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ABSTRACT

Let MC(Fg) denote the group of homeomorphisms modulo isotopy of
the g-holed torus Fg; let éjV'(Fg) denote the collection of isotopy
classes of closed one-submanifolds of Fg’ no component of which bounds
a disc in Fg’ Max Dehn gave a finite collection of generators for MC(Fg);
he also described a one-to-one correspondence betweencgﬂ'(Fg) and a
certain subset of 2368-6, denoted Zg. We describe the natural action of
MC(Fg) on.é]”(Fg) by computing the corresponding action of a collection
of generators for MC(Fg) on Eg. This action has an intricate but
tractable description as a map from Xg to itself. We use this description
to give an algorithm for solving the word problem for MC(Fg). This
computation has applications to several problems in low-dimensional

topology and dynamics of surface automorphisms.
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SECTION 1

Let Fg denote the g-holed torus. We define a multiple curve in
Fg to be an isotopy class of (unoriented) one-submanifolds embedded
in Fg’ no component of which bounds a disc in Fg. In 1922, M. Dehn [;]
described a one-to-one correspondence between the collection of multiple
b6g-6

curves in Fg and a subset of 2 . Such a correspondence will be

called a parametrization of multiple curves, and the corresponding
6g-6

subset of 2 will be called the collection of parameter values.

The mapping class group of Fg’ denoted MC(Fg), is the group of

orientation-preserving homeomorphisms of Fg modulo isotopy. An element

of MC(Fg) is called a mapping class on Fg . In 1938, Dehn [6] exhibited
a finite set of generators for‘MC(Fg) of a certain geometrical type,
which are now called Dehn twists. Thus, a mapping class may be described
by a word whose letters are Dehn twists. This word is not uniquely
determined as there are relations in MC(Fg) amongst such words.

An orientation-preserving homeomorphism 1 of Fg acts on an
(unoriented) one-sﬁbmanifold ¢ embedded in Fg by taking the image of
¢ under 1, and this gives a well-defined action of MC(Fg) on the
collection of multiple curves in F_. A natural problem arises - to

compute the action of Dehn twist generators for MC(Fg) on parameter

values of multiple curves, thus describing the aétion of MC(Fg) on

multiple curves in Fg'

In this thesis, we will eigiicitly co&ﬁute this action for a fixed
choice of parametrization. We will obtain a faithful representation of
MC(Fg) as a group of transformations on the collection of parameter
values, and we will describe an efficient algorithm for solving the

word problem for a certain collection of Dehn twist generators for



MC(Fg). This computatipn also has direct applications to several
problems in'low-dimensional topology and dynamics of surface auto-
morphisms, as we shall see. 1In this section, we will briefly describe
how this computation is performed for the surface F2 and indicate some
of the techniques employed. We also give a .brief account of some of the
history.

If ¢ 1s a simple closed curve in Fg’ then the right and left Dehn
twists, denoted 1:1, are defined by cutting Fg along c, twistiﬂg
by #2m and regluing. The definition of the direction of the twist
depends only on the orientation of the surface Fg' (We will give a
more detailed definition in Section 3.) Thus, if ¢ and d are the simple
closed curves in the surface F, indicated in Figure l.la, then Tzld and

rzld are the curves pictured in Figures l.lb and l.lc, respectively,

In fact, MC(Fl) is easily shown to be generated by T and 7 For

dl
surfaces of higher genera, R. Lickorish [l1] has independently refined
Dehn's original set of generators of MC(Fg) to a more useful set of

3g-1 curves along which to perform Dehn twists. These curves are

pictured on the surféce F, in Figure 1.2. (The extensions to higher

2

genera will be discussed in Section 3.)

+1 -1

Figure 1.1




Figure 1.2

MC(FI) can be shown to be isomorphic to the group of two-ﬁy-two
integral matrices of determinant one, and one has a complete set
of relations between T, and.rd. For a closed surface of genus two,

J. Birman and M. Hilden [3] have given a complete set of relatioms
amongst the Lickorish generators. For closed surfaces of arbitrary
genus, W. Thurston and A,Hatcher [19] have given an algorithm fof con-
structing a complete set of relations for MC(Fg), but their results
are quite complicated.

Just as Lickorish independently refined Dehn's original set of generators,
Thurston [17] rediscovered Dehn's parametrization for multiple curves.
Dehn's parametrizétion apparently was not published, but appears in
some lecture notes in the Archives of the University of Texas at Aﬁstin
[5]. (I am grateful to J. Stillwell for supplying me a translation
of these notes from the original German.) We will refer to this
parametrization as the Dehn-Thurston parametrizationm.

The Dehn-Thurston parametrization depends on several choices of

convention, one of which is a certain decomposition of the surface F .

We define a pants decomposition of Fg to be a collection {Ki} of disjoint
simple closed curves in Fg so that each component C of Fg\\j{Ki} is

topologically a sphere with three disjoint closed discs deleted. Every



surface Fg has a pants decomposition consisting of 3g-3 curves. (In
fact, every pants decomposition of Fg has exactly this many curves.)
Some examples of pants decompositions of the surface F2 are indicated

in Figure 1.3. A pair of pants is a sphere minus the interiors of three

disjoint closed discs; it is a planar surface with boundary having three
boundary components. Note that we do not require the closure of the
set C to be, topologically, a closed pair of pants; see Figures 1.3b

and 1.3c. We only require that C itself be the interior of a pair

of pants.

‘ ‘ 1.3a
o O 1.3b

1.3¢

Figure 1.3

Very roughly speaking, the Dehn-Thurston parametrization for
multiple curves counts how many times the curve crosses each of the
"pants curves" Ki’ and how many times it twists around while going
from one component of Fg\\}{Ki} to another.

Corresponding to the pants decomposition in Figure 1.3a (plus some

other choices of convention), the Dehn-Thurston theorem gives a



parametrization of theAcollection of'multiple curves in FZ' Comparing
Figures 1.2 and 1.3a, we note that three of the Lickorish generating
curves are curves in the pants decomposition. It turns out that the
actions on the Dehn-Thurston parameter values of Dehn twists along these
curves are simple linear maps and thus trivial to compute. This faét
was noted by Dehn.

However, the action of Dehn twists along the other two curves in
the Lickorish generating set are not nearly so simple. To tackle the
problem of computing them, we note that these curves are curves in the
pants decomposition indicated in Figure 1.3c. If we had a way of computing
the Dehn-Thurston parameter values relative to the pants decompositionms
in Figure 1.3c from the parameter values relative to the pants decompo-
sition in Figure l.3a and viceeversa, then we would be able to compute
the action of each of the Lickorish generators relative to the original
pants decomposition in Figure l1.3a. This is in fact what we do. The
philosophy comes from linear algebra: if a transformation (a Deﬁn twist)
is hard to compute, change basis (pants decomposition).

We pass from Figure 1.3a to Figure l.3c by means of two elemeﬁtarz

transformations, which we now describe. The first one takes us from

the pants decomposition in Figure 1.3a to the one in Figure 1.3b. It may
also be described as the transformation pictured in Figure 1.4b; cutting.
along the right-most and left-most curves in Figures 1.2a and 1.3b gives us
the surface pictured in Figure 1.4b. The second transformation takes us
from the pants decomposition in Figure 1.3b to the one in Figure l.3c. It
may also be described by two applications of the transformation pictured

in Figure l.4a; cutting along the nullhomologous éurves in Figures 1.3b

and 1.3c gives us two copies of the surface pictured in Figure l.4a,
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Figure 1.4

We will call the transformation pictured in Figure l.4a and 1.4b the

first and second elementary transformations, respectively. Thus, the

computation of the action of MC(FZ) on the collection of multiple curves

in F2 is reduced to the computation of the two elementary transformatioms.
In fact the same procedure works for surfaces of arbitrary genus; there
exists a collection of pants decompositions of Fg’ all related by sequences
of elementary transformations, so that each of the Lickorish generating
curves is a pants curve in at least one of the pants decompostioms.

Our problem reduces in general to the computation of the two

elementary transformations. I am grateful to D. Gabai [9] for showing

this reduction, which he discovered. |

This thesis is concerned with computing the two elementary
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transformations. The first elementa;y transformation is relatively

easy and can be done by actually isotoping curves and arcs about on

the torus-minus-a-disc. This has been done successfully by Gabai. The
second elementary transformation requires much more work, yet the
techniques we develop to handle the second elementary transformation also
apply to the first elementary transformation.

At this juncture of the exposition, it would be pointless to give
the formulas describing the two elementary transformations. Thé reader
wishing to see what the formulas involve is encouraged to read Sections
2 and 3 and then skip to Section 8 where these formulas are presented
and some applications discussed. We describe briefly here the nature
of the results we obtain,.

The subset of 263-6

that parametrizes the collection of mulﬁiple
curves in Fg naturally embeds as a subset of Zn in some high-dimensional
Euclidean ball B, To each element p of MC(Fg) corresponds a finite
simplicial decomposition K¢ of BT, ¢y acts simplicially as a map of Kw

to itself, and, what is more, it acts like an integral matrix on each
top~dimensional simplex of Kw. We call such a transformation a piecewise-~

integral transformation. Our main theorem may be stated as follows.

Theorem l.1: The action gf_MC(Fg) on the collection of multiple curves

EE.Eg admits a faithful fepresentation as a group of plecewise-integral

transformations.

We prove the theorem by actually computing the action of MC(Fg) on the
parameter values corresponding to multiple curves relative to a fixed
parametrization. We then note that the action is piecewise-integral
and check faithfulness.

We remarked previously that our explicit computations in fact
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describe the action of ﬁords in Lickérish's generators on the collection

of multiple curves in Fg’ rather than the action of MC(Fg) itself., We

use this fact to our advantage by applying our theorem to give a prac-
tical algorithm for solving the word problem in Lickorish's generators.
Using the Alexander Lemma, one can easily show (see Proposition 8.1) that a
mapping class on Fg contdins the identity if and only if it fixes the isotopy
classes of a certain collection of 2g+l simple closed curves. " This result
proves the faithfulness of our respresentation. Moreover, one can check

if a word in Lickorish's generators is the identity in MC(Fg) simply by
computing whether the word fixes 2g+l particular multiple curves. This
fact immediately gives the following Corollary.

Corollary 1l.1: There is a practical algorithm for solving the word

problem in Lickorish's generators for MC(Fgl,

An outline of this thesis is as follows: In Section 2, we present
the Dehn-Thurston parametrization of multiple curves and derive a new
parametrization of such curves that is more useful for our purposes, and we
give some basic definitions. In Section 3, we give some additional
basic definitions, and we reduce our main computation to the computation
of the two elementary transformations. These are in turn performed in
Sections 6 and 7. Section 5 develops the main technical tools used
in Sections 6 and 7. Section 4 contains results about one-submanifolds
immersed in surfaces which are used in Section 5; these results have
an independent interest as wéll. In Section 8, we discuss the
formulas derived and mention several applications.

I should remark that though we have restricted attention to the action
of MC(Fg) on multiple curves in Fg, the computétions in this thesis in

fact apply more generally to any surface of negative Euler characteristic.
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I should also remark that there is a natural generalizatiom of
multiple curves called measured train tracks. Furthermore, the (discrete)
set of multiple curves sits inside the (connected) space of measured
train tracks in a natural way. In fact, our computations can be made
to describe the action of MC(Fg) on the space of measured train tracks.
Thus, though we restict our attention in this thesis to the essentially
combinatorial setting of multiple curves, our results apply more generally
to the analytical setting of measured train tracks. This point of

view will be discussed in Section 8.
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SECTION 2

Let F be a compact oriented surface. If i is an embedding of some
one-manifold 0 into F, then we refer to the subset i(0)CF as a one-
submanifold embedded in F. Thus, a one-submanifold embedded in F is
regarded an an unoriented point set. Recall that an embedding i(0) of a
one-manifold O in F is proper if i(30) = 3FN1i(0). Though we are pri-
marily interested in embeddings of closed one-submanifolds in g-holed tori,
the considerations of this section lead to the more general setting of
one-submanifolds properly embedded in a compact oriented surface of negative
Euler characteristic x(F). We thus consider this more general setting
from the outset. Note that the requirement of a negative Euler characteristic
excludes precisely four surfaces: the torus, sphere, disc and cylinder.

Let ¢ be a one-submanifold properly embedded in F: Note that components
of ¢ are either simple closed curves in F, called "closed components",
or arcs properly embedded in F, called "arc components'". We will say ¢
is essential if no arc component of c can be homotoped (through proper
embeddings) into 3F; furthermore, no closed component of ¢ can bound a

disc in F. If a component of ¢ can be homotoped into 3F, we say that it

is boundary-parallel. We will require a notion of isotopy that is

slightly stronger than proper isotopy and weaker than isotopy rel OoF.

Choose, once and for all, a point X, in each boundary component Ci of

F. We allow a proper isotopy to move points about in Ci\\x but it must

i,
keep the point X, fixed. A multiple arc in F is such a proper isotopy

class of essential one-submanifolds of F. We define a multiple curve

in F to be an isotopy class of essential closed one-submanifolds in F. (Note
that boundary-parallel closed components of multiple arcs and curves are
allowed.) We denote the collection of multiple arcs in F by é;z(F) and
describe an explicit parametrization for multinle arcs in this section. A

parametrization for multiple arcs is a one-to-one correspondence between
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é;h(F) and some subset of 2n, for some n. We will refer to any subset

of 7" as an integral lattice.

In order to parametrize multiple arcs in F, we must choose a certain

decomposition of the surface F. A pair of pants is a closed disc D

minus the interiors of two disjoint closed discs contained in the

interior of D. A pants decomposition {Ki} of F is an embedded closed

one-submanifold in F so that each component C of F’\U{Ki} is the

interior of a pair of pants. We do not require the closure of the set

C in F to be an embedded pair of pants. Some examples of pants decompositions
are given in Figure 2.1. Note that the boundary components of F are
necessarily curves in a pants decomposition., One constructs such a

pants decomposition {Ki} by taking a maximal family of disjointly embedded
simple closed curves in F, no two of which are freely homotopic. Two
unoriented simple closed curves in F are said to be parallel if they are
freely homotopic. One can check that there are M = |x(F)| pairs of

pants in a pants decomposition and that the number of components of

{K,} is given by

N = %(3|X(F)| + (number of boundary components of F)).

Double torus

~— (O A

Torus with two holes

Torus with one hole

i

!
]
1

. Sphere with
Figure 2.1 ' five holes
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We begin with a discussion of the standard pair of pants P, which

is regarded as oriented, with the boundary components Bk numbered as

in Figure 2.2 and with the arcs wkCLa as pictured, k=1,2,3. We refer

k
to these arcs as windows. Two arcs ¢ and d in P with 3c and 3d con-
tianed in windows are said to be parallel if there is a disc D embedded

in P with 3D contained in c¢\VUd ViInterior (wlx) Wy uw3) .

w

\
/ "

1

It is shown in [8, Expose 2 ] that two essential one-submanifolds
in P with no boundary-parallel components, say ¢ and d, satisfy
catd(cf\ak) = card(dlﬁak), k=1,2,3, if and only if there is a homeo-
morphism fixing 3P component-wise and carrying ¢ to d. Moreover, any
such homeomorphism is isotopic rel 3P to a map that is the identity off an
annular neighborhood of 3P. In general, if y and § are multiple arcs,

we define the geometrical intersection numbers of y and § to be the

minimum of card(cNd), where ¢ and d vary among the essential one-

submanifolds of F representing y and §. The result from [8] just



17

mentioned suggests that the geometrical intersection numbers of a
multiple arc with the (isotopy class of) each of the boundary components

ak of P are useful in parametrizing multiple arcs in P. Note that if

¢ is a properly embedded one-submanifeold in P, and o, = card(c(\ak),

k=1,2,3, then m1+m2+m3 is even.

Given any triple m,; ,m, 50y of non-negative integers with m1+m2+m3

even, we now construct a multiple arc attaining the intersection numbers

o, ,m and m, and meeting 3

2 in Wy (if at all).

k

Construction 2,.1: Let lij denote the arc in the standard pair of

pants indicated in Figure 2.3, for 1 < j = 1,2,3. Note that lij connects

boundary components 3, and Bj of P. We call an arc parallel to some

i

1,, a canonical piece. Note that by definition of parallelism for arcs

i]

in the standard pair of pants, the endpoints of an arc parallel to some

lij always lie in the windows W .

For each triple m; 5My My with m1+m2+m3 even, we construct a one-

submanifold of P with no boundary-parallel components, called a

canonical model. We construct these canonical models by taking various
disjointly embedded collections of the canonical pieces., There are four

cases, as follows:

a) The m

1 satisfy all possible triangle inequalities (that is, my ;=m2+mq

m §‘m1+m3 and m3§‘m1+m2). In this case, we take a disjointly embedded

2

collection consisting of:

(m1+m2-m3)/2 mutually disjoint parallel copies of arc 1,,

(m1+m /2 mutually disjoint parallel copies of arc 113.

370
(m2+m3—m1)/2 mutually disjoint parallel copies of arc 123.

Aﬁ example when m1=3, m2=l and m3=2 is given in Figure 24a.
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b) m, > m2+m3. In this case we take a disjointly embedded collection
consisting of:
m, mutually disjoint parallel copies of are 112.

m, mutually disjoint parallel copies of arec 113.

(ml-mz-mB)/Z mutually disjoint parallel copies of arec lll'

An example when m1=4, m2=1 and m3=1 is pictured in Figure 2.4b. The
next two cases are similar to case b).

c) m2:> ml+m3. In this case we take a disjointly embedded collection

consisting of:

my mutually disjoint parallel copies of arc 112.

m4 mutually disjoint parallel copies of arc 123.
(mz-ml-ms)/Z mutually disjoint parallel copies of arc 122.

d) wy > mytm,. In this case we take a disjointly embedded collection

consisting of:
m, mutually disjoint parallel copies of arc 123.
m, mutually disjoint parallel copies of arc 113.

(m3-ml-m2)/2 mutually disjoint parallel copies of arc 133.

Remark 2,.1: Let Zi_(ml,mz,mB) be the number of canonical pieces

Remate Lo i '

of type lij in the canonical model described in Construction 2.1. By
counting the number of times each canomical piece intersects the boundary

curves Sk, one easily verifies that the following identities are valid

in all cases of Construction 2.1,
m = 28) 4+, 4
my = 28y, +0 o+,
my = 2yg+l; 54,
Remark 2.2: It is easy to check that it 1is possible to choose such
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disjointly embedded collections for each case, and moreover that all
possible combinations of disjointly embedded canonical pieces are described
by these four cases. For instance, 111 and l33 cannot be embedded

disjointly, as is obvious geometrically. (It also follows immediately

from the main theorem of Section 4.)

3 >
) 4 - 3,
2 1, 3 1,
1og I
122 134
Figure 2.3
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NN

m1=3, m2=1, m3=2. 1=4 m,= =1, m3

2.4a 2.4b

Figure 2.4

We next state and prove the main parametrization theorem; it is
due to Dehn [5] and Thurston [17] independently., Subsequently, we define
a different parametrization, which is the one we will use. The proof
that our description does give a parametrization will follow as a
corollary to the proof of the Dehn-Thurston theorem,

Theorem 2.1 (Dehn-Thurstom): If F i

a compact oriented surface with

pants decomposition'{K.}N, then there is a.parametrization of (" (F)

by a subset of (7+)Nx2N, where 2 denotes the non-negative integers. The
DY & subset 2t

point (ml,...,mN)X(tl,...,tN) € (Z ) xZN corresponds to a multiple arc

if and only if the following conditioms are satisfied:

a) If m, =0, then t 2 0.

b) Ef-gﬁ’ Eﬁ and K bound an embedded pair of pants, then

mi+mj+mk.1§ even.

¢) 1L K,

We call this parametrization the Dehn-Thurston parametrization; it

bounds an embedded torus-minus-a-disc, then m, 1is even.

depends on certain choices which we now describe.
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Let Ai be a regular neighborhood of Ki in the surface F. Choose

a trivialization vu, of Ai as follows: it is an orientation-preserving

i
homeomorphism which carries Ai to the standard oriented annulus
A= Sl x [-1,1] if Ki is in the interior of F, and carries Ai to
1 1

s" x [0,1]¢ S x [-1,1] if K, is a boundary component of F. Let G

i
be a projection of A onto the core S1 x 0CA. Note that S1 x 0= Ui(Ki)
by definition of a trivialization. Choose an embedded arc uic;Ki, called
a window, let Dj be the closure of a component of F\\){Ai} , and choose
an .orientation-preserving homeomorphism fj of Dj to P carrying
-1 -1
(ui oG oui(ui)y1 Dj to a window Wi, W, OT Wy in the standard pair

of pants P.

In practice, we regard F as embedded in 83 and draw pictures. vy

is chosen as the trivialization that extends across a disc in 83 with

boundary Ki’ and G is taken to be the projection along the fibers in

the standard annulus A. We then draw and label {Ki}’ {ui}, f;l(llz)

and f-1(113) as in Figures 2.5 and 2.6, Since P\{1l 113} is contractible,

k| 12°
some straightening and the Alexander Lemma show that f;l(llz) and f; (113)
determine fj up to isotopy. For example, we let £ and f' be the

homeomorphism to the standard pants P corresponding to the choices
in Figures 2.6a and 2.6b, respectively. The map f'of-1 from P to itself
is isotopic to a right Dehn twist along the boundary component 94 of P.

Proof of Theorem 2.l: We first describe how one computes the Dehn-Thurston

parameter values for some ¥ e!gP'(F). Define the intersection numbers

m, to be the geometrical intersection numbers of y with (the isotopy

i
class of) Ki' Choosing a representative ¢ for vy, we may isotope ¢ to

attain these intersection numbers with each component of aAi by {8, Proposition

3.12]. Thus, for any i, a component of cN Ai intersects each component of BAi.
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Figure 2.5

2.6a. Figure 2.6 2.6b

Isotope c so that it intersects each component of BAi

and so that fj(cr\D ) is one of the canonical models in Construction

]
2.1. (This is possible by the result from [8] mentioned before

/

Construction 2.1.) We then define the twisting numbers ti as follows:

-1f m, = 0, take t, to be the number of components of ui(cf)Ai).

i

-1f m, > 0, then Itil is defined to be the geometrical intersection

-1 =1
in vy oG oui(ui)



23

number of the isotopy ciass rel aAi'éf v (eNA) and G-l(x), where x
is one of the boundary points of the window us. The sign of ti is
positive if some component of ui(cr\Ai) twists to the right in the
oriented annulus A, and the sign of ti is negative if some component-.
of ui(cr\Ai) twists to the left in the oriented annulus A. (Note that
if one component of ui(cf\Ai) twists to the right, no component can twist
to the left,)

It follows immediately from [8, Lemma 4.5] that at most one
Y eé;”(F) may achieve a particular tuple of intersection numbers and
twisting numbers. One shows easily that every parameter value is
achieved, using Construction 2.1. The theorem follows.cgﬂ

Example 2.1: Consider the pants decomposition on the surface F2
indicated in Figure 2.7. We will draw a representative ¢ of the multiple
arc y with Dehn-Thurston parameter values (3,1,2)x(2,-1,0) = (ml,mz,mB)
x(tl’tZ’t3)' There are three components of cf\Al since m1=3, and two of

these twist to the right since t,=+2. (It 1is geometrically impossible

1

to have one component twist around 2 times and the other not at all.)

