
168
168
168
168
168
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TABLE 10
(Continued)
Name of Array Variable Dimension(s) Present Dimension (s)
XHX (J) J = M(2) +1 J =2
XHXHY (J) J = M(2)+1 J =3
XHXSQ (J) J = M(2)+1 J =3
XIVAR(J) J = NM3 J = 168
XM(J) - J =11

XN (J) - J = 2




4,

4,

4,

Card(s)

1

Solution 1

Solution 2

Solution 3

TABLE 11

DATA CARD ASSEMBLY

Column (s) Variable
1 IPROB
IPARAM
1-10 SKID
11 -20 RAD1
21 - 30 RAD2
31 - 40 RHO1
41 - 50 RHO2
51 - 60 XK
61 -70 REST1
71 - 80 REST?2
1-10 YC1
11 - 20 YC2
21 - 30 YSsl
31 - 40 YS2
41 - 50 WD1
51 - 60 WD2
61 - 70 XHFILM
1-10 XI1
11 - 20 XI2
21 - 30 TOIL
1-10 TMAX
11 - 20 XI201I1
21 - 30 TOIL
1-10 X1l
11 - 20 XI2
21 - 30 TMAX

Format

e T e e M T BLC B~ B o

T T e I B

£ IS
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Card(s)

9-(10)

(11-13)
(14)
(15)
(16)

Column (s)
1-10
11 - 20
21 - 30
31 - 40
41 - 50
1-10
1-5

- 10
1-5
6 - 10

11 - 15
l6 - 20
21 - 25
26 - 30
31 - 35
36 - 40
41 - 45
46 - 50

11
21
31
41

10
20
30
40
50

TABLE 11
(Continued)

Variable

ALPHA (1)
ALPHA (2)
ALPHA (3)
ALPHA (4)
ALPHA (5)

PHI (3)

N (1)
N (2)

M (1)

M (2)

M (3)
po(4)

M (5)

M (6)

M (7)or(8)
M (8)or (9)
M (10)

M (11)

FILMR (J)

FLIMP (J)
FLIMX3 (J)
FLIMX4 (J)
ICUT ap
XKCU1
XKCU2
THICK1
THICK2

Format

— T T R R

o

+

- H - M= H

T T B R R S |
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particular problem. The individual coefficients are entered
sequentially across each data card, with each value
occupying ten columns. When all the values cof a particular
variable have been specified, the next variable begins on a
new data card. The numbers in parentheses in the Card(s)-
column are typical for common mesh sizes.

If it is desired to run more than one problem at a
time, data decks may be assembled in series. Each separate
deck should be arranged according to Table 11.

A final data card having a zero in columns one and
two must always be placed at the end of the overall data
deck. This double-zero card tells the program that there is
no more data to be transmitted.

Example Problem

This section illustrates the solution of a
particular cable problem using the computer program. For
the example problem it is desired to know the maximum
allowable oil temperature for an equilateral-pipe configu-
ration of System 1 cables, given their current and the
maximum allowable system temperature. In particular let the
current in each cable be 942 amperes, and say that the
maximum allowable system temperature is 185°F. The thermal
conductivity of the insulation is taken to be
0.1153 Btu/hr-ft-°F, and the film coefficient on convective
surfaces is taken as 5.0 Btu/hr—ft2—°F. Also the con-
servative assumption of a thermally nonconducting conduit is

made. A complete set of input data for this problem is
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listed in Table 12, and the resulting discrete model is
depicted in Figure E.2.

A number of observations are made about the
discrete model used in this problem. The effective included
angle in either cable associated with the inter-cable con-
duction path is seen to be 30°, a slightly conservative
angle. An insulated arc of this size is centered about the
point of cable-conduit contact which, from elementary
geometrical calculations, is found to occur at o = 220°.
Also it is seen that there is no particular association
between regions and boundary conditions: Region III of D2
is primarily concerned with the cable-cable effect, while
Region V is involved with the cable-conduit interaction.
This breakdown of convention is necessary in modelling the
equilateral-pipe configuration, because in that configu-
ration there are too many separate effects operating around
D2 for the available number of regions. (It is noted,
however, that the thermal model is equally effective.) The
éngle PHI(3) = 170° is likewise arbitrary in this problen,
since there is no cable-conduit contact on the surface of
Dl' The radial mesh size of four subdivisions has been
found from experience to be sufficiently fine to produce an
accurate solution; use of a finer radial mesh does not
significantly alter the temperature distribution. It is
finally noted that the azimuthal distribution of mesh points
adjacent to insulated regions follows the convention out-

lined in the first section of this appendix; such a
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——— — REGIONAL DIVISION
N\ — INSULATED

