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Motivation and Project Scope 1-1~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

1. MOTIVATION AND PROJECT SCOPE

Water clathrates, often referred to as gas hydrates, are crystalline solids composed

of an open network of host water molecules arranged in such a way that they create large

void cavities or cages capable of entrapping a number of different low molecular weight

guest molecules. The term clathrate was derived from the Latin word clathratus meaning

to be enclosed or protected by cross bars of a grating. Powell first used the word in 1948

to describe the peculiar cage-like characteristic of these compounds.

Gas hydrates were first identified to be the cause of plugged gas transmission lines

by Hammerschmidt in 1934. Since the formation of solid compounds in a natural gas

process stream can also impede heat transfer and erode blades on turbine expanders, many

of the studies involving hydrates during the last 50 years have been directed toward their

prevention. In fact, the work of Deaton and Frost in 1946, resulted in the development

of regulations limiting the water content of natural gas.

Natural deposits of methane gas hydrates were first discovered in the Soviet Union

in the early 1960's. They have since been reported in porous sediments in arctic regions

and below the sea floor. It appears that favorable conditions for gas hydrate formation

exist in about 25% of the earth's land mass. Pressure and temperature conditions in the

ocean are such that hydrates could easily exist in about 90% of the ocean floor sediments.

Recent estimates indicate that the amount of natural gas trapped in these in situ hydrate

clathrates may be as much as 1028 standard m3 (Holder et al., 1980). With current annual

world energy use equivalent to nearly 103 standard m3 of natural gas, these naturally

occurring gas hydrate deposits have the potential of providing a clean energy source for

nearly 10000 years (Barraclough, 1980)

Motivation nd Project Scope 1-1
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The water clathrate structure is a polymeric three-dimensional crystalline lattice

connected by nearly tetrahedral hydrogen bonds. Although clathrate hydrates are known

to form several different types of structures, including a recently reported hexagonal form

(Ripmeester et al., 1987), they generally crystallize in one of two cubic structures. The

unit cell of a structure I water clathrate is cubic with space group Pm3n and a lattice

constant of 12 A at 248 K. For every 46 water molecules, there are 2 pentagonal

dodecahedral cavities and 6 tetrakaidecahedral cavities. The unit cell of a structure II

water clathrate is cubic with space group Fd3m and a lattice constant of 17 A at 253 K.

For every 136 water molecules, there are 16 pentagonal dodecahedral cavities and 8

hexakaidecahedral cavities. (See Chapter 4 for details)

The key characteristic of these unique compounds is that the host structure is

thermodynamically unstable unless a number of the voids or cavities are filled by guest

molecules. It is the relatively weak van der Waals interactions between the host water

molecules and the entrapped guest molecules that ultimately stabilizes the compound.

The diameters of the voids formed by the lattice are such that the attractive intermolecular

forces between the host water molecules are strong enough to collapse the hydrogen-

bonded host structure. Water clathrates are generally regarded as nonstoichiometric

compounds since all available cages within the lattice structure need not be occupied in

a stable equilibrium situation.

The macroscopic properties of gas hydrates are determined to a large degree by

the molecular structure of the host lattice and the nature of the interaction between the

host and guest molecules. The complete characterization of these intramolecular and

intermolecular interactions is essential if one is to accurately predict the thermodynamic,

kinetic, and transport properties of clathrates. To date, however, the models used to

evaluate the configurational properties of clathrates have, for the most part, utilized a

spherically symmetric Lennard-Jones Devonshire cell theory approach first proposed by

van der Waals and Platteeuw in 1959. Their model neglected the asymmetries within the

Motvation and Project Scope
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clathrate structure. These asymmetries arise from the structure of the guest molecule as

well as from the geometry of the host lattice cages that contain the guest molecules. For

example, the behavior of a linear guest such as carbon dioxide would be expected to be

different from that of a spherically symmetric guests such as argon or methane. Large

discrepancies could result if branched guests such as isobutane or cyclopropane were

treated as being spherically symmetric.

Previous researchers have found it necessary to adjust the various intermolecular

interaction parameters in order to adequately fit experimental hydrate equilibria data.

They also generally specify a priori whether or not a compound can actually from a

hydrate, and if so, specify the clathrate structure and what cavity types can be occupied.

Anderson and Prausnitz (1986) recently claimed that most of the disagreement

between experimental and their correlations is inherently due to the symmetry assumption

of the van der Waals and Platteeuw hydrate model. The inadequacies of the spherical cell

model have been under scrutiny for some time, yet it is still the theory of choice for many

investigators.

Research carried out in out laboratory at MIT has extended the van der Waals and

Platteeuw theory and reevaluated its underlying assumptions. The use of deterministic

molecular simulations have allowed us to accurately account for the asymmetries which

arise from the guest-host interactions.

We have improved the existing van der Waals-Platteeuw model by a fundamental

reformulation to reestablish the physical significance of the potential parameters that are

used to characterize intermolecular forces between the guest and host molecules. This is

an important requirement, since the model has previously been used with non-unique

potential parameters regressed from experimental hydrate phase equilibrium data.

Motivation and Project Scope 1-3
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Overall, this work involves a rigorous molecular level treatment of water clathrate

systems. The results of our deterministic molecular simulations provide new fundamental

insight into the interpretation of intermolecular forces responsible for the stabilization of

these rather unique compounds. Aside from these fundamental contributions, the

methodologies and predictive capabilities of our work can be used for accurate

specification of phase equilibria in complex systems. Specifically, this work is applicable

to problems dealing with the formation and stability of in situ natural gas hydrates, as

well as problems in the production, pipeline transmission, and storage of natural gas.
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2. INTRODUCTION AND BACKGROUND

2.1 General Clathrate Properties

Water clathrates, often referred to as gas hydrates, are crystalline solids composed

of an open network of host water molecules arranged in such a way that they create large

void cavities or cages capable of entrapping a number of different low molecular weight

guest molecules. The term clathrate was derived from the Latin word clathratus meaning

to be enclosed or protected by cross bars of a grating. Powell first used the word in 1948

to describe the peculiar cage-like characteristic of these compounds.

Water clathrates were first discovered in 1810, by Sir Humphrey Davy, an English

chemist, who observed a yellow precipitate while passing chlorine gas through water at

temperatures near 0 °C. He identified this solid compound as a hydrate of chlorine.

Gas hydrates were found to be the cause of plugged gas transmission lines by

Hammerschmidt in 1934. Since the formation of solid compounds in a natural gas

process stream can also impede heat transfer and erode blades on turbine expanders, many

of the studies involving hydrates during the last 50 years have been directed toward their

prevention. In fact, the work of Deaton and Frost in 1946, resulted in the development

of regulations limiting the water content of natural gas.

Water clathrates have been proposed and used in a number of separation processes.

Specifically, they have been used successfully in the desalination of seawater (Barduhn

et al., 1962) and in the separation of light gases. The transportation and storage of natural

gas in the form of solid gas hydrates has also been suggested (Miller et al., 1945).

Hydrates have also been considered as a possible solution to the global CO2 problem.

Introduction and Background 2-1
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The deep sea injection of carbon dioxide from large concentrated sources, could provide

a mechanism for CO2 storage, as a solid clathrate.

For fundamental chemistry studies, the long term stabilization of reactive small

molecules is normally very difficult to achieve except at low temperatures. It has been

suggested that clathrates offer one possible solution to this problem (Goldberg, 1963).

Once stabilized within the clathrate cage, free radicals and other small reactive molecules

can be studied using spectroscopic, dielectric, and NMR techniques (Davidson, 1971;

Davidson et al., 1977; Davidson et al., 1984; Matsuo, 1984).

2.2 Natural Gas Hydrates

Natural deposits of methane gas hydrates were first discovered in the Soviet Union

in the early 1960's. They have since been reported in porous sediments in arctic regions

and below the sea floor as shown in Figure 2.1. It appears that favorable conditions for

gas hydrate formation exist in about 25% of the earth's land mass. Pressure and

temperature conditions in the ocean are such that hydrates could easily exist in about 90%

of the ocean floor sediments. Recent estimates indicate that the amount of natural gas

trapped in these in situ hydrate.clathrates may be as much as 1028 standard m3 (Holder

et al., 1980). With current annual world energy use equivalent to nearly 1023 standard m3

of natural gas, these naturally occurring gas hydrate deposits have the potential of

providing a clean energy source for nearly 10000 years (Barraclough, 1980)

Introduction and Background 2-2
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Reported Occurences of Natural Gas Hydrates
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2.3 General Observations

The water clathrate structure is a polymeric three-dimensional crystalline lattice

connected by nearly tetrahedral hydrogen bonds. Although clathrate hydrates are known

to form several different types of structures, including a recently reported hexagonal form

(Ripmeester et al., 1987), they generally crystallize in one of two cubic structures. The

unit cell of a structure I water clathrate is cubic with space group Pm3n and a lattice

constant of 12 A. For every 46 water molecules, there are 2 pentagonal dodecahedral

cavities and 6 tetrakaidecahedral cavities. The unit cell of a structure II water clathrate

is cubic with space group Fd3m and a lattice constant of 17 A. For every 136 water

molecules, there are 16 pentagonal dodecahedral cavities and 8 hexakaidecahedral

cavities. The polyhedra of these two distinct structures are shown in Figure 2.2. The unit

cells for each of the structure types are shown in Figures 2.3 and 2.4. A detailed

description of structural characteristics of the two water clathrate types is given in Chapter

4.

Clathrate networks consisting of hydrogen-bonded host water molecules are in fact

unstable by themselves unless a number of the voids or cavities are filled by guest

molecules. It is the interaction of these enclathrated guest molecules with the host lattice

that ensures the stabilization of the host lattice structure. The diameters of the voids

formed by the lattice are such that the attractive intermolecular forces between the host

water molecules are strong enough to collapse the hydrogen-bonded host structure. It is

the relatively weak van der Waals interactions between the host water molecules and the

entrapped guest molecules that ultimately stabilizes the compound. Several of the larger

hydrate forming compounds, although capable of stabilizing the larger cavities within the

overall clathrate structure, require the presence of a second hydrate forming component,

often regarded as a hilfgas (help-gas), to complete the stabilization of the structure.

Water clathrates are

Introducion and Background 2-4
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Figure 2.3 Structure I Water Clathrate Unit Cell
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Figure 2.4 Structure II Water Clathrate Unit Cell
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generally regarded as nonstoichiometric compounds since all available cages within the

lattice structure need not be occupied to ensure stability.

A pure gas water clathrate can be treated thermodynamically as a two-component

system consisting of water and a particular guest component. Multicomponent gas

hydrates can be treated in a similar fashion if the composition of the gas phase is fixed.

When three equilibrium phases are present, the system will be monovariant, and fixing

the temperature should specify the pressure. These equilibrium vapor pressures are

commonly measured as a function of temperature for various three-phase, monovariant

systems. For example, when either ice or liquid water, solid gas hydrate, and vapor are

present in equilibrium, the measured pressure is referred to as the dissociation pressure.

A phase diagram for water and various natural gas components is shown in Figure 2.5.

It should be noted that the dashed vertical line representing the ice-line is incorrectly

drawn at the higher pressures. The line should strictly curve to the left at the higher

pressures.

Introduction and Background 2-8
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2.4 Overview of Previous Theoretical Work

In 1959, van der Waals and Platteeuw proposed that the thermodynamic properties

of clathrates could be derived from a simple model corresponding to the

three-dimensional generalization of ideal localized adsorption. The model assumes the

empty host lattice to be thermodynamically unstable. The difference between gp, the

chemical potential of H2 0 in the unstable empty lattice, and pH, the chemical potential of

H20 in the occupied lattice, is given by

A A -- - = - kT viln( 1 + r C,,f,) (2.1)

where k is Boltzmann's constant, T is the absolute temperature, and vi is defined as the

number of type i cavities per water molecule in the host lattice, fj is the fugacity of guest

component J, and Cj is the Langmuir constant for a type J guest component encaged

within a type i cavity and is defined by

C.ZJi (2.2)
C' kT

where the "free volume" or configurational integral, Zji, is given by

Zj = 1 fe -U(r.,O..ty)IfkT r 2 sinO dO d4 dr da sin l d dry (2.3)

where U is the total interaction potential between the guest molecule and all host

molecules defined in spherical coordinates r, 0, and q and Euler orientation angles a, 13,

and y for the guest molecule. Unfortunately, the asymmetries of the host lattice cavities

and of the guest molecule itself makes analytical integration intractable. Generally, a

Lennard-Jones and Devonshire liquid cell theory approach has been adopted for the

quantitative evaluation of the configurational partition function of the guest "solute"

Introduction and Background 2-10
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The Kihara potential is represented by

U(r) r <2a

(2.8)

U(r) - 2a) ) ) r > 2a
(r - 2a) (r - 2a)

where 2a is the molecular hard core diameter, is the collision diameter, and e is the

characteristic energy. They also attempted to account for the general shape of the guest

molecule by considering two cases, specifically a molecule with a thin rod core such as

N2 or C2H, and a molecule with a spherical core such as CH4 or Ar. The host molecules

were modeled as point molecules having no hard core diameter.

Nagata and Kobayashi (1966) extended the method to the prediction of dissociation

pressures of mixed gas hydrates from data for hydrates of pure gases with water. They

used the Kihara potential for spherical and rodlike molecules to describe the interaction

between the encaged guest and the host lattice.

Parrish and Prausnitz (1972) later extended the use of the van der Waals and

Platteeuw hydrate model to the prediction of the dissociation pressures of gas hydrates

formed by gas mixtures both above and below the ice point. They also chose to use the

Kihara potential with a spherical core to model the gas-water interaction in the clathrate

cavity.

Recently, John and Holder (1985) examined the validity of the spherical cell

approximation. Using the Kihara potential in all of their calculations, they proposed

several modifications to original van der Waals and Platteeuw treatment:

2-12Introduction and Background



molecule within the host lattice cavity. It is generally assumed that the host water

molecules are uniformly distributed on a spherical surface corresponding to an average

cavity radius. This spherical cell model simplifies the integration of Equation (2.3)

considerably.

Zi = 4x f e -U(r)/Trr2 dr (2.4)

Van der Waals and Platteeuw used a Lennard-Jones (6-12) potential in the

development of the spherically symmetric cell potential model

U(r) = 4( )2-( )6(2.6)

where r is the usual distance between molecular centers, a is the collision diameter, and

e is the characteristic energy. The actual Lennard-Jones parameters for the guest-host

interactions were determined using the Berthelot geometric mean approximation for e, and

the hard sphere approximation for a.

£- (e 8s.~ ,)1/

(2.7)

(gust + ha,)
2

The discrepancy between theory and experiment later directed McKoy and

Sinanoglu (1963) to study the Lennard-Jones (6-12), (7-28), and Kihara potentials in the

spherical cell model.

Introduction and Background 2-11
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The choice of cell size used in the model (John and Holder,

1981).

The addition of terms to account for the contribution of

second and subsequent water shells to the potential energy of

the guest-host interactions (John and Holder, 1982).

The addition of an empirical corresponding states correlation

to correct the results of the smoothed Lennard-Jones

Devonshire model (John and Holder, 1985a, b).

These modifications attempted to remove the inadequacies of the spherical cell

approximation but unfortunately to some extent tend to cloud the significance of the van

der Waals and Platteeuw physical model. Although John and Holder maintain that their

potential parameters are consistent with those observed for viral coefficient data, the have

effectively introduced new empirically fitted parameters such as the cell radius into the

model.

Almost without exception, the interaction potential parameters used in these lattice

models are determined ad hoc by fitting experimental phase equilibrium data such as

along various univariant, three-phase dissociation pressure curves (Parrish and Prausnitz,

1972; Nagata and Kobayashi, 1966). The parameters obtained in this manner are not

uniquely defined. Often, agreement between intermolecular parameters obtained from

fitting hydrate dissociation pressure data and from gas-phase second virial coefficient or

viscosity measurements is poor (Tse and Davidson, 1982).

Since the macroscopic properties of water clathrates are determined to a large

degree by the molecular structure of the host lattice and the nature of the interaction

between the host and guest molecules, the complete characterization of these

Introiuction and Background 2-13
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intramolecular and intermolecular interactions is essential if we are to accurately predict

the thermodynamic properties of clathrate compounds. To date, however, the models used

to evaluate the configurational properties of these gas hydrates have for the most part

utilized the spherically-symmetric Lennard-Jones Devonshire cell theory approach and

have therefore neglected the asymmetries within the clathrate structure. These

asymmetries arise from the structure of the guest molecules as well as from the geometry

of the host lattice cages that contain the guest molecules. For example, a linear guest

such as CO2 would be expected to behave differently from that of spherically symmetric

guests such as Ar or CH4. Large discrepancies could result if branched guests such as

i-C4HIo or cyclopropane were treated as being spherically symmetric. In fact, Anderson

and Prausnitz (1986) recently claimed that most of the disagreement between experiment

and theory is inherently due to symmetry assumption of the van der Waals and Platteeuw

clathrate model. The inadequacies of the spherical cell model have been under scrutiny

for some time, yet it is still the theory of choice for many investigators.

The work presented here therefore represents an extensive evaluation of the van

der Waals and Platteeuw theory and its underlying assumptions. Given the

crystallographic data of the two water clathrate structures we were able to accurately

account for the asymmetries which arise from the guest-host interactions while

maintaining the physical significance of the potential parameters that are used to

characterize the intermolecular forces between guest and host molecules. This we

considered an important requirement, especially since the spherical cell model uses non-

unique potential parameters regressed from experimental dissociation pressure data.

Molecular dynamics simulations also were used to study the motion of guests within the

host lattice cavities. Additionally, this enabled us to quantitatively estimate the lattice

distortions associated with the large more asymmetric guest molecules.

Introduction and Background 2-14
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3. PROJECT OBJECTIVES AND APPROACH

The objective of this work was to develop a comprehensive physical and

quantitative description of the configurational characteristics of water clathrates using

molecular simulation methods. Our approach was as follows:

1) Perform a rigorous review of the van der Waals and

Platteeuw (1959) clathrate model.

2) Implement an accurate and reliable multi-dimensional

integration algorithm for the computation of the

configurational partition function while accurately

accounting for the structural characteristics and asymmetries

of the rigid host lattice and the entrapped guest molecule.

3) Critically review the current state of intermolecular

potential functions, particularly those indicative of the

hydrophobic type interactions associated with the modeling

of the guest-host intermolecular interaction potential.

4) Examine the contribution subsequent water shells have on

the total potential energy of the guest-host interaction.

5) Examine the effect of the inclusion of guest-guest

interactions on the total guest potential energy.

Project Objectives and~ Approach
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6) Estimate site-site potential parameters for the intermolecular interactions

between water and the key groups ( -CH 2- and -CH3- ) for hydrocarbon

guest molecules. Experimental data for model hydrate systems where only

one cavity type of a Structure I clathrate will be used to obtain these

parameters.

7) Use molecular dynamics simulation methods to investigate

the lattice distortion issues associated with the formulation

of the van der Waals and Platteeuw model.