Similarly, there is one component of cN A, since m,=+1, and it twists

2 2
once to the left since t2=—1; there are two components of cf\A3 since
m3=2 and no twisting since t3=0. Thus, we draw our'representative c of

¥ in each of the annuli A, 1=1,2,3, as in Figure 2.8a. We then connect
H

i’

up these arcs uniquely using the pre-images (under fl and fz) of canonical

pieces parallel to 112,123,1 as shown in Figure 2.8b.

13

Example 2.2: Continuing to use the choice of conventions indicated
in Figure 2.7, we will draw a representative c¢ of the multiple arc vy
with Dehn-Thurston parameter values (0,1,1)x(2,-2,1) = (ml,mz,mB)

x(tl,tz,t3). There 1s one component of each of ¢cnA, and c{'\A3 since

2
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m2 = mq = 1. There are two twists to the left in A2 and one to the right

in A3 since t2 = -2 and t3 = 1. Since m, = 0, ¢ does not intersect Al’

and since t1 = 2, there are two components in Al parallel to K Again

1.

we draw our representative c of vy in each of the annuli A i=1,2,3,

i,

as in Figure 2.9a, and we connect up the arcs uniquely as in Figure 2.9b.

Figure 2.7

2.8a 2.8b

Figure 2.8

2.9a 2.9b

Figure 2.9
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Remark 2.3: As indicated in the examples, sometimes a multiple arc has
a connected representative and sometimes not. It is a hard combinatorial
problem to compute the number of components of a multiple arc given
only its Dehn-Thurston parameter values. Except for a few special cases,
this remains an open problem.

We define a basis A for multiple arcs to be a choice of pants
decomposition together with a choice of conventions as in the proof
of the Dehn-Thurston the&rem, including a choice of (parallelism class
of) canonical pieces for each embedded pair of pants Dj' Note that
the Dehn-Thurston parametrization depends on a choice of basis, and
that once a basis is chosen, there is a one-to-one corfespondence
between é;9'(F) and the integral lattice described in Theorem 2,l.

The choice of parallelism class of canonical pieces of type 112,
l13 or l23 is determined by the choices in Construction 2.1. Consider
our choice of canonical piece lll drawn in Figure 2.10a. The isotopy
indicated in Figure 2.10 shows that the arc in Figure 2,11, denoted ill’
corresponds to a aifferent choice of parallelism class for the
canonical piece 111. Similar remarks apply to the canonical pieces l22
and 133, and we indicate some alternmative choices, denoted i22 and 133,
in Figure 2.11. _

We will say that an essential one-submanifold é is in good position
with fespecF to a basis A if fj(cr1Dj) is a canonical model for each j;
furthermore, for each i, we require that c intersect a component of 3A

i

exactly m times, where m, is an intersection number of the Dehn-Thurston

i
parametrization.
Instead of keeping track of the intersection number m,, one might

keep track of the numbers Zi* of canonical pieces of a good representative
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2.10a - 2.10b ‘ 2.10c
Figure 2.10
2.11a 2.11b 2.11c

Figure 2.11
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parallel to each 1., in each embedded pair of pants Dj' This is the
idea behind our parametrization of multiple arcs. The corresponding

integral lattice with respect to the basis A will be denoted g?A(F).

Coroilary 2.1: If F is a compact oriented surface with pants decomposition

{Ki}tf into M embedded pairs of pants {D,(}, then there is a para-

e
metrization _oiy' (F) by a subset of ((7‘*')6)M x WN The subset is denoted

yR(F)' To the multiple arc y, we associate the tuple

N ;

1 el 33 ed e

j +, 6. M
1 112*12°*%13° %222 23:'633) x (tl”..,tN) £ ((7) ) X.ZN-

3

The t 4 are the twisting numbers in the Dehn-Thurston parametrization,

and the number Ki* denotes the number of compoments of fjc parallel

to the canonical piece 1,., where ¢ is a good representative of y with

respect to the basis A. The corresponding subset '(F) satisfies the
— A

following conditions:

a) £1, 4 0 implies £g3 = 0, for all j.
b) !.{3 4 0 implies £, = 0, for all j.
c) 2%3 40 implies 1_:1'1 = 0, for all j.

&) & 40 tmplies £, = &), = 4, =0, for au1 5.
e) &), 4 0 tmpites 3, = & = &), =0, for aus ;.
£) 21, 4 0 tmpltes &, = & = 4, =0, for a1 3.

-1 -1 R

g) If K, is isotopic to both fj 81 and fj 82, then zll £22 C.
-1 -1 I .

h) If Ki is isotopic to both fj 82 and fj 33, then 222 £33 0.
-1 -1 i3 .

i) If K, is isotopic to both f.‘i al_and fj 83, then le 17_33 = 0.

: -1
If K, is isotopic to fj 95 We define

k| | ] -
2211 +£12 +£13, k=1.

- il L,
m(K,,3) = 203, +03, +8,, 2.

3 3 3 =
2£33 +L7 4 +Z.23, k=3,
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We further require that

3) m(X;,j) = 0 implies that £, 2 0.

k) If K, is isotopic to both f;lak and f;}ak,, then m(Ki,j) = m(Ki,j'),

1
3=3'

Proof: Restriction a)-f) follow from Remark 2.2, Restriction j) is
convention a) of Theorem 2.1, and restriction k) guarantees that the

pants glue together properly. Restrictions g)-i) require further

comment. Suppose that K, is isotopic to both f;131 and f;laz; suppose,

-1
gre Since fj 31 32

geometric intersection numbers with these curves are the same for all

moreover, f5133 is isotopic to K and f;l are isotopic,

multiple arcs in F. Thus, either m < 2m, or o> Zmi, and we are in

i’ i
case a) or d) of Construction 2.1, in which case le = 0 and 222 = 0,

An example where m,, = 4 and m, = 1 is indicated in Figure 2.12a, and

i i

an example when my, = 2 and m, = 1 is indicated in Figure 2.12b.‘ Restrictions

i

h) and i) are analogous.

2.12a 2.12b
Figure 2.12
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Thus, these restrictions are all necessary. Sufficiency follows
by applying Conmstruction 2.1 to give examples for each parameter value
satisfying a)-k). The corollary follows.cgﬂ

To be sure, this parametrization is less algebraically clean than
the Dehn-Thurston parametrization, but it is geometrically natural aﬁd
is what we need, In fact, we have embedded the integral lattice of
the Dehn-Thurston parametrization in a large-dimensional integral lattice.
Note moreover that by the formulas of Remark 2.1 and Constructian 2.1,
one can pass back and forth between the Dehn~Thurston parametrization
and our own parametrization, provided that both are computed relative
to the same basis A. We introduce the second parametrization because
the action of MC(Fg) on.é?ﬁ(Fg) is simpler than its action on thevDehn-
Thurston integral lattice, as we shall see.

In subsequent sections, we will compute the action of MC(Fg) on
the collection of multiple arcs in Fg' Corollary 2,1 tells us that
given a choilce of basis A, there is a one-to-one correspondence between
the set.é]”(Fg) aﬁd the subset é]l(Fg) of z15g-15. Thus, after a choice
of basis A, we may describe the action of MC(Fg) on é}”{Fg) in coordinates:
we compute the corresponding action on the particular integral lattice
yA(Fg) .

Remark 2.4: In the sequel, we will regard é}i(?)c-(2+)6M x-ZN, and we
will regard {Ki*,ti} as a collection of generators foregp'(F) satisfying
certain relations. Thus, if y and § are multiple arcs, we may speak of
the sum of their corresponding parameter values. If y and S have
disjointly embedded representatives, then the sum of their parameter

values corresponds to the isotopy class of the union of these representatives.
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If vy and § do not have disjointly eﬁbedded representatives, then the
sum of their parameter values may or may not correspond to some multiple
arc, depending on whether restrictions a)-f) of Corollary 2.1'are
satisfied for this sum.

The reader wishing to familiarize him or herself with the
parametrizations is urged to consult Figures 3.8 and 7.4 for
definitions of bases and then verify the computations in Appendix B.

Without too much tiouble, one can extend the results of this
section to a non-compact and/or non-orientable surface F with negative
Euler characteristic and two-sided essential one-submanifolds embedded

in F. For our present purposes, it is not worth the effort.
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SECTION 3

In the previous. section, we gave an explicit parametrization
relative to a basis A for the collection of multiple arcs in the g-holed

torus.by an integral latticecg?a(Fg)c_z}Sg—ls

» Our main goal is to
compute the action of MC(Fg) on é}W(Fg) by computing its action in
coordinates on the particular integral lattice é]i(Fg). The specification
of an element of MC(Fg) depends on a result of Lickorish {11] which
gives a collection of generators for MC(Fg) provided g > 2.

Just as Dehn knew of a parametrization for multiple arcs, he also
constructed a finite set of generators for MC(Fg) [6] called Dehn twists,
whose definition we will recall presently. Lickorish independently
refined this result by exhibiting a more useful collection of 3g-1 Dehn
twist generators for MC(Fg). More recently, S. Humphries [10] hés
sharpened this result. In his thesis, Humphries gives a collection
of 2g+l Dehn twist generators for MC(Fg) and shows that 2g+l is the
least possible nuﬁber of such. (Humphries' generators are contained
in Lickorish's set.)

A Dehn twist along a curve ¢ in an oriented surface F is defined
as follows. We identify a closed regular neighborhood N of ¢ with the
standard oriented annulus A = S1 x [-1,1] via an orientation-preserving
homeomorphism fc' On the neighborhood N of ¢, define the right and
left Dehn twists on ¢, denoted rzl, to be the conjugate by fc of the
map (9,t) > (O+tw(t+l),t) on the standard annulus A; define ril to be
the identity on F\W. This construction is independent of the orientation
of ¢, and the mapping class of Tzl depends only on the isotopy class

of the unoriented curve ¢ and the orientation of F.
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. +
Figure 3.1 illustrates the curves r;ld, where ¢ and d are as
pictured. The action of a single Dehn twist on a connected element .
of é;?(Fg) can be quite complicated. A reasonably complicated example

of such an action is indicated in Figure 3.2.

@
c T+1d T—1d

o4 [
3.1a 3.1b 3.1c
Figure 3.1

Figure 3.2
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A fundamental theorem in the study of surfaces is the theorem
of Lickorish mentioned previously.

Theorem 3.1 (Lickorish): If gg is the collection of 3g-l curves on

the g-holed torus pictured in Figure 3.3, then MC(Fg) is generated by

the Dehn twists along the elements of Qg'

Figure 3.3

It follows that MC (Fg) is a quotient of the free group on Lickorish's
generators, and a precise statement of our main problem is:

Problem: For some choice of basis A for .?' (Fg)’ compute the action

J : .
gr_l_yA(Fg) of Dehn twists along the curves in Qg'

Provided that Fg is oriented and regarded as embedded in S3, a
basis A for the collection of multiple arcs is:

a) A pants decomposition {I(:L}I;T'_'Bg_3 of Fg’ and a window uic Ki for

each curve Ki'
b) A Thomeomorphism fj:Dj + P from each embedded pair of pants Dj
(which is a component of Fg\U {Ai}, where Ai is a regular neighborhood

of Ki) to the standard pants P.
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c) A choice of canonical pieces (as in Construction 2.1) for each
embedded pair of pants Dj'

Fix some basis A for now, and suppose that we want to compute the
%1
K

the Dehn twists on the pants curve Kk of the basis A. If vy is a multiple

action on the Dehn-Thurston parametrization for multiple arcs of T

arc with Dehn-Thurston parameters {(mi’ti)}N’ then Ttlc has Dehn-Thurston

%

parameter values {(ml,tl),...,(mk_l,tk_l),(mk,tkimk),(mk+l,tk+1),...,
(mN,tN)}. Note that this result is independent of choices b) and c)
above.

Example 3.l: Adopting the basis A on F

2

T, T
K1 R
corresponding Dehn-Thurston parameter values (3,1,2)x(2,-1,0). (We will

2 indicated in Figure 2.7,

we compute the action of the word =t on the multiple curve with

read words in Lickorish's generators from right to left. Note, however,

that 7, , T and T commute with one another since the curves K, are
K1 Kz K3 i
all disjoint.) Let c be the good representative of Y shown in Figure

2.8b. By isotopy, one can arrange that T is the identity off the

i

annular neighborhood Ai of Ki used in the basis A. Thus, the image

"of ¢ under T agrees with ¢ outside of {Ai}, and Tx

2 ' 2
T, T Ty Ty C
K K Ky 155
is a good representative of its isotopy class with respect to the
basis A. This curve is pictured in Figure 3.4 and has Dehn-Thurston

parameter values (3,1,2)%(5,1,2) relative to the basis A.

2l

%

on the integral lattice é;l(Fg), where K, 1s a pants curve in the basis

Similarly simple (but more awkward to state) is the action of 1

A . It would thus serve us well to choose a pants decomposition for F

that overlaps as much as possible with the Lickorish curves £Z§°
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Figure 3.4

For FgC-Ss, we choose the standard pants decomposition and the

standard homeomorphisms fj:D + P indicated in Figure 3.5. For the

3

time being, we make choice ¢) above as in Construction 2,1, As one

might expect, these choices give the standard basis Ag on Fg'

Genus 2. Genus 3,

O () A N

Genus g > 3 ,

Figure 3.5
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Let qg; be the collection of 2g-1 curves in Fg indicated in

Figure 3.2, The Lickorish curves are contained in U i{K }Bg-3
52% — bg i°1

Thus, to solve the main problem, it remains to analyze the twists

£l , . 3g-3
T, , for c ¢ %g. Note that in fact the containment ggc%gu{xi}l
s proper.

Genus 2. Genus 3 .

Genus g > 3,

Figure 3.6

Consider the various changes of basis indicated in Figure 3.7
(preserving the choice c¢) of canonical pieces). This picture shows
that for each curve ¢ ¢ Qg;, there is a change of basis Ag+ B so that
¢ is a pants curve in the basis B. Conjugating by this change of

. +1
basis, we could thus compute as above the action of T, omn é;i(Fg) for
¢c e Qg%. The philosophy comes from linear algebra: if a transformation
+
(17'1 for ¢ e%? ) is hard to compute, change basis,
c g
Note that in fact computing these changes of basis will allow

us to compute the action on \(F ) of Dehn twists not only along
P A g
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Figure 3.7 (genus=2)
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Figure 3.7 (genus=3)




39

Figure 3.7 (g > 3)
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’

the 3g-1 curves in éZ;,~but along all 5g-4 curves in Qg;L){Ki}ig-B.
Though the action of the Humphries Dehn twist generators alone would
suffice to describe the action of MC(Fg) on multiple arcs, we use this
much larger set for two reasons: we get the extra information for free,
and the greater number of generators allows a greater flexibility in -
specifying mapping classes. Moreover, I do not know of a way to take
advantage of considering only the Humphries generators.

Each change of basis in Figure 3.7 can be written as a composition

of the elementary transformations pictured in Figure 3.8. We have thus

reduced the main problem to the computation of the two elementary
transformations. This reduction of the problem was shown to me by

Gabai [9].

) ; 3 )

second

Kl ““-——_._____——~"’>'efementary

trans-
formation

first
K 0 rmnr
elementary

trans-
formation

3.8a ‘ 3.8b
Figure 3.8

The first elementary transformation is comparatively simple, and

the computations can be done by hand (by actually isotoping curves
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and arcs about on the torus-minus-a-disc), but the second elementary
transformation requires some work. However, the machinery we develop
to handle the second elementary transformation also applies to the
first elementary transformation. We next describe some of this
machinery and outline the actual computations.

Let S1 be the torus-minus-a-disc, and let S, be the sphere-minus-

2
four-discs., Let A be the basis on Si indicated in Figure 3.8a, and
let A' be the basis on Si indicated in Figure 3.8b, i=1,2. Given a

multiple arc y, we choose a good representative c of y with respect
to the basis A, and we orient the components of c arbitrarily. We will
i:Si - Si' We
isotope & about in Si to some ¢ so that each component of fj(HiEi D

choose a lift & of ¢ to a certain regular planar cover I

j)

is a canonical piece in the standard pants P, where the fj are the
homeomorphisms of the basis A. Define ¢ = Higl The reason for passing
to a covering space is that we gain a facility in picturing the
homotopy from ¢ to c as an isotopy from & to g: However, we cannot

guarantee that the isotopy from & to c is T -equivariant, so ¢ is not

i
in general embedded. However, ¢ 1s at least homotopic to the embedding
c.

We will introduce a combinatorial object, called a symbol, in
Section 5. The collection of symbols relative to a basis A forms a
semi-group, and we associate to each tuple inQQQA(Si) some symbol. More
generally, we will associate a symbol to an immersed one-submanifold .
such as c.

It turns out that the symbol of ¢ is the symbol of an embedding ¢’

homotopic to c. c and ¢' are thus homotopic, and, in fact, c¢' will

be in good position with respect to the basis A'._ It is well known [7]
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that two homotopic embedded one-submanifolds are in fact isotopic.
(This also follows from the results of the next section.) <¢' is thus
a good representative of y with respect to the basis A', and we can
compute the parameter value of vy 1negpk,<si) from the symbol of c'
(which is the same as the symbol for ¢ ). Thus, the elementary
transformations are given by maps between semi-groups of symbols, which
we will call combinatorial homotopies.

The difficult part of this process is showing that the symbol of
¢ is in fact the symbol of an embedding c¢' homotopic to c. We prove
some results about one-submanifolds immersed in surfaces in the next
section that are of independent interest. These are applied in Section
5 to show that if the symbol of c satisfies a few technical properties,
then such a c¢' exists, Much of the hard combinatorial work of Sections
6 and 7, where we compute the two elementary transformations in ﬁurn,
is devoted to showing that the particular symbol for ¢ satisfies these
technical properties.

The planar cbvers Hi:gi > Si’ i=1,2, are defined in Sections 6 and
7. They are particularly pleasant to work with. The two groups of
covering translations are groups of isometries of RZ with its usual
metric, Thus, the push-forward under Hi of the usual metric on giCJRZ
gives a Euclidean structure on Si’ For the special case of multiple
curves with no boundary-parallel components, the combinatorial
homotopies that describe the elementary transformations are closely
related to straightening to geodesics in tﬂis Euclidean structure.

The reader wishing to skip the explicit computations can proceed

directly to Section 8, where we give the formulae for the elementary

transformations and discuss some applications.
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As usual, though we restrict attention to the case of g-holed tori,
the techniques described in this section work for an arbitrary non-compact
and/or non-orientable surface F of negative Eﬁler characteristic. In
case F is non-orientable, we interpret MC(F) as the group generated by
isotopy classes of Dehn twists. (It is not true that the Dehn twists
generate the group of homeomorphisms of F modulo isotopy. See
{1] and [12].) 1If F is non-orientable, we interpretegp'(F) as the
collection of isotopy classes of two-sided essential one-submanifolds
embedded in F. With these more general definitions, the action of MC(F)
onegp'(F) can always be computed from the two elementary transformations,
as in this section. |

A final observation: Thurston and Hatcher [19] have shown

that one can pass between any two pants decompositions on Fg by

sequences of our two elementary transformations.
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SECTION 4

In this section, we prove some results about one-manifolds
properly immersed in surfaces. For convenience, we will assume that
the surfaces we consider have a fixed smooth structure. As usual, ﬁe'
will also assume that our surfaces have a negative Euler characteristic.
Let j be a proper immersion of a (smooth) one-manifold in the sﬁrface
F. We will consider the image of j as an immersed manifold a, &et
we will refer to the the image under j of components of O as the
"components" of a. We will also refer to a component of o as a
"closed component”" or "arc component', according to whether the corres-
ponding component of 0 is a circle or am arc. A specific choice of
map j will be called a "parametrizati&n" of the immersion g.

By an n-gon in F we mean a (smoothly) embedded open disc (whose
closure lies in the interior of F) with embedded piecewise-smooth
boundary and n discontinuities in the tangent of the bounding curve.
Some examples of n-gons are pictured in Figure 4.1. If there is an
n-gon in F with its frontier in an immersion a, then we say that o has

a complementary n-gon.

O

bi-gon tri-gon

null-gon
mono-gon

Figure 4.1
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If o has a complementary mono-gon or bi-gon, then the homotopies
indicated in Figure 4.2 show that g cannot have minimal self-intersection
number in its homotopy class rel 3F. The main result of this section

is a converse: if o does not have minimal self-intersection number in

its homotopy class rel 3F, then the application of a finite sequence °

of the homotopies indicated in Figure 4.2 gives é_representative.QE

the homotopy class of o that does.

, ’

gon

Figure 4.2

A special case (Corollary 4.1) of this result is applied in a
rather technical setting in the next sectiom. Moré generally, this
result is useful for determining whether the homotopy class of a
given immersion has an embedded representative: remove complementary
mono-gons and bi-gons using the homotopies in Figure 4.2, This process
terminates and either yields the desired embedding or an immersion
with no complementary mono-gons or bi-goms, in which case there can

be no embedded representative of the given homotopy class.
\
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If F is a surface of negative Euler characteristic, then it is
well known [13] that F supports a Riemannian metric of finite area and
“of constant ~1 curvature so that 3F is geodesic. The total space
of a universal cover H:E + F is isometric to a contractible subset of
the Poincare disc D with geodesic boundary. There is a natural
compactification of the (open) Poincare disc by a circle, and the
points in this circle, which is denoted Si, are called the points at
infinity. We regard D‘=DQJSi, which is homeomorphic to a closed disc,
and regard the points at infinity as being infinitely far from any
point in D. The closure of ; in D‘JSi is topologicallﬁ a closed disc,
which we will denote by K, and K(\Si is called the limit set. The limit
set 1s either all of Si or a Cantor set in Si, depending on whether
the surface F is closed or has boundary. We denote by 3K the
frontier of K in D plus the limit set, so that 3K is homeomorphic
to a circle.

