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Foreword

The physics design of nuclear reactors is today carried out, almost
exclusively, by the application of numerical models that describe neutron
behavior in a core throughout its life history. It is accordingly very
important that the models used be accurate and reliable. At the same
time, they must not require exorbitant amounts of computing machine
time.

The present report is a summary of a third year of effort in an on-
going program to improve such mathematical models. The development of
improved procedures for analyzing static problems (including depletion and
fuel management) has been quite successful and is now largely complete,
and present concentration is on applications to transient analysis. Im-
plementation of the methods developed into production computer programs
that fit into presently used packages remains as the most important

outstanding requirement.
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Introduction

The development of computer programs that predict neutron behavior
in nuclear reactors falls into three stages.

The first stage involves the derivation of the basic equations that
constitute the model. These are best found by systematic reduction from
a more accurate model so that the physical and mathematical approxima-
tions made can be understood clearly.

Next it is necessary to create a computer program that solves the
model equations and to test its accuracy by comparison with reference
calculations.

Finally, it is necessary to fit the tested model into standard pro-
duction codes. It is really only when this last stage is complete that
utilities can take advantage of the improved accuracy and efficiency of
the newer models.

The MIT development is now reaching this final stage. Production
codes based on the nodal code QUANDRY developed at MIT are now coming
into use. These include the nodal option QPANDA of SIMULATE-3 developed
by Studsvik of America, the STAR program developed at N.U.S., and the
ARROTTA code developed at S. Levy for EPRI.

Some of these organizations have undertaken development work
which might have been carried out at MIT. For examples, both

Studsvik and N.U.S. have successfully incorporated into their nodal



codes an improved iteration scheme (suggested by Kord Smith) which
reduces computer storage requirements substantially. In addition,
Studsvik is providing a direct link between CASMO and QPANDA which
avoids entirely the need to run any fine-mesh PDQ problems -- either
assembly-sized or quarter-core -- in order to obtain homogenized
nodal parameters. Finally, Temitope Taiwo, working at Northeast
Utilities, has reprogrammed QUANDRY to solve for the nodal adjoint
fluxes.

Since complex production-type programming efforts of this
nature are better carried out by organizations where the personnel
are not continually changing (as happens with graduate students),
we were pleased to be able to drop these items from our agenda.
Instead, we have continued to concentrate on the development and
preliminary testing of accurate and efficient methods for predicting
neutron behavior in LWRs. Accomplishménts of the past year are
described in the sections below.

To summarize briefly:

1) We have completed the development and testing of a method
for determining fine-mesh, finite-difference, diffusion theory
parameters (such as are used in PDQ) that reproduce quite accurately
the criticality and power distribution produced by transport
spectrum codes such as CPM or CASMO.

2) We have shown how to derive the adjustable parameters
required by the standard nodal codes FLARE and PRESTO directly from

a QUANDRY calculation.



3) All the necessary computer codes for testing a new scheme
for reconstructing detailed pin-power distributions from QUANDRY
solutions for BWR's have been completed.

4) A one-dimensional, two-group scheme for analyzing transient
neutron behavior has been derived systematically from the QUANDRY,
three-dimensional nodal equations. Coding is substantially
complete, and testing has begun.

5) New time-integration schemes for solving the point
kinetics equations, which permit the use of large time steps, have
been developed and tested.

1. Transport Effects Accounted for by a Finite-Difference

Diffusion Theorv Model

We have completed the development of a systematic method for
deriving few-group, fine-mesh, finite-difference diffusion theory
parameters from multi-group, transport theory calculations carried
out for an entire assembly.

A discussion of the theory along with a number of numerical

(1)

test cases is given in MIT-EL-85-002, and Reference (2) is a
complete report of the work done on the method.

Face-dependent discontinuity factors for the pin-cells are
initially introduced to reproduce the transport results exactly.
With adjustments made for fuel cells adjacent to control rod fingers
or burnable poison cells and for cells adjacent to the reflector,

the face-dependent discontinuity factors can be replaced with

approximate average values, and then, by a renormalization of the



two-group cross sections, can be made to disappear entirely. Thus,
the standard finite difference code, PDQ, can be made to reproduce
rather closely all the reaction rates determined by transport
theory. Maximum errors in pin-power (relative to reference
calculations) were under 2% for our test cases. Since the
adjustments for cells next to a control finger or poison pin or
reflector can be made automatic, the method is more straightforward
than the trial-and-error procedure currently used by most utilities.
Also, since all reaction rates are matched (rather than just
absorption in burnable poison pins or control fingers, it is
expected to be more accurate.

To illustrate the method for a difficult case, we consider the
rodded assembly shown on Figure (1-1). The black squares represent
fuel-pin-sized regions occupied by control rod fingers. Figure
(1-2) shows an eighth of the assembly partitioned into three zones
along with the legend for Figures (1-3), (1-4) and (1-5). These
latter figures show, for the three partitions, the error in pin
power when the "(3+1)" approximation (explained below) is used along
with the average group-1l and 2 discontinuity factors and the
face-dependent, group-1 and 2 discontinuity factors for each
pin-sized region. The face-dependent discontinuity factors were
found by requiring that "exact" finite-difference type equations
with one mesh-square per pin-cell and incorporating three
discontinuity factors (Ref. 1) reproduce reference results for the

pin-cell-averaged group-fluxes. (For both reference and approximate
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assembly calculations, zero-current boundary conditions were applied
over the entire surface of the assembly.)

As shown in Ref. (1), if the face-dependent discontinuity
factors are replaced by their cell-averaged values and if the
homogenized diffusion coefficients and cross sections for the pin
cells are divided by these average values, a set of finite
difference equations similar to those used for standard design (PDQ)
is obtained. Thus, insofar as face-dependent discontinuity factors
may be replaced by average values, PDQ can be made to match CPM or
CASMO results by a straightforward, one-step procedure.

Unfortunately, Figures 1-3), (1-4) and (1-5) show that, for the
fuel-pin cells adjacent to rodded cells, the group-2 discontinuity
factor for the face nearest the rod-finger is significantly higher
than those of the other three faces. Thus, replacing the
face-dependent, group-2 discontinuity factors of fuel-pin cells
adjacent to rodded cells by average values is likely to be a poor
approximation.

We have developed two methods to circumvent this difficulty.
The first is to average (for fuel-pin cells adjacent to a rodded

cell) the thermal discontinuity factors for only the three faces

furthest from the rodded cell and to use the actual face-dependent
value for the faces nearest the rodded cell. This is the "(3+1)"
approximation.

The second scheme is based on the fact that what appears in the

"exact" finite difference equations is the ratio of the

10



discontinuity factors on the two sides of that interface.
Examination of Fig. (1-3) shows that the face dependent, group-2
discontinuity factors for the rodded cell vary in the narrow range
0.855 to 0.857, and those for the faces which the four neighboring
fuel-pin cells have in common with the rodded cell vary in the range
1.093-1.106. Moreover, for the four fuel-pin cells adjacent to the
rodded cell, the averages of the thermal discontinuity factors for
the three faces not common with those of the rodded cell vary in the
range 0.999 to 1.004. It follows that if we reduce the thermal
discontinuity factors of the faces adjacent to the rodded cell and
those of the rodded cell by dividing by, say, 1.1, the ratio of
discontinuity factors across faces will be unaltered, but the values
of all four thermal discontinuity factors for fuel-pin cells
adjacent to the rodded cell will be much closer to each other, so
that replacing them by their average value will be a much better
approximation. We call discontinuity factors altered in this manner
"adjusted discontinuity factors."

Table (1-1) shows the difference from reference results due to
the use of various averaging procedures applied to the discontinuity
factors of the pin-sized-cells comprising the assembly of Figure
(1~1). Clearly, using unity-valued discontinuity factors (no
correction) leads to unacceptable errors in both eigenvalue and
pin-power. Straight arithmetically-averaged discontinuity factors
do little better. (Tests presented in Ref. (1) show that

arithmetically-averaged discontinuity factors do well when water

11



Kk % error Max. % error
eff in keff in pin powers
Reference 0.890886 0.0 0.0
Unity DFs 0.934427 4.89 5.28
Arithmetic
average DFs 0.906057 1.70 -3.47
f and £
gx gy
averaged 0.896418 0.62 -1.45
separately
(3+1) DFs 0.891307 0.05 -1.83
____________________________ S
Adjusted DFs 0.89120 - 0.04 1.80

Table (1-1)

- Rodded Preliminary Calculations

12




holes rather than control rod fingers are present.) Use of separate
averages for the x and y directions leads to the smallest error in
predicted fuel-pin power, but an unacceptably large error in
eigenvalue. On the other hand, both the (3+l) and the "adjusted"
discontinuity factors do well.

Since the "adjusted" DF’s can be made to disappear entirely by
renormalization of the pin-cell cross sections, we recommend this as
the favored method for forcing a match between PDQ and codes like

CPM or CASMO.

2. Standard Nodal Codes Derived Systematically - Winston H. G.
Francis

Standard nodal codes such as EPRI-NODE-P/B, FLARE or PRESTO
usually require that certain adjustable parameters and albedos be
determined by fitting to quarter-core PDQ results. Under the
assumption that the discontinuity factors (6 per node, per energy
group), which make fluxes predicted using the coarse mesh finite
difference (CMFD) QUANDRY equations match exactly those obtained by
the regular QUANDRY equations, can be replaced by one, average value
per group, we show below that these standard models can be derived
directly from QUANDRY. 1If this basic approximation is wvalid,
"coupling constants” and albedos for the simple models can be found
in a direct, non-iterative fashion.

To show how the fitted parameters of standard nodal schemes can
be found directly from a QUANDRY solution, we shall first derive two

of them (FLARE and PRESTO) in a standard fashion. Then we shall

13



show that, by using node-face-dependent discontinuity factors,
finite-difference equations capable of reproducing reference QUANDRY
results can be derived. The face-dependent discontinuity factors
will then be approximated by node-averaged values, and the fitted
parameters of FLARE and PRESTO will be found in terms of these
averaged-values. Finally, we shall present some preliminary tests

of the systematically derived FLARE and PRESTO models.

14



2.1 SEMI-EMPIRICAL NODAL METHODS
Semi-empirical nodal methods may be derived from the following

. : 3
multi-group equatlons( ),

VI, (x) + B (D) g (1)

1
[;xguzfg,(g) + 3, () ] ?g s (1) (2.1)

where the notation is conventional.
We consider a node (i,j,k), with a horizontal mesh spacing h in both
the x- and y- directions, and a vertical mesh spacing k in the z-direction.

