
EXPLORATION IN COMPETITIVE NONRENEWABLE
RESOURCE MARKETS: AN EXTENSION OF
PINDYCK'S PERFECT FORESIGHT MODEL

by

David Laughton

MIT-EL 86-018WP August 1986





EXPLORATION
IN

COMPETITIVE NONRENEWABLE RESOURCE MARKETS:

AN EXTENSION
OF

PINDYCK'S PERFECT FORESIGHT MODEL

David Laughton

Center for Energy Policy Research
Energy Laboratory

and
Applied Economics, Finance and Accounting Area

Sloan School of Management
MIT

August 1986

Abstract

Pindyck's model of exploration for, and production of, a
non-renewable resource (Pindyck 1978) is extended so that the
production cost function may depend separately on concurrently
available reserves and on the total amount of past production.
A method for obtaining the optimal trajectory of parameterised
specifications of the model is tested on elaborations of a
corrected version of the parameterised specification used by
Pindyck in his paper. The initial price for each simulation
is tabulated.
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1. Introduction

The first models of nonrenewable resource markets

(see Dasgupta and Heal -1978 for references) were simple

perfect foresight models. These were designed to show that

nonrenewable resource prices should generally rise with time

to reflect the scarcity value of the resource as it is

depleted. Unfortunately for these models, prices for holding

nonrenewable resources are observed not to be monotonically

increasing. This may result from a combination of many

factors, including the impact of uncertainty and changing

levels of competition on the market. However, there is at

least one factor that could cause decreasing prices, even

within a simple perfect foresight, competitive paradigm. That

factor is changes in production costs over time. Such changes

may be postulated as an exogenous phenomenon, or as a result

of some behaviour of the agents involved. Examples of such

behaviour include the search for new lower cost resources or

new lower cost production technologies. R. S. Pindyck

(Pindyck 1978) analysed a model of the effects of exploration

for new resources on production costs and hence on prices.

The essence of Pindyck's model is his specification of

unit production cost as a decreasing function of concurrently

available reserves. This provides an incentive for producing

agents to explore for new reserves. The marginal cost of

maintaining a rate of discovery is specified in his model to
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be an increasing function of that discovery rate. This means

that continuous, rather than pulsed, exploration is a

potentially optimal policy. If the initial reserves available

to each producing agent are small, early optimal exploration

may be large enough to increase reserves and decrease unit

production cost enough to cause price to drop over a period of

time. Eventually, discovery becomes so costly that the

resource is economically (if not actually physically) depleted

and price rises. The price path produced by this optimising

behaviour has a "U" shape, rather than being monotonically

increasing.

Pindyck's model, despite its success at demonstrating the

possibility of nonmonotonic price paths, is unnatural in that

unit production cost depends only on the amount of reserves

concurrently available to the producing agent rather than

separately on those reserves and on the amount of past

production by that agent. Fortunately, a model in which unit

production cost has a separate dependency on each of these two

variables is no more complicated to analyse in one important

class of parameterised specifications than is Pindyck's model.

In this gloss on Pindyck's model, unit production cost is

assumed to b5 a nondecreasing function of the amount of

cumulative past production. It is also assumed to be

nonincreasing in concurrently available reserves, and, a

fortiori, in cumulative past discoveries. (Reserves are the
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difference between the two.) These assumptions are a mock up

of the observation that, in a world of uncertainty,

exploration may lead to the discovery of resources, some of

which may have lower production costs than those already

discovered and not yet produced. In the world of certainty of

this model, this possibility is made a certainty. They also

mock up the observation that reserves with lower production

costs are usually more easily discovered, and, once

discovered, are produced first.