In the 1920's through 1940's, J. Nielsen developed a very beautiful
theory of surface automorphisms [13] by studying the natural action of
homeomorphisms of the surface on the points of K at infinity. (In fact,
Nielsen's work anticipates some of the recent developments in the theory
of surface automorphisms. Nielsen bhad a pretty complete picture of current
work in surface automorphisms, but he did not use the machinery of
foliations, which had not yet been invented.) We will require in the
sequel only a handful of elementary results from the Nielsen theory.

We presently recall these facts. We may identify the group
wl(F) of covering transformations with a discrete subgroup of the
group of isometries of D, so that the subgroup consists entirely of

hyperbolic Mobius transformations of D. A hyperbolic transformation
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of D has a simple geometrical pictufe: geodesics in D are circles
: 1 . . . .
orthogonal to S, and a hyperbolic transformation y is translation

along such a geodesic. The fundamental points of Yy are the endpoints

at infinity of this geodesic, called the axis of y. The action of

P on E extends continuously to an action on K, and the fundamental

points of y are the only fixed points of y on 3K. Finally, if two

axes of elements of wl(F) intersect at infinity, then they coincide,
since otherwise their commutator would be a parabolic transformation [14].
(Recall that vl(F) consists entirely of hyperbolic transformations.)

Given a component ¢ of the immersion o, we define a complete lift

of ¢ to K, denoted g, as follows. If c¢c is a properly immersed arc
or inessentially immersed closed curve, we define g to be simply a lift
of ¢ to §<=K. If ¢ is an esséntially immersed closed curve, we define
é to be the.closure in K of a bi-infinite sequence {Ei} of lifts.of

¢ to Fe K, where the final point of ¢, is the initial point of ¢,

i i+l*

Thus, a complete 1ift of an essential curve component or proper arc
component of o is'an arc properly immersed in the ball K. A complete
Lift of an inessential closed curve component of ¢ is an immersed
closed curve in E-’CK

We will consider only properly immersed one-submanifolds ¢ in
general position in F. We assume that o N 3F is already in general
position in F. Thus, o has at most double points, and o is embedded
near JF. Let A(a) denote the set of double points of q.
Lemma 4.1: Suppose that o is a (smooth) one-submanifold properly
immersed in a surface F in general position. ¢ has minimal self-
intersection number in its homotopy class rel 3F if and only if for

every pair c and d of components of o (with perhaps c=d), complete lifts
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on
[V]
=]
=N

d are embedded an& satisfy one of
a) cnd = b

and d intersect transversely in a point.

On

b)

¢) end = (€na)n(dA3K). (This implies that c¢ and d are closed curve

it

components of a with homotopic powers, provided czzl\é + b.)

d) ¢ =d. (This implies that ¢ and d have homotopic powers.)
Mr (&=) We begin by counting the double point set of ¢ in case
every complete lift of a component of g is embedded. Choose, once and
for all, lifts ;C §CK of the components of g. Since ¢ is in
general position in F, we may choose our lift E starting at a point
in e\ Aa).

Since nl(F) act transitively on the fibers of @, if p ¢ enala),
there is some ; € ;l'\l'[-l(p) and some complete 1lift d of some component
d of o with 5 in 3, and so that ; is not contained in 2 (since 4 is
in general position). There is thus a one-to-omne cox:‘respondence‘
between c¢n A(a) and the complete lifts of components of ¢ that
intersect c. LetvNE(a) denote the cardinality of ecna(a), so that
card A(a) = %é Na(a). It is easy to show that any homotopy in F of
« rel 3F lifts to F and extends continuously to a homotopy in K that
is constant on 3K. Thus, 1if complete lifts are embedded and satisfy
one of a)-d), then a homotopy in F of o rel 3F cannot decrease NE(a)
for any component ¢ of a, and the implication follows.

( =) We first show that complete lifts are embedded. To derive a
contradiction, suppose that é is not embedded, where ¢ is an arc or
curve component of g. Parametrizing é (by the circle or interval),
this means that there are parameter values £, < t2 with é(tl) = §<t2)'

Since ¢ is either an arc or a closed curve properly immersed in the
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disc K, é[tl,tz] is null hoﬁotopic iﬁ K. Let 5 = g(tl) = g(tz), go that
H; is a double point p of ¢. If ¢ is an arc component of o, then 5

is in the interior of K by general position. If ¢ is an inessential
curve component of a«, then ; is in the interior of K since ¢ is. If.

¢ is an essential curve component of o, then since é has distinct
endpoints at infinity, ; is in the interior of K, Thus, p has a
neighborhood in the interior of F as in Figure 4.3a, which we mdoify

as in Figure 4.3b. The dotted lines in Figure 4.3 denote arcs immersed
in F, and the mono-gon in Figure 4.3a denotes a disc immersed in F,

This move decreases card A(a) by exacly one, and it is the projection

by I of a homotopy in K. This contradicts the minimality of o and

proves that complete lifts are embedded.

- P -
7 -
7 v //
/ /
! // ! /
\\ /l \ //
‘_// \\ "
4,3a 4.,3p
Figure 4.3

Suppose that ¢ is an inessential curve component of o, where a is
in minimal position. Any complete lift c must satisfy either a) or

d) for any complete lift 3 of any component d of a. This is because
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one can easily homotope these inessential components to embedded
circles out of the way. Thus, we may assume that o has no inessential
closed curve components.

Now, if ¢ and d are components of a, and é and d have distinct )
endpoints yet fail to satisfy a), b) or d), then there are para-
metrizations of g and 5 (by the unit interval), and there are parameter
values s, <8, and t1 < t2 with g(si) = g(ti), i=1,2. Moreover,
c[sl,sz]*d_l[tl,tz] must bound a disc in ﬁ, where x denotes concatenation
of arecs. Let ; = g(sl) = 3(t1) and i = g(sz) = i(tz), and let
p = H; and q = H;. If p and q are distinct double points of.a, then

there are neighborhoods of p and q in F as in Figure 4.4a, which we

can modify as in Figure 4.4b, contradicting the minimality of a.

PR .

- - - - . - - - ——

' 4 ,4a 4 J4b

Figure 4 4

If p = q, then by general position, either ¢ = d is an arc

component of o, or E[sl,sz] multiply covers the closed curve component
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¢ and a[tl,tz] multiply covers the closed curve component 4.
In case ¢ = d is an arc component, general position implies that
there is a covering translation ¥ Gﬂl(F) carrying g[sl,szl to dlt

12t

and P must interchange ; and & since it acts without fixed points on
F. Thus, 1 = M(els ,s,l#d  e,,t,]) = (nétsl,szl)z e (F,p) Since
Wl(F,p) is without torsion, the loop Hg[sl,sz] must be inessential,
which is absurd Because g[sl,sz] is not a closed loop.

Suppose that g[sl,szl multiply covers the closed curve component
¢ and g[tl,tzl multiply covers the closed curve component d. Since
P = q, there is a covering transformation y so that w(;) = ;. Both
w(é) and d intersect é at &; this violates the uniqueness of lifting
unless w(g) = 3. Thus, the fundamental points of y coincide with the
endpoints of 3, and symetrically for é. This contradicts the aséumption
that : and 3 have distinct endpoints at infinity. |

Complete lifts of essential curve components have one endpoint
in common‘if and only if both of their endpoints coincide. Thus, it
remains to consi§ér only the case of two essential closed curve components
¢ and d so that g and 3 have the same endpoints at infinity. 1In this
case, powers of ¢ and d are easily shown to be homotopic, say o= dn,
where |m| < |n|. Consider the irregular cover of F by an annulus
A corresponding to <cm>=2c:vl(F,p), where p is a point in ecnd. (See
[7]1.) c and d each 1lift to closed curves in this cover that intersect.
We may apply the move indicated in Figure 4.4 in the cover A to reduce
card A(a). This contradiction proves the lemma{cgj

If ¢ is connected and has a double point set A(c), we call p ¢ a(c)

inessential if ¢ may be parametrized so that c(sl) = c(sz) =Py S; < 8y,
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where c[sl,szl is null homotopic. We say p % q ¢ A(c) are companions
if either of conditions a) or b) below are satisfied.
a) There is a parametrization of ¢ with p = c(sl) = c(s3) and
-1
q c(sz) c(sa), s, < s, < Sy < 8, where c[sl,sz]*c [s3,§4]
is null homotopic.
b) There is a parametrization of ¢ with p = c(sl) = c(sA) and
q= c(sz) = c(sB), 8] < 8y < 85 < 5, where c[sl,szl*c[s3,sa]
is null homotopic.
Figures 4.5a and 4.5b illustrate cases a) and b) of companion double
points., If ¢ and d are distinct and connected, we say p + q e A(eNd)
are companions if there are parametrizations of ¢ and d with p=c(sl)=d(t1)
= = ; -‘1 .
and g=c(s,)=d(t,), s, < s, and t; < t,, where c[sl,szl*d [tl,tZ] is

null homotopic.

c(sl)=c(s3) ““““ ) c(54)=c(s2)
_— - - -
\
/
\“§ '__.—-’
4.5a
c(s1)=c(s4) e - _— c(sz)=c(s3)
et T - .- \
4.5 \
\
1 N - _’/
]
Figure 4.5

An immediate corolléry of Lemma 4.1 is the following proposition.

Proposition 4.1: Suppose a is a properly immersed (smooth) one-submanifold

in general position in a surface F with negative Euler characteristic.
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Under these conditions, o has non-minimal self-intersection number

in its homotopy class rel oF if and only if there is an inessential

double point or there are a pair of companion double points in a.@

The main result of this section is the following theorem.

Theorem 4.1: & as above has non-minimal self-intersection number in

its homotopy class rel oF if and only if there is a mono-gon or a bi-gon

with its boundary in a.

Proof: The implication (&= ) is trivial as in Figure 4.2, and the
implication ( = ) takes some work to prove. To start off, suppose
that a is connected, and parametrize a once and for all. Let J be
the collection of sub-intervals [a,b] of the arc or curve which para-
metrizes a so that one of the following three conditions is
satisfied.
a) a(a) = a(b) is an inessential double point of «a.
b) a(a) = a(b), and there is a companion q to a(a) so that
a™ (@) € [a,b].
¢) a(a) and a(b) are companion double points and a-l(a(a))
a-l(a(b)) are contained in [a,b].

By Propositiom 4.1, j+ ¢. Let [ao,bo] be an innermost interval

in ﬂ

Case a): a(ao)=a(bo) is inessential, If al(a is an embedding,
0

by

we have exhibited the mono-gon bounded by afa,,b.]. If a] is
0'"0 (aosbo)

not an embedding, then choose a, < a, < b, < b, so that cx(al) = a(bl)

0 1 1 0

and so that a{ (a is an embedding. One can arrange this by choosing
1

b))

[al,bll innermost among sub-intervals of [ b so that a(al) = a(bl).

392 b0
Let B =a[a1,b1] and v = a-l[ao,all*a-l[bo,bl], so that 8 = y as elements
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of Wl(F,a(al)). We modify B and ¥ in a neighborhood of a(al) as in
Figure 4.6, and we retain the names R and y-l for the components of

the result.

s N
/ \
( }
\ /
\~- _//
4.6a 4.6b
Figure 4.6

Now, Y—l is an immersion homotopic to the embedding 8_1, and so
Y_l and § are disjointly embedded since [ao,bo] was chosen to be innermost,
using Proposition 4.1. B 1is not null homotopic since [ao,bO] was chosen
to be innermost, so Y_l and 8 bound an annulus in F. Thus, 28 = 1 in
wl(F,a(al)), which is impossible.

In cases b) and c¢), if the innermost bi-gon is not embedded, then
one easily constructs é null homotopic loop that is the composition of
two disjointly embedded non null homotopic loops (consult Figure 4.5)
and derives a contradiction as above.

This proves the theorem in case o is connected. In general, the

same argument is valid provided Jﬁialso includes any intervals arising
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from companions on different components of a. @

Corc;llary 4.1: If o is a proper immersion homotopic to an embedding rel 3F

and a is in general position in F, then either a is already embedded

or there is a mono-gon or a bi-gon in F with its i:oundary in g.@

Corollary 4.2: If o and 8 are proper immersions in general position

each with minimal self-intersection number in its homotopy class rel JF,

then aUB is in non-minimal position if and only if there is a bi-gon

in F with half its boundary in g and half its boundary in g.[X]

It is not true that if o and B are proper immersions, then a upB is
in non-minimal position if and only if there is a mono-gon or a bi-gon
in F with its boundary in a yB as the example pictured in Figure 4.7

indicates.

\
—

Figure 4.7

This section contains generalizations of some results of [7].

Corollary 4.2 is proved there for o and 8 embedded curves.
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SECTION 5

This section contains a description of some of our technical foundations
and a final overview of the computations to be performed in Sections 6
and 7. We will introduce a combinatorial description of curves and
arcs immersed in surfaces, called symbols. We will then use the results
of Section 4 to show that, under suitable conditions, a symbol for
an immersed one-submanifold in fact describes an embedded one-submanifold.
With this machinery developed, we distinguish four types of multiple
arcs and give a detailed desription of the computation of the two
elementary transformations for each type. We then describe the com-
putations of Sections 6 and 7 step by step.

Later in this section, when we apply the results of Section 4,
we will require our surfaces to have a fixed smooth structure; for
the present, we may work in the topological setting. We adopt the
notation defined in Section 2, where we introduced the notion of é
basis for the colléction of multiple arcs. Fix a choice of basis

A, let M be the number of embedded pairs of pants D,, and let N be the

]
number of curves Ki for the basis A.

Suppose that o ¢ é}”(F) is a multiple arc in the compact oriented
sufface F. We choose a good representative of o with components {c},
and we paraﬁetrize each component ¢ as a map from the unit interval

or unit circle into ¥, depending on whether ¢ is an arc component

or a closed curve component of qo. We have oriented the components

of o arbitrarily and once and for all.

There is a finite partition of the unit interval or unit circle

by intervals [tk_l,tk], which is maximal subject to the condition
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that c[tk-l’tk] intersect %laDj exactly in c(tk_l) and c(tk). Thus,

each c[tk_l,tk] is contained in either an annulus Ai or an embedded

pair of pants Dj' If c[tk_l,tk]<:Ai, we formally associate to [tk_l,tk]

the symbol stz, where n is the twisting number of uic[tk_l,tk] in the
standard annulus A. n is taken to be zero if Uic[tk~l’tk] runs directly

from window to window with no twisting. If c[tk_l,tk]c:D , we formally

3

h| ] k| h) h R
associate to [tk_l,tk] the symbol s£1l, 3112, s£13, 3222, s£23 or 8233,

according to which canonical piece 1,, in the standard pants fjc[tk_l,tk]
is parallel to. Each symbol in the following set is called a letter.

n

{sti

tneZ, i=1,...,N}U{sf.:ljl,sliz,sﬂiystjzz,si_gyslg?): j=1l,...,M}

Once th; components of o are oriented, it makes sense to distinguish
between letters corresponding to canonical pieces with different prientd—
tions. It will be convenient to do this im Section 7; where we consider
the second ‘elementary transformation. For now, however,'letters are

to be regarded as "unoriented".

A connected symbol is defined to be an (ordered) sequence of

letters. A symbol is defined to be a finite collection of connected
symbols, called the components of the symbol. Once a basis A is chosen
we define the A-symbol of the component ¢ of g to be the concatenation

of the letters associated to [tk-l’tk]’ in order. 1If ¢ is an arc
component of a, then this symbol is unique (once ¢ is oriented); however,
if ¢ is a closed curve component of g, the symbol depends on the choice
of a starting point of the parametrization c:Sl -+ F subject to c(tk) £
}JBDj, for all k. Define the A-symbol of a ¢ G/'(F) to be the collection
of symbols of components of ¢. We will call an A-symbol simply a symbol

when the choice of basis is clear.
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A symbol is thus a finite collection of words in the free semi-

group on the letters. When convenient, we will use the semi-group

. P
notation. For instance, we will write the symbol (sﬂi* sti sli*)n as

. « 1
shorthand for n concatenations of the symbol sﬂi* sti sﬂi*. When

convenient, we will also delete a letter stg
1
we will write the symbol sli* sﬂi* as shorthand for the symbol

i _.0 _,3'
sty sty sl

from a symbol. For instance,

We will say a symbol is embedded admissible (with respect to the

basis A) if it arises as above from some multiple arc o. Embedded
admissible symbols satisfy many properties. In Appendix A, we verify

some simple properties of embedded admissible symbols. In particular,

n
i

components of) an embedded admissible symbol, then sgn(nl) = sgn(nz).

in Corollary A.l, we show that if st1 and stgz are letters in (some

sgn(0) is undefined, but stg can occur only with stI1 or st;}. Any

symbol satisfying this condition for each i=1,...,N is said to be a

constant parity symbol.

We will call a symbol immersed admissible (with respect to the

basis A) if the following conditions are satisfied.
a) There is a (parametrized) immersion g of a one-manifold O into

F which is homotopic rel 3F to an embeddeding. g:may‘gg either a proper

or improper immersion.

b) There is a partition {[tk_l,tk]} of each component of 0, maximal
subject to the condition that ;Itk-l’tk] intersect %laDj exactly in
a(tk_l) and a(tk), for each k. Furthermore, for each k, fja[tk_l,tk] is
a canonical piece in the standard pants for some j, or Uia[tk—l’tk] is
some number of twists in the standard annulus A for some 1i.

c) a gives rise to the symbol, as above.
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We will say an immersion a is in good position (with respect to the
basis A) if there is a partition of the components of O so that conditions
b) and c) above are satisfied. Thus, to each (parametrized) immersion
in good position, there corresponds a unique symbol. However, it is
not true that there is a -unique homotopy class rel boundary (of the “
immersion) of good immersions corresponding to a given symbol.

One can easlly give necessary and sufficient conditions for a symbol
to arise as above from an immersion, provided that we do not reqﬁire
that the immersion be homotopic to an embedding., Necessary and sufficient
conditions for a symbol to be either immersed admissible or embedded
admissible are not known. This appears to be a very hard problem, which
we will happily be able to avoid.

Note that an embedded admissible symbol is immersed admissibie.
Moreover, note that if g ¢ é]”(F), then one can compute the parameter
values {ﬂi*,ti} corresponding to q (with respect to the basis A) from
the A-symbol corresponding to ¢. Indeed, if c is a component of a good
representative of ¢, then the parameter values 22* and ti corresponding
to the isotopy class.of ¢ are the exponent sums of the letters sli* and
sti in the symbol corresponding to c.. The parameter values of a dis-
connected ¢ are the sums of the parameter values ofiits components. (See
Remark 2.4.) We call the various exponent sums on the letters of an
arbitrary symbol the coordinates of the symbol. We will denote these
exponent sums by li* and ti. This abuse of notation will not cause any
confusion.

Suppose that s s' is a pair of adjacent letters in the symbol s

corresponding to the immersion . Suppose that s arises from [t tk] , and

k-1’
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S'

arises from [tk,tk+l]. We say that the symbol'E is alternating
if one of the following conditions holds for every pair s s' of adjacent letters.
a) EIt

k] and alt ] lie on different sides of some

k-1t K Pl

component of LiJaAi.
b) ETtk_l,tk] and ;Itk’tk+l] are each twists of the same direction
in some annulus Ai.
In particular, an embedded admissible symbol is always alternating. An
immersed admissible symbol may fail to be alternating; for instﬁﬁce,
this can happen when Dj = Dj" where j and j' are superscripts of con-
secutive letters arising from canonical pieces.
We are mostly interested in alternating, constant parity symbols
because an alternating, constant parity, immersed admissible symbol can

often be shown to be embedded admissible. More precisely, we will prove

the following proposition.

Proposition 5.1: Suppose that é:i a good proper immersion and the symbol

s of a is alternating, constant parity and immersed admissible. ‘Suppose,

moreover, that the coordinates of s satisfy restrictions a)-f) of Corollary

2.1. Under these conditions, E'ii_homotopic rel 3F to an embedding that

has the same symbolng.

(Restrictions a)-f) of Corollary 2.l require simply that in each embedded
pair of pants Dj’ the canonical pieces that occur may be disjointly
embedded simultaneously.)

Before we prove this proposition, we introduce some machinery,
called train tracks, due to Thurston [17]. We do not use train track
theory in any essential way; train tracks are simply a technical
convenience in the proof of Proposition 5.1.

A properly embedded branched one-submanifold T in a compact oriented
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surface is called a train track with stops provided F\T contains no

null-gons, mono-gons, bi-gons or smooth annuli. (See Section 4.) 1In
the literature, it is customary to require a train track to be a closed
branched one-submanifold embedded in F. Qur definition is more general
for utility.

We construct seven train tracks with stops on the standard pair
of pants using the following combinations of canonical pieces:

1) 1 i1i) (1

337113019470 1) (1y5,114:159),
(Recall the

11711201730 11 (155,1555154),

V) (l ), vii) (l

1lipl1y) v (055, 33211301230
alternative choices l** of canonical pieces indicated in Figure 2.11.)
These train tracks with stops are pictured in Figure 5.1; we indicate
two train tracks with stops on the standard annulus in Figure S'Zf

Let M., be the number of embedded pant§ Dj so that no two boundary

1

components of D, are parallel in F, and let M, = M-M.. We will construct

3 2 1
4M1 + 2(N+M2) train tracks with stops in F, called the stangard train
tracks with stops (with respect to the basis A).

Construction 5.1: A branched one-submanifold T in the surface F

is said to be a standard train track with stops with respect to the

basis A if the following conditions are satisfied.

a) f;

corresponding to the choice of canonical pieces in the pants Dj’ for

1T is one of the tracks i)-vii) in the standard pair of pants

i=1,...,M.
b) u;lT is one of the tracks on the standard annulus illustrated in
Figure 5.2, for i=1,...,N.

is parallel to f. 3. in F,

c) If D 3 33

is a pair of pants so that f;la

h| 2

then f;lT is one of the tracks i), iv), or v).



B8 |

/
N
P _\\w PR Bt
Figure 5.2
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L

3 in F,

d) If Dj is a pair of pants so that f;la is parallel to f;

1

then f;lT‘is one of the tracks ii), iv) or vi).

e) 1If Dj is a pair of pants so that f;lal
then f;lT is one of the tracks 1ii), iv) or vii).

is isotopic to f;la in F,

2
(It is easy to check that any branched one-submanifold so constructed

is actually a train track with stops. The restrictions c)-e) are explained
by restrictions g)-i) of Corollary 2.l.)