By integrating over the volume of the node (i,j,k), and using Gauss'’

theorem, we obtain

6
EJ J (r)-n, ds + hk shidik oLk
g "8 " "8 tg g
m=1 "m
G
2 1 i,j,k i,j,k] i,j,k
=hk§ [- vV + X ' 2.2
A Xg¥%gg g Pgr (2.2)
g'=1
g=1,2,...,G

We also divide the energy spectrum into two groups by setting G = 2

such that all fission neutrons are introduced into the fast group only,

in
which case X, = 1 and Xy = 0, and there is no up-scattering , i.e.
ziéJ’k = 0 . For simplicity a generalized node (i,j,k) will be represented

15



by a single index "p", so that the resultant two-group equations are:

6
2
2, p p_hk P P P P
}I J_fl(g)-x}s dS+th:L P = [szl §01+u2f2 Py (2.3a)
S m A
m=1 m
6
2, P P 2, <P
} J qz(g)-gs dsS + h"k 22 2 h"k 221 (2.3b)
S m
m=1 m
where 21 = Ztl - 211, and 22 = th - 222.

In the second (thermal) group, the leakage term 1is generally much
smaller than the absorption term, and hence may be neglected. The result is

the one-and-a-half group approximation. Alternatively, in order to maintain

a formally exact scheme, we can define a parameter B§ , such that
6
_ = P g2 P
S m
m=1 "m
so that
)%
z
21
¢g =5 2 ¢E (2.5)
pf B- + 3P
27p 2

The advantage of introducing Bi will be apparent later, and obviously by

setting Bs = 0, we can return to the one-and-a-half group approximation.

By wusing this relation between the ¢§ and @p , we have essentially

1

16



reduced the problem to a one-group model, in which we only have to consider

the fast group explicitly.

6 9 oP
) 2, <P P _hk P P _2 p
> JS ql(g) gsmdS + h'k Zl 2 \ [ VZfl + VZfz o 2]
m=1 m @1
hzk P.P P
=— 2 k¢ (2.6)
A
P P P
v v %
kz = il = gz 221 - (2.7)
=7 =7 (D, Bp + 25 )

where ki is the conventional infinite multiplication factor for a

two-group model, with the materials buckling (Bri)p replaced by B§

FLARE MODEL

) 4 . ..
In order to derive the FLARE model( ), we now define a fission

neutron source term for each node,

sP = n’k =7 kP o} (2.8)

so that Eq. 2.6 can be written

6
P P
} [ sP?4 ;9P J L8 _ 8 (2.9)
kP A
q=1 ]
where JP74 represents the leakage from node p to an adjacent node q.

17



Rearrangement yields

6 6
kP P9 q-p
I [ 1 - } J ] sP 4 [ } J ] 54 (2.10)
1gp 149

g=l X g=1 X
By defining a kernel wPd by the relation

JP
gP

(2.11)

Pq _
e
A

so that WwPY represents approximately the probability that a neutron in
node p in a reactor, which is artifically critical, will cross to an

adjacent node q, we may rewrite Eq.2.10 as
6 6
} wPd ] sP + E wiP g4 ] (2.12)

which is the basic nodel equation in the FLARE model.

In FLARE, the kernel wPd is taken to be of the form(4):

2 2

1an) M
qu=(l-g)—-—P-—-+g-—p—2 (2.13)

2h h
where g is an adjustable parameter, and Ms is the migration area.

18



According to this expression, wPd

depends only on the properties of node
p, a condition which 1is obviously not true physically. The kernel was
originally derived as a combination of a slab-diffusion kernel and a
difference-equation kernel 1in a non-rigorous and quite arbitrary manner.
However, by adjustment of the g-factor and the albedos, it is possible to
reproduce a reference solution, 1i.e. eigenvalue X to < 0.5 % and the

nodal powers to < 10%, which is considered satisfactory for initial design

calculations.

PRESTO MODEL
The PRESTO model(S) is a modified coarse-mesh finite-difference
(MCMFD) model, which uses node-centred and face-centred point fluxes. The

nodal volume-averaged flux is assumed to be approximated by

4 2
{Dp ~ 3a (pp + 2 (1'3)/4 §0pq + RE (qu (214)
3a+(l-a) (R+2) 3a+(l-a) (R+2) q, =1 q ~1
h v
where @p is the point flux at the center of node p, and @pq is the

center-point flux on the interface between nodes p and an adjacent node q,

with "a" being an adjustable weighting factor. We note that when

© (2.15)

19



Introducing the definition (2.7) into the fast group equation (2.3a)

yields
6

L[ (r)on, dS = h%k | T kP -1 | 3P P (2.16)

‘ 1M=/ "Ug © 171
S m A

m=1 m

—

P ZE distinguish point fluxes from nodal

where Z1 is replaced by
volume-averaged fluxes. In order to determine the left-hand-side, the net

current on the interface between adjacent nodes p and q is assumed to be

given by
JP4 o _ pP [ o1 - P ]
h/?2
a _ pd
~ . pd {JE___J&__J 2.17)
h/2

With this assumption made, the surface fluxes and currents on the

interface are

P pP P 4+ pdyd

(2.18)
P + p
2 pP pd

Jpa . 2 o - oP ) (2.19)
h Dp + Dq

20



Hence Eq. (2.16) becomes

4 2
P 4 P 4
} - (hk) 2 D7 D7 (cpq - p) + _(hz) 2 DD ((pq . (pp)
1 h oP + p 1 k DP + D9
qh— qV_
- h% [ 1. } sP P (2.20)
Y

2
P A4 P A9
DY D DY D
}-2k-———<wq-<pp> - } 2kR————q<<pq-<pp>
D

P, nd P
+ D pP + D
qh=1 qv=1
- W%k [ = kz 1 ] P P
X
- h’k [ 1kz -1 ] =P 3a oP
A 3a+(l-a) (R+2)
4 2
v —(Lma)/4 [ } LA } P9 } } (2.21)
3a+(1l-a) (R+2) -~ -
qh—l qv—l

This set of equations, together with suitable boundary conditions, can
be solved to yield the point fluxes ¢p , from which the nodal-averaged

fluxes can then be reconstructed.
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2.2 SYSTEMATIC NODAL METHODS

The starting point of all nodal methods based on diffusion theory is

the set of multi-group equations (2.1), which is repeated here

V-qg(y) + Ztg(g) wg(y)

1
[ ; Xguzfg,(g) + Zgg,(y) ] wg,(¥) (2.22)

We again consider a node (i,j,k), with a horizontal mesh spacing "h"
in both the x- and y- directions, and a vertical mesh spacing "k" in the

z-direction. Integrating Eq. (3.1) over the volume of the node (i,j,k), we

again obtain

6
E I J (r)-n. ds + hox ziod-k 1.k
A tg g
m=1 "m

1 i, ik i,j.k i,jk
[ 3 Xguzfg, + Z } ©, (2.23)

Since Eq. (2.23) contains two unknowns ngk and Jg(r), we require
another relation between them, so as to form a closed set of equations.
This relation is usually termed the "nodal coupling equation", and 1is

mainly responsible for the differences in the various nodal methods.
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ANALYTIC NODAL METHOD (QUANDRY-CMFD APPROXIMATION)

In the CMFD approximation, the nodal coupling equation is based on

Fick's law of diffusion

J J ng(xi+1,y,z) dy dz

i+l,j.,k 1
hk g ;IiTTETE J J ¢g(xi+l,y,2) dy dz
- _Di+1,j,k gX-
& h/2
1 i,jk
fi,j,k j I ¢g(xi+1,y,z) dy dz - hk wg
~ .pi:Jd k. gxt (2.24)
& h/2
. . . . i+l,j,k
where because of the introduction of the discontinuity factors fgx-
and f;;i’k, these are now formally exact relations. (To put it another

way, Equa. (2.24) defines formally exact values for the discontinuity

factors.)

Eliminating the face integrated surfaces from Equa. (2.24) yields

j I ng(xi+l,y,z) dy dz

Di,j,k Di+1,J,k

- - 2k 4 g [ f;;]_-»J,k‘p;‘Fl.j,k ) f;{i,kw;,j,k]
elhd.kpitl, 3,k L3415 k1,5, k
gx+ g gx- 8
A3k 1,5,k -1
- . ok gx- L _BX* [ f1;%,3,k@1+1,3,k i fl;i’k¢l’3’k ] (2.25)
pitl ik i,k & & & &

g g
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Similar expressions can be obtained for j J ng(xi,y,z) dy dz,
' I J ng(x,yj+1,z) dz dx, etc. By introducing these expressions into

equation (1.24), the QUANDRY-CMFD equations are obtained,

+
. . . gx- g gx+'g
D1+1,Jk Dle

& g

gk ik g
X - + i+l,jk i+l,jk ijk ijk
- %k [ g gx } [ £ J 0 Jk o £1] @lJ }

+
c 1 s . s gx-'g gx+ g
pt 1,jk Dle

g g

10k gk q-1
A [ gx+ gx- } [ fljk@ljk ) fl—l,Jk@l—l,Jk ]

fi,j+]_,k ijk -1

- 2k L + _gﬁ I: flyJ+1’k<pl’J+lak _ fle@le]
Di,j+1,k Dijk gy- g gyt g
g g

PRI U S P
+ 2k { gy+ . _8Y- } [ fljk¢ljk i fl,J—l,k@i,j-l,k ]

Di;j'l,k Dijk gyt g gy- g
g g
o [ glikl pijk -1
_2h gz- . ezt [ fij,k+1wij,k+1 i fijkwijk }
k ij,k+1  _ijk gz- '8 gzt g
D Dg

9 fij,k—l fijk -1
2 h gz+ gz- ijk ijk ij,k-1 ij,k-1
f © - £ ©
gz-' g gz+ g

G
s 4k s . . .
+ hlk s 3ok SR Ik 2 E [ 1, stdky zl’J’k] oK 96y
g y & fsg g
g'=1
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It may be noted that these equations have a more general structure
. . : . . 6
- than the conventional finite-difference equations used in PDQ( ) and

CITATION(7), where the discontinuity factors are implicitly taken as unity.

