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Foreword

The physics design of nuclear reactors is today carried out, almost

exclusively, by the application of numerical models that describe neutron

behavior in a core throughout its life history. It is accordingly very

important that the models used be accurate and reliable. At the same

time, they must not require exorbitant amounts of computing machine

time.

The present report is a summary of a third year of effort in an on-

going program to improve such mathematical models. The development of

improved procedures for analyzing static problems (including depletion and

fuel management) has been quite successful and is now largely complete,

and present concentration is on applications to transient analysis. Im-

plementation of the methods developed into production computer programs

that fit into presently used packages remains as the most important

outstanding requirement.
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Introduction

The development of computer programs that predict neutron behavior

in nuclear reactors falls into three stages.

The first stage involves the derivation of the basic equations that

constitute the model. These are best found by systematic reduction from

a more accurate model so that the physical and mathematical approxima-

tions made can be understood clearly.

Next it is necessary to create a computer program that solves the

model equations and to test its accuracy by comparison with reference

calculations.

Finally, it is necessary to fit the tested model into standard pro-

duction codes. It is really only when this last stage is complete that

utilities can take advantage of the improved accuracy and efficiency of

the newer models.

The MIT development is now reaching this final stage. Production

codes based on the nodal code QUANDRY developed at MIT are now coming

into use. These include the nodal option QPANDA of SIMULATE-3 developed

by Studsvik of America, the STAR program developed at N.U.S., and the

ARROTTA code developed at S. Levy for EPRI.

Some of these organizations have undertaken development work

which might have been carried out at MIT. For examples, both

Studsvik and N.U.S. have successfully incorporated into their nodal
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codes an improved iteration scheme (suggested by Kord Smith) which

reduces computer storage requirements substantially. In addition,

Studsvik is providing a direct link between CASMO and QPANDA which

avoids entirely the need to run any fine-mesh PDQ problems -- either

assembly-sized or quarter-core -- in order to obtain homogenized

nodal parameters. Finally, Temitope Taiwo, working at Northeast

Utilities, has reprogrammed QUANDRY to solve for the nodal adjoint

fluxes.

Since complex production-type programming efforts of this

nature are better carried out by organizations where the personnel

are not continually changing (as happens with graduate students),

we were pleased to be able to drop these items from our agenda.

Instead, we have continued to concentrate on the development and

preliminary testing of accurate and efficient methods for predicting

neutron behavior in LWRs. Accomplishments of the past year are

described in the sections below.

To summarize briefly:

1) We have completed the development and testing of a method

for determining fine-mesh, finite-difference, diffusion theory

parameters (such as are used in PDQ) that reproduce quite accurately

the criticality and power distribution produced by transport

spectrum codes such as CPM or CASMO.

2) We have shown how to derive the adjustable parameters

required by the standard nodal codes FLARE and PRESTO directly from

a QUANDRY calculation.
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3) All the necessary computer codes for testing a new scheme

for reconstructing detailed pin-power distributions from QUANDRY

solutions for BWR's have been completed.

4) A one-dimensional, two-group scheme for analyzing transient

neutron behavior has been derived systematically from the QUANDRY,

three-dimensional nodal equations. Coding is substantially

complete, and testing has begun.

5) New time-integration schemes for solving the point

kinetics equations, which permit the use of large time steps, have

been developed and tested.

1. Transport Effects Accounted for by a Finite-Difference

Diffusion Theory Model

We have completed the development of a systematic method for

deriving few-group, fine-mesh, finite-difference diffusion theory

parameters from multi-group, transport theory calculations carried

out for an entire assembly.

A discussion of the theory along with a number of numerical

test cases is given in MIT-EL-85-002, (1 ) and Reference (2) is a

complete report of the work done on the method.

Face-dependent discontinuity factors for the pin-cells are

initially introduced to reproduce the transport results exactly.

With adjustments made for fuel cells adjacent to control rod fingers

or burnable poison cells and for cells adjacent to the reflector,

the face-dependent discontinuity factors can be replaced with

approximate average values, and then, by a renormalization of the
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two-group cross sections, can be made to disappear entirely. Thus,

the standard finite difference code, PDQ, can be made to reproduce

rather closely all the reaction rates determined by transport

theory. Maximum errors in pin-power (relative to reference

calculations) were under 2% for our test cases. Since the

adjustments for cells next to a control finger or poison pin or

reflector can be made automatic, the method is more straightforward

than the trial-and-error procedure currently used by most utilities.

Also, since all reaction rates are matched (rather than just

absorption in burnable poison pins or control fingers, it is

expected to be more accurate.

To illustrate the method for a difficult case, we consider the

rodded assembly shown on Figure (1-1). The black squares represent

fuel-pin-sized regions occupied by control rod fingers. Figure

(1-2) shows an eighth of the assembly partitioned into three zones

along with the legend for Figures (1-3), (1-4) and (1-5). These

latter figures show, for the three partitions, the error in pin

power when the "(3+1)" approximation (explained below) is used along

with the average group-1 and 2 discontinuity factors and the

face-dependent, group-1 and 2 discontinuity factors for each

pin-sized region. The face-dependent discontinuity factors were

found by requiring that "exact" finite-difference type equations

with one mesh-square per pin-cell and incorporating three

discontinuity factors (Ref. 1) reproduce reference results for the

pin-cell-averaged group-fluxes. (For both reference and approximate
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assembly calculations, zero-current boundary conditions were applied

over the entire surface of the assembly.)

As shown in Ref. (1), if the face-dependent discontinuity

factors are replaced by their cell-averaged values and if the

homogenized diffusion coefficients and cross sections for the pin

cells are divided by these average values, a set of finite

difference equations similar to those used for standard design (PDQ)

is obtained. Thus, insofar as face-dependent discontinuity factors

may be replaced by average values, PDQ can be made to match CPM or

CASMO results by a straightforward, one-step procedure.

Unfortunately, Figures 1-3), (1-4) and (1-5) show that, for the

fuel-pin cells adjacent to rodded cells, the group-2 discontinuity

factor for the face nearest the rod-finger is significantly higher

than those of the other three faces. Thus, replacing the

face-dependent, group-2 discontinuity factors of fuel-pin cells

adjacent to rodded cells by average values is likely to be a poor

approximation.

We have developed two methods to circumvent this difficulty.

The first is to average (for fuel-pin cells adjacent to a rodded

cell) the thermal discontinuity factors for only the three faces

furthest from the rodded cell and to use the actual face-dependent

value for the faces nearest the rodded cell. This is the "(3+1)"

approximation.

The second scheme is based on the fact that what appears in the

"exact" finite difference equations is the ratio of the



discontinuity factors on the two sides of that interface.

Examination of Fig. (1-3) shows that the face dependent, group-2

discontinuity factors for the rodded cell vary in the narrow range

0.855 to 0.857, and those for the faces which the four neighboring

fuel-pin cells have in common with the rodded cell vary in the range

1.093-1.106. Moreover, for the four fuel-pin cells adjacent to the

rodded cell, the averages of the thermal discontinuity factors for

the three faces not common with those of the rodded cell vary in the

range 0.999 to 1.004. It follows that if we reduce the thermal

discontinuity factors of the faces adjacent to the rodded cell and

those of the rodded cell by dividing by, say, 1.1, the ratio of

discontinuity factors across faces will be unaltered, but the values

of all four thermal discontinuity factors for fuel-pin cells

adjacent to the rodded cell will be much closer to each other, so

that replacing them by their average value will be a much better

approximation. We call discontinuity factors altered in this manner

"adjusted discontinuity factors."