Proof of Proposition 5.1: Let a be the particular immersion giving rise

to an immersed admissible, alternating, constant parity symbol S. Since
the coordinates of s satisfy restrictiomns a)-f) of Corollary 2.1 by
hypothesis, we may assume that o lies in a regular neighborhood N(T) of
one of the standard train tracks with stops, say T. Moreover, since

s is comstant parity, we may choose T so that E}\Ai is_(smoothly)'

homotopic into TN A,, for each i=l,...,N. Since a consists of the pre-

i?
images gnder fj and v, of canonical pieces in the standard pants.and
twists in the standard annulus, and since o has an alternating symbol,
there can be no mono-gons complementary to a. Thus, by Corollary 4.1,
either o is already embedded which proves the proposition, or there are
complementary bi-gons. Let B be a complementary bi-gon. Since o CN(T),

o is (smoothly) homotopic into T, and F\T contains no bi-gons, it follows
that B N(T). By induction on the number of times B ‘intersects gaAi,
one easily homotopes a to get rid of the bi-gon B, yielding an immersion
homotopic to';, with fewer double points than a, and with the same symbol
as a. This proves the proposition.cgg

Now that we have developed some of the machinery of symbols, we

give a more detailed description of the computation of the two elementary
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transformations than the description given in Section 3. Recalling the

notation given there, let S be the torus-minus-a-disc, and let S

1 2

be the sphere-minus-four-discs. Let A be the basis on Si indicated

in Figure 3.8a, and let A' be the basis on Si indicated in‘Figure
3.8b. Let ni:gi > Si be the regular planar cover mentioned in Section
3 (and yet to be defined) with group of covering translatioms Ay

Given a eegV'(si), we may assume without loss (as far as computing
the elementary transformations is concerned) that t, = 0 for o eegV'(sl),
and t2 = t3 = t4 = t5 = (0 for g ¢ é;”(sz). (The pants curves {Ki} of the
basis A are numbered as in Figure 3f8.)

We begin by considering the elementary transforms of connected
multiple ares. If a sch'(si) has components {c}, then the elementary
transform of o has A' parameter values given by the sums of the A'
paraﬁeter values of the transforms of the components of c. Howevér,

recall that computing the A parameter values of the components {c} (or

even the number of components) from the A parameter values of o is an

unsol

ved problem. (See Remark 2.3.)

If s is an A—symbol arising from some component ¢ of the multiple arc

a on Si’ we define the A-length of s to be the number of letters in the

A-symbol s. The A'-length of s is the number of letters in the A'-symbol

corresponding to the isotopy class of c¢. (Using the semi-group notatiom,

we omit any letters sto or st

0
'
i i )

We distinguish four types of connected symbols, and we will presently

describe the computations for each case.

Type 1): s arises from a closed component of a; that is, s
corresponds to a connected multiple curve.

Type 2): s arises from an arc component of a, and both the A-length
and the A'-length of s are at least two.

Type 3): s arises from an arc component of a, and s has A-length one.
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Type 4): s arises from an arc component of @, and s has A'-length one.

The typical types are 1) -and 2), and we refer to connected symbols of Types

3) or 4) as exceptional. Similarly, we say that a disconnected symbol is

non-exceptioqg} if none of its components are exceptional,

Type 1): If s is of Type 1), the transform of c will be computed
without using the machinery of symbols. We will relate the A- and A'-
parameter values of multiple curves with no boundary-parallel components
to the "slope" of a geodesic representative with respect to a certain metric.

0
We will let 497'(Si)cagp'(8i) denote the collection of multiple curves
with no boundary-parallel components. Similarly, if B is a basis for
o}
1 ]
multiple arcs, we will let yB(Si)CyB(Si) denote the parameter values
corresponding to such multiple curves with respect to the basis B.

Type 2): If s is of type 2), suppose s = s, ... s withn $ 1,

1

where the si are A-letters. We will consider a lift ¢ of ¢ to Si’

-

and we will describe an isotopy between ¢ and some other arc ¢ embedded

~
~

in Si. c = Hi(E) is thus an immersion homotopic to the embedding c. The
isotopy in gi will be so that we can read off the immersed admissible
A'-s&mbol of the immersion c¢c. We will check that this A'-symbol satisfies
the hypotheses of Proﬁosition 5.1, and we can compute the coordinates
of this A'-symbol. This will complete the computation for Type 2) symbols.
We will describe the isotopy in gi in the language of symbols after
making a definition.
To an embedded admissible symbol s = Sy ee- S, We let correspond
a Ai~orbit of multiple ares in éi' We construct a representative of
this orbit as follows: choose some good representative c of the multiple
arc with symbol s, and take some lift ; of ¢ to gi' We may conveniently

~

s . We call ; .o ; a lift of s, ... s
n n _— 1

denote such a 1lift by ; 1

1" n
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to Si' Lif%s of symbols are convenient because there is a partition of

the interval parametrizing ¢ by {[t k=1l,...,0n}, so that

w-12 5 *

£f.0 é[tk_l,tk] is a canonical piece in the standard pants, for some

j=l,...,M, or ui.HiE[t is a sequence of twists in the standard

PRELA
annulus A, for some i'=l,...,N. One can easily formalize this construction
into the setting of semi-groups, but this geometric description is |
better.

We will use the correspondence of ;he previous paragraph in a
more general setting. We will take the lift of any symbol arising
from an immersed one-manifold in good position in Si' 0O may be improperly
embedded in Si or even imprbperly immersed.

Conversely, given an arc ¢ (properly or improperly) embedded in
gi with a partition as above, there corresponds an obvious symbol s.
There is, however, no guarantee that this symbol s is embedded or
immersed admissible in general.

Precisely, then, for symbols of Type 2), we will describe a map

from an A-symbol s = s, ... s, to an A'-symbol S =85, ... E; that describes

1 1

1 °° 8, to Sp e+ S We will call such a map on symbols

a combinatorial homotopy. Suppose for simplicity that n > 3. The

an isotopy of s

combinatorial homotopy for type 2) symbols will be described in two

stages: we first describe a combinatorial homotopy of Sy «er S 1 to

some A'-symbol. We then consider how we must modify this map on

symbols to describe a combinatorial homotopy of all of s, ... S,* This

1

second stage, where we compute the effects of considering also the

letters S1 and S is called the computation of the boundary effects.

Needless to say, for small n, stage 1 is not very interesting, and

the transformation is governed by the boundary effects. In fact, we
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treat the case of n £ 4 separately in Appendix B. We will derive the
formulas for the elementary transforms of type 2) symbols of A-length
at least five in Sections 6 and 7, and then we will check by hand in
Appendix B that these formulas also describe the elementary transforms
of non-exceptional symbols of A-length less than five. This avoids
considering several special cases in the arguments of the next two
sections. I remark that several of the faces of the piecewise-integral
structure of positive codimension occur when the symbols have small
length, and this fact accounts for the special cases.

I should also remark that the arguments for type 2) components
apply to the Type 1) components as well except for some small technical
details; in fact, stage one completely describes the combinatorial
homotopy for symbols of Type 1). The technical distinction between
non-exceptional arcs and curves is simple: the symbols of arecs are
well~defined once the arc is oriented; the symbols of curves do not
enjoy this property. By the time we have given the argument that
legitimizes the coﬁputations for arcs, it will be clear how to
overcome this technical difficulty for multiple curves. Thus, omne
could give a unified treatment of Type 1) and Type 2) components. We
treat these cases separately to avoid the technical difficulties and
to indicate the connections between multiple curves with no boundary-
parallel components and a certain Euclidean metric.

Type 3): If s is exceptional of type 3), then it is easy to compute
the A'-parameters of the elementary transform of the component ¢ by hand.
This is tractable because of the short A-length of s.

e 4): We require some algorithmic procedure for deciding if

;
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s has A'-length éne. More generally, given the A-parameter value of the
(potentially) disconnected o ¢ é;”(si), wé will need a way to compute
the number of components of o that have A'-length one symbols. This

is again tractable because if a component ¢ of ¢ has a symbol s with
A'-length one, then s has small A-length.

Now, given the A-parameter values of some ¢ ¢ é}”(si) with no
boundary-parallel components, the computation 6f the corresponding
A'-parameter values proceeds as follows.

Step 1: Compute the number of components of g with symbols of
Type 4). This immediately gives the A'-parameter values corresponding
to the A'-length one A'-symbols; let g denote the collection of
components of o with type 4) symbols, '

Step 2: Compute the parameter values in the.basis A of the
multiple arc that is a less the components of g with symbols of Types
3) and 4); denote the corresponding multiple arc by ;. '

Step 3: Compute the parameter values in the basis A' of the multiple
arc ;. (Step 3 has two stages as indicated above.)

Step 4: Compute the parameter values in the basis A' of the components
of ¢ with Type 3) symbols. Denote the corresponding multiple arc by y.

Step 5: The A'-parameter values of g are the sums (see Remark 2.4)
of the A'-parameter values corresponding to &, B, and v.

In Section 6 and 7, we will compute the first and second elementary
transformations, respectively. In each section, we begin by defining

the cover Hi:Si + 5 We then sketch the computation of the elementary

i
transformations on multiple curves with no boundary-parallel components.

(A sketch will suffice, because the computation for multiple curves is
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a special case of the computation for Type 2) components, as mentioned
above.) Next, we proceed through Steps 1-5 outlined above, and note that
these computations agree with the earlier computations for multiple
curves. The computations are reasomably intricate, and we will
abbreviate the discourse in Sections 6 and 7 by refering to the outlihe

of the computation given here.

We close this section by introducing some notation that will be
useful in Sections 6 and 7. If o is a multiple arc in Si and B is a basis
foregp'(si), we will denote the tuple aof parameter values corresponding
to o with respect to the basis B by (a)B eegVé(Si). Thus, for each

multi?le arc a in the surface Si, we will compute (a)A, from (a)A.
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SECTION 6

Let S1 be the torus-minus-a-disc. We begin this section by defining

a regular planar cover IIl:Sl - Sl' Let Al be the group generated by

the integral translations of IRZ, a subgroup of the group of isometries
of R% with its usual metric p. The quotient of ®E\z 2 by A is a

punctured torus, and the cover of the punctured torus by IRZ\Z 2 with

group of translations A, 1is the usual cover of the torus by IRZ with a

1
point deleted from each fundamental domain in Rz. Let N be a small,

Al—equivariant, square-shaped neighborhood of Z 2 in IRZ, as indicated

in Figure 6.1. The action of A, on |R2\N gives a cover lesl - Sl’

1
and the push~forward of p to S1 by IIl gives a Euclidean structure on
Sl with piecewise geodesic (in fact square) boundary. To be explicit,
we choose the cover so .that vertical lines in 51 c;over longitudes, and
horizontal lines in 51 cover me;.-idians in Sl' Much of the computation
of this section will take place in the total space gl’

]
L

()

0O0d o
0O0Mm 0
0o0m o
00@M@ 0
00O
0O0mO

Figure 6.1

Let A and A' be the bases for (' (8;) indicated in Figure 6.2, making

the choice of canonical pieces as in Construction 2.1. We will adopt
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the notation of Section 2 to describe the basis A, but we will delete
the sub- and superscript 1 whenever possible since there is only one
embedded pair of pants Dj; parameter values for multiple arcs with
respect to the basis A are denoted by £, and s i=1,2, the homeo-
morphism from the embedded pants D to the standard pants is denoted
by f, and so on. For convenience, we will denote the corresponding
quantities and objects with respect to the basis A' by L;*, ti’.

i=1,2, D', £', and so on.

The basis A. The basis A'.
Figure 6.2

Some remarks are in order concerning the parametrizations with
respect to the bases A and A'. As in restrictions g)-i) of Corollary
2.1, the two cases of simultaneously embedded canonical pieces are
{111,112,113} and {llé’ll3’123}' Any (smooth) essential one-manifold
properly embedded in Sl whose corresponding multiple arc has coordinate
L, = 0 is (smoothly) homotopic into one of the train tracks with stops
indicated in Figure 6.3a. (See Section 5.) We give the four tracks
corresponding to multiple arcs with t! = 0 in Figure 6.3b.

2
Note that a connected, non-exceptional, immersed admissible A-symbol
s = Ei e ;; which..is not a closed component is alternating only if one
of {sl,sn} is an 3212, and the other of {sl,sn} is an 3113. Thus,

the coordinate value 212 of such A-symbols is the same as the coordinate

value 213, and similarly for the basis A'.
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Figure 6.3a

silsele

Figure 6.3b

Figure 6.3

To be quite explicit, we give in Figure 6.4a a table of the pre-
images of the canonical pieces for the basis A under the homeomorphism
f. In Figure 6.4a, we also give lifts (see Section 5) of the various
A~letters to gl' In Figure 6.4b, we give all the same data for the
basis A'.

We commence the computation of the first elementary transformatiom
by considering first the action of this transformation oneéb‘(sl). (See
Section 5.) ’l.‘hiso is a transformation between '&A(Sl) and &A'(Sl) .

Lemma 1: If a ecgﬂ'(sl) consists of n components, then o is n parallel

copies of a (connected) simple closed curve.




73

J

12

7

f l13
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f 123

=1
f 112
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=1
f 123

-1
f 111

The basis A.

,-1
f 1ll
The basis A',

Figure 6.4
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Proof: Suppose first that n = 2, and ;et ¢ have components ay and e

Cut Sl along o

For, suppose not, and let V

to get some surface V. We claim that V is connected.

1 and V2 be the components. Letting

x denote the Euler characteristic, the following equation holds.
-1 = X(Sl) = X(Vl) + X(Vz)- Without loss of generality, the number of

boundary components of V., is two, and the number of boundary components

1

of V2 is one. Thus X(Vl) = Zgl - 1, and X(Vz) = 2g2, where g4 is the

genus of the surface V_,, i=1,2. It follows that 3 + g, = 0, so V2

i’
is a disc, which contradicts that aq is essential, proving the claim.
Thus, V is a pair of pants, and ay is therefore boundary-parallel

in V. Since a, is not boundary-parallel in Sl’ ay is parallel to ay-

2
The general case is similar.cgg

Consider the parametrization of multiple curves with no bouﬁdary-
parallel components with respect to the basis A. The only non-zero
parameter values of a multiple curve are 223 and tl' Using p,q curves
on the torus, it is easy to construct a good connected representative
corresponding to each pair of parameter values with ﬂz3 and {tll
relatively prime, including £23=0 and t1=l. It follows that the collectiom
of comnected multiple curves with no boundary-parallel components is
parametrized by the collection,ébi(sl) of parameter values satisfying
the following conditions.

a) £, and |t;| are relatively prime.

b) £z3=0 implies that tl=l.

c) £ L. .=0= t,.

1274371 2

Proposition 6.1: There is a parametrization of connected multiple curves

in S, with no boundary-parallel components by @ U{«}< Sl, i.e., by the

rational points on the circle.
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o :
Proof: Define a map YQQVA(SI) + Q U{=} by Y((“)A)=Sgn(tl)£23/tl' Given

, -1 .
q=tn2/n1 with n.> 0, n2;=0 and (nl,n2)=l, vy (q) is given by tl=sgn(q)n1,

1
U § . - -
323-n2, y “(») is given by ty 1, 223 0. Egg
The rational parametrization in the proposition can be interpreted

as the "slope" of a as follows: include ¢C S, in the punctured torus.

1
Giving the punctured torus the Euclidean structure described previously,
any free homotopy class has a geodesic representation,:as'is easy to show
using the previous proposition. The Gauss-Bonnet Theorem shows that
the rational slope (in the Euclidean structure) of a geodesic representa-
tive is well-defined, and this slope is exactly the rational para-
metrization above.

Another description of this parametrization is as follows: let

p denote the meridian, and let )\ denote the longitude of S Given

l.
a connected multiple curve g with no boundary-parallel components,
isotope a to have minimal geometric intersection number with the curves

p and A, and so that o does not hit the point yniA. Then y((a)A) has

absolute value card(anu)/card(anA). Cut S, along u and A to get a

1
collection of arcs properly embedded in a disc-minus-a~disc, which
inherits an orientation from Sl' One can show that there are four
(overlapping) cases as indicated in Figure 6.5; we define the sign

of Y((a)A) to be positive in cases one and two and negative in cases

three and four. By pursuing this line of reasoning, one can prove
Proposition 6.1 without resorting to Theorem 2.1.

EANSIN)

case 1 case 2 case 3 case 4

Figure 6.5

R
5,
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Proposition 6.2: i) The first elementary transformation from the basis

is given by the following formulas.

M =
L3 = I
' 3 —
t] = sgn(tl)!i23

In these formulas, sgn(0)=-1 by definitionm.

ii) The first elementary transformation from the basis

is given by the following formulas.

= '
£,3 = Igl

= - 1Pt
£ sgn(tl)£23

In these formulas, sgn(0)=-1 by definition.

o
Proof (sketch): First comsider the case of a connected (a)A eegpi(sl).

By symmetry, there is a map y':i%x,(sl) > QU {=} given by Y'((a)AD =
sgn(ti)£é3/|ti|. We claim that the two rational parametrizations are
negative reciprocals of one another. To prove this assertion, one

first proves the assertions of the previous paragraph. With this
description of the parametrization, it is clear that one passes from one
rational parametrization to another by interchanging the curves u and A.
This amounts to turning one's head by 900 as indicated in Figure 6.6.
Figure 6.6 also shows that turning one's head by 900 correspogds to

taking negative reciprocals of rational points on the circle. A computation
proves the proposition for connected multiple curves, and the general case
follows from Lemma 6.1. The convention that sgn(0)=-1 is the choice con-
sistent with the convention that m,=0 implies trgp, where m, is the

1 1

Dehn-Thurston intersection number.cgg
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Figure 6.6
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Having computed the first elementary transformation on multiple
curves with no boundary-parallel components, we return to the general
setting of (a)A €¢9VA(SI). For most of this section (until Proposition
6.3), we tacitly assume that the multiple arc a has no closed compoments.
Without loss, we suppose that o has tz = (0, and we orient the components
of a arbitrarily. We proceed through Steps 1-5 of the computation as
described at the end of Section 5. The reader should refer there to

see the various steps in a wider context.

Step 1 is to compute the number of components of a parallel to

f'—ll (plus two arcs in the annulus A, running from window to window
11 2

with no twisting); As shown in Figure 6.4, such an arc has expression

le + 213 in the basis A. We compute the number of components of a with
coordinates 212 + £l3 as follows: imagine cutting along the boundary of

a regular neighborhood A1 of the pants curve Kl' a twists tl times

in Al and enters and exits aAl through two windows. These windows are
indicated in Figure 6.7, where the label wl2 indicates, for instance, the
region of the window through which f_ll12 may pass. Thus, the number

of components of a with parameter value £12 + 513 is given by

((l’_12 - Itl]) A 213) v 0, where A is the infimum, and V is the supremum.
Note that this expression is equal to (212 - [tll) Y 0 since the para-

meter values 212 and 213 of a are equal.
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Figure 6.7

Step 2 is to compute the A-parameter values of «, the non-exceptional

-~

part of &, & has parameter values given by the following formulas.

[ R

12 =40 - ((212

f13 =25 Ay - lehvo
£y3 = 4y5

-legh vo

=t

Step 3 is to compute the A' parameter values of ¢ and includes the
typical case. For convenience of notation, we assume that o has no
: - \J
exceptional components, whence (G)A = (a)A eequ(Sl). We assume that
0 is connected and that there is a unique embedded admissible symbol in

the basis A, denoted s = s, ... Sy corresponding to o, where the s,

1

are A-letters.

We assume without loss, using the semi-group notation, that each
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n appearing in s has exponent n equal to either +1 or -1. We

1

assume (temporarily) that the A-length of s is at least three, and we

letter st

consider the symbol s s Note that s; € {3223,st§l}, for all

g +ee S__q-
i=2,...,n-1.

£l
1

A-letters, to the free semi-group <s£53,stiil> on the A'-letters by

Define a map from <s£23,st >, the free semi-group on the three

extending the map defined below on letters.

y—-sgn(t,)
3823 > Stl 1

+1 '
Stl -> 5123

-

This ﬁap is realized by a homotopy of the 1lift ;2 cee S to some

The homotopy

ll
~ ~ o+
translates by (%s,4%) and straightens into the lifts sﬁéB and sti—l in

arc, which we will denote &, improperly embedded in S

Sl' Thus, the homotopy is not rel endpoints,

A remark is in order concerning the sign —sgn(tl) of the twist

that is the image of 8223. It is obvious from the definition of the

<+ .
homotopy that an 5823 in s appears as st"l in the symbol of §. Lifts

1
to S1 of neighborhoods of concatenation points of f-llz3 and twists in
the annulus Al are shown in Figure 6.8; Figure 6.8a depicts 3123 stIl, and

Figure 6.8b depicts ;223 ;tzl. The solid lines in Figure 6.8 denote the

1lifts, and the broken lines denote the arc §. The figure shows that when
t; is positive, an s£23 in s appears as éti- in the symbol of &, and
similarly when the sign of tl is negative. Thus, the sign -sgn(tl)
occurs. Note that the argument above is independent of the choice of
orientation of the components of a. We make the convention that
sgn(0)=-1; this is again the choice consistent with the convention that

ml=0 implies tlgp. (Note, however, that ml=0 cannot occur for a multiple

arc with no closed components.)
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6.8a : . 6.8b

Figure 6.8

To extend this map on symbols to a combinatorial homotopy from
embedded admissible A-symbols to immersed admissible A'-symbols, we
require the notion of a pair-of-letter expression. If Sy and szbare
A-letters, and if s is the A-sfmbol corresponding to the multiple

arc o, then (sl,sz) evaluated on s is defined to be the number of times

the symbol s or s occurs as a subsymbol of s. This does

152 2 51
not depend on the orientation of the components of a, and, for symbols
on Sl’ (sl,sz) = (éz,sl). (In Section 7, where we will distinguish
between the orientations on a given canonical piece, the corresponding
pair-of-letter identity will not be valid.)

We describe the boundary effects (see Section 5), and thus extend
the map above to a combinatorial homotopy from an embedded admissible non-
exceptional A~-symbol s(which corresponds to the multiple arc @) to an
immersed admissible A'—symbol‘; (which corresponds to the good proper immersion
53 as follows: regard the combinatorial homotopy from ;2 . ;n—l to § as

a first approximation to the first elementary transformation from a to

a. If (sl,sz)+0 on s, where s; is one of the letters s£12 or 5113, we
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modify the symbol of § according to some rule that corresponds to an

~ -~

~

isotopy of S1 ;2 cee S 1 in Sl' We adjust the symbol of § accordingly;
we will write (sl,sz) z thi if this adjustment alters the coordinates
of the symbol of § by adding the linear combination zxxi of A'-parameter
values xi to the coordinates of the symbol of §.

