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Abstract

This paper presents a computationally feasible technique to value
operating flexibilities in making capital budgeting decisions. We investigate
how the value of a project is affected by the simultaneous introduction of
several operating options. Previous studies have focused on operating options
one at a time.

A numerical example demonstrates the options to wait to invest, to
abandon, and to temporarily shut down -- first, one at a time and then more
than one at a time. -- As expected, the project value increases with the
introduction of additional options. Adding new options, however, reduces the
value of the previously available options. We also study the impact of adding
new options on the critical boundaries at which existing options are
exercised. These results help sharpen our intuition about the effects of and
interactions between operating options.

Easiliy implemented on a Personal Computer, the model is sufficiently
general to handle various types of production flexibilities and assumptions
regarding the economic environment. Hence, for the first time, we have
available a quantitative technique that accounts for operating flexibilities
that can be incorporated practically in the capital budgeting process.





1. Introduction

Academics and managers have long been dissatisfied with the inability of

conventional capital budgeting techniques, such as discounted cash flow (DCF)

methods, to capture the strategic impact of projects.l In particular, DCF

methods ignore the "operating flexibility" that gives management the option to

revise decisions while the project is under way. Examples include decisions

to shut down, to abandon, or to change the technology.2

In recent years the finance literature has addressed these criticisms by

modifying conventional capital budgeting methods to include the impact of

operating flexibilities. It is now well known that when investment is

irreversible and future market conditions are uncertain, an investment

decision must not be based solely on the usual net present value (NPV) rule.

An investment expenditure implicitly calls for sacrifice of the option to wait

to invest (i.e., to invest instead at a time in the future), so we must treat

this lost option value as part of the investment cost.

McDonald and Siegel [19861 show that even with moderate amounts of

uncertainty the value of the option to wait to invest can be large, which

means that an investment rule ignoring the option value can be grossly in

error. Similar adjustments to value are necessary when there are options to

abandon (McDonald and Siegel [1986] and Myers and Majd [1983]); options to

temporarily shut down (McDonald and Siegel [1985] and Brennan and Schwartz

1 See, for example, R. Hayes and W. Abernathy, "Managing Our Way to Economic
Decline," Harvard Business Review (July-August 1980); and Hayes and D. Garvin,
"Managing As If Tomorrow Mattered," Harvard Business Review (May-June 1982).

2 These issues are raised in a series of articles contained in a recent issue
of the Midland Corporate Finance Journal, Vol 5, NO. 1 (Spring 1987). See
Myers [19871, Kensinger [1987] and Trigeorges and Mason [1987].
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[1985]); options depending on the sequential nature of investment (Majd and

Pindyck [1987]); and options to choose capacity (Pindyck [1986]).3

All these papers, however, treat options one at a time, thereby

precluding possible interaction between their values. This paper provides a

general dynamic framework that enables simultaneous evaluation of the effect

of many operating options. Each option then becomes a special case of a more

general "flexibility" option that allows the firm to choose from an entire

menu of available technology modes. Our example illustrates options to wait

to invest, to temporarily shut down, and to abandon a project and shows how

the value of each option and critical price boundaries are affected by the

inclusion of other options.

Section presents a dynamic programming model of flexibility with careful

attention paid to the assumptions underlying the exogeneity of uncertainty.

In section 3, we show how the flexibility model can be specialized to value a

project that offers options to wait to invest, to shut down temporarily, and

to abandon. Numerical simulations illustrate these results. Finally, in

section 4 we make some concluding remarks.

2. A Model of Flexibility

2.1 Characterizing Exogenous Uncertainty

The value of real options lies in the enhanced ability of the option

holder (in this case the firm) to better cope with exogenous uncertainty.

Hence, a first step in modeling the flexibility option is to characterize the

3 A general overview of applying contingent claims valuation models to real
investment and production decisions appears in Mason and Merton [1984].

I
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sources and nature of this uncertainty. Traditionally, models of real options

treat the project value as the exogenous stochastic variable.4 The presence

of real options, however, influences that project value. if the value of the

project without the options follows a particular stochastic process (for

example, lognormal), and real options are introduced, the resulting project

will no longer follow the same process. In other words, the stochastic

dynamics of the project value are endogenously determined by the presence of

real options.

Previous researchers handled this problem by assuming that dynamics for a

project including an option follow a sufficiently simple stochastic process.

Although this procedure can skirt the issue of exogeneity when we consider

projects with a single operating option, it is inadequate when there is more

than one option involved.