FIGURE E,2

A Discrete Model of the Equilateral-Pipe

Configuration



TABLE 12

INPUT DATA FOR EXAMPLE PROBLEM

Card Column (s)

1

2 1-10
11 -20
21 - 30
31 - 40
41 - 50
51 - 60
61 -70
71 - 80

3 1-10
11 - 20
21 - 30
31 -40
41 - 50
51 -60
61 -70

4 1-10
11 -20
21 - 30

5 1-10
11 - 20
21 - 30
31 - 40
41 - 50

6 1-10

Data

0.10
0.9125
2.0675
0.9125
2.0675
0.1153
2.68
5.36

1.19
1.19
1.24
1.24
1.59
3.18
5.0

0.942
0.942
185.0

20.0
40.0
120.0
190.0
250.0

170.0

152



Card

10

TABLE 12
(Continued)

Column (s)

5
10

10
14,15
20
25
30
35
40
45
50

1-10
11 -20
21 - 30
31 - 40
41 - 50
51 - 60
61 -70
71 - 80

11 -20

31 -40
41 - 50
51 -60
61 - 70
71 - 80

Data

1

N

3

N W O~ o N
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Card

11

12

13

14
15
16

17

TABLE 12

(Continued)

Column(s)

1-10
11 - 20
21 - 30
31 - 40
41 - 50
51 - 60
61 -70
71 - 80

1-10
11 - 20
21 - 30
31 - 40
41 - 50
51 - 60
61-70
71 - 80

1-10
11 - 20
21 - 30

1-10

1-10

5

1,2
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distribution should produce an accurate numerical expression
for the gradient at each conductor.

The computer solution for this problem is shown in
Figure E.3, where the desired o0il temperature 140.3°F is
printed. The present version of the program requires
approximately 220 K of core memory for execution. It
requires 310 K of core memory for compilation on the
FORTRAN IV Gl-compiler; it is too large to permit
optimization on the FORTRAN IV H-compiler.

Capabilities and Limitations of the Computer Program

The present computer program has two notable
capabilities which have not yet been specifically mentioned.
The first is that Cables 1 and 2 need not be the same size.
In the case of unequal cable radii, the included angle
associated with the inter-cable conduction path is still
designated by (az—al); the angle (¢2-¢1) is then auto=-'
matically adjusted so as to equalize the lengths of the
Dl--D3 and Dz—-D3 interfaces. The second capability not yet
mentioned is that there is no restriction to alternating
current; either one or both of the two cables may carry
direct current. This is handled by merely setting to zero
the appropriate AC/DC ratios and dielectric losses. In
addition to these two features, it is noted that, while only
certain orientations of the two cables are physically
realizable, the computer program permits arbitrary configu-
rations. Finally, attention is called to two automatic

tests which will facilitate the location of certain input
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FIGURE E.3

Computer Solution Printout for Example Problem
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errors. Should the input specify that the maximum allowable system
temperature is less than or equal to the oil temperature, an appropriate
error statement is then printed, and the program passes to the next
problem. A similar procedure is followed if the maximum allowable system
temperature is too small for the given dielectric loss.

Two limitations of the computer program are also called to the
attention of the user. The first is that there are constraints on the

admissible size of D,. In particular, the thickness of D, must be non-

3 3
zero, and its included angle in Dl’ (:E-w&), must be less than two radians.
Secondly, the included angles of the various regions must all be non-zero.
Included angles of 2° have been used successfully by the author, but

regions smaller than this are not recommended.

Program Modifications

prier suggestions for effecting modifications in the present computer
program are offered in this section. The modifications to be considered
are the following: provision for simultaneous use of Regions IV and VI
or D2, and simplification of I/0 procedures.