Table (1-1) shows the difference from reference results due to

the use of various averaging procedures applied to the discontinuity

factors of the pin-sized-cells comprising the assembly of Figure

(1-1). Clearly, using unity-valued discontinuity factors (no

correction) leads to unacceptable errors in both eigenvalue and

pin-power. Straight arithmetically-averaged discontinuity factors

do little better. (Tests presented in Ref. (1) show that

arithmetically-averaged discontinuity factors do well when water

11



% error Max. % error
eff in k in pin powerseff

Reference 0.890886 0.0 0.0

Unity DFs 0.934427 4.89 5.28

Arithmetic 0.906057 1.70 -3.47
average DFs

f and f
gx gy
averaged 0.896418 0.62 -1.45
separately

(3+1) DFs 0.891307 0.05 -1.83

Adjusted DFs 0.89120 0.04 1.80

Table (1-1) - Rodded Preliminary Calculations
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holes rather than control rod fingers are present.) Use of separate

averages for the x and y directions leads to the smallest error in

predicted fuel-pin power, but an unacceptably large error in

eigenvalue. On the other hand, both the (3+1) and the "adjusted"

discontinuity factors do well.

Since the "adjusted" DF's can be made to disappear entirely by

renormalization of the pin-cell cross sections, we recommend this as

the favored method for forcing a match between PDQ and codes like

CPM or CASMO.

2. Standard Nodal Codes Derived Systematically - Winston H. G.

Francis

Standard nodal codes such as EPRI-NODE-P/B, FLARE or PRESTO

usually require that certain adjustable parameters and albedos be

determined by fitting to quarter-core PDQ results. Under the

assumption that the discontinuity factors (6 per node, per energy

group), which make fluxes predicted using the coarse mesh finite

difference (CMFD) QUANDRY equations match exactly those obtained by

the regular QUANDRY equations, can be replaced by one, average value

per group, we show below that these standard models can be derived

directly from QUANDRY. If this basic approximation is valid,

"coupling constants" and albedos for the simple models can be found

in a direct, non-iterative fashion.

To show how the fitted parameters of standard nodal schemes can

be found directly from a QUANDRY solution, we shall first derive two

of them (FLARE and PRESTO) in a standard fashion. Then we shall

13



show that, by using node-face-dependent discontinuity factors,

finite-difference equations capable of reproducing reference QUANDRY

results can be derived. The face-dependent discontinuity factors

will then be approximated by node-averaged values, and the fitted

parameters of FLARE and PRESTO will be found in terms of these

averaged-values. Finally, we shall present some preliminary tests

of the systematically derived FLARE and PRESTO models.

14



2.1 SEMI-EMPIRICAL NODAL METHODS

Semi-empirical nodal methods may be derived from the following

(3)
multi-group equations

V.J (r) + tg(r) g(r)

(2.1)

G

g'= 1
1 X E,(r) + (r) ] g,(r)

where the notation is conventional.

We consider a node (i,j,k), with a horizontal mesh spacing h in both

the x- and y- directions, and a vertical mesh spacing k in the z-direction.

By integrating over the volume of the node (i,j,k), and using Gauss'

theorem, we obtain

6

JS g(-r)-nS dS + h2k i,j,k i,j,k

m=l m

G

=h
2

k 1 ik i,j,k] ij,k

g' =1

g = 1,2,...,G.

(2.2)

We also

such that all

which case

i,j,k = O
12

divide the energy spectrum into two groups by setting G = 2,

fission neutrons are introduced into the fast group only, in

X1 = 1 and X2 = 0, and there is no up-scattering , i.e.

For simplicity a generalized node (i,j,k) will be represented

15



by a single index "p", so that the resultant two-group equations are:

6 

6| (r) -n dS + h k 1 = [ uEl + VEf2 (2.3a)

r |S J2(r)nS dS + h 2k P = h2k P2 (2.3b)

where 1 tl 11' and 2 t2 22

In the second (thermal) group, the leakage term is generally much

smaller than the absorption term, and hence may be neglected. The result is

the one-and-a-half group approximation. Alternatively, in order to maintain

a formally exact scheme, we can define a parameter B , such that

6

m=l m

so that

'2 D 2 B2 (2.5)2 DP P + 
2 2

The advantage of introducing B will be of introducing B will be apparent later, and obviously by
P

setting B = 0, we can return to the one-and-a-half group approximation.
P

By using this relation between the 2 and we have essentially

16



reduced the problem to a one-group model, in which we only have to consider

the fast group explicitly.

6 2 Wp

ns J (r)-n dS + h k[ fl f2 p ] p
m=l m A

2hk
Alcol

VEp

kP = fl +
co P

where kP
00

P 
f2 21

P ( D 2 + P )
1 2p 2

(2.6)

(2.7)

is the conventional infinite multiplication factor for a

two-group model, with the materials buckling (B2 )' ~~~~~~~~m replaced by B2
P

FLARE MODEL

(4)
In order to derive the FLARE model , we now define a fission

neutron source term for each node,

SP h2 k P kP WP
1 c 1

so that Eq. 2.6 can be written

6

j Pq q-p XP SP SP

kp
[q=1 k

(2.8)

(2.9)

where J q represents the leakage from node p to an adjacent node q.

17



Rearrangement yields

kP 6

SP co P [ j Pq (2.10)

q-l

kp 6 6
co - J SP + Sp (2 10)

q=l q=l A

By defining a kernel Wp q by the relation

WPq _p+- p (2.11)
S

so that WP q represents approximately the probability that a neutron in

node p in a reactor, which is artifically critical, will cross to an

adjacent node q, we may rewrite Eq.2.10 as

kP 6 6

SP c [ 1 WPq] S + WqP Sq] (2.12)

q=l q=l

which is the basic nodel equation in the FLARE model.

In FLARE, the kernel Wp q is taken to be of the form

2
J(M2) M2

Wpq ( - g + g P (2.13)
2h h

where g is an adjustable parameter, and M2 is the migration area.
P

18



According to this expression, Wp q depends only on the properties of node

p, a condition which is obviously not true physically. The kernel was

originally derived as a combination of a slab-diffusion kernel and a

difference-equation kernel in a non-rigorous and quite arbitrary manner.

However, by adjustment of the g-factor and the albedos, it is possible to

reproduce a reference solution, i.e. eigenvalue A to < 0.5 % and the

nodal powers to < 10%, which is considered satisfactory for initial design

calculations.

PRESTO MODEL

The PRESTO model( 5 ) is a modified coarse-mesh finite-difference

(MCMFD) model, which uses node-centred and face-centred point fluxes. The

nodal volume-averaged flux is assumed to be approximated by

4 2

_p 3a p (1-a)/4q + R (2.14)p 2 I + pq (2.14)
3a+(l-a)(R+2) 3a+(1-a)(R+2) q =1 

where 'p is the point flux at the center of node p, and 'Pq is the

center-point flux on the interface between nodes p and an adjacent node q,

with "a" being an adjustable weighting factor. We note that when

R = h2/k2 = 1, i.e. h = k

6

p p + 1-a (2.15)pqa ~ + q(2.15)
q=l

19



Introducing the definition (2.7) into the fast group equation (2.3a)

yields

6

X Jl(r)-ns dS = h 2k [ k - 1 kp p (2.16)
1 S I c 1 D1

"S m 1
m=l m

where (P is replaced by P1 to distinguish point fluxes from nodal

volume-averaged fluxes. In order to determine the left-hand-side, the net

current on the interface between adjacent nodes p and q is assumed to be

given by

pq P (Pq _ PJ ]
h/2

q -q - Pq
[D (2.17)

h/2

With this assumption made, the surface fluxes and currents on the

interface are

pq DP WP + Dq (2.18)
VP (2.18)

DP + Dq

pq 2 D
p

D q p (2.19)
= - - ( q P (2.19)

h Dp + D q

20



Hence Eq. (2.16) becomes

4 2

i -hk) D ( q p ) + (h2) 2 D D q Pk D + Dq ( DP +p )
qh =l qv= 1

h 2 k kP - 1 e s P

where the subscript for group-i has been dropped, so that

4

qh=

2

2k (q - P) -
D + Dq

qv-1

Dp q 
2kR ( q _ P)

Dp + D q

h 2k kP 1 ] :p

=h 2 k I kP 1 [ 3a

A 3a+(1-a)(R+2)
I.

