
A COMPUTATION OF -THE ACTION OF

THE MAPPING CLASS GROUP

ON ISOTOPY CLASSES OF CURVES AND ARCS IN SURFACES

by

Robert Clark Penner

B.A., Cornell University (1977)

SUBMITTED TO THE DEPARTMENT OF

MATHEMATICS IN PARTIAL

FULFILLMENT OF THE

REQUIREMENTS OF

DOCTOR OF PHILISOPHY

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

June, 1982

O Robert Clark Penner 1982

The author
distribute

hereby grants to M.I.T. permission to reproduce and to

copies of this thesis document in whole or in part.

Signature of Author

Certified by

Accepted by

Signature redacted
Department of Mathematics

Signature redacted
James R. Munkres

( Thesis Supervisor

Signature redacted
Chairman, Departmental Graduate Committee

Archives
MAJSACHULETTS INTT U 1U2

OFc TECHNOLUG1,y

JUL 3 0 1982

LIBRARIES



77 Massachusetts Avenue
Cambridge, MA 02139

Mff ibraieshttp://Iibraries.mit.edu/askMiTLibraries t" -.'.

DISCLAIMER NOTICE

Due to the condition of the original material, there are unavoidable
flaws in this reproduction. We have made every effort possible to
provide you with the best copy available.

Thank you.

Some pages in the original document contain text
that runs off the edge of the page.



2

A COMPUTATION OF THE ACTION OF THE MAPPING CLASS

GROUP ON ISOTOPY CLASSES OF CURVES AND ARCS IN SURFACES

by

Robert Clark Penner

Submitted to the Department of Mathematics on

April 26, 1982 in partial fulfillment of the

requirements for the degree of Doctor of Philisophy.

ABSTRACT

Let MC(F ) denote the group of homeomorphisms modulo isotopy of

the g-holed torus F ; let YT9 (F ) denote the collection of isotopy

classes of closed one-submanifolds of F , no component of which bounds

a disc in F . Max Dehn gave a finite collection of generators for MC(F );
g g

he also described a one-to-one correspondence betweeny9' (F ) and a

certain subset of Z6 , denoted Z . We describe the natural action of
g

MC(F ) on Y'(F ) by computing the corresponding action of a collection

of generators for MC(F ) on E . This action has an intricate but
g g

tractable description as a map from Z to itself. We use this description

to give an algorithm for solving the word problem for MC(F ). This

computation has applications to several problems in low-dimensional

topology and dynamics of surface automorphisms.

Thesis Supervisor: James R. Munkres

Title: Professor of Mathematics
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SECTION 1

Let F denote the g-holed torus. We define a multiple curve in

F to be an isotopy class of (unoriented) one-submanifolds embedded

in F , no component of which bounds a disc in F . In 1922, M. Dehn [5]

described a one-to-one correspondence between the collection of multiple

curves in F and a subset of 2 6g-6 Such a correspondence will be

called a parametrization of multiple curves, and the corresponding

subset of 26g-6 will be called the collection of parameter values.

The mapping class group of Fg, denoted MC(F ), is the group of

orientation-preserving homeomorphisms of F modulo isotopy. An element

of MC(F ) is called a mapping class on F . In 1938, Dehn [6] exhibited
g g

a finite set of generators for MC(F ) of a certain geometrical type,
g

which are now called Dehn twists. Thus, a mapping class may be described

by a word whose letters are Dehn twists. This word is not uniquely

determined as there are relations in MC(F ) amongst such words.

An orientation-preserving homeomorphism t of F acts on an

(unoriented) one-submanifold c embedded in F by taking the image of
S

c under T, and this gives a well-defined action of MC(F ) on the

collection of multiple curves in F . A natural problem arises - to

compute the action of Dehn twist generators for MC(F ) on parameter

values of multiple curves, thus describing the action of MC(F ) on
g

multiple curves in F .

In this thesis, we will explicitly compute this action for a fixed

choice of parametrization. We will obtain a faithful representation of

MC(F ) as a group of transformations on the collection of parameter

values, and we will describe an efficient algorithm for solving the

word problem for a certain collection of Dehn twist generators for
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MC(F ). This computation also has direct applications to several
9

problems in low-dimensional topology and dynamics of surface auto-

morphisms, as we shall see. In this section, we will briefly describe

how this computation is performed for the surface F2 and indicate some

of the techniques employed. We also give a .brief account of some of the

history.

If c is a simple closed curve in F , then the right and left Dehn

+1
twists, denoted r , are defined by cutting F along c, twistingc g

by 2-r and regluing. The definition of the direction of the twist

depends only on the orientation of the surface F . (We will give a
g

more detailed definition in Section 3.) Thus, if c and d are the simple

closed curves in the surface F indicated in Figure 1.la, then T +d and
1 c

-1
T_ d are the curves pictured in Figures 1.1b and 1.lc, respectively.

In fact, MC(F1 ) is easily shown to be generated by Tc and Td. For

surfaces of higher genera, R. Lickorish [11] has independently refined

Dehn's original set of generators of MC(F ) to a more useful set of
S

3g-1 curves along which to perform Dehn twists. These curves are

pictured on the surface F2 in Figure 1.2. (The extensions to higher

genera will be discussed in Section 3.)

c +1 -1
Tddc c

Figure 1.1
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Figure 1.2

MC(F ) can be shown to be isomorphic to the group of two-by-two

integral matrices of determinant one, and one has a complete set

of relations between T and Td. For a closed surface of genus two,

J. Birman and M. Hilden [3] have given a complete set of relations

amongst the Lickorish generators. For closed surfaces of arbitrary

genus, W. Thurston and A.Hatcher [19] have given an algorithm for con-

structing a complete set of relations for MC(F ), but their results
g

are quite complicated.

Just as Lickorish independently refined Dehn's original set of generators,

Thurston [17] rediscovered Dehn's parametrization for multiple curves.

Dehn's parametrization apparently was not published, but appears in

some lecture notes in the Archives of the University of Texas at Austin

[5]. (I am grateful to J. Stillwell for supplying me a translation

of these notes from the original German.) We will refer to this

parametrization as the Dehn-Thurston parametrization.

The Dehn-Thurston parametrization depends on several choices of

convention, one of which is a certain decomposition of the surface F
g

We define a pants decomposition of F to be a collection {K I of disjoint
5 i

simple closed curves in F so that each component C of F \U {K } is

topologically a sphere with three disjoint closed discs deleted. Every
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surface F has a pants decomposition-consisting of 3g-3 curves. (In
g

fact, every pants decomposition of F has exactly this many curves.)

Some examples of pants decompositions of the surface F2 are indicated

in Figure 1.3. A pair of pants is a sphere minus the interiors of three

disjoint closed discs; it is a planar surface with boundary having three

boundary components. Note that we do not require the closure of the

set C to be, topologically, a closed pair of pants; see Figures 1.3b

and 1.3c. We only require that C itself be the interior of a pair

of pants.

1.3a

1.3b

1.3c

Figure 1.3

Very roughly speaking, the Dehn-Thurston parametrization for

multiple curves counts how many times the curve crosses each of the

"pants curves" K, and how many times it twists around while going

from one component of F \U{K } to another.

Corresponding to the pants decomposition in Figure 1.3a (plus some

other choices of convention), the Dehn-Thurston theorem gives a
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parametrization of the collection of multiple curves in F2. Comparing

Figures 1.2 and 1.3a, we note that three of the Lickorish generating

curves are curves in the pants decomposition. It turns out that the

actions on the Dehn-Thurston parameter values of Dehn twists along these

curves are simple linear maps and thus trivial to compute. This fact

was noted by Dehn.

However, the action of Dehn twists along the other two curves in

the Lickorish generating set are not nearly so simple. To tackle the

problem of computing them, we note that these curves are curves in the

pants decomposition indicated in Figure 1.3c. If we had a way of computing

the Dehn-Thurston parameter values relative to the pants decompositions

in Figure 1.3c from the parameter values relative to the pants decompo-

sition in Figure 1.3a and vicewversa, then we would be able to compute

the action of each of the Lickorish generators relative to the original

pants decomposition in Figure 1.3a. This is in fact what we do. The

philosophy comes from linear algebra: if a transformation (a Dehn twist)

is hard to compute, change basis (pants decomposition).

We pass from Figure 1.3a to Figure 1.3c by means of two elementary

transformations, which we now describe. The first one takes us from

the pants decomposition in Figure 1.3a to the one in Figure 1.3b. It may

also be described as the transformation pictured in Figure 1.4b; cutting

along the right-most and left-most curves in Figures 1.2a and 1.3b gives us

the surface pictured in Figure 1.4b. The second transformation takes us

from the pants decomposition in Figure 1.3b to the one in Figure 1.3c. It

may also be described by two applications of the transformation pictured

in Figure 1.4a; cutting along the nullhomologous curves in Figures 1.3b

and 1.3c gives us two copies of the surface pictured in Figure 1.4a.
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Figure 1.4

We will call the transformation pictured in Figure 1.4a and 1.4b the

first and second elementary transformations, respectively. Thus, the

computation of the action of MC(F2 ) on the collection of multiple curves

in F2 is reduced to the computation of the two elementary transformations.

In fact the same procedure works for surfaces of arbitrary genus; there

exists a collection of pants decompositions of F , all related by sequences

of elementary transformations, so that each of the Lickorish generating

curves is a pants curve in at least one of the pants decompostions.

Our problem reduces in general to the computation of the two

elementary transformations. I am grateful to D. Gabai [9] for showing

this reduction, which he discovered.

This thesis is concerned with computing the two elementary

1. 4a 1. 4b

NV

) k
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transformations. The first elementary transformation is relatively

easy and can be done by actually isotoping curves and arcs about on

the torus-minus-a-disc. This has been done successfully by Gabai. The

second elementary transformation requires much more work, yet the

techniques we develop to handle the second elementary transformation also

apply to the first elementary transformation.

At this juncture of the exposition, it would be pointless to give

the formulas describing the two elementary transformations. The reader

wishing to see what the formulas involve is encouraged to read Sections

2 and 3 and then skip to Section 8 where these formulas are presented

and some applications discussed. We describe briefly here the nature

of the results we obtain.

6g-6
The subset of - that parametrizes the collection of multiple

curves in F naturally embeds as a subset of 2 in some high-dimensional

n
Euclidean ball Bn To each element p of MC(F ) corresponds a finite

ng
simplicial decomposition K of Bn. acts simplicially as a map of K

to itself, and, what is more, it acts like an integral matrix on each

top-dimensional simplex of K . We call such a transformation a piecewise-

integral transformation. Our main theorem may be stated as follows.

Theorem 1.1: The action of MC(F ) on the collection of multiple curves

in F admits a faithful representation as a group of piecewise-integral

transformations.

We prove the theorem by actually computing the action of MC(F ) on the

parameter values corresponding to multiple curves relative to a fixed

parametrization. We then note that the action is piecewise-integral

and check faithfulness.

We remarked previously that our explicit computations in fact
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describe the action of words in Lickorish's generators on the collection

of multiple curves in F , rather than the action of MC(F ) itself. We

use this fact to our advantage by applying otir theorem to give a prac-

tical algorithm for solving the word problem in Lickorish's generators.

Using the Alexander Lemma, one can easily show (see Proposition 8.1) that a

mapping class on F contains the identity if and only if it fixes the isotopy

classes of a certain collection of 2g+1 simple closed curves. This result

proves the faithfulness of our respresentation. Moreover, one can check

if a word in Lickorish's generators is the identity in MC(F ) simply by
g

computing whether the word fixes 2g+1 particular multiple curves. This

fact immediately gives the following Corollary.

Corollary 1.1: There is a practical algorithm for solvin& the word

problem in Lickorish's generators for MC(F .

An outline of this thesis is as follows: In Section 2, we present

the Dehn-Thurston parametrization of multiple curves and derive a new

parametrization of such curves that is more useful for our purposes, and we

give some basic definitions. In Section 3, we give some additional

basic definitions, and we reduce our main computation to the computation

of the two elementary transformations. These are in turn performed in

Sections 6 and 7. Section 5 develops the main technical tools used

in Sections 6 and 7. Section 4 contains results about one-submanifolds

immersed in surfaces which are used in Section 5; these results have

an independent interest as well. In Section 8, we discuss the

formulas derived and mention several applications.

I should remark that though we have restricted attention to the action

of MC(F ) on multiple curves in F , the computations in this thesis in

fact apply more generally to any surface of negative Euler characteristic.
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I should also remark that there'is a natural generalization of

multiple curves called measured train tracks. Furthermore, the (discrete)

set of multiple curves sits inside the (connected) space of measured

train tracks in a natural way. In fact, our computations can be made

to describe the action of MC(F ) on the space of measured train tracks.

Thus, though we restict our attention in this thesis to the essentially

combinatorial setting of multiple curves, our results apply more generally

to the analytical setting of measured train tracks. This point of

view will be discussed in Section 8.
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SECTION 2

Let F be a compact oriented surface. If i is an embedding of some

one-manifold 0 into F, then we refer to the subset i(O)C F as a one-

submanifold embedded in F. Thus, a one-submanifold embedded in F is

regarded an an unoriented point set. Recall that an embedding i(O) of a

one-manifold 0 in F is proper if i(DO) = 3Ffli(O). Though we are pri-

marily interested in embeddings of closed one-submanifolds in g-holed tori,

the considerations of this section lead to the more general setting of

one-submanifolds properly embedded in a compact oriented surface of negative

Euler characteristic X(F). We thus consider this more general setting

from the outset. Note that the requirement of a negative Euler characteristic

excludes precisely four surfaces: the torus, sphere, disc and cylinder.

Let c be a one-submanifold properly embedded in F. Note that components

of c are either simple closed curves in F, called "closed components",

or arcs properly embedded in F, called "arc components". We will say c

is essential if no arc component of c can be homotoped (through proper

embeddings) into aF; furthermore, no closed component of c can bound a

disc in F. If a component of c can be homotoped into @F, we say that it

is boundary-parallel. We will require a notion of isotopy that is

slightly stronger than proper isotopy and weaker than isotopy rel 3F.

Choose, once and for all, a point x. in each boundary component C of

F. We allow a proper isotopy to move points about in Ci\x, but it must

keep the point x fixed. A multiple arc in F is such a proper isotopy

class of essential one-submanifolds of F. We define a multiple curve

in F to be an isotopy class of essential closed one-submanifolds in F. (Note

that boundary-parallel closed components of multiple arcs and curves are

allowed.) We denote the collection of multiple arcs in F by 9Y (F) and

describe an explicit parametrization for multiple arcs in this section. A

parametrization for multiple arcs is a one-to-one correspondence between
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(F) and some subset of 2n, for some n. We will refer to any subset

of 2n as an integral lattice.

In order to parametrize multiple arcs in F, we must choose a certain

decomposition of the surface F. A pair of pants is a closed disc D

minus the interiors of two disjoint closed discs contained in the

interior of D. A pants decomposition {K.} of F is an embedded closed

one-submanifold in F so that each component C of F \VJ{K } is the

interior of a pair of pants. We do not require the closure of the set

C in F to be an embedded pair of pants. Some examples of pants decompositions

are given in Figure 2.1. Note that the boundary components of F are

necessarily curves in a pants decomposition. One constructs such a

pants decomposition {K } by taking a maximal family of disjointly embedded

simple closed curves in F, no two of which are freely homotopic. Two

unoriented simple closed curves in F are said to be parallel if they are

freely homotopic. One can check that there are M = IX(F)J pairs of

pants in a pants decomposition and that the number of components of

{K } is given by

N = (31X(F)I + (number of boundary components of F)).

Torus with two holes

Torus with one hole

Double torus

Sphere with
Figure 2.1 five holes



We begin with a discussion of the standard pair of pants P, which

is regarded as oriented, with the boundary components 3k numbered as

in Figure 2.2 and with the arcs wk Cak as pictured, k=1,2,3. We refer

to these arcs as windows. Two arcs c and d in P with 3c and ad con-

tianed in windows are said to be parallel if there is a disc D embedded

in P with 3D contained in c 0 d Interior (w1 w 2 w 3).

a'

w

w Figure 2.2 w 3

It is shown in [8, Expose 2 ] that two essential one-submanifolds

in P with no boundary-parallel components, say c and d, satisfy

card(c 1 3k) = card(d An k), k-1,2,3, if and only if there is a homeo-

morphism fixing 3P component-wise and carrying c to d. Moreover, any

such homeomorphism is isotopic rel 3P to a map that is the identity off an

annular neighborhood of 3P. In general, if y and 6 are multiple arcs,

we define the geometrical intersection numbers of y and 6 to be the

minimum of card(cO d), where c and d vary among the essential one-

submanifolds of F representing y and 6. The result from [8] just
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mentioned suggests that the geometrical intersection numbers of a

multiple arc with the (isotopy class of) each of the boundary components

3k of P are useful in parametrizing multiple arcs in P. Note that if

c is a properly embedded one-submanifold in P, and mk = card(c(a 3k)

k=1,2,3, then m1 m2 4M3 is even.

Given any triple m1 ,m2,m3 of non-negative integers with mI+2 3

even, we now construct a multiple arc attaining the intersection numbers

mim 2 and m3 and meeting 
3k in wk (if at all).

Construction 2.1: Let 1 denote the arc in the standard pair of

pants indicated in Figure 2.3, for i < j = 1,2,3. Note that 1.. connects

boundary components 3 and 3. of P. We call an arc parallel to some

1 a canonical piece. Note that by definition of parallelism for arcs

in the standard pair of pants, the endpoints of an arc parallel to some

1 i always lie in the windows wk'

For each triple m1 ,m2 ,m3 with m1+M2 +M3 even, we construct a one-

submanifold of P with no boundary-parallel components, called a

canonical model. We construct these canonical models by taking various

disjointly embedded collections of the canonical pieces. There are four

cases, as follows:

a) The m satisfy all possible triangle inequalities (that is, m 1 gm2 3

m2  ml+M 3 and m3L m 1)M In this case, we take a disjointly embedded

collection consisting of:

(m1+M2-m3)/2 mutually disjoint parallel copies of arc 112.

(m1 +M3-m2)/2 mutually disjoint parallel copies of arc 113*

(m2+ 3-m1 )/2 mutually disjoint parallel copies of arc 123'

An example when m 1=3, m2 =1 and m3 = 2 is given in Figure 2.Aa.
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m > M 3. In this case we take a disjointly embedded collection

consisting of:

m2 mutually disjoint parallel copies of arc 112'

m3 mutually disjoint parallel copies of arc 1130

(mI-m2-m3)/2 mutually disjoint parallel copies of arc 1

An example when m1 4, m2=1 and m3 =1 is pictured in Figure 2.4b. The

next two cases are similar to case b).

c) m2 > m 1+M3. In this case we take a disjointly embedded collection

consisting of:

m 1 mutually disjoint parallel copies of arc 112.

m 3 mutually disjoint parallel copies of arc 123.

(m2 -mi1-m3 )/2 mutually disjoint parallel copies of arc 122.

d) m3 > mI+M2. In this case we take a disjointly embedded collection

consisting of:

m2 mutually disjoint parallel copies of arc 1 23

Mi1 mutually disjoint parallel copies of arc 113'

(m3 -mI-m 2)/2 mutually disjoint parallel copies of arc 133.

Remark 2.1: Let Z..(m 3i 2 ,i3) be the number of canonical pieces

of type 1 in the canonical model described in Construction 2.1. By

counting the number of times each canonical piece intersects the boundary

curves 3k, one easily verifies that the following identities are valid

in all cases of Construction 2.1.

m1 11 12 13

m2 = 2t.22 12 13

M3 = 33 13 23

Remark 2.2: It is easy to check that it is possible to choose such

--



disjointly embedded collections for each case, and moreover that all

possible combinations of disjointly embedded canonical pieces are described

by these four cases. For instance, 1 1 and 133 cannot be embedded

disjointly, as is obvious geometrically. (It also follows immediately

from the main theorem of Section 4.)

wy

a 2 33
W2  112 3

123

122

19

113

33

Figure 2.3
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m =3 m2=1 m3=2. m =4 m21, m3= 1

2.4a 2.4b

Figure 2.4

We next state and prove the main parametrization theorem; it is

due to Dehn [5] and Thurston [17] independently. Subsequently, we define

a different parametrization, which is the one we will use. The proof

that our description does give a parametrization will follow as a

corollary to the proof of the Dehn-Thurston theorem.

Theorem 2.1 (Dehn-Thurston): If F is a compact oriented surface with

pants decomposition {K N, then there is a.parametrization of 7 (F)

by a subset of (T+ N X2 , where 2+ denotes the non-negative integers. The

point (m1,...,mN)x(tl,...,tN) E (+1N x2N corresponds to a multiple arc

if and only if the following conditions are satisfied:

a) Ifm 0, then t 0.

b) If K, K and bound an embedded pair of pants, then

m +m is even.

c) If K. bounds an embedded torus-minus-a-disc, then m is even.

We call this parametrization the Dehn-Thurston parametrization; it

depends on certain choices which we now describe.
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Let A be a regular neighborhood of K in the surface F. Choose

a trivialization u of A as follows: it is an orientation-preserving

homeomorphism which carries A to the standard oriented annulus

A S 1 x [-1,1] if Ki is in the interior of F, and carries A to

S x [0,1] C S1 x [-1,1] if K is a boundary component of F. Let G

be a projection of A onto the core SI x 0 CA. Note that Si x 0= ui(K )

by definition of a trivialization. Choose an embedded arc u K i, called

a window, let D be the closure of a component of F\Q{Ai} , and choose

an .orientation-preserving homeomorphism f of D to P carrying

(V 11oG 1ou i(u ))fl D to a window w1 , w2 or w 3 in the standard pair

of pants P.

In practice, we regard F as embedded in S3 and draw pictures. 0

is chosen as the trivialization that extends across a disc in S3 with

boundary Ki, and G is taken to be the projection along the fibers in

-1
the standard annulus A. We then draw and label {Ki}, {u }, f (112

and f (113) as in Figures 2.5 and 2.6. Since P\{112'113} is contractible,

some straightening and the Alexander Lemma show that f (11 2 ) and f (113)

determine f up to isotopy. For example, we let f and V be the

homeomorphism to the standard pants P corresponding to the choices

in Figures 2.6a and 2.6b, respectively. The map f'of~1 from P to itself

is isotopic to a right Dehn twist along the boundary component ;3 of P.

Proof of Theorem 2.1: We first describe how one computes the Dehn-Thurston

parameter values for some y e M' (F). Define the intersection numbers

m to be the geometrical intersection numbers of y with (the isotopy

class of) K. Choosing a representative c for y, we may isotope c to

attain these intersection numbers with each component of 3A by [8, Proposition

3 . 12]. Thus, for any i, a component of c(3 A intersects each component of A .
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K
3

K1

K
2

Figure 2.5

' - K3

1 13 1 12

simply

2 12 2 13

K
u3 u 4 5

K

2.6a,

K 2

KF

Figure 2.6 2.6b

Isotope c so that it intersects each component of A in u 1oG 1ou.(u.)

and so that f .(crCD ) is one of the canonical models in Construction

2.1. (This is possible by the result from [8] mentioned before

Construction 2.1.) We then define the twisting numbers t as follows:

-If m. = 0, take t. to be the number of components of u (cflA ).
1 , t n i

-If m.i > 0, then jtJ is defined to be the geometrical intersection

K4  K.14 5

K

K

3 2
D 1
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number of the isotopy class rel 3A of u (c A A ) and G (x), where x

is one of the boundary points of the window u.. The sign of t. is
3.21

positive if some component of ui (cO A ) twists to the right in the

oriented annulus A, and the sign of t is negative if some component .

of u (cO A ( ) twists to the left in the oriented annulus A. (Note that

if one component of i(c1 A ) twists to the right, no component can twist

to the left.)