A modification which would permit simu ltaneous use of both Regions IV
and VI of D2 could be effected without much difficulty. However, before
making such a change, consideration should be given to the handling of
boundary conditioms. Iu the present program all boundary conditions are
specified by means of a variable film coefficient. This was done in order
to retain the greatest amount of flexibility in treating boundaries. If it
is desired to preserve this feature, then there is no substantial advantage

in performing the above modification. For when boundary conditions are

specified separately by means of the variable coefficient, regional divisions



158

are important only in varying the azimuthal distribution of mesh points;
there need be no correlation between the various regions and specific
boundary conditions (as the example problem illustrated). If, on the

other hand, it is desired to treat some or all of the boundary conditions
implicitly, then the modification under consideration may be necessary.
Boundary conditions may be implicitly written into the program by inserting
the appropriate values of the various film coefficients directly into the
matrix-generation portion of the program. This would be convenient for
boundary conditions which never change from problem to problem. For example,
an insulated surface might be identified with a particular region (such as
’Dz, Region IV), Then upon specifying the size and location of that region,
the appropriate boundary would be inherently insulated. The number of such
permanent kinds of boundaries depends on the particular problems the user
elects to solve with the program. This method for handling boundaries,
though, would make it necessary to have seven available regions in D2 for
the equilateral-pipe configuration. The modification required for this
involves the input format for ALPHA(J) and the matrix-generation statements

for Region IIl through VII of D_ . Provisions for generating the variables

2

associated with all seven regions of D, Presefitly exist; certain statements

2
are merely bypassed at IPARAM-type decision branches. It would probably be
convenient to introduce a third category, IPARAM = 3, for a new branching
criterion. This criterion could then be used in the matrix generator to
choose such branches from the (IMARAM = 1)-type and (IPARAM = 2)-type tests
so as to move sequentially through all the regions of D2

could likewise signal a special input format for ALPHA(J), indicating that

six rather than five angles are to be read. The program so modified would

» The (IPARAM =3)-test
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be most convenient, provided that boundary conditons were treated implicitly.
Finally, some brief suggestions are given for simplifying the I/0

procedures of the computer program. Concerning input, two primary areas

could be improved: specification of the variable film coefficients and

specification of the effective size of D The former is bothersome because

3°
so many values must be entered, and because of the need to keep track of

all the individual surface mesh points. Implicit treatment of boundary
conditions would completely eliminate this inconvenience. If explicit
specification is retained, a provision might at least be written to simplify
the input. For example, it might be desirable to merely specify a single
coefficient and direct that it apply for all the mesh points of a given
surface (when appropriate). Or since most of the surface points are con-
vective, it might be more convenient to read in just the non-standard

coefficients. Specification of the height of D, by means of the apparent

3
angle (¢§—<1) is akward; much foresight is required in order to end up with
the desired effective height. It would be much more convenient to work

with (‘%- %) as the effective included angle, referring the associated
aximuthal adjustments in D1 and D2 to the computer. Concerning output,

three suggested improvements are mentioned. First of all, in its present ver-
sion the program prints out very little of the input data. Such procedures
as solution identification, error location, and output analysis would be
facilitated if more of the original data were written. Secondly, it would

be a simple matter to include the conservative approximate solutions in the
program. These could be written alongside the one-dimensional solutions,

thereby making the upper and lower bounds for system performance immediately

available. Lastly, the overall temperature distribution is not very des-
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criptive in its present format. Separating the temperatures in the print-

2 3
and this would help considerably in identifying features of the distribution.

out according to the three domains Dl’ D,, and D, would present no problem,
Also effective use could be made of plotter routines for illustrating the

temperature distribution graphically.
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APPENDIX G

ONE-DIMENSIONAL SOLUTIONS FOR
TEMPERATURE AND CURRENT

The Temperature Solution

In Chapter 2 the equation which governs the
temperature distribution of the cable insulation was given

as

(3]
H

1 .
?'3—r+——2—+?~.~-%° (2-1)

Considering now only the radial dependence of the

temperature, Equation 2.1 reduces to

2 .
14T ,dT__¢g
r ar * ar2 - k! (G.1)
r
and this may be consolidated to
14 (,dry_._¢g
= ar (r dr) T - (G.2)