8) Evaluate the feasibility of using molecular dynamics methods to investigate

the molecular clustering and nucleation phenomena associated with solid

hydrate formation.

3-2
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4. WATER CLATHRATE STRUCTURES

4.1 Crystallographic Studies

A number of articles have discussed the structural aspects of water clathrates as

determined by a variety of x-ray diffraction techniques (von Stackelberg and Muller,

1951; Claussen, 1951; Pauling and Marsh, 1952; von Stackelberg and MUller, 1954;

Jeffrey, 1962; McMullan and Jeffrey, 1965; Mak and McMullan, 1965; Jeffrey, 1984; Tse

et al., 1986).

Neutron scattering techniques have also been used to further refine the crystalline

structural database of the water clathrates (Hollander and Jeffrey, 1977; Chiari and

Ferraris, 1982; Tse et al., 1986). Hollander and Jeffrey (1977) performed a neutron

diffraction study of the crystal structure of ethylene oxide deuterohydrate providing more

precise data relating the hydrogen bonding characteristics in the water clathrate.

Water clathrates generally crystallize in one of two cubic structures. The unit cell

of a structure I hydrate is cubic with space group Pm3n and a lattice constant of

12.03f0.01 A at 248 K. For every 46 water molecules, there are 2 pentagonal

dodecahedral cavities and 6 tetrakaidecahedral cavities. The unit cell of a structure II

hydrate is cubic with space group Fd3m and a lattice constant of 17.31±0.01 A at 253 K.

For every 136 water molecules, there are 16 pentagonal dodecahedral cavities and 8

hexakaidecahedral cavities.

The pentagonal dodecahedral cavity, common to both structures, is the simplest

of the three cavity types. It has 12 regular pentagonal faces (F), 20 vertices (V), and 30

edges (E). The oxygens occupy the vertices while it is thought that the hydrogens lie on

Water Clathrate Structures 4-1
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the edges of the polyhedra. Euler's theory relating to convex polyhedra provides a simple

means of relating the number of faces and vertices to the number of edges:

12F + 20V = 30E + 2 (4.1)

The tetrakaidecahedral cavity has 2 hexagonal and 12 pentagonal faces, 24 vertices, and

36 edges:

14F + 24V = 36E + 2 (4.2)

The hexakaidecahedral cavity has 4 hexagonal and 12 pentagonal faces, 28 vertices, and

42 edges:

16F + 28V = 42E + 2 (43)

The polyhedra of these two distinct structures are shown in Figures 4.1 and 4.2. The

lattice characteristics of the two structures are given in Table 4.1.

In some cases, determining a particular clathrate structure can be difficult

experimentally, and some ambiguities in interpretation may exist. For example, until

recently it was believed that the small molecules, specifically those smaller than propane,

preferentially form structure I water clathrates. Measurements have since shown that Ar,

Kr, N2, and 02 form Structure II hydrates (Davidson et al., 1984; Tse et al., 1986). The

van der Waals radius and ideal stoichiometric composition of several of the more

common hydrate formers are shown in Table 4.2. Tabulated Lennard-Jones parameters

were used to estimate the van der Waals radii of the different water clathrate forming

compounds (Reid et al., 1987).

Water Clathrate Suctures 4-2
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pentagonal dodecahedron
(12 sided)

tetrakaidecahedron
(14 sided)

Figure 4.1 Structure I - Water Clathrate Polyhedra
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pentagonal dodecahedron
(12 sided)

hexakaidecahedron
(16 sided)

Figure 4.2 Structure LI - Water Clathrate Polyhedra
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Figure 4.2 Structure II - Water Clathrate Polyhech-a
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Water molecules per unit cell

Cavities per unit cell

Small
Large

Average Cavity Radius

Small
Large

Space Group

Lattice Constant

Typical Guest Compounds

Ideal Composition

Structure I

46

2
6

3.905 A
4.326 A

Pm3n

12.03±0.01 A

Methane
Ethane

Ethylene
CO2

Xenon
* Cyclopropane

H2 S

M1 3M 2 23H 20

Structure II

136

16

8

3.902 A
4.682 A

Fd3m

17.31±0.01 A

Argon
Krypton
Nitrogen
Oxygen
Propane

* Cyclopropane
i-Butane

2M1 M 2 l17H20

M,- molecules occupying small cavities

M2 - molecules occupying large cavities

* Forms Both Types

Structure I and Structure II Hydrate Lattice Properties

Water Clathrate Structures 4-5
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Argon 1.988 3Ar 17H2 0

Krypton 2.052 3Kr 17H2 0

Nitrogen 2.132 3N2-17H2 0

Oxygen 1.946 30217H 2O

Propane 2.873 C3H8 17H2O

Cyclopropane 2.698 C3H 47H2 0

i-butane 2.962 C4 H 1o-17H2 0

van der Waals radius 2-5/6a

Table 4.2 Ideal Water Clathrate Composition......... .~~~~~~~~~~~~~~::~~~::·::~:·:::::::i~~~ ~~:::·~i,::i:::::::::.·.·.·..·:.·;,·.·.·..·:.·.,·., ·:"'::::~i:.:-~:s~!..:.:s·::·S:.:. : :~:~~:~:f;:~~:~:~~::·::::5·~:~~:~·! 11:~:~)~L: ::::::~:::~::::·I··.... ........·;............ "~ ·~·:·: :::·::·~ :::::~·~~::~~~:::~~:::~::::::: ··
........... s:::::·::::::j::::;··· ··· ·::l::::~::'" "':'':~~~::::::~~:::::~:::::R::::::~::::::................~ ~ ~ ~ ~ ~ ~ ~~~~:::::::~:::j,:::·::~:: ts:::~···::·:~:::·.~w,.~~~~:····:~i ~ 15........... ..... . .........· ·5I :· · : ::I·:j::~:::~i:· · ::::~:::~~~::~~

:::::::j::::: Argon 1.988 3Ar:::-17H20~::·::··::··:a:
K rypton 2.052 3K r-17H .0::~ ~~::I::~.: · ··.·. ·.- · · ;-- :::,:::i~::~:::::::~~:: ::I:::~..i~.."

.I:::::::::.~~::: Nitrogen 2.132 3N2-17H20i~~:::~.:". ii~~ ;'~~~~~~i~~Si:i~:f~l ~ a~:
Oxygen 1.946 302-17H2 ·..-·:0.·..·,··,,·:., ·

Propane 2.873 C3Hg:·-l7H20"'
Cyclopropane 2.698 C3H6-17H20·:;:::..·.: .·:t··:·::··:L.··.··5::.f

X...........·· ~.r ·............ .........................:::::j:::· ':::::::::':ii~·::1::S:S: w::i~ ': '': ~jiii
....:.: .......... .. .... `

iiiiiii iiiiijiiiiiiii iiiiiiiiiiiiiSiii'iiiii iiiiii,. i·i·ii.iiiiiiii ....ii.... ii....

Methane 2.019 4CH4 23H20

Ethane 2.494 3C2H6 23H 20

Ethylene 2.337 4C2H4 23H20

Carbon Dioxide 2.212 4CO223H 20

Xenon 2.272 4Xe 23H20

Cyclopropane 2.698 3C3H623H2O

Hydrogen Sulfide 2.034 4H2S 23H 20

.. . .. .. .. .. . .,... .... I .... I'll, , " , , 1, , :.I............... ···;·.:... ··..;.. ··.. ···..··.. ··. "... ··. ; ··.. ··...;. ···r ··.. ·i.·;·' : ·.: . ···..r:.. · ·" " , ·-,. ....I···~~··''' ··- ~ ··.... .-. "' , - - . ... L ·5·····1·-·_······ C·r·r··5 ·~····... ....·;;·;.·;; · ·t·;·;. ....... ...... ........····...···..· ....··. ··..... ; .,....;........... r:<i .. .. ...... ... ·· 1 ·:·1 ;·:11···--I -:-···) ·. ···... ··-- ---, ---1 --, ·r ~ -1 l ·.:.: -. .......·.
................................... I............ ...
. ........ ..
.......

:::::::.:.:.:::::-:::::
:::::
:: :
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.- The Structure I and II oxygen fractional position generating functions and a

summary of the fractional positional parameters are given in Tables 4.3 and 4.4. The

parameters include those reported by Pauling and Marsh (1952), Stackelburg and MUller

(1954), McMullan and Jeffrey (1965), Mak and McMullan (1965), and Hollander and

Jeffrey (1977). The fractional locations of the various polyhedra are given in Tables 4.5

and 4.6. Further discussion regarding the nomenclature and usage of these functions is

omitted here, instead the reader is directed to the classic reference by Hahn (1988).

For the purpose of this work, the fractional positional parameters reported by

McMullan and Jeffrey (1965) and Mak and McMullan (1965) were chosen to best

represent the oxygen positions within the Structure I and II water clathrates. The

parameters determined by Hollander and Jeffrey (1977) were excluded since they were

derived from measurements on a deuterohydrate.

Tse et al. (1987) measured the lattice constant for the structure I water clathrate

of ethylene oxide from 18 to 260 K. They fit the experimental lattice constant, a(T), to

a quadratic polynomial in temperature, given by:

a(T) (A) = 11.835 + 2.2173x10 -T(K -l) + 2.2415x 10 -6 T 2 (K -2) (4.4)

Their results compared favorably with those reported by McIntyre and Petersen (1967).

Tse found over the temperature range from 20 to 250 K, the lattice constant increased by

0.13 A or about 1.1%. This slight temperature dependence we therefore chose to omit.

Instead choosing to hold the lattice constants to fixed values, specifically, 12.03 A for the

structure I water clathrate as reported by McMullan and Jeffrey (1965) and 17.31 A for

the structure II water clathrate as reported by Mak and McMullan (1965).

The resulting fractional Miller indices coordinates of the host water molecules in

the first shell of the different polyhedra are given in Tables 4.7, 4.8, 4.9, and 4.10. The

hydrogen bonding characteristics resulting from a statistical analysis of the oxygen

Water Clathrate Structures 4-7
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positions are tabulated for both structures in Table 4.11. Figures 4.3 and 4.4 graphically

illustrate the resulting hydrogen bond length distributions and hydrogen bond angle

distributions.

W00

Water Clathrate Suctres 4-8
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Set = (c)
Multiplicity = 6

I .1..:...v. .. ... ............

4-9

A-

-x

Ix

-x

½+x

½-x

-x

½+x+ X

-x

-x

x

½+x

-x

½-x
-x

x

-

-x

½ -x

%+x

½-x

½-x

Structure I - Oxygen Fractional Position Generating Functions

Set = k) 
Multiplicity = 24

Set = (i)
Multiplicity = 16

4 1 0 I½

0 ½

½ 14 0

½ Y4 0

o ½ 1/4

0 ½

x

-x

-X

½-x

½+x

½+x

-x

-x

Xi

½+x

½-x
½-x

0

0

0

0

z

z

-z

- z

y

½+x

-y

½+y½-y

½½ y

½

½+z

½+z

½-z
½-z

y

-y

Yy

-y

0

0

0

0

z

z

-z

-z

½+z

½+z

½-z

½+y

½-y

½+y

½-y

z

z

-z

-z

y

-y

Y

-y-y

0

0

0

0

½-z
½-z
½+z

I½+z

½-y
½+y
½-y
½+y

½

½

½

½I| -K

Ih -z

Ih +z

Ih +z

I::, ,::::: ': :R:::::::,:::::::::: s:.:;:::::. :: -.. ..:> -.. .:>- - :; . - - .2 .-.
. ·:·· · · · · ·· · · · ·::':'-' R'" R ::iii1 " i S ii
:--::::::0: > f:::- . :

i 1 ° 1 ° I

Pauling and Marsh (1952)
y(k) = 0.310
z(k) = 0.116

Stackelburg and Muller (1954)
y(k) = 0.307
z(k) = 0.117

McMullan and Jeffrey (1965)
y(k) = 0.30710
z(k) = 0.11819

Hollander and Jeffrey (1977)
y(k) = 030822
z(k) = 0.11732

' deuterohydrate

Pauling and Marsh (1952)
x(i) = 0.183

Stackelburg and Muller (1954)
x(i) = 0.190

McMullan and Jeffrey (1965)
x(i) = 0.18362

Hollander and Jeffrey (1977)
x(i) = 0.18375

' deuterohydrate

................... ...................................... .................................... . .

I

I

l

I 1

x x X

Table 4.3



Water Clathrate Structures

Set = (g)
Multiplicity =96

-x I -x +z

-x I ½+x +-z

K-x V4+X Z½+x -x ½A-z
K - z -x X
½-z h -x ½+-x
-z ½-x ½+x

- z ½ +x -x

X z X

½-x ½+z --x
½+x +-z ½-x
-x ½-z ½ +x

-+x Y4+x -z

4+x W4-x -+z

K-x 4+x Y4+z

+x Y+z 4-x

9-x 3A+z 4 +x

4-x 4+z 4-x

/4-+x 3 z V4+x

A+z Y4+x 3-x

V4+z 3A-x 3A+x

V4-z 3A+x 4+x 

V4 -z -x -x

-x

3A-x

4+x

-x

½-x
½+x

3A-x

Y+x
V4 + 

-+x

-x

½-x

V4-X

1
+XL . +X

ii?~~iiiii~i!!!ii:....~~~ ~ ii~~!i!i!ii~ii: ::::: ::M ::::::::::::::: ::"~-:~::.i:'; .i:~:~:: ::i :: ii::i!:: ::::*:::::::::.::... :::::.:-. .............. :.:::.: :
'{i .w. . w. .M. . .$.Efi^.;~;;

00

0

½

½

Structure II - Oxygen Fractional Position Generating Functions

Set = ()
Multiplicity = 32

(
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Set = (a)
Multiplicity = 8

n-w

- 1/8

0

0I

½

½

0

Stackelburg and Muller (1954)
x(g) = - 0.057
z(g) = - 0.242

Mak and McMulan (1965)
x(g) = -0.05744
z(g) = - 24487

Stackelburg and Muller (1954)
x(e) = - 0.093

Mak and McMuilan (1965)
x(e) = - 0.09228

................ . ............. ... ..... .... . ... .......... li~~iiiiiiiitiiiiititilisiiiitiiiiiliiii

0 0 0

N6 V N

. . ...... .... .... . . . . . . . . . . . . . . . . ....

:·: ··: ··:. :··: ·:::·''' r..5:::·::·::·::·ii ::iiij i i :: ......... '':'

I '......i.i i .'..... :. .s...s... ...:..
':'::''::5:g:::-:,.?'::'

S..:-.;.;. .:::::::::::

I

x X X

- 1/8 - 1/8

Table 4.4



Water Clathrate Structures

Pentagonal Dodecahedron

Set = (a)
Multiplicity = 2

X I 0.00 0.00 0.00

2 1 0.50 0.50 0.50

Tetrakaidecahedron

Set = (d)
Multiplicity = 6

1 0.25 0.50 0.00

2 0.00 0.25 0.50

3 0.50 0.00 0.25

4 0.75 0.50 0.00

5 0.00 0.75 0.50

6 0.50 0.00 0.75

Structure I - Water Clathrate Cell Fractional Locations

4-11
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Pentagonal Dodecahedron

Set = (c)
Multiplicity = 16

1 0.25 0.25 0.25

2 0.00 0.50 0.75

3 0.50 0.75 0.00

4 0.75 0.00 0.50

5 0.25 0.75 0.75

6 0.00 0.00 0.25

7 0.50 0.25 0.50

8 0.75 0.50 0.00

9 0.75 0.25 0.75

10 0.50 0.50 0.00

11 0.00 0.75 0.50

12 0.25 0.00 0.00

13 0.75 0.75 0.25

14 0.50 0.00 0.75

15 0.00 0.25 0.00

16 0.25 0.50 0.50

Hexakaidecahedron

Set = (b)
Multiplicity = 8

_. ... . . ....... ......... ....

1 0.625 0.625 0.625

2 0.375 0.875 0.375

3 0.625 0.125 0.125

4 0.375 0.375 0.875

5 0.125 0.625 0.125

6 0.875 0.875 0.875

7 0.125 0.125 0.625

8 0.875 0.375 0.375

Structure II - Water Clathrate Cell Fractional Locations

4-12
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:' f w£ow#fe:::::. 'fvW#M * x

.. . R .. ........ .. "' ~ ::: =' ':'~' = ::. ::: '"" ::

1 0.1836 0.1836 0.1836 3.8256

2 -0.1836 -0.1836 0.1836 3.8256

3 -0.1836 0.1836 -0.1836 3.8256

4 0.1836 -0.1836 -0.1836 3.8256

5 0.1836 -0.1836 0.1836 3.8256

6 -0.1836 0.1836 0.1836 3.8256

7 0.1836 0.1836 -0.1836 3.8256

8 -0.1836 -0.1836 -0.1836 3.8256

9 -0.1182 0.0000 -0.3071 3.9586

10 0.1182 0.0000 0.3071 3.9586

11 0.3071 0.1182 0.0000 3.9586

12 0.0000 -0.3071 0.1182 3.9586

13 -0.3071 -0.1182 0.0000 3.9586

14 0.1182 0.0000 -0.3071 3.9586

15 -0.1182 0.0000 0.3071 3.9586

16 0.0000 0.3071 0.1182 3.9586

17 0.3071 -0.1182 0.0000 3.9586

18 0.0000 -0.3071 -0.1182 3.9586

19 -0.3071 0.1182 0.0000 3.9586

20 0.0000 03071 -0.1182 3.9586

Lattice parameters taken from McMullan and Jeffrey (1965)

Table 4.7 Structure I - Dodecahedron Oxygen Coordinates

Water Clathrate Structures 4-13
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! °
" " -

... ........ t .. .nVxo xon : ~ i

1 0.1182 -0.2500 0.1929 4.0561

2 0.1929 0.2500 -0.1182 4.0561

3 -0.1182 -0.2500 -0.1929 4.0561

4 -0.1929 0.2500 -0.1182 4.0561

5 0.1182 -0.2500 -0.1929 4.0561

6 -0.1929 0.2500 0.1182 4.0561

7 -0.1182 -0.2500 0.1929 4.0561

8 0.1929 0.2500 0.1182 4.0561

9 0.0000 0.2500 0.2500 4.2532

10 0.0000 0.2500 -0.2500 4.2532

11 -0.2500 -0.2500 0.0000 4.2532

12 0.2500 -0.2500 0.0000 4.2532

13 0.1836 -0.0664 -0.3164 4.4726

14 -0.3164 0.0664 -0.1836 4.4726

15 0.1836 -0.0664 0.3164 4.4726

16 0.3164 0.0664 0.1836 4A726

17 -0.1836 -0.0664 -0.3164 4.4726

18 -0.3164 0.0664 0.1836 4.4726

19 0.3164 0.0664 -0.1836 4.4726

20 -0.1836 -0.0664 0.3164 4.4726

21 -0.3818 -0.0571 0.0000 4.6441

22 0.0000 0.0571 -0.3818 4.6441

23 0.0000 0.0571 0.3818 4.6441

24 0.3818 -0.0571 0.0000 4.6441

Lattice parameters taken from McMullan and Jeffrey (1965)

aI

Structure I - Tetrakaidecahedron Oxygen Coordinates

VP,

-,

r.,

eM.
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2 0.1250 0.1250 0.1250 3.7477