2.3. FLARE MODEL: REDUCTION OF QUANDRY-CMFD EQUATIONS
In order to reduce equation (2.26) to the FLARE equations, which are

based on a one-group model, we first set G = 1, and define

stk _p2 g3k 1.5,k 1,3,k (2.27)
g ) g
i,i,k i,i,k , _i,i,k
vhere, k.'J'° = vEL VR i (2.28)

Then the QUANDRY-CMFD equations may be written,

LIk gk g%
llk -
glik o = [1 - —EA T k| - — 2 [k i-1,3K
R T i
© Dl+l,Jk Dle © Dle Dl-l,Jk
et bt ] siik
f;TI,Jk
+ 2k JEES I X} gitl.jk
nZks I I Ik e L
RESIL IO
(13 k-1
2 zZ+ . .
o+ 2 (b /k) A 3. k-1 Lijk gii k-1 (2.29a)
nlegtd k-l i k-1l 2+ Tz
© Dlj,k-l Dle
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_ e [ [ 1 . b d et ik i g ksl g0k ._‘] gl ik

Gitli kel gk i3k i,j,k-1-1,3,k Si,j,k-l]

+ .+ W
(2.29b)
where
gl
yiod.koirl gk 2k L3,k 1,3k (2.30)
hlk st 3ok ki’J’k T+ ?*. n
D 1J: D )Js
and hence in the form of the FLARE equations,i.e.
kP 6 6
sP - =2 [ [ 1 - } wPd ] sP + } wiP s } (2.31)
A g=1 g=1

where p represents the indices i,j,k of the node (i,j,k), and q represents

the indices (i*l,j*1,k*l) of an adjacent node, so that in general,

£P
+
Pq 2 ) =
e o= 7 p p fp+ £4 (2.32)
(Au)™ = k°° ut | _u
pP pd

26



In FLARE, the kernel wP? is assumed to be of the form,

Loy u2
wl-(1-g) P4 ¢ g (2.33)
2h h

. . 2, . .
where g is an adjustable parameter, and Mp is the migration area,

p P
D D
e S (2.34)
PP <P
1 2
so that
wiP . J(Mz)/Zh
g = P (2.35)
) 2
M°/h° - ] (M%) /2h
p/ 1< p)/

From this it is immediately apparent that g should actually be a

face-dependent parameter, i.e. g - gpq ,where
p
f 2
+
) 5 - ut — | lar)
(ow? PP | fux £y 2 (Au)
® * 2.36)
. - pP pd (2.
- 2 2
pd M lod)
p - P
(bu)? 2(Au)
A basic limitation in FLARE is due to replacing g by a single

Pq

g-factor, or as 1s actually the case, by a -factor for horizontal

&h

coupling and a gv-factor for vertical coupling. This results in the kernel
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wPd being the same for all adjacent nodes in a horizontal plane, which
implies that the probability that a neutron born in node p being ultimately
absorbed in node q is the same for all adjacent horizontal nodes. While the
error due to this approximation may be small for nodes in the interior of a
reactor, it can be very large for nodes on the boundary, where the ratio
wPd / qu’ is significantly greater than unity. One way in which FLARE
overcomes this problem is by arbitrarily adjusting the albedos, as well as
the g-factor.

It is evident that if FLARE were modified to use face-dependent
gpq-factors and node-dependent albedos, the results would reproduce exactly
the reference solution. However, as previously stated the purpose of this
research is to determine systematically the arbitrary parameters, i.e. the
g-factors and the albedos, which would allow the present FLARE program

(perhaps modified to include node-dependent gp-factors) to reproduce the

reference results.

RELATION BETWEEN ALBEDOS IN QUANDRY AND FLARE

A relation between the albedos in QUANDRY and FLARE can be obtained by
two approaches, which are essentially equivalent.In the first method, the
total albedo for a node is obtained by introducing the conventional form of

the FLARE equation(A),

P
k
p__° . _ P ~PA| P 74P ¢4
St = . [ 1 (6 aF(Tot)) W } ST+ E W S (2.37)

q=q’
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where is the total albedo for any node p; q represents any of the

b
®F(Tot)
nearest neighbours (maximum = six) which are present, and q' any "missing"

neighbours, if node p has one or more exterior surfaces. The exact form of

the above equation using face-dependent kernels wPd may be written in the

form:

p
k ,
] — [ 1 - E wPd . E wPd } sP 4+ } wiP g1 (2.38)

By equating the terms

_ P =Pq _ Pq pq’
(6 aF(Tot)) W } Wt o+ E 1%
q=q’ q’
so that
} WPe } wPd
P _ g . 9%d’ q’
aF(Tot) 6 ] (2.39)
7w P4
a total FLARE albedo ag(Tot) for node-p is obtained for any wPd

calculated using a node-dependent gp and Equa. (2.33). While the

54 wapP

coefficient of the SP term is now exact, the exact coefficients
are replaced by Wi In order to make these more nearly equal, the
node-dependent gp’s should be averaged only over the interfaces with other

nodes, excluding all albedo surfaces.
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In the second approach, we consider a single exterior node face or
albedo surface at a time, and equate the net leakages given by the
QUANDRY-CMFD and FLARE models. For a first-order finite-difference
approximation, the net surface current (leakage) at x = X141 for group-g

in the QUANDRY-CMFD model is

i,j,k»i+1,j,k _
Lg = ng(xi+l,y,z) dy dz

1

1,7,k o (x, ..y,z) dy dz - hk o3+
i,j.k fgx+ & i+l &
= p'd (2.40)
& h/2
The albedo used in QUANDRY is defined by
J J @g(xi+1,y,z) dy dz
_ o i,j,k
aQ;g J J ng(xi+l,y,z) dy dz (2.41)

The surface flux can be eliminated from these equations to yield for group

g = 1, (neglecting the subscript),

h k
Ll,J,kel+l,J,k _ T3k wl,J,k (2.42)
(0]
h Q
1,5,k © 1,3,k
2D7J: f)J’

X+
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The corresponding expression in the FLARE model is

Li,j,k%i',j',k'

1 Sl,J,k wi,J,k+1 ik (
A

ni:j:k . Q;;,J ’k) (2.43)

<, s i,j,k . .
where (i',j',k’') represents the n 13 non-existent nodes adjacent to

i,j,k

node (i,j,k), and ap is the FLARE albedo. Following the FLARE
s s ch s 1 i
approximation W']"J’k_’1 3tk is replaced by Wl’J’k, and since we are
i,j.k _

treating each face separately n 1, so that

Li,j,k—>i+1,j,k

_ 1 [hzk si.3.k ki,j,k (pi,j,k] ghilk (1. ghdik

) (2.44)

A F

Equating the right-hand-sides of Equas. (2.42) and (2.44) yields
A
i,j,k _ )
ap 1 ai,j,k (2.45)
h 2i,j,k ki,j,k ﬁi,j,k y . g
w oplsJ-k f:;,J,k
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In general,

p =1 -
% (u) 1 (2.46)

Au =P kz WP +

For a node on an edge or corner, which has two or three exterior
surfaces, the "total albedo", of Equa. (2.37) is obtained by summing the
contributions for each individual face.

We note that if of = o, (i.e. n-J = 0), then P =1 ; also if
Q - -sur F

ol =2 (i.e. partial returning current j- = 0), and WP s replaced by

Q
1,j,k+i41,j,k

the exact relation W p

then ap = 0, so that in this case

the FLARE albedo represents the classical albedo o« = [j-/j+]sur . When

Wl’J’k41+l’J’k is replaced by ﬁl’J’k , the FLARE albedo loses its

physical character, and takes on the nature of a parameter, similar to the
g-factor, which must be adjusted in order to obtain acceptable results.

It should be noted that the two approaches are consistent, since the

sums of the contributions to the albedo of in the first case equal the

F

total albedo « The only reason for mentioning the first scheme is

p
F(Tot)"’
that it helps to decide how the averaging of the face-dependent g-factors
should be carried out.

It has previously been noted that only the ratio a/fu+ appears in
the QUANDRY-CMFD equations for the boundary nodes. Hence if average

discontinuity factors fin are used, the albedo should be adjusted
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using,

£,
o’ = LN (2.47)
u+t
so as to preserve the ratio a / fu+ . It should be noted, however, that

Eq. (2.46) which relates the albedos in QUANDRY and FLARE contains the
ratio a / fu+ explicitly. Hence it is not necessary to adjust the albedos,

since the above ratio has been maintained.

SOLUTION OF FLARE EQUATIONS
A version of FLARE, which is called FLARE-G is available at MIT, and
hence the FLARE equations can be solved using this code. The steps involved

in the preparation of the FLARE data are listed as follows:

1. For a suitable bench-mark problem, two-group cross-sections
(Dl’z,zl’z,uzfl’z,...) are fixed. Two-group discontinuity factors
fiiz are obtained using assembly or color-set calculations. Two-group

albedos are also required, and may be obtained from a fine-mesh
solution or from a theoretical analysis.

2. The data in step 1 allows a two-group QUANDRY to be run using the
quadratic approximation, which produces a solution that is taken to be
the reference solution: eigenvalue X ,two-group nodal fluxes and

nodal powers, two-group surface fluxes and currents.
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3. A one-group QUANDRY with the CMFD-approximation is then run using
the restart option. This produces one-group collapsed cross-sections
Dl,Zl,uzl,...; and one-group discontinuity factors fit using the
two-group nodal and surface fluxes in step 2. It was found that
QUANDRY did not calculate one-group albedos for the restart problem;

so this had to be corrected.

4., TFLARE data can then be generated using a program NODPAR:

P
PP w <P
£P 2
9 ut 1)
2 p.p| f £4 |
(Au)™ = k°° ut u 2(Au)
g - pP pd
2 2
pa M AR
___E_i . P
(Au) 2 (Au)
o A
aF(u) =1 5
au 3P kPGP (A 4 Q
2DP £P
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5. FLARE can be run in several options:
(a) Horizontal and vertical g's (gh,gv) and axially averaged
albedos (standard FLARE)
(b) Node-dependent g'’s and axially averaged albedos
(c) Node-dependent g’s and node-dependent albedos
FLARE RESULTS
Results were obtained using options (a) and (b) for a small benchmark
problem EPRI-9 (3x3x4). The magnitude of the errors in all cases are
consistent with those to be expected using the FLARE model. Figures (2-1)
and (2-2) show the results obtained using & gv-values gnd node-dependent
g-values respectively. For illustrative purposes, these figures also
include results using QUANDRY but with the face-dependent discontinuity
factors replaced by their node-averaged values. Since averaging
discontinuity factors (or more precisely, the g-factors derived from the
face-dependent discontinuity factors) is the only approximation made other
than the axial averaging of the albedos, these should be much closer to the
FLARE results, which is seen to be the case. It is to be noted that only a
very small reduction in the relative errors of the eigenvalue X and the
assembly and mid-plane nodal power densities is achieved when
node-dependent g-values are used. However, it was concluded that the small
size of the core, with the majority of the nodes having external surfaces,
did not make it a suitable test candidate for the FLARE model, with its
inherent assumption that the kernel wP? is the same for all adjacent nodes.
A more realistic test case is the SALEM-1 PWR (8x8x9). Results are

shown in Figs. (2-3) and (2-4). It is immediately apparent that a very
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dramatic improvement in the errors is obtained using node-dependent
g-values. For example, the relative error in the eigenvalue decreased from
- 0.34 % to - 0.11 %, and the maximum errors in the assembly power
densities (in the interior of the core) from = 15 % to = 6%.