It follows immediately from [8, Lemma 4.5] that at most one

y q (F) may achieve a particular tuple of intersection numbers and

twisting numbers. One shows easily that every parameter value is

achieved, using Construction 2.1. The theorem follows.0

Example 2.1: Consider the pants decomposition on the surface F2

indicated in Figure 2.7. We will draw a representative c of the multiple

arc y with Dehn-Thurston parameter values (3,1,2)x(2,-1,0) = (m1 ,m2 ,m3)

x(t1 ,t2 t 3). There are three components of ct AI since m1=3, and two of

these twist to the right since t =+2. (It is geometrically impossible

to have one component twist around 2 times and the other not at all.)

Similarly, there is one component of ct A 2 since m 2=+1, and it twists

once to the left since t2=-1; there are two components of ctlA 3 since

m3=2 and no twisting since t =0. Thus, we draw our representative c of

y in each of the annuli Ai, i=1,2,3, as in Figure 2.8a. We then connect

up these arcs uniquely using the pre-images (under f, and f2 ) of canonical

pieces parallel to 112'123 113 as shown in Figure 2.8b.

Example 2.2: Continuing to use the choice of conventions indicated

in Figure 2.7, we will draw a representative c of the multiple arc y

with Dehn-Thurston parameter values (0,1,1)x(2,-2,1) = (m1 ,m2,m3)

x(ti,t 2 ,t3 ). There is one component of each of c)A 2 and c)A 3 since
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m= m3 = 1. There are two twists to the left in A2 and one to the right

in A3 since t2 = -2 and t3 = 1. Since m1 = 0, c does not intersect Al,

and since t1 = 2, there are two components in A1 parallel to K1 . Again

we draw our representative c of y in each of the annuli Ai, i = 1,2,3,

as in Figure 2.9a, and we connect up the arcs uniquely as in Figure 2.9b.

Figure 2.9

2 K3

Figure 2. 7

2.8b2.8a

Figure 2.8

2. 9b2. 9a
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Remark 2.3: As indicated in the examples, sometimes a multiple arc has

a connected representative and sometimes not. It is a hard combinatorial

problem to compute the number of components of a multiple arc given

only its Dehn-Thurston parameter values. Except for a few special cases,

this remains an open problem.

We define a basis A for multiple arcs to be a choice of pants

decomposition together with a choice of conventions as in the proof

of the Dehn-Thurston theorem, including a choice of (parallelism class

of) canonical pieces for each embedded pair of pants D.. Note that

the Dehn-Thurston parametrization depends on a choice of basis, and

that once a basis is chosen, there is a one-to-one correspondence

between 2 (F) and the integral lattice described in Theorem 2.1.

The choice of parallelism class of -canonical pieces of type 112,

113 or 123 is determined by the choices in Construction 2.1. Consider

our choice of canonical piece 11 drawn in Figure 2.10a. The isotopy

indicated in Figure 2.10 shows that the arc in Figure 2.11, denoted 111,

corresponds to a different choice of parallelism class for the

canonical piece 1 Similar remarks apply to the canonical pieces 122

and 133, and we indicate some alternative choices, denoted 122 and 1331

in Figure 2.11.

We will say that an essential one-submanifold c is in good position

with respect to a basis A if f (cn D ) is a canonical model for each j;

furthermore, for each i, we require that c intersect a component of 3Ai

exactly m times, where m is an intersection number of the Dehn-Thurston

parametrization.

Instead of keeping track of the intersection number m,, one might

keep track of the numbers t.( of canonical pieces of a good representative
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2. 10a 2.10b 2. 10c

Figure 2.10 1

22 33
2.llb 2.llc2.F la

Figure 2. 11
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parallel to each l* in each embedded pair of pants D . This is the

idea behind our parametrization of multiple arcs. The corresponding

integral lattice with respect to the basis A will be denoted Y (F).

Corollary 2.1: If F is a compact oriented surface with pants decomposition

{K } into M embedded pairs of pants {D then there is a para-

metrization of '(F) by a subset of ((+) 6 )M x 7. The subset is denoted

(F). To the multiple arc y, we associate the tuple

N 6

J=I 11 12' 13' 22' 2 3  3 ) x (t1,...,tJ + 6 ) N

The t are the twisting numbers in the Dehn-Thurston parametrization,

and the number t denotes the number of components of f c parallel

to the canonical piece 1 , where c is a good representative of y with

respect to the basis A. The corresponding subset 02X(F) satisfies the

following conditions:

a) Z3  40 implies = 0, for all j.
)12 33

b) t'3 4 0 implies 22=0, for all j.

C) 4 0 implies 3 2 = 0, for all j.
L23 11

d) .j4 0 implies 3  2 33 0 for all j.

e) t 4 0 implies for 22 -- .
224t13 =t11 = 343 fo al j

f) t! 0 imlies~j t! =2~ t4=t for all j.

g) if K is isotopic to both f 3 and f. D . then 11 Z22 =0.

h) If K Is isotopic to both ff -1 a then_ =Z = 0.-- j2 - V3 22 33

i) if Ki is isotopic to both f. 1 a and f 3 then = = 0
__- 1-____ - 3'- 11 33

If K i is otopic 1to f. 3 we define

2t +9 +C , k=1.
11 12 13

m(K.,j) = 2t + 1 +23, k=2.
3-22 12 23'

2t +e. +t k=3.
33 13 23'
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We further require that

j) m(K ,j) = 0 implies that t > 0.

-11
k) If K is isotopic to both f. jk and f, k,, then m(K.,j) =m(K,j'),

j - j'.

Proof: Restriction a)-f) follow from Remark 2.2. Restriction j) is

convention a) of Theorem 2.1, and restriction k) guarantees that the

pants glue together properly. Restrictions g)-i) require further

comment. Suppose that Ki is isotopic to both f D1 and f a 2 ; suppose,

moreover, fa 33 is isotopic to Kt. Since f a1 and f 1 3 2 are isotopic,

geometric intersection numbers with these curves are the same for all

multiple arcs in F. Thus, either mi, < 2m, or m,, > 2m,, and we are in

case a) or d) of Construction 2.1, in which case = 0 and t22 0

An example where mi, = 4 and m. - 1 is indicated in Figure 2.12a, and
3.

an example when mit , 2 and m, = 1 is indicated in Figure 2.12b. Restrictions

h) and i) are analogous.

Figure 2.12

2.12a

K it

K

2.12b
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Thus, these restrictions are all necessary. Sufficiency follows

by applying Construction 2.1 to give examples for each parameter value

satisfying a)-k). The corollary follows.(

To be sure, this parametrization is less algebraically clean than

the Dehn-Thurston parametrization, but it is geometrically natural and

is what we need. In fact, we have embedded the integral lattice of

the Dehn-Thurston parametrization in a large-dimensional integral lattice.

Note moreover that by the formulas of Remark 2.1 and Construction 2.1,

one can pass back and forth between the Dehn-Thurston parametrization

and our own parametrization, provided that both are computed relative

to the same basis A. We introduce the second parametrization because

the action of MC(F ) on (F ) is simpler than its action on the Dehn-

Thurston integral lattice, as we shall see.

In subsequent sections, we will compute the action of MC(F ) on

the collection of multiple arcs in F . Corollary 2.1 tells us that

given a choice of basis A, there is a one-to-one correspondence between

the set Y' (F ) and the subset )(F of 71 . Thus, af ter a choice

of basis A, we may describe the action of MC(F ) on 9'(F ) in coordinates:

we compute the corresponding action on the particular integral lattice

Y(F )

Remark 2.4: In the sequel, we will regard C'A (F) C (7+) 6 M X ., and we

will regard { t } as a collection of generators for Y' (F) satisfying*9i

certain relations. Thus, if y and 6 are multiple arcs, we may speak of

the sum of their corresponding parameter values. If y and 6 have

disjointly embedded representatives, then the sum of their parameter

values corresponds to the isotopy class of the union of these representatives.
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If y and 6 do not have disjointly embedded representatives, then the

sum of their parameter values may or may not correspond to some multiple

arc, depending on whether restrictions a)-f) of Corollary 2.1 are

satisfied for this sum.

The reader wishing to familiarize him or herself with the

parametrizations is urged to consult Figures 3.8 and 7.4 for

definitions of bases and then verify the computations in Appendix B.

Without too much trouble, one can extend the results of this

section to a non-compact and/or non-orientable surface F with negative

Euler characteristic and two-sided essential one-submanifolds embedded

in F. For our present purposes, it is not worth the effort.
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SECTION 3

In the previous. section, we gave an explicit parametrization

relative to a basis A for the collection of multiple arcs in the g-holed

torus.by an integral lattice ,99(F )C 5 - 5 . Our main goal is to

compute the action of MC(F ) on 9' (F ) by computing its action in
coordinates on the particular integral lattice (Fg). The specification

of an element of MC(F ) depends on a result of Lickorish t11] which

gives a collection of generators for MC(F ) provided g > 2.

Just as Dehn knew of a parametrization for multiple arcs, he also

constructed a finite set of generators for MC(F ) [6] called Dehn twists,

whose definition we will recall presently. Lickorish independently

refined this result by exhibiting a more useful collection of 3g-1 Dehn

twist generators for MC(F ). More recently, S. Humphries [10] has

sharpened this result. In his thesis, Humphries gives a collection

of 2g+1 Dehn twist generators for MC(F ) and shows that 2g+1 is the

least possible number of such. (Humphries' generators are contained

in Lickoxish's set.)

A Dehn twist along a curve c in an oriented surface F is defined

as follows. We identify a closed regular neighborhood N of c with the

standard oriented annulus A = S1 x [-1,1] via an orientation-preserving

homeomorphism f . On the neighborhood N of c, define the right andc
+1

left Dehn twists on c, denoted Tc~ , to be the conjugate by f of the
c c

+1
map (G,t) + (G (t+1),t) on the standard annulus A; define T ~ to be

c

the identity on F\N. This construction is independent of the orientation

of c, and the mapping class of T 1 depends only on the isotopy class
c

of the unoriented curve c and the orientation of F.
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Figure 3.1 illustrates the curves T d, where c and d are as

pictured. The action of a single Dehn twist on a connected element

of (F ) can be quite complicated. A reasonably complicated example

of such an action is indicated in Figure 3.2.

d

I I

c +1 -I
c c

3.Fa 3.b 3.c

Figure 3.1

.c

+1
c

Figure 3.2
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A fundamental theorem in the study of surfaces is the theorem

of Lickorish mentioned previously.

Theorem 3.1 (Lickorish): If Y is the collection of 3&-1 curves on

the g-holed torus pictured in Figure 3.3, then MC(F ) is generated by

the Dehn twists along the elements of

Figure 3.3

It follows that MC(F ) is a quotient of the free group on Lickorish's

generators, and a precise statement of our main problem is:

Problem: For some choice of basis A for 92' (F ), compute the action

on rZ(F ) of Dehn twists along the curves in

3Provided that F is oriented and regarded as embedded in S , a
g

basis A for the collection of multiple arcs is:

a) A pants decomposition {K N3g3 of F , and a window u C K for

each curve K..
1

b) A homeomorphism f .:D. + P from each embedded pair of pants D.
21 Jj

(which is a component of F \LU{A }, where Ai is a regular neighborhood

of K i) to the standard pants P.
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c) A choice of canonical pieces (as in Construction 2.1) for each

embedded pair of pants D..

Fix some basis A for now, and suppose that we want to compute the

action on the Dehn-Thurston parametrization for multiple arcs of T ,Kk'

the Dehn twists on the pants curve Kk of the basis A. If y is a multiple

arc with Dehn-Thurston parameters ((mi,t )} , then T c has Dehn-Thurston

parameter values {(m1,t),..., (mk-ltk-1),(mktk mk),(mk+ltk+ ...

(mN'tN)}. Note that this result is independent of choices b) and c)

above.

Example 3.1: Adopting the basis A on F2 indicated in Figure 2.7,
2

we compute the action of the word T tK2KT on the multiple curve with

corresponding Dehn-Thurston parameter values (3,1,2)x(2,-1,0). (We will

read words in Lickorish's generators from right to left. Note, however,

that TK t K and T commute with one another since the curves K are
1 2 3i

all disjoint.) Let c be the good representative of y shown in Figure

2.8b. By isotopy, one can arrange that T is the identity off the

annular neighborhood Ai of K used in the basis A. Thus, the image

of c under T K T K agrees with c outside of {A }, and T K K CK1 Y-21(3 1 2 3
is a good representative of its isotopy class with respect to the

basis A. This curve is pictured in Figure 3.4 and has Dehn-Thurston

parameter values (3,1,2)x(5,1,2) relative to the basis A.

Similarly simple (but more awkward to state) is the action of T

on the integral lattice 9?.(F ), where Kk is a pants curve in the basis

A . It would thus serve us well to choose a pants decomposition for F
g

that overlaps as much as possible with the Lickorish curves.
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3For F C S , we choose the standard pants decomposition and the
g

standard homeomorphisms f. :D. -* P indicated in Figure 3.5. For the
J .J

time being, we make choice c) above as in Construction 2.1. As one

might expect, these choices give the standard basis A on F .
-- -g g

Figure 3.4

G 3

Genus 2. Genus 3.

232

Genus g > 3

Figure 3.5
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Let W be the collection of 2g-1 curves in F indicated in
g g

Figure 3.2. The Lickorish curves are contained in U{K }

Thus, to solve the main problem, it remains to analyze the twists

Tc 1, for c e Note that in fact the containment C'gU{K }3-

is proper.

Genus 2. Genus 3.

Genus g > 3.

Figure 3.6

Consider the various changes of basis indicated in Figure 3.7

(preserving the choice c) of canonical pieces). This picture shows

that for each curve c e g , there is a change of basis A + B so that

c is a pants curve in the basis B. Conjugating by this change of

basis, we could thus compute as above the action of T on 66(F ) for

c E ge The philosophy comes from linear algebra: if a transformation

+1
(T~ for c ES ) is hard to compute, change basis.

Note that in fact computing these changes of basis will allow

us to compute the action on X (F ) of Dehn twists not only along
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2 3

3 22

22

3

Figure 3.7 (genus=2)
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the 3g-1 curves in , but along all 5g-4 curves in U{K 3g-3

Though the action of the Humphries Dehn twist generators alone would

suffice to describe the action of MC(F ) on multiple arcs, we use this

much larger set for two reasons: we get the extra information for free,

and the greater number of generators allows a greater flexibility in

specifying mapping classes. Moreover, I do not know of a way to take

advantage of considering only the Humphries generators.

Each change of basis in Figure 3.7 can be written as a composition

of the elementary transformations pictured in Figure 3.8. We have thus

reduced the main problem to the computation of the two elementary

transformations. This reduction of the problem was shown to me by

Gabai (9].

K

e

D 2 3 f

K

basis A

K2

1 -

3.8a

K2

second

ementary
trans-
ormation

5

f irst

elementary
trans-

formation

Figure 3.8

K 3

2 3 K

D D2

KO 3 2 K

basis A'

22

3

3.8b

The first elementary transformation is comparatively simple, and

the computations can be done by hand (by actually isotoping curves

K2

K1

K
4

3
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and arcs about on the torus-minus-a-disc), but the second elementary

transformation requires some work. However, the machinery we develop

to handle the second elementary transformation also applies to the

first elementary transformation. We next describe some of this

machinery and outline the actual computations.

Let S1 be the torus-minus-a-disc, and let S2 be the sphere-minus-

four-discs. Let A be the basis on S indicated in Figure 3.8a, and

let A' be the basis on S indicated in Figure 3.8b, i=1,2. Given a

multiple arc y, we choose a good representative c of y with respect

to the basis A, and we orient the components of c arbitrarily. We will

choose a lift - of c to a certain regular planar cover H i:Si + Si. We

isotope - about in S. to some c- so that each component of f .(T c D )
j i j

is a canonical piece in the standard pants P, where the f. are the

homeomorphisms of the basis A. Define c = l ic. The reason for passing

to a covering space is that we gain a facility in picturing the

homotopy from c to c as an isotopy from d to c. However, we cannot

guarantee that the isotopy from d to c is H -equivariant, so c is not

in general embedded. However, c is at least homotopic to the embedding

c.

We will introduce a combinatorial object, called a symbol, in

Section 5. The collection of symbols relative to a basis A forms a

semi-group, and we associate to each tuple in 91(S ) some symbol. More

generally, we will associate a symbol to an immersed one-submanifold-

such as c.

It turns out that the symbol of c is the symbol of an embedding c'

homotopic to c. c and c' are thus homotopic, and, in fact, c' will

be in good position with respect to the basis A'. It is well known [7]
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that two homotopic embedded one-submanifolds are in fact isotopic.

(This also follows from the results of the next section.) c' is thus

a good representative of y with respect to the basis A', and we can

compute the parameter value of y in ,(S.) from the symbol of c'

(which is the same as the symbol for c ). Thus, the elementary

transformations are given by maps between semi-groups of symbols, which

we will call combinatorial homotopies.

The difficult part of this process is showing that the symbol of

c is in fact the symbol of an embedding c' homotopic to c. We prove

some results about one-submanifolds immersed in surfaces in the next

section that are of independent interest. These are applied in Section

5 to show that if the symbol of c satisfies a few technical properties,

then such a c' exists. Much of the hard combinatorial work of Sections

6 and 7, where we compute the two elementary transformations in turn,

is devoted to showing that the particular symbol for c satisfies these

technical properties.

The planar covers H :S + S,, i=1,2, are defined in Sections 6 and

7. They are particularly pleasant to work with. The two groups of

covering translations are groups of isometries of R2 with its usual

2
metric. Thus, the push-forward under Hi. of the usual metric on S1 CR

gives a Euclidean structure on S . For the special case of multiple

curves with no boundary-parallel components, the combinatorial

homotopies that describe the elementary transformations are closely

related to straightening to geodesics in this Euclidean structure.

The reader wishing to skip the explicit computations can proceed

directly to Section 8, where we give the formulae for the elementary

transformations and discuss some applications.
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As usual, though we restrict attention to the case of g-holed tori,

the techniques described in this section work for an arbitrary non-compact

and/or non-orientable surface F of negative Euler characteristic. In

case F is non-orientable, we interpret MC(F) as the group generated by

isotopy classes of Dehn twists. (It is not true that the Dehn twists

generate the group of homeomorphisms of F modulo isotopy. See

[1] and [12].) If F is non-orientable, we interpret 9 9' (F) as the

collection of isotopy classes of two-sided essential one-submanifolds

embedded in F. With these more general definitions, the action of MC(F)

on 9' (F) can always be computed from the two elementary transformations,

as in this section.

A final observation: Thurston and Hatcher [19] have shown

that one can pass between any two pants decompositions on F by
g

sequences of our two elementary transformations.
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SECTION 4

In this section, we prove some results about one-manifolds

properly immersed in surfaces. For convenience, we will assume that

the surfaces we consider have a fixed smooth structure. As usual, we

will also assume that our surfaces have a negative Euler characteristic.

Let j be a proper immersion of a (smooth) one-manifold in the surface

F. We will consider the image of j as an immersed manifold a, yet

we will refer to the the image under j of components of 0 as the

"components" of a. We will also refer to a component of a as a

"closed component" or "arc component", according to whether the corres-

ponding component of 0 is a circle or an arc. A specific choice of

map j will be called a "parametrization" of the immersion a.

By an n-gon in F we mean a (smoothly) embedded open disc (whose

closure lies in the interior of F) with embedded piecewise-smooth

boundary and n discontinuities in the tangent of the bounding curve.

Some examples of n-gons are pictured in Figure 4.1. If there is an

n-gon in F with its frontier in an immersion a, then we say that a has

a complementary n-gon.

bi-gon tri-gon

mono-gon

Figure 4.1
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If a has a complementary mono-gon or bi-gon, then the homotopies

indicated in Figure 4.2 show that a cannot have minimal self-intersection

number in its homotopy class rel 3F. The main result of this section

is a converse: if a does not have minimal self-intersection number in

its homotopy class rel aF, then the application of a finite sequence

of the homotopies indicated in Figure 4.2 gives I representative of

the homotopY class of a that does.

I.' I'

mono-
gon

bi-gon

Figure 4.2

A special case (Corollary 4.1) of this result is applied in a

rather technical setting in the next section. More generally, this

result is useful for determining whether the homotopy class of a

given immersion has an embedded representative: remove complementary

mono-gons and bi-gons using the homotopies in Figure 4.2. This process

terminates and either yields the desired embedding or an immersion

with no complementary mono-gons or bi-gons, in which case there can

be no embedded representative of the given homotopy class.
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If F is a surface of negative Euler characteristic, then it is

well known [13] that F supports a Riemannian metric of finite area and

'of constant -1 curvature so that ;F is geodesic. The total space

of a universal cover f:F + F is isometric to a contractible subset of

the Poincare disc D with geodesic boundary. There is a natural

compactification of the (open) Poincare disc by a circle, and the

points in this circle, which is denoted S I, are called the points at

infinity. We regard )cG US, which is homeomorphic to a closed disc,

and regard the points at infinity as being infinitely far from any

point in D. The closure of F in 0 US is topologically a closed disc,

which we will denote by K, and KAS is called the limit set. The limit

set is either all of S or a Cantor set in S , depending on whether
CO 00

the surface F is closed or has boundary. We denote by DK the

frontier of K in 0 plus the limit set, so that DK is homeomorphic

to a circle.

In the 1920's through 1940's, J. Nielsen developed a very beautiful

theory of surface automorphisms (13] by studying the natural action of

homeomorphisms of the surface on the points of K at infinity. (In fact,

Nielsen's work anticipates some of the recent developments in the theory

of surface automorphisms. Nielsen had a pretty complete picture of current

work in surface automorphisms, but he did not use the machinery of

foliations, which had not yet been invented.) We will require in the

sequel only a handful of elementary results from the Nielsen theory.

We presently recall these facts. We may identify the group

r 1(F) of covering transformations with a discrete subgroup of the

group of isometries of 0, so that the subgroup consists entirely of

hyperbolic Mobius transformations of D. A hyperbolic transformation
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of D has a simple geometrical picture: geodesics in D are circles

orthogonal to SI, and a hyperbolic transfo.rmation t is translation

along such a geodesic. The fundamental points of p are the endpoints

at infinity of this geodesic, called the axis of p. The action of

$ on F extends continuously to an action on K, and the fundamental

points of * are the only fixed points of t on 3K. Finally, if two

axes of elements of r (F) intersect at infinity, then they coincide,

since otherwise their commutator would be a parabolic transformation [14].

(Recall that 1 (F) consists entirely of hyperbolic transformations.)

Given a component c of the immersion a, we define a complete lift

of c to K, denoted c, as follows. If c is a properly immersed arc

or inessentially immersed closed curve, we define c to be simply a lift

of c to F CK. If c is an essentially immersed closed curve, we define

c to be the closure in K of a bi-infinite sequence { } of lifts of

c to FC K, where the final point of c- is the initial point of E

Thus, a complete lift of an essential curve component or proper arc

component of a is an arc properly immersed in the ball K. A complete

lift of an inessential closed curve component of a is an immersed

closed curve in FrcK.

We will consider only properly immersed one-submanifolds a in

general position in F. We assume that a /1 3F is already in general

position in F. Thus, a has at most double points, and a is embedded

near 3F. Let A(a) denote the set of double points of a.

Lemma 4.1: Suppose that a is a (smooth) one-submanifold properly

immersed in a surface F in general position. a has minimal self-

intersection number in its homotopy class rel 3F if and only if for

every pair c and d of components of a (with perhaps c=d), complete lifts
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c and d are embedded and satisfy one of

a) cAd =

b) c and d intersect transversely in a point.

c) c A d = (C.,3K)n(dnaK). (This implies that c and d are closed curve

components of a with homotopic powers, provided cAd + .)

d) ~ = J. (This implies that c and d have homotopic powers.)