Consider, for example, a project including an option to abandon. In

order to value the project with the abandonment option, we characterize the

project with the option as following some stochastic process. Now suppose

that we add to this project, the option to shut down temporarily. If we

characterize the project with the single option (abandonment) as following a

lognormal process, the project including both options will no longer follow

the same process. Hence, it is not possible to separately identify the

effects attributable to the two options.

4 E.g., Myers and Majd [1983].
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In this study we assume that the price of an input or of an output,

rather than project value, is the exogenous stochastic variable. For example,

firms in many industries face uncertainty in competitively determined energy

prices, so the real options for an input-pricetaking firm will not

significantly affect the market price of the input.5 Assuming that prices are

exogenous allows us to compute the value of the project as the discounted sum

of cash flows.

Suppose that the price, 0, follows the stochastic process:

(1) de a(O,t) dt + (Ot,t) dZ ,,

where a(e,,t) and a(6t,t) can be functions of both O.t and t, and dZe is a

standard Gauss Weiner process.6 For purposes of numerical simulation we

assume that 8 follows a mean reverting process:

0

(2) dOt -+ (- dta t dZ 

where is the mean of . The instantaneous drift term, (,-eO), acts as an

elastic force that produces mean reversion. The stochastic term dZ,, with

variance a, causes continuous fluctuations about 0e.

At time t the firm observes the realization of e, and fixes it

5 Flexibility is of some strategic bargaining value to the firm in its
negotiations with input suppliers by becuase it represents a credible threat
to use an alternative production mode and switch away from the input. See
Kulatilaka and Marks [1987].

6 When we model the price by geometric Brownian motion, the value of the
flexibility option can be obtained in closed form in terms of cumulative
multinomial distribution. (See Kulatilaka and Marcus [1986].)



contractually for a short period.7 When contracting arrangements are given

exogenously we can study the effects of changing contract duration on the

value of flexibility. When contract length is under the firm's control, we

can approximate the limiting, continuous-time case by setting the time period

equal to an arbitrarily small value.

In order to discretize the problem, 8 is allowed to take N discrete

values; 80,...,8 N. (In this notation 8et=8r means that the realization of at

time t takes the value On.) Define the transition probability that e(t+l) is

state i given that 8(t) was state 8J as p±j; i.e. p=prob(t,,=e0/et=ej).

When the parameters of the stochastic process are known, the matrix of

transition probabilities can be computed.8

2.2. Technology Modes and Value of the Project

We can define the various operating modes of the project using profit

functions. The modes may characterize different production processes (e.g.,

one that fires a steam boiler by natural gas and another that uses fuel oil),

as well as states that describe waiting to invest, shutting down, and

abandoning the project.

Suppose a project consists of M modes with profit functions, ,

i=l,...,M. The profit functions are defined for the duration of a single time

7 In many applications, firms write contracts for purchasing inputs and
outputs. This stylization will accurately depict such firms. Quasi-
contractual arrangements, sluggish price adjustments, and transactions in
forward and futures purchases also are common in output goods.

8 The derivation of the transition probabilities is outlined in an Appendix.
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period and have as their arguments input and output prices.' As we are

considering only one source of uncertainty, we will carry only that price as

the argument of the profit function: i.e. the profit function of the i t h mode

at time t is ~it (t).

The value of a fixed technology project of life T periods that is

dedicated to technology type i then can be written as:

T
(3) Vi(0) EE0 Z i j

j =0

where E is the expectation operator conditional on information at time 0

(i.e., on the realization of 80 ), and is the one period discount factor.

Several caveats regarding the discount rate bear mentioning. If the

underlying asset follows an equilibrium growth rate, then we can follow the

"risk-neutral equilibrium" approach of Cox and Ross [1976] and compute the

present value of the "risk-neutral expectation" discounting at the risk free

rate. In this approach, actual expected rates of return are replaced by their

certainty equivalents as there would be no risk premium in the risk-neutral

equilibrium.

Unlike financial assets, however, production inputs and outputs are not

necessarily traded in efficient markets and, their growth rates need not equal

the fair rate of return. In such cases we can use an insight from McDonald

and Siegel [19841, and replace the drift term of the diffusion process is

9 In the continuous time case mit can be defined as the instantaneous flow
profit.
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replaced by its equilibrium rate of appreciation, and then follow risk-neutral

discounting. As fair rates of return are defined with the use of an asset

pricing model, though, such an adjustment imposes additional constraints.'0

When the project is flexible, that is, the firm has the options to switch

between modes (to switch from mode i to j) in the process incurring costs 6,,,

the value of the project includes implicit contributions becuase of a series

of nested compound options attributable to the ability to switch back and

forth across operating modes. If 8 followed a continuous time lognormal,

process and if there were only two operating modes with linear profit

functions, then the value of the infinite horizon problem would yield closed-

form solutions." The finite horizon problem requires the numerical solution

of the resulting partial differential valuation equation (Myers and Majd

[1983] and Brennan and Schwartz [1985]).