3 0.0327 0.2173 0.0327 3.8457

4 0.0327 0.0327 0.2173 3.8457

5 0.2173 0.0327 0.0327 3.8457

6 -0.0327 -0.0327 -0.2173 3.8457

7 -0.2173 -0.0327 -0.0327 3.8457

8 -0.0327 -0.2173 -0.0327 3.8457

9 0.1824 -0.1199 0.0676 3.9555

10 -0.1824 -0.0676 0.1199 3.9555

11 -0.1824 0.1199 -0.0676 3.9555

12 -0.1199 0.0676 0.1824 3.9555

13 -0.0676 0.1199 -0.1824 3.9555

14 0.0676 -0.1199 0.1824 3.9555

15 -0.1199 0.1824 0.0676 3.9555

16 0.0676 0.1824 -0.1199 3.9555

17 0.1824 0.0676 -0.1199 3.9555

18 -0.0676 -0.1824 0.1199 3.9555

19 0.1199 -0.0676 -0.1824 3.9555

20 0.1199 -0.1824 -0.0676 3.9555

Lattice parameters taken from Mak and McMullan (1965)

Table 4.9 Structure II - Dodecahedron Oxygen Coordinates~~~~

a-
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Table 4.9 Structulre I - Dodecahedron Oxygen Coordinates
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'~,..!'.:':..';.'i... ....... ::¥:::::.:-:::::::o'�:.:.:

I -0.0574 0.0574 -0.2551 4.6340

2 0.0574 -0.0574 -0.2551 4.6340

3 0.2551 0.0574 0.0574 4.6340

4 -0.0574 0.2551 -0.0574 4.6340

5 0.0574 -0.2551 -0.0574 4.6340

6 -0.0574 -0.0574 0.2551 4.6340

7 -0.0574 -0.2551 0.0574 4.6340

8 0.2551 -0.0574 -0.0574 4.6340

9 -0.2551 -0.0574 0.0574 4.6340

10 0.0574 0.0574 0.2551 4.6340

11 -0.2551 0.0574 -0.0574 4.6340

12 0.0574 0.2551 0.0574 4.6340

13 -0.1926 -0.1926 -0.0051 4.7157

14 -0.1926 0.1926 0.0051 4.7157

15 -0.0051 0.1926 0.1926 4.7157

16 -0.1926 -0.0051 -0.1926 4.7157

17 0.0051 -0.1926 0.1926 4.7157

18 0.1926 0.1926 -0.0051 4.7157

19 0.1926 0.0051 -0.1926 4.7157

20 -0.0051 -0.1926 -0.1926 4.7157

21 0.0051 0.1926 -0.1926 4.7157

22 0.1926 -0.0051 0.1926 4.7157

23 -0.1926 0.0051 0.1926 4.7157

24 0.1926 -0.1926 0.0051 4.7157

25 O.1577 -0.1577 0.1577 4.7281

26 0.1577 0.1577 -0.1577 4.7281

27 -0.1577 -0.1577 -0.1577 4.7281

28 -0.1577 0.1577 0.1577 4.7281

Water Clathrate Structures 4-16
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Lattice pameters taken from Mak and McMullan (1965)

Table 4.10 Structure II - Hexakaidecahedron Oxygen Coordinates
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2.767 A 0.087

2.779 A 0.522

2.815 A 0.261

2.839 A 0.130
: ::::':: :.:.::*b i.Y

.: -- ,......

105.45° 0.087

106.38° 0.174

106.47° 0.174

108.30° 0.174

108.56° 0.087

110.610 0.174

111.31° 0.043

124.34° 0.087

2.768 A 0.118

2.777 A 0.353

2.796 A 0.353

2.809 A 0.176

................................ ..........:'::::::':~.'" ""'~:E::'" " : ' ' "::' '"':':' '"':':'~::'22'·:::::: :' :'::r:'::: '.!:?~. ~~~~~~~~~~~~~~~8:: ..·~.:.': '..:'~:'. .:!':~::::::::: i~
~ii..~: ~ : ...............

105.68° 0.235

107.34° 0.118

07.92 ° 0.118

108.56° 0.235

109.47° 0.058

111.51° 0.118

119.87° 0.118

::::.:..:~.~3:.!:::-:,:.8~:; : ::: ' ::..~..q~:.~i .:.,'. ~,':.'...:.....,:.~-::.~-: :: :: i ::

Water Clathrate Hydrogen Bond Characteristics
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Table 4.11

-
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Structure I
Hydrogen Bonded 0-0 Distance Distribution

&MU

Avenge Distance - 2.795 A

.42-

l.2 !

O L

2.767 A 2.779 A 2.815 A

Structure I
Hydrogen Bonded 0-0 Angle Distribution

Avenge Angle - 109.35 

2.839 A

105.45 106.38' 106.47 108.30' 10.56' 110.61L 11131' 124.34'

Figure 4.3 Structure I - Hydrogen Bond Characteristics
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Figure 4.3 S~tructure I - Hydrogen Bond Characteristics



Structure I
Hydrogen Bonded 0-0 Distance Distribution

Avenge Ditance - 2.788 A

2.777 A 2.796 A

Strcture U
Hydrogen Bonded 0-0-0 Angle Distribution
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4.2 Proton Placement

A knowledge of the water clathrate proton distribution is important in

understanding the configurational characteristics of the guest-host intermolecular

interactions. Unfortunately, it is extremely difficult to resolve the proton positions

directly from diffraction type studies. Since the water molecule protons are, however,

generally assumed to lie on the edges of the various polyhedra, with the oxygen atoms

located at their vertices, half-atom positions are generally reported along with the refined

oxygen positions (McMullan and Jeffrey, 1965; Mak and McMullan, 1965; Hollander and

Jeffrey, 1977).

Although a knowledge of the proton half-atom positions is useful, it is usually

necessary to require a more explicit proton location assignment. This can be difficult

since the water molecule protons in the water clathrate structures are rotationally

disordered. They must, however, conform to the rules developed by Bernal and Fowler

(1933) as cited in their remarkable study of the structural nature of water. These rules,

conveniently condensed by Rahman and Stillinger (1972), are outlined below:

Bernal-Fowler Rules

(i) Water clathrate host lattice consists of intact

(non-dissociated) water molecules.

(ii) The oxygens form the host lattice with very nearly

tetrahedral coordination.

Water Clathrate Strctures 4-20
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(iii) Each hydrogen bond between two neighboring oxygens is

made up of a single proton covalently bonded to one of the

oxygens and hydrogen bonded to the other.

(iv) All proton configurations satisfying conditions (i), (ii), and

(iii) are equally probable.

Another constraint we must consider in the proton location assignment is that of the net

dipole moment of the entire water clathrate structure.

E pi = (4.5)
i-l

Keeping these requirements in mind, an algorithm was constructed to randomly

assign the protons to their respective positions. Nearly half a million configurations, each

conforming to the Bernal-Fowler "rules", were generated for each water clathrate structure

and desired H2 0 molecule geometry. The experimental geometry of the H2 0 monomer

[ r(OH) = 0.9572 A, ZHOH = 104.52 ] was chosen as was the geometry corresponding

to the Simple Point Charge (SPC) model [ r(OH) = 1.0 A, ZHOH = 109.47° ] as

proposed by Berendson et al. (1981). The SPC model, further discussed in a later

chapter, was selected because of its prior use in molecular simulation studies of water

clathrates and ices (Tse and Klein, 1983; Tse and Klein, 1983; Tse, Klein, and McDonald,

1983; Tse, Klein, and McDonald, 1984; Tse and Klein, 1987; Marchi and Mountain,

1987; Basu and Mountain, 1988; Rodger, 1989). The resulting configuration with the

lowest net dipole moment was then selected as a valid proton assignment.

The program SCHAKAL (Keller, 1988) was used to generate the following

illustrations of the two water clathrate structures. The positions of the various polyhedra

within the host lattices are depicted in Figures 4.5 and 4.6. The cavities are represented

Water,Clathrate Structures 4-21
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as spheres with diameters half that of the average diameter of the actual cavities. The

smaller cavities representing the pentagonal dodecahedral cavities and the larger cavities

representing either the tetrakaidecahedral cavities or the hexakaidecahedral cavities. A

ball and stick representation of the unit cell of the structure I water clathrate is shown in

Figure 4.7. A depiction of the hydrogen bonds between neighboring oxygens (dashed-

lines) is presented for the structure I unit cell in Figure 4.8. Two space filling views of

the structure I unit cell are shown in Figures 4.9 and 4.10. A ball and stick representation

of the unit cell of the structure II water clathrate is shown in Figure 4.11. A depiction

of the hydrogen bonds between neighboring oxygens (dashed-lines) is presented for the

structure I unit cell in Figure 4.12. Two space filling views of the structure I unit cell

are shown in Figures 4.13 and 4.14. A ball and stick representation of the structure I

pentagonal dodecahedral cavity is shown in Figure 4.15. A depiction of its hydrogen

bonds is presented in Figure 4.16 while a full space filling view is shown in Figures 4.17.

A ball and stick representation of the structure I tetrakaidecahedral cavity is shown in

Figure 4.18. A depiction of its hydrogen bonds is presented in Figure 4.19 while a full

space filling view is shown in Figures 4.20. A ball and stick representation of the

structure II pentagonal dodecahedral cavity is shown in Figure 4.21. A depiction of its

hydrogen bonds is presented in Figure 4.22 while a full space filling view is shown in

Figures 4.23. A ball and stick representation of the structure II hexakaidecahedral cavity

is shown in Figure 4.24. A depiction of its hydrogen bonds is presented in Figure 4.25

while a full space filling view is shown in Figures 4.26.

Water Clathrate Structures 4-22
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Figure 4.5 Structure I Water Cathrate Cavity Positions
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Figure 4.6 Structure II Water Clathrate Cavity Positions

Water Clathrate Structures 4-24

Figure 4.6 Structure II Water Clathrate Cavity Positions
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Ball and Stick Representation of the Structure I Unit CellFigure 4.7



Water Clathrate Structures 4-26

Hydrogen Bond Depiction of the Structure I Unit Cell

Water Clathrate Structures 4-26

Figure 4.8
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Space Filling Representation of the Structure I Unit Cell

,I

Figure 4.9
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Space Filling Representation of the Structure I Unit Cell
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Figure 4.10
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Ball and Stick Representation of the Structure II Unit Cell
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Hydrogen Bond Depiction of the Structure II Unit Cell

Water Clathrate Structures 4-30

Figure 4.12
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Space Filling Representation of the Structure II Unit CellFigure 4.13
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Space Filling Representation of the Structure II Unit Cell
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Ball and Stick Representation of the Structure I Dodecahedron
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Figure 4.15
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Hydrogen Bond Depiction of the Structure I Dodecahedron
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Figure 4.16
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Space Filling Representation of the Structure I Dodecahedron

Water Clathrate Structures 4-35

Figure 4.17
UI



Water Clathrate Structures 4-36

Ball and Stick Representation of the Structure I Tetrakaidecahedron
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Figure 4.18
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Hydrogen Bond Depiction of the Structure I Tetrakaidecahedron
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Figure 4.19
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Space Filling Representation of the Structure I TetrakaidecahedronFigure 4.20



Water Clathrate Structures 4-39

(

Ball and Stick Representation of the Structure II Dodecahedron
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Figure 4.21
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Hydrogen Bond Depiction of the Structure II Dodecahedron
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Figure 4.22
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Space Filling Representation of the Structure II DodecahedronFigure 4.23
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Ball and Stick Representation of the Structure II Hexakaidecahedron
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Figure 4.24
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Hydrogen Bond Depiction of the Structure II Hexakaidecahedron
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Figure 4.25
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5. STATISTICAL MECHANICAL THEORY OF CLATHRATES

5.1 Rigorous Review of van der Waals and Platteeuw Model

In 1959, van der Waals and Platteeuw proposed that the thermodynamic

properties of clathrates could be derived from a simple model corresponding to the

three-dimensional generalization of ideal localized adsorption. The formulation of

their model is based on several important assumptions:

1) Neglect cage distortions:

The contribution of the host molecules to the total free energy is

independent of the mode of occupation of the cavities.

2) Single molecule occupation of cages:

The guest molecules are localized in the cavities, and a host cavity can

never hold more than one guest molecule.

3) Neglect guest-guest interactions:

Interactions between neighboring guest molecules are ignored.

4) Classical statistics are valid:

The temperatures of interest are such that Boltzmann statistics are

applicable.

If we assume the contribution the host water molecules have on the total free

energy of the clathrate structure is independent of the mode of occupation of the

cavities (assumption (1)) then we can write that the total free energy as simply the
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sum of the free energy of all of the encaged guest molecules and the free energy of

the empty host lattice.

A(N,V,T) = AP + AM (5.1)

where A(N,V,T) is the total Helmholtz free energy defined for a system containing N

molecules with a volume V and at a temperature T. A is the Helmholtz free energy of

the empty host lattice and AM is the Helmholtz free energy of the "encaged" solute or

guest molecules.

Statistical mechanics provides the following relationship:

A(N,V,T) = - kT In Q(N,V,T) (5.2)

where Q(N,V,T) is the canonical partition function of the entire clathrate phase

including guest and host contributions.

If we combine Equations (5.1) and (5.2), then

Q(N,V,T) = e -A/Te -A /kT = e-A/kT QM (5.3)

where QM, the canonical partition function of the encaged guest molecules, is

expressed as

Q M = II f H q N, (5.4)
i J

and Qi is a combinatorial factor describing the number of distinct ways in which NA,

NB, ..., NMi solute molecules can be distributed over vi N, cavities of type i. vi is

defined as the number of type i cavities per water molecule in the host lattice, N, is

the total number of water molecules, and qj, is the molecular partition function of a

type J solute molecule (A, B, ..., M) when encaged in a type i cavity.

Statistical Mechanical Theory of Clathrates 5-2
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If we now assume single molecule occupation of the cavities at most

(assumption 2), the combinatorial factor can be expressed as

(viNw)!

(ViN - E Ni)! I Ni!
1 1

Combining Equations (5.3), (5.4), and (5.5) yields the following expression

Q= e -A T 
vilVW)! ri Ni

(V NW - E N)! N! J
J I ]

The absolute activity, X,, of component J, is defined by

P1 - kTlnXk

(5.6)

(5.7)

where uj is the chemical potential of species J. If we multiply Equation (5.6) by the

product

(5.8)
X AI X NAA2 .. J I u. I = i 

i J

while summing over all possible values of Nji, we obtain the following function

==e -AlkT (viN)!

N, (ViNw - EN,)! 1I NN,! 
J J

q N, 4N )qjii V

J1

(5.9)

(5.5)

I.. AT \1

Statistical Mechanical Theory of Clathrates 5-3
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Equation (5.9) can be further simplified through the use of the multinomial expansion

(1 + Eq XjVN = E
N,, (V N,

(vNw)! N,

- E N,)! n N! i
J i

]
:, i I, (5.10)

to the following expression

_ = e lkT 1( + E q, X) (5.11)

By definition, fj, the fugacity of component J is related to the chemical

potential by

pj = kT lnf + p] (T)

where the pressure independent ideal gas function,

(5.12)

o}s , is given by

pi (T) = - kTln(qs, qj,vqj,r)

where qja is the ideal gas individual translational partition function of a molecule of

type J, q,, is the individual ideal gas vibrational partition function, and qj, is the

individual ideal gas rotational partition function.

absolute activity of component J as

We can therefore express the

(5.13)

(5.14)

Statisical Mechanical Theory of Clathrates 5-4
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The molecular partition function of a type J molecule when encaged in a type i

cavity can be expressed as

qJi qJ, q,v qJr ZJi (5.15)

where Zji is the configurational integral of a single guest molecule of type J in a

cavity of type i. Combining Equations (5.11), (5.13), and (5.14) results in

= e- ' rAT ZkT 1 + (5.16)

If we define the "Langmuir Constant", Cji, as

C = Zii (5.17)
kT

then

= eAT ( 1 + f ) (5.18)

Ci accounts for the guest-host intermolecular interaction and can be related to

the "free volume" or configurational partition function by the following 6-dimensional

integral over the system volume V.

C (kT) - ' f e-U(r,O,+,ca,i)/kT r 2 sin 0 d d dr dat sin 3 dO dy (5.19)
82 

where U is the total intermolecular interaction potential between the guest molecule

and all host molecules defined in spherical coordinates r, 0, and 0 and Euler

orientation angles a, , and y for the guest molecule. Evaluation methods for Ci are

described in Chapter 6.

Statistical Mechanical Theory of Clathrates 5-5
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Equation (5.17) is a grand canonical partition function with respect to the

encaged guest molecules [superscript Mi, but an ordinary canonical partition function

with respect to the host lattice [superscript H]. We can therefore write

= QH M

Statistical mechanics gives us the needed link with thermodynamics by the relations

(McQuarrie, 1976):

dA H = -d(kT ln QH) = -SHdT - PdVH + HdN (5.21)

d(pVM) = d(kTlnE M ) = SdT + PdVM + E
J

N dpj (5.22)

Subtracting Equation (5.21) from Equation (5.22) yields

d(kTln _) = SdT + PdV + E
J

N.dp - dN (5.23)

The chemical potential of the water in hydrate phase follows immediately from

Equation (5.23)

(5.24)

Applying Equation (5.24) to Equation (5.18) yields

H
P= 1

- v'ln(1
J I I

(5.25)

(5.20)

H
P = a In _ln
kT aN ,

w TV,,

Statistical Mechanical Theory of Clathrates 5-6
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or simply

H 0

kT kT
- E viln( +

aA PAaN L,)r 

(5.26)

j3
(5.27)

1,U being the chemical potential of the host water molecules in the hypothetical empty

lattice.

The composition of the clathrate follows similarly from Equation (5.23)

Nk[lnk
IT, V,N, , *k

which can be equivalently rewritten as either

N = Xk4 a } k

Nk a= fk V,

Thus the composition of the water clathrate is given by

where

(5.28)

or

(5.29)

(5.30)

5-7
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Nk =fk a Ink V,N,,,,,J ,,
Vi NW Ckifk

(1 + C fi)

The composition of a type i cavity being

Nk ViNw Cifk

( 1 + E C jfJ) (5.32)

Dividing Nk, by the total number of cavities of type i, vNw, yields the following result

Nki
Yki= N -

viN

Ck fk

(1 + C,fJ)
i

where Y, is the probability of finding a guest molecule of type k in a type i cavity.