Proof: (<-) We begin by counting the double point set of a in case

every complete lift of a component of a is embedded. Choose, once and

for all, lifts c C FCK of the components of a. Since a is in

general position in F, we may choose our lift c starting at a point

in c\ A(a).

Since Tr(F) act transitively on the fibers of TI, if p e ctVA(a),

there is some p e ctA H (p) and some complete lift d of some component

d of a with p in d, and so that c is not contained in J (since a is

in general position). There is thus a one-to-one correspondence

between c /A(a) and the complete lifts of components of a that

intersect c. Let N-(a) denote the cardinality of c(1A(a), so thatc

card A(a) = 11 N-(a). It is easy to show that any homotopy in F of
Cc

a rel 3F lifts to F and extends continuously to a homotopy in K that

is constant on 3K. Thus, if complete lifts are embedded and satisfy

one of a)-d), then a homotopy in F of a rel 3F cannot decrease Na(a)

for any component c of a, and the implication follows.

(:>) We first show that complete lifts are embedded. To derive a

contradiction, suppose that c is not embedded, where c is an arc or

curve component of a. Parametrizing E (by the circle or interval),

this means that there are parameter values t1 < t2 with c(t1 ) = c(t2)'

Since c is either an arc or a closed curve properly immersed in the
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disc K, c[t1 ,t2 ] is null homotopic in K. Let p = c(tE) = c(t2), so that

Hp is a double point p of c. If c is an arc component of a, then p

is in the interior of K by general position. If c is an inessential

curve component of a, then p is in the interior of K since c is. If

c is an essential curve component of a, then since c has distinct

endpoints at infinity, p is in the interior of K. Thus, p has a

neighborhood in the interior of F as in Figure 4.3a, which we mdoify

as in Figure 4.3b. The dotted lines in Figure 4.3 denote arcs immersed

in F, and the mono-gon in Figure 4.3a denotes a disc immersed in F.

This move decreases card A(a) by exacly one, and it is the projection

by H of a homotopy in K. This contradicts the minimality of a and

proves that complete lifts are embedded.

p

4 .3a 4 .3b

Figure 4 .3

Suppose that c is an inessential curve component of a, where a is

in minimal position. Any complete lift c must satisfy either a) or

d) for any complete lift d of any component d of a. This is because
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one can easily homotope these inessential components to embedded

circles out of the way. Thus, we may assume that a has no inessential

closed curve components.

Now, if c and d are components of a, and E and d have distinct

endpoints Yet fail to satisfy a), b) or d), then there are para-

metrizations of c and d (by the unit interval), and there are parameter

values s < S 2 and t1 < t2 with c(s )= (t ), i=1,2. Moreover,

c[s,s2 ]*d~ [tl~t2] must bound a disc in F, where * denotes concatenation

of arcs. Let p = c(s) = d(t1 ) and q c c(s2) = d(t2 ), and let

p = f~p and q = lHq. If p and q are distinct double points of a, then

there are neighborhoods of p and q in F as in Figure 4.4a, which we

can modify as in Figure 4.4b, contradicting the minimality of a.

/ N Nz

p q

4 .4a

/
I

I I
I I

I I
I I

4 .4b

Figure 4 .4

If p = q, then by general position, either c = d is an arc

component of a, or c[s ,s2] multiply covers the closed curve component
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c and d[t1 ,t2] multiply covers the closed curve component d.

In case c = d is an arc component, general position implies that

there is a covering translation P EiT 1(F) carrying C[ sis'2] to jt Pt2 1

and $ must interchange p and q since it acts without fixed points on

-Z 2
F. Thus, 1 = ](c[s 1,s2 ]*d[t 1,t2) = (fc[s1 , s2  1 rr(F,p). Since

T 1 (F,p) is without torsion, the loop Tcz[s 1,s2 ] must be inessential,

which is absurd because c[s ,s2 ] is not a closed loop.

Suppose that c[s1 ,s2] multiply covers the closed curve component

c and d[t1 ,t2] multiply covers the closed curve component d. Since

p, q, there is a covering transformation p so that (p) = q. Both

1(d) and d intersect c at q; this violates the uniqueness of lifting

unless *(d) = d. Thus, the fundamental points of $ coincide with the

endpoints of d, and symetrically for c. This contradicts the assumption

that c and d have distinct endpoints at infinity.

Complete lifts of essential curve components have one endpoint

in common if and only if both of their endpoints coincide. Thus, it

remains to consider only the case of two essential closed curve components

c and d so that c and d have the same endpoints at infinity. In this

case, powers of c and d are easily shown to be homotopic, say cm = d n

where jmj < mni. Consider the irregular cover of F by an annulus

m
A corresponding to <c >=2C ir(F,p), where p is a point in cA d. (See

[7].) c and d each lift to closed curves in this cover that intersect.

We may apply the move indicated in Figure 4.4 in the cover A to reduce

card A(c). This contradiction proves the lemma.'

If c is connected and has a double point set A(c), we call p E A(c)

inessential if c may be parametrized so that c(s 1 ) = c(s2 ) = p, si < S29
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where c[s ,s2] is null homotopic. Wie say p 4 q E A(c) are companions

if either of conditions a) or b) below are satisfied.

a) There is a parametrization of c with p = c(s1 ) = c(s3 ) and

q = c(s2) = c(s4 ), s1 < s2 < s3 < S 4 where c[s ,s2 ]*cI [s3,s4 ]

is null homotopic.

b) There is a parametrization of c with p = c(s1 ) = c(s4 ) and

q = c(s2 ) = c(s3 ), si < S2 < s3 < s 4 where c(s1 ,s 2 ]*c[.s 3 ,s 4 ]

is null homotopic.

Figures 4.5a and 4.5b illustrate cases a) and b) of companion double

points. If c and d are distinct and connected, we say p + q e A(cC d)

are companions if there are parametrizations of c and d with p=c(s1 )=d(t)

and q=c(s2)=d(t2 ), sl < sand t < t2, where c[s1 ,s2]*d 1[t t2] is

null homotopic.

c(s I)=c(s3) c (s4)=c (s2

4.5a

C (s I )=c(s 4) c(s2) c (s3)

4.5b

Figure 4.5

An immediate corollary of Lemma 4.1 is the following proposition.

Proposition 4.1: Suppose a is a properly immersed (smooth) one-submanifold

in general position in a surface F with negative Euler characteristic.
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Under these conditions, a has non-minimal self-intersection number

in its homotopy class rel RF if and only if there is an inessential

double point or there are a pair of companion double points in a.

The main result of this section is the following theorem.

Theorem 4.1: a as above has non-minimal self-intersection number in

its homotopy class rel 9F if and only if there is a mon-gon or a bi-gon

with its boundary in a.

Proof: The implication ( 4= ) is trivial as in Figure 4.2, and the

implication ( => ) takes some work to prove. To start off, suppose

that a is connected, and parametrize a once and for all. Let 9 be

the collection of sub-intervals [a,b] of the arc or curve which para-

metrizes a so that one of the following three conditions is

satisfied.

a) a(a) = a(b) is an inessential double point of a.

b) a(a) = a(b), and there is a companion q to a(a) so that

a- (q) C [a, b].

c) a(a) and a(b) are companion double points and aI (a(a))

a 1(a(b)) are contained in [a,b].

By Proposition 4.1, f *. Let (a0 ,b0 ] be an innermost interval

in9.

Case a): a(a0 )=a(b0) is inessential. If at(aobo is an embedding,

we have exhibited the mono-gon bounded by a(a0 ,b0 ]. If a|(ab ) is

not an embedding, then choose a0 < a1 < b < b0 so that a(a1) = a(b1)

and so that a(alb1) is an embedding. One can arrange this by choosing

[a1 ,b1 ] innermost among sub-intervals of [ao0 bo] so that a(a1 ) = a(b1 ).

Let a =a[a1 ,bI] and y = a 1 [a-a 1 ]*a- (bo,bl], so that 8 = y as elements
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of r 1(F,a(a1)). We modify S and y in a neighborhood of a(a1) as in

Figure 4.6, and we retain the names a and y for the components of

the result.

Y - Y

/f

.00,

4.6a 4.6b

Figure 4.6

Now, y is an immersion homotopic to the embedding 5 , and so

y and a are disjointly embedded since [a0,b0 ] was chosen to be innermost,

using Proposition 4.1. 5 is not null homotopic since [a0 , b0 ] was chosen

to be innermost, so y-1 and S bound an annulus in F. Thus, 2a = 1 in

7r1 (F,a(a), which is impossible.

In cases b) and c), if the innermost bi-gon is not embedded, then

one easily constructs a null homotopic loop that is the composition of

two disjointly embedded non null homotopic loops (consult Figure 4.5)

and derives a contradiction as above.

This proves the theorem in case a is connected. In general, the

same argument is valid provided l also includes any intervals arising



55

from companions on different components of a.

Corollary 4.1: If a is a proper immersion homotopic to an embedding rel 3F

and a is in general position in F, then either a is already embedded

or there is a mono-gon or a bi-gon in F with its boundary in a.

Corollary 4.2: If a and 8 are proper immersions in general position

each with minimal self-intersection number in its homotopy class rel aF,

then a U 8 is in non-minimal position if and only if there is a bi-gon

in F with half its boundary in a. and half its boundary in .

It is not true that if a and 8 are proper immersions, then a v.$ is

in non-minimal position if and only if there is a mono-gon or a bi-gon

in F with its boundary in a v$ as the example pictured in Figure 4.7

indicates.

Figure 4.7

This section contains generalizations of some results of [7].

Corollary 4.2 is proved there for a and 8 embedded curves.
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SECTION 5

This section contains a description of some of our technical foundations

and a final overview of the computations to be performed in Sections 6

and 7. We will introduce a combinatorial description of curves and

arcs immersed in surfaces, called symbols. We will then use the results

of Section 4 to show that, under suitable conditions, a symbol for

an immersed one-submanifold in fact describes an embedded one-submanifold.

With this machinery developed, we distinguish four types of multiple

arcs and give a detailed desription of the computation of the two

elementary transformations for each type. We then describe the com-

putations of Sections 6 and 7 step by step.

Later in this section, when we apply the results of Section 4,

we will require our surfaces to have a fixed smooth structure; for

the present, we may work in the topological setting. We adopt the

notation defined in Section 2, where we introduced the notion of a

basis for the collection of multiple arcs. Fix a choice of basis

A, let M be the number of embedded pairs of pants D., and let N be the
J

number of curves K. for the basis A.

Suppose that a e 09'(F) is a multiple arc in the compact oriented

surface F. We choose a good representative of a with components {c},

and we parametrize each component c as a map from the unit interval

or unit circle into F, depending on whether c is an arc component

or a closed curve component of a. We have oriented the components

of a arbitrarily and once and for all.

There is a finite partition of the unit interval or unit circle

by intervals [tk-lt k], which is maximal subject to the condition
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that c[tk-l tk] intersect 'J aD. exactly in c(tk-l) and c(tk). Thus,
j J

each c[tk-l'tk] is contained in either an annulus A or an embedded

pair of pants D . If c[tk-l1tk] C Ai, we formally associate to [tk-lt k]

the symbol stn, where n is the twisting number of u c[tk-l k] in the

standard annulus A. n is taken to be zero if Uc[tk-1t k] runs directly

from window to window with no twisting. If c[tk-lt k CDj, we formally

associate to [tkl'tk] the symbol s , stl2, s3' s$2 or stJ3k-12ksZ 11, 1k2  s 13, S-22' s 23 or 1

according to which canonical piece 1 in the standard pants f c[tk-l2tk]

is parallel to. Each symbol in the following set is called a letter.

{stn : n e 2Z , i=l, . .. , N}\ { st ,st ,sj ,st ,sj ,stj : j=1,...M}

Once the components of a are oriented, it makes sense to distinguish

between letters corresponding to canonical pieces with different orienta-

tions. It will be convenient to do this in Section 7; where we consider

the second elementary transformation. For now, however, letters are

to be regarded as "unoriented".

A connected symbol is defined to be an (ordered) sequence of

letters. A symbol is defined to be a finite collection of connected

symbols, called the components of the symbol. Once a basis A is chosen

we define the A-symbol of the component c of a to be the concatenation

of the letters associated to [tk-l'tk], in order. If c is an arc

component of a, then this symbol is unique (once c is oriented); however,

if c is a closed curve component of a, the symbol depends on the choice

of a starting point of the parametrization c:S +) F subject to c(tk) e

Q 3D., for all k. Define the A-symbol of a e 0'(F) to be the collection
j 2'
of symbols of components of a. We will call an A-symbol simply a symbol

when the choice of basis is clear.
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A symbol is thus a finite collection of words in the free semi-

group on the letters. When convenient, we will use the semi-group

notation. For instance, we will write the symbol (sZ st. st )n as

shorthand for n concatenations of the symbol s 1 st st*. When

0
convenient, we will also delete a letter st . from a symbol. For instance,

we will write the symbol s4* s4 as shorthand for the symbol

s4* st 0 sz.

We will say a symbol is embedded admissible (with respect to the

basis A) if it arises as above from some multiple arc a. Embedded

admissible symbols satisfy many properties. In Appendix A, we verify

some simple properties of embedded admissible symbols. In particular,

in Corollary A.1, we show that if stn1 and stn2 are letters in (some

components of) an embedded admissible symbol, then sgn(n1 ) = sgn(n2).

0 +1 -l
sgn(0) is undefined, but st. can occur only with st or st.. Any

1 1i

symbol satisfying this condition for each i=l,...,N is said to be a

constant parity symbol.

We will call a symbol immersed admissible (with respect to the

basis A) if the following conditions are satisfied.

a) There is a (parametrized) immersion a of a one-manifold 0 into

F which is homotopic rel 3F to an embeddeding. a may be either a proper

or improper immersion.

b) There is a partition {[tk-ltk]} of each component of 0, maximal

subject to the condition that cdtk-l'tk] intersect V 3D exactly in

a(tk-1) and a(tk), for each k. Furthermore, for each k, f Z[tk-l' tk] is

a canonical piece in the standard pants for some j, or u .a[tk-1,tk] is

some number of twists in the standard annulus A for some i.

c) a gives rise to the symbol, as above.
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We will say an immersion a is in. good position (with respect to the

basis A) if there is a partition of the components of 0 so that conditions

b) and c) above are satisfied. Thus, to each (parametrized) immersion

in good position, there corresponds a unique symbol. However, it is

not true that there is a-unique homotopy class rel boundary (of the

immersion) of good immersions corresponding to a given symbol.

One can easily give necessary and sufficient conditions for a symbol

to arise as above from an immersion, provided that we do not require

that the immersion be homotopic to an embedding. Necessary and sufficient

conditions for a symbol to be either immersed admissible or embedded

admissible are not known. This appears to be a very hard problem, which

we will happily be able to avoid.

Note that an embedd.ed admissible symbol is immersed admissible.

Moreover, note that if a e ,9'(F), then one can compute the parameter

values {t t } corresponding to a (with respect to the basis A) from

the A-symbol corresponding to a. Indeed, if c is a component of a good

representative of a, then the parameter values tj and t. corresponding

to the isotopy class of c are the exponent sums of the letters stj and

st in the symbol corresponding to c. The parameter values of a dis-

connected a are the sums of the parameter values of its components. (See

Remark 2.4.) We call the various exponent sums on the letters of an

arbitrary symbol the coordinates of the symbol. We will denote these

exponent sums by tj and t.. This abuse of notation will not cause any

confusion.

Suppose that s s' is a pair of adjacent letters in the symbol s

corresponding to the immersion a. Suppose that s arises from [tk-1, tk] , and
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s' arises from [tktk+]. We say that the symbol s is alternating

if one of the following conditions holds for every pair s s' of adjacent letters.

a) altk-l tk] and C[tk,tk+l] lie on different sides of some

component of V aA
i i

b) [ttk-l'tk] and a[tk,tk+l] are each twists of the same direction

in some annulus A..

In particular, an embedded admissible symbol is always alternating. An

immersed admissible symbol may fail to be alternating; for instance,

this can happen when D = D ,, where j and j' are superscripts of con-

secutive letters arising from canonical pieces.

We are mostly interested in alternating, constant parity symbols

because an alternating, constant parity, immersed admissible symbol can

often be shown to be embedded admissible. More precisely, we will prove

the following proposition.

Proposition 5.1: Suppose that a is a good proper immersion and the symbol

s of a is alternating, constant parity and immersed admissible. Suppose,

moreover, that the coordinates of s satisfy restrictions a)-f) of Corollary

2.1. Under these conditions, a is homotopic rel aF to an embedding that

has the same symbol s.

(Restrictions a)-f) of Corollary 2.1 require simply that in each embedded

pair of pants D., the canonical pieces that occur may be disjointly

embedded simultaneously.)

Before we prove this proposition, we introduce some machinery,

called train tracks, due to Thurston (17]. We do not use train track

theory in any essential way; train tracks are simply a technical

convenience in the proof of Proposition 5.1.

A properly embedded branched one-submanifold T in a compact oriented
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surface is called a train track with stops provided F\T contains no

null-gons, mono-gons, bi-gons or smooth annuli. (See Section 4.) In

the literature, it is customary to require a train track to be a closed

branched one-submanifold embedded in F. Our definition is more general

for utility.

We construct seven train tracks with stops on the standard pair

of pants using the following combinations of canonical pieces:

i) (111,1129113)9 ii) (122,112,123) iii) (133' 113,123), iv) (112,113,123))
A AA

v) (111,112,113), vi) (122 1129123), vii) (133 113,123). (Recall the

alternative choices 1** of canonical pieces indicated in Figure 2.11.)

These train tracks with stops are pictured in Figure 5.1; we indicate

two train tracks with stops on the standard annulus in Figure 5.2.

Let M be the number of embedded pants D. so that no two boundary1

components of D are parallel in F, and let M= M-M1. We will construct

4My + 2(N+M2) train tracks with stops in F, called the standard train1 2Nb 2)

tracks with stops (with respect to the basis A).

Construction 5.1: A branched one-submanifold T in the surface F

is said to be a standard train track with stops with respect to the

basis A if the following conditions are satisfied.

a) f 1 T is one of the tracks i)-vii) in the standard pair of pants

corresponding to the choice of canonical pieces in the pants D., for
3

j -1, ... ,M.

-1
b) u. T is one of the tracks on the standard annulus illustrated in

Figure 5.2, for i=1,...,N.

-l -
c) If D is a pair of pants so that f 32 is parallel to f 33 in F,

-l
then f. T is one of the tracks i), iv), or v).

J
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i) ii)

iv)

vi)

Figure 5.1

Figure 5.2

vii)

-

V)
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d) If D. is a pair of pants so that f.1a is parallel to f a in F,i paa el f a inF,

then f. 1 T is one of the tracks ii), iv) or vi).

e) If D is a pair of pants so that f. a1 is isotopic to f a 2 in F,

-l
then f T is one of the tracks iii), iv) or vii).

(It is easy to check that any branched one-submanifold so constructed

is actually a train track with stops. The restrictions c)-e) are explained

by restrictions g)-i) of Corollary 2.1.)

Proof of Proposition 5.1: Let a be the particular immersion giving rise

to an immersed admissible, alternating, constant parity symbol s. Since

the coordinates of s satisfy restrictions a)-f) of Corollary 2.1 by

hypothesis, we may assume that a lies in a regular neighborhood N(T) of

one of the standard train tracks with stops, say T. Moreover, since

s is constant parity, we may choose T so that tfiA . is (smoothly)

homotopic, into TCjAi, for each i-l,...,N. Since a consists of the pre-

images under f . and u. of canonical pieces in the standard pants and

twists in the standard annulus, and since a has an alternating symbol,

there can be no mono-gons complementary to a. Thus, by Corollary 4.1,

either a is already embedded which provei the proposition, or there are

complementary bi-gons. Let B be a complementary bi-gon. Since a CN(T),

a is (smoothly) homotopic into T, and F\ T contains no bi-gons, it follows

that BC N(T). By induction on the number of times B intersects Q3A ,
i

one easily homotopes a to get rid .of the bi-gon B, yielding an immersion

homotopic to a, with fewer double points than a, and with the same symbol

as a. This proves the proposition.1

Now that we have developed some of the machinery of symbols, we

give a more detailed description of the computation of the two elementary
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transformations than the description given in Section 3. Recalling the

notation given there, let S be the torus-minus-a-disc, and let S2

be the sphere-minus-four-discs. Let A be the basis on S. indicated

in Figure 3.8a, and let A' be the basis on S. indicated in Figure

3.8b. Let II. :. -+ S be the regular planar cover mentioned in Section

3 (and yet to be defined) with group of covering translations A.-

Given a e 9' (S we may assume without loss (as far as computing

the elementary transformations is concerned) that t2 = 0 for a e 9'(S

and t2 = t3 = t4 = t5 = 0 for a Y 9?'(S 2 ). (The pants curves {K } of the

basis A are numbered as in Figure 3.8.)

We begin by considering the elementary transforms of connected

multiple arcs. If a e 91'(S ) has components (c}, then the elementary

transform of a has A' parameter values given by the sums of the A'

parameter values of the transforms of the components of c. However,

recall that computing the A parameter values of the components {c} (or

even the number of components) from the A parameter values of a is an

unsolved problem. (See Remark 2.3.)

If s is an A-symbol arising from some component c of the multiple arc

a on Si, we define the A-length of s to be the number of letters in the

A-symbol s. The A'-length of s is the number of letters in the A'-gymbol

corresponding to the isotopy class of c. (Using the semi-group notation,

0 0
we omit any letters st or st!.)

We distinguish four types of connected symbols, and we will presently

describe the computations for each case.

Type 1): s arises from a closed component of a; that is, s

corresponds to a connected multiple curve.

Type 2): s arises from an arc component of a, and both the A-length

and the A'-length of s are at least two.

Type 3): s arises from an arc component of a, and s has A-length one.
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Type 4): s arises from an arc component of a, and s has A'-length one.

The typical types are 1). and 2), and we refer to connected symbols of Types

3) or 4) as exceptional. Similarly, we say that a disconnected symbol is

non-exceptional if none of its components are exceptional.

Type 1: If s is of Type 1), the transform of c will be computed

without using the machinery of symbols. We will relate the A- and A'-

parameter values of multiple curves with no boundary-parallel components

to the "slope" of a geodesic representative with respect to a certain metric.

We will let 9 '(S )CYe'(S i) denote the collection of multiple curves

with no boundary-parallel components. Similarly, if B is a basis for

multiple arcs, we will let (s )C 6(S.) denote the parameter values

corresponding to such multiple curves with respect to the basis S.

Type 2): If s is of type 2), supposess ... s with n + i,

where the si are A-letters. We will consider a lift c of c to Si,

and we will describe an isotopy between c and some other arc c embedded

in S.. c= H (c) is thus an immersion homotopic to the embedding c. The
1 i

isotopy in S. will be so that we can read off the immersed admissible

A'-symbol of the immersion c. We will check that this A'-symbol satisfies

the hypotheses of Proposition 5.1, and we can compute the coordinates

of this A'-symbol. This will complete the computation for Type 2) symbols.

We will describe the isotopy in S in the language of symbols after

making a definition.