The finite time problem when cast in discrete time can also be solved in

closed form in terms of cumulative multivariate normal distributions

(Kulatilaka and Marcus [1987]). The finite time solution to the general

problem for which the stochastic process is not lognormal and the project has

multiple operating modes, though, becomes impossible to solve in closed form.

This paper explains the dynamic programming problem and demonstrates a

computationally feasible method to handle this general case.

Consider first the project entering the last period. Suppose that

technology mode m had been in use during the period immediately preceding.

10 See Kulatilaka and Marcus [1986] for details.

11 For examples, see the previously cited papers on real options.
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The firm wants to compare the profits over the last period under each

operating mode and choose the mode yielding the highest profit. We denote

this maximum value of profits, net of switching costs, by F(6T,m),

(4) F(ET,m) = max [ i(ET) - 6mi

where 8T refers to the price realization, m is the mode of the previous

period, T-1, 6, is the cost of switching from mode m to mode i (if im),

and 6 - O0 if the firm continues to operate in mode m.

At periods prior to T, however, the future realizations of e are unknown

to the firm. For example, consider the mode choice at time T-1 and suppose

the mode of use during T-2 was m. The value of the flexible system at T-1 is

then the profits over the next period using the mode that maximizes that

period's net profits (net of switching costs) plus the expectation (at time T-

1) of the project value at T; i.e.,

(5) F(e ,m) = Max ({ i (e T) - mi+ ET_1[F(Ti) ] m=,.. .,M.
i

The conditional expectations, E, are taken over the possible

realizations of 8 and are weighted by the transition probabilities, pwk (the

probability that e,,,=ek given that 8O=er). That is, if the et realization

was 8', then the conditional expectation is calculated as:

N k

(6) Et[F( t+l,m)] = Z [F( t+l=e ,m) Pnk]
k=l
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Generalizing (5), we can write the dynamic programming equations at time t,

when the price realization is and when the mode in operation at time t-1 is

m, as

(7) F(et= 0 ,m) = Max R 6mi+ Et[F(8+li)]} i,m,..., M

i t=,...,T,
n-il,..,N.

These M-simultaneous dynamic programs can be solved numerically to obtain the

value functions F(8t,m) for all t and m. Furthermore, argument maxima will

yield the optimal mode choice.

3. Valuation of Projects that include Options to Wait to Invest, to Shut Down

and to Abandon

We can illustrate the valuation of the flexibility option by applying it

to a project that offers options to wait to invest, to shut down temporarily,

and to abandon. Considering each option separately, we investigate its impact

on project value, on the value of each option, and on the critical values of 

(at which the options are exercised), when the other options are introduced.

Project characteristics change with the inclusion of each option, so the

exogenous project-value assumption made in previous studies does not permit

this sort of comparison.

3.1 Definition of Modes

We characterize the firm before it makes the investment as being in mode

1 ("waiting to invest"). Once the investment I is made (i.e., the cost of

switching from mode 1 to mode 2, 6,, = I), the firm will be in operation (mode
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2). While it is in operation, the firm has the ability to shut down

temporarily (mode 3). Shutting down the plant will incur some costs (6,3),

and while it remains shut down, the firm continues to incur some fixed costs,

F. From the shutdown mode, the firm can startup in the production mode

(incurring a startup cost), or permanently abandon the project (mode 4) and

receive the salvage value. This scenario is described below:

Flow
Mode Description profit

1 waiting to invest 0
2 production mode T(8)
3 shut down -F
4 abandon 0

Switching Costs

612 = initial investment'2

623 = cost of shutting down the plant
632 = cost of startup from the shutdown mode
634 = - scrap value'

3.2 Numerical Example

In the numerical example, we specify the price dynamics by a mean

reverting process (given in equation 2) with the mean set at o=0.5. We limit

the price fluctuations to the range 0 to 1 and divide this interval into 51

discrete values. Hence e=o.o, e2=0.02,...,8e5=1.0.'4 For the base case

12 The initial investment cost and the scrap value easily can be made
contingent on time and usage.

13 In the experiments where the firm has the option to abandon but does not
have an option to shut down, we assume that it can abandon from the operating
mode. Then 624 is set equal to the scrap value.