WP

+ 2 (l-a)/4 [ Pq + R VPq

3a+(1-a)(R+2) l v 1 =1
q 1

This set of equations, together with suitable boundary conditions, can

be solved to yield the point fluxes P , from which the nodal-averaged

fluxes can then be reconstructed.

21
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2.2 SYSTEMATIC NODAL METHODS

The starting point of all nodal methods based on diffusion theory is

the set of multi-group equations (2.1), which is repeated here

V-J (r) + g(r) g (r)-g - tg- g-

G

=x· VZC |-g g(r) + gg,(r) p ,(r) (2.22)

g'=l

We again consider a node (i,j,k), with a horizontal mesh spacing "h"

in both the x- and y- directions, and a vertical mesh spacing "k" in the

z-direction. Integrating Eq. (3.1) over the volume of the node (i,j,k), we

again obtain

6

J (r)n dS + h2k i,j,k i,j,k

S m tg g
m=l m

G
2 [1 i,j,k + k i, j,k(2.23)

=h k %9 x ' ~g, (2.23)

g'=l

gl=1g = 1,2,...,G.

Since Eq. (2.23) contains two unknowns W i and J (r), we require
g -g -

another relation between them, so as to form a closed set of equations.

This relation is usually termed the "nodal coupling equation", and is

mainly responsible for the differences in the various nodal methods.

22



ANALYTIC NODAL METHOD (QUANDRY-CMFD APPROXIMATION)

In the CMFD approximation, the nodal coupling equation is based on

Fick's law of diffusion

I Jgx(xi+lY,Z) dy dz

hk i+l,j,k
g

_ _Di+l,j ,k
g

_ Di,J ,k
g

fi+l,j, k J f g(Xi+l,y,z) dy dz

gx-

h/2

fij,k | | g(Xi+l,y,z) dy dz - hk i jk
gx+

h/2
(2.24)

where because of the introduction of the discontinuity

and fi,j,k these are now formally exact relations.
gx+

way, Equa. (2.24) defines formally exact values for

factors.)

Eliminating the face integrated surfaces from Equa.

factors fi+l,j,k
gx-

(To put it another

the discontinuity

(2.24) yields

I T Jgx(xi+l y,z) dy dz

Di,j,k Di+l,j,k

=-2k g g fjk Ii+l,j,ki+ljk
fi,j,kDi+l,j,k + fi+l,j,kDi,j,k gx- g
gx+ g gx- g

-i+l,jk i k x- -1

= -2k ,j,k gx- gx+ filj,k i+l,j,k
Di+l,j,k ,j,k gx- g

g g

ICjk i,j,k
gx+ g 

f- ik i,j,k 1
gx+ g J (2.25)
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Similar expressions can be obtained for

Jgy (x,y z zz) dx,
gy j+1l'

etc. By introducing these expressions into

equation (1.24), the QUANDRY-CMFD equations are obtained,

- i+l,jk fijk --1
- 2k gx- +gx- + fi+l,jk i+l, jk fj kijk k

Di+l,jk Dijk gx- g gx+ g
Di+ljk D
g g

- i--l,jk

+ 2k gx+
-Di-l,jk

g

ijk - -1

gx- [ ijkijk iljk i-l,jk
ijk gx- g gx+ g

D
g

- fi,j+l,k fijk -1
-2k i + gy+ [ lkfi, j+l1k ij+lk ijk ijk 1
Di,j+l,k Dijk gy- g gy+ g

g g

i,j-1,k fijk -1

+ 2k gY+ + gy-

DiJ-1,k Dijk
g g

fijk ijk fi ,j-l,k ij-lk
gy+ g gy- g

fij ,k+l fijk -1
gz- + gz+

k+l Dijk+l ijk
g g

fij,k+l ij,k+l
gz- g

ijk ijk
- gz+g 

2 ijk-l fijk - -1
+ 2 h gz+ + gz- F

k - Dij,k-l Dijk L
g g

fijk ijk fijk-1 ij,k-1 1
gz- g gz+ g 

G

+ h2k zi,j ,k i,j ,k h2k 1 X jk + i, j g

g' Xg=Z fg igg,
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igX (X,,yYz) dy dz,



It may be noted that these equations have a more general structure

than the conventional finite-difference equations used in PDQ( 6 ) and

CITATION( ), where the discontinuity factors are implicitly taken as unity.

2.3. FLARE MODEL: REDUCTION OF QUANDRY-CMFD

In order to reduce equation (2.26) to

based on a one-group model, we first set G =

EQUATIONS

the FLARE equations, which are

1, and define

Si,j,k = h2k i,j,k ki,j,k i,j,k
g g

where, k 'j'k = i,j,k / zi,j,k

(2.27)

(2.28)

Then the QUANDRY-CMFD equations may be written,

kijk[1
A

J
+

2kX

1.

1 1 -%

fij k -

i+ x h2kZijkkijk

DiJk
D

-. ......................... Sijk

2kX

h2kzi+l,jkki+l,jk
00

2 (h2/k) A

h2kZiJ,k- kij,k-1
co

25

si+l,jk +.

sij,k-l ]
(2.29a)

::

m t J i~ i

1



ki, k
00

A

[ 1 - i,j,k-i+l,j,k Wijk i -l' jk - ...] S1 i'j k

+ Wi+l,j,k-i,j,k Si+l,j ,k + + wij k-l-iJ k Si,j,k -l

(2.29b)

where

Wi,j,k-i+l,j,k = 2kA

h2k i,j,k

[ f~ i ,k 1

fi+l,j,k f+ j,k
ki ,j,k x- + x+

co Di+l,j,k Di,j ,k

and hence in the form of the FLARE equations,i.e.

SP = -

kP 6 6

X 1 - WPq ] SP + WQP Sq]

,=11 vr=l

where p represents the indices i,j,k of the node (i,j,k), and q represents

the indices (i+l,j±l,k+l) of an adjacent node, so that in general,

[

fP
u+

fP

+
fq
u

Dq

1

I

(2.32)
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In FLARE, the kernel WPq is assumed to be of the form,

(M2 ) M2

Wp q = ( 1 - g ) P + g (2.33)
2h h

where g is an adjustable parameter, and M is the migration area,
P

P Dp
M2 _ + (2.34)
p P 

1 2

so that

Wq p - (M )/2h

g -P (2.35)

M /h - (M 2)/2h
p P

From this it is immediately apparent that g should actually be a

face-dependent parameter, i.e. g - g ,where

2 A [ u_+ | (M )
fq

(Au)2 Zp kP u+ u J 2(Au)

p2q 
2 2

(Au)2 2(Au)

A basic limitation in FLARE is due to replacing g by a single

g-factor, or as is actually the case, by a gh-factor for horizontal

coupling and a g -factor for vertical coupling. This results in the kernel
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WP q being the same for all adjacent nodes in a horizontal plane, which

implies that the probability that a neutron born in node p being ultimately

absorbed in node q is the same for all adjacent horizontal nodes. While the

error due to this approximation may be small for nodes in the interior of a

reactor, it can be very large for nodes on the boundary, where the ratio

Wp q / Wp q ' is significantly greater than unity. One way in which FLARE

overcomes this problem is by arbitrarily adjusting the albedos, as well as

the g-factor.