Exploration in Pindyck's model, and in this gloss, may be

viewed as an activity that results with certainty in the

discovery of new resources, but with decreasing returns to

scale. Moreover, these new resources have a particular

distribution of production costs that depends on how much has

already been discovered. In reality, exploration is an

activity the results of which are uncertain. However, each of

these models may be such that each time step in each of its

trajectories is the average of many time steps in trajectories

of an underlying model in which the results of exploration are

uncertain. Arrow and Chang (1982) and Lasserre (1984) have

analysed a simple version of such a model. Unfortunately,

their simple model is limited by the assumptions that there be

no production costs and that infinite rates of exploration be

possible. It remains to be determined whether a

generalisation of such a model may provide a foundation for

Pindyck's model or this gloss.
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The model is presented in Section 2 and compared in

Section 3 to the Pindyck model. An unimportant error in

Pindyck's original paper is pointed out. The exploration

model is then analysed in Section 4 to show how it might give

a nonmonotonic price path.

In his original paper on this subject, Pindyck went on to

provide a concrete functional specification of his model. He

used data from a particular Texas oilfield to estimate

parameters in this specification. He then used the

parameterised specification of the model to simulate the

development of the field. The simulation was performed by

attempting to solve numerically the boundary value problem

that results from the initial, first order, and transversality

conditions derived from the hamiltonian version of the optimal

control problem. Unfortunately, Pindyck's specification

allowed for fixed period costs of exploration. This makes

invalid the theoretical analysis he used to develop the

boundary value problem that he attempted to solve. It is not

clear what his numerical results mean, if they mean anything.

Section 5 is a brief discussion of the relevance of such

simulations, if done properly using a set of self-consistent

parameterised specifications, for the analysis of the

qualitative and the quantitative features of the development

of an overall market. The particular methods used to perform
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the simulations presented in section 5 are described in

Appendix A. The problems in the calculations in Pindyck's

paper are discussed there.

Section 6 contains conclusions.
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2. The Model

The agents in the model are a number, N, of identical

firms, each of which has an identical region in which to

explore for and produce a resource. The number N is large

enough that each of the firms is a price taker in all of its

product and factor markets. Each has perfect foresight about

the development of these markets.

Production costs, c, for each agent depend upon the

amount of its cumulative past production, Y, and the amount of

its cumulative past discoveries, X. The production rate is

denoted by q. Exploration effort is denoted by w.

Exploration costs, k, and the discovery function, f, are

unrelated to production and thus does not depend on the

concurrent production rate or on cumulative past production.

They do depend upon exploration effort. The discovery

function also depends upon the amount of cumulative past

discoveries. For simplicity, there is no explicit time

dependence in the cost and discovery functions.

Each agent solves the following optimisation problem:

PV = max [(p(t) - c(Y(t),X(t))q(t) - k(w(t))] 6(t) dt
q,w 0

s.t. Y(t) = q(t), Y(O) = 0,

X(t) = f(w(t),X(t)), X(O) = RO, (2-1)

Y(t) X(t), q(t), w(t) > O ;
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where:

PV is the present value of the optimal programme and thus

of the firm;

6(t), which for simplicity is restricted to have the form

e-rt, is the present value of a unit of cash flow occurring

at time t;

p(t) is the unit price of the resource at time t; and

R0 is the initial amount of reserves.

Price is determined by a demand function:

Q(t) = D(p(t)) ; (2-2)

where:

Q(t) is the total production rate of all firms at time t.

For simplicity, demand does not depend upon time and has a

finite choke price, Pchoke.

Because all firms are identical, total production is a

multiple of the production of any one firm:

Q(t) = N q(t) (2-3)
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For notational purposes, the demand function of the firm is

defined:

d(p) _ 1/N D(p) ; (2-4)

so that:

q(t) = d(p(t)) . (2-5)

The common quantity dynamics for each producer is not

analysed directly but rather may be inferred through the firm

demand function from the market price dynamics. The quantity

dynamics is more basic and determines the price dynamics

through equilibrium, but the latter is the more interesting

economically and can easily be calculated directly after

equilibrium is implicitly imposed.

The set of parameterised specifications that will be

considered is restricted implicitly to those such that an

optimal trajectory exists, is unique, continuous, and

piecewise differentiable, and for which there is some

production. Necessary and sufficient conditions for these

restrictions have not been developed. However, the nonzero

production condition is satisfied whenever the choke price

level is sufficiently large compared to the production and

discovery cost over the relevant trajectories.
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The set of specifications to be examined is further

restricted to those such that the optimal path is not

determined explicitly by the inequality constraint on the

state variables. This constraint is enforced implicitly by

properties of the cost functions.