To an embedded admissible symbol s = s ... sn, we let correspond

a A.-orbit of multiple arcs in S.. We construct a representative of

this orbit as follows: choose some good representative c of the multiple

arc with symbol s, and take some lift c of c to Si. We may conveniently

denote such a lift by s .n We call s .. s n a lift of ... s
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to S Lifts of symbols are convenient because there is a partition of

the interval parametrizing E by {[tk-t k]: k=l,...,n}, so that

f j i[tk-l'tk] is a canonical piece in the standard pants, for some

j=1,...,M, or u ,1 [tk-ltk] is a sequence of twists in the standard

annulus A, for some i'=l,...,N. One can easily formalize this construction

into the setting of semi-groups, but this geometric description is

better.

We will use the correspondence of the previous paragraph in.a

more general setting. We will take the lift of any symbol arising

from an immersed one-manifold in good position in S i. 0 may be improperly

embedded in S. or even improperly immersed.

Conversely, given an arc c (properly or improperly) embedded in

S with a partition as above, there corresponds an obvious symbol s.

There is, however, no guarantee that this symbol s is embedded or

immersed admissible in general.

Precisely, then, for symbols of Type 2), we will describe a map

from an A-symbol s = s.. sn to an A'-symbol s= ... sm that describes

an isotopy of s . n to s .. .s We will call such a map on symbols

a combinatorial homotopy. Suppose for simplicity that n > 3. The

combinatorial homotopy for type 2) symbols will be described in two

stages: we first describe a combinatorial homotopy of s2 ... sln- to

some A'-symbol. We then consider how we must modify this map on

symbols to describe a combinatorial homotopy of all of s ... s n. This

second stage, where we compute the effects of considering also the

letters s and sn, is called the computation of the boundary effects.

Needless to say, for small n, stage 1 is not very interesting, and

the transformation is governed by the boundary effects. In fact, we
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treat the case of n K 4 separately in Appendix B. We will derive the

formulas for the elementary transforms of type 2) symbols of A-length

at least five in Sections 6 and 7, and then we will check by hand in

Appendix B that these formulas also describe the elementary transforms

of non-exceptional symbols of A-length less than five. This avoids

considering several special cases in the arguments of the next two

sections. I remark that several of the faces of the piecewise-integral

structure of positive codimension occur when the symbols have small

length, and this fact accounts for the special cases.

I should also remark that the arguments for Type 2) components

apply to the Type 1) components as well except for some small technical

details; in fact, stage one completely describes the combinatorial

homotopy for symbols of Type 1). The technical distinction between

non-exceptional arcs and curves is simple: the symbols of arcs are

well-defined once the arc is oriented; the symbols of curves do not

enjoy this property. By the time we have given the argument that

legitimizes the computations for arcs, it will be clear how to

overcome this technical difficulty for multiple curves. Thus, one

could give a unified treatment of Type 1) and Type 2) components. We

treat these cases separately to avoid the technical difficulties and

to indicate the connections between multiple curves with no boundary-

parallel components and a certain Euclidean metric.

Type 3): If s is exceptional of type 3), then it is easy to compute

the A'-parameters of the elementary transform of the component c by hand.

This is tractable because of the short A-length of s.

Type 4): We require some algorithmic procedure for deciding if
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s has A'-length one. More generally, given the A-parameter value of the

(potentially) disconnected a s ,92'(S ), w6 will need a: way to compute

the number of components of a that have A'-length one symbols. This

is again tractable because if a component c of a has a symbol s with

A'-length one, then s has small A-length.

Now, given the A-parameter values of some a e ,9(si) with no

boundary-parallel components, the computation 6f the corresponding

A'-parameter values proceeds as follows.

Step 1: Compute the number of components of a with symbols of

Type 4). This immediately gives the A'-parameter values corresponding

to the A'-length one A'-symbols; let denote the collection of

components of a with type 4) symbols.

Step 2: Compute the parameter values in the basis A of the

multiple arc that is a less the components of a with symbols of Types

3) and 4); denote the corresponding multiple arc by a.

Step 3: Compute the parameter values in the basis A' of the multiple

arc a. (Step 3 has two stages as indicated above.)

Step 4: Compute the parameter values in the basis A' of the components

of a with Type 3) symbols. Denote the corresponding multiple arc by y.

Step 5: The A'-parameter values of a are the sums (see Remark 2.4)

of the A'-parameter values corresponding to a, , and y.

In Section 6 and 7, we will compute the first and second elementary

transformations, respectively. In each section, we begin by defining

the cover H .:S. + S.. We then sketch the computation of the elementary
1 1 1

transformations on multiple curves with no boundary-parallel components.

(A sketch will suffice, because the computation for multiple curves is
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a special case of the computation for Type 2) components, as mentioned

above.) Next, we proceed through Steps 1-5 outlined above, and note that

these computations agree with the earlier computations for multiple

curves. The computations are reasonably intricate, and we will

abbreviate the discourse in Sections 6 and 7 by refering to the otutline

of the computation given here.

We close this section by introducing some notation that will be

useful in Sections 6 and 7. If a is a multiple arc in S. and B is a basis

for 9 (s ), we will denote the tuple of parameter values corresponding

to a with respect to the basis 8 by (a)B er9' (Si). Thus, for each

multiple arc a in the surface S,. we will compute (a)A, from (a) A.
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SECTION 6

Let S be the torus-minus-a-disc. We begin this section by defining

a regular planar cover Ht S S S. Let A be the group generated by

the integral translations ofIR 2, a subgroup of the group of isometries-

of IR2 with its usual metric p. The quotient of R2 \7Z 2 by A1 is a

punctured torus, and the cover of the punctured torus by/R2 \2 with

2 -
group of translations A is the usual cover of the torus by R with a

2
point deleted from each fundamental domain in R. Let N be a small,

Ai-equivariant, square-shaped neighborhood of Z 2 in R2, as indicated

in Figure 6.1. The action of A1 on R2 \N gives a cover R1 :S - S,

and the push-forward of p to Sl by Il gives a Euclidean structure on

S with piecewise geodesic (in fact square) boundary. To be explicit,

we choose the cover so that vertical lines in S cover longitudes, and

horizontal lines in S cover meridians in S,. Much of the computation

of this section will take place in the total space S

n 7 CD n n

C G r- C:

Figure 6.1

Let A and A' be the bases for 9'(s indicated in Figure 6.2, making

the choice of canonical pieces as in Construction 2.1. We will adopt
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the notation of Section 2 to describe- the basis A, but we will delete

the sub- and superscript 1 whenever possible since there is only one

embedded pair of pants D.; parameter values for multiple arcs with
3

respect to the basis A are denoted by 4* and ti, i=1,2, -the homeo-

morphism from the embedded pants D to the standard pants is denoted

by f, and so on. For convenience, we will denote the corresponding

quantities and objects with respect to the basis A' by t', t,

i=1,2, D', f', and so on.

K K 4

2 A2 2

2 2Kl K

3 3

The basis A. The basis A'.

Figure 6.2

Some remarks are in order concerning the parametrizations with

respect to the bases A and A'. As in restrictions g)-i) of Corollary

2.1, the two cases of simultaneously embedded canonical pieces are

{l ,112113} and {11291l3,123}. Any (smooth) essential one-manifold

properly embedded in S1 whose corresponding multiple arc has coordinate

t2 - 0 is (smoothly) homotopic into one of the train tracks with stops

indicated in Figure 6.3a. (See Section 5.) We give the four tracks

corresponding to multiple arcs with t' 0 in Figure 6.3b.2

Note that a connected, non-exceptional, immersed admissible A-symbol

S = si ... sn which is not a closed component is alternating only if one

of {slsn} is an sZ 12 and the other of {sl,s } is an sZl3 Thus,

the coordinate value t12 of such A-symbols is the same as the coordinate

value t1 3, and similarly for the basis A'.
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To be quite explicit, we give in Figure 6.4a a table of the pre-

images of the canonical pieces for the basis A under the homeomorphism

f. In Figure 6.4a, we also give lifts (see Section 5) of the various

A-letters to S . In Figure 6.4b, we give all the same data for the

basis A'.

We commence the computation of the first elementary transformation
0

by considering first the action of this transformation on Y'(S1 ). (See
0 0

Section 5.) This is a transformation between 9 (S ) and 6 , (S
0

Lemma 1: If a e 9'(s consists of n components, then a is n parallel

copies of a (connected) simple closed curve.

Figure 6.3a

Figure 6.3b

Figure 6.3
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f 1 12

( 
f 113

-13

23 N
23 23 23

f 123 f 23

The basis A. The basis A'.

Figure 6.4

12 013

f'"13

13 12

f'"12
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Proof: Suppose first that n = 2, and let a have components a, and

Cut S along a1 to get some surface V. We claim that V is connected.

For, suppose not, and let V and V2 be the components. Letting

X denote the Euler characteristic, the following equation holds.

-1 = X(S 1 ) = X(Vi) + X(V 2). Without loss of generality, the number of

boundary components of V is two, and the number of boundary components

of V2 is one. Thus X(V1) = 2g1 - 1, and X( 2= 2g2, where g is the

genus of the surface V, i=1,2. It follows that g1 + g2 = 0, s0 V2

is a disc, which contradicts that a1 is essential, proving the claim.

Thus, V is a pair of pants, and a2 is therefore boundary-parallel

in V. Since a2 is not boundary-parallel in S , a2 is parallel to a,-

The general case is similar.[

Consider the parametrization of multiple curves with no boundary-

parallel components with respect to the basis A. The only non-zero

parameter values of a multiple curve are t23 and t . Using p,q curves

on the torus, it is easy to construct a good connected representative

corresponding to each pair of parameter values with Y and 1t11

relatively prime, including 23=0 and t =1. It follows that the collection

of connected multiple curves with no boundary-parallel components is
0

parametrized by the collection (S ) of parameter values satisfying

the following conditions.

a) Z23 and 1tli are relatively prime.

b) Z 23 =0 implies that t1 =1.

c) t 1 2 Z 1 3 Z1 1 0 t 2

Proposition 6.1: There is a parametrization of connected multiple curves

in S with no boundary-parallel components by U{o}C S , i.e., by the
-- -l - o the circle.

rational points on the circle.
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0 ,

Proof: Define a map y:9? (S1 ) + Q U{o by y((a)A)=sgn(t1)t2 3 /t1 . Given

q= n2 /n1 with n> 0, n2 = 0 and (nl,n2)=l, y (q) is given by t1 =sgn(q)n,

Z 2 3=n2, y (oo) is given by t =1, Z2 3=0 [E

The rational parametrization in the proposition can be interpreted

as the "slope" of a as follows: include ac S1 in the punctured torus.

Giving the punctured torus the Euclidean structure described previously,

any free homotopy class has a geodesic representation,as-is easy to show

using the previous proposition. The Gauss-Bonnet Theorem shows that

the rational slope (in the Euclidean structure) of a geodesic representa-

tive is well-defined, and this slope is exactly the rational para-

metrization above.

Another description of this parametrization is as follows: let

i denote the meridian, and let X denote the longitude of S Given

a connected multiple curve a with no boundary-parallel components,

isotope a to have minimal geometric intersection number with the curves

V and X, and so that a does not hit the point y()X. Then y((a)A) has

absolute value card(aCiy)/card(a0 A). Cut S along p and X to get a

collection of arcs properly embedded in a disc-minus-a-disc, which

inherits an orientation from S . One can show that there are four

(overlapping) cases as indicated in Figure 6.5; we define the sign

of Y(()A ) to be positive in cases one and two and negative in cases

three and four. By pursuing this line of reasoning, one can prove

Proposition 6.1 without resorting to Theorem 2.1.

case 1 case 2 case 3 case 4

Figure 6.5
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Proposition 6.2: i) The first elementary transformation from the basis

A to the basis A' on multiple curves with no boundary-parallel components

is given by the following formulas.

23 1t1

t= -sgn(t ) 2 3

In these formulas, sgn(Q)=-l by definition.

ii) The first elementary transformation from the basis

A' to the basis A on multiple curves with no boundary-parallel components

is given by the following formulas.

t =23 Iji

t = -sgn(t)Z23

In these formulas, sgn(Q)=-l by definition.

0

Proof (sketch): First consider the case of a connected (a) 9 S1 ).
0

By symmetry, there is a map y':j ,(S) + j{m} given by y'((a)A

sgn(tl)Z23 /It'I. We claim that the two rational parametrizations are

negative reciprocals of one another. To prove this assertion, one

first proves the assertions of the previous paragraph. With this

description of the parametrization, it is clear that one passes from one

rational parametrization to another by interchanging the curves 4 and X.

This amounts to turning one's head by 900 as indicated in Figure 6.6.

Figure 6.6 also shows that turning one's head by 900 corresponds to

taking negative reciprocals of rational points on the circle. A computation

proves the proposition for connected multiple curves, and the general case

follows from Lemma 6.1. The convention that sgn(O)=-l is the choice con-

sistent with the convention that ml=0 implies t >0, where m is the

Dehn-Thurston intersection number.
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o I/
Figure 6.6

Having computed the first elementary transformation on multiple

curves with no boundary-parallel components, we return to the general

setting of (a)A E'Y jS1 ). For most of this section (until Proposition

6.3), we tacitly assume that the multiple arc a has no closed components.

Without loss, we suppose that a has t2 = 0, and we orient the components

of a arbitrarily. We proceed through Steps 1-5 of the computation as

described at the end of Section 5. The reader should refer there to

see the various steps in a wider context.

Step 1 is to compute the number of components of a parallel to

f '~Al11 (plus two arcs in the annulus A2 running from window to window

with no twisting). As shown in Figure 6.4, such an arc has expression

t12 + Y13 in the basis A. We compute the number of components of a with

coordinates t12 + Z13 as follows: imagine cutting along the boundary of

a regular neighborhood A of the pants curve K a twists t times

in A and enters and exits 3A through two windows. These windows are

indicated in Figure 6.7, where the label W12 indicates, for instance, the

region of the window through which f-1112 may pass. Thus, the number

of components of a with parameter value t12 + t 3 is given by

((-12 l- tl) 6 t13) 7 0 , where A is the infimum, and 7 is the supremum.

Note that this expression is equal to (t1 2 - Itl) V 0 since the para-

meter values t12 and ?13 of a are equal.
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W12 W 2

W13 23

Figure 6.7

Step 2 is to compute the A-parameter values of a, the non-exceptional

part of a. a has parameter values given by the following formulas.

z 12  1 - ((ci -It 1j) V0
12 12 12 1

13 13 - 2 - t 11) V 0

23 23

=0
11

ty = t1

t 2 = t2

Step 3 is to compute the A' parameter values of a and includes the

typical case. For convenience of notation, we assume that a has no

exceptional components, whence (a)A = (a)A eY)9.(Sl We assume that

a is connected and that there is a unique embedded admissible symbol in

the basis A, denoted s = s ... s n, corresponding to a, where the s

are A-letters.

We assume without loss, using the semi-group notation, that each
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letter st appearing in s has exponent n equal to either +1 or -1. We

assume (temporarily) that the A-length of s is at least three, and we

consider the symbol s2 s-. Note that s E {s +1st for all

i=2,...,n-l.

+1
Define a map from <s 2 3 ,st 1 >, the free semi-group on the three

A-letters, to the free semi-group <se ,stf > on the A'-letters by

extending the map defined below on letters.

,-sgn(t1 )
23 1

st + 3tS 1  ~-s 2 3

This map is realized by a homotopy of the lift s .." sln- to some

arc, which we will denote 6, improperly embedded in S . The homotopy

translates by (- ,+ ) and straightens into the lifts sZt and sti in
23 1

S1. Thus, the homotopy is not rel endpoints.

A remark is in order concerning the sign -sgn(t 1 ) of the twist

that is the image of s 23. It is obvious from the definition of the

homotopy that an s3 in s appears as st' in the symbol of 6. Lifts
23 1

to S of neighborhoods of concatenation points of f 123 and twists in

1 +1
the annulus A are shown in Figure 6.8; Figure 6.8a depicts s2 st ,and

1 23 1 an

Figure 6.8b depicts st 3st 1 . The solid lines in Figure 6.8 denote the

lifts, and the broken lines denote the arc 6. The figure shows that when

t is positive, an s2 in s appears as st in the symbol of 6, and

similarly when the sign of t1 is negative. Thus, the sign -sgn(t1 )

occurs. Note that the argument above is independent of the choice of

orientation of the components of a. We make the convention that

sgn(O)=-l; this is again the choice consistent with the convention that

m =0 implies tLO. (Note, however, that m =0 cannot occur for a multiple

arc with no closed components.)
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-. C3a

I 2

a a a

a 2

6. 8a 6. 8b

Figure 6.8

To extend this map on symbols to a combinatorial homotopy from

embedded admissible A-symbols to immersed admissible A'-symbols, we

require the notion of a pair-of-letter expression. If s and s2 are

A-letters, and if s is the A-symbol corresponding to the multiple

arc a, then (sis 2) evaluated on s is defined to be the number of times

the symbol s s2 or s2 s occurs as a subsymbol of s. This does

not depend on the orientation of the components of a, and, for symbols

on Sl, (s Vs2) = (s2,s1) . (In Section 7, where we will distinguish

between the orientations on a given canonical piece, the corresponding

pair-of-letter identity will not be valid.)

We describe the boundary effects (see Section 5), and thus extend

the map above to a combinatorial homotopy from an embedded admissible non-

exceptional A-symbol s(which corresponds to the multiple arc a) to an

immersed admissible A'-symbol s (which corresponds to the good proper immersion

a) as follows: regard the combinatorial homotopy from s2 .. ' Sn-i to 6 as

a first approximation to the first elementary transformation from a to

a. If (sy,s2)+0 on s, where s is one of the letters sZ12 or st13'
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modify the symbol of 6 according to some rule that corresponds to an

isotopy of 1s $2 ''' n-1 in S . We adjust the symbol of 6 accordingly;

we will write (s1 ,s2 ) =_ Zx if this adjustment alters the coordinates

of the symbol of 6 by adding the linear combination E x' of A'-parameter
1

values x! to the coordinates of the symbol of 6.

As can be seen in Figure 6.9, the boundary effects are described by

the following formulas. In Figure 6.9, the solid lines indicate the lift

s before the homotopy to 6; the broken lines denote the improperly embedded

arc 6; the crossed lines denote the image of s under our combinatorial

homotopy.