It is evident that if FLARE were modified to use face-dependent

gpq-factors and node-dependent albedos, the results would reproduce exactly

the reference solution. However, as previously stated the purpose of this

research is to determine systematically the arbitrary parameters, i.e. the

g-factors and the albedos, which would allow the present FLARE program

(perhaps modified to include node-dependent gp-factors) to reproduce the

reference results.

RELATION BETWEEN ALBEDOS IN QUANDRY AND FLARE

A relation between the albedos in QUANDRY and FLARE can be obtained by

two approaches, which are essentially equivalent.In the first method, the

total albedo for a node is obtained by introducing the conventional form of

(4)
the FLARE equation

P p[ ] P qP S A kX a, F(Tot) (2.37)Sp- ~ 1 - ( 6 - ~(To)) WPq] Sp + Wq jq
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where a(Tt) is the total albedo for any node p; q represents any of the
F(Tot)

nearest neighbours (maximum = six) which are present, and q' any "missing"

neighbours, if node p has one or more exterior surfaces. The exact form of

the above equation using face-dependent kernels Wp q may be written in the

form:

kp

S W W S W S (2.38)Sp - X [ 1 - ~ WPq - WPq' ] sP + WqP sq (2.38)

qFq' q' qq'

By equating the terms

(6- F(To)) WPq = WPq + Wp q

qoq' q'

so that

>p WPq + WPq'
a P( =6- qq q (2.39)
F(Tot)

W Pq

p -pqa total FLARE albedo aP(Tt) for node-p is obtained for any W

calculated using a node-dependent gp and Equa. (2.33). While the

coefficient of the Sp term is now exact, the exact Sq coefficients Wqp

are replaced by WqP. In order to make these more nearly equal, the

node-dependent g 's should be averaged only over the interfaces with other

nodes, excluding all albedo surfaces.
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In the second approach, we consider a single exterior node face or

albedo surface at a time, and equate the net leakages given by the

QUANDRY-CMFD and FLARE models. For a first-order finite-difference

approximation, the net surface current (leakage) at x = x 1+1 for group-g

in the QUANDRY-CMFD model is

Li j' k -i+ l j k _ I
J (X i+ly,z) dy dz

fi,j,k [g jk (X +,y,z) dy dz - hk Pg 

i,jxk (2.40)
g h/2

The albedo used in QUANDRY is defined by

{ J (Pg(xi+lY,Z) dy dz

Q;g I, Jgx(xi+lyX ) dy dz(2.41)

The surface flux can be eliminated from these equations to yield for group

g = 1, (neglecting the subscript),

hk
Li,j,k-i+l,j,k h ijk] i,jk (2.42)

h iQ

2Di,j,k fijk
x+
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The corresponding expression in the FLARE model is

Li j,ki' ' k'

- 1 Sij,k Wij,kei',j' k' ( jk i,j,k ) (2.43)

A F

where (i',j',k') represents the ni'j,k non-existent nodes adjacent to

node (i,j,k), and aij k is the FLARE albedo. Following the FLARE
F

approximation ij,ki',j',k' is replaced by Wk and since we are

treating each face separately nijk = 1, so that

Li,j,k-i+l,j,k

[h2k i,j,k ijk ijk i,j,k 

Equating the right-hand-sides of Equas. (2.42) and (2.44) yields

(2.44)

ajk = 1 -
F

A

hZi j k kk i,k i,j,k h + Q
g k 2D i,j, k ,k 

X+
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In general,

P) = 1 - (2.46)

Au k wP Au + Q
cok ~P 2DP fPU+

u = x,y,Z.

For a node on an edge or corner, which has two or three exterior

surfaces, the "total albedo", of Equa. (2.37) is obtained by summing the

contributions for each individual face.

We note that if aP = , (i.e. n-J = ), then aP = 1 ; also if
Q -sur F

ae = 2 (i.e. partial returning current j- = 0), and wP is replaced by
Q

the exact relation Wi,j ,ki+l,j ,k then aP = 0, so that in this case

the FLARE albedo represents the classical albedo a = [j-/j+] . When
sur

Wijk i+l 'j 'k is replaced by ij ,k , the FLARE albedo loses its

physical character, and takes on the nature of a parameter, similar to the

g-factor, which must be adjusted in order to obtain acceptable results.

It should be noted that the two approaches are consistent, since the

sums of the contributions to the albedo aP in the first case equal the
F

total albedo aP The only reason for mentioning the first scheme is
F(Tot)'

that it helps to decide how the averaging of the face-dependent g-factors

should be carried out.

It has previously been noted that only the ratio a/fu+ appears in

the QUANDRY-CMFD equations for the boundary nodes. Hence if average

discontinuity factors f. are used, the albedo should be adjustedin
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using,

in a (2.47)
f
u+

so as to preserve the ratio a / f + . It-should be noted, however, that

Eq. (2.46) which relates the albedos in QUANDRY and FLARE contains the

ratio a / f+ explicitly. Hence it is not necessary to adjust the albedos,

since the above ratio has been maintained.

SOLUTION OF FLARE EQUATIONS

A version of FLARE, which is called FLARE-G is available at MIT, and

hence the FLARE equations can be solved using this code. The steps involved

in the preparation of the FLARE data are listed as follows:

1. For a suitable bench-mark problem, two-group cross-sections

(D ,2 f ' ,...) are fixed. Two-group discontinuity factors

1,2f+ are obtained using assembly or color-set calculations. Two-group

albedos are also required, and may be obtained from a fine-mesh

solution or from a theoretical analysis.

2. The data in step 1 allows a two-group QUANDRY to be run using the

quadratic approximation, which produces a solution that is taken to be

the reference solution: eigenvalue A ,two-group nodal fluxes and

nodal powers, two-group surface fluxes and currents.
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3. A one-group QUANDRY with the CMFD-approximation is then run using

the restart option. This produces one-group collapsed cross-sections

D ,i ,v1 ,...; and one-group discontinuity factors f using the

two-group nodal and surface fluxes in step 2. It was found that

QUANDRY did not calculate one-group albedos for the restart problem;

so this had to be corrected.

4. FLARE data can then be generated using a program NODPAR:

2 DP.

P EP

P
kP = f

co Pz

fP
u+

2A 

(Au) 2 EP k
COL

fP
uD+

DP

1

fq 
u

Dq

(M2)
P

2(Au)

I (M2)

2(Au)

A

[ 1
Au k wP I Au +

2DP fP
u+

u = x,y,z.
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gpq

(u)
F(u)
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5. FLARE can be run in several options:

(a) Horizontal and vertical g's (ghgv) and axially averaged

albedos (standard FLARE)

(b) Node-dependent g's and axially averaged albedos

(c) Node-dependent g's and node-dependent albedos

FLARE RESULTS

Results were obtained using options (a) and (b) for a small benchmark

problem EPRI-9 (3x3x4). The magnitude of the errors in all cases are

consistent with those to be expected using the FLARE model. Figures (2-1)

and (2-2) show the results obtained using gh' gv-values and node-dependent

g-values respectively. For illustrative purposes, these figures also

include results using QUANDRY but with the face-dependent discontinuity

factors replaced by their node-averaged values. Since averaging

discontinuity factors (or more precisely, the g-factors derived from the

face-dependent discontinuity factors) is the only approximation made other

than the axial averaging of the albedos, these should be much closer to the

FLARE results, which is seen to be the case. It is to be noted that only a

very small reduction in the relative errors of the eigenvalue A and the

assembly and mid-plane nodal power densities is achieved when

node-dependent g-values are used. However, it was concluded that the small

size of the core, with the majority of the nodes having external surfaces,

did not make it a suitable test candidate for the FLARE model, with its

inherent assumption that the kernel WPq is the same for all adjacent nodes.