As can be seen in Figure 6.9, the boundary effects are described by
the following formulas. 1In Figure 6.9, the solid lines indicate the lift
; before the homotopy to §; the broken lines denote the improperly embedded

arc §; the crossed lines denote the image of s under our combinatorial

homotopy. v
s +1, _ _pr - 1+l ' 1
1)(51,12,31:l ) = 223 + ty + 113 + tl
) =1, _ ., +1
1i)(s£lz,stl ) = £12 + £y
.. C i+l
111)(3212,8123) = £12 + £
. +1, _ .
-1 _p! '
v) (sly3s8ty7) = ~)s + Ly4
. - \]
v1)(SKl3,s£23) = 212
. Q L. Q -

] .
i) — iv)
g/ - ik

b= 0 o ] ek Q v
ii) . v)

iii) p vi)

o
BN

a
Lo

Figure 6.9
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Lemma 6.2: If o is a multiple arc with non-exceptional symbol, then a is
homotopic rel SSl to a good immersion o, where the A'-symbol of g has

A'-coordinates given by the following formulas.

L33 = legl- (selz’sql) - (5113’“11)

€ = msga(e))Ly; = (sypuse) + (slyp,sty) + (sLy,8Lp3)
té =t, + (sllz,st-{l)

£i3 = (sllz,stil) + (s£13,st;1)

81, = (slpposerh) + (s2y5,58)5) + (s;5,867 ) + (s8)5,8))

Kil =0
Proof: Suppose first that ¢ is connected. The computations above prove the
lemma in case the A-length of the symbol of @ is at least four since the
boundary effects influence only the letters adjacent to the boundary. 1In
Appendix B, we check by hand that the formulas above are valid for & not
exceptional of length less than five.

Suppose finally that ¢ € é;9'(sl) is disconnected. It is immediate
that the formulas of Lemma 6.2 also apply, provided only that the symbol
of @« is non-exceptional. This proves the lemma.EEﬂ
Lemma 6.3: The symbol of E-giveq by Lemma 6.2 is alternating and constant
parity.
Proof: We first show that the symbol S of & 1s alternating. Let
S =8 ... sn, n>4, be the A-symbol of a. It is geometrically obvious that
the combinatorial homotopy on Sy eee Sy yields an alternating symbol
i} e ?;_1. Moreover, the boundary effects are seen only in the letters
adjacent to the boundary, and a glance at Figure 6.9i)-vi) shows that the

effect of a single s£12 or 3213 letter does not destroy the property of

being altermating. Thus, to prove that s is alternating, it remains to
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show that s begins with an sﬂiz if agd only if it ends with anysﬂiS. To
this end, since s is embedded admissible and hence alternating and
constant parity, the possible pairs of non-zero pair-of-letter expressiomns
involving the letters s£l3 and sﬂlz are the following: {(szlz,stzl),
(s2,3,5tT)}, T(sly5,seTD) (st 588,00}, (85,8875 (55,887,
((s8y5,88,3), (s 5,StT 0}, ((5;5,50,5), (58 3588, ) }, {(sly,,0e7) s

(s 388,30}, {(58y5,88,5), (58 5,567} -

The first four pairs yield an alternating symbolng, as the.formulas
for the boundary effects show. The last three cannot in fact occur, as
shown in Figure 6.10; that is, since s 1s embedded admissible,

(3512,3223) + 0 implies that (3513,st;1) =0 = (s

(st 12,51:;]*)

13
=0 = (5512,5223). Thus,

sf,.), and
237?
13,s£23) % 0 implies that (sf

s is alternating.

Figure 6.10

— —
—

To see that s is constant parity, note that once againigé eee S,

is obviously constant parity, and the sign of the t{ coordinate of

g vt 3;_1 is fsgn(tl) by definition. Suppose first that sgn(tl) > 0; thus,
+1
(st, . ,st
12 1l

wll

) = 0 since s is constant parity, and the formulas show that the

; . + .
boundary effects contribute only positive twists ti 1 to the coordinates

of ;; preserving the property of comstant parity. Finally, if sgn(tl) > 0,
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-1 -1 . . .
then (sllz,st1 ) =0 = (3113,st1 ), and the only possible problem in

preserving the property of constant parity is if (sﬂlz,sﬂzs) f 0. Figure

2.11 shows that this cannot occur since the arc g must then spiral

indefinitely around f1 123; that is, tl

This proves the lemma provided the A-~length of s is at least five.

> 0 implies that (5212,5223) = 0.

The cases where the A-length of s is less than five are handled

separately in Appendix B. Cgﬂ

Figure 6.11

Proposition 6.3: Suppose that g eegp'(sl) is a multiple arc with non-

exceptional components; the first elementary transform (a)A. of (4), has

A'-coordinates given by the following formulas.

! =
£i; =0

2y, = (gl -y v O

v oo opt o
12 "43°T
M =
t) t2+(rAt1)V0
' ‘= -
£ sgn(t) (L, + )
In these formulas, r = 212 = 213, and sgn(0) = -1.

~

Proof: Just as in Step 1, one can compute the pair-of-letter expressions

. 3 )
in Lemma 6.2 from the parameter value of (a)A lnéng(Sl) as follows.
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(sﬂlz,st;:l) =(,8t) V0

(s£,5,5t]) = (B, 8 =€) 70

(2155587 = (G, & (=t) = £,)) 7 0
(sky9s88y3) = (€18 £)ph (8 + Lyy + £15)) ¥ O

Formally substituting the pair-of-letter values above into the

formulas of Lemma 6.2 gives the following formulas.

M =
311 0

1
£23

(o)
i

= ziB = (le A tl) v 0+ (£13 A

1 — -
c2 = t2 + (zlz A tl) v 0 tz + (r

|t:1|—(rAtl)VO-(rA-tl

el = (@ 8 E) 7O = (248t 70

) vo

leg] =z a | = (el =) voO

-tl) v0=1r, |tl|

A tl) 70

t] = =sgn(t))lyy = (21, & £)) 7O+ (£, 8 (=t; = £53)) 7 O

+(ot) ALy, At + Ly +£5)) VO

= -sgn(tl)£23 - (r A tl) 70+ (ra (-tl - 223)) v 0

+(-tl Ar A (tl + 223 +r)) Vv
It remains

liz = l’_is, 253 and 't; are equal.

0

to do the algebra to show that the two expressions for

We first consider the coordinate 1153.

120

-(ra-t), e <0

tl-(rAtl), t

! =
23 -
1

ty -r, t. >0and r <t

1
0, t

1 1

l;Oandtlf_r

-t ,-r, t

1
0, t

léOandr;—t

0 and —tl;r

1

1

= (]tll -r)vo0
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Next we consider the coordinate_fiz = £i3. The argument at the
end of Lemma 6.3 shows that tl > 0 implies that (5212,5223) = (0. Since

the components of g are non-exceptional, an sf,, is adjacent tc either
P P ’ 12

an 3223 or sfil; it follows that t, >0 implies that r , Itll =T Aty

= v, Similarly, t, < O implies that r A [tl| =r A-t., =T, Finally;

1 1

tl = 0 cannot happen for a non-exceptional component. This justifies

that &, = 4, =1 4 ltll =r={,=4,, as one would expect.
Finally, note that the coordinate ti for a non-exceptional A-symbol

corresponding to an arc with no closed components is non-zero. Consider

the expression for t

ti = -sgn(t1)£23 -(ra tl) vOoO+ (ra (-tl - 1.23)) v O
+ (--t:l AT A (tl+tz3+r)) v o0

- -san(e)

-T, tl >0

T, tl <0 and r + 223 §=‘t1
T, t1<0and£23;—tl___<=,(7_23+r

r, t17<0and -t, =4

1 23
- -sgn(tl)(!.23 + 1)

Thus, the proposition holds for multiple arcs with no closed
components and no exceptional components. A computation shows that the
formulas above agree with the previous computations for multiple curves,
and the proposition follows.cgg

The proof of the proposition applies also to closed curve components
by ignoring boundary effects and allows a unified treatment of multiple

arcs and multiple curves. We computed the action on multiple curves

separately to indicate the comnection with straightening in the Euclidean
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metric on the punctured torus.

Finally, we consider Step 4. A glance at Figure 6.4 shows that
-1
an f lll (plus two arcs in A2 running from window to window with no
+1
twisting) has an expression Ziz + £i3 + té in the basis A'.

Theorem 6.1: The first elementary transformation from the basis A to the

basis A' is given by the following formulas.

— e

£y, = (- e, vo
R LI S TR ST

L33 = U - &= 250

bty =ty + L+ ((x-4£y;) at) VO
1 = -sea(t))(Lyy + (xr = £11))

-2

t
-
[]

In these formulas, r = £ , and sgn(0)=-1.

12 13
Proof: The proof is Step 5 and is the combination of the previous
proposition, the sentence before this theorem and Step 1.E23

Corollary 6.1: The first elementary transformation from the basis A' to

the basis A is given by the following formulas.

£, = (' - le;D) v o

t=Ly, =8y = (' - 4) H Ay

L3 = Uegl = " = 40

t, = té - ((r' - Lll) A —ti) 70 - Lll

£, = —sgn(t]'_)(lé3 + (' - le))

In these formulas, r 112 113, and sgn(0)=-1.

Proof: It suffices to check that the transformations in the theorem and
the corollary are inverses, which we leave as an algebraic exercise.cgg

One can of course prove the corollary directly by mimicking the proof
of the theorem with (A,A') replacing (A',A). This approach is about as

much work as the algebraic exercise that proves the corollary.
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We close this section with two final observations.

. . . . . [ ' - -
One easily derives the interesting identity 1’_11 £23 r ltl .
1f t1 < 0, then one has the following identities.
' =
t2 =% F ey

t] =&y + (r - &1

If t; 2 0, then one has the following identities.

| - - P!
t t+£ll+r 2‘11

2 2
| B - 1
] 223 r + 211
Introducing the parameter r - [tll , this gives a convenient description of

the first elementary transformation as a piecewise-integral map.

The action of MC(Sl) on '-&’(Sl) admits a faithful representation as
an action of the two~by-two integral matrices of determinant one on
&A(Sl)cz*' x Z . This is because MC(Sl) is a certain central extension
of the two-by-two integral matrices of determinant one by Z . The action

is a twisted right action, and will be described in Sectiomn 8.
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SECTION 7

In this section, we compute the second elementary trangformation;
we will follow closely the outline of Section 6. Let 52 denote the
sphere-minus-four-discs. We begin by defining a regular planar cover

I,:8, -+ S,..

2772 2
Let A2 be the group generated by rotations-by-r about the integral
points Z 2 in Rz. A, is a group of isometries of \RZ\Z 2 with respect

to the usual metric. This action describes a cover of the four-times
punctured sphere by \Rz\ /A 2, and the push-forward of the usual metric

by the covering projection gives a Euclidean structure on the four-times

P

punctured sphere.

AR
N

Figure 7.1

RIS
SO O
<

Let N be a small, Az-equivariant, diamond-shaped, open neighbor-
hood of Z 2 in le, as indicated in Figure 7.1, The action of A2 on
IR2\N gives a cover of S2 by !RZ\N, denoted 52' Cuttine 82 along

the arcs ERERE LA in S2 indicated in Figure 7.2 decomposes 82 as two
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octagons, labeled f and b in Figure 7.2, The lifts to 52 of these

octagons give a tiling of 52; if we are careful in the choice of the

geodesic arcs a,, then we can guarantee that the associated

i!
tiling is regular. This regular tiling of 52 by octagons is indicated
in Figure 7.3; it can be seen in the Park Street Subway Station in

Boston as a tiling of Rz by squares and octagons.

Figure 7.2 Figure 7.3

Let A and A' be the bases on 52 shown in Figure 7.4, making the

choice of canonical pieces as in Construction 2.1. In contrast to

Section 6, all four cases in Construction 2,1 of compatibly embedded

canonical pieces can occur in each embedded pants Dj’ 3=1,2, Thus,
2,54

there are 512 = 4°%X2° standard train tracks with stops (see Section

5) on S2 for each basis A or A': four for each embedded Dj’ j=1,2,
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and two for each annulus«Ai, i=1,...,5.

The basis A. The basis A'.

Figure 7.4

We define a new basis A" on 52 as follows: the bases A' and A"

differ only in that A" uses the canonical pieces 1., and l33 (defined

11

in Section 2) instead of the canonical pieces 111 and 133 used in the
basis A', Our goal is to compute the second elementary transformation
between the bases A and A'; the basis A" ig a technical convenience.

We introduce the following notation for this section only. We will

denote the parameter values £i* with respect to the basis A by £ _, and
we will denote the parameter values Zi* with respect to the basis A by
Ryx+ Similarly, the parameter values Zi; and Zi; with respect to

the basis A' will be denoted £/, and k;*, respectively, and similarly
for the basis A". Moreover, A-symbols will be written as words in the
the letters sti and s@ccv and Shcc" c:i o' =1,2,3; we define the

analogous notation for A'-symbols and A'"-symbols.




92

Remark 7.1: Since the bases A' and A" differ only in the choice of
canonical pieces, the transformation Eetween the corresponding para-
metrizations is easily computed from Proposition A.l. The transformation
from the basis A' to the basis A" is given by the following formulas.

1

"o et '
£y =t + k33

"o ot v
b, =t T 43,

"o ot 1 '
ty =t +I_ll+k11

The other parameter values are unchanged (i.e., replace ' by "); The
transformation from the basis A" to the basis A' is given by the
following formulas.
1 = " - 11 - 11
8 =t ~ 4 -k
| I | N
t t k33

37 %3
\] - " - "
t, = t; - 433

The other parameter values are unchanged (i.e., replace " by ').
We will want to distinguish between the orientations on 3311 and
shll. Define l;l and 111 in the standard pants to be oriented as in
7.5, and define the 1 st and sk’ hat £,0,sf-, = 17
Figure 7.5, and define the letters 11 @nd skqq so that lHZ 11 = 111
and fzﬂzskil = lil. We will only need to worry about the orientations
of these letters for the basis A, and we modify the notion of A-symbol to

include the four letters slil and skil. (0f course, we omit the letters

s&ll and shll.)

- +
lll 11

Figure 7.5
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To be quite explicit, we give in:Figures 7.6a and 7.6b the lifts
to S, of the various letters for the bases A and A", respectively., The
numbers in the deleted diamonds in Figure 7.6 indicate the boundary

component twice covered by the bounding piecewise-geodesic curve in S,; the

2
curves are numbered as in Figure 7.4.

Note that a connected, constant parity, non-exceptional, immersed
admissible symbol in the basis A is alternating if and only if the
letters arising from canonical pileces (instead of twists) alternate
from sl ., to sk,,, and similarly for the bases A' and A". Moreover,

a multiple curve has m, = 2é11= Zkll in the basis A, where m, is the
Dehn-Thurston intersection number with the pants curve Kl’ and similarly
for the bases A' and A".

We first compute the second elementary transformation between the
bases A and A' on multiple curves with no boundary-parallel components
using the Euclidean structure on S

2° We then perform Steps 1-5 for

multiple arcs without closed curve components between the bases A and

A", and finally, after some algebraic manipulation, give the general
form of the second elementary transformation between the bases A and A'.
Lemma 7.1: If o Eeéb'(52> consists of n components, then a is n parallel
copies of a (connected) simple closed curve.

Proof: Suppose first that n = 2, and.let ay and a, be the components

of a, Cut S2 along @
connected, for otherwise y(V) = x(Sz), genusg (V) = genus(sz) and the

to get a surface V. We claim that V is dis-

number of boundary components of V is two greater than the number of
boundary components of Sz, which is impossible,

Let V have components Vl and Vz, and note that X(Sz) = -2 = X(Vl) + X(Vz)'
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The basis A

0N 000000000000
HOC 2025000000000
oooo@oooooooooo
Srsetcaiaststs

"o ao@oo‘wo
ooaooooooooo

2 2¢ 90052020
‘“?dbe ;20000000

Figure 7.6a

000 0000000000
0¢ 20000000000
oooooaoaoooapoo
00000000X0000006
000000000000000
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.«».e,!@rsz.;sszzzzz

2000800000000

Figure 7.6b
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Furthermore, if x(Vi) =1, then V, is a disc, while if X(Vi) =0,

i
then Vi is an annulus. Thus, since the components of o are not null-
homotopic and not boundary-parallel in SZ’ Vl and V2 are each a pair
of pants. azcvl, say, implies that @, is parallel to one of the

boundary components of Vl’ whence a, is parallel to O« The general

2
case is similar. @

One can easily construct a (connected) simple closed curve

corresponding to each pair of parameter values Z‘J.l and t,, where

1

Lll and |tll are“ r—el:tively prime, including the case 511 = 0 and t, = 1.
Thus, the subset of y:k(SZ) corresponding to connected multiple curves

is the subset of e?};\(Sz) so that the following conditions are satisfied.

3 Ly =Ly =Ry =gy = 0
. Lyp = Ly3 = L33 = kyy = ky3 = k33 = 0,
andtz-t3=t4=t5=0.

B) £y = by
c) Ell and ]tll are relatively prime.

Proposition 7.1: There is a parametrization of connected multiple curves

:I_.§_1_S2 Ez_»QU{w}CS]', i.e., by the rational points 9_§_Sl.

o
Proof: Define a map Y:y&(sz) + QU {=} by y((a)A) = sgn(tl+£ll)£ll/|t1+£ll] .
A
Given q = inz/nl with n; > o, n, 2 0 and (nl,nz) =1, vy (q) is
=1 i
£, = sgn(q)nl - o, le = 1n,, and vy (=) is = -1, 311‘ 1, &
Just as in Section 6, we can show that this parametrization‘ is

'given by including a< S csz-minus-four-points and taking the rational

2
slope of a geodesic representative of the free homotopy class of a.
Again there is a more geometrical description of this parametrization,

and one can prove the proposition without resorting to the main parametrization
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theorem: comnect the four boundary components of S, by disjointly

2
embedded simple arcs a, as indicated in Figure 7.2. Isotope a

o)
representative ¢ of a connected « 6499'(82) so that it has minimal

geometrical intersection number with each a Iy(q)l is given by

1
card(cf\az)/card(cr\al). There are four cases indicated in Figure 7.7.
for the intersection of this representative with the octagon £,

which is indicated in Figure 7.2. The sign of y(q) is defined to be
positive in cases one and two and negative in cases three and four.
Checking that this indeed gives a parametrization for connected
elements oféﬁb'(sz) is a combinatorial exercise; checking that this

is the parametrization described in Proposition 7.1 is case checking

on the ration tllml. We illustrate the result of this case cheéking

diagramatically in Figure 7.8.

Me

case 1 case 2 case 3 case 4

WL

- Figure 7.7

SRiins

t-axis ' ‘
1 E ]

__——-va~"‘-“f: — “""v"“’o ——

my j —ml/ZE:] .
N .

Figure 7.8

WV
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Proposition 7.2: i) The second elementary transformation from the

basis A to the basis A' on multiple curves with no boundary-parallel

components is given by the following formulas.

m) = 2lml/2 + tll
ti = -sgn(m1/2 +t1) (m1 + tl),

In these formulas, sgn(0) = -L. "

ii) The second elementary transformation from the basis A' to the

basis A on multiple curves with Eg_boundary-parallel components is

given by the following formulas.

m = 2|m/2 + ]|
t, = -sgn(m]'_/Z + t]'_) (mi + t]'_)

In these formulas, sgn(0) = -1.

- o
Proof (sketch): First consider the case of a connected g gé?"(sz). By

)
symmetry, there is a one-to-one onto map y':y;\,(sz) +QU {=} given
! = tapt * 101 :
by ¥ ((a)A,) sgn(tl+£ll)£ll/|tl+£11l, and the two rational parametrizations
are negative reciprocals of one another. A computation completes the
proof for connected multiple curves with no boundary-parallel components,
and the general case follows from Lemma 7.1.ng
We now consider the general setting of o 5‘677'(52), a multiple
arc, and we compute the second elementary transformation between the
bases A and A". Without loss of generality, suppose @ has A-coordinates
Ep =t 75 %5

Step 1 of the computation is to compute the number of components

n‘l n'l n“l n'l n"’l n‘l
of o isotopic to fl 122, fl 123, fl 133,and f2 122, f2 123, fz 133

in the embedded pants Dl and DZ’ respectively (plus arcs running from

= t. = 0, and orient the components of o arbitrarily.

window to window with no twisting in the annuli AZ""’AS)' We first con-

and £"°11

n“l
sider fl 122 1 23"

As shown in Figure 7.6, an f’]:-ll22 has A''-parameter
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L. + k.. + 42 and an ff—ll We

13 11 13° has parameter value £13 + b

23 12°
compute the number of components of o with coordinates 213 + hll + £l3

and £13 + klZ as follows: imagine cutting along the boundary of the
regular neighborhood Al of Kl in the basis A. o enters and exits

through the windows in J3A These windows are as indicated in

l.
Figure 7.9, where the label u12 (wlz) indicates, for instance, the

region of the window through which fIll12 (f;lllz) may pass. One can
use these decompositions of the windows to derive the following formulas.