i)(t S+1) +1 -i) (s11 st ) 23'+ t2 +Z 3 + t-

ii) (sl2, st 1 ) 12 + tj

iii) (sl2, sZ ) 12 + 1

iv) (s 13 , st +) 2

v) (s 1 3, st 
1 ) - 23 + 13

vi) (s 3, sZ2 3) 2

o

~~~~~~ I

iv)

v)

vi)

Figure 6.9

i)

iii)
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Lemma 6.2: If a is a multiple arc with non-exceptional symbol, then a is

homotopic rel 3S1 to a good immersion a, where the A'-symbol of a has

A'-coordinates given by the following formulas.

23 = 1tl- (SZ12,st+1 - (s 13 ,st1
1)

+1 -
tv = -sgn(t1) 2 3 - (sZl 2 ,st ) + (st1 2,st 1 ) + (sZ1 2 ,sZ2 3

t' =t+1ti = t2 + (stl2st )1
2 2 (s 12,s 1

V =+1 fD -1
3 =(sl2,st ) + (Sl3 ,st 1 )

-l +1
2 = (s 12 ,st 1 ) + (stl2's23) + (sZ13,st 1 ) + (sl3,sZ23)
2 =011"s 3 3 1122

= 0
11

Proof: Suppose first that a is connected. The computations above prove the

lemma in case the A-length of the symbol of a is at least four since the

boundary effects influence only the letters adjacent to the boundary. In

Appendix B, we check by hand that the formulas above are valid for a not

exceptional of length less than five.

Suppose finally that a C e91t(Si) is disconnected. It is immediate

that the formulas of Lemma 6.2 also apply, provided only that the symbol

of a is non-exceptional. This proves the lemma.

Lemma 6.3: The symbol of a given by Lemma 6.2 is alternating and constant

parity.

Proof: We first show that the symbol s of a is alternating. Let

s = s .s , n>4, be the A-symbol of a. It is geometrically obvious that

the combinatorial homotopy on s2 s nr yields an alternating symbol

2 '' n-l. Moreover, the boundary effects are seen only in the letters

adjacent to the boundary, and a glance at Figure 6.9i)-vi) shows that the

effect of a single sZ1 2 or sZl3 letter does not destroy the property of

being alternating. Thus, to prove that s is alternating, it remains to
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show that s begins with an sZ' if and only if it ends with an' s 3  To
12 1

this end, since s is embedded admissible and hence alternating and

constant parity, the possible pairs of non-zero pair-of-letter expressions

+1
involving the letters s3 and s2 are the following: {(sZl2 ,st1 ),

13 s 12 12 1
+1 +1 -l -l

1(s3,st ) (s st), 13,23 { 2,st1 )(s3,st )},

{(st12' 23 ' 13'st1 )}, {(s1l2' 23), s13,s23')} { sZ12,st ),
+1

(sZ1 3 " 2 3)}, {(sZ1 2 , 2 3), sZ1 3,st )}.

The first four pairs yield an alternating symbol s, as the formulas

for the boundary effects show. The last three cannot in fact occur, as

shown in Figure 6.10; that is, since s is embedded admissible,

(st 2 0 implies that ( ,+1) = 0 = (s3 and
1~2'SZ23) T mpiet~ 13 ,st1  13 =0=~l'23'

(stl3' 23) + 0 implies that (stl2,st ) = 0 = (st1 2,sZ2 3). Thus,

s is alternating.

Figure 6.10

To see that s is constant parity, note that once again s2 . n

is obviously constant parity, and the sign of the t' coordinate of

2 'n-l is -sgn(t1 ) by definition. Suppose first that sgn(t ) > 0; thus,

(s2s+) = 0 since s is constant parity, and the formulas show 
that the

boundary effects contribute only positive twists ti+1 to the coordinates

of s, preserving the property of constant parity. Finally, if sgn(t1 ) > 0,
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then (s 12,st~) = 0 = (sL1 3,st 1 ), and the only possible problem in

preserving the property of constant parity is if (sZ1 2 ,sY2 3) 1 0. Figure

2.11 shows that this cannot occur since the arc a must then spiral

indefinitely around f 1 123; that is, t 1 0 implies that (s=22st23 0.

This proves the lemma provided the A-length of s is at least five.

The cases where the A-length of s is less than five are handled

separately in Appendix B.

Figure 6.11

Proposition 6.3: Suppose that a e 9'(S1 ) is a multiple arc with non-

exceptional components; the first elementary transform (a) A of (a)A has

A'-coordinates given by the following formulas.

S= 0-

12 1|tl - r) V 0

12 = r

t t2 + (r A t V 0

t = -sgn(t )(1 23 + r)

In these formulas, r = t12 = 13' -and sgn(0) = -1.

Proof: Just as in Step 1, one can compute the pair-of-letter expressions

in Lemma 6.2 from the parameter value of (a)A inYj(S ) as follows.
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(sZ 1 2, st1 12 A tl) V 0

(st1 3,st 1) = ('3 A -tl) V 0

(sZ12,st 1
1 ) = 2 A (-t - 423)) V 0

(sZ12,sZ 23) = (-tA t12A (t1 + Z23 + 12 0

Formally substituting the pair-of-letter values above into the

formulas of Lemma 6.2 gives the following formulas.

ly; M 0

23= jt - GZ12 A tl) V 0 - (Z13 A -t1 ) V 0

= it 11 - (r A t1 ) V 0 - (r A -t1) 1 0

=t - (r A 1t 11) = (1tl1 - r) V 0

t P ( 12 A t ) V 0 + (Z13 A -t1 ) v 0 = r A I1t1
t2 t2 + ( 1 2  t1 ) 0 = t2 + (r At) V 0

t = -sgn(t) 2 3 - 12 A t1 ) V 0 + (Q12 A 1 -) V 0

+ (-t 12 A t1 + 23 + Z 12 )) V 0

=-sgn(t1)t 2 3 - (rAt) 7 0 + (r A (-t 1 - Z23)) 7 0

+(-t A r A (t1 + Y23 + r)) V 0

It remains to do the algebra to show that the two expressions for

?2 3z 23 andt' are equal.12 13' 23 1

- We first consider the coordinate V
23

. t1 - (r A t), t > 0
23 < (1 - r A -t) t 1 <0

t r, t 1 0 and r < t

0, t1 > 0 and t1 i r

-t 1-r, t 1 < 0 and r < 
-t

0, t, 11 0 and -t I r

( tli - r) V 0
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Next we consider the coordinate 2 3. The argument at the

end of Lemma 6.3 shows that tI > 0 implies that (s&12,s 23) = 0. Since

the components of a are non-exceptional, an se1 2 is adjacent to either

an s or st-1 ; it follows that t > 0 implies that r A Iti = r A t

r. Similarly, t1 < 0 implies that r A It1 l = r A -t1 = r. Finally,

t = 0 cannot happen for a non-exceptional component. This justifies

that 12 = 13 = r A it, I = r = 12 = 13, as one would expect.

Finally, note that the coordinate t' for a non-exceptional A-symbol
1

corresponding to an arc with no closed components is non-zero. Consider

the expression for t'

t' = -sgn(t )2 - (r A t1) v 0 + (r A (-t - t23)

+ (-t1 A r A (t1 + t23 + r)) v 0

= -sgn(t
1)2 3

-r, t1 > 0

r, t1 < 0 and r + 23 t

+ r, t< 0 and 2 3 < -t+ r2 3 +r

r, t1 < 0 and -t1  t 23

= -sgn(t 1 )( 2 3 + r)

Thus, the proposition holds for multiple arcs with no closed

components and no exceptional components. A computation shows that the

formulas above agree with the previous computations for multiple curves,

and the proposition follows.

The proof of the proposition applies also to closed curve components

by ignoring boundary effects and allows a unified treatment of multiple

arcs and multiple curves. We computed the action on multiple curves

separately to indicate the connection with straightening in the Euclidean
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metric on the punctured torus.

Finally, we consider Step 4. A glance at Figure 6.4 shows that

an f 111 (plus two arcs in A2 running from window to window with no

twisting) has an expression t'2 + Z 3 + t'+1 in the basis A'.

Theorem 6.1: The first elementary transformation from the basis Ato _the

basis A, is given by the following formulas.

(r - jt j) V 0

r?= 2' = (r - V) + t
12 13 11 11

?3 (jt1 j - Cr -Zl))

t = t2 + ty + (r- t ) 0

t = -sgn(t)(223 + (r I

In these formulas, r = 212 13, and sgn(O)=-l.

Proof: The proof is Step 5 and is the combination of the previous

proposition, the sentence before this theorem and Step l.

Corollary 6.1: The first elementary transformation from the basis A' to

the basis A is given by the following formulas.

211 = (r - t[) V 0

r=2.12  13 = (r' - t1) +

223 = (It{I - r' - 11))

t 2  t - ((r' - ) A -t 7 0 -
2 2

t= -sgn(t)(2 + (r' -

In these formulas, r' = t!2 2.3, and sgn(0)=-l.

Proof: It suffices to check that the transformations in the theorem and

the corollary are inverses, which we leave as an algebraic exercise.

One can of course prove the corollary directly by mimicking the proof

of the theorem with (A,A') replacing (A',A). This approach is about as

much work as the algebraic exercise that proves the corollary.
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We close this section with two final observations.

One easily derives the interesting identity Zfi - = r - jtl.

If t < 0, then one has the following identities.

t = t2 +

tv = t2 + (r - )v

If t 0, then one has the following identities.

t? t + t + r -
2 2 11 11
? -r +ZV1 23 11

Introducing the parameter r - jt 1 j, this gives a convenient description of

the first elementary transformation as a piecewise-integral map.
0

The action of MC(S1 ) onf9'(S ) admits a faithful representation as

an action of the two-by-two integral matrices of determinant one on

(S+) C x 2Z . This is because MC(S1) is a certain central extension

of the two-by-two integral matrices of determinant one by Z . The action

is a twisted right action, and will be described in Section 8.
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SECTION 7

In this section, we compute the second elementary transformation;

we will follow closely the outline of Section 6. Let S2 denote the

sphere-minus-four-discs. We begin by defining a regular planar cover

12 :S2 +2

Let A2 be the group generated by rotations-by-7r about the integral

2 2 2 2
points 22 in R. A2 is a group of isometries of IR \ 2 with respect

to the usual metric. This action describes a cover of the four-times

2 2
punctured sphere by R 2, and the push-forward of the usual metric

by the covering projection gives a Euclidean structure on the four-times

punctured sphere.

Figure 7.1

Let N be a small, A 2 -equivariant, diamond-shaped, open neighbor-

hood of Z 2 2, as indicated in Figure 7.1. The action of A2 on

2 2-
IR \N gives a cover of S2 by R \N, denoted S2 Cuttine S2 along

the arcs a, ... ,a4 in S2 indicated in Figure 7.2 decomposes S2 as two
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octagons, labeled f and b in Figure 7.2. The lifts to S of these

octagons give a tiling of S2; if we are careful in the choice of the

geodesic arcs a., then we can guarantee that the associated

tiling is regular. This regular tiling of S2 by octagons is indicated

in Figure 7.3; it can be seen in the Park Street SubWay Station in

Boston as a tiling of IR2 by squares and octagons.

Let A and A' be the bases on S2 shown in Figure 7.4, making the

choice of canonical pieces as in Construction 2.1. In contrast to

Section 6, all four cases in Construction 2.1 of compatibly embedded

canonical pieces can occur in each embedded pants D., j=1,2. Thus,

there are 512 = 4 x 2 4 standard train tracks with stops (see Section

5 ) on S2 for each basis A or A': four for each embedded D., j=1,2,

b f

q ; q ; q j

f b f b f b

b f

Figure 7.3

a3

Figure 7.2
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and two for each annulus A., i=l,...,5.

K2 K3

L 
2 

D 2 
3

K4  K5
The basis A.

K1 KI

KK

2 3

D1 D'1
2

3 2

K K

The basis A'.

I Figure 7.4

We define a new basis A" on S2 as follows: the bases A' and A"

differ only in that A" uses the canonical pieces 1 and 133 (defined,

in Section 2) instead of the canonical pieces 1 and 133 used in the

basis A '. Our goal is to compute the second elementary transformation

between the bases A and A'; the basis A" is a technical convenience.

We introduce the following notation for this section only. We will

denote the parameter values t 1 with respect to the basis A by , and

2
we will denote the parameter values t 2 with respect to the basis A by

k Similarly, the parameter values and with respect to

the basis A' will be denoted t'* and k'*, respectively, and similarly

for the basis A". Moreover, A-symbols will be written as words in the

the letters st and sZ t and skI,, a < a' = 1,2,3; we define the

analogous notation for A'-symbols and A"-symbols.
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Remark 7.1: Since the bases A' and A" differ only in the choice of

canonical pieces, the transformation between the corresponding para-

metrizations is easily computed from Proposition A.l. The transformation

from the basis A' to the basis A" is given by the following formulas.

tt = t, + t,; + ki1 1 11 11

t = t' + k'
3 3 33

tit = t, + 33

The other parameter values are unchanged (i.e., replace ' by "). The

transformation from the basis A" to the basis A' is given by the

following formulas.

t? = t - -
'1 1 11 11

t = t - ki33 3 33

t = ti - tit
4 4 33

The other parameter values are unchanged (i.e., replace " by ').

We will want to distinguish between the orientations on sZ and

sk Define 111 and 111 in the standard pants to be oriented as in

Figure 7.5, and define the letters sZ and sk! so that f 11 sz11 1
11 11 1 2 11 11

and f2 2 sk1 = 1 . We will only need to worry about the orientations

of these letters for the basis A, and we modify the notion of A-symbol to

include the four letters s l and sk 1. (Of course, we omit the letters

sZ1 1 and s .)

+
111 11

Figure 7.5
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To be quite explicit, we give in Figures 7.6a and 7.6b the lifts

to S of the various letters for the bases A and A", respectively. The

numbers in the deleted diamonds in Figure 7.6 indicate the boundary

component twice covered by the bounding piecewise-geodesic curve in S the

curves are' numbered as in Figure 7.4.

Note that a connected, constant parity, non-exceptional, immersed

admissible symbol in the basis A is alternating if and only if the

letters arising from canonical pieces (instead of twists) alternate

from sP,* to skl*, and similarly for the bases A' and A". Moreover,

a multiple curve has ml = 2tZ1 = 2k 11 in the basis A, where m. is the

Dehn-Thurston intersection number with the pants curve K1 , and similarly

for the bases A' and A".

We first compute the second elementary transformation between the

bases A and A' on multiple curves with no boundary-parallel components

using the Euclidean structure on S2. We then perform Steps 1-5 for

multiple arcs without closed curve components between the bases A and

A", and finally, after some algebraic manipulation, give the general

form of the second elementary transformation between the bases A and A'.
0

Lemma 7.1: If a e J'(S2) consists of n components, then a is n parallel

copies of a (connected) simple closed curve.

Proof: Suppose first that n = 2, and let a1 and a2 be the components

of a. Cut S2 along a1 to get a surface V. We claim that V is dis-

connected, for otherwise X(V) = X(S2 ), genus (V) = genus(S2) and the

number of boundary components of V is two greater than the number of

boundary components of S2, which is impossible.

Let V have components V1 and V2 , and note that X(S2) -2 = X(V1 ) + X(V2).
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The basis A

2 2

k22

k 3 .

23 9111

3~ tz 23 k k - 3 % 3 .
1 12 12

-S k ik11

Figure 7.6a

The basis A"

2 3

3 . 3 .7 X 3 :k 3 2 33
k"it". Sk"t

st" 23 221

3 a 3 2 3 2

ik"l 9ki3

sti

Figure 7 .6b
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Furthermore, if X(V.) = 1, then V is a disc, while if X(V 0,

then V is an annulus. Thus, since the components of a are not null-

homotopic and not boundary-parallel in S2 V1 and V2 are each a pair

of pants. a2 C V1, say, implies that a2 is parallel to one of the

boundary components of V1 . whence a2 is parallel to a1 . The general

case is similar.

One can easily construct a (connected) simple closed curve

corresponding to each pair of parameter values and ti, where

-1 and It11 are relatively prime, including the case = 0 and t = 1.
-- -0 -

Thus, the subset of 9 '(S2) corresponding to connected multiple curves

is the subset of 09(S2 ) so that the following conditions are satisfied.

a) 2 t3 - k12 = k13 =

22 = Z23 = Z33 ' 22 23 = 33 = 03

and t2= t3= t t5 0.

b) =

c) and it'l are relatively prime.

Proposition 7.1: There is a parametrization of connected multiple curves

in S2 bQV{O} CSl, i.e., by the rational points of S1 .
- -- 0

Proof: Define a map y:9 (S2 ) +Q U{ca} by y((a)A) = sgn(t + 1 1  t )11It1+Z11l.

Given q = n2 /n1 with n1 > 0, n2 -- 0 and (n1 ,n2) = 1, y 1 (q) is

t s =gn(q)n 1 - n21 Z1 = n2, and y-1 (00) is t = -1, 1.

Just as in Section 6, we can show that this parametrization is

given by including aCS2 CS -minus-four-points and taking the rational

slope of a geodesic representative of the free homotopy class of a.

Again there is a more geometrical description of this parametrization,

and one can prove the proposition without resorting to the main parametrization
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theorem: connect the four boundary components of S2 by disjointly

embedded simple arcs a as indicated in Figure 7.2. Isotope a
0

representative c of a connected a e9t'(S2 ) so that it has minimal

geometrical intersection number with each ai. |y(q)l is given by

card(cf\a2 )/card(cCla1 ). There are four cases indicated in Figure 7

for the intersection of this representative with the octagon f,

which is indicated in Figure 7.2. The sign of y(q) is defined to be

positive in cases one and two and negative in cases three and four.

Checking that this indeed gives a parametrization for connected
0

elements of ' (S2 ) is a combinatorial exercise; checking that this

is the parametrization described in Proposition 7.1 is case checking

on the ration t1/mi. We illustrate the result of this case checking

diagramatically in Figure 7.8.

.7

case 1 case 2 case 3 case 4

Figure 7.7

t-axis

S/2 0

Figure 7.8
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Proposition 7.2: 1) The second elementary transformation from the

basis A to the basis A' on multiple curves with no boundary-parallel

components is given by the following formulas.

M = 2 1m1/2 + tI

t' = -sgn(m1 /2 +tl) (i + tl)

In these formulas, sgn(O) - -1.

ii) The second elementary transformation from the basis A' to the

basis A on multiple curves with no boundary-parallel components is

given by the following formulas.

ml - 21m{/2 + t{l

t = -sgn(m{/2 + t') (mi + t{)

In these formulas, sgn(O) = -1.

Proof (sketch): First consider the case of a connected a CY '(S 2). By
0

symmetry, there is a one-to-one onto map y': 69',(S 2 ) +Q U {co} given

by y'((a)A,) sgn(t'+Z{) /!tj+Z{ 11, and the two rational parametrizations

are negative reciprocals of one another. A computation completes the

proof for connected multiple curves with no boundary-parallel components,

and the general case follows from Lemma 7.1,

We now consider the general setting of a e (s 2 ), a multiple

arc, and we compute the second elementary transformation between the

bases A and A". Without loss of generality, suppose a has A-coordinates

t2 = t3 = t4 = t5 = 0, and orient the components of a arbitrarily.

Step 1 of the computation is to compute the number of components

of a isotopic to f" 11 f3' f 31 1 3 and _f " -223 331 22' 1 23' 1 33- 2 122, f"1 ~

in the embedded pants D1 and D2, respectively (plus arcs running from

window to window with no twisting in the annuli A2, ... ,A5). We first con-

sider f'1 1 122 and f" 1 1 23 As shown in Figure 7.6, an f "1122 has A"-parameter
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13 + k +13 and an 1 23 has parameter value t + kl2' We

compute the number of components of a with coordinates t1 3 + kF1 + t13

and t13 + 12 as follows: imagine cutting along the boundary of the

regular neighborhood A1 of K in the basis A. a enters and exits

through the windows in 3A . These windows are as indicated in

Figure 7.9, where the label a1 2 (W12) indicates, for instance, the

region of the window through which f1 112 (f2 112) may pass. One can

use these decompositions of the windows to derive the following formulas.

22 11 + t 1) a y 13 11 1 12

23 1 3  12 A 13  1 1 - t1 ) A 1  + + )

The symmetries in Figure 7.10 immediately give the following formulas.

i23  (k13 At12 A (k 13 - 1l - t) A + 1l + t1 )) V 0

it 2 = 11 + t1 ) A A 13 - t3 - 2 - 11  V 0

ti= ((-t1-kz 1  At1  A (ka1 - tl + t+ ka) V033 1 11) 11 1 2 13 + 11 )

k33 =(t- 1 ) A A 12 At a13 + t + 1  0))VO
33 1 1 11 12 1 1 1

Figure 7.10

U13 U11 U 12 U11 1l3 11*12 W11

* *

W11 W12 11 '13 U11 U12 U11 U 13

Rotation-by- about the point *

ill 12W 1 3 . 11 13 "11.12

(Change of canonical pieces) 0

(Reflection about the line L)

Figure 7.9
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Step 2 is to compute the A-parameter values of a, the non-exceptional

part of a. a has parameter values given by the following formulas.

13 13 23 22

' 2  2  23 2233

"12 w 12  z23 - 2 33

23 22

1 1+ 3 3

t2 = k3 -4 5 - 2

A A

22 33 22 33 =2 = 32 23 23 =t5

Step 3 is to compute the A"-parameter values of a and includes

the generic case. For convenience of notation, we assume without loss
A

that a is connected and non-exceptional; thus, (a)A = (a)A. Suppose

that s = s ...0 s is the corresponding embedded admissible A-symbol,