A more realistic test case is the SALEM-1 PWR (8x8x9). Results are

shown in Figs. (2-3) and (2-4). It is immediately apparent that a very
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dramatic improvement in the errors is obtained using node-dependent

g-values. For example, the relative error in the eigenvalue decreased from

- 0.34 % to - 0.11 %, and the maximum errors in the assembly power

densities (in the interior of the core) from = 15 % to 6%.

Depletion studies were carried out on ZION-2 (8x8xl). Results are

shown in Figs. (2-5) - (2-10). As in the SALEM-1 case, there is a very

significant reduction in the errors when node-dependent g-values are used,

with the relative error in the eigenvalue decreasing from -0.26 % to

-0.02 % at B-O-L. Maximum errors in the interior of the core are also

reduced from = 10 % to = 4%. Both options show a large increase in the

respective errors at the first depletion (60 hours), but these continue to

increase more gradually up to the final depletion step (7800 hours). This

result suggests that it would be preferable to use the 60-hour (equilibrium

xenon) case to find the node-averaged discontinuity factors, thence gp

values.
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EPRI-9: (3 x 3) x 4

ASSEMBLY POWER DENSITIES

EIGENVALUE (X)

PF (gH'gV)

Rel. Error (%)

0.84908

0.88433

0.88555

4.30

1.1945

1.1405

1.14121

-4.46
1.3506

1.2722

1.30301

-3.52

0.63974

0.69377

0.69538

8.70

1.2827

1.2907

1.25273

-2.34

0.89255

0.891070

0.892093

-0.052

NODAL POWER DENSITIES

(Ref)

(f)

(%)

PF (gH'gV)

Rel. Error

1.0656

1.1193

1.14203

7.17

1.5008

1.4359

1.47174

-1.94
.... _ _ 

1.6981

1.6015

1.68040

-1.04

Fig. (2-1). Assembly and Mid-plane Nodal Power Densities Using
(a) QUANDRY, (b) QUANDRY with fP, (c) FLARE-G with gH' gV-
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(f)

PQ

PQ
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EPRI-9: (3 x 3) x 4

ASSEMBLY POWER DENSITIES

EIGENVALUE (A)

Rel. Error (%)

0.84908

0.88433

0.88996

4.81

1.1945

1.1405

1.14449

-4.19

1.3506

1.2722

1.27005

-5.96

0.63974

0.69377

0.68800

7.54

1.2827

1.2907

1.28507

0.18

0.892555

0.891070

0.892174

-0.043

PQ

PQ

(Ref)

(f)

PF (gp)

Rel. Error (%)

NODAL POWER DENSITIES

1.0656 0.80828

1.1193 0.88212

1.4697 0.87954

7.64 8.82

1.5008 1.6293

1.4359 1.6387

1.46645 1.66607

-2.29 2.26

1.6981

1.6015

1.63206

-3.89

Fig. (2-2). Assembly and
(a) QUANDRY,

Mid-plane Nodal Po er Densities Using
(b) QUANDRY with f , (c) FLARE with g - values.
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PQ (Ref)

PF
Rel. Error (%)

1.0819

1.1708

8.22

0.9133

1.0401

13.89

1.1132

1.1603

4.23

0.9714

1.0516

8.26

1.2041

1.1828

-1.77

1.0616

1.0552

-0.60

0.8565

0.8076

-5.71

XQ (Ref) = 1.06521

F = 1.06161

Rel. Error = -0.34%

1.0837

1.1431

5.48

0.9059

0.9946

9.78

1.1440

1.1500

0.52

0.9833

1.0111

2.83

1.1569

1.0769

-6.91

0.9463

0.8636

-8.74

1.0157

1.0449

2.87

1.0047

1.0398

3.49

1.1554

1.0935

-5.36

0.9709

0.9580

-1.33

0.6661

0.5969

-10.38

1.1565

1.0944

-5.37

0.9376

0.8995

-4.06

0.9665

0.8388

-13.21

1.2214

1.1232

-8.04

0.6301

0.5783

-8.22'

Fig. (2-3). Assembly Power Densities for SALEM-1

Using (a) QUANDRY, (b) FLARE-G with gH' gv.
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1.0718

1.1751

9.63

0.9094

1.0506

15.53

1.0917

1.1709

7.25

0.9418

1.0511

11.60

1.1706

1.1989

2.42

1.0870

1.1312

4.07

1.1787

1.1320

-3.97

0.8678

0.8508

-1.96
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PQ (Ref)

PF

Rel. Error (%)

1.0819

1.0929

1.01

0.9133

0.8852

-3.08

1.1132

1.0992

-1.26

0.9714

0.9217

-5.11

1.2041

1.1675

-3.04

1.0616

1.0189

-4.02

0.8565

0.9171

7.08

XQ = 1.06521

xF = 1.06640

Rel. Error = 0.11%

1.0837

1.0720

-1.08

0.9059

0.8636

-4.67

1.1440

1.1152

-2.52

0.9833

0.9261

-5.82

1.1569

1.1479

-0.78

0.9463

1.0603

12.05

1.0152

0.9679

-4.70

1.0047

0.9575

-4.70

1.1554

1.1240

-2.72

0.9709

0.9873

1.69

0.6661

0.7442

11.73

1.1565

1.1164

-3.47

0.9376

0.9015

-3.85

0.9665

1.0363

7.22

1.2214

1.3661

11.85

0.6301

0.7175

L3.87

Fig. (2-4). Assembly Power Densities for SALEM-1
Using (a) QUANDRY, (b) FLARE-G with g - Values.
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1.0718

1.1029

2.90

0.9094

0.8824

-2.97

1.0917

1.0999

0.75

0.9418

0.9007

-4.36

1.1706

1.1577

-1.10

1.0870

1.0284

-5.39

1.1787

1.1689

-0.83

0.8678

0.9418

8.52
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PQ (Ref)

PF

Rel. Error (%)

0.9406

0.9884

5.08

0.8137

0.8795

8.09

1.0682

1.1006

3.03

1.0501

1.0953

4.30

1.2484

1.2504

0.16

1.0690

1.0751

0.57

0.9512

0.9035

-5.01

x (Ref) = 1.00749

tF = 1.00488

Rel. Error = -0.26%

1.0082

1.0395

3.10

0.9619

1.0172

5.75

1.1633

1.1735

0.88

1.1695

1.1864

1.45

1.1389

1.1038

-3.08

0.7945

0.7395

-6.92

1.0971

1.0947

-0.22

0.9509

0.9769

2.73

1.1666

1.1322

-2.95

1.0774

1.0905

1.22
0.6615

0.6120

-7.48

1.2815

1.2370

-3.47

0.8991

0.8842

-1.66

0.9316

0.8869

-4.80

1.1419

1.0750

-5.86

0.5561

0.4765

-14.31

Fig. (2-5). Nodal Power Densities for Zion-2 at B-O-L

Using (a) QUANDRY, (b) FLARE-G with gH' gV
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0.9487

1.0146

6.95

0.8431

0.9249

9.70

0.9717

1.0163

4.59

0.9530

1.0244

7.49

1.1937

1.2214

2.32

1. 2013

1.2373

3.00

1.1742

1.1372

-3.15

0.8625

0.8327

-3.46



PQ (Ref)

PF

Rel. Error (%)

0.9762

1.0670

9.30

0.8269

0.9302

1 9AQ

1.0844

1.1467

5.75

1.0401

1.1095

6.67

1.2323

1.2504

1.47

1.0277

1.0469

1.87

0.9202

0.8746

-4.96

1.0285

1.0922

19

0.9653

1.0439

8.14

1.1632

1.1883

2.16

1.1496

1.1738

2.11

1.1219

1.0853

-3.26

0.7837

0.7196

-8.18

AQ (Ref) = 1.00672

AF = 1.00339

Rel. Error = -0.33%

1.1062

1.1148

0.78

0.9411

0.9694

3.01

1.1674

1.1159

-4.41

1.0667

1.0511

-1.46

0.6551

0.5946

-9.24

1.2866

1.2050

-6.34

0.9074

0.8527

-6.03

0.9808

0.8499

-13.35

1.1893

1.0211

-14.14

0.5936

0.4566

-23.08

Fig. (2-6). Nodal Power Densities for Zion-2 at 60 Hrs.