((kll + tl) A k11 A (£ k
(£l3 Ak, AL k

13 ~ 11 T
11 = tl) A (klz + hll + tl)) v o

ﬂgz t] - klz)) v O

"
£23 12 13

The symmetries in Figure 7,10 immediately give the following formulas.

h§3 = (k13 A 212 A ({z13 - Kll - tl) A (312 + 511 + tl)) v o

" — - —-— -
Ryy = ((Lyg +ty) 8 8y) A (Ryg =ty =Ly =£4,)) VO
L i - - - - .
L35 = ((=ty=kyy) 8 &) & (Ryy - L5 + £ + kyy)) 70
1] — - - -
Ryy = ((-ty=Ly1) 8 kyy 8 (Byy = Ryq +t7+ £19)) VO
“13*11 %1211 “13%11%12 *11
Pty e e
% *
Wi1%19 Wi11%3 U11%12%11 43
i e Sl v Pkl St w ok

Rotation-by-r about the point *

413%1%2 Y1 “12"11 Y1311

L= === = - -

11%12%11 P13 Y113 M1t

M

(Change of canonical pieces) ©

(Reflection about the line L)

" Figure 7.9

Figure 7.10
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Step 2 is to compute the A-parameter values of @, the non-exceptional

~

part of o. o has parameter values given by the following formulas.
L3 =43 -4 - 2y,

Ry = £33 = 2435

Ly ~ ks - 2k5,

kg = Ry - Ry - 2k,

fll =Ry - Ry - 4y

Lyp=h -Gy -4,

t =tl+£'3'3+kg3

S
{1 ]

1
tz't3=t=ts=‘0
22 = L33 TRy = kg3 =0 =2,5 = k,,

Step 3 is to compute the A"-parameter values of a and includes
the generic case. For convenience of notation, we assume without loss
that a is connected and non-exceptional; thus, (a)A = (a)A. Suppose

that s = 5, ... s is the corresponding embedded admissible A-symbol,

and for now assume that the A-length of s is at least three. Note that

+
s, € {slil,skil,stil}, for each i=2,...,n-1.

il>

1
six A-letters, to the free semi-group <sf

+ +
Define a map from §5211,skil,st , the free semi-group on the

nil
1 > on the four

A"-letters by extending the following map defined on letters. For the

ll,shzl,st

time being, regard sgn(0) as being undefined, and ignore the sign € in
the image of twists.

il Dy £ 1 1] ne "
sty ~ sﬂil st{ Shil or skll st sﬂll

1 11}
sﬂll - Skil skll - 3511
+ -1, " + =Ly = o pm
(sﬂll,stl ) = -23kll (shll,stl ) = ZSﬁll
+1, tl 2 0.
£ =

—sgn(ﬂll+kll+2tl), else.
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Pair-of-letter expressions and the notation for the pair-of-letter
adjustments were defined in Section 6. (In Section 6, we adjusted only
the coordinates of a symbol. Here we adjust the symbol itself.) The
expression (si,sj) evaluated on the A-symbol s is defined exactly as in
Section 6 provided neither of the letters s

i
* * +
s@ll or skll. The expression (sﬁll,sj) evaluated on the A-symbol s, for

or sj is one of the lettgrs

instance, is defined to be the number of times Sz;l Sj or s, sﬂzl appears

as a sub-symbol of s. There 1s an analogous definition for pair~of-letter

+ - - -
expressions involving the letter skil. Thus, (sﬂIl,stll) = (stll,sﬂll)

and (sk{l,stzl) = (stzl,skzl) by definition.

We claim that this combinatorial map describes a homotopy rel
endpoints from some lift Sy s+ S 7 of Sy eve S q- This can be seen
+ + . .
as follows: begin by noting that an 5511 (shll) has coordinate kil (Zgl)
in the basis A". (This explains the technical facility gained by

considering first the transformation between the bases A and A".) The

-~

1 - +1 7
homotopy rel endpoints of the lift st;” to sﬁ{l stz skgl or

;k;l st']t+l ;Kil is indicated in Figure 7.1la. The adjustments for the
pair-of-letter expression (sk{l,stll) are indicated in Figure 7.1llb. As
usual, the solid lines denote the lifts, and the broken lines denote

the image of the homotopy. The adjustments for the expression

Csﬂ{l,stzl) are similar to the adjustments in Figure 7.11b.

Figure 7.11
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Note that the combinatorial homotopy above has the property that

the only way to produce a st'iil letter in the A'"-symbol image is from
an stil letter in the A-symbol. Moreover, the pair-of-letter adjustments
never affect stzil letters; however, the sign ¢ of the t; coordinate
does depend on the pair-of-letter adjustments, as we shall see.

We say that a non-twist letter is '"stable" if it is unaffected
by the pair-of-letter adjustments. Note that for s an embedded admiésible
sequence of letters s@il and Shil’ the image A'"-symbol is necessarily

alternating since s is. Furthermore, if s is an embedded admissibie

+
sequence of letters stil, then the image A"-symbol is an alternating

" wt 1 0 " ntl 1 I
and constant +1 parity (s!il sty sk ) or ‘shll st sﬂll) .
Claim 7.1: If ty 2> 0, then the combinatorial homotopy above on s2 e S

has an alternating and constant parity A"-symbol image.

Proof: By the previous paragraph, consecutive sequences of letters st;l
and consecutive sequences of slil and skil letters each have an alternating
and constant +1 parity image. A neighborhood of a concatenation ﬁoint of
;Zil and ;tzl is shown in Figure 7.12; the 1lift is denoted by a solid line
and the image under the combinatorial homotopy by a broken line. Concatena-
tion points of ;hil and ;til are similar. Thus, in a neighborhood of a

concatenation point, the homotopy preserves the alternmating character, and

the claim follows. Note that there are no pair-of-letter adjustments.cgg

Figure 7.12
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Claim 7.2: If tl < 0, then the combinatorial homotopy above has an
alternating A"-symbol image.
Proof: Denote by s{ cen S;" the A"-symbol image of Sy eee S g under the

homotopy, where the s; are A"-letters, and suppose not. Without loss of

generality (by rotation-by-m about the line L in Figure 7.13a), there is

" = 11 " - 11 th e .
some s Stll’ S m sﬂ 10 Wi s" 1’ ,s" rip-1 tWists
There are two cases.
1): s" R
Case 1): s| arose from some S = SRyq-
+1
Case 2): s'" arose from some s, = st_ .
T k 1
- +
1 i i 1te i = st or s = gl
In Case 1), since s is alternating, Siq1 = Sty s kil 1

If Spe1 = stzl, then, by Proposition A.3, the homotopy would have erased

+
= " = 3 - -
Sﬂll as in Figure 7.11b, which is absurd. Thus, s, . Szll' If

+
- - " = 13} 1t > -
Si42 Skll’ then s’ , skll and ¢ , is stable, which 1s contra

- +
dictory to hypothesis. Thus, s stll, and so we must have s = sl

k+2 k+1 11

-

» — + .
by Proposition A.2. In case s, Skll’ we must have s, . = skll
-1

. " = " = -
indicated in Figure 7.13a, so that Shyp = St] - If Sitd sﬂll, then

" = " " * .
S.42 Skll and 840 is stable, which is contradictory to hypothesis;

as

- ot R § - b~ .
thus, sk+4 = sﬂll, Sk+5 = st1 s Spyp = Skll and o is forced to spiral

around stkll st£11 sttl indefinitely, which is absurd.

7.13a , ' 7.13b

Figure 7.13
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In case s, = Skzlf we must have s, . = skIl as indicated in
Figure 7.13b, so that S;+l = stz-l.’ If Spe3 = skil, then S = stIl,
and the homotopy would have erased Sy which is absurd. If Si4l = sﬂzl,
then s;+2 = skgl and s" 42 is stable, which is contrary to hypothesis; thus,
S1rs = sﬂIl, S5 = 11, sk+6 k;l, and o is forced to spiral
indefinitely around II skll stlll 2~ ll. Thus, éase 1) cannot lead
to a non-alternating image A"-symbol.
In Case 2), there are two sub-cases.
Sub-case a): s, leads to skgl st']:+l sﬂ" .
Sub-case b): s, leads to s@{l st;+1 k;l.
In Sub-caée a), since t] <0, 8,4 = skil. If sy = Sk;l’ then
the homotopy erases s;, which is absurd; thus, we assume that Sp+1 = sk{l.

By Proposition A.2, s = stl » SO 8 4 = sﬂzl. This case is indicated

k+2

. -1
in Figure 7.l4a. Thus, s, , = k 11’ Si45 = Sty , and o must spiral

indefinitely about T Shll sttll I sﬂll, which is absurd.

Figure 7.14
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-+
<0, s = gl If s = sf7 . then the

1 ? Tk+l 11° k+1 11

sk;l arising from Sy is stable, contradictory to hypothesis; thus, we

In Sub-case b), since t

- a1
assume that that s ., = 5311' w2 = St1

from Sy is stable, contradictory to hypothesis; thus s

1f s then the sk{l arising

+
ke = Skyp and
-1 o
Spe3 = st1 , so that Sy = skzl by Proposition A.2. This configuration

. - .pF "
is indicated in Figure 7.14b. If s, ., = slll, then the Skll arising

from Sytd would be stable, contradictory to hypothesis; thus, Syl = sl-

and o must spiral indefinitely about I,s ll ZShll I st1 , which is

l’

absurd. Thus, Case 2), cannot lead to a non-alternating image A"-symbol,

proving the claim.cgj
Claim 7.3: The A"-symbol image of the combinatorial homotopy above has

all its twists in the same direction.
Proof: By the previous claim, the sign of a consecutive block of twists

of s ... s;" is well-defined. Thus, it suffices to prove that if

1
+
s = st"'l and s" =st"'l

1 r+m ] with s

1 "
r+l”'°’sr+m-l € {sﬂll,shll}, then

S; and s"+m have the same sign, m $ 1. Suppose then that s; arose from

leading to sk" st{+l s@" In this case, either S41 = stzl, which

+
is acceptable (and m=3 with sgn(s;) = sgn(s;+m) = 4+1), or Siedl = skll,

by Proposition A.2. There are then two cases.
1

. ot . " nwtl "
Case 1): s arose from s leading to Skll st lel.

r+m 1
. " : " n+l n
Case 2): S,y 3TOSE from sj leading to sﬂll st1 k

In Case 1), s = sﬂ by Proposition A.4, which is acceptable
e .
(and sgn(s;) = sgn(sr+m) = -1), and in Case 2), ?j—l = skll by Proposition
A.4, which is acceptable ( and again sgn(s;) = sgn(s;+m) = -1).
" "+l T
The case where 5;+m arises from sj leading to sﬂll sty Skil is
similar, proving the claim.ng
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Claim 7.4: The sign €" of the tz coordinate of s{ .o sg" is given by

the following formula

I B b P ERER T
+l, t; 20 |
This formula is valid unless s{ .o s;" is a sequence of twists, in which
. . + -1 ,- .m
case " is undefined and Sy «e- S, 1s given by (sﬂll sty skll)

+ -1 - \In
(sfz11 sty sﬁll) .

Proof: If a letter st:'-1 is not surrounded in s on both sides by s£il and

1
skil, then the corresponding t; has a positive sign, and the first part
+ -1 - .m
of the claim follows from Claim 7.3. That Sy +ee S, is (s?_ll sty skll)

or (sﬁzl stzl 3211)m in case ¢" is undefined is an easy combinatorial

argument.Egg

The previous four claims prove the following proposition.

Proposition 7.3: The combinatorial homotopy above on Sp +er Sy gives

an alternating and constant parity A"-symbol with ¢ = —sgn(ﬁll+kll+2t )

1f ey < 0, " +1_§£_cl > 0, and sgn(0) (as yet) undefined.cgj

(The disparity between the cases Ly < 0 and t1 2 0 is reflected

in Figure 7.8. The éonnection between the é'just computed and the
ratio tllml is explained in Remark 7.1.)

We describe the boundary effects and extend the combinatorial
homotopy above to a combinatorial homotopy from embedded admissible
non-exceptional A-arcs to immersed admissible non-exceptional A'-arcs.
Figure 7.15 depicts the homotopies described by the following pair-of-letter
adjustments. As usual, the solid lines in Figure 7.15 depict the
lifted letters, and the broken lines in Figure 7.15 depict the image

under the combinatorial homotopy.
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120551 ) = RY3
b) (sly,,st]) = -t} ey, + R,
) (s@lz,s{z'l'l) = k']:3
d) (sﬂlz,shzl) = Ry,
£) (sﬁls,stzl) = o)
8) (slyy,sky)) = £y,
h) (sl 4,sky;) = -y ey -+ ey,
i) (shlz,st'{l) 2'1'3
3 (skyy,styh) = £y, - e - 2y
k) (sky, sf_‘{l) =2,
1) (skyy,siy) = e,
m) (skyg,sey’) = -t] + el - kU + kY
n) (skl3,st;l) kgz
1305010 T By - By g -y
p) (1213,51,11) (212

000000000000
€908 400,06,
SVUONBVEUEE IO 0N
005000030 =5
QQQO.@$900.®OQQ
..e“‘ﬂ o. f oﬂoema
é;so@oeaooo....

0008880000600

Figure 7.15
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Proposition 7.4: If o is not a closed component and its symbol is

non-exceptional, then o is homotopic rel 852 to an immersion a" , Wwhere

o" has an A"-symbol with the following A" coordinates.

. +1 -
t] = -(slyg,sty7) = (sly3,8k1y) - (s 13’5t b - (skyq,88q7)

+ sgn(f, +k +2t1) ty

11 11
tIZ' = (52-13’St ) + (S‘e 3:Skll>
tg = "(S‘alsztl )
-1

tz = -(sklz,stl )

.o - +1
ts (skl3,s£11) + (sk13,stl )

2, = 43 Ry = ky3

3 = kyy R13 = £y,

83 = L3y = £33 = k3 = Ry = k33 = 0

fry = leg| + 2y - 2(s£F,,5t7) = (sy,,st70) = (skyg,st]0) = (shygistyy)
E']tl = Itll + kll - Z(Sk-]'.-l,stil) - (s&lB,Stl ) - (st 3,3!211) (shlz,stzl)

In these formulas, the convention for sgn(0) is the following.

+ l o
+1, if o has symbol 51'12 (Skll I'll) 12.

sgn(0) = 4 + -1
-1, if a has symbol sf., (sky, sty sﬂll) sk 4.

Moreover, the symbol of E is alternating and constant parity.

Proof: We check by hand in Appendix B that the proposition holds when the
A-symbol of a has A-length four or less; we will assume here that the

A-length of the symbol s of a is at least five. Let s be the symbol

.—"

of a«”.

Claims 7.1-7.4 above imply that the image of Sy ++» S,_q under the
map above is alternating and constant parity, and we begin by considering
the boundary effects in the total space 52. In this setting, (sﬂlz,st l)

+
(sle,stil), (si’_ 328t 1), and (shlz,stil) are all obviously alright.



108

Moreover, (SZIZ’SkIl) and (SkIZ’SKIl) are both alright by Proposition

A.2 ii) and i), respectively.
In the case of (sﬂlB,Skll) (and the case of (Sh13’5££1) by symmetry),

either s is of A-length three (and perhaps exceptional) or Sk;l is stable,

so that s" is alternating. To see that s" is constant parity, we must

show that the tg coordinate of s" is negative if the pair-of-letter

expression (3513,sk11) is non-zero. If s, = sl = gk ., and

13° 52 11
stIl, then s is of A-length four as indicated in Figure 7.16a. We

1

3
Es - cr s .
assume then that s, = Sﬂll. In case s; = 5311’ it is geometrically
obvious from Figure 7.16b that s has £y coordinate value equal to zero.
-+ -
In case Sy = 3111’ either s is of A-length four, s, = stll and s has

negative twisting by Claim 7.3 as in Figure 7.l6c, or 8, = sk In

+ “
i1
this last case, either s is of length five and the proposition holds,
as shown in Figure 7.16d, or Sg = tzl and s" has negative twisting by

Claim 7.3, as in Figure 7.16e.

Figure 7.16
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+
In the case of (S£12’Shil) (and the case of (sklz,sﬂll) by

- . +

symmet?y), s is alternating and constant parity if Skll is stable; thus,
‘ . 1 .

we suppose that s, = S£12’ Sy = sk{l, and sq = sty . Either s is of

A-length four, or S, = slll. Thus, either Sg = sklz, and s is of

A-length five with a negative twisting number, as indicated in Figure

+ + ,
7.17, or sy = Shll' If sg = shll, then either s, = 5113,.wh1ch gives

-1
a negative twisting number, as indicated in Figure 7.18, or Sg = sty .

-

If sg = skzl, then Shil is stable, and §"is alternating and constant parity.

e e = ear—rz

The general case is identical to the above with @ winding about'

- ™ -~

I, kll 2S l stﬂll followed by I Shll’ zsklz, or sthll 5 13 The

former is alternating and constant parity since skzl is stable, and

the latter cases are alternating and constant parity as indicated in

Figure 7.17 and 7.18, respectively. jote that sgn(0) = +1 is the

appropriate convention here.

Figure 7.17 7.17v

Figure 7.18
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. + +
Finally, in case of (SKIB’Skll)f<and the case of (sh13,sﬂll) by

symmetry), either $; = s£13, s, = Sk;l’ and s, = 5513, so that s is
-1

exceptional, or sy = sty . If s, = 3212’ then s has A-length four as

indicated in Figure 7.19. 1If S = 5311’ then S5 = stzl, and the

1" . = - - ]
skll arising from s, is stable. 1If s, 3311 and S; sk13, then s
is alternating and constant parity, as indicated in Figure 7.19. If

= -1 = - 1"
Sg stl , then Sg Skll’ and the Skll arising from Sg is stab}e, and
's" 4is alternating and constant parity. Thus, suppose that S, = slzl and
Sg = h;l; this implies that sg = stzl. The general case is identical

-~

to the above with o winding about stkll 28 1 stﬂll followed by

- ~

-1
I, h13, as indicated in Figure 7.20; or followed by stkll sttl stﬂlz
as in Figure 7.19; or followed by stkll 9S8 l T, st 17 and the sh{l
arising from this last twist is stable; or followed by stkzr,and

the shgl arising from the last twist is stable. Note that sgn(0) = -

is the appropriate convention here.tgﬂ

Figure 7.20
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Proposition 7.5: Suppose that o i

a non-exceptional multiple arc

on S,. The parameter values (a)A" are determined from the parameter

values (a)A by the following formulas.

£, =4, L3 = kyy
RYy = Ryg k13 = 44,
85y = Ry = L33 = kg = Ryy = k33 = 0
t; = (113 A (kll + tl)) 7 0 + t, |
t" =

3 ((Z11 + tl) v —Elz) 5O+ t,

g
]

5 = ((!z11 + tl) v -klz) A0 +t,

(k4

(1 _ "o
1 sgn(2t1+£1l+kll) ty (t2 tz) (t5 t

"
0

A (Ell + tl)) v0+ t5

(2]
"

5)
kgl = (t1 - le + zll) vo+ (—tl - 111 - 212) v O
2{1 = (t1 - 213 + kll) vO0+ (—tl - hll B klz) Vo

In these formulas, sgn(0) is defined as follows.

+1, 1f £, % 0.
sgn(0) = \- 12

-1, else.

Proof: Just as in Step 1, one can compute the pair-of-letter expressions
in Proposition 7.4 from the parameter values (ct)A as in the following
formulas.
+1
(5‘313931:1 ) = L

+1
™y -

A tl) vo
(sk13
(3513,sk

(sk

,St A tl) v o

17) = (Byg b kg 8 (&g - t)) 8 (Ryy +£7)) 90

13,s£11) = (hls AL, A (k

+ -1
(sl’_ll,stl Y= (L, A -tl) 70

<SE§1’StIl) = (k

13 " tl) A (le + tl)) v o

1y 4t VO

(szlz,st11> = (-t = 2,) 8 2,) 70O

(shlz,stil) = ((-t; - k) A ky,) 7O

1
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We begin by considering the caée where o has no closed curve
components, and we plug the formulas above for the pair-of-letter
expressions into the formulas of Proposition 7.4. All of the formulas
of this proposition follow immediately except for the expressions for,
the parameters t}, tg, Zgl and kgl. We must do some algebraic manip;lation
for these parameter values. We will perform the computations for the

parameters t;

n o, 14 1"
and kll’ the algebra for the parameters ty and ﬂll is

similar.

ty = (213 At)) VoO+ (£13 A !zu A (!.13 -t)) 8 (!zl1 +1t)) VO
_ {1.13 bey + ((ll3 -t A lel) Vo, t 20
(213 A (kll +t)) V0, £, 20
byttt 208 By £ gy - ty)
t1+£13 -t, t 2068 o;(ll3 -t _<__!z11

L3 81208 (B3 - 1)) 20
(!.13 A (!zu + tl)) Vo, t <0

= (213 A (kll + tl)) V 0, as desired.

{zh = |cl| + !'11 - 2((11ll A -ty) VO) - (((=ty- £1l) A zu> v 0)
ey + Ly - (Ryg 0 ty) - (g = 29) 8 44) T O, 8y 20
= §-t F le - 2(!_ll A -tl)



t+£ll-fz t, 20&t

1 13° &1 12 "3
t by m e kg ey, e 208 by - Ly Sty £y
By ¥y mty m gy B 208 e Sk - by

= £, + 311 h13’ £ < 0, -t) < !_11 & !z13 =<=£11 + £y
) * g sy -ty t 20, oty by B by Yy 2k,
“ty =yt Ayps B K0, -ty 28y Ly, 20ty - by
-tl-£11+t1+1. t, 0, -tl>!_11&-tl-£11;212

= (tl- h13 + zll) V0 + (-tl -2

To complete the proof of the proposition, one checks that the
formulas of Proposition 7.5 agree with the earlier computations for

multiple curves using Remark 7.1. We leave this as an exercise.cgj

Finally, we consider Step 4.

1

1 - ﬂlz) VY 0, as desired.

We abuse notation slightly and

describe the A"-coordinate values of the various exceptional arcs

113

of A-length one using the notation for the pair-of-letter adjustments.

11}

" B "t 1"
2213 + t" + kll

sk 1

22

" " 11}
sk33 2&12 + le + ty

11 " 1"t
sl,, = 2ky, + £y) +t]

1" 1" 1
s£33 2212 + ty + kll

slyy = &), + kY4

- pn "
skyy = L75 + kY,

1

At last, we are in a position to give the formulas that describe

the second elementary transformation.

Steps 1-5 between the bases A and A".

Note that we have performed
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Theorem 7.1: The second elementary transformation from the basis

— —— ——— —————— a—— ——

hil=h22+!_33+(1,-k13)v0+(—L-£lz)vo
héz- (LAzllA (km-—zu-L))!o

= (k A—?,le(h -L)A(£12+L))vo

Rz = (kys 13
Rip = -2kyy = Ryz + Ryg + Ryy + 2kyy
Ry = ~2R33 - Ry + Ly, + &g + 24y,

Zil = k33 + 1.22 + (K- 1.13) VOo+ (-K - klz) Vo
252-- (KAfzuA (/&13-1212-10) v o

353 = (R AL, A (klz
!.53 = (£13 A &12 b (&5 -K) AR+ Ialz)) Vo

-£13+K))v0

Lig = -285, - L3 + L5 + L)y + 284, '

Lig = =2835 = L3 + Ryy + kyy + 2Ry,

té = 233 + ((/513 - 253 - zléz) A (K + 153 - zéz)) 70 + t,
t

é = -k§3 + ((L + ké3 - kéz) v -(£12 - ké3 - 2k§3)) A O+ t3
tL = -1_53 + (X + !1:'33 - i.éz) v -(fz12 - 1’.;13 - 2!.:'33)) AO+ ¢t

= }z33 + ((k13 - fzé?’ - 2!2%2) .A L+ !z§3 - héz)) VO +tg

4

t) = Ry + Ly + kg +vz;$ - (B + Ry + (£5-ty) + (£5-tJ))

+ sgn(L+K+l! -2} +h!.-R!.) (tl + !_:',’3 + }zé

3378323370y, 3)

£11 + t,. Furthermore, sgn(0) is defined by the following formula.