Depletion studies were carried out on ZION-2 (8x8xl). Results are
shown in Figs. (2-5) - (2-10). As in the SALEM-1 case, there is a very
significant reduction in the errors when node-dependent g-values are used,
with the relative error in the eigenvalue decreasing from -0.26 % to
-0.02 % at B-O-L. Maximum errors in the interior of the core are also
reduced from = 10 % to = 4%. Both options show a large increase in the
respective errors at the first depletion (60 hours), but these continue to
increase more gradually up to the final depletion step (7800 hours). This
result suggests that it would be preferable to use the 60-hour (equilibrium
xenon) case to find the node-averaged discontinuity factors, thence gp

values.
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EPRI-9: (3 x 3) x 4

ASSEMBLY POWER DENSITIES

EIGENVALUE ())

Py (Ref) 0.84908 0.63974 0.89255
2, (® 0.88433 0.69377 0.891070
Pp (g,8) 0.88555 0.69538 0.892093
Rel. Error (%) | 4.30 8.70 -0.052
1.1945 1.2827
1.1405 1.2907
1.14121 1.25273
-4.46 -2.34
1.3506
1.2722
1.30301
-3.52

NODAL POWER DENSITIES

PO (Ref) 1.0656 0.80828
PQ () 1.1193 0.88212
PF (gH,gV) 1.14203 0.89678
Rel. Error (%) 7.17 10.95
1.5008 1.6293
1.4359 1.6387
1.47174 1.61556
-1.94 ~-0.84
1.6981
1.6015
1.68040
-1.04

Fig. (2-1). Assembly and Mid-plane Nodal Egger Densities Us?ng
(a) QUANDRY, (b) QUANDRY with f°, (c) FLARE-G with 8> 8y.
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EPRI-9: (3 x 3) x 4

ASSEMBLY POWER DENSITIES

EIGENVALUE (X)

PQ (Ref) 0.84908 0.63974 0.892555
PQ ¢) 0.88433 0.69377 0.891070
Py (gp) 0.88996 0.68800 0.892174
Rel. Error (%) 4.81 7.54 ~0.043
1.1945 1.2827
1.1405 1.2907
1.14449 1.28507
-4.19 0.18
1.3506
1.2722
1.27005
-5.96

NODAL POWER DENSITIES

PQ (Ref) 1.0656 0.80828
PQ (£) 1.1193 0.88212
Pp (gp) 1.4697 0.87954
Rel. Error (%) 7.64 8.82
1.5008 1.6293
1.4359 1.6387
1.46645 1.66607
-2.29 2.26
1.6981
1.6015
1.63206
-3.89

Fig. (2-2). Assembly and Mid-plane Nodal Powyer Densities Using
(a) QUANDRY, (b) QUANDRY with £ , (c) FLARE with gy values.
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1.0718 PQ (Ref)
1.1751 PF
9.63 Rel. Error (%)
0.9094 | 1.0819 XQ (Ref)
1.0506 | 1.1708 XF
15.53 8.22 Rel. Error
1.0917 | 0.9133 | 1.0837
1.1709 | 1.0401 | 1.1431
7.25 13.89 5.48
0.9418 | 1.1132 | 0.9059 | 1.0157
1.0511 | 1.1603 | 0.9946 | 1.0449
11.60 4.23 9.78 2.87
1.1706 | 0.9714 | 1.1440 | 1.0047 | 1.1565
1.1989 | 1.0516 | 1.1500 | 1.0398 | 1.0944
2.42 8.26 0.52 3.49 -5.37
1.0870 { 1.2041 | 0.9833 | 1.1554 | 0.9376 | 1.2214
1.1312 | 1.1828 | 1.0111 | 1.0935 | 0.8995 | 1.1232
4.07 -1.77 2.83 ~-5.36 ~-4.06 -8.04
1.1787 | 1.0616 | 1.1569 | 0.9709 | 0.9665 | 0.6301
1.1320 | 1.0552 | 1.0769 | 0.9580 | 0.8388 | 0.5783
-3.97 -0.60 -6.91 -1.33 -13.21 {-8.22"
0.8678 | 0.8565 | 0.9463 | 0.6661
0.8508 | 0.8076 § 0.8636 | 0.5969
-1.96 -5.71 -8.74 -10.38
Fig. (2-3). Assembly Power Densities for SALEM-1

1.06521
1.06161
-0.34%

Using (a) QUANDRY, (b) FLARE-G with 8> By
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1.0718 Py (Ref)

1.1029 PF

2.90 Rel. Error (%)

0.9094 | 1.0819 AQ = 1.06521

0.8824 | 1.0929 AF = 1.06640
-2.97 1.01 Rel. Error = 0.11%

1.0917 0.9133 1.0837

1.0999 0.8852 | 1.0720

0.75 -3.08 -1.08

0.9418 | 1.1132 | 0.9059 | 1.0152

0.9007 | 1.0992 | 0.8636 | 0.9679
~4,36 -1.26 -4,67 ~-4.70

1.1706 | 0.9714 | 1.1440 | 1.0047 | 1.1565

1.1577 0.9217 1.1152 0.9575 1.1164
-1.10 -5.11 -2.52 -4.70 -3.47

1.0870 | 1.2041 | 0.9833 | 1.1554 | 0.9376 |1.2214

1.0284 | 1.1675 | 0.9261 | 1.1240 | 0.9015 | 1.3661
-5.39 -3.04 -5.82 -2.72 -3.85 H1.85

1.1787 | 1.0616 | 1.1569 | 0.9709 | 0.9665 |0.6301

1.1689 | 1.0189 | 1.1479 | 0.9873 |1.0363 | 0.7175
-0.83 -4.,02 ~0.78 1.69 7.22 F3.87\

0.8678 | 0.8565 | 0.9463 | 0.6661

0.9418 0.9171 | 1.0603 0.7442

8.52 7.08 12,05 11.73

Fig. (2-4). Assembly Power Densities for SALEM-1

Using (a) QUANDRY, (b) FLARE-G with gpf Values.
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0.9487 PQ (Ref)
1.0146 Po
6.95 Rel. Error (%)
0.8431 | 0.9406 AQ (Ref) = 1.00749
0.9249 | 0.9884 AF = 1.00488
9.70 5.08 Rel. Error = -0.26%
0.9717 | 0.8137 | 1.0082
1.0163 | 0.8795 | 1.0395
4.59 8.09 3.10
0.9530 | 1.0682 | 0.9619 | 1.0971
1.0244 | 1.1006 | 1.0172 | 1.0947
7.49 3.03 5.75 -0.22
1.1937 | 1.0501 | 1.1633 | 0.9509 | 1.2815
1.2214 | 1.0953 | 1.1735 { 0.9769 { 1.2370
2.32 4.30 0.88 2.73 -3.47
1.2013 | 1.2484 | 1.1695 | 1.1666 | 0.8991 | 1.1419
1.2373 | 1.2504 | 1.1864 | 1.1322 | 0.8842 | 1.0750
3.00 0.16 1.45 -2.95 -1.66 -5.86
1.1742 | 1.0690 | 1.1389 | 1.0774 | 0.9316 | 0.5561
1.1372 | 1.0751 | 1.1038 | 1.0905 | 0.8869 | 0.4765
-3.15 0.57 -3.08 1.22 -4.80 14,31
0.8625 | 0.9512 | 0.7945 | 0.6615
0.8327 | 0.9035 | 0.7395 | 0.6120
~3.46 -5.01 -6.92 -7.48
Fig. (2-5). Nodal Power Densities for Zion-2 at B-O-L

Using (a) QUANDRY, (b) FLARE-G with 8y 8y
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0.9935 PQ (Ref)
1.1060 Po
11.32 Rel. Error (%)
0.8657 0.9762 AQ (Ref) = 1.00672
0.9959 1.0670 AF = 1.00339
15.04 9.30 Rel. Error = -0.33%
1.0023 | 0.8269 | 1.0285
1.0859 0.9302 1.0922
8.34 12.49 6.19
0.9539 | 1.0844 | 0.9653 | 1.1062
1.0629 | 1.1467 | 1.0439 | 1.1148
11.43 5.75 8.14 0.78
1.1962 | 1.0401 | 1.1632 | 0.9411 | 1.2866
1.2481 | 1.1095 | 1.1883 | 0.9694 |[1.2050
4.34 6.67 2.16 3.01 6. 34
1.1695 | 1.2323 1 1.1496 |1.1674 {0.9074 1.1893
1.2308 1.2504 1.1738 1.1159 0.8527 '1.0211
5.24 1.47 2.11 ~4.41 -6.03 -14.14
1.1472 | 1.0277 |1.1219 |1.0667 |0.9808 0.5936
1.1230 | 1.0469 |1.0853 |1.0511 }0.8499 0.4566
-2.11 1.87 -3.26 -1.46 -13.35 |-23.08
0.8252 | 0.9202 }0.7837 |0.6551
0.8086 | 0.8746 |0.7196 | 0.5946
-2.01 -4.96 -8.18 -9.24

Fig. (2-6). Nodal Power Densities for Zion-2 at 60 Hrs.
Using (a) QUANDRY, (b) FLARE-G with 82 By-
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PQ (Ref)

1.2336
1.3790 Pu
11.79 Rel. Error (%)
1.2193 | 1.2086 AQ(Ref) = 1.01314
1.4027 | 1.3486 AF = 1.00973
15.04 11.58 Rel. Error = -0.347%
1.2002 | 1.1443 | 1.15847
1.3281 | 1.2977 | 1.2920
10.66 13.41 9.06
1.1859 | 1.1804 | 1.1826 | 1l.1576
1.3194 | 1.2732 | 1.2801 | 1.1876
11.26 7.86 8.24 2.59
1.1576 | 1.1621 | 1.1436 | 1.0792 | 1.1790
1.2138 | 1.2365 | 1.1747 | 1.0757 | 1.0752
4.85 6.40 2.72 -0.32 -8.80
1.1440 | 1.0968 | 1.1331 | 1.0603 | 0.9444 0.9885
1.1694 | 1.1130 | 1.1289 | 1.0000 | 0.8143 0.8136
2.22 1.48 -0.37 -5.69 -13.78 -17.69
0.9724 | 0.9795 | 0.9521 | 0.9582 | 0.8304 0.5143
0.9615 | 0.9918 | 0.9201 | 0.9122 | 0.7046 0.3633
-1.12 1.26 -3.36 -4.80 -15.15 -29.36
0.6852 | 0.7474 | 0.6583 | 0.5624
0.6495 | 0.7137 | 0.5795 | 0.4931
-5.21 ~4.51 -11.97 |[-12.32
Fig. (2-7). Nodal Power Densities for Zion-2 at 7800 Hrs.