Using (a) QUANDRY, (b) FLARE-G with gH' gV'
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0.9935

1.1060

11.32

0.8657

0.9959

15.04

1.0023

1.0859

8R -

0.9539

1.0629

11.43

1.1962

1.2481

4.34

1.1695

1.2308

5.24

1.1472

1.1230

-2.11

0.8252

0.8086

-2.01
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Fig. (2-7). Nodal Power Densities for Zion-2 at 7800 Hrs.

using (a) QUANDRY, (b) FLARE-G with gH' gV
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Fig. (2-8). Nodal Power Densities for Zion-2 at B-O-L
Using (a) QUANDRY, (b) FLARE-G with g - Values.
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Fig. (2-9). Nodal Power Densities for Zion-2 at 60 Hrs.
Using (a) QUANDRY, (b) FLARE-G with gp- Values.
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Fig. (2-10). Nodal Power Densities for Zion-2 at 7800 Hrs.
Using (a) QUANDRY, (b) FLARE-G with gp- Values.
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2.4 PRESTO MODEL: REDUCTION OF QUANDRY-CMFD EQUATIONS

We first approximate the six discontinuity factors for each node,

fiJk (u = xy,z) by ,j
gu. g

, so that the QUANDRY-CMFD equations

(2.26) become,

ki+l, jk kijk -1
- 2k g + I[ i+,jk i+l,ljk i+,jk ijk ijk

Di+l,jk Dijk g g g g

g g

- i-l,jk

+ 2k g

Di-l,jk
g

- i,j+l,k

- 2k g

Di ,j+l ,k
g

kijk -1
+ g

Dij k
g

iijk ijk i-l,jk i-l,jk

g g g g 

pijk --1
FDijk i,j+l,k i,j+l,k ijk iik 1

Dijk
g

- i,j-1,k

+ 2k g

Di,j -1,k
g

fijk -1
+ 
Dijk
g

ijk ijk i,j-l,k i,j-l,k

g g g g 

Lij,k+l kijk --1

Dij9k~ ij [ 9ij,k+l ij,k+l ijk ijk
ij,k+l ijk g gDi j k D

g

+ 2 - jk i jk ijk ij,k-1 ij,k-1

Dij,k- Dijk 
g g

G

+ h2k Ziij k i,j,k i h2k 
g ' g L

g '=1

[- Xgfi,k + Eij,k] i,j,k
A XEfg,)L~~~~g
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We then define the following parameters:

g*i,j,k ij,k ijk
g g g

D*i,jk
g

Di,j,k_g
fi,j,k
g

zi ,j,k

9g ijk

g

so that

- 2k

ki+l,jk

g

Di+l,jk
g

ijk

+ g

Dijk
g

-1

i+l,jk i+l,jk
g g

- ijk k
g 9

-- 2k [

- D*i+l,j,k
g

= -2k

-1

+ 1 1 [ *i+l,jk

D*i,j,k J
g

D*i+l,j,k D*i,j,k
g g

D*i+l,j,k + D*i,j,k
g g

*ij,k ]

E *i+l,j ,k *i,j,k 
9 9~cg '

and similarly for the other terms in Eq. (2.48). Hence the QUANDRY-CMFD

equations are reduced to:
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4

- 2k

qh=l

D*P D*q

* [g g g q- WgP

DP + D q
g g

G

2 1 *p *p=h2k - XgZfg, + gg

g =1

2 D*P D*q

2kR g [ gq

q =1 D* p + D* q
v g g

tg 6gg, ] g

The fast group equation (g = 1) is given (neglecting the subscript)

by :

4 D Dq D*q
- 2k [*q - *P ] 2kR [ *q - *p ]

1' D*P Dq ql+ q =l D +D*qh~~~~~~~~~~~ + v

(2.52)=h2k [ 1 kp - 1 z*p *L o

This equation has the same structure as the PRESTO equation (2.20), except

that only ' p occur here, whereas the previous equation contains 'P and

p
'P In order to make the form of the two equations identical, we

-prearrange the PRESTO equation by introducing the PRESTO expression for 'P

given by Eq. (2.14) into Eq. (2.20), which can finally be written as

follows:
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4 Dp Dq 2 Dp Dq
2k 1 p q 0P 2kR [q ]

- 2 - [ q - P 2[ [q - P ]

q1 Dph + D q=1 Dp + Dq

1 p

=h 2k -1 k P (2.53)
1 +-

where

h2 k - 1 ] P (2.54)

P 2kDP 3a + (1 - a) (R + 2) 

Except that D appears rather than D , and center-point fluxes

qp are replaced by fictitious nodal fluxes P , equation (2.53) is now

identical to the reduced QUANDRY-CMFD equation (2.52), provided that we

also interpret ZP / (1+7P) as Z* P = / P . This implies that

1 + P = fP

so that an expression for "a" may be determined from Eq. (2.54). It is

given by:

h2 1 k 1] Zp - 4 DP (fP - 1) (R + 2)

aP = (2.55)

h 2 [ 1 kP - 1 ] P + 4 D (P - 1) (1 - R)
A
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For R = 1, i.e. h = k:

ap =1 - 12 D ( - 2.56)

h2 1 kP - 1] Zp

SOLUTION OF PRESTO EQUATIONS

The PRESTO code is proprietary material, and hence is not available to

the general public. Therefore, in order to test the above scheme, it is

necessary to solve the PRESTO equations using some alternative code, which

is available. Since QUANDRY was developed at MIT and is easily modified for

the present purpose, it was decided that it could be used to solve the

PRESTO equations. This is not completely satisfactory, and in fact appears

a circular procedure, since QUANDRY is first used in order to determine the

adjustable parameter a ( or aP). We take the view that the two stages are

completely independent. In the first stage, by running QUANDRY in the

normal manner, the parameters obtained, i.e. A, fP,... etc. permit ap

to be calculated, and hence a = a . Having determined "a", the PRESTO

equations can now be solved by any suitable method, including of course

PRESTO itself. It seems, however, that the different solutions thus

obtained will not be identical, since different procedures, including the

specification of boundary conditions are involved, and may not be exactly

duplicated in each case. For example, it may be noted that an iterative

scheme is used in PRESTO to solve the fast-group equation, which is written

in an entirely equivalent form for the case h = k,
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Dp Dq

2k [ q ~P]

g=l DP + Dq

P p P
1_3[_f l f2 21 p i P -p (2.57)

3 1 CP P P Ip
1 1 2

where Fp = P / ) P being the actual nodal-averaged thermal
Wh2 ~2(asy) 2

flux, and P2(asy) the asymptotic value given by

OP2(asy) = [ P / ] P . F is initially set equal to unity, and the

equation solved to yield 9P , so that -P can be determined. It is
1 2(asy)

then assumed that the asymptotic values for the point fluxes (p2 hold at

the centers of the nodes,

p 21-p
2 p 1 (2.58)

2

so that the thermal node-averaged flux may be reconstructed in a way

similar to that used for the fast group,

- a2 V - Pq (2.59)
02 a 2 2 6 £

q=l

where a2 is an adjustable parameter for the thermal group. The ratio
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- -FP = / 2(asy) is then updated, so that the fast group can be solved

again to obtain an improved value for P , and the iterative process

repeated until convergence is achieved. A further approximation which we

have neglected was introduced in PRESTO to reduce the data storage

requirements.