' -
*1, £y, = 2R}y - ki, 0
sgn(0) =
-1, else

Proof: The proof is Step 5, an application of Remark 7.1 and some

algebraic manipulation. In fact all the formulas follow immediately
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from Steps 1-4 and Remark 7.1 except those for Eil and kil. For these

two formulas, we must do some algebraic manipulation.

]

11°
1 4 1 .
k22 + h23 + k33 is equal to the following expression.

Consider the expression for R One first verifies that

0, L20&L 2k

13
k13-L,L,>=0&!z13-£12;L_<__!213
L, + (M AL ARy -4y, -1)), L20&L k-4,
1= 0, L<06&-L22,
£12+L,L;o&!.12—le3;-1._<__£12
Ryy = (L ARy & (y =k +1), L08-Lsly, -k,

t - - - - - - ’
One then computes that kll h22 233 (L kl3 +¥Y) v0+(-L-L4_ +Y)VO

12
is equal to (L - kls) 70+ (-L - 112) V 0, as desired. The algebra

]
for le is similar.cgj

Corollary 7.1: The second elementary transformation from the basis

— — ——— ——————— — —

)
|

-k§2+£§3+(1.' - k{y) V O+ (L -£4,) V0

&
(]

(L' A zil A (!z]"3 - I.]'_Z ~-L")) VvoO

[a)
L]

33 (-L' A kil A (Ziz - kiB +L"'")) VO

&
0

23 (kiB A Ziz A (hiB -1 A (Ziz + L") VO

o
]

1
12 = “2yy = Ly3 T Ry

- ] 1 ]
13 = “aq = Lyy H 4, + by + 20,

kz',’s + ?'52 + (R' - !.i3) V0 + (=K' - hiz) 70

L 1
+ fz23 + 2!233

IS o]
] (]

11

99 = (R' A Izil A (£i3 - hiz -K"Y)) Vo

g3 = (K" 8 43; A (Ryy - £13 +K')) VO

IS i~
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(£i3 A hiz A (ZiB -~ K") & (X' + kiz)) Vo

23

Ry = ~2Ryy = kyy + &yg + &g+ 25,

Ry = =23y = Ry + Ry + Ryy + 205,

t, = -233 + (L' + 333 - 222) v -(ziz - 223 - 2233)) A0+ té
ty = k§3 + ((ki3 - 223 - 2322) A (L' + 233 - 222)) 20+ té

t, = 253 + ((£i3 - k23 - zkzz) A (R' + k33 - hzz)) VO+t;

£y = Ry + (K + gy = ky) T =(R}, = kyy = 20,,)) 80 +
t) = L33+ Ryy + Ly + Ryy = (Byy F Ry + (Egmtp) + (bymt)))

+ sgn(L'+K"+k33-h22+£33—£22) (ti + h33 + 233)

|5
(ud
fu
o
n
1]
rh
Q
]
.—A
[\
(/)]
=
[ ad
n
[ W
[i1]
t+h
B
[¢]
[»
<t
Q
o
(1]
~

1 1 1]
LB CARLLE L A s B + tl’ and L__LS_ defined to

be Zil + ti. Furthermore, sgn(0) is defined by the following formula.

. B
L, Af 8, - 284, = 254 $ 0.
sgn(0) =
-1, else.

gggggz.The symmetry of 82 indicated in Figure 7.21 implies that the
formulas for £,, (k,,) are the formulas for Ry, (£;.), replacing,
Loy (Rey) by 21, (kL) and £, (kL) by Ry, (£,,). The formula for
t, is the formula for tc-l(*)’ with the symbol replacement as above
and t;(*) replacing t,, where ¢ fixes 1 and is the cyclic permutation

(2,4,5,3) on the other pants curves.cgg

One can of course prove the corollary directly by mimicking the
proof of the theorem with (A',A) replacing (A,A'). To prove this
corollary by checking that the transformations in the corollary and the

theorem are inverses (as in Sectiom 6) is a very difficult computation.
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rotation
AANAANNA
by n/2
segond
elementary
transformation
rotation
by -v/2

Figure 7.21




Having computed the first and second elementary transformations

SECTION 8
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(and their inverses) in the previous two sections, we state the results

of Theorems 6.1 and 7.1 here for the convenience of the reader.

Theorem 8.1: The first elementary transformation from the basis A to

the basis A' is given by:

o3
i,
£33
)

]
Y

In these formulas, A denotes the infimum, V denotes the supremum,

(le - |
43

tll)vo

€y, = £1)) + 4y

eyl = @y - 241

t

-sgn(tl)

(yy + (py = 250

s + le + ((£12 - Kil)Atl)VO

sgn denotes the sign function, and sgn(0) is defined EE.EE.'1°EEQ

Theorem 8 .2 :

The second elementary transformation from the basis A_Eg_

the basis A'

Ly
5
3
23
4

2,
43

is given by:

2 1 1 2 : 1 1
222 + 333 + (L° - ZIB)VO + (=L - ﬂlz)VO

1,1 2 1 1
(L azllA(£13 - £12 - LM))Yvo

1,,2

2 ,,1
(ZIBAKIZ

1l 2 1
A(£12 - 213 + L))V

A(zi'3 - Ll)A(ziz + Ll))vo

2, ,2, . 2 2 2
-285) - L5 + £y + L5 + 25,

2,
_2333 -

2, 1 1
£23 + le + £23 + 28

1
22



119

L, _ 2 1 42,1 g5 2,2
!_11 233+I.22+ (L -!_13)V0+ (-L -£12)V0

Looo_ 1202 401 2 2
£’ (L°2L 8Ly = &7, - LT)IVO

2, ,1 2 1 2
2.} (-L AI.HA (212 - !113 + L°))Vo

23 “is“i'zA “is - haut zfz))vo
Ly _  _,ply _ Ly 1 1 1
£:! 2122 223 + £13 + !,23 + 2£33
L, _ ol _ pl 2 2, 52
Fa 2231'5 1’.25 + 212 + 223 + 2!.22

S| 1 1, Lyga 12 4 pl 1,
31 £33 + ((1,13 - £23 - 2222)A (L® + £3:',’ - 1122))\70 +t,

2, 1 2 2 1 2 2

t:',’ = -233 + ((L* + £3§ - zzé)V-(!_lz - !.23 - 2135))A0 + ty
1 2 1 1 2 1 1

tz = -!.3:',) + ((L™ + 235 - Ezé)V-(le - Zzé - 2£3§))A0 + t4

oL g2 2 2 2 1 2, 2,
ts !_33 + ((z13 - 125 - leé)A(L + 133 - 1.22))v0 +t,

S| 2 1 2,1, L 2, ~
B Ly9 + Loy + 33 + L33 = (£1] + L] + (&) = t)) + (t5 - £5))
+ sgn(ll + 1%+ 1:;5 - zéé + zgé - zgé) (t, + I.;é + z§§>

In these formulas, A and V are as in Theorem 8.1, L' denotes the quantity

1 2 2 .
211 +t,, and L® denotes the quantity 1’.11 + t;. Furthermore, sgn denotes

the sign function, and sign(0) is defined as follows:

+1, 1£ 2], - 2034 - £51 4 0.
sgn(0) =

-1, else.®

These theorems give explicit formulas for the action on y/'k(Fg) of

Lickorish's generators for MC(Fg) as described in Section 3. The
plecewise-integral character of the action is directly implied by Theorems
8.1 and 8.2, Unfortunately, the formulas are rather cumbersome; insofar
as several of the Lickorish generators act as linear maps conjugated

by compositions of the elementary transformatious.
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One's first reaction to the coﬁplexity of the situation is panic,
and an appropriate respouse is to write a computer code to perform the
algebra of the computations. The formulas of the elementary trans-
formations are particularly amenable to computerization, since they
are essentially sums of infs and sups of linear maps. The notable
exception to this is the sign that appears in the expression for
the twisting number t1 in either transformation.

A FORTRAN code has been written to compute the action of MC(Fg)
on the collection of multiple arcs, as described in this thesis. Several
hundred thousand cases of the computation have been run, checking that
a transformation followed by its inverse yields the identity in each
case. Moreover, many trends predicted by Thurston's theory of
surface automorphisms are exhibited by experimenting with this
code. (See Subsection 2 below for a brief description of the
Thurston theory.) The code is great fun to play with, and a source
listing with documentation is contained in Appendix C. (The reader
interested in theibookkeeping details of the computation outlined
in Section 3 should refer to Appendix C.)

A more optimistic reaction to the complexity of the formulas derived
is to begin computing the various compositions that arise in the hopes
of simplifications of the sort that occur in the prdof of Theorem 7.1,
This is not, I think, an unrealistic optimism. The sort of
computations that this involves are a rather pleasant blend of
combinatorics and linear algebra, and some progress has been made. I will
briefly describe some work in this directiom.

Consider the pants decomposition shown in Figure 8.1 on the n-times

punctured sphere, n > 4, denoted Sz\n*. We distinguish the subgroup
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of MC(Sz\n*) corresponding to the hoqeomorphisms fixing each of the

punctures. This subgroup of MC(Sz\n*) is called the pure mapping class

group of Sz\n*, and is denoted PMC(Sz\n*). It is well-known [2] that
PMC(Sz\n*) is isomorphic to the pure n-braid group on S2 modulo its
center. PMC(Sz\n*) is generated by Dehn twists along the nullhomologous
curves in Figure 8.2. Just as in Section 3, to compute the action of
PMC(SZ\n*) onegp'(sz\n*), it suffices to compute the transformations
indicated in Figure 8.3. These transformations are easily deri?ed from
the formulas of Theorem 8.2; in fact, the piecewise-integral action

of PMC(Sz-minus-n-points-minus—(4-n)—discs) is a restriction of the

piecewise-integral action of PMC(Sz-minus—four-discs).

- = .,

Figure 8.1

e ER———
Figure 8.2 g_)//”—"‘\\

Figure 8.3

o — g

- - — e
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For spheres with n punctures, I have explicitly computed
several of the compositions of transformations that arise in the action
of PMC(Sz\n*), and there is a concise description of the action in
several cases. A particularly simple case is the action of PMC(SZ\4f‘)
on the subset of y‘ (82\4*) corresponding to (necessarily closed) multiple
arcs with no boundary-parallel components, This action is faithfully
represented by an action on our parameter values of the group of

invertible integral matrices generated by (é :§} and [(1) %)

The action is a twisted right action given by:
(!.1 t.) Ja by = (Ia,(’.1 + ct, | sgn(a@l + ct.) (bﬁl + dt.))
1ty (2 2) 11 11 1 * ety (beyy +dy

This description of the action of the pure mapping class group of 52\4*
on the collection described above will be useful in our subsequent
discussions of applications.

We-will discuss several applications of our computations in turn in
the following five subsections, When convenient, we will assume our
surfaces are supplied with a fixed smooth structure.

1) The Word Problem for Lickorish's Generators of _M_C_(Fg)

Using the Alexander trick, one easily proves the following Propo-
sition.

Proposition 8.1: Let y be a mapping class on Fg’ and let {ck} be a

collection of simple closed curves so that

a) Fg\u{ck} consists of discs.

b) CINCy is either empty or a single transverse intersection,

for k ¥ k'.

Y is the identity Q_MC(Fg) if and only if ¢ fixes the isotopy class

of each ¢, .[X]
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Thus, the computations of this thesis give an efficient algorithm for
solving the word problem for Lickorish's generators of MC(Fg): one
simply evaluates a given word on some collection {ck} as in Proposition

8.1 and checks that the isotopy class of each c, is fixed.

k

It is well-known [2] that MC(Fg) is isomorphic to the group of -
"orientation-preserving" outer automorphisms of nl(Fg). Thus, a mapping
class is the identity in MC(Fg) if and only if each of its representatives
acts like an inner automorphism of wl(Fg). This could be regarded as
giving an "algorithm" for the word problem in Lickorish's generators:
one checks that the word acts like an inner automorphism on a set of
generators for ﬂl(Fg). This is an unwieldy computation for words
of large length,

Isotopy classes are the same as free homotopy classes of curves
embedded in surfaces [7 ]; furthermore, free homotopy classes of curves
are the same as conjugacy classes in nl(Fg) modulo orientation. Thus,
our formulas describe the action of Lickorish's generators on embedded

conjugacy classes in vl(Fg) modulo orientation.

2) Thurston's Classification of Surface Automorphisms

Let F be a surface of negative Euler characteristic. We will say

that a mapping class ¢ on F 1is pseudo-Anosov if, for every iterate

wn and for every free homotopy class [y ] of non-boundary-parallel, not
necessarily embedded connected curve, [wny] + [y]. (Note that some
iterate of ¢ always fixes all boundary-parallel curves.) We will

say ¢ is periodic if some iterate wn is the identity in MC(F). We

will say ¢ is reducible if there is a closed multiple arc ¢, no component
of which is boundary-parallel, so that jy permutes the components of q.

a is called a reducing curve for y.
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Simply stated, Thurston's classification says that a mapping
class is one of periodic, pseudo-Anosov or reducible. A mapping class
may be both periodic and reducible, and this is the only overlap in
the classification. A natural problem is the classification of words
in Lickorish's generators into periodic, reducible and pseudo-Anosov
mapping ciasses.

The periodic, pseudo-Anosov or reducible character of a mapping
class y € MC(F) has a natural description in terms of its piecewise-
integral actiqn on.ézx(F). For instance, suppose that ¢ fixes a
curve whose parameter values lie in a top-dimensional simplex o of the
decomposition KW of the piecewise—integrai structure, Under these
conditions, there is an eigenvector in éZX(Fg) with eigenvalue ] for
the integral matrix which corresponds to ¢ in the piecewise~integral
structure of the action of .

One reason that this problem is of interest is that one can‘often
find a descriptioﬁ of the monodromy of a fibred link in terms of Dehn
twists, and the periodic, reducible or pseudo-Anosov character of the
monodromy is connected with geometrical structures on the link
complement. In many examples, the monodromy is the 1lift of some map
to a branched cover of the disc; hence the action of MC(SZ\n*) on

c99'(Sz\n*) is of interest here.

Another reason that this classification problem is of intefestv
pertains to the following theorem, which will be proved elsewhere [15].

Theorem 8.3: Let Yy and § each be multiple curves i a surface F with

negative EBuler characteristic. Let {c,} and {dj} be the components

of vy and §, respectively. Furthermore, assume the two conditions below.
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a) ¢, and d, intersect minimally, for all i and all j.

i ]
b) The components ggiF\\)({ci}\J{aj}) are all discs.

Let w be any composition of the Dehn twists rzl and 4 so that,
. i j
for each cy gz_dj, TZI gg_rdl appears at least once in w. Under these

i i
conditions, w represents a pseudo-Anosov mapping class.

This recipe for constructing pseudo-Anosov mapping classes generalizes
known constructions of such. I can prove that this recipe gives all
pseudo-Anosov mapping classes in a few cases, and I conjecture that this
is true for g-holed tori, at least up to iteration of the map and composition
with maps af finite order.

For the special case of a mapping class y on 82\4*, there is some
iterate wn of ¢ that is a pure mapping class. The periodic, reducible or
pseudo-Anosov character of ¢ is determined by the trace of the matrix
corresponding to wn. (See Proposition 8;2.)

3) The Action gg_MC(Fg) on Thurston's Boundary for Teichmuller Space

The Teichmuller space of Fg’ denoted é?YFg), is defined to be the space
of Riemannian metrics (with the natural toplogy) of constant curvature
-1, module push-forward by diffeomorphisms isotopic to the iééntity.
0., Teichmuller [16] ;howed that éf”(Fg) is homeomorphic to an open 6g-6 disc.
There are several classical cémpﬁctifications of éﬁYFg), and Thurston [17]
has given a beautiful compactification of é?YFg) by a 6g-7 sphere. We will
presently describe Thurston's compactification.

By an n-gon in a surface F we mean a smoothly embedded open disc in the
interior of F, with piecewise smooth frontier and n discontinuities in the
tangent of the bounding curve. Some examples of n-gons are pictured in

Figure 8.4, A subspace X&F is said to have a complementary n-gon if some

component of F\X is an n-gon in F; X is said to have a complementary annulus

if the closure of some component of F\X is a smooth annulus in F.
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O-gon l-gon 2-gon 6-gon

Figure 8.4

A train track T in the surface F'is a closed branched one-submanifold
embedded in F, so that T has no complementary null-gons, mono-gons,
bi-gons or annuli. Some examples of train tracks are pictured in
Figure 8.5. A train track T is a one-complex in a natural way; the

O-simplexes are called the branch points of T, and the l-simplexes

are called the branches of T. A train track T in F is said to be

transversely recurrent if, for each branch bi of T, there is a simple

closed curve d intersecting bi transversely in a point; furthermore,
there are no bi-gons complimentary to dUT. Transverse recurrence is

a technical condition that we will require shortly.

-

Figure 8.5
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A measure m on a train track is.an assignment of a positive
real number m(bi) to each branch bi of the train track T. The number
m(bi) is called the weight of the branch bi' The weights are required
to satisfy a single relation for each branch point; for instance,
are as indicated in Figure 8.6,

k
the weights must satisfy m(bi) = m(bj) + m(bk). We require an analogous

whenever the branches bi’ bj and b

additivity relation when more than three branches have a branch point
in common. A measured train track is a natural generalization of a
closed multiple arc: closed multiple arcs correspond to measured train

tracks with integral weights.

-~

Figure 8.6

Let ¢ be a simple closed curve in Fg’ and let (T,m) be a measured

train track. Isotope c so that it misses the branch points of T and there are no%

bi-gons complementary to cUT. If card(cnbi) =t,, we define the length

of ¢ to be Ztim(bi). The length of the isotopy class of c is well-defined,

and we extend the definition of length to closed multiple arcs by
requiring length to be additive on components.

We will say that two measured train tracks are equivalent if they
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define the same length function on closed multiple curves. Two measured

train tracks with length functions L1 and L2 are said to be projectively

equivalent if there is some positive real number r so that
L1 = rLz. Thurston [17 ] shows that the collection of projective equi-
valence classes of Fransversely recurrent train tracks (with a
suitable topology) forms a 6g-7 sphere that compactifies é?YFg).
MC(Fg) acts on é?YFg) by push-forward of metrics, and this action
extends to the natural action on Thurston's boundary: the actioﬁ of
MC(Fg) on (isotopy classes of) measured train tracks. Our computations
describe the action of MC(Fg) on standard (see Construction 5.1)
measured train tracks, and it seems almost certain that any measured
train track is projectively equivalent to a standard one. In any
case, the collection of (projective equivalence classes of) measured
train tracks with integral measures is dense in Thurstomn's boundary
for éyTFg); thus, we have already computed the action of MC(Fg) on
a dense subset of Thurston's boundary for éFTFg). ‘

4) Linear Reﬁresentations of Mapping Class Groups.

Let F be some surface. The goal is to exhibit a faithful represen-
tation of MC(F) as a group of invertible matrices or prove that such
a representation cannot exist., Such representations would be useful
in better understanding the mapping class groups.

We have derivad a faithful representation of MC(F) as a group of
piecewise-integral transformations provided the Euler characteristic
of F is negative. Furthermore, we have remarked previously that the pure
mapping class group of 82\4* admits a faithful representation as a
subgroup of SLZW. It was mentioned that this action is twisted. Using

the results of this thesis, one might hope for analogous twisted linear

representations of the pure mapping class groups of Sz\n*, n >4, It
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is possible that our formulas even describe such a representation as
they stand, but the twisting in the action renders this unrecognizable.

5) Dynamics of Surface Homeomorphisms

)
Suppose that f is a homeomorphism from the open two-disc D

to itself, and suppose that x is a periodic point of f of period n ;;3.

Let 0(x) denote the orbit {x,flx,...,fn_lx
0

homeomorphism of Dz\O(x), and we may consider the mapping class of this

} . £ restricts to a

o
homeomorphism. Identifying DZ\O(x) with Sz\(n+l)*, this mapping class
is given by a coset of the (full) (n+l)-braid group of S2 by its center.

We will call this coset the topological type of f with respect to the

orbit O0(x). The topological type of f varies from one periodic
orbit to another, yet there is an obvious compatibility between
topological types of f with respect to various orbits.

The reason that our computations are applicable is that we can
compute topological types. The topological type of f with respect to
0(x) is determined by its action on é}”(gz\o(x)). Note that the
topological type of £ with respect to O(x) is a pure mapping class.

In fact, we can determine the topological type of £ with respect to
0(x) by computing its action on a finite collection of simple closed
curves in 32. (One proves an analogue of Proposition 8.1.)

More crudely, one may simply consider whether the topological type
of £ with respect to 0(x) is periodic, pseudo-Anosov or reducible. There
is evidence [4] to suggest that the existence of orbits of certain periods
puts restrictions on which of periodic, pseudo-Anosov or reducible
topological types can occur.

In the case of period three points, we can use the representation

of PMC(SZ\A*) described above to prove the following propositionm.
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o o
Propostion 8.2: Suppose f:D” + D" is a homeomorphism of the open two-disc,
o
and suppose the x ¢ D2 is a period three point. The topological type

¥ e PMC(SZ\4*) of f3 with respect to the orbit of x is described by

an invertible two-by-two integral matrix B. B is determined by the
o
action of f3 on two simple closed curves in DZ. Moreover,

a) ¢ is reducible if and only if |[trB| = 2.

b) ¢ is periodic if and only if |trB| < 2.

¢) ¢ is pseudo-Anosov if and only if |trB| > 2.

In conclusion, there are many interesting problems associated with
the action computed herein. What is lacking as a good qualitative
understanding of the formulas that we have derived. The setting in which to
begin developing this understanding is the setting of punctured spheres,

and some progress has been made in this direction.
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APPENDIX A

In this appendix, we prove several technical results about
symbols that are used in Sections 6 and 7. We adopt the notation of
Sections 6 and 7.

Proposition A.l: Let B and B' be two bases on the standard pants P

~

that differ only in the choice of canonical piece lll or 111 (see Section

2). The transformation between yé(P) and yé,(P) is described by the

following formula.