14 Details on the computation of the transition matrix are given in the
appendix.
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calculations we set the mean reversion parameter to zero (=0) and let the

price follow a random walk with a 16% variance: i.e. d/ = .4 dZ,.

We consider a project with a ten-period life span, setting the profit

function of the operating mode to n(8)=-0.5+e, so that at the mean price the

profits are zero.1 5 The initial investment cost, abandonment value, and the

shutdown and startup cost are all set at zero. While the project remains

temporarily shut down, the firm incurs a fixed cost of 0.05 per period. The

discount rate is set at 5% (i.e., =1/1.05).

Figure 1 plots the behavior of time zero project values against for the

following cases taken separately; (a) with no real options (i.e., the project

remains in force over the entire life), (b) with the option to wait to invest,

(c) with the option to temporarily shut down, and (d) with the option to

abandon. The value of the project increases with increasing and is positive

for >0.5. Hence, under an NPV rule that ignores real options, the project

will be undertaken for any 8o realization that is greater than 0.5. When the

"wait to invest" option is included, the project is worth more with the live

option (i.e., wait to invest) than when the investment becomes committed, in

the range 80 less than 0.84. For higher e8 values, the option to wait will be

forgone and the investment committed. These results corroborate the findings

of McDonald and Siegel [1986].

If we include the abandonment option, instead of the waiting-to-invest

option, the project will not be in operation for values of 8, less than 0.16.

In this range the project will be abandoned. In other words, with ten periods

15 This unit profit function corresponds to a single output technology with
output price and input costs = 0.5.
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remaining in the life of the project, the abandonment option will be exercised

only if 8 falls below the critical price of 0.16. For any higher values of

O8, the plant will be operated (even incurring losses for 8<0.5). This is

because the value of the option to wait to abandon is worth more live than the

abandonment value.

Finally, the top line in Figure 1 plots the value of the project with the

option to temporarily shut down. Because the only cost to shut down is the

fixed cost of 0.05 for at least one period while remaining shut down, the firm

will shut down if 8 is less than the critical value of 0.45. In contrast to

the case including the abandonment option, the project can be started up from

the shutdown mode if conditions improve. Hence, the gross project value with

the shutdown option is always greater than its value with the abandonment

option.

Our results so far confirm those in previous studies using our numerical

technique. We will now consider the value of each option and study the impact

of introducing the other options on these option values. It is the ability to

capture such interactions between and among operating options that gives

richness to our model.

To illustrate the impact of the addition of successive options, Figure 2

plots the value of the project against the initial price realization for four

cases -- a project with no options, a project with the option to wait to

invest, a project with both options to wait to invest and to abandon, and a

project with the three options to wait to invest, to abandon, and shut down.

As expected, the value of the project unambiguously increases with the

addition of each new option. Although the net contribution is positive, the

addition of further options reduces the effect of each option.
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Figure 3 plots the value of the option to wait to invest. This is

denoted by W and computed as the difference between the project value when the

initial mode is 1 and the value when the initial mode is 2, where the latter

is the value of the non-flexible project." The option to wait to invest is

greatest when O, is at a minimum. The option value falls as 8 increases

reaching zero when 8 reaches the critical value 0.84, at which point the

option will be forgone and the project will be undertaken.

Now let us include also the option to abandon. The difference in F(0o,1)

values between this case and the case above gives the new value of the wait to

invest option. Even though the project value is increased by including

additional options, the value of the wait to invest option is reduced when we

add the abandonment option. The reason for this result is that, now, even if

the irreversible investment is committed, the firm has the option to abandon

the project if prices fall drastically. That is, the abandonment option

increases the incentive to invest now.

When we add a shutdown option instead of the abandonment option, the

value of waiting to invest is reduced even more dramatically. Obviously when

the firm can shut down temporarily at a small cost, it will do so during bad

times (when operating profits become negative enough to offset the shutdown

cost), so committing to invest now is more easily revised.

An even greater reduction in value of the waiting to invest option occurs

when we include both the abandonment and the shutdown options. At the grid

16 The value of waiting to invest, C(8E) = F(eo,1)-F(8,,2).
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sizes and the other parameter values chosen for these numerical computations,

the incremental effect of adding the abandonment option, with the shutdown

option already available, is very small.'7

Similar evaluations of the behavior of the abandonment and the shutdown

options appear in Figures 4 and 5."8 Table 1 shows the behavior of the

critical price at which the project is undertaken with the inclusion of

additional options.