Now, if we reexamine Equation (5.26), rewritten here for convenience

T kkT kT ·E (5.34)

it is evident that the equation can be equivalently expressed as

AP- H

= - E Vi In
kT i

1

(5.35)

and if we simply add and subtract the simple summation involving the Langmuir

constant and the guest component fugacity to the numerator of Equation (5.34) we get

(5.31)

(5.33)

Statistical Mechanical Theory of Clathrates 5-8
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~A-P +1 E Jif, - E C,,f,
kT i 1 + lCnif 

further simplified to

(5.36)

3 which can be

Apg -E v.in 1 - Cjf,
kT ;J 1 + ECjif

J

(5.37)

or equivalently

kT --- viln(1 - y,;) (5.38)

where now the chemical potential difference, A H, is simply related to the

composition of the hydrate in terms of the fractional cavity occupation probabilities, yji

.. a

Statistical Mechanical Tzeory of Clathrates 5-9
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5.2 Phase Equilibria

A pure gas hydrate can be treated thermodynamically as a two-component

system consisting of water and a particular guest component. When three equilibrium

phases are present, the system will be monovariant, and fixing the temperature should

specify the pressure. The equilibrium vapor pressure, often referred to as the

dissociation pressure, is commonly measured as a function of temperature for various

three-phase, monovariant systems. Multicomponent water clathrates gas hydrates are

generally treated in a similar fashion by fixing the gas phase composition.

Equilibrium requires that the chemical potential of water in hydrate phase must

be equal to the chemical potential of water in either the solid ice phase, or the liquid

aqueous phase, depending on whether the temperature is above or below the ice point.

If we assume that there is no significant freezing point depression associated with the

solubilization of the guest components in the liquid water, then this can be written

approximately as:

(T < 273.15 K)

£=£
~- p =H l - (5.39)

Ap!-H = A4-

(T > 273.15 K)

- H B= - L (5.40)

Ap!H -ApL

Statistical Mechanical Theory of Clathrates 5-10
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where H4 is the chemical potential of water in the hydrate phase, pa is the chemical

potential of water in the solid ice phase (assumed to be pure), gp is the chemical

potential of water in the liquid aqueous phase, and gp is the chemical potential of the

hypothetical empty hydrate phase.

Thermodynamically, we know the total differential of the quantity p/T as a

simple function of temperature and pressure can be written as

d(pT)( aT T (a(iT aP dP (5.41)

where the temperature derivative is given by the familiar Gibbs-Helmholtz

relationship:

~a(p IT) Z AH (5.42)
aT T 2

and

( aIPT) 'X AV (5.43)
ap T

Thus the expression for the total differential, rewritten as

d(p/T) = AHdT+ dP , (5.44)
T 2 T

gives us the additional equation needed to model the equilibrium properties of water

clathrates.

Following the convention proposed by Holder et al. (1980), the chemical

potential difference between water in the hypothetical empty clathrate phase () and

water in either the pure ice phase (a) or aqueous liquid phase (L) can be expressed as:

Statistical Mechanical Theory of Clathrates 5-11
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AP- L' a (T,P) A L.a (T,O) T Hw- La 

kT kTo kT2

(5.45)

0 jT+ ____ ) dP -1naw

where AP!-L(To ,O) is the reference chemical potential difference at the reference

temperature, To, and zero pressure. The temperature dependence of the enthalpy

difference is given by

AHw- AHw' (To) + AC-' (5.46)

To

where the heat capacity difference is approximated by

ACL.a = ACPLa(T) + b -La(T - TO) (5.47)

The volume difference in Equation (5.44) is assumed to be constant. The additional

term involving the activity of water, a , is a correction for the chemical potential

difference from that in pure liquid water to that in the water-rich aqueous phase. The

reference temperature, To, is usually taken to be 273.15 K.

Equations (5.45), (5.46), and (5.47) combined with the statistical mechanically

derived expressions for the chemical potential difference, rewritten here for

convenience

Statistical Mechanical Theory of Clathrates 5-12
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_- _= E viln 1 + Cifj ) (5.48)
kT ·n

Apt = _E v, Int - Eyji) (5.49)
kT - vil(1- YJ

provide the necessary relationships needed to perform phase equilibrium calculations.

For example for a single guest component J structure I water clathrate, the

chemical potential difference can be written as

-H

kT 23 1 -23 (5.50)

Therefore if we were able to accurately measure the composition of a water clathrate

as a function of both temperature and pressure, then we could easily correlate the

chemical potential difference through the use of Equations (5.45), (5.46), and (5.47).

This however, would require that the fractional occupation of both cavity types be

known, and unfortunately, this is practically impossible to do from a simple overall

compositional measurement. However, there exists several clathrate systems in which

only the larger of the cavities is actually filled by the guest component. In such a

case as this, yj,, would equal zero, thus reducing Equation (5.50) to

A - H 3
kT 23 ln( - ) (5.51)

where now the fractional occupation probability of the tetrakaidehedral cavities is

simply related to the overall composition of the hydrate by the expression
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(5.52)

(6/(6 +46))

where x, is the measured mole fraction of the guest component in the water clathrate.

The denominator represents the ideal composition with completely filled cavities.

This simple compositional relationship provides a simple means for the

determination of the thermodynamic reference properties of structure I water clathrate

systems. The currently accepted parameters are those derived from the reanalysis

(Holder et al., 1984) of the meticulous compositional measurements of the structure I

cyclopropane water clathrate system (Dharmawardhana et al., 1980, 1981). These

parameters are given in Table 5.1.

The thermodynamic reference properties of the structure II water clathrate

system are not given here since insufficient compositional data has been taken for a

proper correlational analysis. The use of the Langmuir constant form of the chemical

potential difference expression ((Equation (5.48)) along with the simplistic treatment

of the Langmuir constant evaluation places great uncertainty on the currently published

parameters.

Statistical Mechanical Theory of Clathrates 5-14



Statistical Mechanical Theory of Clathrates 5-15
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Thermodynamic Reference Properties - Structure I Water Clathrate
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6. CONFIGURATIONAL PARTITION FUNCTION

Having derived an equation in Section 5.1 (see Equation (5.24)) for the chemical

potential difference between water in the hydrate phase and water in the hypothetical

empty hydrate. We must find a way to calculate the guest-host configurational partition

function. Specifically, if the guest molecule is modeled as a multi-site rigid body, then

the six orientational degrees of freedom associated with the guest within a clathrate cavity

must be considered directly in the evaluation of the configurational partition function over

the system volume V

Z = 1 L e-UraO,+okTr 2 sinO dO d drdca sin [3d3dy (6.1)

where U is the total interaction potential between the guest molecule and all of the host

water molecules. The position and orientation of the guest is given by the spherical

coordinates r, 0, and {, defined in terms of the center of a given cavity, and the Euler

angles a, , and y. The factor of 82 simply being a normalization constant. The Euler

angles are shown illustrated in Figure 6.1.

The transformation from the body-fixed cartesian coordinate system of a multi-site

guest molecule can be transformed into the space-fixed cartesian coordinate system,

defined in terms of the center of a given clathrate cavity, via the rotational transformation

x' = Ax (6.2)

where A, the rotational transformation matrix, defined as merely the product of three

rotational matrices

A =BCD

Confiurational Partition Function 6-1

(6.3)
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Figure 6.1 The Euler Angles (Goldstein, 1982)
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is given by,

sin a siny

sin P sin o

cosy sin a + cos cosa siny

sina cosy -siny sina +cos [ cosa cosy

x - sin 3 cos a

siny sin 

(6.4)
cos 

Specifically, in terms of Figure 6.1, the transformation D corresponds to a rotation about

the z axis

cos a sina O

D = - sina cosa 01
0 0 1

the transformation C is a rotation about the axis

1

C-o
0 0

cos sinf3

-sin[3 cos 3

and finally the transformation B is a rotation about the r axis

cosy siny 0

B= -siny cosy 0

0 0 1

(6.6)

(6.7)

(6.5)

Configuraional Partition Function 6-3
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6.1 Previous Methods

6.1.1 Lennard-Jones Devonshire (LJD) Approximation

The asymmetries of the host lattice cavities and of the guest molecule itself makes

analytical evaluation of the six-dimensional integral of Equation (5.18) intractable.

Therefore a Lennard-Jones and Devonshire liquid cell theory approach is often adopted

for the quantitative evaluation of the configurational partition function of the guest

"solute" molecule within the host lattice cavity. The host water molecules are assumed

to be uniformly distributed on a spherical surface corresponding to an average cavity

radius. The guest molecule is also usually assumed to be spherically symmetric. This

LJD spherical cell approach simplifies the integration considerably to a one-dimensional

integral in r:

C i = 4kT e-W()/ r 2 dr (6.8)

where the spherically symmetric cell potential, W(r) is determined from

W(r) = 1 i U(r,,) sin d d (6.9)

0o o0

The actual choice of the guest-host intermolecular interaction potential is a point of great

concern and is therefore discussed extensively in Section 7.1.
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6.1.2 Monte Carlo Simulation Techniques

In an earlier attempt to resolve the problems inherent to the spherical cell

approximation, Tester et al. (1972) accounted for the asymmetries of the host lattice by

using a Metropolis sampling Monte Carlo procedure (Metropolis et al., 1953) in the

prediction of the equilibrium dissociation pressures for a variety of different water

clathrates. A stochastic Monte Carlo (MC) approach of statistically sampling the states

available to the guest molecule inside the host water cage was used to estimate the

configurational partition function.

Z i = JeUlkTdV (6.10)

The value of the configurational integral was approximated using the mean value theorem

of integral calculus as

Zji - (e -u ) Vi e -(uln V (6.11)

where UIkT ) was a Metropolis-averaged characteristic potential energy between the

guest J and the host molecules associated with a type i cell, and Vi is the effective "free

volume" available to the guest molecule within the clathrate cage.

Using the Berthelot geometric mean approximation for , and the hard sphere

approximation for ac, the Lennard-Jones parameters for the host water molecules were

adjusted to constrain the predicted dissociation pressure to match the experimental

dissociation pressure of the argon-water clathrate at 0 °C. These "adjusted" parameters

were then used to predict the dissociation pressures of other gas hydrate systems. These

early calculations by Tester et al. (1972) were performed with the assumption that argon

preferentially formed a Structure I hydrate, later crystallographic data indicated that argon

instead forms a Structure II hydrate (Davidson et al., 1984). Nonetheless, although the

6-5Confiurtional Partition Function
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numerical values are obviously incorrect for a pure argon hydrate, the methodology was

still a pioneering step in the modeling of the configurational characteristics of water

clathrates.

In a separate study, Tse and Davidson (1982) also compared the spherical cell

model with the Monte Carlo approach. They found the two models predict similar

dissociation pressures for a number of the smaller hydrate guest molecules such as Ar and

Kr. However, both models tend to inadequately predict thermodynamic properties for the

larger less symmetric hydrate formers such as CH4 and CF4 when the simplistic

2-parameter, Lennard-Jones (6-12) interaction potential is used to describe the guest-host

interactions. With these results they went on to construct a more theoretically realistic

exp-6-8-10 potential model

C C C
U(r) = Aebr _ 6 _ 10

r6 r 8 rl° (6.12)

hoping to better model the higher-order dispersive interactions (dipole-quadrupole,

quadrupole-quadrupole). Using the discrete Monte Carlo integration scheme (Tester et

al., 1972) Tse and Davidson found the results to be very promising. Unfortunately, the

poor quality of the experimental values of the exp-6-8-10 potential parameters limited the

evaluation of their model.

A major problem associated with using a Metropolis type method, succinctly

stated by Stroud et al. (1976), is that the method was really only designed to offer a

simple method of estimating the ratio of two partition functions, such as those associated

with an average property. For example, the average potential energy, expressed by

Configurational Partition Function 6-6
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(U)= f .. J e -fUe T Xr ddx 2 .. (6.13)
f f ... f eUkT dxldx2... dN

where ( U ) is the ensemble average of the potential energy. Although the sampling

algorithm proposed by Metropolis et al. (1953) easily can be used to estimate the

ensemble average of the potential energy, ( U ), it unfortunately, tells you nothing about

the individual components of Equation (6.13), specifically the magnitude of either the

numerator or the denominator. One should note, of course, that the modeling of water

clathrates with the van der Waals-Platteeuw formulation requires only the evaluation of

the configurational integral, or simply the denominator of Equation (6.13).

Another problem of using a Metropolis sampling procedure for clathrate modeling

involves the determination of the "free volume" available to the guest molecules within

the various cavities. Since the configurational volume associated with Metropolis

sampling does not correspond to the "free volume" of the guest, this volume can only be

estimated in terms of the region in which moves are "accepted". Under these conditions,

the free volume is virtually impossible to calculate with sufficient accuracy, thus making

the Metropolis sampling scheme and Equation (6.11) rather impractical to use in the

evaluation of the configurational partition function.

-m
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6.1.3 Molecular Dynamics Techniques

Molecular Dynamics (MD) simulations on the Structure I water clathrates of

methane, tetrafluoromethane, cyclopropane, ethylene oxide, and xenon have been carried

out by Tse, Klein, and McDonald (1983a, b, 1984). Their primary objective was to

investigate the phonon-scattering mechanism possibly responsible for the anomalous

behavior of the thermal conductivity with respect to that of ice.

Tse, McKinnon, and Marchi (1987) have used constant pressure molecular

dynamics calculations to simulate the thermal expansion of ice and the structure I hydrate.

Marchi and Mountain (1987) performed similar calculations for the structure II hydrate.

Basu and Mountain (1988) have even used the dynamical properties derived from

molecular dynamics calculations to evaluate the performance of rigid cell models, inherent

to the evaluation of the configurational partition function, in the modeling of guest

molecule dynamics.

The inadequacies of the LJD spherical cell approximation compelled Holder and

Hwang (1987) to also try to account for the asymmetries associated with the host lattice.

However, they chose to use MD rather than MC as a method for calculating the guest-

host configurational partition function. In using the molecular dynamics method, they

followed the trajectory of the guest within an assumed rigid water clathrate cavity using

the Kihara potential to model the intermolecular interactions between the guest and the

host water molecules. The time-averaged potential energy and an estimate of the "free

volume" derived from the resulting trajectories of the guest molecule were then utilized

via the mean value theorem (Equation (6.12)) to estimate the value of the configurational

integral. However, in comparing their results with their earlier work (John and Holder,

1985) they found considerable differences between the Langmuir constants determined

Configurational Partition Function 6-8
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via the MD method and those determined directly by a full three-dimensional integration.

They concluded improperly that the three-dimensional integrations were incapable of

capturing the orientational localizations, and as such gave incorrect higher values for the

corresponding configurational integrations. These issues will be discussed further in

Section 8.3.
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6.2 Configurational Integral Evaluation

We explored several methods to evaluate the guest-host configurational partition

function. Initially, the Metropolis Monte Carlo sampling technique described earlier was

implemented. However, due to the uncertainties of the "free volume" estimates, this

method was quickly abandoned. This method did, however, provide an accurate estimate

of the ensemble averaged guest-host potential energy as defined by Equation (6.10).

Therefore, the results of the Metropolis MC simulation could be used to compare directly

with the averaged potential energy values resulting from the direct integration of Equation

(6.13). Several standard integration techniques were used to evaluate the guest-host

configurational properties. These included:

Simple Monte Carlo Integration

Composite Trapeziodal Rule

Gauss-Legendre Quadrature

The simple Monte Carlo integration scheme is best described as a elementary

application of the mean value theorem of integrable calculus, which in this context is

expressed as:

Z.,= (eU/Tdv _ (eU/kT)V ± ( (e2UT) - (e/T) (6 14)
Z Jj = fe -u IkT dV e -ulkT ) V N (6.14)

V

where N is the number of random guest configurational samples. The averages

( eU/ ) and ( e2UIT ) are given by

Configurational Partition Function
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1 N 1 N
(e U/kT) _ E e(-UT ( e-2UIT ) _ E e-2UkT

N k-l N kl (6.15)

Applying the simple Monte Carlo integration scheme to the configurational

integral of a spherically symmetric guest molecule results in a significant simplification

of Equation (6.6). Here we have chosen not to include the variance term as a matter of

convenience

22: 2 R N e-U(r,,Ok,*/IkT 2 in 
N k e- rk sin (6.16)

Similarly, for an asymmetric guest molecule we can write

Z 3R E e -U(rko,,,0k*akm)/rT rya) sin0 sink 

N k=1 (6.17)

The major advantage associated with simple Monte Carlo integration is that it is

extremely easy to implement and its accuracy, proportional to N-"2 , is independent of the

dimensionality of the integration. One disadvantage, however, of using simple Monte

Carlo integration, is that it is ill-suited for estimating positionally averaged potential

energy profiles within the different host lattice cavities.

Since standard numerical integration methods are set up to use some sort of one,

two, or three-dimensional grid, they are better suited to yield positionally averaged

information such as angle averaged potential energy profiles. This is an advantage in that

the resulting potential profiles can be directly compared to those derived from the

Lennard-Jones Devonshire spherical cell approximation.

6-11
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The composite trapezoidal rule was implemented as a method for the estimation

of the configurational partition function, a multi-interval 10-point Gauss-Legendre

quadrature formula, however, was found to be a much more efficient technique in terms

of the number of grid points dictated for a given level of accuracy. The flexibility

associated with the use of a multi-interval integration method

b bin 2bin b

i x Jf(x)d f ff(x)dx+ f(xd + + f(x)dx (6.18)
a a b/n (n - )bln

overwhelmed the advantages of a single-interval, higher-order formula in that the accuracy

of the integration was not restricted by the choice of the integration formula.

The actual evaluation of the multi-dimensional configurational partition function

involved the simple repeated application of the one-dimensional 10-point Gauss-Legendre

quadrature formula discussed extensively by Carnahan et al. (1969).

A subdivision of each dimension into 4 intervals was usually found to return

values of sufficient accuracy, usually on the order of 1 part in 10,000. However, for the

five and six dimensional integrations associated with asymmetric guest molecules,

computational restrictions (cpu time) commonly allowed for only two or one subdivisions,

respectively. For example, in the calculation of the configurational integral of

cyclopropane, the use of a single interval for each dimension, corresponding to 106 Gauss

points, required approximately 12 minutes of cpu time on the M.I.T. Cray 2 -

Supercomputer Facility.

Configurational Partition Function 6-12
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7. INTERMOLECULAR POTENTIAL FUNCTIONS

7.1 Guest-Host Intermolecular Potential Interactions

In the evaluation of any configurational property, the intermolecular interaction potential

energy must be accurately represented. The thermodynamic properties of water clathrates

depend critically on the exact value of the configurational partition function of the guest

molecules within the host lattice cavities which is rewritten here for convenience.

Zj= 12 -e-(.O,*,,ltrr2sinOdOdo drdasindP dyd (7.1)

Generally, the total interaction potential between each guest molecule (J) and all host

molecules is modeled as being pairwise additive

N

U(r,0e,,a,A3,'y) = E U,,(r,O,),a,,y)9, (7.2)
.k- (7.2)

where the sum is over all of the N interacting host water molecules.

Van der Waals and Platteeuw chose to model the guest-host interaction using the

Lennard-Jones (6-12) interaction potential, illustrated in Figure 7.1, in the development of the

spherically symmetric cell potential model.