using (a) QUANDRY, (b) FLARE-G with 8y By
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0.9487 | Py (Ref)
0.9620 PF
1.40 Rel. Error (%)
0.8431 | 0.9406 Q(Ref) = 1.00749
0.8278 0.9287 F = 1.00732
~1.81 -1.27 Rel. Error = -0.02%
0.9717 0.8137 1.0082
0.9610 ]0.7825 }0.9768
~1.10 -3.83 -3.11
0.9530 |1.0682 |0.9619 |1.0971
0.9276 |1.0403 }0.9333 |1.0500
-2.67 -2.61 -2.97 -4.29
1.1937 |1.0501 {1.1633 ]0.9509 |[1.2815
1.1721 |{1.0093 [1.1252 |0.9123 }1.2585
-1.81 -3.89 -3.28 -4.06 -1.79
1.2013 {1.2484 |1.1695 |1.1666 (0.8991 1.1419
1.1757 1.2198 1.1454 1.1370 0.8907 1.1872
-2.13 -2.29 -2.06 -2.54 ~-0.93 3.97
1.1742 |1.0690 |1.1389 |1.0774 |[0.9316 0.5561
1.1670 1.0571 1.1396 1.1398 0.9940 0.5944
H0.61 -1.11 0.06 5.79 6.70 6.89
0.8625 |[0.9512 ]0.7945 |0.6615
0.9178 1.0389 0.8479 0.7225
6.41 9.22 6.72 9.22

Fig. (2-8). Nodal Power Densities for Zion-2 at B-0-L
Using (a) QUANDRY, (b) FLARE-G with gp— Values.
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1.0695 | Pg

7.65 Rel. Error (%)

0.8657 | 0.9762 AQ(Ref) =
0.9045 | 1.0211 Ap =
4.48 4.60 Rel. Error = -0.097%
1.0023 | 0.8269 | 1.0285

1.0451 | 0.8381 | 1.0421

4.27 1.35 1.32

0.9539 | 1.0844 | 0.9653 | 1.1062

0.9720 | 1.0993 | 0.9653 | 1.0799

1.90 1.37 0.00 -2.38

1.1962 | 1.0401 | 1.1632 | 0.9411 | 1.2866

1.2104 { 1.0273 | 1.1491 | 0.9066 | 1.2213

1.19 -1.23 -1.21 -3.67 -5.08

1.1695 | 1.2323 | 1.1496 | 1.1674 | 0.9074 | 1.1893
1.1706 | 1.2270 | 1.1324 | 1.1233 | 0.8537 | 1.1126
0.09 -0.43 -1.50 -3.78 -5.92 -6.45
1.1472 } 1.0277 | 1.1219 | 1.0667 | 0.9808 | 0.5936
1.1558 | 1.0236 | 1.1224 | 1.0887 | 0.9433 | 0.5664
0.75 -0.40 0.04 2.06 -3.82 -4.58
0.8252 | 0.9202 | 0.7837 | 0.6551

0.8838 | 0.9962 | 0.8194 | 0.6997

7.10 8.26 4.56 6.81

Fig. (2-9). Nodal Power Densities for Zion-2 at 60 Hrs.

Using (a) QUANDRY, (b) FLARE-G with gp— Values.
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1.2336 PQ (Ref)

1.2540 Pa

1.65 Rel. (Error (%)

1.2193 | 1.2086 AQ(Ref) = 1.01314
1.3609 { 1.2120 AF = 1.01069
11.61 0.28 Rel. Error = -0.24%
1.2002 | 1.1443 | 1.1847

1.2025 | 1.2470 | 1.1620

0.19 8.97 ~-1.92

1.1859 § 1.1804 | 1.1826 | 1.1576

1.3145 | 1.1617 | 1.2765 | 1.0848

10.84 ~1.58 7.94 ~6.29

L1576 | 1.1621 | 1.1436 | 1.0792 | 1.1790
1.1337 |} 1.2637 | 1.0853 | 1.0772 | 0.9877
-2.06 8.74 -5.10 ~-0.19 -16.23

—

1.1440 | 1.0968 | 1.1331 | 1.0603 | 0.9444 | 0.9885
1.2039 | 1.0611 | 1.1669 | 0.9593 | 0.8556 | 0.8007
5.24 -3.25 2.98 -9.53 -9.40 -19.00

0.9724 | 0.9795 | 0.9521 | 0.9582 | 0.8304 | 0.5143
0.9725 | 1.0715 | 0.9332 | 0.9858 | 0.7394 | 0.4362
0.01 9.39 -1.99 2.88 -10.96 |-15.19

0.6852 | 0.7474 | 0.6583 | 0.5624
0.7239 | 0.7986 | 0.6761 | 0.5938
5.65 6.85 2.70 5.58

Fig. (2-10). Nodal Power Densities for Zion-2 at 7800 Hrs.
Using (a) QUANDRY, (b) FLARE-G with gp~ Values.
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2.4 PRESTO MODEL: REDUCTION OF QUANDRY-CMFD EQUATIONS
We first approximate the six discontinuity factors for each node,

f;&i’k (u = x,y,z) by f;’J’k , so that the QUANDRY-CMFD equations

(2.26) become,

* fg g g 8
D1+1,Jk Dle
g &

fi+1:jk :-Eijk -1
- 9k [ £ g ] [ -1+1,Jk¢1+1,Jk i 513k¢13k ]

+
s _ s P g g g g
pi 1,jk Dle

g g

fi-l,jk fijk -1
+ 2k [ g g } [ flelek ) fl-l,Jk¢l-l,Jk ]

fi'j+1’k ];:.ijk -1
Sk | B + B [ gLk 1,341k gijk ik ]
g g g '8

Di,j+1,k Dijk
g g

(i-1k  gijk q-1
+ 2k | -8 + B [ ik ifk | pi,3-1k 1,3-1k ]
g g g g

pihd-Lk  pijk
g g

2 h g g 2ij,k+1l 15,k+1 oijk ijk
" g % "ty %

k DlJ,k+1 Dle

g g

o [ gld k-1 pijk q-1
L 2h g + 8 [ piik ijk  zij, k-1 ij,k-1 ]
Dij,k-l Dijk g g g g
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We then define the following parameters:

*1,j.k _ Ei,J,k ¢i,j,k
g g g
i,j,k
*1,3,k Dg
Dg ) b =
fl,J,k
g
i, i,k
*1,5,k _ g
Eg 1Ja K (2.49)
fl,],k
g
so that

£ f

#itl, 3k pijk -
- 2k g + B
g g g '8

pitl ik ijk
g g

1
Ji+1,3k i+1,5k  .ijk ijk
[ 41,3k 1+1,5k  gijk 1] ]

-1
— -k { 1 N 1 ] [ Zi+1,j,k Zi,j,k]
p . ..
D i+l,j,k D*l,J,k
g g
D*i+1,j,k D*i,j,k
s . i
- _2k g g [ (p;l+1iJ !k - (pgl7.] ’k] (2.50)
D*i+l,j,k + D*i,j,k
g g

and similarly for the other terms in Eq. (2.48). Hence the QUANDRY-CMFD

equations are reduced to:
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4 p°P pd 2 p'P p’d * *
g g %
qh=]_ D + Dg qV=1 D + D

1 *p *p *p ] *p
Lo vsl® w5 5P ; (2.51)
[ Ve ts T Yeet T te Tes’ | e

by :

*p % *p %
& p*P p*d . 2 p*P p*d
q *p *q *p

o) = [ ) R

q,-1 D'P 4+ pd q,-1 pP 4+ pd

* L)
- h%x [ 1 K- 1 } 5P P (2.52)
A

This equation has the same structure as the PRESTO equation (2.20), except

P p

*
that only ¢ occur here, whereas the previous equation contains ¢

ép . In order to make the form of the two equations identical, we

rearrange the PRESTO equation by introducing the PRESTO expression for
given by Eq. (2.14) into Eq. (2.20), which can finally be written as

follows:
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p
- %k [ B } L2 (2.53)

where

., 1 (1 - a)/2 2 [ 1

_ Loyp 1] P (2.54)
PoowpP 3a + (1 - a) (R + 2)

Except that pP appears rather than D' P , and center-point fluxes
*
@p are replaced by fictitious nodal fluxes ¢ P , equation (2.53) is now

identical to the reduced QUANDRY-CMFD equation (2.52), provided that we

* -
also interpret =P / (1+7p) as TP =3P / £P . This implies that

so that an expression for "a" may be determined from Eq. (2.54). It is

given by:

kz -1 ] sP - 4DP (FP - 1) ®R + 2)

1
A (2.55)
hZ [ 1 kPl ] sP + 4 DP (P - 1) (1 - R)
A
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P 2P
P oqp . 12D (E - 1) (2.56)
hZ [ikp - 1] =P
A o0

SOLUTION OF PRESTO EQUATIONS
The PRESTO code is proprietary material, and hence is not available to
the general public. Therefore, in order to test the above scheme, it is
necessary to solve the PRESTO equations using some alternative code, which
is available. Since QUANDRY was developed at MIT and is easily modified for
the present purpose, it was decided that it could be used to solve the
PRESTO equations. This is not completely satisfactory, and in fact appears
a circular procedure, since QUANDRY is first used in order to determine the
P

adjustable parameter a ( or a"). We take the view that the two stages are

completely independent. In the first stage, by running QUANDRY in the

normal manner, the parameters obtained, i.e. X, f%,... etc. permit aP

to be calculated, and hence a = af . Having determined "a", the PRESTO
equations can now be solved by any suitable method, including of course
PRESTO itself. It seems, however, that the different solutions thus
obtained will not be identical, since different procedures, including the
specification of boundary conditions are involved, and may not be exactly
duplicated in each case. For example, it may be noted that an iterative

scheme is used in PRESTO to solve the fast-group equation, which is written

in an entirely equivalent form for the case h = k,
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q _ P
$al " goa)
g=1 P + Y
p P P
v vy b -
-nd |2 [ £l , _£2 21w ] S1 | PP (2.57)
A =P sP 5P 1
1 1 72
P_-P ,: P, )
where F5 = 2 / @Z(asy) » Py being the actual nodal-averaged thermal

flux, the asymptotic value given by

-P
and ¢2(asy)

-p _ [ <p p | -p A .
¢2(asy) [ 221 / 22 } 2 F is initially set equal to unity, and the

b

equation solved to yield &1

, so that ¢ can be determined. It is
2(asy)
then assumed that the asymptotic values for the point fluxes wg hold at

the centers of the nodes,

Zgl -

P _ -p

¢y = o 21 (2.58)
22

so that the thermal node-averaged flux may be reconstructed in a way

similar to that used for the fast group,
6
“P . 1% Pq
P = a, ¥, + } P (2.59)
where a, is an adjustable parameter for the thermal group. The ratio

2
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FP = &g / ¢2(asy) is then updated, so that the fast group can be solved

b

1 and the iterative process

again to obtain an improved value for o
repeated until convergence is achieved. A further approximation which we
have neglected was introduced in PRESTO to reduce the data storage
requirements.