and for now assume that the A-length of s is at least three. Note that

++ +1
si e {sl ,ska 11,st 1 }, for each i=2,...,n-l.

Define a map from 5sZl~iski st 1 >, the free semi-group on the

six A-letters, to the free semi-group <s" ,sk ,st" > on the four

A"-letters by extending the following map defined on letters. For the

time being, regard sgn(O) as being undefined, and ignore the sign e in

the image of twists.

st + sZ" st"' skit or sk" st" e s2"

sZ + s+ s-s5 + sZ"

11s 11st 11 s

+1, t 1  0.

-sgn(11 +k 11+2t), else.
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Pair-of-letter expressions and the notation for the pair-of-letter

adjustments were defined in Section 6. (In Section 6, we adjusted only

the coordinates of a symbol. Here we adjust the symbol itself.) The

expression (sils ) evaluated on the A-symbol s is defined exactly as in

Section 6 provided neither of the letters si or s. is one of the letters
SJ

sZ or skl+ The expression (st+ s) evaluated on the A-symbol s, for
11 li111

instance, is defined to be the number of times st + s or s St- appears

as a sub-symbol of s. There is an analogous definition for pair-of-letter

expressions involving the letter sk~ Thus, (st + stl1) = (st-il )

and (sk+, sti1) - (sti1,s z11 ) by definition.

We claim that this combinatorial map describes a homotopy rel

endpoints from some lift s2 '. n-1 of s2 ... sn-l. This can be seen

as follows: begin by noting that an s11 (s ) has coordinate k ( )

in the basis A". (This explains the technical facility gained by

considering first the transformation between the bases A and A".) The

+1 - ~t - +1 - ~
homotopy rel endpoints of the lift st to sZ st" skfi or

1 11 1f 11 i

sk st"1 sZ is indicated in Figure 7.lla. The adjustments for the

+ -l
pair-of-letter expression (skz11 ,st1 ) are indicated in Figure 7.llb. As

usual, the solid lines denote the lifts, and the broken lines denote

the image of the homotopy. The adjustments for the expression

(stZ+,st 1 ) are similar to the adjustments in Figure 7.llb.

7 .lla 7.llb

Figure 7.11



101
Note that the combinatorial homotopy above has the property that

the only way to produce a st letter in the A"-symbol image is from

+1
an st1 letter in the A-symbol. Moreover, the pair-of-letter adjustments

never affect st" 1 letters; however, the sign E of the t" coordinate

does depend on the pair-of-letter adjustments, as we shall see.

We say that a non-twist letter is "stable" if it is unaffected

by the pair-of-letter adjustments. Note that for s an embedded admissible

sequence of letters sit and sk the image A-symbol is necessarily

alternating since s is. Furthermore, if s is an embedded admissible

sequence of letters st 1 , then the image A"-symbol is an alternating

and constant +1 parity (st. st +1 si )m or (sk" st+ 1 m

Claim 7.1: If t,1 20, then the combinatorial homotopy above on s2 ... sn

has an alternating and constant parity A"-symbol image.

+1
Proof: By the previous paragraph, consecutive sequences of letters st 1

and consecutive sequences of s~7 and skf letters each have an alternating

and constant +1 parity image. A neighborhood of a concatenation point of

+ ~ +1
st and st is shown in Figure 7.12; the lift is denoted by a solid line

and the image under the combinatorial homotopy by a broken line. Concatena-

+ ~ +1
tion points of sk- and st are similar. Thus, in a neighborhood of a

concatenation point, the homotopy preserves the alternating character, and

the claim follows. Note that there are no pair-of-letter adjustments.Z

Figure 7.12

z JS

S Lf .S~ 1 ~j 3
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Claim 7.2: If t < 0, then the combinatorial homotopy above has an

alternating A"-symbol image.

Proof: Denote by si ... s",, the A"-symbol image of s2 ... sn-i under the

homotopy, where the s' are A"-letters, and suppose not. Without loss of
i

generality (by rotation-by-r about the line L in Figure 7.13a), there is

some s" = sV , s" = s" , with s"+1,...s" twists.r 11 r+m 1I rl 'r+m-l

There are two cases.

Case 1): s" arose from some s = s! .
r k 11*

1
Case 2): s" arose from some s = st .

r k 1
-l +

In Case 1), since s is alternating, sk+= st1 , or sk+l =

-11

If sk+l= st1 , then, by Proposition A.3, the homotopy would have erased

s" = stZ as in Figure 7.llb, which is absurd. Thus, sk+l = 1 if
r 11 ifl11

sk+2 = sk then si+ = sI and s!+ is stable, which is contra-
11' r+l s11 r+l

-l
dictory to hypothesis. Thus, sk+2 = st1 , and so we must have sk+l =

by Proposition A.2. In case sk = s+l, we must have sk+3  sk as

indicated in Figure 7.13a, so that s r+l = st' -1. If sk+4 = s l, then

s" = sk" and s" is stable, which is contradictory to hypothesis;
r+2 11 r+2

thus, s = s+ s st 1 , s = sk and a is forced to spiral
k+4 ill k+5 1 k+6 11

- + ~-1
around I sk I2 1 2 st indefinitely, which is absurd.

2 11 2 11 2 1

L - -

7.13a 7.13b

Figure 7.13
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In case sk = sk we must have sk sk as indicated inwe us hae k+3 = 11+

Figure 7.13b, so that +r1 = St~1 . If sk+3 = sk then sk-i = st~ 1

and the homotopy would have erased sk, which is absurd. If sk+4 = sI-

then sit 2r+ s and s+2 is stable, which is contrary to hypothesis; thus,

sk+ = + 5 = stj , s - and a is forced to spiral
k4 11' k+5 , k+6 11=

~- ~ + ~ -1
indefinitely around H2sk 1 2sz 1 2st . Thus, Case 1) cannot lead

to a non-alternating image A"-symbol.

In Case 2), there are two sub-cases.

Sub-case a): sk leads to sk st1  s-1
k11 1 11i

Sub-case b): s leads to s-" st'+1 ski.
k11 1 11e

In Sub-case a), since t < 0, s = s . Ifs = sk- then

the homotopy erases s", which is absurd; thus, we assume that sk+1 =sk
r 11.li

-1
By Proposition A.2, sk+2 = st1 , so sk+3 =s This case is indicated

in Figure 7.14a. Thus, sk+4 sk, sk+5 = stl , and a must spiral

~n+ ~ -1 ~
indefinitely about IT sf IIst TI s-Cy which is absurd.

Figure 7.14

7. 14a 7.1l4b
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In Sub-case b), since t < 0, s = St II S s then the1k1 11' k+l ill

ski? arising from sk is stable, contradictory to hypothesis; thus, we

assume that that sk+ s . If s = st 1  then the sk arisingassumek+l 11 k+2 1 11hn h sz

from sk+2 is stable, contradictory to hypothesis; thus sk+2 = sk~ andk+2 k+2 11
-1+

sk+3 st 1 , so that sk+2 sk + by Proposition A.2. This configuration

is indicated in Figure 7.14b. If sk+ = sZ. , then the ski' arisingk+4 111

from s would be stable, contradictory to hypothesis; thus, sk+4 = tl'

and a must spiral indefinitely about IT 2 sZ1  1 2 sfl 12 stl1 , which is

absurd. Thus, Case 2), cannot lead to a non-alternating image A"-symbol,

proving the claim.2

Claim 7.3: The A"-symbol image of the combinatorial homotopy above has

all its twists in the same direction.

Proof: By the previous claim, the sign of a consecutive block of twists

of s" ... s,, is well-defined. Thus, it suffices to prove that if
1 n

s" = st" 1 and s" =st , with s" +1,..,s { sZ+1skl }, then
r 1r+m 1r+19 'r+m-l 11 11

s" and s" have the same sign, m + 1. Suppose then that s" arose from
r r+m r

sk leading to sk1 sty' st.. In this case, either s = st , which

is acceptable (and m=3 with sgn(s") = sgn(s" ) = +1), or s = sk,
r r+m k+l 11l,

by Proposition A.2. There are then two cases.
Case 1): s r sf st 1 +

Case ): s" arose from s. leading to si tt1si

Case 2): s" arose from s.. leading to s" st+1 sk
r+m11 1 1

In Case 1), s j _ St by Proposition A.4, which is acceptable

(and sgn(s") = sgn(s" ) = -1), and in Case 2), s = sk by Proposition
r r-Im 11bjrpsto

A.4, which is acceptable ( and again sgn(s") = sgn(s ) = -1) .
r r+M

The case where s" arises from s. leading to st. st+1 skl is

similar, proving the claim.
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Claim 7.4: The sign s" of the t" coordinate of s" s"i is given by

the following formula

-sgn(2t1 + 11 ) t 1 < 0

+1, t1 > 0

This formula is valid unless s" ... s", is a sequence of twists, in which
n

+ -1 -m
case e" is undefined and s 2 ... sn-l is given by (sz11 st 1  sk ) or

(sk+y st -1 sz m.

Proof: If a letter st' is not surrounded in s on both sides by sZ and
1

sk 1, then the corresponding t' has a positive sign, and the first part
11 1

+ -l -
of the claim follows from Claim 7.3. That s2 ... sn is (sZ + st 1 sk- )

or (sk11 st 1sz)m in case E" is undefined is an easy combinatorial

argument. 
-

The previous four claims prove the following proposition.

Proposition 7.3: The combinatorial homotopy above on s2 ... sn-l gives

an alternating and constant parity A"-symbol with e"= -sgn(Z 1 +2t1)

if t1 < 0, e" +1 if t1 > 0, and sgn(0) (as yet) undefined.

(The disparity between the cases t1 < 0 and t1 > 0 is reflected

in Figure 7.8. The connection between the F" just computed and the

ratio t1 /M1 is explained in Remark 7.1.)

We describe the boundary effects and extend the combinatorial

homotopy above to a combinatorial homotopy from embedded admissible

non-exceptional A-arcs to immersed admissible non-exceptional A"-arcs.

Figure 7.15 depicts the homotopies described by the following pair-of-letter

adjustments. As usual, the solid lines in Figure 7.15 depict the

lifted letters, and the broken lines in Figure 7.15 depict the image

under the combinatorial homotopy.
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a) (s st +1) i12' 1 13

b) (s2 st~) -t" - k + k3

c) (5Z1 2, s3) 1 k

d) (syZ 2, sk- k 3

e) (sZ st+1 ) 2i +t' -Z -t13' 12 2 11 1

f) (st1 3, sti) -t1

h) (st3, s() 2 -t + t" - t" + Z"2
h Z13 ' 11 11 2 1 12

i) (ski2 st+l)ti
12' 1 13

j) (sk 2,st-1 ) i2 3 t~ ~ i

k) (sk2s ) 3i
)(s12' si 131) (sk st-) Z12' 11 13

1) ( t 5 11 12

n) b) -)1 , t +
13a" + 12

a)13' 2 12- 11 5 1

3 2- . 2
.(a b4d) )

3 37.15

f))

n) I p)l%0

Figure 7.15
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Proposition 7.4: If a is not a closed- component and its symbol is

non-exceptional, then a is homotopic rel D2 to an immersion a", where

a" has an A"-symbol with the following A" coordinates.

t= -(sZl3 ,st+
1  

13 ,sfi1) - (s +3 ,st+1) - (s

+ sgn(li+!z
1 +2t,) tj

tt =(stl3, st+1) + 3,t

tt -(sy12 st-1 )3 12 1

t= -(sk 2, st1
1 )

t (skl3,sZ 11 ) + (skf 3, st +1

12 13 12 13

tt= k ki =t
13 12 13 12

23 22 33 23 22 33

kil -ll+tl- (St s -1l sk s +1 s t
+ -1 +1 -it + Ey- (sjst - 2 ) - ) (s3,t (skl3 11

t =tl1 + kll - 2(sk+1,st 1 ) - s 13 ,st 1  13,s1 ) - (s! 12 ,st 1 )

In these formulas, the convention for sgn(0) is the following.

+1, if a has symbol s2 (sk + st-1 st- )m sk'

sgn(1) 12 1 11 12

-n =if a hs symbol sZl3 (sk11 st 1  l11) skl3'

Moreover, the symbol of a" is alternating and constant parity.

Proof: We check by hand in Appendix B that the proposition holds when the

A-symbol of a has A-length four or less; we will assume here that the

A-length of the symbol s of a is at least five. Let s" be the symbol

of a".

Claims 7.1-7.4 above imply that the image of s2 *** sn-1 under the

map above is alternating and constant parity, and we begin by considering

+1
the boundary effects in the total space S2. In this setting, (st 12 ,st 1 ),

(skZ ,st+_ ), (sZ13 ,st 1), and (s 2,st 1) are all obviously alright.
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Moreover, (st 1 2 sk1 ) and (sk 2' 1) are both alright by Proposition

A.2 ii) and i), respectively.

In the case of (sZ1 3,s)11  (and the case of (sk13 ' 1) by symmetry),

either s is of A-length three (and perhaps exceptional) or skI 1 is stable,

so that s" is alternating. To see that s" is constant parity, we must

show that the t" coordinate of s' is negative if the pair-of-letter
1

expression (sl3, sk 1) is non-zero. If sI = sZ13, s2 = s , and

S 3 = st +1 then s is of A-length four as indicated in Figure 7.16a. We
3 1'

assume then that s s t. In cases = st , it is geometrically
11ll 3 11'

obvious from Figure 7.16b that s has tI coordinate value equal to zero.

+ -l
In cases3  11, either s is of A-length four, s4 = st 1 and s has

3 11'1ete ss

negative twisting by Claim 7.3 as in Figure 7.16c, or s= sk + In

this last case, either s is of length five and the proposition holds,

-l
as shown in Figure 7.16d, or s5 = t1  and s" has negative twisting by

Claim 7.3, as in Figure 7.16e.

7.16a

7.16d

7.16b 7.16c

Figure 7.16

7.16e
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In the case of (s ,sk +) (and the case of (sk s +) by
In12 th1aeof1Zs~ 12' 11

symmetry), s" is alternating and constant parity if skf+ is stable; thus,11
+-l

we suppose that s = sZ1 2 = skil, and s t3 = st . Either s is of

A-length four, or s = . Thus, either s5= sk 12 and s is of

A-length five with a negative twisting number, as indicated in Figure

7.17, or s sk Ifs = sk, then either s = s13 which gives
5 l1e 5 11' 6 13'

a negative twisting number, as indicated in Figure 7.18, or s6 st .

If s5 sk , then sk is stable, and s'is alternating and constant parity.
5 11'1 11

The general case is identical to the above with a winding about

I2sk 1 2st1 H 2 11 followed by H2sk, 21sk12' or 121 sk 1 2 13. The

former is alternating and constant parity since sk is stable, and11

the latter cases are alternating and constant parity as indicated in

Figure 7.17 and 7.18, respectively- Note that sgn(0) = +1 is the

appropriate convention here.

7 .17a
Figure 7.17

7.17b

7.l8a Figure 7.18 7.18b
Figure 7.18

Fi2ure 7.17

ew

ew

eft

7.18a 7.1l8b
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Finally, in case of (s 3,sk + ) (and the case of (skf 3 s11 ) by

symmetry), eithers =sZ 1 3 , s2 =s sk , and s3  sz13, so that s is

exceptional, or s3 = st1 . If s = sZl2 then s has A-length four as

+ -
indicated in Figure 7.19. If s = S41, then s5 = stl , and the

Skil arising from s3 is stable. If s sZ- and s5 = S%3, then s"

is alternating and constant parity, as indicated in Figure 7.19. If

s 1 sti , then s= sk, and the sk" arising from s5 is stable, and

is alternating and constant parity. Thus, suppose that s4 4 and

s -ksz ; this implies that s= st . The general case is identical

+ -l
to the above with a winding about H 2  11 H2st 1H2 z1 followed by

12 s13 as indicated in Figure 7.20; or followed by 112s 2st1 2 12
+ ~ - 1 ~ +

as in Figure 7.19; or followed by H2k 11r2 st 1 2 s 11, and the sk

arising from this last twist is stable; or followed by H 2 sk~ 1 and

the sk" arising from the last twist is stable. Note that sgn(0) = -1
11

is the appropriate convention here.

7.20a

2 - "b

7.20b

Figure 7.20

7.19b7.19a

Figure 7.19
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Proposition 7.5: Suppose that a is a non-exceptional multiple arc

on S2. The parameter values (c)A,, are determined from the parameter
-=2A

values (a)A by the following formulas.

2= 3 3 = 2
12 13 13 12

ki = kki = -L
12 13 13 12

tit =e" tit I t = kit ki ki =z =0
23 22 33 23 22 33

t = ( A (k +t)) V 0 + t
2 13 11 1 t 2

tt = (( + t V -t12 A 0 + t3

t = (( + t )v -k1 2 ) A 0 + t

5 1 3  11 +t1 )) +t 5

t sgn(2t +Z1 +%1 ) t1 -(t' - t 2 ) - ( - t 5

kil=(ty - k3 + ) V 0 + (-ty - ti - t 12

= (t - 3 + ) V 0 + (-t 1 -kv V2
11 1 13+l 11(- 1-1

In these formulas, sgn(O) is defined as follows.

sgn(0) = +1, if .12

-1, else.

Proof: Just as in Step 1, one can compute the pair-of-letter expressions

in Proposition 7.4 from the parameter values (a)A as in the following

formulas.

(St st+1) = ( A t)VO0
13, 1 13 1

(s t+1 = ( A t) 70
(sf 13 , st1  13 1

13, sk- ) (3 A 1 k3( -t ) A ( + ty) V 0

( 3+ 1 13 11 13 1 1 +

(sZ st ) A t-t ) O13"1'3 11 1 11 1

+ ( A -t)VO
(stl1l'st1 11 1) 0

+ -1

(s12 st ) = ((-t1  - 1l) A V 0

(st2,st )= ((-t - l) A tl2) V 0
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We begin by considering the case where a has no closed curve

components, and we plug the formulas above for the pair-of-letter

expressions into the formulas of Proposition 7.4. All of the formulas

of this proposition follow immediately except for the expressions for

the st, t " and it. We must do some algebraic manipulation
teparameters 2 11j i n 110

for these parameter values. We will perform the computations for the

parameters t" and k" ; the algebra for the parameters ti and t" is
2 11' 5 11

similar.

tt I& t1 ) 7 0 + ( A k A (t - t ) A (kz + t)) 7 0

3 A t + (( 1 3 - t ) A kl) V 0, t1 > 0

(3 A + t)) V 0, t 1 < 0

k 11 + ti t1 Z:0 & %ll < (t 13 - tl)
ity + t , ti k &l l23

1i +13 - "i ty 1 0 & 0 (t13 -tl) y

t 1 3 , t 1 0 & (t 1 3 - tl) < 0

(Z1 3 A (kl + tl)) 7 o, t1 5 0

(Z1 3 A k + t)) V 0, as desired.

kill =1tl + ll - 2((Zl 1 A -tl) V 0) - (((-tl- ) A 1 2  0)

- (( 13 A t 1) 0) - ((k13 A 1 1 A A ( 1 3  t 1) A ( 1 1 + t1 )) 7 0)

t 1 + t - (13 A t - Mk13 - t1 At1) V 0), t 1 ?- 0

= - + - 2(t11 A -t)

-(((-ti1 l) A 12 V 0) - M 13 11 + t1 )) V 0), t1 < 0
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t + t 11 k13t 1 > 0 & t1 1 k13

t + t -1 t - k13 + tV, t 1 0 & k 13 11 5 t 1 k13

t + t - t - 1, t1 1 0 & t 1 k13 11

- t + 11 - 13, t 1 0, -ty 1 .t11 & kl13 t 11 + t1

t + -t 0 -t< & <Z +t 1 11 1 22)~~ 1=11 13=12

-t1 - 11 -z 12, ty i O, -t1 i Z1  & 12= 1t 11

-t-Z + t+Z t _ &-- <Zt
111 t- 09 +t t+ , 1 11= 12

= (t 1 - k13 + t l1 V 0 + (-t - 11 -Z 12) V 0, as desired.

To complete the proof of the proposition, one checks that the

formulas of Proposition 7.5 agree with the earlier computations for

multiple curves using Remark 7.1. We leave this as an exercise. 7

Finally, we consider Step 4. We abuse notation slightly and

describe the A"-coordinate values of the various exceptional arcs

of A-length one using the notation for the pair-of-letter adjustments.

sk2 2t2 + t"+ k22 13 1 11

sk 2k1" + Z" + t"
33 12 11 5

22 3 11 1

s3 2t" + t' + it
33 12 2 11

sz =i" + ki"
23 12 13

sfk =ti + 1;11
23 13 +-12

At last, we are in a, position to give the formulas that describe

the second elementary transformation. Note that we have performed

Steps 1-5 between the bases A and A".
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Theorem 7.1: The second elementary transformation from the basis

A to the basis A' is given b the following formulas.

k = k- + t + (L- k) V 0 + (-L - t 701 22 33 13 12

k' =(L A t A( 2 - L)) - 0
22 11 13 12

k3 k -Lk.a 11 t kZ12-13 + L)) 7 0

I23  13 AZ 12 A ( 13 -L) A (Z12 +L)) 0

kl2 -- 2k' -' + k + k + 2k12 22 23 13 23 33

kI' -- 2k -Ik + t + t + 2t13 33 23 12 23 22

ti - + 2 + (K- 1 3 ) V o + (-K- a 211 33 2213k2V

t?= K a A ( 13 - 12 - K)) 7 0

?= (-K A t a 12  13 + K)) V 0

23 13  12 A (t1 3 - K) A (K + k12)) V0

12 22 23 + 413 + t23 + 2t33

t' -2t' -t' + k + k + 2k
13 33 23 12 23 22

t? = 33 + (( 13 - 3 - 2 2 ) A (K + Z 0 + tS33 + 3 (( + 33 22 2

- Z ''3 3  ~AJi 3 3 I 2 2 / 12 ~3 33 A 3

t4= -Z33 + ((K+ 3 +22 e -(12 -3 -2t33)) A 0 + t4

t?= k33 + (3 ~ 2- 2k ) A (L + k 3 22)) I 0 + tI
5 33 +13 23 22 A3 22 ~ 7 t5

t k + +t + k' + t (Z? + k1 22 22 33 +33 1 + + (t 2 -t 2 ) + (t 5 -t 5 ,)

3sgn(L+K+33 22 33 22 1 + Z' 33

In these formulas, K is defined to be k1 + ti, and L is defined to be

+ t 1 . Furthermore, sgn(0) is defined by the following formula.

+1, t1 - 2k' -Ia '
sgn(O) = 12 33 23 0

-1, else

Proof: The proof is Step 5, an application of Remark 7.1 and some

algebraic manipulation. In fact all the formulas follow immediately
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from Steps 1-4 and Remark 7.1 except those for t' and k.' For these
11 110

two formulas, we must do some algebraic manipulation.

Consider the expression for k'. One first verifies that
11+

22 23 k'+k is equal to the following expression.

0, L > 0 & L > k13

k13 - L, L > o & k13 12 = L = k13

12 + (L A t11 A (k 1 3  12 - L)), L .0 & L < kl3

0 L < 0 & -L > t12

t12 + L, L < 0 & t12 13 < 12

kl3 - (L A A ( 12 k 13 + L)), L < 0 & -L < 1

t 12

2 13

One then computes that k' - k 33= (L- 1 3 + Y) O + (-L - 1 2 +Y) V 0

is equal to (L - k13) 7 0 + (-L - 12) 0 0, as desired. The algebra

for is similar.

Corollary 7.1: The second elementary transformation from the basis

A' to the basis A is given by the following formulas.

11 + ( - + (-L' 22 2

22 = (L'A 1 A (13 12
- L')) V 0

33 k (-L' A ' A 12 -13 + L')) V 0

S (k' A V A (k' - L') A (' + L')) V 0
23 13 12 13 12

-2 - +Iak +Iak + 2kz
12 22 23 13 +23 33

-2 - +Z' + 41 + 2t'
13 33 23 12 23 22

11 -a33 + 2'2 + (K' - t13 )V+(-K' - 1 2 ) V O

k22 = (K' A k' A (13 - I 2 - K')) V 0

k 3 3 (-K' A 11 A (k!2 - '13 + K')) V 0
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kz ( ' fz A (k K') A (W +fz k )7
23 13 12 13 12)) V 0

kz -2kz -fk +Z' + ' + 2t'
12 22 23 13 23 33

k =-2k3 - + k + k23 + 2k
13 33 23 12 23 2

t2  33 + ( + 33 22 12 23 - 2 33)) A 0 +

t3  33 + 1 3 ~23 2 22 ) A(+ 33 - 22)) 30+t

t4  33 +( 13 ~ 2 3  2k 22 ) A K'+22)

t5  33 + ((K' + 3 ~22 12 23 2133)) A 0 + t'

=' +33 33 22 22 11 + + (t3 -t ) + (t4 -t ))

+ sgn(L'+K"+k33 k 22 + 3 3- 22) (tj + 33 + 33)

In these formulas, K' is defined to be k + t{, and L' is defined to