The cost and discovery functions have the following

properties:

c(Y,X) > o ,

cy(Y,X) + cX(Y,X) > 

cx(Y,X) < 0 ; 0 < Y < X ; (2-6)

c(X,X) = ; X > 0 ; (2-7)

k'(w) > 

k"(w) > 0 ; w > 0 ; (2-8)

k(O) = 0; (2-9)

f(w,X) > 0

fw(w,X) > 0

fx(w,X) < 0 ; w > O, X > O ; (2-10)
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f(O,X) = o ; X > ; (2-11)

f(w,X) - O, X- uniformly in w ; and (2-12)

(k'/fw)w(w,X) > 

(k'/fw)X(w,X) > 0 ; w > O, X > 0 . (2-13)

The second item in property (2-6) means that production cost

Is a nondecreasing function of cumulative past production if

reserves are held fixed. Property (2-7) implicitly enforces

the inequality constraint on the state variables. The last

two conditions are the only other properties that require

explanation.

Condition (2-12) states that, while the resource may not

be exhaustible, the ability to find new discoveries declines

to zero as more of the resource has been discovered. This

decline, if drastic enough, assures the eventual economic

exhaustion of the resource in the sense that price will be

driven up to the choke price. While general necessary or

sufficient conditions for such behaviour have not been

investigated, its existence in some specifications of the

model is sure. It is assumed for any parameterised

specification under.consideration that the decline in the

discovery function, to which condition (2-13) alludes, is

sufficiently rapid to assure that prices rise toward the choke

price at the end of the optimal programme.
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Condition (2-13) states that the marginal cost of

maintaining the discovery rate, f, increases with exploration

effort (or equivalently with the discovery rate) and with

cumulative past discoveries. As mentioned in the

introduction, the first of these properties in condition (2-

13) assures that the optimal path of exploration is continuous

rather than pulsed.

The hamiltonian first order conditions are:

y
X - Scyq = ; (2-14)

.x X
X - Scxq + X = 0 ; (2-15)

XY + 6(p-c) = ; or (2-16a)

q = 0 ; and (2-16b)

X
X f - &k' = 0 ; or (2-17a)

w = . (2-17b)

where XY, X are the costate variables of Y,X.

The first order conditions give the control variable

dynamics. Specifically, if production is occurring, equations

(2-14) and (2-16a) give the price dynamics:

p = r(p-c) + cf . (2-18a)
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Otherwise:

p(t) > Pchoke (2-18b)

Equations (2-15) and (2-17a) give the exploration dynamics

while exploration is occurring:

r(k'/fw) + (-fx)(k'/fw) - (k'/fw)Xf - (-cx)d
w = obviously-- - -- - -- - -- - -- - -- -

(k'/fw) w (2-19a)

Otherwise, obviously:

w=O . (2-19b)

The initial condition and dynamics of the state variables

are given by the constraints of the optimal control problem:

Y(O) = ;

Y(t) = d(p(t)) ;

X(O) = R ; and

X(t) = f(w(t),X(t)) .

(2-20)

(2-21)

(2-22)

(2-23)

Finally, the initial conditions of the control variables

are given implicitly by transversality conditions which

determine these initial values and the terminal times for each

activity.
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Production stops at time,

production profit margin go to

q(Tp)

p(Tp)

Tp , when both demand and

zero:

= 0 ; or

= Pchoke ; and

(2-24')

(2-24)

(2-25')

(2-25)

XY(Tp) = 0 ; or

p(Tp) = c(Y(Tp),X(Tp))

Exploration stops at a time, TE, not greater than Tp, when the

marginal cost of maintaining a negligible rate of discovery is

not covered by the present value of the future cost savings

resulting from the extra marginal discovery:

w(TE) = 0 ; and

XX(TE) = 0 ; or

_k_)____ = __1__ | P cx(Y(s),X(TE))
fw(O,X(TE)) 6(TE) TE

Equation (2-27) results from the combination

(2-27 )

d(p(s)) (s) ds .
(2-27)

of:

X(T )= 0 ;
p

(2-28)

X (t) = (t) cx(Y(t),X(TE)) q(t); T < t < T ; and
(2-29)

k'/fW(O,X(TE)) = (X(TE)/S(TE )

(2-26)

(2-30)
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Equation (2-28) is the basic hamiltonian transversality

condition. Equations (2-29) and (2-30) are rewritten versions

of equation (2-15) and (2-17a), valid in the given time

periods. The second term in equation (2-15) is zero when

there is no exploration, because, from property (2-11), there

is no discovery without exploration:

f(O,X) - 0 . (2-31)

If the marginal cost of discovering new resources is zero

at the time, TE, when it is optimal to cease exploration, and

if, at this same time, production costs are a strictly

decreasing function of past cumulative discoveries, then it is

optimal to explore as long as it is to produce. The cost of

maintaining a small exploration rate at any time prior to

cessation of production is small compared to the decrease in

future production costs effected by that exploration. The

simultaneous cessation of production and exploration under

these conditions is reflected in equation (2-27). The left

hand side of the equation is zero, while the integrand on the

right hand side is strictly negative. This forces TE and Tp,

the endpoints of the right hand side integral, to be the same.

If the marginal cost of discovering new resources is

strictly positive at time TE, exploration ceases before
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production. The dynamics of the problem, after exploration

ceases, is reduced to:

p(t) = r (p(t) - c(Y(t),X(TE)) ; (2-32)

w(t) = 0 ; (2-33)

Y(t) = d(p(t)) ; and (2-34)

X(t) = XE) - (2-35)

It sh

production

programme

integral,

ould be noted that, unless exploration and

cease at the same time, the production-only

must be solved first to yield the right hand side

I, of equation (2-27):

I(Y(TE),X(TE)) Tp CX(Y(s),X(TE)) d(p(s)) 6(s) ds
S(TE) TE (2-36)
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3. A Comparison with Pindyck's Model

The model of Pindyck is a special case of the exploration

model presented in Section 2. In Pindyck's model, production

costs are forced to depend only upon the difference between

cumulative past discoveries and cumulative past production.

An examination of equations (2), (3), (9) and (13) of

Pindyck's paper shows them to be equivalent to this special

case of equations (2-21), (2-23), (2-28a) and (2-29a). The

state variable initial conditions are trivially equivalent.

With one exception, the transversality conditions would

also be the same except for an error in Pindyck's treatment of

them. He apparently assumes (on p.847, para.1 of his paper)

that the equivalent of first order condition for exploration

(2-17a) must hold even when no exploration is occurring.

Exploration is nonnegative, and the first order condition need

not hold on the boundary of the set of possible control

variables. Therefore, this condition need not be valid during

a period of no exploration. This error does not affect the

rest of his paper.

The exception mentioned in the previous paragraph is

equation (2-27). In Pindyck's model, a simple expression for

the integral, I, can be found. Because production costs in

his model depend only on the difference of the two state
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variables, X and Y, the dynamics of the costate variables are

related. First, the derivatives of the production cost

function are related:

cy = -cx (3-1)

This condition, with equations (2-14) and (2-29), means that:

XY(t) = -X(t) ; TE < t < Tp . (3-2)

Because both costate variables vanish due to transversality

conditions at the production terminal time, each must be the

negative of the other from the termination of exploration

onward. Using equation (2-16a) and equation (2-30), this

means that equation (2-27), under the speciallsed conditions

of Pindyck's model, is equivalent to:

k(l___ = P(TE) - c(Y(TE),X(TE)) . (3-3)
fX(O,X(TE))

The simplicity of the exploration termination condition, if

exploration ceases before production, is the one practical

advantage that the Pindyck model has over the more general

model.
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4. Price Paths in the Exploration Model

It has already been stated that, for the parameterised

specifications to be considered, new discoveries become

difficult so that the resource is economically, if not

phy.sically, exhaustible. The price of the resource eventually

rises up to the choke price and the market closes.