Expressing the volumetric heating term é in terms of the
total dielectric loss per unit length Wd’ the governing

equation G.2 becomes finally

220
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a ( dT)_ Wy
—— r-———- =

T, ’ (G. 3)
2mrk 1n E:
2

where ry and r, denote the inner and outer radii of the

insulation, respectively. The boundary condition at the

conductor is

- _ daT _
qc = 2ﬂrlk iz . = Wc , (G.4)

where Wc is the conductor loss per unit length. As for the
boundary condition at the surface, consider for the present

that the surface is at some arbitrary uniform temperature:
= . .5
) =T (G.5)

A dimensionless formulation may be obtained by introducing

the variables

- L — oil
g__;t_-_z__’ e____7____wk ’ (G.6)

where W is some arbitrary loss per unit length. The

governing equation is then
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W
d de\ _ d
dg (g dg) ~ 2mEW 1In &, 7 (G.7)

where gl = rl/rz, and the boundary conditions are

W
as = - = (G.8)
dg 2TWE ., ! '
1 1
and
To_T il
6(1) =6 _ = —’W7T<9"“ . (G.9)

The general solution to Equation G.7 is

W
8(E) = ———% (In €)% + C

4TW 1n gl In & +C

(G.10)

1 2

Substituting this solution into the boundary conditions G.9

and G.10, the arbitrary constants Cl and C2 are found to be

- _ 1 —
u Cl = —Z-TTW (Wd+wc) ’ C2 = 60 . (G.11)

" Putting this result back into the governing equation gives

(W_+W )
6(8) = grr——e— (In §)° - —2_C

oW 1in gl In & + 60 . (G.12)
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Equation G.1l2 is then the temperature distribution for the
case in which the cable surface is at some arbitrary
temperature To' However, this arbitrary temperature may now

be eliminated by applying an energy balance at the cable

surface:

wc—rwd-fws = 2wr2h(TO—TOil) ' (G.13)
where wS is the sheath loss per unit length. The
nondimensional form of this is

Wc+Wd+WS
WK = 2ﬂr2h80 R (G.14)
from which
+W _+
6 = WetMa™s) ( x (G.15)
e} 2TW hr2 )

The one-dimensional temperature distribution for the cable

is therefore

wd 2 (wd+wc) In £+ (WC+Wd+wS) K
2TW n 2TW hr2 ‘

(G.16)
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In terms of dimensional temperatures,

W (W+W ) (W_+W +W )
_ _ d 2 _ d c d s
T(€) = Toi1 = T7k 1n £ (In &) 2tk " &t T
(G.17)

The Current Solution

In order to obtain the one-dimensional current
solution, the stationary and variable components of the

temperature distribution are again separated:

6(g) = 6D(g) + 6C(E) , (G.18)
where
6D (E) = Mww& 51 (1n 5)2 - %%— ln & + ;;iw (%) , (G.19)
and
Wc (Wc+ws) k
8Cc(g) = o In & + X (hr2> . (G.20)

The current I is introduced into 6C(f) following the

reasoning of Appendix C. By analogy with Equation C. 39,

I2

6C(g) = GCO(E) 5 (G.21)

I
o
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where GCO(E) is the distribution obtained by using the

arbitrary current Io in Equation G.20. The total solution

0(£) is then

N

6(€) = 6D(£) + 6C_ (&) : (G.22)

HIH
o N

Again it is desired to have 0 (f) take on some maximum value
emax’ However, in the one~dimensional case, since there are
no heat sinks within the cable, emax must occur at the

location £ = gl (at the conductor). Substituting this

information into Equation G.22 gives

2
= I
emax = eD(gl) + GCO(El) 12 . (G.23)
o
Upon rearrangement, Equation G.22 yields the current
I 2 emax-_eD(gl)
o o "1

It is then only necessary to insert the appropriate values

for 6D(£1) and SCO(EI) from Equations G.12 and G.20:

8 "3 [k _1n &1
I 2 max 2TW hr2 2
(...) - (G.25)
CcO

1
o v kK _1p £ + Wso [ k
2TW hr2 1 2TW hr2
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where Wco and Wso are the conductor and sheath losses,
respectively, produced by the arbitrary current Io' This

expression may be simplified by using the relations

_ 2 - 12 _
W, = ISRY_, Wo = ISR(Y-Y ), (G.26)

where Yc and YS denote the AC/DC ratios at the conductor

and at the sheath, respectively. Making these substitutions,

Equation G.25 becomes

s _Ma(x &
2 max 2TW hr2 2
I = wm R(Y_.-Y_) ’ (G.27
C k -1n £ + s "¢ k
2mW \ hr 1 2TW hr
2 2
which may be further simplified to
in &
2TWO SO .S 1
2 max d hr2 2 o
I YK . (G.28)
R E_—Z-_Ycln El