In our case, however, the reference solution is already available,

since it is necessary to determine the a -values . Thus we can use the
p

known ratio of the thermal to fast flux to calculate P directly

(i.e. without iteration), and hence P and the nodal powers. In

particular, we note that when a = 1, the nodal volume-averaged fluxes (p

and the centre-point fluxes P are identical, and equations (2.52) and

(2.53) are the same except that the "starred" cross-sections (D*p, P...)

given by Eq. (2.49) appear in place of the physical cross-sections

(D, P,...). Hence, one approach to solving the PRESTO equations on

QUANDRY is to set a = 1 and replace the physical cross-sections by their

starred equivalents. While the flux solution obtained is a "fictitious

nodal volume-averaged flux" 'P , the reaction rates are unchanged, so

that the nodal powers have their true physical values, since

[ fl 1 f2 2

fl L + P1 f2 p p]
__ [ P + f2 
P U 2 2'
1 2

- f P + f2p ] (2.60)fl 1 f22
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One objection to this approach is that by setting a = 1, the

fundamental assumption in the PRESTO model given by equations (2.14) and

(2.15), which distinguishes the MCMFD model from previous CMFD models has

been circumvented. However, there does not seem to be any alternative given

the limitation of having to use QUANDRY to solve the PRESTO equations. In

order to counter this objection, an investigation is currently being

undertaken to use the nodal code SIMULATE with the PRESTO option, so that a

direct comparison can be made between the two methods.

PRESTO RESULTS

Results were obtained using QUANDRY for the SALEM-1 pressurized water

reactor at B-O-L, and are shown in Figs. (2-11) and (2-12). Since

node-dependent discontinuity factors are used, this is equivalent to using

PRESTO with node-dependent a -values . The relative error in the
p

eigenvalue is < 0.2 %, with maximum errors of < 10 % in the assembly and

nodal power densities. Depletion studies are presently being carried out on

ZION - 2.

CONCLUSIONS

Until further testing is complete, conclusions must be tentative.

However, at present, it appears that if node-dependent coupling coefficients

and albedos are permitted for the FLARE and PRESTO models the accuracy is

about that achieved when the usual trial-and-error procedure is used to

find the adjustable parameters for the FLARE and SIMULATE models. There

thus is no compelling reason to determine the FLARE and PRESTO parameters
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Fig. (2-11). Assembly Power Densities for SALEM-1 at B-O-L
Using (a) QUANDRY, (b) PRESTO (QUANDRY).
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Fig. (2-12). Mid-plane Nodal Power Densities for SALEM-1 at B-0-L
Using (a) QUANDRY, (b) PRESTO (QUANDRY).
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in this alternative manner, even though it is more systematic than the

trial-and-error procedures in current use. In our opinion, computing

effort required to implement the automatic scheme would be far better spent

on a production version of QUANDRY.

3. DEVELOPMENT OF A MORE EFFICIENT FLUX RECONSTRUCTION METHOD FOR BWRs

- A. Z. TANKER

Although discontinuity factors found from assembly calculations lead

to accurate predictions of kf f and average nodal powers for BWRs,

reconstructing detailed pin power shapes has required the use of response

matrices or extended assembly calculations.

During the past year, computer codes have been constructed to carry

out the reconstruction using a fine-mesh, beginning-of-life, quarter-core

solution. A small, "benchmark," test problem has been created and a

one-cycle depletion carried out. We are now applying our new

flux-reconstruction method to this reference case and expect to complete

the testing during the coming year.
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4. Development of Methods to Analyze Transients - Antonio Dias

We had hoped, during the past year, to begin an investigation of the

use of "supernodes" (of size - 40 x 40 x 60 cm ) for the analysis of

reactor transients. However, the static application of this technique

(supported by other funds) ran into a technical difficulty which we are

only now beginning to understand. That understanding does, however, indi-

cate that applying the method to transient analysis is still an attractive

possibility. We hope to explore it during the coming year.

For many situations, however, transients that occur in a reactor have

a one-dimensional character such that the perturbations are uniform in

radial planes but quite non-uniform in the axial direction. Examples of

such transients are a rod bank withdrawal, a loss of flow accident and a

turbine trip accident. The assumption that the x,y shape of the neutron

distribution is unperturbed during the transient is then more plausible

than that required for the point kinetics approach. Introducing this idea

into a nodal method should result in a theory that allows the simulation of

certain transients with better precision than if point kinetics were used,

but with greater speed than if a full 3-D nodal approach were considered.

A one-dimensional model is available on option in the RETRAN code.

However, it appears to ignore radial leakage effects. In the work described

below, we have used a variational principle to derive one-dimensional,

G-group transient equations directly from the QUANDRY nodal equations. This

procedure has the advantage of treating radial leakage effects in a theoreti-

cally consistent way. In addition, the parameters needed for the one-

dimensional equations can be computed directly from a static, three-

dimensional, beginning-of-transient QUANDRY solution. Of even greater

utility is the fact that it will be possible to test the accuracy of the
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one-dimensional equations by direct comparison with three-dimensional

QUANDRY results based on consistent time-dependent nodal cross sections.

4.1 Derivation of the Theory

The QUANDRY nodal

represented as: ()

[v-l] [] [o] [o] [o ] ..[o]

[o] [o] [] [o] [o] ...

[o] [] o] [o] [] [] ..-

[o] [o] [o] [o] [o] ...

[o] [o] [a] [o] [o] ...

[o] [L] [o] [o] [o] ...

equations for a 3-D transient problem can be

[o]

[o]

[o]

lo]

[o]

[o]

d
dt

[(t)]

[Lx(t)]

[L (t) 

[L (t)]

[CD (t) ]

D-

[M (t)]-[T (t)]

[Fx (t)]

[Fy (t)]

[Fz (t)]

[M1 (t) 

[MD (t)]

-hhk[I] -h h [I] -hihJ[I] l[I]y z x z x y 

-[I]

1 i[Gy (t) 

x

hi[Gz (t )]
x

[o]

[o]

1
hj[Gx( t)]

y

-I]

1
-j[GZ( t )]

y

[o]

[o]

1k[G (t).] [o]

z

hk[G (t)]
hk y

z

-[I]

[o]

[o]

[o] -1[I]

[o] [o]
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·. · [o]

D[]

[(t)]

[Lx(t)]

[Ly (t)]

[i z(t)]

[C (t) ]

[CD (t)]

* -



where:

[¢(t)] - a column vector of length G x (I x J x K) (-N) containing the node

averaged fluxes (ordered first by group, then x-direction, then

y-direction, and finally z-direction)

[L (t)] a column vector of length N containing the u-directed net leakages

for each node . u = x, y, or z

[Cd(t)] a column vector of length N containing, for the d-precursor family,

the elements of Vijk[Xd]Cd (t)
ijk

[V-1] a block diagonal matrix of order N x N containing the elements of

Vijk[V]-

[M (t)] - a block diagonal matrix of order N x N containing the elements of

(l-B)Vijk[Xp] [f (t)]T
jk

[zT(t)] I a block diagonal matrix of order N x N containing the elements of

Vijk[zTi (t)] with [ T (t)] equal to the G x G matrix

ijk ijk

{6 Z (ijk) - (ijk)}

gg' tg gg'

[F (t)] _ a block tridiagonal matrix of order N x N containing the elementsu

of [Fz (t)] specifying leakage in the u-direction
u mn

[G(t)] - a block pentadiagonal matrix of order N x N containing the elements

of [GU (t)] specifying leakage transverse to the u-direction
Zmn

[Md(t)] - a block diagonal matrix of order N x N containing, for the

d-precursor family, the elements of dVijk[ d] [vZf (t)]T
ijk
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Detailed expressions for the elements of the vectors and matrices cited

above are given in Reference (8).