An argument will now be presented to show that decreases

in price are possible, in some parameterised specifications of

the exploration model, before price begins to rise to the

choke price at the end of the production period. The analysis

begins with an expression for the production profit margin:

+ + + +

p(t) - c(Y(t),X(t)) = 1 P (s) cy(Y(s),X(s)) d(p(s)) ds;
6(t) t (4-1)

derived from equations (2-20), (2-22a) and (2-31). This

expression gives a signing for the price dynamics equation:

p = r(p-c) - (-cx)f ; (4-2)
+ + + +

that shows explicitly that any decrease in price must be due

to production cost decreases resulting from exploration.

There are families of parameterised specifications which

have, at any given time, the same numerical value for the

first term and any arbitrary negative second term in equation

(4-2). This may be most easily demonstrated at the initial

time. Each member of such a family of parameterised
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specifications has the same numerical value of each factor in

the right hand side of equation (4-2), except for cx. It is

obvious that the term structure factor and the production cost

may be left unchanged by such a variation in the production

cost function. However, the initial price and discovery rate

(or implicitly the initial exploration rate.) each depend on

some integral of a function of the future trajectory. Any

variation in the production cost function will cause that

trajectory and thus those integrals to vary. However, these

imputed variations may be undone by changes in the cost and

discovery functions that change the trajectory, not at the

initial time, but over some period of time later in the

programme.

This analysis hardly gives any insight into what such a

family of parameterised specifications might be. Another

approach would be to keep the parameterised specification the

same except for variations in the initial reserves available

for production.

If these initial reserves were large enough, exploration

would at all times be costly and initially not very

beneficial. The market would initially look much like a

market where new discoveries were impossible, and price at all

times would be an increasing function of time.

If initial reserves were zero, initial production would

perforce be zero and the initial price would be at or above

the choke price. If production were ever to take place, some
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exploration would be needed to bring production costs down so

that price would be below th.e choke price over some period of

time. Then there would be some part of that period of time

during which market price would be decreasing. If the choke

price is smaller than the limit of production costs at

vanishing initial reserves, then this nonmonotonic behaviour

of price would exist in some set of parameterisations for

which initial reserves are close to zero.
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5. Use of Quantitative Simulations in Perfect Foresight

Models

It has been demonstrated in Pindyck's original paper, and

reiterated in Section 4, that decreasing prices are possible

in the initial stages of the development of a competitive

nonrenewable resource market in which the producing agents

have perfect foresight. In particular, this is "usually" the

case if initial reserves of the resources are "small". More

particularly, this can occur if production costs depend

separately on past production and current reserves.

The question arises whether there is anything of value

that can be extracted from such a model other than the

demonstration, in a self-consistent, if counterfactual, model,

that exploration can be a price-depressing force in

nonrenewable resource markets. An answer to this question

might come from numerical simulation of behaviour in a fairly

general specification of this model. If the essential

features of that behaviour were insensitive to plausible

variations of the parameters used, then it is possible that

the model might be acceptable as a self-consistent possible

description of that behaviour. The important point is that,

if this insensitivity of market behaviour to parameter

variation be true, the agents would have enough foresight to

make the perfect foresight assumption self-consistent.
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A specification within which one might carry out such a

self-consistency check might be the following:

d(p) = max(h (Pchoke - P), ) ; (5-1)

c(Y,X) = co ___0 exp (YY/Xo) ; (5-2)
X-Y

k(w) = bw ; and (5-3)

f(w,X) = A wa exp (-X/X0) . (5-4)

This is a corrected and expanded version of the specification

used for the numerical work in the Appendix of Pindyck's paper

(see Appendix A of this comment). The parameter Y tests the

effects of the separate dependence of production costs on past

production allowed by the expanded exploration model of this

comment. The parameter B tests the effects of different

choices of the singularity in cost function at zero reserves.

The parameter tests the effects of a more general demand

function than the linear demand in Pindyck's specification.