U(r) = 4 - (7.3)

where r is the usual distance between molecular centers, a is the collision diameter, and e is the

characteristic energy. The pure component Lennard-Jones parameters were taken from those
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derived from viscosity and viral coefficient data (Hirschfelder et al., 1954). The actual

Lennard-Jones parameters for the guest-host interactions were determined using the empirical

Berthelot geometric mean approximation for e, and the hard sphere approximation for o.

(a -= ( Cy guest Chot

2 (7.4)

e = (es, eh, )1 (7.5)

The first of these "mixing" rules is unquestionably exact for a pair of hard sphere molecules.

The second rule is based on a simple interpretation of the dispersion forces in terms of molecular

polarizabilities (Hirschfelder et al., 1954). Using Equations (7.4) and (7.5) coupled with the L-J

(6-12) potential with the Lennard-Jones Devonshire spherical cell approximation yielded

reasonably good equilibrium dissociation pressures for the noble gas hydrates of Ar, Kr, and Xe.

Intermolecular Potential Functions 7-2
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Discrepancy between theory and experiment for the more complex guest molecules

directed McKoy and Sinanoglu (1963) to explore several different potential models in the

evaluation of the guest-host configurational partition function. The Lennard-Jones (6-12), (7-28),

and Kihara potentials were used with the LJD spherical cell approximation. They found the

Kihara potential, with its third parameter (a), to yield the best fits to experimental dissociation

pressure data. It has since been extensively used in the modeling of guest-host intermolecular

interactions in many water clathrate systems. The Kihara model is illustrated in Figure 7.2.

U(r) = r 2a

(7.6)

(r2( ( 2) r > 2a
(r 2a) (r 2a)

where 2a is the molecular hard core diameter, a is the collision diameter, and is the

characteristic energy. The spherically-averaged (McKoy and Sinanoglu, 1963) LJD form of the

Kihara potential is shown here

W(r) =2 z(e 4 r7.7)
(R '

where

a -N a -- - I- 1 +-_ (7.8)
N (( R R R R

N

and z is the coordination number of the cell and R is the radius. Generally, only the first shell

of water molecules is considered in the calculation of the total guest-host intermolecular

interaction energies. Thus for the structure I hydrates, z = 20 for the pentagonal dodecahedral

7-4Inttermolecular Potential Functions
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cavities and z = 24 for the tetrakaidecahedral cavities. Similarly, for the structure II hydrates,

z = 20 for the pentagonal dodecahedral cavities and z = 28 for the hexakaidecahedral cavities,

respectively. One should also note that if a = 0, the familiar LJ (6-12) spherically-averaged

potential results.

�
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Generally, however, the use of any of these intermolecular potential functions, coupled

with the spherically symmetric Lennard-Jones Devonshire approximation, has required the use

of non-unique potential parameters derived from the simple fitting of experimental dissociation

pressure data. And as might be expected, the Kihara potential, with its three adjustable

parameters, has proved to yield better results than the simple two parameter Lennard-Jones (6-12)

potential. Unfortunately, this does not mean that the Kihara potential provides a more physically

realistic potential than the Lennard-Jones (6-12) potential but only that it is empirically superior.

Although, these empirically based potential functions provide us with a means of

correlating certain macroscopic properties, they provide little insight into the true nature of the

potential of interaction. However, with the continuing advances occurring with computer

hardware, analytical intermolecular potential functions between guest and host molecules derived

from molecular orbital (MO) quantum mechanical calculations and first principles (ab initio)

become a viable alternative in the representation of the interaction potential (Maitland et al,

1981). The basis of these ab initio type calculations involves the evaluation of the potential in

terms of fundamental physical constants. Generally, the Schr6dinger equation is solved

numerically given certain simplifying assumptions. The complexity of the many-body

Schriidinger wave equation requires the use of the Born-Oppenheimer approximation in which

the nuclei of each molecule is assumed fixed relative to the motion of the electrons. The motion

of the electrons are usually further restricted via the Hartree-Fock approximation which involves

the motion of a single electron in the spherically averaged potential field produced by the

remaining electrons. The resulting approximated wave functions are then used to construct the

interaction potential energy surfaces which are then often fit to empirical expressions.

The study of hydrophobic behavior has resulted in the development of a number of

models involving interactions with water. In the modeling of biological systems involving

macromolecules, Carozzo et al. (1978), Goodfellow et al. (1982), and Mezei et al. (1984)

developed analytic potentials from ab initio computations for the interaction between

Intermtolecular Potential Functions 7-7
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biomolecules. Dashevsky and Sarkisov (1974) studied the solvation and hydrophobic interaction

of non-polar molecules in water in the approximation of interatomic potentials. Clementi et al.

(1972, 1980), Kistenmacher et al. (1973a,b, 1974a,b), and Corongiu (1978) examined the

structure of several ionic molecular complexes in aqueous solutions where the modeling of the

water interaction was critical.

Swaminathan et al. (1978) performed Monte Carlo studies on dilute aqueous solutions of

methane. The methane-water interaction energy was described using an analytical potential

function representative of ab initio molecular orbital (MO) calculations. Bolis and Clementi

(1981) and Owicki and Scheraga (1977) also studied methane in aqueous solution using Monte

Carlo simulation. Again, the methane-water interaction were represented with an analytic

function fitted to ab initio MO computations.

Alagoni and Tani (1985) performed Monte Carlo studies on the dilute aqueous solution

of argon. The argon-water intermolecular potential energy function was also based on the results

of ab initio MO calculations.

The major problem associated with these analytic potential functions derived for ab initio

quantum mechanical type calculations involves the fact that they are generally only performed

on a pair of molecules. This corresponds to an environment which is indicative of a molecular

beam type experiment, In other words, the potential energy functions are obtained for the extreme

low density region. Additionally, the calculations are also usually of limited range in terms of

intermolecular distances. Typical calculations only consider separations less than 5 - 7 A. The

nature of the interactions at long range is often ignored. At best, the functions are forced to give

the correct asymptotic behavior (r 6 ) .

In terms of representing the actual intermolecular potentials associated with the modeling

of the guest-host interactions in the water clathrate systems, the work of Jorgensen (1981a,b,c,

1982) on transferable intermolecular potential functions (TIPS) is probably the most applicable.

Intermolecular Potential Functions 7-8
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By constructing a transferable potential function they were able to obtain a single set of

parameters for atoms or groups of atoms that could be used to construct potential functions for

a variety of different systems. These potential energy functions are modeled as

qaq6 Gab ( b
"Uab = ' S 4Eb + 4b a) I( a I (7.9)

a b 4e ab ra rab

where each site has three parameters, a charge in electrons, qa or qb, and binary mixture

Lennard-Jones parameters ab and ab. eo = 8.8452 x 10 -12 C2N m 2 is the permittivity of free

space. Geometric-mean or Berthelot type mixing rules are used for both ab and a.

cab = (a 1ab)2 ab (a Cb)12 (7.10)

For the vast majority of water clathrate systems, the guests are non-polar. This eliminates the

first term in Equation (7.9) thus resulting in a pure Lennard-Jones (6-12) type intermolecular

interaction.

Standard geometries for the various functionalities are used (Bowen et al., 1958).

Jorgensen's (1981) summarized functional geometries are tabulated in Table 7.2. Jorgensen also

adopted the H2 0 monomer experimental geometry (r(OH) = 0.9572 A, LHOH = 104.520 )

throughout his study.

Bickes et al. (1975) used the results of molecular beam scattering experiments, specifically

the measured differential collision cross sections, to estimate a set of Lennard-Jones (6-12)

parameters Cab and eab for a number of different molecular pairs involving water. These

parameters are listed in Table 7.3. The theoretical neon-water Lennard-Jones potential ( aN.W -

2.89 A, NEw k = 89.3 K ) based on Hartree-Fock ab initio molecular orbital calculations

(Losonczy et al., 1973) show surprisingly good agreement with those derived from the measured

differential collision cross sections ( oNew = 2.85 A, Ne.w /k = 64 K )

Intermolecular Potential Functions 7-9
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,~:............. m................................:.

O in H2O0 - 0.80 3.215 59.78

O in ROH - 0.685 3.083 87.94

O in ROR' - 0.58 3.047 98.29

H in H20 0.40 0.0 0.0

H in ROH 0.40 0.0 0.0

CH4 0.00 3.730 147.94

CH 3 b 3.861 91.15

CH2 b 3.983 57.48

CH b 4.252 24.47

C b 4.436 13.20

TIPS Potential Parameters

I"m

owl

owl

Table 7.1

-IS

Ma

NW
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An accurate representation of the intermolecular interaction potential is usually unknown

for the vast majority of water clathrate systems. This requires not only that a functional form

be selected but also that the parameters need to be estimated, usually through an appropriate set

of mixing rules and the pure component potential parameters. The validity of these mixing rules

and the selected potential function often goes without question. Therefore, using the mixed

Lennard-Jones (6-12) parameters estimated from the experimentally measured differential

collision cross sections (Bickes et al., 1975) and the pure parameters for Neon and Argon

approximated from viscosity data (Reid et al., 1987), the Lennard-Jones (6-12) parameters for

water were derived from the standard guest-host mixing rules, specifically, the Berthelot

geometric mean approximation for a, and the hard sphere approximation for a. The results are

shown in Table 7.4. Quite obviously, blind, unjustified usage of these mixing rules, can lead to

an improper representation of the guest-host intermolecular interaction potential. For example,

this is especially true when one tries to rationalize the potential parameters which have been

fitted in an ad hoc manner to match experimental dissociation pressure data.
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~i?'·'i'!'.'::'-'.- ':~~:.'~':-'~ .Jt::: t.:j" '".·.. .'. "...'... -...........*A~uI*S9U1 .....,fiIAB :tFP* - gxv~k. ,:~~*:, a::t.........

r(OH) 0.945 A r(CO) 1.410 A r(CC) 1.535 A

r(CO) 1.430 A r(CCO) 1.516 A ZCCC 109.47°

r(CCO) 1.512 A zCOC 112.0°

ZCOH 108.5°

zCCO 107.8°

aI

VP"

a-

am

Table 7.2 Standard Geometrical Functional Parameters~~~~~~~~
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......... 
H120- Ne 2.880 A 1249 K

1120 Ar 2.318 A 2883 K.g.
.. .' c.- f t 

Table 7.4 Lenna.rd-Jones (6-12) Mixing Rule Examination
Table 7.4 Lennard-Jones (6-12) M&xing Rule Examination
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7.2 H2 0- H2 0 Intermolecular Potential Interactions

The host water lattice is assumed rigid in this work in the evaluation of the guest-host

configurational partition function. With this assumption, the evaluation of the configurational

properties requires only a description of the guest-host interaction potential and possibly the

guest-guest interaction potential. The molecular dynamics simulation of the entire water clathrate

structure, on the other hand, also requires that the host-host or H20-H 20 interaction potential be

specified. Without a good representative model for the host-host interactions, it would be

impossible to model the coupling of the lattice dynamics of the hydrogen-bonded host framework

with the motion of the guests within the various cavities.

Several intermolecular potential functions of the H20-H 20 interaction have been quite

successful in the modeling of the various properties of liquid water and ice (Bernal and Fowler,

1933; Berendsen et al., 1981; Clementi and Popkie, 1972; Clementi et al., 1980; Clementi and

Habitz, 1983; Egelstaff and Root, 1983; Jorgensen, 1981a,b,c; Jorgensen et al., 1983;

Kistenmacher et al., 1973a,b, 1974a,b; Lie and Clementi, 1975; Matsuoka et al., 1976; Stillinger

and Rahman, 1978; Stillinger and Weber, 1983). Morse and Rice (1982) examined a number of

the potential models in the prediction of ice structures. Tse, Klein, and McDonald (1983a,b,

1984b) used the simple point charge (SPC) model proposed by Berendsen et al. (1981) in their

computer simulation studies of several structure I clathrate hydrates.

Since the simple point charge (SPC) model has been extensively used in the molecular

dynamics modeling of a number of different water clathrate systems, it was therefore chosen to

represent the H20-H 20 interaction potential in this work.

Furthermore, the computation simplicity associated with use of a three site model, as compared

to four and five site models, offered an attractive numerical benefit.

Intermolecular Potential Functions 7-15
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The SPC model, represented in a TIPS format by Equation (7.9) is best described as a

simple three-site model involving a Lennard-Jones (6-12) interaction between oxygen centers, and

electrostatic interactions between separated charges centered on the hydrogen and oxygen

positions. The potential parameters for the SPC model are given in Table 7.5.
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O in -IO - 0.82 3.16 78.2
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Table 7.5 Simple Point Charge (SPC) Model for Water
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8. CONFIGURATIONAL RESULTS

8.1 Lattice Summation

When the potential energy between two atoms can be expressed as a inverse power

series in separation, r,,

x1 + 2 + 3
U(rij) =+ + 

r rS ro (8.1)

then the total potential energy of an atom within an infinite cubic crystal is given by

i -E E [( -x +i)2+( -y +j)2 +(z -z. +kc)2 +**l. * (8.2)
i-oo j-eo bk-. n-1

where the subscript c denotes the atom of interest and the subscript n denotes the

remaining interacting atoms within the unit cell of the cubic crystal. The number of

atoms within the unit cell is given by p. Recasting this expression into a more compact

form, yields

XI A S 2 A S2 3 ASU(Total)= + + X2 ... 
do do dos' (8.3)

where the potential energy constant, A , is defined by

A .d.[(X-X+i)2 (y,_y ,+j)2+()2] t (8.4)
i-e ju-.o k-o n-l

and do is a normalizing distance, usually defined as the minimum nearest neighbor

distance.
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The errors associated with the finite limits imposed on the direct summation of the

potential energy series can be estimated by the conversion of the residual discrete

summations to continuous integrations beyond a certain radius R. With this approach, the

error can be estimated by

A,- A, f (r dr = doS4P r 2-s dr
(rldo (8.5)

where A is the potential energy constant associated with a truly infinite lattice sum

(Equation (8.4)) and A is the potential energy constant associated with the truncation

of the series at a radial value of R, depicted in the two-dimensional analog of the lattice

summation diagram illustrated in Figure 8.1. The integration of Equation (8.5) yields

RA d3-
AA A --A 4xp s-3 s>3 (8.6)

or equivalently

logo AA, logo [do 4 p/(s-3)] + logo [R 3' ] (8.7)

which further simplifies to

logAA, log[d44p/(s-3)] + (3-s)logjOR (8.8)

This simple linear expression relating the logarithm of the potential energy constant error,

A , is shown graphically in Figures 8.2, 8.3, 8.4, and 8.5 for the four types of water

clathrate cavities. The potential energy constant error associated with the truncation of

the series at a finite limit for a guest molecule located at the center of a pentagonal

dodecahedron in a Structure I water clathrate is illustrated in Figure 8.2. Similarly, the

potential energy constant errors associated with the other various guest-host configurations

are shown in Figure 8.3, Figure 8.4, and Figure 8.5. It is

Configuraional Results 8-2
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obvious that for integral values of s > 6 the convergence of the series is rapid and the

direct summation of the series is applicable. However, for a value of s = 5, the

summation requires considerable effort while for, value of s = 4, the direct summation

is completely intractable. Using the M.I.T. Cray 2 Supercomputer facility, we estimated

that it would take over 106 years to converge the potential energy constant to five

decimals of precision.

Hirschfelder, Curtis, and Bird (1954) tabulated the potential energy constants for

several simple crystalline structures, specifically, the face-centered cubic, body-centered

cubic, and simple cubic structures. These potential energy constants were calculated by

Lennard-Jones (1924) and Lennard-Jones and Ingham (1925) using elaborate

transformations involving the Euler-Maclauren sum formula for the Riemann zeta-

function. They were able to calculate the potential energy constants to 5 decimal

precision for the three cubic structures for values of s ranging from 4 to 30.

Unfortunately, the structure I and II water clathrate structures are much more complex and

thus do not easily lend themselves to a similar treatment.

Conigrational Results 8-8
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8.1.1 Potential Energy Constants / Guest-Host Interactions

The potential energy constants, A,, for the water clathrate guest-host interactions

are given in Table 8.1. These constants were calculated from the direct summation of the

series using double precision arithmetic. For these calculations, the guest molecules were

always located at the center of their respective cavities and were assumed to be spherical.

The host water molecules were positioned at the crystallographic locations (McMullan and

Jeffrey, 1965; Mak and McMullan, 1965) of the oxygen atoms. The hydrogen atoms

were not considered.

8.1.2 Potential Energy Constants / Guest-Guest Interactions

The potential energy constants, A,, for the water clathrate guest-guest interactions

are given in Tables 8.2 and 8.3. Again, the guest molecules were always located at the

center of their respective cavities, which were assumed to be at full occupancy. Only

single site spherical guests were considered. The guest-guest interactions were subdivided

into four types per clathrate structure, specifically:

Structure I

1) The interaction of a guest within a pentagonal dodecahedron

with guests within other pentagonal dodecahedrons.

2) The interaction of a guest within a pentagonal dodecahedron

with guests within tetrakaidecahedrons.

Configurational Results 8-9
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3) The interaction of a guest within a tetrakaidecahedron with

guests within pentagonal dodecahedrons.

4) The interaction of a guest within a tetrakaidecahedron with

guests within other tetrakaidecahedrons.

Structure II

1) The interaction of a guest within a pentagonal dodecahedron

with guests within other pentagonal dodecahedrons.

2) The interaction of a guest within a pentagonal dodecahedron

with guests within hexakaidecahedrons.

3) The interaction of a guest within a hexakaidecahedron with

guests within pentagonal dodecahedrons.

4) The interaction of a guest within a hexakaidecahedron with

guests within other hexakaidecahedrons.

The first interaction type given under the structure I category in Table 8.2 for pentagonal

dodecahedrons corresponds to a body-centered cubic type structure. For this situation,

the potential energy constants tabulated by Hirschfelder, Curtis, and Bird (1954) in Table

13.9-2 on p. 1040 can be compared with those calculated here by direct summation.

Discrepancies exist only in the last one or two decimal values for some of the constants

particularly at values of s less than 10. Examination of the convergence properties of

these series, suggests that the values determined in this work from direct summation to

be correct.

Configurational Results 8-10
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5 21.93721 22.72571 19.87255 34.69343

6 19.38596 19.19966 17.24331 30.06453

7 18.20575 17.38725 15.89227 27.99541

8 17.50893 16.21892 14.99768 26.87150

9 17.01950 15.35567 14.30543 26.17033

10 16.63077 14.66220 13.71773 25.67964

11 16.29618 14.07625 13.19191 25.30135

12 15.99366 13.56598 12.70760 24.98635

13 15.71220 13.11345 12.25439 24.70874

14 15.44601 12.70766 11.82653 24A.45431

15 15.19191 12.34125 11.4 2063 24.21504

16 14.94808 12.00888 11.03447 23.98634

17 14.71339 11.70645 10.66649 23.76546

18 14.48712 11.4 A3064 10.31549 23.55077

19 14.26875 11.17866 9.98048 23.34131

20 14.05789 10.94813 9.66058 23.13643

21 13.85420 10.73694 9.35501 22.93573

22 13.65742 10.54325 9.06307 22.73895

23 13.46728 10.36542 8.78407 22.54591

24 13.28354 10.20198 8.51739 22.35645

25 13.10598 10.05161 8.26243 22.17048

26 12.93441 9.91314 8.01865 21.98790

27 12.76860 9.78549 7.78550 21.80863

28 12.60836 9.66771 7.56249 21.63261

29 12A.45350 9.55892 7.34913 21A5977

30 12.30385 9A5836 7.14497 21.29005

........ , ~: 4I WM
:. :,' "".