In our case, however, the reference solution is already available,

since it 1s necessary to determine the ap-values . Thus we can use the

known ratio of the thermal to fast flux to calculate ég directly

(i.e. without iteration), and hence ég and the nodal powers. In

particular, we note that when a = 1, the nodal volume-averaged fluxes ép

and the centre-point fluxes @p are identical, and equations (2,52) and
(2.53) are the same except that the "starred" cross-sections (D*p, Z*p,...)
given by Eq. (2.49) appear in place of the physical cross-sections

(Dp, Zp,...). Hence, one approach to solving the PRESTO equations on
QUANDRY is to set a = 1 and replace the physical cross-sections by their
starred equivalents. While the flux solution obtained is a "fictitious
nodal volume-averaged flux" ¢*p , the reaction rates are unchanged, so

that the nodal powers have their true physical values, since

P _ *p _*p *p *p
Pr=x [ Zp1 91 F By 9y

P P
z z
—e | IR [ BB ¢ 22 EX3

(]
zP 17 =P
£ £,
_ P D P P
K [ Zfl 21 + Zf2 wz ] (2.60)
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One objection to this approach is that by setting a = 1, the
fundamental assumption in the PRESTO model given by equations (2.14) and
(2.15), which distinguishes the MCMFD model from previous CMFD models has
been circumvented. However, there does not seem to be any alternative given
the limitation of having to use QUANDRY to solve the PRESTO equations. In
order to counter this objection, an investigation is currently being
undertaken to use the nodal code SIMULATE with the PRESTO option, so that a

direct comparison can be made between the two methods.

PRESTO RESULTS

Results were obtained using QUANDRY for the SALEM-1 pressurized water
reactor at B-O-L, and are shown in Figs. (2-11) and (2-12). Since
node-dependent discontinuity factors are used, this is equivalent to using
PRESTO with node-dependent ap-values . The relative error in the
eigenvalue is < 0.2 %, with maximum errors of < 10 % in the assembly and
nodal power densities. Depletion studies are presently being carried out on
ZION - 2.
CONCLUSIONS

Until further testing is complete, conclusions must be tentative.
However, at present, it appears that if node-dependent coupling coefficients
and albedos are permitted for the FLARE and PRESTO models the accuracy is
about that achieved when the usual trial-and-error procedure is used to
find the adjustable parameters for the FLARE and SIMULATE models. There

thus is no compelling reason to determine the FLARE and PRESTO parameters
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1.0718 PQ (Ref)

1.1593| P,

8.16 Rel. Error (%)

0.9094 1.0819 Q(Ref) = 1.06521

0.9486 1.1214 p = 1.06336

4.32 3.65 Rel. Error = -0.17%

1.0917 0.9133 1.0837

1.1186 0.9592 1.1250

2.46 5.03 3.81

0.9418 1.1132 0.9059 1.0157

0.9509 1.1309 0.9240 1.0173

0.97 1.59 1.99 0.16

1.1706 0.9714 1.1440 1.0047 1.1565

1.1570 0.9875 1.1528 1.0097 1.1411
-1.16 1.66 0.77 0.50 ~-1.33

1.0870 1.2041 0.9833 1.1554 0.9376 1.2214

1.0540 1.1502 0.9708 1.0874 0.9119 1.2724
-3.04 -4.48 -1.26 -5.89 -2.74 4.18

1.1787 1.0616 1.1569 0.9709 0.9665 0.6301

1.1135 1.0194 1.0932 0.9673 0.9618 0.6603
-5.53 -3.98 -5.51 -0.38 ~0.49 4.79

0.8678 0.8565 0.9463 0.6661

0.8740 0.8858 0.9832 0.6777

0.71 3.42 3.90 1.75

Fig. (2-11). Assembly Power Densities for SALEM-1 at B-0O-L
Using (a) QUANDRY, (b) PRESTO (QUANDRY).
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1.6160 PQ (Ref)

1.7671 PP

9.35 Rel. Error (%)

1.3709 | 1.6312

1.4522 | 1.7197

5.93 5.43

1.6460 | 1.3768 | 1.6337

1.7169 1.4699 1.7249

4.31 6.76 5.58

1.4197 1.6782 1.3656 1.5310

1.4569 1.7340 1.4133 1.5496

2.62 3.32 3.49 1.21

1.7646 | 1.4642 | 1.7245 | 1.5143 | 1.7431

1.7742 1.5116 1.7650 1.5414 1.7428

0.54 3.24 2.35 1.79 -0.02

1.6384 | 1.8150 | 1.4819 | 1.7414 | 1.4129 | 1.8402

1.6115 | 1.7593 | 1.4827 | 1.6591 | 1.3876 | 1.9317
-1.64 -3.07 0.05 ~-4.73 -1.79 4.97

1.7765 | 1.5997 | 1.7434 | 1.4630 | 1.4562 | 0.9493

1.7016 | 1.5553 | 1.6666 | 1.4696 | 1.4583 | 1.0014
-4.22 -2.78 -4.41 0.45 0.14 5.49

1.3076 | 1.2905 | 1.4257 | 1.0036

1.3299 | 1.3430 | 1.4900 | 1.0054

1.71 4.07 4.51 0.18

Fig. (2-12). Mid-plane Nodal Power Densities for SALEM-1 at B-0-L
Using (a) QUANDRY, (b) PRESTO (QUANDRY).
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in this alternative manner, even though it is more systematic than the
trial-and-error procedures in current use. In our opinion, computing
effort required to implement the automatic scheme would be far better spent
on a production version of QUANDRY.
3. DEVELOPMENT OF A MORE EFFICIENT FLUX RECONSTRUCTION METHOD FOR BWRs

- A. Z. TANKER

Although discontinuity factors found from assembly calculations lead

to accurate predictions of ke and average nodal powers for BWRs,

ff
reconstructing detailed pin power shapes has required the use of response
matrices or extended assembly calculations.

During the past year, computer codes have been constructed to carry
out the reconstruction using a fine-mesh, beginning-of-life, quarter-core
solution. A small, "benchmark,"” test problem has been created and a
one-cycle depletion carried out. We are now applying our new

flux-reconstruction method to this reference case and expect to complete

the testing during the coming year.
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4. Development of Methods to Analyze Transients =~ Antonio Dias

We had hoped, during the past year, to begin an investigation of the
use of "supernodes" (of size ® 40 x 40 x 60 cm3) for the analysis of
reactor transients. However, the static application of this technique
(supported by other funds) ran into a technical difficulty which we are
only now beginning to understand. That understanding does, however, indi-
cate that applying the method to transient analysis is still an attractive

possibility. We hope to explore it during the coming year.

For many situations, however, transients that occur in a reactor have
a one-dimensional character such that the perturbations are uniform in
radial planes but quite non-uniform in the axial direction. Examples of
such transients are a rod bank withdrawal, a loss of flow accident and a
turbine trip accident. The assumption that the x,y shape of the neutron
distribution is unperturbed during the transient is then more plausible
than that reqﬁired for the point kinetics approach. Introducing this idea
into a nodal method should result in a theory that allows the simulation of
certain transients with better precision than if point kinetics were used,

but with greater speed than if a full 3-D nodal approach were considered.

A one-dimensional model is available on option in the RETRAN code.
However, it appears to ignore radial leakage effects. In the work described
below, we have used a variational principle to derive one-dimensional,
G-group transient equations directly from the QUANDRY nodal equations. This
procedure has the advantage of treating radial leakage effects in a theoreti- .
cally consistent way. In addition, the parameters needed for the one-
dimensional equations can be computed directly from a static, three-
dimensional, beginning-of-transient QUANDRY solution. Of even greater

utility is the fact that it will be possible to test the accuracy of the
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one-dimensional equations by direct comparison with three-dimensional

QUANDRY results based on consistent time-dependent nodal cross sections.

4.1 Derivation of the Theory

The QUANDRY nodal equations for a 3-D transient problem can be
(1)

represented as:

v''] [o]
[o] [o]
[o] [o]
[o] [o]
[o] [o]
[o] [o]
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[r (&)]
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[o]
[o]
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where:

[o(t)]

[L, 0]

[cy)]

[Mp(t)]

[ZT(t)]

[r (t)]

[c,(t)]

[, ()]

1

I

Hi

1

i

a column vector of length G x (I x J x K) (=N) containing the node
averaged fluxes (ordered first by group, then x-direction, then

y-direction, and finally z-direction)

a column vector of length N containing the u-directed net leakages

for each node « u = x, y, or z

a column vector of length N containing, for the d-precursor family,

the elements of Vijk[xd]cdijk(t)

a block diagonal matrix of order N x N containing the elements of

[v17*

V..
ijk
a block diagonal matrix of order N x N containing the elements of

: T
<1—s>vijk[xp] [vzfijk<t>]

a block diagonal matrix of order N x N containing the elements of

[ZT (t)] with [ZT (t)] equal to the G x G matrix

V..
FIRTT 5k ijk

(s 5 (13k) _ Z(ijk)}
gg' tg gg’

a block tridiagonal matrix of order N x N containing the elements

L s . . .

of [F (t)] specifying leakage in the u-direction

u
2mn .

a block pentadiagonal matrix of order N x N containing the elements

3 .
of [Gu (t)] specifying leakage transverse to the u-direction
2mn

a block diagonal matrix of order N x N containing, for the
. T
d-precursor family, the elements of B_V.. [XAJ [vZ (t)]
d ijk~-"d fijk
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Detailed expressions for the elements of the vectors and matrices cited

above are given in Reference (8).