As a preliminary task, simulations, using elaborations of

the parameter set given by Pindyck for the oil field analysis

in the Appendix of his paper, were used to test the numerical

methods outlined in Appendix A. Because the Pindyck parameter

Set is based on an analysis of a particular deposit rather

than a whole market, this collection of parameter sets may not

be appropriate for a test of the quantitative usefulness of

the model. If a collection of plausible parameter sets for a
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real market were developed, such an examination could be made.

This has not been done.

Nevertheless, the preliminary calculations are of some

interest in their own right. First, the methods can be used

to find the initial values of the control parameters that

produce, through a solution of the resulting initial value

problem, trajectories that solve the maximisation problem and,

in a restricted sense, satisfy the transversality conditions.

This success is restricted because the trajectories close to

the solution have terminal portions that diverge radically

from each other. Despite this, enough of the solution

trajectory may be defined so that an examination elsewhere of

the self-consistency conjecture would be possible.

Second, there is considerable variation in initial price

and exploration effort for the collection of parameter sets

examined (see Table 5-1). Moreover, as might be expected,

initial price is an increasing function of Y (the parameter

for the exponential dependence of production costs on past

production) and of (the power of the singularity in the

production cost function at zero reserves). Finally, initial

exploration effort is an increasing function of and is

ambiguously influenced by differences in . While it is

gratifying in that the observed variation corresponds in

direction with what was expected, it is large enough that, if

the collection of plausible parameter sets for a real market

were to have as much variation, the self-consistency

conjecture might not be tenable.
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Table 5-1

Initial Price and Exploration for
Generalizations of the Corrected Pindyck Parameter Set

1) Parameters not varied

r 
h

Pchoke =

n =

CO =
b =

A =
a0 =

XO =
RO =

0.05
20.0
33.00
1

1.250
0.067

55.076
0.599

4428.7
7170.0

2) Initial Price and Exploration

B Y

5.069-5.071
7.110-7.115
9.500-9.505
4.50 -4.53
5.50 -5.51

8681-8683
9405-9440
9150-9230
4649-4676
11740-11757

1.0
1.0
1.0
0.5
1.5

0.0
0.5
1.0
0.0
0.0

wo
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6. Conclusion

Perfect foresight models may be useful in economics for

the demonstration of the existence of, and of the qualitative

effects of, some economic forces. This may be so only if

knowledge of the general trends produced by such forces is all

the foresight that the agents need to behave as if, from the

point of view of economist performing the analysis, they have

perfect foresight. Moreover, it is necessary that such

knowledge be all that the economist needs to model adequately

the dynamics in which he is interested.

With these considerations as background, a gloss on a

model first analysed by Pindyck has been constructed to

examine the effects of exploration on the development of the

market for a nonrenewable resource. (In the course of this, a

minor error in Pindyck's original analysis has been found and

corrected.) New discoveries can, in certain parameterised

specifications of each model, cause prices to drop before

scarcity causes prices to rise. There is an obvious

connection between this phenomenon and the condition that the

amount of initial reserves be small. More generally, this

phenomenon is the result of large initial production costs and

the possibility that these costs might be rapidly and

relatively inexpensively reduced.

A simple method has been set up to calculate the market

trajectories of this model, and tested with a preliminary

collection of parameter sets for a particular specification.
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(In the course of this, a major problem was found in the

numerical calculations performed originally by Pindyck.) If

an appropriate collection of parameterised specifications is

developed for a real market, the self-consistency of the

perfect foresight assumption in this model may then be tested.

The concluding remark in Pindyck's paper suggests that he

thought that the perfect foresight assumption might be the

most important deficiency in his model. Preliminary

calculations here suggest that, at least for the quantitative

use of such models, he may have been correct.
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Appendix A: Solving the Boundary Value Problem with Shooting

Methods

The mathematical problem generated by the models

discussed in this paper is the problem of solving a system of

nonlinear ordinary differential equations with boundary

conditions at two or more points including one or more free

boundary points. There are many methods for considering such

problems. The method that Pindyck attempted to use in his

paper to solve a specification of his model is called a

shooting method . A search is done over sets of the

unspecified initial conditions to find a set, the solution of

the initial value problem for which is also a solution of the

boundary value problem. Thus, the method is divided into an

iteration of three steps:

1) choosing a trial set of initial values;

2) solving the resulting initial value problem; and

3) testing the boundary conditions of that solution.