be t' + t'. Furthermore, sgn(0) is defined y_ the following formula.
-11 1

= +1, if 12 -2 33 23 + 0.

-1, else.

Proof: The symmetry of S2 indicated in Figure 7.21 implies that the

formulas for ** (k,,) are the formulas for k'* ( '*), replacing

** (k**) by '* (kIz) and '* (kz,*) by k** ( **). The formula for

t* is the formula for t -1(*) with the symbol 'replacement as above

and t( replacing t*, where a fixes 1 and is the cyclic permutation

(2,4,5,3) on the other pants curves. -

One can of course prove the corollary directly by mimicking the

proof of the theorem with (A',A) replacing (A,A'). To prove this

corollary by checking that the transformations in the corollary and the

theorem are inverses (as in Section 6) is a very difficult computation.
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SECTION 8

Having computed the first and second elementary transformations

(and their inverses) in the previous two sections, we state the results

of Theorems 6.1 and 7.1 here for the convenience of the reader.

Theorem 8.1: The first elementary transformation from the basis A to

the basis A' is given by:

ti = (1 - itl)VO

12 13 (12 - 11) +11

2 = t11 (t12 -1)

tt - t + It)
2 2 11 + (12 1 )At1 )

t = -sgn(t1 ) ( 23 + (2 - t"

In these formulas, A denotes the infimum, V denotes the supremum,

sgn denotes the sign function, and sgn(O) is defined to be -1.

Theorem 8.2: The second elementary transformation from the basis A to

the basis A' is given b:

It21- 2 +1 + L1 - 2 )VO + (-L -1 )VO
11 22 33 13 12

t21 (L L1 A 1 A(t 2- 12-L1)V
22 '11 13))12

I 21 L(-L 1 At 2 +
33 ~ 11 12 13 )V

2 ( A( 2 - L 1  1 + L ))MO23 13  12 2 13  12

t2, -2 ~21 _ 21 + Z2 + 2 + 2t 2
12 22 23 13 23 33

t2? -2 21 _ 2, + 1 + t1 + 2t 1
13 33 23 12 23 22



2 - 2 1 2 -2 )
33 + 2 + (L2  3)V 0 + (-L _ 2)?7

(L2A 13 2 2))V0=~ ~~ (A1A(t'13  12 -)V

21 2 1 2=(-Ld A 1 ( 1 2 - 3 + L2))VQ

(t 3A t 2 3 L 2 ) A (L2 + 2

22

11
33

1,
23

11
12

1,
13

ti
2

t?
3

4

ty
5

t?
1

1
13

2
12

23

2,
33
11

33

21
23

+

23 33

+ t2 + 22
23 22

- 2 1 )A(L 2 + 1, - 1 '))VO + t
-22 33 22 2

S2, 12, - - 2 2))AO + t

)V-( 2 - 1? - 2t '))AO + t
22 12 23 334

- 22)A (L + 2, - t 2 ))V0 + t
- 22 33 22 5

33 (11 +11+ 2(t' 5

sgn(L + 2+ 1 - 1 + ,- 2) + + 2)sg( 33 22 33 _ ~)(t1  3

In these formulas, A and V are as in Theorem 8.1, Li denotes the quantity

+ t1 , and L2 denotes the quantity 2 + t Furthermore, sgn denotes
11 1. ___

the sign function, and sign(Q) is defined as follows:

+1, if 12 21 - t Y 0.
sgn(O) =12 33 2 3

else.Z

These theorems give explicit formulas for the action on 60'(F ) of

Lickorish's generators for MC(F ) as described in Section 3. The

piecewise-integral character of the action is directly implied by Theorems

8 .1 and 8 .2. Unfortunately, the formulas are rather cumbersome, insofar

as several of the Lickorish generators act as linear maps conjugated

by compositions of the elementary transformations.

119

= -2t1 it 1t1 + t
22 23

= -2t1i - t+
33 23

= 1 + ((1 +t
33 13

2 

-2+ ((L2 + t

33

1 1 + ((132 + t
33

t 2 +(t2
33 + 13

t 1 + 2 + 1
= 22 +22 +33
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One's first reaction to the complexity of the situation is panic,

and an appropriate response is to write a computer code to perform the

algebra of the computations. The formulas of the elementary trans-

formations are particularly amenable to computerization, since they

are essentially sums of infs and sups of linear maps. The notable

exception to this is the sign that appears in the expression for

the twisting number t1 in either transformation.

A FORTRAN code has been written to compute the action of MC(F )

on the collection of multiple arcs, as described in this thesis. Several

hundred thousand cases of the computation have been run, checking that

a transformation followed by its inverse yields the identity in each

case. Moreover, many trends predicted by Thurston's theory of

surface automorphisms are exhibited by experimenting with this

code. (See Subsection 2 below for a brief description of the

Thurston theory.) The code is great fun to play with, and a source

listing with documentation is contained in Appendix C. (The reader

interested in the bookkeeping details of the computation outlined

in Section 3 should refer to Appendix C.)

A more optimistic reaction to the complexity of the formulas derived

is to begin computing the various compositions that arise in the hopes

of simplifications of the sort that occur in the proof of Theorem 7.1.

This is not, I think, an unrealistic optimism. The sort of

computations that this involves are a rather pleasant blend of

combinatorics and linear algebra, and some progress has been made. I will

briefly describe some work in this direction.

Consider the pants decomposition shown in Figure 8.1 on the n-times

punctured sphere, n > 4, denoted S2 \n*. We distinguish the subgroup
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of MC(S2 Xn*) corresponding to the homeomorphisms fixing each of the

punctures. This subgroup of MC(S 2\n*) is called the pure mapping class

group of S2\n*, and is denoted PMC(S2\n*). It is well-known [2] that

PMC(S 2\n*) is isomorphic to the pure n-braid group on S2 modulo its

center. PMC(S 2\n*) is generated by Dehn twists along the nullhomologous

curves in Figure 8.2. Just as in Section 3, to compute the action of

PMC(S 2n*) on 9'(S 2\n*), it suffices to compute the transformations

indicated in Figure 8.3. These transformations are easily derived from

the formulas of Theorem 8.2; in fact, the piecewise-integral action

of PMC(S 2-minus-n-points-minus-(4-n)-discs) is a restriction of the

piecewise-integral action of PMC(S 2-minus-four-discs).

Figure 8.2

Figure 8.3

Figure 8.1
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For spheres with n punctures, I'have explicitly computed

several of the compositions of transformations that arise in the action

of PMC(S 2n*), and there is a concise description of the action in

several cases. A particularly simple case is the action of PMC(S 2 \4

on the subset of 9' (S2 \4*) corresponding to (necessarily closed) multiple

arcs with no boundary-parallel components. This action is faithfully

represented by an action on our parameter values of the group of

invertible integral matrices generated by (1 -2 and 11 )
The action is a twisted right action given by:

(Zt,t 1 ) ( a b) = (lat-. + ctj, sgn(aZ + ct1 ) (bz + dt1 )

\ c d 11

This description of the action of the pure mapping class group of S2 \4*

on the collection described above will be useful in our subsequent

discussions of applications.

We-will discuss several applications of our computations in turn in

the following five subsections. When convenient, we will assume our

surfaces are supplied with a fixed smooth structure.

1) The 'Word Problem for Lickorish's Generators of MC(F )

Using the Alexander trick, one easily proves the following Propo-

sition.

Proposition 8.1: Let ip be a mapping class on F , and let {c k be a

collection of simple closed curves so that

a) F \U{c k} consists of discs.

b) ckIck, is either empty or a single transverse intersection,

for k 4 k'.

i is the identity in MC(F ) if and only i fixes the isotopy class

of each ck'S
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Thus, the computations of this thesis give an efficient algorithm for

solving the word problem for Lickorish's generators of MC(F ): one

simply evaluates a given word on some collection {ck} as in Proposition

8.1 and checks that the isotopy class of each ck is fixed.

It is well-known (21 that MC(F ) is isomorphic to the group of

"orientation-preserving" outer automorphisms of Tr 1(F ). Thus, a mapping

class is the identity in MC(F ) if and only if each of its representatives
g

acts like an inner automorphism of m 1(F ). This could be regarded as

giving an "algorithm" for the word problem in Lickorish's generators:

one checks that the word acts like an inner automorphism on a set of

generators for Tr1 (F ). This is an unwieldy computation for words

of large length.

Isotopy classes are the- same as free homotopy classes of curves

embedded in surfaces [7 1; furthermore, free homotopy classes of curves

are the same as conjugacy classes in ff 1(F ) modulo orientation. Thus,

our formulas describe the action of Lickorish's generators on embedded

conjugacy classes;in f 1 (Fg) modulo orientation.

2) Thurston's Classification of Surface Automorphisms

Let F be a surface of negative Euler characteristic. We will say

that a mapping class * on F is pseudo-Anosov if, for every iterate

n and for every free homotopy class [y ]of non-boundary-parallel, not

necessarily embedded connected curve, [V ny] + (y ]. (Note that some

iterate of * always fixes all boundary-parallel curves.) We will

say p is periodic if some iterate *n is the identity in MC(F). We

will say $ is reducible if there is a closed multiple arc a, no component

of which is boundary-parallel, so that t permutes the components of a.

a is called a reducing curve for .
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Simply stated, Thurston's classification says that a mapping

class is one of periodic, pseudo-Anosov or reducible. A mapping class

may be both periodic and reducible, and this is the only overlap in

the classification. A natural problem is the classification of words

in Lickorish's generators into periodic, reducible and pseudo-Anosov

mapping classes.

The periodic, pseudo-Anosov or reducible character of a mapping

class * e MC(F) has a natural description in terms of its piecewise-

integral action on (F). For instance, suppose that $ fixes a

curve whose parameter values lie in a top-dimensional simplex a of the

decomposition K of the piecewise-integral structure. Under these

conditions, there is an eigenvector in 9 '(F ) with eigenvalue 1 for

the integral matrix which corresponds to a in the piecewise-integral

structure of the action of $.

One reason that this problem is of interest is that one can often

find a description of the monodromy of a fibred link in terms of Dehn

twists, and the periodic, reducible or pseudo-Anosov character of the

monodromy is connected with geometrical structures on the link

complement. In many examples, the monodromy is the lift of some map

2
to a branched cover of the disc; hence the action of MC(S \n*) on

(02\n*) is of interest here.

Another reason that this classification problem is of interest

pertains to the following theorem, which will be proved elsewhere [15].

Theorem 8.3: Let y and 6 each be multiple curves in a surface F with

negative Euler characteristic. Let {c.} and {d.} be the components

of y and 6, respectively. Furthermore, assume the two conditions below.
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a) c and d intersect minimally, for all i and all j.

b) The components of_ F\({c }J{d.}) are all discs.

+1 -1
Let w be an coMosition of the Dehn twists Tc an d. so that,

+1 -1
for each c. or d., Tc or appears at least once in w. Under these

conditions, w represents a pseudo-Anosov mapping class.1

This recipe for constructing pseudo-Anosov mapping classes generalizes

known constructions of such. I can prove that this recipe gives all

pseudo-Anosov mapping classes in a few cases, and I conjecture that this

is true for g-holed tori, at least up to iteration of the map and composition

with maps of finite order.

For the special case of a mapping class 4 on S 4*, there is some

iterate 4'n of 4 that is a pure mapping class. The periodic, reducible or

pseudo-Anosov character of 4 is determined by the trace of the matrix

n
corresponding to 4n. (See Proposition 8.2.)

3) The Action of MC(F ) on Thurston's Boundary for Teichmuller Space

The Teichmuller space of F , denoted d(F ), is defined to be the space

of Riemannian metrics (with the natural toplogy) of constant curvature

-1, modulo push-forward by diffeomorphisms isotopic to the identity.

0. Teichmuller [16] showed that F(F ) is homeomorphic to an open 6g-6 disc.

There are several classical compactifications of J'(F ), and Thurston [17]

has given a beautiful compactification of d'(F ) by a 6g-7 sphere. We will

presently describe Thurston's compactification.

By an n-gn in a surface F we mean a smoothly embedded open disc in the

interior of F, with piecewise smooth frontier and n discontinuities in the

tangent of the bounding curve. Some examples of n-gons are pictured in

Figure 8.4. A subspace XC.-F is said to have a complementary n-gon if some

component of F\X is an n-gon in F; X is said to have a complementary annulus

if the closure of some component of F\X is a smooth annulus in F.
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Figure 8.4

A train track T in the surface F'is a closed branched one-submanifold

embedded in F, so that T has no complementary null-gons, mono-gons,

bi-gons or annuli. Some examples of train tracks are pictured in

Figure 8.5. A train track T is a one-complex in a natural way; the

0-simplexes are called the branch points of T, and the 1-simplexes

are called the branches of T. A train track T in F is said to be

transversely recurrent if, for each branch b. of T, there is a simple

closed curve d intersecting b. transversely in a point; furthermore,

there are no bi-gons complimentary to dVT. Transverse recurrence is

a technical condition that we will require shortly.

Figure 8.5

2-gon1-gonO-gon

.........

6 -Ago n
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A measure m -on a train track is- an assignment of a positive

real number m(b i) to each branch b of the train track T. The number

m(b ) is called the weight of the branch b . The weights are required

to satisfy a single relation for each branch point; for instance,

whenever the branches b., b. and b are as indicated in Figure 8.6,
i j k

the weights must satisfy m(bi) = m(b.) + m(bk). We require an analogous

additivity relation when more than three branches have a branch point

in common. A measured train track is a natural generalization of a

closed multiple arc: closed multiple arcs correspond to measured train

tracks with integral weights.

b

b.

b k

Figure 8.6

Let c be a simple closed curve in F , and let (T,m) be a measured

train track. Isotope c so that it misses the branch points of T and there are no

bi-gons complementary to cU T. If card(cAb.) = ti, we define the length

of c to be Etim(bi). The length of the isotopy class of c is well-defined,

and we extend the definition of length to closed multiple arcs by

requiring length to be additive on components.

We will say that two measured train tracks are equivalent if they
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define the same length function on closed multiple curves. Twio measured

train tracks with length functions L and L2 are said to be projectively

equivalent if there is some positive real number r so that

L1 = rL2. Thurston [17] shows that the collection of projective equi-

valence classes of transversely recurrent train tracks (with a

suitable topology) forms a 6g-7 sphere that compactifies 6(F ).

MC(F ) acts on g(F ) by push-forward of metrics, and this action

extends to the natural action on Thurston's boundary: the action of

MC(F ) on (isotopy classes of) measured train tracks. Our computations

describe the action of MC(F ) on standard (see Construction 5.1)

measured train tracks, and it seems almost certain that any measured

train track is projectively equivalent to a standard one. In any

case, the collection of (projective equivalence classes of) measured

train tracks with integral measures is dense in Thurston's boundary

for j(F ); thus, we have already computed the action of MC(F ) on

a dense subset of Thurston's boundary for F(F ).

4) Linear Representations of Mapping Class Groups.

Let F be some surface. The goal is to exhibit a faithful represen-

tation of MC(F) as a group of invertible matrices or prove that such

a representation cannot exist. Such representations would be useful

in better understanding the mapping class groups.

We have derived a faithful representation of MC(F) as a group of

piecewise-integral transformations provided the Euler characteristic

of F is negative. Furthermore, we have remarked previously that the pure

mapping class group of S 2\4* admits a faithful representation as a

subgroup of SL 27. It was mentioned that this action is twisted. Using

the results of this thesis, one might hope for analogous twisted linear

representations of the pure mapping class groups of S 2\n*, n > 4. It
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is possible that our formulas even describe such a representation as

they stand, but the twisting in the action renders this unrecognizable.

5) Dynamics of Surface Homeomorphisms

02
Suppose that f is a homeomorphism from the open two-disc D

to itself, and suppose that x is a periodic point of f of period n > 3.

1 n-i
Let O(x) denote the orbit {x,f x,...,f-x} . f restricts to a

0
homeomorphism of D \O(x), and we may consider the mapping class of this

02 2
homeomorphism. Identifying D \0(x) with S \(n+l)*, this mapping class

is given by a coset of the (full) (n+l)-braid group of S2 by its center.

We will call this coset the topological type of f with respect to the

orbit O(x). The topological type of f varies from one periodic

orbit to another, yet there is an obvious compatibility between

topological types of f with respect to various orbits.

The reason that our computations are applicable is that we can

compute topological types. The topological type of f with respect to

O(x) is determined by its action on ,'(D2\O(x)). Note that the

topological type of fn with respect to 0(x) is a pure mapping class.

In fact, we can determine the topological type of fn with respect to

O(x) by computing its action on a finite collection of simple closed

0 2
curves in D2. (One proves an analogue of Proposition 8.1.)

More crudely, one may simply consider whether the topological type

of f with respect to 0(x) is periodic, pseudo-Anosov or reducible. There

is evidence [4] to suggest that the existence of orbits of certain periods

puts restrictions on which of periodic, pseudo-Anosov or reducible

topological types can occur.

In the case of period three points, we can use the representation

of PMC(S \4*) described above to prove the following proposition.
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02 02
Propostion 8.2: Suppose f:D + D is a homeomorphism of the open two-disc,

and suppose the x e D is a period three point. The topological t

' F PMC(S 24*) off3 with respect to the orbit of xis described b

an invertible two-byj-two integral matrix B. B is determined bv the

3 02action of f on two simple closed curves in D . Moreover,

a) $ is reducible i and onl if trBI = 2.

b) $ is periodic if and only if ItrB 1 2.

c) * is pseudo-Anosov if and onlyif ItrBI a 2.[

In conclusion, there are many interesting problems associated with

the action computed herein. What is lacking as a good qualitative

understanding of the formulas that we have derived. The setting in which to

begin developing this understanding is the setting of punctured spheres,

and some progress has been made in this direction.
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APPENDIX A

In this appendix, we prove several technical results about

symbols that are used in Sections 6 and 7. We adopt the notation of

Sections 6 and 7.

Proposition A.l: Let B and B' be two bases on the standard pants P

that differ only in the choice of canonical piece 1 or 1 (see Section

2). The transformation between 6 (P) and 2 , (P) is described by the

following formula.

(m1,m2 ,m3 )x(tl,t2 ,t3) + (ml,m2 ,m3)x(t1 Z11 ,t2,t3)

Proof: The simple and very useful isotopy that proves this proposition

is indicated in Figure A.1.

Figure A.l
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Proposition A.2: f st I and st 2 both occur as sub-symbols of (some

components of) an embedded admissible symbol, where Iny 1 and In 21 are

maximal, then in1-n21 5 1.

Proof: Let tm denote an arc twisting m times in the standard annulus A;

Ai \ 'U 1tn1 is a disc in which ~11t n2 is a properly embedded arc.A

n n
Corollary A.1: If st 1 and st 2 both occur as sub-symbols of (some

components of) an embedded admissible symbol, then sgn(n1 ) = sgn(n2)2

provided n 1 + 0 + n2.0
-1 +

Proposition A.3: a) If st sz11 occurs as a sub-symbol in some embedded

admissible A-symbol s on S2, then an szi in s is always followed y

-l
a st

b) If st~- skf+ occurs as a sub-symbol in some embeddedb)Ifs 1  11____

admissible A-symbol s on S2 , then an sk + in s is always followed by