The systematic derivation of equations presented in this work is due to
the application of a synthesis method based on a variational principal (3),(9).
In order to implement this approach, it is necessary to construct a func-
tional that is made stationary by the solutions of the QUANDRY equations

(eq. 4.1).
The functional in question is defined for a set of functions:
Aluw], v, ], [v,w], lv,w], [pwl . .., [w] [Wwl
[v, 0], [yl [v,w], @l ..., ol

these functions are to be continuous in time within the time interval

(to’ tf), during which the simulation takes place.

Each of these functions is actually a column vector of length G-I-J-K

The expression for the functional is:

r(lol, [v], [v,] [v] [e, -, [l ], [vd, [vd [v), L] o

t
* £ * * * * * *
) = Sae {[[e1vIIv]lvIled. . . [e]]° =

to

6l
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1 1
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is considered as an operator.

In order to keep notation simpler, the time-dependence is not shown.

Such suppression will be adopted for all equations which follow.

For the application of the synthesis method, the following set of trial

functions are defined:

[u] = [4] [2]
[v.] = [E] [x]
v = (7] [¥]

[v1 = [2] [2]

[e,] = [&,]
[c] [E,]

[0*] = [3°] [1"]

[vi1=1[E"] [x]

V1= R 0x]
[v1=[T11[z]
[e;] = [2]]
[]-[c]

(4.2)

(4.3)



where [@]; [E], [ﬁ], [E] are matrices constructed from the vectors

[5], [ix]' [iy], [iz] obtained from a QUANDRY run for the steady state

situation existing just before the transient to be simulated. Those matrices

all have the same structure.

¢lll
¢211

¢311

[v] =|.

IJ1

———

]

where:

For example:

¢ijk

¢ \ « e« 0
i3k G being
° 2ijk” ° ° the number
: - . : of energy
: - . - groups
o o . . .. Gijk
e e

[v] is thus a G*I-J*K x G-K matrix

-* % % %
The weight functions [w ], [E ], [n ], [c ] have the same structure

but contain elements obtained from a steady-state adjoint QUANDRY run

{(or some reasonable approximation thereto).

[T], [X], [Y], [Z], [T*], [X*], [Y*]} [Zf] are the unknown vectors

that specify the time-dependent axial behavior of the solution. They all

have the same structure.

[r] = -

where:

For example:

Gk
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As will be seen below, there is no need to approximate the precursor
concentration vectors [éd(t)] defined in connection with Egq. (4.1). Thus

the [cd] in (4.2) are taken as the [6d] themselves.

Note that [u] = [@] [T], and all the other trial functions, are

column vectors of length G+I+J+*K (=N) as required by Eg. (4.2).

The synthesis approximation is to assume that the x,y shape of the
neutron population of each axial layer is unchanged, during the transient,
from the steady state QUANDRY run that generated it. The transient problem
is then simulated as a fixed x,y nodal shape for nodal fluxes and net leakages,
in the k-th layer of the reactor, multiplied by the time-dependent factors

Tk(t)' Xk(t), Yk(t), Zk(t).

If the trial functions of Egs. (4.3) are inserted into the functional
*
of Eq. (4.2), and the variations of the functional with respect to [T 1.
* * * -k
[X ], [Y ], [Z ], and the [Cd] are set successively to zero, the following

equations result:

(3717 [V G 090 [ = 09707 [w ] (91 [o] - (9707 [2] (9 [ -

ndet [3°17 (2] [x] - npny (9707 [R] (] -

wind [3°17 [2] [2] + A, [5°170E.]
X'y a1 d d

[E1" [r, ] (91 [x] - [E717 [E] [x] + = [E717 [c ] [A] [¥] +

h
y

+ 2 [E17 [c 1 [2] [2] = o
h X

Z
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(317 [e,] 9] [2] + = [8717 [6,] [8] [x] - (717 [A] [¥] +

h
X

+ 5 017 6] [1 [2] = o

b4

(21" [r,1 3] [7] + 2, [T7°e 1 [E] [x] + &, [T71%c 1 [7] [¥] -
h

hj
X y
- [E 121 [2] = o
d - - -
& Legl = Dyl Ll [r] - aglc,] d =1, D

These equations can be written in a more simplified way as:

d

& [11 = ([an2p] - [an1]) [7] - [a3] [x] - [an4] [¥] - [ans] [2] +

[aa0]

P T ]
+ C
d=1 ad v d

[eB1] [1] - [BB2] [x] + [BE3] [¥] + [BB4] [2] = O
[cca] L] + [cc2] [x] - [ce3] [¥] + [ceal [2] = o
[op1] [7] + [pp2] [x] + [pp3] [v] - [pp4] [2] = o
S ol =MmIlr]l-2 6] a=1,...,0

The definition of each new matrix can be found by comparing the two

sets of equations.

..*T
Because of the non-square structure of the weighting matrices, [¢ 17,
—%_ . \ - = . .
[n ] , etc., and expansion functions [¢], [n], etc., the matrices in (4.4) -
(4.7) are only of order G*K x G+K. In fact, many have very simple forms.

Specifically, [aao], [aa1], [aa2p], [aa3], [an4], [an5], [BB1], [BB2], [BB3],
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[BB4], [CCl], [CCZ], [CC3], [CC4], [DD4} are block diagonal matrices of order
G*K x G°K, [DDl] is a block tridiagonal matrix of order GeK x G+*K and

[DD2], [DD3] are block pentadiagonal matrices of order G*K x G°K

The fact that so many of these matrices are block diagonal eases
considerably the process of solving the set of Egs. (4.4) - (4.8). Thus,

from Egs. (4.5) and (4.6) we find:
[x] = [ee1] [Tt] + [EE2] [z] (4.9)
[v] = [rr1] [7] [Fr2] [z] , (4.10)

{[cc3] [BB3]7Y [BB2] —.[ccz]}_l {[ce3] [ee3]™t [BB1] + [ccil}

where: [EEl]

[ee2] = {[cc3] [BB3]™! [mB2] - [cc2]} ™t {[cc3] [e83]7! [BB4] + [ccall
[rr1] = {[BB2] [cc2]™t [cc3] - [e3]}~t {[sB2] [cc2]™t [cca] + [BB1]}
[rr2] = {[BB2] [cc2]™ [ce3] - [eB31} ! {[BB2] [cc2]™t [ccal + [sB4]}

The matrices [EEl], [EE2], [FFl], [FF2] are block diagonal of order

G*K* X G*K

Substituting Egs. (4.9) and (4.10) into Egs. (4.4) and (4.7) we find:

D * -
[an0] 5% [t] = [mm1] [T] - [@m2] [z] + gilkd [y 17 [c,] (4.11)

" [xz1] [T] - [112] [2] = O | (4.12)

(aa2p] - [an1]

i

where: [GG]

[mu1] = [ee] - [aa3] [EE1] - [aa4] [Fr1]

(k2] = [ana] [e2] + [ana] [rv2] + [aas]
[z11] = [op1] + [pp2] [EE1] + [DD3] [FF1]
[z12] = [ppa] - [pp2] [EE2] - [DD3] [FF2]
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[GG], [HHl], [HH2] are block diagonal matrices of order G:K x G+K

[IIl], [112] are block pentadiagonal matrices of order G XK x G K

Multiplying Eq. (4.11) by [112].[HH2]-1 and using Eg. (4.12) we can

write:

D * -
[x] & [r] =[] [2] + [a9] PRERY 1" [e,] (4.13)

[112] [HHZ]__l

where: [JJ]

[xx]

[33] [aac]

[Lt] = [09] [Em1] - [111]

[JJ], [KK], [LL] are block pentadiagonal matrices of order G.K x G.K

. %*
Multiplying Egs. (4.8) by [¢ ]T we can writé a more simplified set of

equations than Egs. (4.8) and (4.13):

D
[] & [r] = [we] [2] + [39] 1 g e (4.14)

é% [Pd] = [MMd] [T] - Ag [Pd] d=1, ...,D ' (4.15)

where: [Pd] [@*]T [Ed]

Dot ] = [3717 [m] [3]

[Pd] are block vectors of length G<K

[MMd] are block diagonal matrices of order G:K x G+K

Following the same method used by QUANDRY for solving the transient
equations, Eq. (4.15) is analytically solved assuming a linear behavior for
[MMd] and [T] during a time step. With that assumption, one can find an

+
n l)] which can now be substituted into

expression for [Pdn+l] [Pd(t
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Eq. (4.14), when that equation is solved numerically by the application of the

6-method.

[wol [T™*] = [u]

[e 1] = x, [p."] + 5 (Dw1 [T"7] + [go,] [7"]}

where:

a
[vu] = [ss] - A 6 [LL
[ss] = [50™] [r]

D
[rr] = [an0] - a8 )
N g=1
[y, ] = £
lood = £, ) [
_ n
[o4] = [og 1 [T7]
- (0t .n
A= (& t)
-2 A
_ dn
Xd = e
2
-3
fl(AdAn) =<
AA
dn
Ao [,
1+ X
AdAn
£,008 ) =¢
AdAn .l
2 3

n+l
]

The resultant equations can be written as:

n+l]

[ ]

n+l n
£ (AdAn) [MMd 1+ £, (AdAn) [MMd ]

3

n
+ £, (AgA) [MMd ]

r

D

(4.16)

(4.17)



2 X 1 - Xd
Xd - -j\T + 2. WZ ; if )\dAn > 0.1
dn dn
f3(AdAn) = ’ AA .
AA
1 ‘d n 1 1 dn .
AaPn [‘3’ T ['2' " Aaba [5 - 18 ]” oAE Aghy < 0.1

[u] = [0a™*] [s]

[s] = [rR1] + A ((1-8) [r2"] + o[r3] + [ra4])
[r1] = [ano] [r"]
[r2"] = [30"]7" [12"] ["]

®1= 1 [o)]

3] =

) d=1 “a

D
[ra] = 1 )\d(l - e(l-xd)) [Pdn]

[NNd]f [QQd], [RR] are block diagonal matrices of order G+K x G*K
[SS], [UU] are block pentadiagonal matrices of order G+*K x G+K

[Qd], [Rl], [R2n], [R3], [R4], [S], [U] are block vectors of length G+K

The matrix [UU] multiplying [Tn+l] in (4.16) is block penta-
diagonal, and the vector [U] contains a term [Rln] which involves the
inverse of the block pentadiagonal matrix [JJn]. Thus to find [U] and
then [Tn+l], two linear systems have to be solved for each time step
calculation. Because the matrix of coefficients in both cases is compact
around the main diagonal, the application of an elimination procedure,
instead of a more complex iterative one, for solving the systems is

acceptable.
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In order to calculate the coupling matrices [Fu]' [Gu]
during the transient, the following expressions are used for estimating

the frequencies representing the time variation of the nodal fluxes and the

precursors concentrations:

n n T n
w = = Z———-ln gk ]
pgijk ng n-1 n—l)
T
gk
< n
L Py
ijk k n-1 Z P n-1
g=1 dgk

Note that those values are to be applied to all nodes in a given plane.
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4.2 Computational Implementation

The matrices defined for the numerical solution of the transient
equations are, at most, block pentadiagonal, and a lot of memory would be
required to store their null terms if the full matrices were stored. A
special storage scheme where only the diagonal terms are preserved is thus
appropriate in order to lower the amount of memory needed for the code

representing the theory here developed.