Ysk . (G.29)
R H;——'Ycln gl



APPENDIX H

CONSERVATIVE APPROXIMATE SOLUTIONS FOR
MAXIMUM TEMPERATURE AND CURRENT

General

Conservative approximations for maximum
temperature and current in the two-dimensional conduction
problem may be achieved from a suitable modification of the
one-dimensional solutions presented in Appendix G. The
conservative assumption to be employed is that cable—cabie
and cable-conduit interactions effectively insulate
appropriate portions of the cable surface, thereby reducing
the perimeter available for heat transfer. Furthermore, it
is assumed that the entire cable sector subtended by an
insulated arc on the perimeter is also effectively insu-
lated. Any losses which occur in the insulated sector are
then referred to the remaining undisturbed portion of the
cable. Consider, for example, that a 60°-arc of the cable
perimeter is taken to be insulated. The perimeter available
for heat transfer is then reduced to <§) its original size,

6

and all losses in the (%)—cable must be scaled up by (%) in

order to have the same heat flow or temperature as in the
original problem. The maximum current or temperature is

. . . . 6
then computed from the one-dimensional solution, using (§)

of the original one-dimensional losses.
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The Temperature Solution

In Appendix G the one-dimensional temperature

distribution was given as

Wd 2 (wd+w ) (WC+W

_ _ C
T(E) =Tyi1 = 77k In ) (In &) e 1n Bt

d+WS)

2ﬂr2h

(G.17)

The temperature drop from the conductor to the oil is then

1In & (W _+W +W )
1 (wd+2wc) + c _d s

2Trhr2 !

n
-
I
-3
|
1

T(E1) = Toig o 0il -~ T AT

(H.1)

where TO denotes the conductor temperature. It is noted in

Equation H.l that the temperature drop (TO-TOil

linearly with the cable losses. Now let the cable perimeter

) varies

available for heat transfer take on the value P' = fP, where
P is the total perimeter, and f is some fraction. The
losses in the undisturbed portion of the cable are then
scaled up according to g' = (%)q. Since the temperature

drop (TO—To ) varies linearly with loss, it too 1is scaled

il

up by (1/f), and the conservative expression 1S given by
) (H.2)

where the temperature drop on the right side is that
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produced by the one-dimensional solution. Equation H.2 may
then be used to conservatively estimate either the maximum

allowable 0il temperature or the maximum cable temperature

in the two-dimensional conduction problem.

The Current Solution

From Appendix G the one-dimensional current

solution is

k0 Ey
5 2Trk(Tmax_Toil) - Wd(hrz- 2 )
I° = Ysk . (G.29)
R(H;;w-Ycln El)

Again consider that the effective perimeter takes on the

value P' = fP, and that the losses are scaled up according

to q' = <%)q. Since current-produced losses vary as 12, the

latter quantity must itself be linearly scaled, along with
the dielectric loss. Inserting this into Equation G.29

gives the result

(H.3)
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which may be rearranged to give

g 10 &y
5 2rkE(T L Toil) ~ W hr2_ 2
I* = Y k . (H.4)
s
R(HE; Ycln El)

Equation H.4 is then the conservative approximation for

current.,

The Effective Perimeter

The size of the inter-cable conduction path is a
reasonable guide in selecting the amount by which to reduce
the cable perimeter for cable-cable and cable-conduit
interactions. This convention was followed in generating
the conservative comparisons tabulated in Chapter 6. For
those 16 problems the inter-cable conduction path was
chosen so as to subtend an angle of 30° on either cable
surface. The following cable perimeters were therefore used
for the various configurations: open - 330° effective;
cradled - 300° effective; equilateral - 270° effective; and
equilateral-pipe ~ 240° effective. It is noted that for an
effective perimeter of 360° (f = 1), the one-dimensional

solutions are recovered in Equations H.2 and H.4.