(my smy,my)x(ty,tp,89) + (my,my,my)x(t 2l)),t5,8,)

Proof: The simple and very usefulAisotOPy that proves this proposition

is indicated in Figure A.1.CE§

Figure A.1
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n

Proposition A.2: If stil and stzz both occur as sub-symbols of (some

components of) an embedded admissible symbol, where ]nll and lnzl are

maximal, then Inl-nzl < 1.

m . . .
Proof: Let t denote an arc twisting m times in the standard annulus Aj

A N\ U;_ltnl is a disc in which U;]’th is a properly embedded arc.@ '

Corollary A.l: If st?_l and st:zz both occur as sub-symbols of (some

components of) an embedded admissible symbol, then sgn(nl) = sgn(nz),

provided ng + 0 + n2'®

Proposition A.3: a) If stIl s[{l occurs as a sub-symbol in some embedded

admissible A-symbol s on 52’ then an s[]l_’l in s is always followed by

-1
10

E_St

b) If sty sk;-l occurs as a sub-symbol in some embedded

+
admissible A-symbol s on SZ’ then an skll in s is always followed by
-1
1 L4
Proof: These are the only embedded possibilities.as indicated in Figure A.2. @

g_st

Figure A.2
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+ -
Proposition A.4: a) The image gg.sﬂiI stll in an A-symbol on S, under

the combinatorial homotopy without boundary effects in Section 7 is
"+l "
sty 3511'
+ -
b) The image of skil stl1 in an A-symbol on S,

the combinatorial homotopy without boundary effects in Section 7 is

under

"+l 1"
St1 s 1°
Proof: In Figure A.3, we illustrate the combinatorial homotopy in S2 for
cases a) and b). We use the results of Proposition A.3 to guarantee

that the 1ifts are as indicated in Figure A.3. The solid lines indicate

the lifts, and the broken lines indicate the image of the homotopy. EE‘

Figure A.3
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APPENDIX B

In this appendix, we check by hand the formulas for the two
elementary transformations on connected, non-exceptional A-symbols
of A-length less than five, There are several special cases here
that we wished to avoid in the combinatorial arguments of Sections 6
and 7. Since these special cases all have small A-length, it seems
easiest to exhaustively check these few cases.

These computations are a good exercise for the reader wishing
to familiarize him or herself with the parametrizations in Section
2 and the bases used in Sections 6 and 7.

For the first elementary transformation, there are six cases.
In the following diagrams, we indicate the A-coordinates and depict
a good representative on the left; on the right, we give the same
data for the basis A'. We omit mention of any parameter values that

are equal to zero.

+1 1 [} =1 '

sllz sty 5113 st Sle sty sﬂlz
= = = '=1=m! T'=_ =
m, 2, my=t, 1 ts l=m], ty 1, mé 2
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-1 v o+l t
1 5'613 s£12 sty 5213
= S '=m'= !=
1 l, tl 1 tl ml 1, m2 2
_l —1 L '+1 1 L
1 St 8313 , sﬂlz sty s£23 5213
= = = — '= L l=
2, m=1, £ ;=-2 my=mi=2, t!=1
‘ |
+1 +1 +1
t Z A 1] 1 v 1
1 St S%y3 sty sty sty T slyy sty
2, m,= t'=l
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-1

sf.. sl . st, sk ' i S '

12 %23 5F1 %13 slyy st] =~ sty slyy
m,=m,=2, t,=-=1 L . '

1 By 1 t,=m, 2, my 1

‘l||||||‘1“|||||||||||||||'
+1 . -1 -1 oL

sﬂlz sty 5523 5213 siiz sti sti s£i3 sté
t =l, = =2 '=¢'= = 1=
1 m,=m, m;=t, 1, t1 2, m, 2

For the second elementary transformation, we check eight cases of

A-length three and seven cases of A-length four. We use the symmetry

of rotation-by-r about the line [ in Figure B.l to avoid considering

cases whenever possible. Moreover, in case of A-length four, we do

not consider multiple arcs with ]tll = 2 since the considerations of

Section 7 apply to this setting.

In the following diagrams, we indicate the A-coordinates and depict

a good representative on the left; on the right, we give the same data
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for the basis A". We omit mention of any parameter values that are

equal to zero.

Figure B.l

- n+l " n-l "
8«613 Skll S£12 stz 5,812 stl 8’213
== = = W o M 1
2, m, m3 1 t1 1, t2 m1 m2 my 1
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sl sk . st Sk"]IB SKIl shIB

= = (L
m, =g 2 . my=m, 2

+1 " " ntl 1 "

1 sklz Sle 51'11 st} Shll 31113
_ (LTS T |

ml=m3=m4=tl=l m1-3, my=m; =ty 1

sf. . st

12
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" 13} ”+l 131 "

s£l3 sty shlB s£12 Skll st sﬁll shlz
— = = = "o M T 11

m, =M, =M 1, tl 1 | my 3, tl m, =g 1

+1 +1 0 .
5213 st; sklz st; sklz Skil sﬂiB

m1=m2=m4=l, t1=1 m;=mz=t;=l, mI=2




140

n+l " u-l " n+l
st S£12 t] sklz stg

L . , th=-1

0y =My =Mg=ty=ts 1

, L
sly, sty” sk,
m,=m,=n,=1, t_=-1

173 74 1

P sy, ey
W W W S A I
My smg=m=l, ty=t=-l

st'3'_1 SkIB st
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-1 n—l " n+l " 1"
sﬂlz st, Sh13 sty Sh13 st sﬂll shlz
m1=m3=m5=1, tl=—l m3=m5=tl=l, m1=3, t3=—1

ntl
2
ml)'=m"=t"=t"=m"=l , =22

" n"l n"l
s£12 st © sty

wtl

t
S 5

12}
sklz st

572 51 1
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- - n+1 n-l
s£13 Skll s£11 shlz sty sﬂ'iz st sf?.']il 31{3

- o - "= H___ "= "= "=_
l3,m2m41 t2m2m41,m12,t11

-1 - " 1" -1 1
Skyz Sty Sty Shys skip skyy sty * sy,
tl=..]_’ m1=2’ m5=2 mn=mn=2’ th=1

571 1
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- +1
Sk13 sﬂll sty
m =m=2, t,=1

L+l
13 ts

o''=m"=t"=2 ,

17575

ski

1 "
2 sty
1

1

tl'==1

n"l "
st sklz

st

5

+1

tg=m

"=m!'=1 .

475

"o
m1 3

17" n 1" 1)
sl’_13 skll Sﬂn sk.lz st

5
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- 4
sky, sty t sk,

ml=m4=2, tl=1

" " 12}
3213 Skll sﬂll st

1A

A

ntl
1

- "o "_
=2, tl 1, my 4

1" "
sky; sty

-1 41
1" 1 "
sty s17_13 sty

H= l|= H= Vl=
m, m5 ml tl 1, t

11t
sklz

L
4 1
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1 e ok R R R b e e e e o o TR e e e o e o o s e o e e o e sk e ot o o e e s e
T THE DEHM TWIST IS THE COMJIUIGATE OF THE LIMEnRE
2 MAP IM TWIST: BY » COMPOSITION OF THE ELEMEMTERY
7 TREHSFORMATICOHE, THE ARGIIMEHNTS OF ELTY aMDh ELTZ
Z  ARE EXAPLAIHMELD EBELOW.
.’: e ode b b e b e o ol e R e e oo e e e o e e s e e o el Tl e e e b e e e e e e e b vk B e o e e
CARLL ELTEOMZL N4, NV NS, N, =1, M0 I, HCidiy
CALL ELT1CHZ, H2, +1,MxD I"?,HI_J.IF!‘!E.!
CARLL TWISTICHNI, HEXP, MEDIM, HCUEVEi
CARLL ELTICHNI, H2. -1, MEDIM, hEUP”
CAHLL ELT2OHIZ, M4, M1, HE NI, +1 .M DIH MICLRYE D
SETURH

izl




DR

D

T

DR 't

DR

SUBRDUTINE TWISTS: MTAL, HEXP, MXDIM, NCURVE D

b s e i e s e s s e e e e o o s e e e o e e e e s o e e e e e e s e e e e R e e Rk

THIZ SUBROUTINE COMPUTES THE ACTIOH OF & THIST

OF GEOMETRICZAL TYPE THREE.

afs ook e v vk obe ol e e e bt cR e s b R e e e s e e e e e e e b e ol s e e e e e e o e e e e ke g

COMMONSZENSESHGEMUS , MDIHN

DIMEMSION HMCOURWEIMHEDIM, 2

B s i RE SR S i R S s R R e T T T Ty Y TRt LR SR S T T Rt TR SRR SR R R T ]

WE FIRST COMPUTE THE PaNTS CURYES IWVOLYWED IN
THE TEAMIFORMATION FROM THE YaLUE OF HTAU., M1
STORES THE NUMBER OF THE PARNTS CURWE IMTERIOR
T THE TORUS MINMUS A DISC, AND M2 STORES THE
PaHMTS CURYE THAT 13 THE BOUHDARY COMPOMEMT OF
THE T.LCRUS MIMUES A DISC, RS INM FIGURE 2B,
R i R R R R R R R R R R R R R R R R R Bt SR R R TR T T T T R R R T R
IFCHTAU HE . 4#HNOEHIJE-4 > 30 TO 02
rHi=i

[
-
b
g
il
e
[
Z o

i
H2=HD M-
07 CONTINUE ,

i i e ke e e e e sl e s s e e s e e s e sl e s e e e e e e e e e e e e e ke e e e
THE DEHM TWIST IS THE CONJUGATE OF THE LIMEAR
MAaP I TWISTI BY THE FIRST ELEMEHTATY
TRANSFORMATION,

ek e b e e e e st iR e e sk e e s i s e sl e e e R e s e ot s e e s e e e

CHaLL ELTICHY N2, +1,MADIM, HCURYE »

CRLL THISTICNY, HEKP, MEDIM, HCURYE »

CALL ELTICHI N2, -1, MEDIM, HCURYE D

RETURHN '

EHND

SUBROUTINE TWISTYINTAL, HEXP,MEDIM, MCURVE »

HE PR R E R R RS R RN EEE R EE SRR R R R E RN P
THIS SUBRIUTIME COMPUTES THE ACTION OF & TWIST
F GEOMETRICAL TYWPE FOUR.

B R G R g O R R i G ok R T T R R R T s Y i o S e Y R R R T TR R T

COMMON/SENSE/HNGEMUS  HDIM
DIMEMSION MCURVEIMXDIM, 20

Hede etk ok b e sk i the e i e et e bbb sl sk o e e e sde b e e e el e sl e sl b et e s s e
WE FIRST COMPUTE THE PaNTES CURYES IWYOLWEDR IN
THE TRAHSFORMATION, MY STORES THE PaMTs CLURYWE
INTERIOR TO THE SPHERE MIHUZS FOUR DISCS, AND
M2, H3, N4 AND HS STORE THE PAHTS CURVES THSAT
AREE BOUNDARY COMPOHEMNTS 0OF THE SPHERE MIMUZ

FOUR CISCS FROM LEFT TO RIGHT mAHD TOF TO BOTTOM,

RS IN FIGURE 2C.
e e abe e s e e o e e e e o o e e e e e e e gt o o e e s e e e e s s e e e e s e

MF=Z2+(HTAU-4+«HSEHUS+1 3

M1=3+HP

NI=d4+HP

HI=3+HP

Ha=7+HP

HE=E+HP

IFYHTAU,EG., 4«HNGEMUE-2Y G0 T2 02
IFIHTAU,EQ, I«HGENUS-4 2 GO TO 43

GTOTO O
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02 Mi=MDIM-1 151

COHTIMUE
b ke b ke s o e s o e e e o e e e s e e e o e e s sk s e e e o e o e e b s R R
THE DEHM TWIST IS THE COMJUGATE 0OF THE LINEAR

s MaP IM TWISTY BY THE SECOND ELEMEMTRREY

T TROeMSFORMATION.

FE R R TR A R R R b R R B TR S o R
CAaLL ELTEOHY, M2 H3, N4, HS, +1, MEDIM, HNCURVE S
CALL TWISTIIMY , HEXHP,MXEDIM, HCURYE D
Call ELT2OHY, H2, M3, M4, HS, -1, MEDIM, HOCURYE 2
FRETURH
EHD
SUBROUTINE ELTioHY, N2, TSGH, MKDIM, HCURYE »

Bt 36 g o s i g o e ol i o b e o i b i e o s ik i o B o o

ELT! PERFORMS THE COMPUTATICOH oF THE FIRST

T  ELEMEHTARY TRAHMSFORMATION OH THE TORUS MIMUS
2 A DISC, NI IS THE PAMTS CURYE INTERIGR TO

o THE TORUS MINUS A DISC, M2 I3 THE PAHNTE CURWYE
i TH&aT IS THE BOUNDARY COMFPOMEMWT OF THE TORUS

WHETHER TN COMPUTE THE FIRST ELEMENTaRY
TRAMSFORMATION OR ITS INWERSE. ISGH=1 MEAHS
0 COMPUTE THE FIRST ELEMENTHARY TEAMSFORMATIGH, AMD

T IZGH=-1 MEAHS COMPUTE THE INMWERSE.

A EE R R E R E R R R RS RS EEE R R R E R e R e R
COMMONA/SENSE/HGENUS , HDIHM

DIMEMSION MCURYWEIMHEDIM, 2O

DIMEMSION LIsd

MT=HCUREYECHT , 22

CHRLL PARMCHMZ. HT ,H1,L.MXDIM, HCURYE

HEWT =MAX DI LY 2)=-IRBSCHT 2, 00

MEWZ=L1 2 )-NELH

HCURYECHT, 20=ISIGHC 1, —HT el L. S 0+MEWMZ

IFCISCH.EQ.+1 > HCURYECHMZ, 2 y=HCURVECHZ ,, 20+L0 1 3

FME G0, MINOQCHEWZ ,HT 22

IF{ISGH EG. -1

MOURWECHZ, 2 y=NELCURWECHZ , 2 1 —=HEWT M 00 O, MIMNQL —HT , HEWZ 23
wn 2 =Ll a+HEW2

Lot s=HENT

Lo3x=Lo2o

Lid =1

LS 0=T1aRS<NT »—-HMEUWZ

Lo =0
MOUBRYECHT, { x=Li20+L{5)
HCURVECHZ, 1 r=24L 01 2+L02 0+0L0 32
RPETURH

SHD

SUBRCUTIME PARM{MI . M2, MZ, L, M&EDIM, HOCURVE 2

I SR TR S TR T LR Y TR R R TR R R L T L i R SRR T Ay ey e B B R e R

IS SUBROUTIME STUFFS THE ARREARY L WITH THE HUMEER
2 PARALLEL TO THE waRICUST CAMONICAL PIECES
PaIs OF PAHNTS WITH BOUNMDARY COMPOMENTS

F T e T i I

—c

-

st

N w -
3 S i H " g
il T & LY aiadd , LiEd,

SRR et .
oS IS5 STURFFED WITH i

THIZ ORPDER.

MIMUS & DISC <(SEE FIGURE 2B», AHD IZGH IS A FLAG THAT DETERP
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CIMEMSION L{s>
COMMOMNCSEMNSESHGENUS  HMDIN
DIMEMSION HCOURYECHMHEDIN. 2D
1 =NCI _”F""i;t g
HZ=HCOURYEM2.1 2
FI=HCURYECMI, 1 2
F1=H1-H2-H3
RE=HZ—H1~H3
FI=H3-H1-N2
IFCPI.GT .02 GO TG 01
IFCP2.GT. 0> GO TO 02
IFLP2.GT.0» GO TO 03

Loir=0
Ly Za=CHI+H2-HI /2
L Zi=d i +H3I=-MH2 22
L, 21 }:z“!

Les =0
S0 TO 04
81 Lot =0 Mi-H2-MNIT 22
Li2x=H2
LE 3 =3
Led =0
LS =0
LY =0
COOTO ad
g2 Lot x=4 -
L 2 x=pi
L }=U

Lfﬁ}=tb7-N?—H”>”'

04 CONTIMUE

BETURH
EHND

T e st ke e oo skt b ok o ke e o e e e ot ok s e e e o s sk e ok ok ok o o R R Rt o

S THE FOLLOWIMG THREE FUMCTIGOMES &RE & COMVEMIEMCE I

2 THE FORMULAE OF THE SUBROUTIME ELTZ,

17 e e e b b o itk s e e e o o i e e e e e o e ke e e e e e e o e e e sl e R b sk ko R ke
FUMCTION HTRIPCI, JLKD
MTRIP=MAXO{ O, MINOQC T, MIMOC J, K200
RETURH
EMD
FUMCTION MAOUADC T, J K, L2
MOED=Max s O, MIo o MINed T, MINGOK , Lizr:

F

RETURH

EHD

FUNCTION NOoUuBd J
HODUB=MAXQC 0, MIMQCT, J22
REITURM

b
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SUBROULTIME ELTZOHT M2 HE, Ha , HE, IZCH,
*$frfr?#fefk¥k?kP#+??f?f?+€+ﬁ?+¥vrr++ftr* ?$$$****

-
=%

ELT: FPERFORME THE COMFUTATION 0OF THE SECOHD
ELEME R TROGHSFORMATION OM THE SFHERE MINUS FOUR
nrIcs, Mt IZE THE P%HTE CURYE IMTERIOR T THE SPH
MIkLS FOUR DISCE, And M2, M3, H4, WS aRE THE Hf“u'h—”
COMPOMEMTS OF THE SPHRE MIHUS FOUR DISCS FROM LEFT
T BIGHT AHD TIOP TO BOYTOM (SEE FIGURE 207 i
DETERMIMES WHETHER T4 FERFORM THE SECGHD
TREOHSFORMATION OR 1TSS IHMWERSE I=ZGH=1
THE SECOMD ELEMEHTARY TRERHMNEZ FDPM  TIGH,
MEGHS COMPUTE THE INHYERESE.
i CASE ISGH=1, THE ARRAYS L AHD H HOLD
THE CANOKICAL PIECES IM THE UPPER SHD LOWER FRIRS
OF FAHTEZ, RESFECTIVELY THE GREAYS HL aiMD HE
HOLD THE CaNOHICAL PIELES IM THE LEFT aH RIGHT
Palms OF PANTS, RESPECTIVELY.
B TR SR R R R TR R R R R TR SR R R LR R R R R R R R o R R R R R R R T R T L SR T R
COMMONA/SENSEAHGEMUS ,HDIM
DIMEMSION HMOURYEIMKDIM, 2
DIMEMSION LOg 2, KIar . HEIS » ML &
IFCISGH . EQ. -1 ) GO To 21
Call PARMOMY , MZ,NEZ, L, MADIM, HCURYE D
Catl PAREMONT,H4 ,HS K, MSDINM, HCLURYE »
G0 TO 22
21 CALL PoRMONT N2, H4, K, MEDIM, NCURYED
Calll PAREMONT NS M3, L. MEDIM, HNCURYE
22 COMTIKUE
HT=HCURYECHT , 22
LRd=y 2467
EaP=KkKd{ 1 2+HT
MO =0 24008 2+MARS O, LAM-KS 3 ) 2+MAR D0 0, —LAMN~LS 2 3
MEC 4 x=HTRIPCLAM, L T ¥, KX 3 3-L0 2 2-LaM s
HED S 1=HTRIPC~-LAM, KOt 2, L2 =K T o+ aM 2
HECT I=NRUADCRLZ Y, L2, KO3 3=LAaM, Lo 2 2+LAaM
HLC ] =k S o+l d p+MAXM O 0, KAP-L. T 2 2+MAE 0 ¢, ~HAaP-Ko 2 2 2
HLY 4 3=HTRIPCKAP,KC1 2, LIZ -l 2 -taP)
HLL S =HTRIPO~KaP, Ly D, 2 3=-LL 3 2+EBP
HLOSa=HOUaDYLC2 2, K022, L0 3 2-KAaP , K 2 »+HapP >
HTg=LL’,+HDUB(L(3}~HLLS;-£*HL*43 PHP+HL*’?-HL
HT3=—HKCS ;=HDUBY —LAM-HET & 2+MRO3 D, LEEW—NF'=°—;“H“'
HTd==-HL{ g —HDUB! =KHAP-NL{ B »+ML{E 3 K2 2=HNLl S =2 %
HTS=K{E X+HDUBI KL 3 - HKiS)—E*HHi-,,LRH+HKi6}-HMc4:h
IIEPS=-LAM=-KAP-HL{ A »+HLC S d=Hk D& 2+HE] &
IEPS=I3IGH:Y 1, IIEPS >
IF ¢1IEPS.EQ.0.48ND, L2 2=24MHE{S x=HE{Sy ME, 0 ISFS=-
MTl=kod 2+l 0 4 a=CNLC T 2+HECY 2 0= IEPem{HT+HL{EJ+HhLmk;.
TS 2+KC 8 2
IF JISGH.ER.~-12>» GO TO 21
HMCURVECHZ, 2 isMT2+HIURYECMNEZ, 20
HOURYECHT, 2 3=NTI+NCURYECHT, 2
NCUE?EuN4 2i=NT4+HOURYECH4 , 20
HCOLURYEY 2 r=HTS+HCURYEINS, 2
HOURYWES! 4‘.2'=H;1-HT2—H23
=1 2 o=HT4+MCURYECHZ, 20
, 2 a=NT2+MIURWECNE, 23
.2x=HT¢*leQ?EuH4,2}
L2 =TI LHCURYEIMNTS, 2]
Zr=MTIi-HT2-HTE

[ngs 1‘_‘.‘\



fa

LEA=003

3 g % .

Lg=ladl

Lo=LiS

)
=i ¢

o

I I LA

NCLRYES M3
HCURYECH

MCURVECNT,

G0 TO 42
NCURVECH!Y

4

”*HL'4}
"—’+HB”43—HK‘
p==2pily 5 2=l

HC UQJE'HL,

HCURYECH

o ¥
1
MOURYE{HS,
1
P2

4,

HOURYECHNS,

RETURH

=Hb

—MLx

Y=k & 3=Mi

T‘J l'.-i f.-.l

L

l’.l'l !'.Il l',.fl n

GG TO

TJ"-LJ

v+K{S}

L =L 1
2

p=2#lal ] 2+l

'.".

=24l
¥ pn 4 i

B oa+lr

g3+l o

PR O TRl

— L
=2

£ a+EY

41
bl
y+Lo

2k

B 1+l
4 K

I 'Cl I"..'!

s+L
YL
eI
SN
hE 4 o
KL

LS I LN LN I’.-l i‘J

) I (A Y|

R

oo ol

S+LI+24LE
N IFE SIS
rrR2+KS+2wid
d+L2+L0e24L 4

B

B

R
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