Table 1

The Impact of Other Options on the Critical Price to Invest

critical 8

With no operating options 0.50
waiting to invest alone 0.84
waiting to invest and abandonment 0.70
waiting to invest and shut down 0.58
waiting to invest, shut down and abandonment 0.58

If there are no operating options, the project will be undertaken when

NPV > 0, which occurs when 8 is equal to 0.5. When there is an option to wait

17 Assuming a zero scrap value. This effect is heightened if we either
increase the abandonment value, reduce the shutdown cost, increase the
periodicity, or increase the price variance.

18 Comparative statics were performed with respect to changing variance, mean
reversion parameter, profit functions, and switching costs. Although the
particular option values were affected, the essence of the results remains
unchanged.
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to invest, this critical value is increased to 0.84. Becuase undertaking an

investment now involves giving up the option to wait to invest, the firm must

wait until the NPV increases to compensate for the forgone option value.

When a further operating option, that of abandoning the project, is

available, the critical value drops to 0.70. The intuition here is that if

the irreversible investment is committed, the firm is insured against

drastically low prices. The abandonment option acts as an insurance policy to

guarantee a minimum payment.

If, instead of the abandonment option, we add a shutdown option, the

critical value at which the project will be undertaken falls to 0.58. At this

reduced critical value, the probability of a price realization that would

generate negative operating profits increases. Becuase the firm's cash flows

are bounded below (at -0.05) by the shutdown option, it still will commit the

investment at this lower critical value.

Finally, when all three options (waiting to invest, abandonment, and

shutdown) are available, the critical value remains at 0.58. With finer grid

sizes we would have noticed a further slight reduction in the critical value.

However, becuase the scrap value and switching costs are set at zero, and, the

fixed cost of remaining shut down is small, the incremental value of the

abandonment option (when the project already includes the shutdown option and

has a remaining life of 120 periods) is negligible.
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4. Concluding Remarks

We have presented a computationally feasible technique to investigate how

the value of a project is affected by the simultaneous introduction of several

operating options.

In contrast to previous studies that consider operating options one at a

time, we treat them jointly. This process makes the interdependence between

the operating options explicit. Our numerical example including the operating

options to wait to invest, to abandon, and to shut down temporarily shows that

the project value increases with the introduction of additional options. At

the same time, addition of other options reduces the value of the previously

available options.
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Appendix 1

The Discrete Transition Probability Matrix for a Mean Reverting Process

Consider the mean reverting stochastic process

(Al) det = (e-et) dt + a dZe

where dZe is a standard Wiener process. The first step is to determine the

relevant range of price fluctuations, (8`'n, 8mx}, within which we discretize

8. Depending on the required precision, this range is divided into N discrete

states (i.e., N-1 intervals).
emin emax

I --------- I -------- I -------------------
< s >< s>
°E1 e 2 oN

where s = (minmax)/2(N-1).

Without loss of generality we can let the discrete time interval, Dt, be

equal to 1. In order to bring about a transition from state i to i+l (i.e.,

e8' to e8+l) the following conditions must be satisfied:

(A2) D > s ==> DZ > [ s-i(8 0°-Si)]/

and

(A3) De < 3 s ===> DZ [3 s-V(8°0 -i)]/a

where D and DZ are the discrete changes in and Z, respectively. Hence the

transition probability P(i,i+l) is computed as"9

19 P(i,j) is the probability that Et+, = ej given that et=&i. In the text we
refer to this as pj.

---
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(A4) P(i,i+l) = Prob [DZ C( s-i(e°-ei))/a , (3 s-(8o-8i))/a}]l

Define Z = -(8eo-8e)/a and Z = s/a. Then A4 can be rewritten as

(A5) P(i,i+l) = [Z 0 +3Zd] - [ZO+ZdI

where D[.] is the cumulative normal distribution. In general, the transition

from state i to j is given by

(A6) P(i,j) = D[Z 0+{2(j-i)+l}Zd - D[ZO+{2(j-i)-l)Zd].

Special care must be taken with the end points P and PN. Lumping all

exterior values to the boundary we obtain the transition probabilities

(A7) P(i,N) = 1 - [Z0+{
2(n-i)-l}Zd]

and

(A8) P(i,l) = [Zo+{2(1-i)+l)Zd].

Note that for dt 1 we must set i = p Dt and a = a (Dt)z.

Once the discrete probabilities above are available, the expected values

(such as those encountered in the dynamic programming problems discussed in

sections 2 and 3) are obtained as probability weighted sums. For example,

ift- 1 = j then ist_l[v(eti

N
(A9) Etml[V(et)] E= V( ) P 

i=l
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