.t.·· 4Ci..~"5< JtK~$e 
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5 14.75840 15.11660 5.03886 6.77733

6 12.25367 13.41525 4.47175 5.14048

7 11.05424 12.72028 424009 4.28668

8 10.35520 12.38994 4.12998 3.74916

9 9.89459 12.21937 4.07312 3.37400

10 9.56440 12.12665 4.04222 3.09581

11 9.31326 12.07446 4.02482 2.88183

12 9.11418 12.04436 4.01479 2.71351

13 8.95181 12.02668 4.00889 2.57926

14 8.81677 12.01617 4.00539 2.47125

15 8.70298 12.00985 4.00328 2.38389

16 8.60625 12.00602 4.00201 2.31298

17 8.52353 12.00370 4.00123 2.25531

18 8A5250 12.00227 4.00076 2.20833

19 8.39135 12.00140 4.00047 2.17003

20 8.33860 12.00086 4.00029 2.13880

21 8.29305 12.00053 4.00018 2.11331

22 8.23568 12.00033 4.00011 2.09251

23 8.21962 12.00020 4.00007 2.07553

24 8.19016 12.00013 4.00004 2.06166

25 8.16465 12.00008 4.00003 2.05035

26 8.14258 12.00005 4.00002 2.04111

27 8.12347 12.00003 4.00001 2.03356

28 8.10692 12.00002 4.00001 2.02740

29 8.09259 12.00001 4.00000 2.02238

30 8.08019 12.00001 4.00000 2.01827

MM .1'~1.. . .26 8.14258 12.00005 4.00002 2.04111~~~~~~~~~~':"'~~"'..*'"~:~:'''~":"'"'::'':"''
::::::::::::::::::::: 8:.123`?::::`:::i:i::~::~[~~~::!:~7 i i2.00 ,.0 0 .3 5
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8 6.23392 6.28271 12.56542 4.33191

9 6.12419 6.16805 12.3361 4.19037

10 6.06724 6.10214 12.20428 4.11102

11 6.03690 6.06299 12.12599 4.06547

12 6.02045 6.03924 12.07847 4.0389

13 6.01142 6.02460 12.04921 4.02325

14 6.00641 6.01550 12.03101 4.01396

15 6.00362 6.00980 12.0196 4.00841

16 6.00205 6.00621 12.01242 4.00508

17 6.00116 6.00394 12.00789 4.00307

18 6.00066 6.00251 12.00501 4.00186

19 6.00038 6.00160 12.00319 4.00113

20 6.00022 6.00102 12.00203 4.00069

21 6.00012 6.00065 12.00129 4.00042

22 6.00007 6.00041 12.00083 4.00026

23 6.00004 6.00026 12.00053 4.00016

24 6.00002 6.00017 12.00034 4.00009

25 6.00001 6.00011 12.00021 4.00006

26 6.00001 6.00007 12.00014 4.00004

27 6.00000 6.00004 12.00009 4.00002

28 6.00000 6.00003 12.00006 4.00001

29 6.00000 6.00002 12.00004 4.00001

30 6.00000 6.00001 12.00002 4.00000
_________ 4 .. . *:.A .....-.. ........ ...... n ...~.. :.:~ . . "'"':' .~''~"''i~~i~K~i:::::~~'~i':::::"::::i[i

· ...~ ~.::.' .'.:~'.~:~:,'-:!.'~:'~:- .: :.~ · :.:....~ . . ~ ~ ~ ~ ''':..~~.::.! ><.~~:.,:..-.::~,w.-, :,[. '"°::"::~°:.i'":";::",i'::~~?' ~' : ' ' :~:: >°': :::'::::i'?" ... : ·.. : :..:..::::..:::'~: ..
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Potential Energy Constants / Structure II Guest-Guest Interactions

a-

-ft

Configurational Results 8-13

Table 8.3



Configurational Results 8-14~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

8.2 Lattice Summation Results

If the Lennard-Jones (6-12) intermolecular potential is used to model the various

guest-type interactions within the water clathrate system, then the total potential energy

of a guest molecule located at the center of a given cavity within a rigid host lattice is

given by

_4____A1 4Ea6A6 (4e2A 1 4ea6A A6
4 12 d6 12 6 (8.9)

where the first term solely represents the usual guest-host interactions, with the exception

that the all of the subsequent water shell contributions are included. The second term,

has been added to represent the usually ignored guest-guest interactions. As discussed

in Section 8.1.2, since there are two types of cavities in the different water clathrate

structures, the guest-guest interaction term actually consists of two separate terms,

specifically one to model the interactions of guest molecules within like cavities, and one

to model the interactions with guest molecules in unlike cavities.

4Uge1-2Ag 4e a6 A6A
~U8SFS ' 2 -6

do do lib casifi

(8.10)

( 4e12Al 4e6A 6 A

I do do unlike casi
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In the case of a structure I water clathrate, the first term could represent either the

interactions of a guest within a pentagonal dodecahedron with all the neighboring guests

also located in pentagonal dodecahedrons or similarly a guest within a tetrakaidecahedron

with all the neighboring guests also located in tetrakaidecahedrons. The second term

would represent the remaining unlike interactions. For a guest molecule that only fills

the large cavities within a water clathrate structure, the second term involving these unlike

interactions would disappear leaving only those like interactions.

The guest-host interactions can also be similarly modeled by the sum of two terms

Uguest-hot=
4ea6A'

do J guest-host, 1" shell

(8.11)

do do guest-host, residal4EO2(A i2 -At 2 ) 4EC6(A -A')

where the first shell potential energy constants, A , are given in Table 8.4. In this

case, the first term involves the interactions of a guest molecule situated at the center of

a given cavity with the first shell of neighboring water molecules, while the second term

captures the residual contributions to the total potential energy of the usually neglected

subsequent water shells.
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X gA4i.. %: \0~.:xSVC'~' '*...:.. - :.

''':-.:.:.....'~.... ':.: ...............

5 18.11488 18.09507 1 6.43662 26.61284

6 17.77499 17.23449 15.82105 26.35025

7 17.44653 16.45583 15.23417 26.09239

8 17.12911 15.75069 14.67457 25.83918

9 16.82235 15.11157 14.14091 25.59054

10 16.52589 14.53177 13.63191 25.34638

11 16.23940 14.00533 13.14637 25.10663

12 15.96254 13.52689 12.68313 24.87120

13 15.69498 13.09169 12.24112 24.64001

14 15.43641 12.69545 11.81928 24.41299

15 15.18653 12.33435 11.41664 24.19007

16 14.94505 12.00496 11.03227 23.97117

17 14.71168 11.70421 10.66527 23.75621

18 14.48615 11.42936 10.31482 23.54512

19 14.26820 11.17793 9.98011 23.33784

20 14.05757 10.94770 9.66037 23.13430

21 13.85402 10.73670 9.35490 22.93442

22 13.65732 10.54311 9.06300 22.73815

23 13.46722 10.36534 8.78403 22.54541

24 13.28351 10.20193 8.51737 22.35614

25 13.10597 10.05159 8.26242 22.17029

26 12.93439 9.91312 8.01865 21.98778

27 12.76859 9.78548 7.78550 21.80856

28 12.60835 9.66770 7.56249 21.63257

29 12.45350 9.55892 7.34913 21.45974

30 12.30385 9.45836 7.14497 21.29003....... ...... .-M.~~~~~~~~~~~~ " t"" '". -..tt.·. oi~'. :,:·:·:·:.· "'.:.:~ . . . . . . .
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Using the results previously given for the various guest-host lattice summation

configurations, the contributions to the total potential energy by the inclusion of the

subsequent water shell interactions and the various guest-guest interactions were examined

for a number of systems. As a means of estimating the effect these potential energy

changes had on the guest configurational integral, or equivalently the Langmuir constant,

the mean value theorem was used. Specifically, a general Langmuir constant, C, was

expressed as

C = (kT)-l(e-VUkT)V f = (kT)-'e(-UkT)V (8.12)

which enables us to write the ratio of two Langmuir constants as, for example

C,, e ( - U . , IkT ) Vo (8.13)

C ( -U, kT)
C'''l l V -fu, iT) lt l

Assuming the free volumes associated with the different potential energies to be

approximately equal, the Langmuir constant ratio was approximated as

e(- U,/kT)

CAM I e -U.,, /k) (8.14)

where the average potential energies, ( U/kT) , are for the sake of comparison assumed

to be equal to the value of the potential energy at the center of the assorted cavities.

To further enhance the presentation of the various effects subsequent water shells

and the inclusion of guest-guest interactions have on the value of the configurational

integral, or equivalently, the Langmuir constant, the total guest-host interaction potentials

at the center of each of the various cavities have been tabulated as simple functions of

the guest-host Lennard-Jones parameters a and e. Specifically, the results for the

structure I pentagonal dodecahedron are given in Tables 8.5a and 8.5b., while the results

for the structure I tetrakaidecahedron are given in Tables 8.6a and 8.6b. Similarly, the

Configurational Results 8-17



Cofiurtina Reut 8-18-

results for the structure II pentagonal dodecahedron are given in Tables 5.7a and 5.7b, and

finally, the results for the structure II hexakaidecahedron are given in Tables 5.8a and

5.8b.

The format of the tables is self evident. One notes that the contribution of the

subsequent water shells to the total potential energy is quite significant in that it is

approximately ten percent of the total potential energy for values of a < 3.0 and increases

to about the same magnitude of the 1st shell interaction at larger a values. The

contribution of the guest-guest interactions is also quite significant, usually on the order

of two to three percent of the total. However, the inclusion of the guest-guest interactions

in the calculation of the total potential energy is probably not truly justified in that the

error in estimating the guest-host potential energy constant, e, is definitely great enough

as to overwhelm the contribution of the guest-guest interactions.

The effect these additional contributions have on the actual Langmuir constant is

quite apparent. The actual change can range from a factor of 1.5 to several orders of

magnitude, thus making the inclusion of these "additional" interactions essential in the

characterization of the guest-host configurational partition function.
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2.9 -4.0976 -0.4460 ; 0.0083 -0.1256 -4.6775 _1.7806S

3.0 -4.7892 -0.5462 -0.0102 -0.1537 -5.4993 2.0342

3.1 -5.4959 -0.6643 -0.0124 -0.1869 -6.3594' 2.3716

3.2 -6.1734 -0.8027 -0.0151 -0.2257 -7.2169 2.8309

3.3 -6.7563 -0.9642 -0.0181 -0.2708 -8.0095 3.5014

3A4 -7.1507 -1.151 -0.0217 -0.3232 -8.6470 4.4653

3.5 -7.2257 -1.3678 -0.0258 -0.3834 -9.0027 5.9120

3.6 -6.8034 -1.6162 -0.0305 -0.4525 -8.9027 8.1602

3.7 -5.6451 X-1.9004 -0.0360 -0.5313 -8.1127 11.7950

3.8 -3.4357 -2.2239 -0.0422 -0.6208 -6.3226 17.9372

3.9 0.2355 -2.5907 -0.0493 -0.7218 -3.1263 28.8404

4.0 5.8989 -3.0048 -0.0573 -0.8353 2.0015 49.2754
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3.1 -9.8925 L -1.19567 l -0.0224 -0.3364 -11.4470 4.7324l
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3.5 -13.0063 -2.4620 -0.0464 | -0.6902 -16.2049 24A975 l

3.6 -12.2461 -2.9092- -0.0549 |-0.8146 -16.0248 A 43.7587l

3.7 -10.1611 -3.4207 -0.0647 -0.9564 -14.6029 84.9288l

3.8 -6.1843 -4.0031 -00759 1 .1174 -11.3807 180.6175l
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3.0 -6.4814 -0.8145 -0.0922 -0.2069 -7.5950 3.045

3.1 -7.6376 -0.9827 -0.1121 -0.2514 -8.9839 3.843
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8.3 Full Integration versus Lennard-Jones and Devonshire Approximation

In order to elucidate the inadequacies associated with the use of spherically

symmetric Lennard-Jones Devonshire smooth cell approximation, we have performed

multi-dimensional integrations over the various water clathrate cavities while accounting

for the asymmetries of the host lattice using the complete crystallographic structural data

as described earlier in Chapter 4. Using the methods outlined previously in Section 6.2,

the configurational partition functions were evaluated for a number of systems.

Additionally, the angle-averaged potential energy profiles were calculated in order to

compare with those determined via the Lennard-Jones Devonshire approximation.

A sample angle-averaged potential energy profile of a spherical guest within the

structure II pentagonal dodecahedron is shown in Figure 8.6. Similarly, the angle-

averaged profile of a spherical guest within the structure II hexakaidecahedron is shown

in Figures 8.7 and 8.8. Due to the similar geometry of the various cavities, the structure

I water clathrate cavity profiles have not been included in the figures even though

calculations were made.

The dashed curves in each of these figures represent the Lennard-Jones Devonshire

spherical cell approximation as given by Equation (7.7). Only the first shell of water

molecules were included. The family of solid curves represents the full three-dimensional

integration over the rigid host lattice. The upper most solid line represents the first shell

interaction only. The five additional solid lines represents the inclusion of subsequent

water shell interactions in the potential energy calculations. The convergence of the

potential energy as a function of these succeeding interactions is clearly illustrated in each

of the figures. Again, it

8-27Configuraional Results
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should be noted that the inclusion of these additional water shell interactions has a rather

significant effect on the potential energy profile, and must therefore be considered in the

configurational partition function evaluation.

It is quite obvious from Figure 8.6, and Figure 8.7, that for the smaller guest

molecules (a < 3.0), the Lennard-Jones Devonshire approximation does a remarkably

good job in describing the potential energy profiles within the different water clathrate

cavities. Of course, the addition of the subsequent water shell interactions would be still

be necessary in order to accurately capture their important contributions. For the larger

guest molecules (a = 3.5), as depicted in Figure 8.8, the Lennard-Jones Devonshire

approximation is completely inadequate in describing the potential energies and is

therefore incapable of providing reliable estimates of the configurational partition

function.

In an attempt to further elucidate the inadequacies of the Lennard-Jones

Devonshire approximation in regard to the asymmetries of the host lattice, we have

performed calculations for a wide range of Kihara intermolecular potential parameters

following the Q convention first proposed by John and Holder (1985).

Q.= C(EXACT) (8.15)
C(LJD)

Using the definition above we have compared the Langmuir constant determined through

the use of the Lennard-Jones Devonshire approximation (C(LID)) with those determined

from the complete three-dimensional integration over the host lattice (C(EXACT)). For

the sake of comparison with John and Holder's results only the first shell interactions

were included.

Configurational Results 8-31
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The results for the structure I pentagonal dodecahedron are illustrated in Figure

8.9. The symbols represent the actual calculations while the solid lines are simple cubic

splines through the data points. The results for the structure I tetrakaidecahedron are

similarly pictured in Figure 8.10. Additionally, the results for the structure II pentagonal

dodecahedron and hexakaidecahedron are given in Figures 8.11 and 8.12.

It is clearly evident from the various figures that their exists appreciable deviation

between the LJD value and that determined from the more complete three dimensional

integrations. We know that for the larger more asymmetric water clathrate formers, the

use of the Lennard-Jones Devonshire approximation results in estimates of the

dissociation pressure which are far below those determined experimentally. The inverse

relationship between the Langmuir constant of the guest molecule and its fugacity, as

dictated by van der Waals and Platteeuw model (Equation (5.25)) requires smaller

Langmuir constants if we are to better predict these dissociation pressures. The

decreasing nature of the "exact" Langmuir constants as illustrated in Figures 8.9, 8.10,

8.11, and 8.12 is therefore in accord with the theory. Probably the most interesting point

illustrated in these figures, involves the fact that they exhibit a completely different

behavior than those reported by John and Holder (1985). The results of their three-

dimensional integrations illustrated in Figures 8.13, 8.14, 8.15, and 8.16 instead

demonstrate a nearly opposite trend. For the same range of potential parameters they

observed an increasing Langmuir constant ratio for increasing values of a. The

magnitude of the changes were also of a much lesser value, usually on the order of a

factor of two or three. Using questionable reasoning they, however, discounted their

results in favor of an empirical correlation for Q* which instead gave the theoretically

correct downward trend similar to the results reported here. Apparently, their integrations

are not correct as the authors did not report any checks of their integration procedures.

We used simple Monte Carlo integrations to test the results of our multi-dimensional

Gaussian-Legendre

Configurational Results
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quadrature. The additional potential energy profiles reported previously, also provided

us with a quantitative check of our methods. In particular, the excellent agreement

exhibited between the LJD model and the exact integration for the smaller guests

provided us with a positive verification of our integration methods. Furthermore, by

setting the intermolecular potential energy parameter, £, to zero, we were able to equate

the configurational partition function to the known integration volume.

Given the importance of including the host lattice asymmetries in the evaluation

of the configurational partition function, the inclusion of the subsequent water shell

interactions is additionally important. A good example of this is illustrated in Figure

8.17. Using complete three-dimensional integrations the Langmuir constant was

calculated as a simple function of coordination number for a sample system. Again, as

explained in Section 8.2, the effect can be quite large. In fact, in Figure 8.17 we observe

a change of more than an order of magnitude in the value of the Langmuir constant.
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Molecular Simulation of Phase Equilibria in Well-Defined Model Systems

9. MOLECULAR SIMULATION OF PHASE EQUILIBRIA IN

WELL-DEFINED MODEL SYSTEMS

The modeling of the three-phase dissociation pressures of water clathrate systems

is often of great concern for those involved in the various gas processing industries. In

an attempt to further our understanding of the importance of the true configurational

characteristics of the guest-host interaction, we have chosen to model two rather unique

water clathrate systems. We have restricted this portion of our study to structure I water

clathrates in which only the large cavities are occupied by the guest molecules,

specifically, the ethane-water clathrate and cyclopropane-water clathrate.

In structure I clathrates the reference properties which correlate the chemical

potential difference between. water in a hypothetical empty hydrate lattice and water in

either a water rich aqueous phase or solid ice phase are based upon actual experimental

measurements. Whereas the structure II reference properties are based upon applications

of Lennard-Jones and Devonshire Smooth Cell model to several model systems. Thus,

we have limited our simulation studies to structure I systems.