Another observation is that many of the matrices are only temporary
results used in the pfocess of finding the solutions [Tn+l] and [Pdn+l]
for a given time step. A procedure such as dynamic allocation, in which a
certain area of memory is commonly used by the program to store temporarily
needed results, is thus an appealing approach towards improving calculational

efficiency.

The combination of these two special computational strategies is expected
to make the code faster and less memory-demanding than if a standard matricial

representation were used.
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4.3 Present Status and Future Work

Because some of the software necessary for manipulating the matrices is
being handled by the code itself in order to provide the economy of memory
cited above, special care was needed in the construction and implementation
of the code. There were many intermediary testing stages before the whole
theory was put together; At the moment this has been done, and basic tests,
such as transients with An = 0 or "transients" where actually nothing
happens are being performed for very siﬁple reactor configurations. These
tests constitute a check of the precision and stability of the method being

used.

The next step in the implementation of the theory will be to simulate
transient conditions by the variation of the composition of certain nodes.
For many cases, comparisons can be made with results obtained from other

computer codes using a different methodology for the problem.

A step further will be the inclusion of a simple thermal-hydraulic

model such as the one used by QUANDRY, in order to represent feedback effects.
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5. Time Integration Schemes For The Point Kinetics Equations -

Alex Parlos

The running time of computer codes which solvé neutron transient
problems is usually directly proportional to the number of time steps
required to cover the time duration of interest. Thus, any calculational
method that allows a decrease in the number of time steps (or, equivalently,
an increase in the size of the time step) will decrease the cost of a
transient calculation. Such savings will be most important for long-running,
spatially dependent transients. However, methods developed for the space-
independent, point kinetics model are still of interest since they may be
extendable to space-depéndent calculations and since a fast solution of the
point kinetics equations will permit prediction of transient behavior in
faster than real time, a capability that permits consideration of new

advanced control and safety procedures.

5.1 Theory

The mathematical feature that leads to the need for short time steps
in the numerical solution of transient equations is the fact that some of
the time constants involved in the calculations are very short, while others

are veryAlong. The equations are said to be "stiff".

The basic idea in the formulation and solution of the space independent
kineticé model comes from reference (10). It is the simple observation that
the stiffness characteristic is present only in the time response of the
prompt neutron density but not in that of delayed neutron precursors. With

the usual notation, the point kinetics equations may be written:
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I

an(t) _ p(t)-B

- = A N(t) +:izi AC. (1) (5.1)
dci(t) _Bi .
& - 7T'N(t) - AiCi(t), i=1, ..., 1I (5.2)

We have explored two methods of overcoming the stiffness problem

associated with these equations.

The first is to write the prompt neutron equation as:

dN (t)

at = w(t) N(t) (5.3)

where w(t) is a time-dependent, instantaneous reactor frequency.

Differentiating (5.1) and (5.3), and introduciﬁg the effective decay

constant:
I
) _A?C.(t)
_ i=1 * 1
A = = (5.4)
) Ac,(b)
i=1 * 7t
and solving for w(t) yields
dp(t) | T
LE 4 ) +i§1 B, (A, - Ae(t))
w(t) = O —T (5.5)
A [ﬂﬁ¥5 + w(t) +‘Ae(t)J + (B-p (1))

where p(t) is the total reactivity present at time, t.

Thus, substituting (5.3) into (5.1), solving'for N(t), and using the

result to eliminate N(t) from (5.2) leads to
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dc, (t) B, I
i T M T E-50m jzlkjcj(t) -AC ), i=1, ..., 1 (5.6)

The above equations represent an I-dimensional system of differential
equations with time-dependent coefficients. They can be time-discretized by

rewriting them as

dc, (v) B8 L (n#1) (n+1)
& " | T E=s ) ACy - 8r.c, +
n+1 n+l =1 7
(5.7)
il % e, ™ ey ae,™ e e st
wnA + B - L 521 i3 . ii n — n+l

where subscripts and superscripts (n) and (n+l) specify that the time

dependent quantities so labelled are to be evaluated at tn or tn+ , and

1
where 6 1is a user-specified averaging parameter. (Taking 6 = 0 leads

to a fully explicit scheme; 6 = 1 gives a fully implicit method, and

6 = %- is the Crank-Nicholson approximation.)

Integrating Eq. (5.7) from tn to t leads to a set of equations

n+l

. n+l . ,
relating the Ci( ) to the Ci(n). Because of their simple structure,

these are analytically invertable. The final result is a one-step formula

for the delayed neutron precussors:
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1 - (1-8)A.A
in

(n+1) (n)

i = Tresr G *
n i
(5.8)
r A1 - (1-9)x.a Joc. (™ (1-8) (. A+B-p ) .n
Z 3 i n” 7j + n+l n+l N
. (1+6A A ) {2+6A A ) 1+6A A, A
+ j=1 ni n Jj n i 8. A
I AjSAnBj i™n
OBy - L ThE
i=1 nj
for i=1, . . . , I.

Note that, in this final form, Egs. (5.3) and (5.1) have been used to

(n) (n)

express a sum Zikici in terms of N . Equations (5.4), (5.5) and (5.8)

form a complete system of equations that can be solved iteratively for

n+l +1 . .
] and C,. & , 1=1, . . . , I, assuming that pn+l is known.

. + .
Then, equation (5.3) can be solved for N . , assuming knowledge of Nn:

t
= Nn exp(f n+l w(t)dt) (5.9)

tn

+
Nn 1

The integral in equation (5.8) can be calculated explicitely using

(5.5) and making the following approximation,

A g%%; + w(t) + Ae(t)] << B-p (t) (5.10)

which is quite accurate for operational transients.

Summarizing, the following approximation are made in this approach.
(1) In the calculation of w(t) for use in (5.8)

B(t)

B-p (t)
w(t) A

<< w(t) + A () +
e
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t
ntl
(2) In the calculation of f w(t)dt, approximation (5.10).is used.

t
n

(3) The delayed neutron equations are time-discretized.

(4) p(t) and Ci(t) are assumed linear in te[tn, tn 1].

+

(This is consistent with approximation (3) ).
The second approach to eliminating stiffness from the point kinetics
equations is a modification of the method suggested in reference (10).

The kinetic equations are written as (5.1) and (5.2), and as in the

first method, Eq. (5.2) is transformed into Eq. (5.6). Defining, the source

I
S(E) = ) AC.(t) (5.11)
521 33

we can rewrite (5.1) as

dN(t) _ p(t)-B
A

3t N(t) + s(t) ' (5.12)

As in the first approach, equation (5.6) is discretized in time, and

equation'(5.12) is rewritten (in view of (5.3) as

_ p(t)-B S(t)
w(t) = 1 + N(E) (5.13)

The discretized equation (5.8) along with (5.11), (5.12) and (5.13)
form a complete set that can be solved iteratively to obtain the power
behavior in time. It should be noted that equation (5.12) can be solved

analytically if it is assumed that p(t) and Ci(t)' are linear in [t , t
. n’ n

]'

+1

an approximation consistent with the finite differencing of equation (5.6).

The difference in the two approaches is the fact that the prompt neutron

equation is not included in the iteration for w(t) in the first method,
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whereas the second method requires its inclusion.

To summarize: the following approximations are made for the second

method.

(1) Time discretization of the delayed neutron precussor equation.

1.

(2) p(t) and the Ci(t) are assumed to be linear in t e[tn, tn+l

(This approximation is consistent with (1) ).

5.2 Numerical Results

Two example problems are presented in order to demonstrate the

accuracy of the two methods.

The first problem is a relatively fast ramp reactivity insertion of
reactivity of 10¢/sec. for 8 sec. Thus the final core reactivity is 80¢.
The reference solution was obtained from Ref. (10). All powers are normalized

to unit initial values. Table (5-1) shows the results

Time (s) Ref. 1st Method f% Rel. Er.) 2nd Method (% Rel. Er.)
2 1.3382 - 1.3386(.0299) | '1.3382(0.)
4 2.2283 2.2311(.1257) 2.2286(.0135)
6 5.5815 5.6157(.6127)  5.5846(.0555)
8 4.2781E+01 4.5024E+01(5.2430) 4.2996+E01(.5026)

Table (5-1) Test of Methods (1) and (2) for 10¢/sec Ramp Insertion;

Normalized Power vs Time.

L -4
The reference was calculated using At=10 sec. The other two calcu-

lation were performed with At=0.1 sec. Best accuracy was found using 0's
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of 1.0 and .5 respectively. The computational effort for the two methods was

.03 cpu sec. per real sec. and .07 cpu sec/simulated sec. respectively.

The second example problem is a ramp reactivity insertion at the
operational level of 5mB/sec for 5 sec. The reference calculation was
-4
taken from Ref. (l1) and was performed with At=10 sec. The results are shown

in Table (5.2). (Power is in KW.)

Time (s) Ref. 1st Method (% Rel. Exr.) 2nd Method (% Rel. Er.)

1 1005.90 1065.75(—.015) 1005.86 (-.004)
2 1013.02 1012.78(-.024) 1013.01(-.001)
3 1021.23 1020.91(-.031) 1021.22(-.001)
4 "1030.45 ’ 1030.06(~-.038) 1030;44(—.001)
5 1040.65 1040.21(-.042) 1040.65(0.0)

Table (5-2) Tests of Methods (1) and (2) for 5mB/sec Reactivity

Ramp Insertion; Power in Kilowatts vs Time

Both methods were run with At= lsec. Any time step smaller than lsec.
reproduced the reference solution correct to the first decimal digit. The
computational times were such that the first method ran 250 times and the

second method 85 times faster than real time.

Comparing the two methods we see that the second method, although more
accurate, is computationaliy more expensive. For an operational transient,
the first method gives acceptably accurate results and runs much faster than

real time.
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