The last of these subproblems is trivial. The second may be

solved using one of a number of methods. Pindyck (Pindyck

1985) used a standard Euler difference equation approximation.

More general Runge-Kutta methods or multistep methods may also

be used (Lambert 1973).
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The first subproblem is at the heart of the overall

problem. Equations may be formulated to assist in the choice

of appropriate sequences of trial initial conditions. They

are systems of nonlinear algebraic equation that, in general,

must be solved by iterative search. The search pattern may be

generated in many ways including combinations of grid

searches, steepest descent iteration, Newton iteration, and

hybrid (e.g., Powell) iteration. In the region of the actual

solution set, the best method is usually a Newton iteration.

This would be set up as follows for the simpler class of

parameterised specifications in which production and

exploration are known to cease simultaneously.

The equations to be solved are simply the terminal

conditions (2-24) to (2-26) parameterised by initial price,

Po, and initial exploration effort, w, and by the common

terminal time, T:

gl(po,wo,T) _ Pchoke - P(T;po,Wo) = O ; (A-1)

g2(Po,wo,T) - p(T;po,Wo)

- c(Y(T;Po,wo),X(T;P0,wo)) = O ; and (A-2)

g3 (po,wo,T) - w(T;P0,wO) = 0 . (A-3)

The first order Taylor expansion of these functions, about any

choice of their arguments, gives the Newton equations. If

these are solved iteratively, they should converge to a point
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where the functions vanish. The Newton method and equations

are:

Z0 is close to Z ; (A-4)

gk(Zi) + gk (zi) (Zi+l - zi) = ;

Z = Z .

where:

Z (Po,wO,T) is the solution;

Zi (0,wi0,T) ; i > 0 are the

i > , k = 1,2,3 ;

(A-5)

(A-6)

iterates;

_p

LZ
(A-7)

'p

aZ
c aX ; and
$p

2g 3 aw

Z the solution, Z, it may be easily verified that:

At the solution, Z, it may be easily verified that:

(A-8)

(A-9)

$gk
--- () = ; k = 1,2,3 .

The transversality conditions, in conjunction with properties

of the cost and discovery functions, assure that the time

derivatives of the state and control variables vanish at the

terminal time. Because of this singularity, the Newton

ag 2

LZ

(A-10)

Y -
9 z
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equations may not be solved directly for this class of

problems. Other methods of search must be used. The method

used is described next.

The terminal time for any given initial value problem may

be defined as the first time at which any of the terminal

conditions is satisfied. This would define three new

functions of the unknown initial conditions:

hk(P0,wo) - gk(P0,W0,T(po0,w)) ; k = 1,2,3 ; (A-11)

where:

T(po,wo) min U (T I gk(PowO,T) = 0) . (A-12)
k=1,2,3

For each point in "po-Wo" space, at least one of the functions

(A-li) is zero. This divides "PO-wo" space into three

"phases". Each phase is defined by the vanishing of a given

function (A-11) in it. The phases have phase transition

boundaries where two or more of the functions vanish. These

boundaries meet at a "tricritical" point where all three

functions vanish. The tricritical point is the solution of

the search problem.

If the phase boundaries do not meet with any very acute

angles, the solution may be found through a series of

gradually refined grid searches with each refinement confined

to the grid rectangles from the previous search that might

contain all three phases.
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Unfortunately, the singularity found above makes this

search difficult if, as is always the case, the initial value

problems cannot be solved exactly. The errors in the

simulation introduced by truncation may produce large errors

in the terminal time for sets of initial conditions

potentially close to the solution. This in itself would not

be a problem if it were not that the rest of the Jacobian

matrix of the terminal conditions at the solution depends on

the following numbers:

as
(T;Z) ; (A-13)

LZ

where:

s (Y,X,p,w) ; and

z - (Powo)

These are the terminal values of the following initial value

problem:

2s 2s
(t) = hs(s(t),t) ___ (t) , (A-14)

AZ AZ

s
(0) = ( 02:I)

aZ
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where:

h is defined by s(t) = h(s(t),t)

0-(O) ; and 0(12

If the marginal cost of maintaining a zero discovery rate is

zero, then the fact that exploration costs are a strictly

increasing function of exploration effort implies that:

fw(w(T),X(T)) = . (A-15)

This singularity in the determination of some part of (A-13)

combined with errors in the determination of the terminal time

can lead implicitly to errors in any search for the optimal

initial conditions.