Additionally, by restricting our study to those systems in which only the larger of

the two cavity types are occupied, we can compare the Langmuir constants based upon

our evaluation of the configurational partition function with those derived directly from

dissociation pressure data.
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9.1 Experimental Langmuir Constants

In Chapter 5, we derived using statistical mechanics an expression for the chemical

potential difference of water in the hypothetical empty water clathrate and water in the

"filled" clathrate phase. This expression, repeated here for completeness,TI = v ln + ci ,, (9.1)kT" , I

can be applied to a number of different clathrate type systems. In terms of the structure

I water clathrate system we know there are two of the smaller pentagonal dodecahedral

cavities and six of the larger tetrakaidecahedral cavities for each unit cell comprised of

forty six water molecules. Since vi is defined as the number of type i cavities per water

molecule in the host lattice, we can write for a pure component structure I water clathrate

system

Ap~-x _H3 In(1 + C, 1f,) 

kT In(1 + C,j) + 23 In(l+ C,2f) (9.2)

where C,, is the Langmuir constant for a type J guest within the pentagonal dodecahedral

cavity, C,2 is the Langmuir constant for a type J guest within the tetrakaidecahedral

cavity, and fj is the fugacity of component J. Several of the larger structure I water

clathrate formers, specifically ethane and cyclopropane, are however, energetically limited

to occupation of only the larger of the two cavity types, thereby reducing Equation (9.2)

to the following expression.

APt- H 3
kT 23n(+Cf,) (93)
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As previously discussed in Section 5.3, phase equilibrium requires that the

chemical potential difference between water in hypothetical empty clathrate phase () and

water in the "filled" clathrate phase (H) must equal the chemical potential difference of

water in the hypothetical empty clathrate phase and water in either an aqueous liquid

phase (L) or solid ice phase (a).

_m Ap&H Peii r (9.4)

This equilibrium constraint thereby allows us to rewrite Equation (9.3) upon simple

rearrangement as

(23J3)A- ' / TkT

fi = 1,2 (9.5)

thus providing a rather simple means of relating the Langmuir constant of a type J guest

in the larger tetrakaidecahedral cavity to fi, the fugacity of guest component J, and

Ap-H , the chemical potential difference between water in the hypothetical empty

hydrate and water in either an aqueous liquid phase or ice phase.

In the following sections the "experimental" Langmuir constants derived from

Equation (9.5) and the dissociation pressure data for the ethane and cyclopropane water

clathrate systems are presented. The chemical potential difference Apw-H was

calculated using the method proposed by Holder et al. (1980) as previously discussed in

Section 5.3. The Peng-Robinson equation of state (Peng et al., 1976) was used to

estimate the fugacity of the guest component.
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9.2 Configurational Langmuir Constants

In order to accurately account for the asymmetries associated with the interactions

between the guest and the static host lattice, we have chosen to model the ethane and

cyclopropane molecules as simple multi-site rigid bodies. The six orientational degrees

of freedom associated with the guest within the clathrate cavity were considered directly

in the evaluation of the configurational integral

Zji = 1 f e r- IU(r'e ',' sin dO do dr da sin d3 dy (9.6)

where the position and orientation of the guest is given by the spherical spatial

coordinates r, 0, and , defined in reference to the center of a given cavity, and their

Euler orientation angles a, , and y. The factor of 82 is simply a normalization constant.

The complexities associated with the modeling of these asymmetric guest

molecules limited in several respects our evaluation of the "configurational" Langmuir

constants. Specifically, due to the dimensionality of our integrations, we were restricted

to a finite number of subsequent water shell interactions in the calculation of the total

potential energy. Up to five shells were included in our integrations. The first shell

consisted of the interaction energies associated with the 24 nearest neighboring water

molecules while the second shell involved the interaction energies associated with the

next 24 nearest neighboring water molecules. The third shell involved the interaction

energies associated with the next 32 nearest neighboring water molecules and finally, the

fourth shell involved the interaction energies associated with next 104 nearest neighboring

water molecules. The fifth shell involved the interaction energies associated with the next

64 nearest water molecules. The adequacy of these five shells in the representation of the

"infinite" lattice interaction, as previously discussed in chapter 8, was the basis for this

restriction. The properties of these shells are listed in Table 9.1.
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The configurational integrals were evaluated using the multi-interval 10-point

Guassian-Legendre quadrature formula previously discussed in Section 6.2. The shear

number of Gauss points involved in these integrations, however, required us to limit our

number of integration intervals to one for each of the six dimensions. As it was, the

integrations involved the evaluation of the total potential energy of the guest molecule

over the four subsequent water shells for each of the required 106 Gauss points. Each

integration consumed approximately 12 minutes of time on the MIT Cray 2

supercomputer facility. The evaluation of the configurational partition function for the

ethane molecule was somewhat simpler in that its symmetry permitted us to eliminate the

degree of rotational freedom associated with the Eulerian angle a, thus reducing the

computational burden by about an order of magnitude.
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9.3 Ethane-Water Clathrate System

In modeling the ethane-water clathrate system we chose to represent the ethane

molecule using a rigid two interaction site Lennard-Jones (6-12) model as shown

illustrated in Figure 9.1. As previously discussed in Section 7.1, the initial intermolecular

interaction parameters e and a were taken from the TIPS model of Jorgensen (1981) since

they were indicative of the parameters used by Tse et al. (1983; 1984) and Rodger (1989;

1990) in their molecular dynamics simulations of several similar structure I water

clathrate systems. Only the interactions between the CH3 sites and the O site on each of

the static host water molecules were considered. The interactions between neighboring

guest molecules were neglected.

Using the three-phase dissociation data for the ethane water clathrate system, as

illustrated in Figure 9.2, Equation (9.5) was used to calculate the "experimental"

Langmuir constants given in Table 9.2. The source of the experimental dissociation data

is also given Table 9.2.

The TIPS based configurational Langmuir constants for the ethane molecule

encaged within the larger tetrakaidecahedral cavity are shown in Figure 9.3. The lower

most solid line represents the first shell interaction exclusively. The three additional

dashed lines represent the inclusion of subsequent water shell interactions in the

calculation of the potential energies, the upper most dashed line representing the inclusion

of the intermolecular binary interactions between the guest ethane molecule and the

nearest neighboring 248 host water molecules. Since these TIPS based Langmuir

constants are nearly two orders of magnitude lower than the "experimentally" derived

constants, we can rationally assume that these discrepancies are in all likelihood based

upon improper choices of potential parameters.
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If we examine the work of Bolis et al. (1983) which pertains to interactions

between methane and water as determined from ab initio quantum mechanical

calculations, we notice that they report for a specific conformation a minimum interaction

energy of -2.719 kJ/mol. If we assume a correspondence between this minimum energy

and the Lennard-Jones potential well depth, then we can reasonably conclude that the

methane-water interaction is well represented by the /k value of 327 K as compared to

the TIPS based value of 94 K. Since the TIPS model appears to significantly

underestimate the well depth parameter for the methane-water system, we can assume that

in all likelihood, the similarly derived intermolecular energy site parameter for the ethane-

water system, are also undervalued. It should also be noted that due to the orientational

dependency of the methane-water interaction, the reported e/k value of 327 K should only

strictly be considered an extreme upper limit.

For a given temperature and set of Lennard-Jones parameters, following the

10-point Gaussian-Legendre quadrature scheme to evaluate the configurational partition

function, we obtained a predicted Langmuir constant to compare with the experimental

values shown in Figure 9.3. The parameters were altered to minimize a suitable objective

function. In this case, we selected the simple sum of the squares of the deviation between

the experimental and predicted values. The resulting fitted constants along with the

predicted plots are given in Figure 9.4.
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9.4 Cyclopropane Water Clathrate System

In modeling the cyclopropane-water clathrate system we chose to represent the

cyclopropane molecule using a rigid, three interaction site Lennard-Jones (6-12) model

as shown illustrated in Figure 9.5. Again, the initial intermolecular interaction parameters

e and a were taken from the TIPS model of Jorgensen (1981) since they were indicative

of the parameters used by Tse et al. (1983; 1984) and Rodger (1989; 1990) in their

molecular dynamics simulations of several similar structure I water clathrate systems.

Only the interactions between the CH2 sites and the O site on each of the static host water

molecules were considered. The interactions between neighboring guest molecules were

neglected.

Using the three-phase dissociation data for the cyclopropane water clathrate

system, as illustrated in Figure 9.10, Equation (9.5) was used to calculate the

"experimental" Langmuir constants given in Table 9.3. The source of the experimental

dissociation data is also given Table 9.3.

The TIPS based configurational Langmuir constants for the cyclopropane molecule

encaged within the larger tetrakaidecahedral cavity are shown in Figure 9.7. The lower

most solid line represents the first shell interaction exclusively, The three additional

dashed lines represent the inclusion of subsequent water shell interactions in the

calculation of the potential energies, the upper most dashed line representing the inclusion

of the intermolecular binary interactions between the guest cyclopropane molecule and

the nearest neighboring 248 host water molecules. Since these TIPS based Langmuir

constants are nearly three orders of magnitude lower than the "experimentally" derived

constants, we can reasonably assume, following the arguments presented in the previous

section, that the TIPS model also underestimates the potential well depth parameters for

the cyclopropane-water system.
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A similar treatment to obtain fitted potential parameters was followed for the

cyclopropane-water system as described for the ethane-water system in Section 9.3.

Results expressed in the form of a Langmuir constant versus inverse temperature plot are

given in Figure 9.8.

One should note that the computational time for these fits was approximately an

order of magnitude larger than for the ethane-water system due to the extra degree of

rotational freedom of the non-linear cyclopropane guest.



Molecular Simulation of Phase Equilibria in Well-Defined Model Systems

4 1.535 

Fiue95CcorpneMdlRpeetto

9-16

Cyclopropane Model RepresentationFigure 9.5



Molecular Simulation of Phase Equilibria in Well-Defined Model Systems

A

L-H-Git

A
A

A
A

A I-H-G
A

A
A

A

11111 I I I I I 1

3.50 4.00

10 / T(K)

u1 IuI ll II

4.50 5.00

Cyclopropane - Water Clathrate Three-Phase Equilibria

10-

A
Id

%..pp

M0
5-a
0

0
m-
m

I1:

0.1-

M,

U.Ul -' -1

3.00
-- -- -- -- -- ---- -- -- - _ 

_ __ __

9-17

an,

_

Figure 9.6



Molecular Simulation of Phase Equilibria in Well-Defined Model Systems

289.4 5.587 20.52

282.2 2.218' 32.97

281.9 2.163 1 33.21

281.6 2.071 1 34.08

281.1 1.939' 35.34

280.0 1.699' 37.84

278.9 1.477 40.83

278.8 1.445 ' 41.47

277.9 1.282' 44.40

277.7 1.237' 45.49

276.9 1.132 47.48

276.0 1.020 50.06

275.0 0.888' 54.38

264.2 0.436 1 121.20

261.1 0.3701 153.04

257.9 0.309' 197.02

255.1 0.263 ' 247.02

252.2 0.220' 1 315.84

249.3 0.186' 402.14

246.2 0.153 ' 527.87

243.6 0.130 663.70

240.2 0.104 902.75

237.2 0.085 ' 1194.02

...̀ i... . i
.......... i...... i ' c~ .... i ... _m~-~ ..~.:~~~ ::~ i..:.N..~.:!~~~~~..i:..:!*:~..:~.:~::~:~.~.. ;::.:.~..:...:~~.:

:i

9-18

a-1

gm

a

gr

Table 9.3 Experimental Cyclopropane Langmuir Constants
Table 9.3 Experimental Cyclopropane Langmuir Constants



Molecular Simulation of Phase Equilibria in Well-Defined Model Systems

Langmuir Constants
Cyclopropane - Water Clathrate

Tetrakaidecahedron

__~=
- -

-- Z. -
Ze~r _r

24
48
80

184
248

80 A~A
A A

A A
AA.eu

A

TIPS - Jorgensen (1981)

O-CsE /k = 58.62 K
O-Ch. a = 3.58 Angstroms ,..

-3JC - -

-·

Irr ~ ~ ~ -- 

-r
3.00 3.50 4.00 4.50

10 / T(K)

A

I I I I I I ,I ! rI -I I -i I r - I Ir- I I

Cyclopropane - Water Clathrate Langmuir Constants

10000 

10001
o

100 !

a :0 107
.i 1

30.017I

0.001 i

0.0001 - I

9-19

A

Figure 9.7



Molecular Simulation of Phase Equilibria in Well-Defined Model Systems

1UUUU

1000

A 100

M 10

0 1

0.1

0.01

0.001

0.0001
3

Langmuir Constants
Cyclopropane - Water Clathrate

Tetrakaidecahedron

10o' / T()

Fitted Cyclopropane - Water Clathrate Langmuir Constants__

9-20

Figure 9.8



MoleularDynmicsof aterClahrats1-

10. MOLECULAR DYNAMICS OF WATER CLATHRATES

Molecular Dynamics simulations of molecular systems have become an

increasingly powerful tool in the study of the physical behavior of molecular liquids and

solids. Thus, in an attempt to better understand the configurational characteristic of the

guest-host interaction within the water clathrate structure we have performed constant

volume and energy (NVE) simulations for both the methane and cyclopropane water

clathrate systems.

10.1 Method of Constraints

The computational complexities associated with the modeling of molecular systems

has resulted in the development of several algorithms which greatly simplify the

construction of the relevant equations of motion. Allen and Tildesley (1987) discuss in

great detail the different options available for the modeling of molecular systems,

notwithstanding, constraint dynamics has become the predominate choice in recent years.

Specifically, in terms of the modeling of water clathrate systems the SHAKE constraint

algorithm by Ryckaert et al. (1977) has been used extensively by Tse et al. (1983; 1984;

1987) in their study of the dynamical properties of several different gas hydrates.

Additionally, RA7TLE (Anderson, 1983), the velocity version of SHAKE, has also been

used recently by Rodger (1989; 1990) in the modeling of water clathrate systems.

Nevertheless, we instead chose to implement the more recent differential constraint

algorithm based on Gauss' principle of least constraint as proposed by Edberg et al.

(1986).

10-1Molecular Dynamics of Water Clathrates
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The derivation of the constrained equations of motion for a rigid triatomic

molecule (i.e. H20) using Gauss' principle of least constraint is simple and

straightforward. The holonomic bonding constraints for a rigid triatomic molecule are

given by

g 12 = rl 2 - = 0

g13 r13 - d 3 = (10.1)

g23 r23 - d23 = 0

where

r12 = rl - r2

r13 = r - r3 (10.2)

r2 3 = r2 - r3

and d,2, d,3, and d23 are the desired bond lengths within the three site molecule.

Differentiating these equations with respect to time yields

ag 12

at

ag 13

at

ag 23

at

= 2r2rl2 = 0

= 2r1 3 r 13 = 0
(10.3)

= 2r 23 23 = 0

while differentiating Equations (10.1) a second time with respect to time gives

Molecular Dynamics of Water Clathrates 10-2



Molecular Dynamics of Water Clathrates 10-3

a 2g 12
..-- 'f2t 212 + 2r12r 12 = 0
at2

2913
-'t -2 313 1 + 2r 3 rl3

= 0
at2 3

2923-
-5't 2t 2 3 23 +2r 2 3r23 = 0at2

or equivalently

rl2 rl2 + r2 rl2 =

1r3 t13 + r13 13 =

r23 23 + r23 23 = 0

where

t2 = t - t2

t 13 = rl - 3

23 2 - 3

and

1'I2 = l - r2

(10.4)

(10.5)

(10.6)
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r13 = r - 3
(10.7)

r2 3 = 2 - r3

Equations (10.5) are fundamental to the derivation of the constrained equations of motion.

Specifically, since the constrained equations of motion for each site in a triatomic

molecule are given by

mrl = F - ,2r 12 - X,3r13

m2 2 = F2 + 12/r12 - '23r23 (10.8)
0-

m3 3 = F3 + ,3 r,3 + 23r 23

where X12 , X13, and X,3 are undetermined Lagrangian multipliers.

Equations (10.8) into Equations (10.7) yields

The substitution of

r12 =Fl ml F 2 m2 12rl2 ( n +m2 ) _) 13 13 ml + 2 3r 23 m2

13 -Fm I -F 3m3 j-1 2r -1 -~1 r -r13 =F I 1 3 312 12 r 1 ? 1 3 r 13 (r+3 )- 2 3 r 2 3 3 (10.9)

r23 = F 2 m2 -F 3 m + 1 2 r1 2 ml2 13 r13 m 23 23 ( m2 +m3 )

The substitution of Equations (10.9) into the differential forms of the constraint equations

(Equations (10.5)) results in the compact expression

A X = b (10.8)

where the matrix A is defined as
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2 -1 -1)
2(m + m2')

A = r l3 2m-I

-23 r2 m -1-r'2 3 r1 2Z m2

-2
r1 2 1 3 ml

r13(m + m3j)
-1

r 23 r1 3 m3

-1
-r 1 2 r2 3 m 3

-1
r13 'r2 3 m3

r 3(m2 + m3l)

and the vectors X and b are defined by

(12 

x = X3

X23

and

(Fm;l

b = (F m 1

(F ml

- F m ) r,
. -1 2+ F m )r,3

+ F m )r 3

These resulting linear equations in X define the principal advantage of using the

differential forms of the constraint equations (Edberg et al., 1986), specifically, since the

quadratic equations for X associated with the SHAKE constrained dynamics algorithm

(Ryckaert et al.,1977) are much more complex and generally involve an iterative type

solution.

I

(10.9)

(10.10)

.2
+ r1 2

.2
+ r1 3

.2+ r23+ 22

(10.11)
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10.1.1 Penalty Functions

Since the bond length constraints are applied in differential form, the bond length

values d,2 , d,3 , and d23 should remain constant throughout the simulation. However, the

error associated with the numerical integration of the constrained equations of motion

eventually induces the various bond lengths and bond angles to drift away from their

desired values. In order to solve this problem, we have adopted to use the penalty

function approach of Edberg (1986).