-l
a st-.
- f Tt

Proof: These are the only embedded possibilitiesas indicated in FigureA.0

Figure A.2

A-1 2+

A. 2a

-st s

A. 2b
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+-1
Proposition A.4: a) The image of st~ -st in an A-symbol on S under

-11: 1- 2

the combinatorial homotopy without boundary effects in Section 7 is

st +1sZ.

b) The image of sk1  stZ in an A-symbol on S2 under

the combinatorial homotopy without boundary effects in Section 7 is

st +1sf .1 M119

Proof: In Figure A.3, we illustrate the combinatorial homotopy in S2 for

cases a) and b). We use the results of Proposition A.3 to guarantee

that the lifts are as indicated in Figure A.3. The solid lines indicate

the lifts, and the broken lines indicate the image of the homotopy.0,

I

Figure A.3

A.3a A. 3b
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APPENDIX B

In this appendix, we check by hand the formulas for the two

elementary transformations on connected, non-exceptional A-symbols

of A-length less than five. There are several special cases here

that we wished to avoid in the combinatorial arguments of Sections 6

and 7. Since these special cases all have small A-length, it seems

easiest to exhaustively check these few cases.

These computations are a good exercise for the reader wishing

to familiarize him or herself with the parametrizations in Section

2 and the bases used in Sections 6 and 7.

For the first elementary transformation, there are six cases.

rn the following diagrams, we indicate the A-coordinates and depict

a good representative on the left; on the right, we give the same

data for the basis A'. We omit mention of any parameter values that

are equal to zero.

s2 st+1 s3
12 1 13

m 23 m =t,=1

st, +1 13, stf- s 122 13 1 12

2 1' 1 '2
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m2 st2 , -12 1 13

m 2 =2, m'~ 1 1 l-

stV st+ stV
12 1 13

tj=m'=1 , m'=2
11 2

12 st -1 st~1 stl312 1 1 13

m2 =-2 1 m 1=1 t1=-2

s-V st? +1 stV szV12 1 23 13

m?=m;=2, t'=12 1'1

stC st +1 st+1 stC12 1 1 13

m 2=t =2, m=1

st +1 sI st' sC. sC.t 2  13 1 23 12

t'=13, 1 m'=m'=21 1 12

a
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sZ sZ St1 -l
12 23 1 13

m m2=2 t1=-1

sZ' sti +1 s + t
12 1 1 13

t!=m'=2, m'=l12'1

s- st +1 st st
12 1 23 13

t=1, M2=m =2

-e'S 1 -t1 sv tw+l
st1 s st, st s t

12 t=1 1 13 2

mvtv=l, t'=-2 m1=2
1 2 1 '2

For the second elementary transformation, we check eight cases of

A-length three and seven cases of A-length four. We use the symmetry

of rotation-by-r about the line L in Figure B.l to avoid considering

cases whenever possible. Moreover, in case of A-length four, we do

not consider multiple arcs with tli = 2 since the considerations of

Section 7 apply to this setting.

In the following diagrams, we indicate the A-coordinates and depict

a good representative on the left; on the right, we give the same data
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for the basis A". We omit mention of any parameter values that are

equal to zero.

L

Figure B.1

s3 skz s2
13 11 12

M,=2, m 2=m3 =1
stII+1 si 2 stl1 skitt 2  12 1 13

1 '2 123
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St12 11 s 12
m 1=m 3 =2

skit stil skit13 11 13
Mft= f9?1=3

s-. st+1 skI
12 1 12

in 1m 3=m4 t 1 

skit3 sti st'+1 skit d 3
"3 , 1 11 13

m"3 in"mltv~
1 3'
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t13 st1 sk3=3 1, 13
M=M 2 =m 5 =1, Y1

st' skit st f+1 sV? ski2
12 11 1 11 12

125 ttMt=f~

13 st +1sk1 12
m1=m 2 =mg=, 4 1

+1
st" st"2 skit st 3

"2  12 11 13
MVI=Mf=tt"=1 M11=2

2 4 21
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s-C1  st +l stz1 13
m =m2 m t=1

St+ stV t"-l s +" st
2 12 1 12 5

M=M5=M=t"=t=', t'1=-1

12 st 2sk12

m1=m3=m =1, t3=-4,

st3  S1 3 St 1  s12 st4
t 1 =m"=m" =m =1, t"=t"=-1
1 1 34 3 34
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st1 st- skl312 1 13

m1 =m3 =m5 =1, t1=-

st ' skit st +l sti' skit
3 13 1 11 12

3 1 1 3

s sk- st+ ss13 sfz sZg stl3
=3 11 11 13

M,=3, m 2=m 5 =1

1+1 ~wS"-1 t"-1 +f" 1t
st"t~ sti2 st't- st"v- ski 2 tl~
St 2  12 1 1 12 5
Mfmtt =tlt=m"1~l ty"=-2
252 51' 1
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s-t ska sZ ska13 11 11 12
m,=3, m2=m =1

st + 2 st skit si"
t 2  12 1 11 13
t" =M"f=M=13 M11=23 t"f=-
2 24'1'1

Sk 13 st-1 sti sk1 3
t,=-1, m =2, m25=2

sk 2 st st' ski2"2 1 12
mfvmff=2 3ptf? 1

5 1.' 1
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sk3 stU S t+1 stk
13 == 1 13

m 1=m =2. t 1=1

11+1 SkiZ stif st"l1 skit stt+l
5 12 11 1 12 5

Inm"t"=2, t"=-1
1 55 1

st stZ st*+l sfz
12 11 1 13

m1 =t 1=m4= 5=1

3t' ski st'f sk"t st"f+1
13 11 11 12 5

tff=MV=Mf~j 11-
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sk s - +1
12 11 t1  s1Z12

m =m =2, t =1

stC3 skit st st+ skit sC"3
13 =2 " 1 1 11 13

ixi1=21 tl=1 m"t=4
4'1'1

sk2 st s- sk3
1 2, 14 11 1

-1 +1
st" st 3 st" ski"4 13 1 12
mflmllmfTtl"1j tff=-1
4 5 1 1 4
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APPENDIX C

01TL U:L IN IT. NOSOUP'CE
PRiRAMr TidI!T

:4 .4 : 1. A;:: 4::4 .: 4 f.. .~ 4c :+p 4. * *jp* jp : :. :4c :.:i :.:4.; *j ;.o 4 :.o .: 4 :4,$ :.: .k 4 : -k . ', :4 : A4 :4. Ac .: 4' -: 4,::.

THIS CODE PERFORMS THE C0 PUT TiON OF THE iCTICL
6 1F MPPING CLASEES ON CURVES 1ND ARCS IN CLO3ED-

ORIENTED SURFACES AS DESCRIBED IN MY THE3IS, THE
PAF AMETRIZA.TI0 OF CURVES AND RC D0PENL ON
YiVR iUS CHOICES, IN4CLUDING THE C4OCE OF N NTS

IDECOMPOSITI'ON OF THE SURFiACE, THE STANDAP.RD PPtT3
DECOMPOSITIONS ARE INDICATED BY THE CURVES NUMEEREID
, . , , ,2 3GENUS-3 IN FIGURE 1 , I REFER. TO MY THESIS
FOR THE OTHER CHOICES OF
SCuNVE NT IO REQ UIRED FOR A P1RAMETRI2TION, S$.EFL

11 CONVENTIONS RE THAT ZERO INTERSECTION
SNUMBER I MPL I ES NON-NEGAT I VE TISTING NUaBE.., AN

4 I THE STAND ARD PANTS RUNNING FROM A COMPONENT
J- THE eOUND ARY AC.: TO THE SME COIPONEN L.P

AROlUND TO THE RIGHT,
WE CONSIDER THE ACTION OF DE* TWISTS ALO G

THE jENl-4 CUR f ES PICTUREI IN FIGLURE T THESE
A R OF FOUR GEOMETRXCAL TYPES:

1.* TWISTS ALONG A PANTS CURVE
) TWISTS ALONG A CURVE IN THE TORUS fINUS

TWO DIScS INTERSECTING TWO PANTS CURVES
i 3 S TWISTS ALONG A CURVE IN THE TORUS MINUS

ONE DISC INTERSECTING ONE PANT !S CURE
*; TWISTS 'ALONG A CURVE IN THE SPH-EE rIU'i

FOUR DISCS INTERSECTING ONE PANT3 CURVIE
11HE CUR IN FIGURE 1 ARE NUMBERED -1 T

T W I STS I. ,,.,3:GENU2-3 ARE OF TYPE 1, TILST
I 3*GENUS-2, , , 4*GENUS-5 ARE OF TYPE 2' T4ISTS

44GENJUS-4 AND 4*G EJIU-3 ARE OF TYPE 3 1D.
ST S 4'GENUS-2. ,,,5*GENUS-4 ARE OF T'Y PE

4. IN- GENUS 2, TWISTS 1, 2 AND 3 ARE OF TYPE
H T) .Ie:TS 4 t tND 5 OF TYPE 2.

THE CODE PROMPTS THE USER FOR THE INPUT
-1 .S WILL BE EPLAINED, AND THE DiiEASTItAS

OF ARRAYS ARPE SET TO HANDLE GENERA 2..3 -ND 4,
TO SET DIMENSIONS FOR HIGHER GENER., ONE NEED
"'ILY CHAVGE THE F ITRT DIMENSION OF THE P RRY
f R TE IN MAIN AND THE DATA V ALUE OF M111"D:IN

TO T3*GENUS-3 .
NCURVE HOLDS THE PARANETER ALUE OF THE

C" UND E R CCNS IDERTTI7N AT ANY G1EN STPGE P NF
EC'PU L'T ron , A T V I US PINTS., TH

UE IS RELATI E TO VARIOUS PA."- NTS DECOMP T TT.

SP E ONLY ONE SET OF P.RA IETErS "T TME
STHl WHE1- CELLING ONE OF THE ELENENTR Y

RFRMT~Ci[.fS, NCUPYE HOLD: THE -R7 ,'ETEi V-L
EL V . ' -ERT'I PANTS IECO POIzT ION, fND

Uj RETR.N F R.'Il ONE OF THE EEENTAR:Y TASFOii.T ILN

I ,- I~ E!C .iU. IT L; 1
T- =4:-4::.:.:.:4:4~44:..:' :-7::4 i* r. T. . .. i.j

m I - m
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t * * *****: i' : 4-c 
1' ;' : ' *4,

- ~ ~ ~ ~ ~ ~ - 1-+ N2~~*:.' 4~'* 4.:f

4c . 1 :J:i.J,::4,

C -c

i FIGURE 2A FIGURE 2E

I- ** * :*** :*'

:4. * * 

- :+:*.f2*:+: :+:4N3**
:4.: :f * :4':J - :. 4 +*

4 4

* *

S:4'.: 4. t : 4' *

FIGURE 2C

C 0 M MCIfN/ ENSE/NG ENUS ND I t"M
D 1IMEWNSIN NTAV(25,2)
C IMENSI ON NC1ORVEC 9 2
CHARACTER*4 CN T RL , STP, I TR, CNT

:ATA, S.TP, ITR, CNT/4HCTOP., 4HITER, 4HCONT/.. ;DIM/./

PROM'PT THE USER FOR THE GEHUS OF THIS RUN.

LjRITE(6..56)
ACC EPT NGENU3

ND I M=3*NGENU-3
.'***** *************************ARA **:-I******.

P1rPT THE USER FOR THE COORDINATES OF THE CURVE

OR ARC UNDER CONSIDERA TION, THE CCn'JFDIA TE ARE

. GIVEN BY A (3* GE NU-3 )-TUPLE OF ( INTER.ETION

R, TNBER T STING N!UBER ), AND THE PANTS CURVES

t-ARE NijtBERED AS IN FI&URE 1
:4'.:~ 4'.:~:k : - k :4--~ ti 4*- -4c. *4 :c:4 :,;. It' 4 -4- -* :4. :'4p :4' 4 :':4,! :4(0 4 4. 4 4 lo ' :4. 1 : .P. : +t -:4.:4.'t :4'. :k- 4.:':'

IITE( 6. 5T %
A CCEPT C NCURVE-' I, J'.. =1 ,2) , =1 ,NEITM

:::, :jc :k. :J- ** :+:-:4:, : 4: '.1-' : 4,** *

P1.OrIPT THE USER FOR THE NUMBER OF LETTE2S Ill

C ~ ~ ~ 'I D ENE CO DR A TIN HE EAIU ODL.NH
12T 2 1= LE:"TTE."p

:WC: ET NTE ST.10EP N.TW 4 :.t . J-:4 4 A'-.AI:J : . 4 oTl j .



-148
:41:;+t .4: :.: :* : ***1 *:e:*:- ::: *** .****;4 * **:*4 * *14

F*ROiPT THE UIEER FOR THE WORD. 0iRDS ARE R E AD FROM
LEFT TO RIGHT, AND ARE GIVEN BY A CNT:IT)-TUPLE
t F C UVE NUM ER, E:4PNENT % 1 HERE NTW ST IS THE
NUMBER: OF LETTERS IN THE tdORD,

I TE 6, 59)
A CCEPT NTAV I, J. J=1 , 2 I=1 , NTI ST

* :::f.* :* *:***:+:**:.*::* ** +:1:**:+*******:4*****:.*

THiS 1S THE FAIN P OVER THE LETTERS IN THE EOD
THE GEOMETRICAL TYPE OF THE LETTER IS D)ETERMI N E,
-ND THE CALL TO THE AiPPROPRIATE SUBROUTINE I

IMADE.

I 00C DO 01 I=1 *lNTWIST

NTJAU=NT A V I, 1 )
NEXP=HTAV( 1, 2)
IFC N TAU , LE , NDI M CA LL TW1TITf. N TAU., NEXP, MDl.M, NCU R VE
IF( (NTAU . LE. 44NGENUS-5 . AND , NTAU , GE, 3*NGENUS-*)

OR, e HNGENUS .EQ.2, AND. (NTKIAU. EQ, 4. OR. NTAUEQ.5)))
1 CALL TWIST2( NT AU, NEXP , MXD IM, INCURVE )

I NT AU EQ , 4*NillGE-4US-4, OR. NTA U EQ , 4*GENU- -
1 , AIND .NGENUS.,NE ,2))
I CALL T WIST3C NT AlU, N'EXP, M1:XD IM, NC:URVE )
IF( NT AU . GE, 4*NGENUS-2, A ND, NT4U., LE, 5*NGENU!-4 :

1CALL T! I ST4 NTAU. NEXP,11M:EDIM, NCURVE:
01 CONTINUE

4 4 ********:4**:*c*:***** : * 4 -:t ** A- .

OUTFUT THE COODINATES OF THE IMAGE CURVE AS A
; 3*jENUS-3:)-TUPLE OF ( INTER$ECTION NLiIBER,

T10Il TIN4 HUMBER"I,
:4 *:.** ****: *:****:1..********:f******:I** *:j*:*4****

W R ITE 6, 55) I, (NCURVE< I, )., J=1 ,:2:3, 1=1 ,NEIM)
C :9.********:e****,**J, :41 :4, :it :+: :4:, * ** :*&

C PROiMPT THE USER FOR THE NEXT OPERATION, THERE AiRE
THREE OPTIONS: STOP, ITERA TE, OR CONTINUE, THE

i STOP OPTION ENDS THE RUN, THE ITERATE OPTION
APPLIES THE WORD PREVIOUSLY ENTERED TO THE IMAGE
OF THE CURVE UNDER THE PREVIOUS APPLIC.ATION OF THIS
WORD., THE CONTINUE OPTION ALLOWS THE USER Tr'
PERFORM A NEW COMPUTATION.. AND THE USER WILL BE
PROP!PTED FOR THE COORDIN ATES A ND THE -biIRt i A'7:
DEFORE. NOTE THAT THE CONTINUE OPTION ASSUM1ES
THE AME GENUS AS THE PREVIOUS COMPUTAT ION,

W!.ITE 6,62)
ACCEPT CNTRL

.2 FORMAT( 28H CONTINUE., STOP, OR I TERA TE? >
61 FORMATCTA4)

IF (CNTRLEQ,STP) GO TO 101
IF (CNTRLEQ.CNT) GO TO 99
IF (CNTRL, EQITR) GO TO 0 C.

52 FORMA TC 15 I5)
53 FORMA Tr 15)
54 FORMATI5,I5)
5 '_ F 0R MA T ( 15,. 15H ,I , 5H , Ii
51 FORMAT( 7H GENLS?)
5T. F 1- R PIATCk* '3H C 00R D?
5 F0RMAT( 27H NUMBER OF LETTERS IN OR'
5 F M '-_eTN 19H . L E T T ER.. EiPIHEN T

iND
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U ROUT INE T I ST 1 ( NTAU ,NE4P1DI.CURE)

: 

THIS SUBROUTINE COMPUTES THE LINEAR ACTIPN F
':TWST PLON A A PANTS CURE

. -k. 4 :.: 4- . t: : :+.,* : :P*4.******* * :4-.:4. A e. j j :4'* :

CMON/SENSE /MGENU .U ND I Ml
Il ENS I ON NCURVE( MXV Ill 2 )

NCURVE ' NTAU, 2 )=NCURVE HT AU., 2 C.+ U YE: NT AU

R ETURN
E NI D
SUBROUT INE TWIST2 NTAU, NEXP, M::IDI, NCURVE)

C THIS SUBROUTINE COMPUTES THE ACTION OF A TT6ST
OF GED ETROAL TYPE TWO.

1'*.$.**:**:4******:*****:***::**.:::****:::t*****:****+.

COIMiON'SEHSE/NGEMUS, ND IM
D I MEINSl1)N CURVE M'D IlM, 2)

C THE VALUE OF NTAU, WHICH IS THE NUMEER OF THE CURVE
C ON WICH TO PERFORM1 A DEHN TWIST, DETERMIES THE
C NUMBERS OF THE PANTS CURVES INVOLVED IN THE

TRANSFORMAT ION. WE FIRST COMPOTE THE NUMBERS
O OF THE PANTS CURVES IN THE TORUS MINUS TWO DISC,
C WHICH ARE STORED IN N1, N2, N3 AND N4, ORDEREE D
C FROM TOP TO BOTTOM AND LEFT TO RIGHT, :S IN FIGURE 2
C :*:4:** ::j: ::*t 4*',*: A*** : *:t:***

NP=( NTAU-ND IM-1i )*3
Nl=2+NP
N2=4+NP
N3 = 3+NP
N 4=5+NP
IF( NGENUS ,.NE , 2 ) GO TO 0 1
IF(NTAU.EQ.5) GO TO 02
N1=3
N2= 1
H 3 = 2
N4=3
GO TO 01

2 =I

N= 3
N4=1

01 CONTINUE
41 * Al 4 . A:c : * 4c ;j, :4 , ** *:4, ** :4! k. :Jc

C THE DEHN TWIST IS THE CONJUGATE OF THE LIMEAR
SMP IN TWISTI BY A COMPOSITION OF THE ELEMEWTARY
STNSFORMATIONS, THE ARGUMENTS OF ELTI AND ELT2

C ARE EXPLAINED BELOW.

cALL EL T2 H2, N4, N1 , N3,1- N3, -1 , M:I., N.ACURVE)
CALL ELT I C N3, N2., + 1 , MXD I M, NCURVE )
CA L TI. I ST 1-N3 , NEXP , MXD IN., NCU RVE V.
CALL EL T I( N3, N2., -M .. M ID 1, N1. CURVE )
CALL ELT2C N2 , 4 , NI , f3 13, + I MXD I M, t NCUR ' E)
RET U RN
END:



SUSROUT INE TI IST3C: NTi.IU, NEXP ,MXD IM., NCURYE ) 150
, 4*:+: *:t:* *A4t*** :** :*** ::1*+** : *:4 : ft: ** 1***:t:,::t:*

THIS 3UBROUTINE COMPUTES THE ACTION OF A T IST
OF GEOMETRICAL TYPE THREE,

-4c4:: .* *: :- - Ac ::: ::# :4 o * :4.- ::* :4 :- : 1- * * :f : 4! -t

C0, MON/ 3ENS11/NGENUS , ND I. M
D I MIIENSION NCURVE< MXDIN. 2 )

.+**
4

**:+.::****:4**+***.*:4***:f**:+:*** 4*:+::***:*.-..***:1-.:

vdE FIRST COMPUTE THE PANTS CURVES INVOLVED IN
THE TRANSFORMATION FROM THE VALUE OF NTAU, NI
STORES THE NUMBER OF THE PANTS CURVE INTERIOR
TO THE TORUS MINUS A DISC, AND N2 STORES THE
PANTS CURVE THAT IS THE BOUNDARY COMPONENT OF
THE T.ORUS MINUS A DISC, AS IN FIGURE 2B.

k *:*******:+:* ******:4 *4c******:4: ** A* *****.

IF( NTAiU. NE.4:*N4CENUS-4) GO TO 02
NI1=1
N2 =2
GO TO 01

02 NI=NDiM
H2=NDIM-1

0 1 CONT I UE
-it 40l4- k oS*** ******: ***:** ** ***::*** ****** ****** **

CI THE DEHN TWlIST IS THE CONJUGATE OF THE LINEAR
MAP IN TWIST! BY THE FIRST ELEMENTATY
TRANSFORMATION,

: ***4,- A******** :**:c**:4.*:4-*:4*****:***$.::***:****

CALL ELT 1 K , / N2, +1 , M:DIM, NCURVE )
CALL TWISTI(NI,NE IEXP,MXDIM,NCURVE)
CALL ELT1 NI ,N2, -1 , MXDIIM, NCURVE )
RETURN
END
SUBROUTINE TUISTie4( NTAi., NE::-P, MN MD IM, NCURVE )'

:c**: *******:*******************.***4*

THIS SUBROUTINE COMPUTES THE ACTION OF A TWtIST
lOF GEOMETRICAL TYPE FOUR,

::*4-******************* 4.** :.******

C OilMON/SENSE/.4NGENUE, ND I ri
DIMENSION NC:URVE.MXDIM.,2)

W WE FIRST COMPUTE THE PAINTS CURVES INVOLVED IN
THE TRANSFOIRMATION, N1 STORES THE PANTS CURVE
INTERrOR TO THE SPHERE MINUS FOUR DISCS, AND
N2, N3, N4 AND fS STORE THE PANTS CURVES THAT
ARE BOUNDARY COMPONENTS OF THE SPHERE MIINUS
FOUR DISCS FROM LEFT TO RIGHT AND TOP TO BOTTOM,
AS IN FIGURE 2C,

CA **::4:******************A**,****************

NP=3*( NTjAU-4*NGENUS+1)
N 1=5+NP
N =4+NP
N3=3+NP
N4=7+HP
N5=6+NP
IF( NT AU, EQ , 4*NGENUS-2 : GO TO 02
IF. NT AU, EQ , 5*NGELNUS-4) GO TO 03

COTO cl1
0:2 NI=2

N3=4



CO TO 01
03 Ni =ND IN-i

S2=NDI-2
N3=ND Im-3
74=ND'IN

1 C:ONhTINUE
:4 : e : 4-::c * :4 * : * * :4 :4* :4* :44 * :+:4: :4 * :-P: :: : 4**

THE DEHN TWIST IS THE CONJUGATE OF THE LINEAR
fP IN TWITi eY THE SECONE ELEM1ENTRY

TRANSFORMATION.
AI'*: :: Al* ********:-.** * **c ********:i.*****:::::.
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C ALL ELT2( N 41.N2, N3, 144.. 145, + , M::2z IN., UCURVE )
CALL TWI;STI<N1 , NEXP, MX)D I M, NCLRVE :)

C:ALL ELT2,N N2., N , 45,- ,MrDIMNCURVE
R:ETULR N
END
3UBROUTINE ELT Ia N1, N2, I SGN. MXC)IN, NCURVE :;-

::i 4 0 :P*** :f :**JC10***A,** *J*:i* -* ** .o* :+,J- A, JC .I-:A.: *

ELTI PERFORMS THE COMPUTATION OF THE FIRST
ELEMENTARY TRANSFORMATION ON THE TORUS -INUS

A DISC. N1 IS THE PANTS CURVE INTERIOR TO
THE TORUS MINUS A DISC. N2 IS THE PAtNTS CURVE
THAT IS THE BOUNDARY COMPONENT OF THE TORUS
MINUS A IDISC (SEE FIGURE 2S), AIND ISIGN IS A FLAG THAT LEEMNES
WHETHER TO COMPUTE THE FIRST ELEMENTARY
TRANSFORMATION OR ITS INVERSE, ISGH=1 MEANS
COMPUTE THE FIRST ELEMENTARY TRANSFORMIATION, AN[
ISGN=-1 MEANS COMPUTE THE INVERSE.

.ic *** *:*****1******:****** ****

C!MMON/SENSE/NGEML1S , ND) I N
DIMIENSION NCURVE MXDIN, 2 )
DIMENSION L< E5)
NT=NCURVE( NI ,2 1
CALL PARM1 142., 1 I , N , L.. MXD IM, tCURVE )
NEW 1=M AX 02( L( 2 - IA BC NT ), 0 )
NEW2=L( 2 )-NEW1
NCURVE( N , 2 )=IS IGN( I , -NT )*< L< 5 )+NEi,2
IF, ISGN, EQ. +1 ) NCURVE< 112, 2)=NCUR'Et N2., 2'+L' I

+AX0. rMIN'YNEW2, NT))
IF! ISGN EQ. -)

1 NCURVEl" N2, 2 =NCURVE( N2, 2 )-NEW 1 -Ml : fC 0, M I H -NT NEbW2
L '2 )=L< I )+NE12
L< 1 )=NEW1
L(C3 )=L,' 2)
L:4)=L
L( 5 )=IAES< NT )-NEW2
Lk6 )=0
iCUPVEC Ni , 1 )=L< 2)+L C 5')
NACURVE< N2, 1 )=2*L( 1 )+L, 2 )+L-' 3
RETURNI
ENDC
SU81ROUT I NE PARM< M I , M2.. M3, L, MIXD 11M, NCUIRVE :

THIS SUROUlTiNE STUFFS THE iRR7 L WITH THE INUMEER
OF RC PARALLEL TO THE VARIOU3 C:NONIC.L PIECES

IN THE PAIR OF PANTS ' WITH ELUNDRY Co:MPONEHTS
T .. C2..tj, L1S 1S "UFFE WIT Li t.,Lt ,L ;.L%22 i.-.23

L37.. IN THIS ORDER.
:*:*:~ ::~.k*.:: :~-.::: :+**~1:+4*4.:~.+::- 4*tG4-* i: 4 .:i- : 4.-.. :- 4'
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r TMENSION L( 6
C 0t.1 EN.1SE :SE /elNGENU . ND I P1

M 1EN' I 0NIDN N C:IJ RVE( D I . . 2 :
1 =NCLIRVE( N, I , 1 :

-2=NCURVE< M2. I :
N,3=NCURVE( M3 ,1 

1= 1-N2-N3
P 2=N2-N I -N3

P 3=N3--N I-N2
IF'PI .GT.0) GO TO 01

IF(P2,GT,0) GO TO 02
IF>.P3.GT GO TO 03
L, 1 )=1
Lv 2 1= n +N2- N3 :/2
L( 3 )=( HI+N3-N2 )/2

L4)=
L 5)=(N2+N3-fI :/2

L( 6 )=0
"0 TO 04

C L( I )=( NI -N2-N3')/2
L k.2 )=N2

Le 4 )=0
L: 5= 0
L(6=

GO TO 04
02 Le = I )

L(2)=NI
L?3 )=0
L(4 )=(N2-N i -N3)/2
L ( 5 )=113
L(6)=0
GO TO 04

03 L, I :=O

L K 3 )=Nl
L( 4 )=0
L( 5>=N2
L, 6 )=( N3-N 1 -N2 )/2

04 CONTINUE
RETURN
END

*4. ** **+ *** :************.4**4* : :** ************

C THE FOLLO.ING THREE FUNCTIONS ARE A CONVENIENCE IN
C THE FORMULAE OF THE SUBROUTINE ELT2,

C*-t********************************** *********4A*

FUNCTION NTRIP< I, .J,K)
NTRIP=MAX0( 0, MIN0( I., MIN< J, KU ):-
RETURN
END
F UNT I N 0 NQUAD( I p J., K , L

7N4! U AD=M A X 0 % , I N t: J, M IN 4: I IN 1 K, . .
R ETUR N
E T Uf;

END
~LfCT ION ND>UB< I . U)

U =M0C 0.0 f IN I. U :
T ET URN

up'
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f'EL2 m 'PRIRhM THE CoorP UTrATI ON OF THE 3ECON D
E T TR NSFIRMATION ON THE .FHERE INUS F U

,1'I IS THE PANTS CUVE INTERIOR TO THE SPHERE
1% *1*U L ORDSSAN 2 3 4 N5 AE TE L; UN E 0

3 i Ri. .'3 -; :S1 Ht. 4 % ~/ ~ Hi:~ LL~L~h

C 0PON ENTS OF THE SPHRE MINUS.' FOUR ISCS FROM LEFT
RIGHT AN TOP T: BOTTOM (mEE FIGUPE 2 ISGN J. J. FGU

mTERMINE HETHER TO PERFOR THE SECOHD ELEMENTRY
TRi ANS;FORMATION OR ITS INVERSE. I3GN= M EA4NS CFJPU:TE
THE SECOND ELEMENTARY TPRANSFORM.TION, D I:GU=-1

MEANS COMPUTE THE INVE RSE,
Ii CASE ISGN=1, THE ARRAYS L AND K HOLD

THE CANONICAL PIECES IN THE UPPER AN LOWER PiRS
OF PANTS, REECTIELY, THE ARRWYS UL ISD NI

HOLD THE CANONICAL PIECES IN THE LEFT AND RIGHT
-PAIRS OF PANTS, RESPECTIVELY,

COMlMON/SENSE/NGENUSNDIM
DI'MENSION NCURVE( MXD IM,2)
DIMENS ION L( 6 ), K( 6 ).. NK 6,NL 6)

Ir-IG'N.,EQ.-1) GO TO 21
CALL PARM< N1 , N3, N2., L , MIXD I M, NCURVE
CALL PARM( NI , N4, N5, K , Mr1:D I M.. NCURVE )
GO TO 22

21 CALL PA.RM< NI , N2, N4, K, MN1<D I M, NCURVE )
CALL PARM( N1 ,N5,N3, L.M r)D I M,-NCURVE)

22 CONTINUE
NT=NCUR VE( N 1 ,2)
L AMt=L( 1 )+NT
KAP=K( 1 )+NT
NK" I )=K< 4 .+L( 6 )+MAfRX 0 , LAMi-K 3 ) ::+MiN: 0. 0., -LM-L<.

N(4 )=NTR I P LAM, L'1), K( 3 )-L( 2 )-LA M)
NK' 6 )=NTR IPC -L A M, K< 1 ), L< 2 )-K" 3 )+LA M

M 5)=NQUAD( K( 3), Le 2), KC 3 )-L AN, L ( 2 )+L AM)
NLC I )=KC 6:+L: 4 +MA'Xc 0 KAP-L( >+rAX: 03', -K+M-KC 2
NL< 4 )=NTPIPC KAP, K( 1 ), L( 3 )-K" 2 >-KAP :
L1LC' 6 )=NTR I P' -KAP, L I )I, K( 2 )-L( 3 )+KAP

NL 5 )=NUDL( 3 ), K 2 ),L 3 )-KAPK'32 )+KAP)
NT2=L (6 1:+NDLIB( L 3 )-NLC' 5 )-2*NL( 4), KP+NL 6 -NL 4))
NT3=-NK( 6 >-NDUB% -L A M-NK( 6 )+FIK( 4 ), L( 2 )-NK( )-2:NK( 6 )
NT4=-NL( 6 :'"-ND'UB -KAP-NL( 6 )+NL( 4 )r, K 2 -NL'i 5 )-2*NL( 6))
NT5=K( 6 1+NDU8 K* 3 )-NKc 5 )-2*NK< 4 ,LAM:+NK 6 )-NK 4
I IEPS=-LAM-KAP-NLc 6 )+NL( 4 )-NK( 6 )+NKK 4
IEPS=ISIGN< 1, IIEPS)
IF (IIEPS, EQ, 0, AND, L2)-2*NK 6)-NK<5.NE.0) IEP=-IEP
NT1 =K( 4 )+L< 4 )- NL 1 )+NKC I ) )-IEPS* NT+NL( 6)+NK +

1 L. 6 )+K( 6 )
IF (ISGCHEQ.-1) GO TO 31

N'CURVE( N2, 2 )=NT2+NCURVE' M2, '2
CURVE ( N 3, 2)=NT3+NCURVE( N3, 2
C UR'E, N 4, 2 )=NT 4+NCURVE( N4,2 )

1CU RE f5, 2 T=T5+ NCURV E M5 ,2
:*URVEK N .. 2 :=NT 1 -NT2-'T. S

00 TO 2
31 NC URVEf N2,. 2 :=NT4+NCURVE M2, 'R

NCURVE': 113, 2 )=NT2+HOURVEC N 3,2 )
CURVE( M4 N 2 )=T+ NCR VE(. N4 , 2 M

C:rkVE NS 2 4 =NT-NCUVPE( N5, 2 )
LU:VE( Ni*h , 2 )=NT -iT2-NTS



L 6

L4 =L4)

2') N '-* L'

KK 4 )=-2'NK( 4

K( =K()

L 6)=-LN 6

Lr*:.3)=-2*NL4

AC : (=-2N I*K 1
fICURVE( NI , I
N:L-IPVE( N2, 1

?4UFVE' N4,A I
NCUPVE( N5, 1
KK TO 421

41 IN CUPV E <NI ,1
NCUR"/E( N21 I
MCI.RVIE< NZ3 , 1

I-C:URVE( N4,1
N C'sf RVE US-,' 5, 1

42 F =ETU 4
E1NCD

4N )-NL5.+L3+L5+2*L
4 '-K. 5 >+K3+K5+2*K 4

=:--NL +K 2+K5+2*K4
6 :-HKK S ::+L2+L S+2*L 4

,-i) Gco TO
:=2*L 1 )+L(
)=2*L-' 4 )+Ls
)-=K3 +KC :

)=KC2 :+2*K'

)= 2*L

2 :- L 
)=2.*KC
)=2*K,,

1

4
4

+LCS+ L (

)+Kl'

41
2 +L 3>
2 )+L 5

6 >+L(S)
4 *"!+K-** 5

2
3

2

3

)+ L

)+Kr

5

'5

154
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