Pindyck attempted to use grid searches to solve a

concrete specification of his model of exploration. His

combination of specification and solution method apparently

contained at least one error. This error will now be analyzed

before returning to the main line of the argument.
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The specification that Pindyck used is as follows:

d(p) = max (h (Pchoke - P), 0) ; (A-16)

c(Y,X) = co ; (A-17)
X-Y

k(w) = a + bw ; and (A-18)

f(w,X) = A wa eX/X° (A-19)

In his parameterisation of this specification, it is crucial

that:

a > 0 and 0 < a < 1. (A-20)

A parameterised specification with fixed period costs of

exploration does not satisfy property (2-9) and make condition

(2-27) invalid. Unfortunately, Pindyck attempted to use this

condition in trying to solve his problem.

For this paper, a series of simulations was performed

using the corrected and expanded version of Pindyck's

specification outlined in Section 5, and using parameter sets

based on Pindyck's original parameters. To solve each

boundary value problem, -a series of phase space grid searches

was performed as described above. The initial value problems

were solved using the Euler difference method with a varying

step size adapted to bound at each time step the relative

change in each dependent variable. Because of the uncertain
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validity of the phase analysis described above, the value of

the discounted sum of the combined consumer and producer

surpluses was calculated for the solution of each trial

initial value problem. (A Riemann sum approximation was used

to do the numerical integration.) This objective functional

should have a maximum at the market equilibrium trajectory of

any parameterised specification.

The phase diagram for each of the problems examined has

the properties shown in Figure A-1. Thus, a lower bound for

the equilibrium initial price in these specifications of the

model, calculated using phase analysis, is any po for which

there exists a w such the point given by the pair is in phase

2.

An upper bound on the equilibrium initial price may also

be found. If the cessation of exploration is not used as a

terminal condition for the initial value problem, and a

production only programme follows the main programme,

terminating when either one of the other two terminal

conditions is reached, then phase 3 is split into two

subphases, 3-1 where production ceases and 3-2 where

production margin vanishes. Figure A-2 shows a typical phase

diagram with phase 3 split up. In these circumstances, an

upper bound on the equilibrium initial price is Po for which

there exists a w such that the point given by the pair is in

phase 3-1.



Figure A-1

A Typical Phase Diagram
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An examination of the objective functional showed in each

case that it is indeed maximised in region of the tricritical

point. This is evidence that this phase directed search for

solutions to the boundary value problem does lead to a

solution.

This success does not guarantee that all other

parameterised specifications have exactly the same type of

phase diagram. Three characteristics are probably universal:

1) for a given Po, all points in phase 3 have a smaller wo

than do those points in phases 1 or 2;

2) for a given w, all points in phases 2 or 3-2 have a

smaller Po than those points in phases 1 or 3-1; and

3) phases 1 and 3-2 and phases 2 and 3-1 never share a

boundary.

These characteristics do not guarantee the validity of the two

bounding search heuristics mentioned above (see Figure A-3).

Despite this, the characteristics of the phase diagram for any

particular instance may be determined by a fairly gross search

and equivalent heuristics developed for that case.

Finally, as was expected, the terminal behaviour of the

programmes in the tricritical area for each parameter set,

particularly at the boundary between phases 1 and 3-1 on the

one side and phases 2 and 3-2 on the other, is very sensitive



Figure A-3

Other Types of Phase Diagram
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to changes in initial conditions. Figures A-4 and A-5 show

this sensitivity, particularly for the production cost and the

exploration functions, in simulations using the parameter set

most closely linked with the original set of Pindyck. A more

precise and more stable method for solving the initial value

problem might ameliorate this divergence somewhat.
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