The positional penalty function defined by

= (rap - d2)2 (10.12)

is a measure of the deviation in the different bond constraints. The velocity penalty

function defined by

v. = (r rap)2 (10.13)

is a measure of the speed at which the bond constraints are changing. In terms of a rigid

triatomic molecule the positional penalty function is written

= (rl2 - d22)2 + (r 3 - d 3 )2 + (r23 - d223 )2 (10.14)

or in terms of its cartesian coordinates as
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a = ((Xl -X2 )2 +(y- _y 2)2 +(Z -Z2)2 -d 22)2 +

((X, -X3 ) 2+(Yl-Y3) 2 2+(zZ3) 2- d 7 3) 2 +

((X2 -X 3) 2 +(Y2 -y 3) 2 +(Z2 -z 3) 2 -d23 )2

In terms of a rigid triatomic molecule the velocity penalty function is written

P - (rl2 'l2) 2 + (rl3't 1 3) 2 + (r2 3' 23) 2 (10.16)

or in terms of its cartesian coordinates as

vI = ( (xl -x2)(.,: -x2) +(y -y2)( -P2)+(Z -Z2)(Z -Z2) )2 +

( (X, -x3)(X -t 3 ) +(Y -Y3)(I -5'3) +(ZI Z3)(l -3) )2 + (10.17)

( (x 2 -x 3)(Jt2 x-3) +(Y2 -Y 3)(j 2 3) +(Z2 -z 3)(z 2 - 3) )2

These penalty functions are monitored during the course of a simulation for each

molecule. When their values become sufficiently large, on the order of 10 , the

positions and velocities of the various molecular sites are adjusted to new values

corresponding to the potential minimum. A standard nonlinear minimization routine was

used to implement this adjustment (Press et al., 1986).
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10.2 Gear Predictor-Corrector Integration

The constrained equations of motion were numerically integrated using the 5-value

Gear second-order predictor-corrector algorithm (Gear, 1971). The basis of the method

involves a simple Taylor expansion about time t:.

er(t+Bt) = r(t) +6tv(t) + 1 t2a(t)+ 6 t3b(t) + 1 t4c(t)
2 6 24

a(t) + 
2

aP(t+St) = a(t) +t b( t) 1 8t2c(t)
2

bP(t +t) = b(t) + 8t c(t)

cp(t +t) = c(t)

where r is the position vector, v is the velocity vector, a is the acceleration vector, b is

the third time derivative vector, and c is the fourth time derivative vector. The superscipt

p refers to the "predicted" values. The correction step involves the calculation of forces

or equivalently the accelerations at a time t+&t. The error between the calculated

acceleration and predicted corrections

Aa(t+8t) = aC(t+Bt) - aP(t+Bt) (10.19)

is used with the results of the predictor step to make the corrector step

VP(t+6t) = v(t) +6t 8t2 b(t) + 1 St3 c(t)
6

(10.18)
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rC(t+§t) = r(t+8t) + CoA (t + t)

vC(t+St) = vP(t+8t) + cA, t+St)

ac(t+St) = aP(t+§t) + c2Aa t+t) (10.20)

bc(t+St) = bP(t+St) + c3Aai +6t)

CC(t+St) = CP(t+8t) + c4Aa( '-St)

where the superscript c refers to the "corrected" va ies. The values of the coefficients

Co, c,, c2, c3, and c 4 are given in Table 10.1.
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10.3 Simulation Temperature History

The classical equipartition principle equates an energy of kT/2 for every degree

of freedom within a system. For an atomic system, there are three translational degrees

of freedom for each atom, thus for a system of N atoms the system temperature () is

defined by the total kinetic energy of the ensemble as:

3 NkT = i vi mv 2

2 2 ill (10.21)

where mi and vi are the mass and velocity of atom i, respectively. In addition, the atomic

temperature within a molecular system is given by

T msite site
Ttonc (3N s - Nc)k (10.22)

where mst, and vit, are the mass and velocity of site i. N, is the total number of atoms

or sites and Nc is the total number of system constraints. Usually, this includes the total

number of independent internal constraints dictated by the fixed bond lengths and angles

and the three additional global constraints associated with maintaining the overall linear

momentum of the simulation cell at a value of zero. The molecular temperature is given

similarly by

2
_ mo, vmL

TM°*'lc - (3N - 3)k (10.23)

where Nm is the total number of molecules in the system and m,, and vot are again the

molecular mass and velocity.

Molecular Dynamics of Water Clathrates 10-11
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10.4 Methane-Water Clathrate Simulation

Constant volume and energy (NVE) molecular dynamics calculations have been

use to study the configurational characteristics of the fully occupied structure I methane-

water clathrate. The simulations involved a single structure I unit cell (Pm3n) with a

lattice constant of 12.03 A. The two smaller pentagonal dodecahedral cavities as well as

the six larger tetrakaidecahedral cavities were assumed to be fully occupied by methane

molecules. The initial positions of the 46 water molecules were taken from the work

described earlier in chapter 4. As discussed previously in chapter 7, the simple point

charge (SPC) model (Berendsen et al., 1983) was used to model the binary intermolecular

interactions between the host water molecules. TIPS (Jorgensen, 1983) based single site

Lennard-Jones (6-12) intermolecular potential functions were used to model the CH4 -

CH4 and CH4 - O interactions. Interactions between the water hydrogens and the methane

molecules were ignored. Specifically, the . The potential parameters for these simple

single site models are given in Table 10.2. Standard periodic boundary conditions were

used to simulate an infinite system. The electrostatic interactions were handled via the

minimum image convention due to computer resource limitations.

Using the Gear Predictor-Corrector algorithm, as previously discussed in section

10.3, the differentially constrained equations of motion were integrated using a time step

of 1.34 fs. This time step was derived from the simple scaling of the intermolecular

forces with respect to SPC electrostatic force. The trajectories of all of the molecules

were followed for a total of 30-40 ps. The molecular temperature of the system was

maintained by the scaling of the molecular velocities every 25-50 time steps during the

equilibration portion of the simulation. During the actual dynamic portion of the

simulation, the velocities were scaled every 500-1000 time steps. Energy conservation

disparities between velocity rescalings were always less than 0.1 percent.

10-12Molecular Dynamics of Water Clathrates
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A sample of the atomic temperature simulation history is illustrated in Figure 10.1.

The corresponding molecular temperature simulation history is shown in Figure 10.2. The

reported relative time interval was randomly taken from the dynamic history file of an

equilibrated simulation.

In order to develop a more comprehensive physical and quantitative description

of the intermolecular characteristics of water clathrate systems we have used the results

of our molecular dynamic simulations to illustrate the various motions within the hydrate

structure. These illustrations serve to highlight many of the adequacies and inadequacies

of the previous simplistic treatments used in the modeling of the guest-host

configurational partition function.

The dynamics of an oxygen atom within the host water lattice are shown in

Figures 10.3, 10.4, 10.5, 10.6, 10.7, and 10.8. Specifically, a small sample of the X

trajectory of a random host oxygen is depicted in Figure 10.3. The corresponding Y and

Z trajectories are illustrated in Figures 10.4 and 10.5. The same trajectory of the oxygen

atom within the X-Y, X-Z, and Y-Z planes are given in Figures 10.6, 10.7, and 10.8. The

extreme localization of the oxygen atoms within the host lattice structure is quite apparent

from the previous figures. The overall rigidity of the host water lattice, however, is

difficult to assess without further study.

The motion of the methane molecules within the various cavities within the fully

occupied structure I host lattice is illustrated in Figures 10.9, 10.10, 10.11, 10.12, 10.13

and 10.14. The trajectories of each of the methane molecules within the structure I unit

cell are shown, specifically, in Figures 10.9, 10.10, and 10.11. The X-Y, X-Z, and Y-Z

trajectories of the eight methane molecules are shown, similarly in Figures 10.12, 10.13,

and 10.14. The localization of the methane guest molecules within the various cavities

is quite apparent. As would be expected, the motion within the larger tetrakaidecahedral

cavities is less restricted than the motion within

Molecular Dynamics of Water Clathrates 10-14
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Oxygen Trajectory (200 K)
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Oxygen Trajectory (200 K)
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Oxygen Trajectory (200 K)
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Oxygen Trajectory (200 K)
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Methane Trajectory (200 K)
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the smaller pentagonal dodecahedral cavities. The range of the localizations is also

consistent with the range dictated by the spherical cavity potentials resulting from the

simplistic Lennard-Jones and Devonshire spherical cell model.

A space-filling representation of a methane molecule within the structure I

pentagonal dodecahedral cavity is depicted as a function of time in Figures 10.15a and

10.15b. For the purpose of illustration, only those host water molecules with a

normalized Z position less than zero are shown. This also explains the abrupt

appearances and disappearances of additional host water molecules. Similarly, a space-

filling representation of a methane molecule within the structure I tetrakaidecahedral

cavity is depicted as a function of time in Figures 10.16a and 10.16b.
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Figure 1O.16b Methane Clathrate Simulation - Tetrakaidecahedron
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10.5 Cyclopropane-Water Clathrate Simulation

Constant volume and energy (NVE) molecular dynamics calculations have been

use to study the configurational characteristics of the fully occupied structure I

cyclopropane-water clathrate. The simulations involved a single structure I unit cell

(Pm3n) with a lattice constant of 12.03 A. The six larger tetrakaidecahedral cavities were

assumed to be fully occupied by cyclopropane molecules. The two smaller pentagonal

dodecahedral cavities were assumed to be unoccupied. The initial positions of the 46

water molecules were taken from the work described earlier in chapter 4. The simple

point charge (SPC) model (Berendsen et al., 1983) was used to simulate the binary

intermolecular interactions between water molecules. A three site, TIPS (Jorgensen,

1983) based, Lennard-Jones (6-12) intermolecular potential functions were used to model

the CH2 - CH2 and CH2 - O interactions. Interactions between the water hydrogens and

the CH2 sites were ignored. The potential parameters are given in Table 10.3. Standard

periodic boundary conditions were used to simulate an infinite system. The electrostatic

interactions again were handled via the minimum image convention.

Using the Gear Predictor-Corrector algorithm, as previously discussed in section

10.3, the differentially constrained equations of motion were integrated using a time step

of 1.34 fs. The trajectories of all of the molecules were followed for a total of 30-40 ps.

The molecular temperature of the system was maintained by the scaling of the molecular

velocities every 25-50 time steps during the equilibration portion of the simulation.

During the actual dynamic portion of the simulation, the velocities were scaled every 500-

1000 time steps. The energy conservation between velocity rescalings was always less

than 0.1 percent.
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A sample of the atomic temperature simulation history is illustrated in Figure

10.17. The corresponding molecular temperature simulation history is shown in Figure

10.18. Again, the reported relative time interval was randomly taken from the dynamic

history file of an equilibrated simulation.

In order to develop a more comprehensive physical and quantitative description

of the intermolecular characteristics of water clathrate systems we have used the results

of our molecular dynamic simulations to illustrate the various motions within the hydrate

structure. These illustrations serve to highlight many of the adequacies and inadequacies

of the previous simplistic treatments used in the modeling of the guest-host

configurational partition function.

The dynamics of an water molecule within the host lattice is shown in Figures

10.19, 10.20, and 10.21. A small sample of the X trajectory of a random host water

molecule is depicted in Figure 10.19. The corresponding Y and Z trajectories are

illustrated in Figures 10.20 and 10.21. The extreme localization of the water molecule

within the host lattice structure is quite apparent. Again, the overall rigidity of the host

water lattice, however, is difficult to assess without further study.

The motion of the cyclopropane molecule within the tetrakaidecahedral cavity

within the fully occupied structure I host lattice is illustrated in Figures 10.22, 10.23,

10.24, 10.25, 10.26 and 10.27. The trajectories of each of the three CH2 sites making up

the cyclopropane molecule are shown in Figures 10.22, 10.23, and 10.24. The X-Y, X-Z,

and Y-Z trajectories of the various sites are shown, similarly in Figures 10.25, 10.26, and

10.27. The localization of the cyclopropane guest molecules within the tetrakaidecahedral

cavity is quite pronounced. In fact, the rotational motion of the guest is restricted

severely as indicted by the torsional rocking motion exhibited. This rotational restriction

highlights the inadequacies associated with using the Lennard-Jones Devonshire spherical
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cell model to characterize the interactions between the host water lattice and the larger

more asymmetric guest molecules.

A space-filling representation of a cyclopropane molecule within the structure I

tetrakaidecahedral cavity is depicted as a function of time in Figures 10.28a - 10.28e. For

the purpose of illustration, only those host water molecules with a normalized Z position

less than zero are shown. This also explains the abrupt appearances and disappearances

of additional host water molecules. It is quite apparent from these illustrations that the

cyclopropane molecule is rotationally hindered within the tetrakaidecahedral cavity. It

appears to undergo a rocking motion, somewhat analogous to a torsional oscillation.
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10.6 Lattice Distortions

In order to better understand the free energy considerations involved in the

development of the van der Waals and Platteeuw clathrate model we have used the results

of our molecular dynamics simulations to investigate the host lattice distortions associated

with the methane and cyclopropane clathrate systems. In particular we have utilized the

dynamic trajectories of the host water molecules to determine the radial distribution

functions of the host oxygen atoms about the various cavity centers. The functions were

derived from the host water molecule configuration histories which consisted of more than

10000 saved configurations. The actual cavity-host pair distribution functions were

calculated using the definition for g(r) given by

r +A r/2

N(r+Ar/2) - N(r-Ar/2) = 4p f g(r)r2dr AN (10.24)
r-Ar/2

where for small values of Ar can be rearranged to yield the approximate expression

g (r)- AN(r)
4~7 (( r) (10.25)

- P (Ar) 33(J+ J
3 4

where the bin width, Ar, was set at 0.1 A, and the system density, p, defined as the

number of host water molecules (oxygen sites) per A3 , was simply equal to 0.02642 or

(46/(12.03)3).

In order to establish a relative reference point to which the dynamically derived

distributions could be compared, we constructed, using the crystallographic based

equilibrium oxygen positions previously described in chapter 4, "static" cavity radial
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distribution functions of the oxygen atoms about the centers of the various cavities within

the structure I host lattice. The "static" cavity-host radial distribution functions referenced

to the centers of the smaller pentagonal dodecahedral cavities is illustrated in Figure

10.29. The static distribution about the centers of the larger tetrakaidecahedral cavities

is shown in Figure 10.30.

The cavity-host radial distribution functions associated with the methane-water

clathrate system are given in Figures 10.31 and 10.32. The corresponding cyclopropane-

water clathrate cavity-host radial distribution functions are shown in Figures 10.33 and

10.34. The statistical noise inherent to these distribution functions stems from the small

number of cavities involved in the calculation of g(r). Still, these results compare

favorably to the cavity-radial distribution functions reported by Rodger (1990), with the

exception of the noise level. The similarity between the number of configurations used

in this work and the number used by Rodger in the determination of the cavity-host radial

distribution functions, however has led us to believe that Rodger's results were somehow

smoothed.

It is quite apparent from our results that the structure I host water lattice is far

from being a completely rigid structure, we notice however, that the differences between

the dispersion of the host water molecules about their equilibrium positions within the two

very different clathrate systems, are statistically insignificant. This suggests that the

lattice distortions associated with the larger, more asymmetric guests, such as

cyclopropane, are no more appreciable than those associated with the smaller guests.

Although, far from being conclusive, these results appear to be consistent with the

primary assumption used by van der Waals and Platteeuw in the development of the

clathrate model. Specifically, the contribution of the host water molecules to the total

system free energy truly seems to be independent of the mode of occupation of the

various cavities.
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10.7 Liquid Phase Simulation

In an attempt to better understand the clustering phenomenon associated with

clathrate nucleation we have performed constant volume and energy (NVE) molecular

dynamics calculations on a liquid system consisting of 368 water molecules. The system

was initially prepared by "melting" the unoccupied structure I unit cell as previously

described in Chapter 4. The resulting disordered liquid consisting of 46 water molecules

was then compressed to a density corresponding to 1 g/cm3. This single unit cell was

then duplicated eight times in order to construct a larger unit cell consisting of a total of

368 water molecules. The simple point charge (SPC) model (Berendsen et al., 1983) was

used to simulate the binary interactions between water molecules. Standard periodic

boundary conditions were used to simulate an infinite system. Again, the electrostatic

interactions were handled via the minimum image convention. Using the Gear

Predictor-Corrector algorithm as previously discussed in section 10.3, the differentially

constrained equations of motion were integrated using a time step of 1.34 fs. The

trajectories of all of the water molecules were followed for a total of 50-60 ps. A

molecular system temperature of 300 K was maintained by the scaling of the molecular

velocities every 25-50 time steps during the equilibration portion of the simulation.

During the actual dynamic portion of the simulation, the velocities were scaled every 500-

1000 time steps. Again, the energy conservation between rescalings was always less than

0.1 percent

Without exception, the results of the MD calculations indicated the liquid system

always tended to approach a well-ordered ice structure. Attempts were made to remelt

the system by drastically increasing the system temperature, however, the system would

continue to approach that of a well-ordered solid system following a drop in the system

temperature.
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10.8 Solid Nucleation Phenomenon

The results of the pure liquid water molecular dynamics simulations prohibited

further studies of mixed systems. These more complex simulations involving water and

potential clathrate forming guest molecules could not be performed at this time.

However, these simulation problems are computational in nature, and do not reflect an

inadequacy of the MD modeling approach.
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11. CONCLUSIONS

Molecular simulation methods have been used to model the configurational

properties of water clathrates. In so doing we have developed a more complete

picture of the nature of the interaction between the encaged guests and the host water

lattice. In particular:

1) An accurate and reliable multi-dimensional integration algorithm for the

computation of the configurational partition function has been implemented.

Results indicate the importance of accurately accounting for the structural

characteristics and asymmetries of the rigid host lattice and the entrapped

guest molecule.

2) The results of configurational partition function calculations indicate the

inadequacy of the current state of intermolecular potential functions,

particularly those indicative of the hydrophobic type interactions associated

with the modeling of the guest-host intermolecular interaction potential.

3) The contribution that subsequent water shells have on the total guest potential

energy has been investigated. Lattice summations indicate that it is essential

that these additional interactions be included in the characterization of the

guest-host configurational partition function.

4) Based on lattice summation calculations, the effect of the inclusion of guest-

guest interactions on the total guest potential energy has been determined to

be insignificant, particularly, when considering the errors associated with the

guest-host potential energy representation.
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5) Configurational partition function and subsequent phase equilbria predictions

based on widely the widely used transferable intermolecular potential functions

(TIPS) as proposed by Jorgenson (1983) were inadequate for the ethane and

cyclopropane systems.

6) Based on the failure of the TIPS potential function parameters to accurately

predict the hydrate configurational partition functions, site-to-site Lennard-

Jones (6-12) potential constants were determined by fitting them to

experimental dissociation pressure data for the ethane and cyclopropane

systems.

7) The trajectories resulting from the molecular dynamics simulations of the

structure I cyclopropane-water clathrate system indicate that cyclopropane

molecule is indeed rotationally hindered within the tetrakaidecahedral cavity,

thus stressing the importance of the accurate modeling of the structural

characteristics and asymmetries of the host lattice and guest molecules.

8) Based on the results of our molecular dynamics simulations, we have

quantitatively determined that the lattice distortions associated with the larger

more asymmetric guests, such as cyclopropane, are no more appreciable than

those associated with the smaller, more symmetric guests such as methane.

Functional Group e/k 
(K) (A)

Ethane
CH3 - O (H20) 125.28 3.677

Cyclopropane
CH2 - O (H20) 110.19 3.618
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Although far from being conclusive, these results appear to be consistent with

the rigid lattice assumption used by van der Waals and Platteeuw in the

development of their model. To be more specific, the assumption which

enabled them to separate the system free energy into two terms, specifically

a term associated with the host lattice and a term associated with the encaged

guests.

9) In order to investigate the hydrophobic relaxation time associated with the

guest (solute) - host (solvent) molecular interaction, liquid phase molecular

dynamics simulations were performed. In principle, these simulations illustrate

the clustering and molecular ordering within the liquid system as a precursor

to solid clathrate nucleation. After repeated attempts, we were unsuccessful

in obtaining useful liquid phase results. Without exception the liquid system

simulation always tended to approach a well-ordered ice structure.

10) Further investigation of the causes of the simulation "freezing" phenomena is

recommended. In particular, emphasis should be placed on the choice of the

various intermolecular interactions as well as the system size effect.
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