The systematic derivation of equations presented in this work is due to

the application of a synthesis method based on a variational principal (3),(9).

In order to implement this approach, it is necessary to construct a func-

tional that is made stationary by the solutions of the QUANDRY equations

(eq. 4.1).

The functional in question is defined for a set of functions:

{[u(t)], [vx(t)], [ (t)], [cl(t)], ct .. , [cD(t)], [u*(t)],

x y z 1 D

[v (t)], [(t)], [z(t)], [ct)] , [cd(t)]}

these functions are to be continuous in time within the time interval

(t , t f), during which the simulation takes place.

Each of these functions is actually a column vector of length GI-J-K

The expression for the functional is:

F([u], I[v] [v] rIv [cl] .IC , [c], [u ], [v*], [v*], [v], [c], . ,

tf

[C*]) = fdt [ [u ] [v ] v] cl] . . * x

to
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Mp]-[T]-[V-1] dt -hyh[I]

IFx ]

[Fy]

[Fz]

[M1]

[M1 ]

-[I]

i[Gy]h i
x

- [G ]hzx

.[o]

[o]

-hihk[I]

1 [G 

y

-[I]

1 [G ]
hj
y

[o]

[o]

-hh] [I] I11]xy 1

-k[Gx ]
hk x
z

! [Gy]
hk y
z

-[I]

[o],

[o]

d

dt 1

where dt is considered as an operator.

In order to keep notation simpler, the time-dependence is not shown.

Such suppression will be adopted for all equations which follow.

For the application of the synthesis method, the following set of trial

functions are defined:

[u] = [] T]

Ivx] = [:] [x]

[v ] = [I] [y]

[v ] = [] [z]

[C = [cil

[c] [C]

[u*] = [*] [T*]

[v*] = [*] [x*]

[v*] = [*] [y*]

[v*I] = [*] z*]

[cl] = [C*]

[c* = [
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· . . xD[I]

x

[0] .[0]

[0]

[0]

[01

[]

(4.2)

Iu]

[Iv]

Iv]

[vz]

[Cl]

[C ]

[o]

do] .Dd _X T]dt D

(4.3)
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where [P], [], [n], [C] are matrices constructed from the vectors

E[], [L], [L], L ] obtained from a QUANDRY run for the steady state

situation existing just before the transient to be simulated. Those matrices

all have the same structure. For example:

111 0 . . .

211 0 0 . . .

311 O . . .
~311

0

112

.

0 .

0 212 .

* 2 ...

where: =
ijk

I- - -,

lijk . .... 0

2ijk

0
O .... Gijk

G bei

the n,

of eni

group:

ng

umber

ergy

s

LJ is thus a GI.J-K x G-K matrix

The weight functions [ *], [ *], [ ,*] [ *] have the same structure

but contain elements obtained from a steady-state adjoint QUANDRY run

(or some reasonable approximation thereto).

[T], [x], [],], [z, T*], [Zx*], [Y*], [Z*] are the unknown vectors

that specify the time-dependent axial behavior of the solution. They all

have the same structure. For example:

where: Tk =
k

T2k

TGk
-

G being the number of energy

groups

~IJ1

0

[T] =

T2

Tk
M.-
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As will be seen below, there is no need to approximate the precursor

concentration vectors [Cd(t)] defined in connection with Eq. (4.1). Thus

the [cd] in (4.2) are taken as the [Cd] themselves.

Note that [u] = [] [T], and all the other trial functions, are

column vectors of length GI-JK (-N) as required by Eq. (4.2).

The synthesis approximation is to assume that the x,y shape of the

neutron population of each axial layer is unchanged, during the transient,

from the steady state QUANDRY run that generated it. The transient problem

is then simulated as a fixed x,y nodal shape for nodal fluxes and net leakages,

in the k-th layer of the reactor, multiplied by the time-dependent factors

Tk (t), Xk (t), Yk(t), Zk (t).

If the trial functions of Eqs. (4.3) are inserted into the functional

of Eq. (4.2), and the variations of the functional with respect to [T*],

x* I, [Y*], [Z*], and the [Cd] are set successively to zero, the following

equations result:

[-*]T V-1] d [ ] [T] = [i*jT [M I [] IT] _ [*]T [E T [ ] [T] -

hjhk [a*]T [X] - hihk [I*]T [n] yz xz
D

d=l

Z*] - - h T [ ] [ + I rZ*Ld[-*]T [] [] IT] - [ T [] x] + [* ]T [G] [ Y] +~x ~hi 
y

1 [*T
+ hk [ ] [G x] ' []Z] = 

h
Z
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[*T [] [] T] i [ ] [Gy] [i] X] - []T [] [Y] +

x

1

hk
z

[ ]T [Gy] [ [Z] = O

[ ]T [ [ T + * [] [] + [*]TG [] X] + 11 -

x y

-[*]T[] [Z] = 0

dt [Cd] = [Md] L] [T] - d d = 1, D

These equations can be written in a more simplified way as:

[AAOj d [T] = ([AA2p] - [AA1]) [T] - AA3] [X] - [AA4] Y] - [AA5] [Z] +

D

+ [ qd I*]T [ d]
d=l

[BBl] LT] - [BB2] [X] + [BB3] [Y] + [BB4] [Z]

[CC1] LT] + [CC2] [X] - [CC3] [Y] + [CC4] [Z]

[DD1] IT] + [DD2] [X] + [DD3] [Y] - [DD4] [Z]

d

dt [Cd] = [Md] [I] [Ti-] d [Cd] d = 1, . .

The definition of each new matrix can be found by comparing the two

sets of equations.

Because of the non-square structure of the weighting matrices, [ 1T,

[-*T , etc., and expansion functions [Di, [l] etc., the matrices in (4.4) -

(4.7) are only of order G-K x GK. In fact, many have very simple forms.

Specifically, [AAO], [AA1], [AA2p], [AA3], [AA4], [AA5], [BB1], [BB2], BB3],
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[BB4], [CC1], [CC2], [CC3], [CC4], [DD4] are block diagonal matrices of order

G.K x G-K, [DD13] is a block tridiagonal matrix of order G*K x G-K and

[DD2], [DD3] are block pentadiagonal matrices of order G'K x G.K

The fact that so many of these matrices are block diagonal eases

considerably the process of solving the set of Eqs. (4.4) - (4.8). Thus,

from Eqs. (4.5) and (4.6) we find:

[X] = [EE1] [T] + [EE2] [Z] (4.9)

[Y] = [FF1] T] [FF2] [Z] (4.10)

where: [EE1] E {[CC3] [BB3] -1 [BB2] - [CC2] -1 {[[CC3] [BB3]-1 [BB1] + [CC1]}

[EE2] {[CC3] [BB3]-1 [BB2] - [CC2]}- 1 {[CC3] [BB3]-1 [BB4] + [CC4]}

[FF1] _ {[BB2] [CC2] -1 [CC3] - [BB3]} -1 {[BB2] [CC2] -1 [CCl] + [BB1]}

[FF2] {[BB2] [CC2] -1 [CC3] - [BB3]} -1 {[BB2] [CC2]- 1 [CC4] + [BB4]}

The matrices [EE1], [EE2], [FF1], [FF2] are block diagonal of order

G.K. x G-K

Substituting Eqs. (4.9) and (4.10) into Eqs. (4.4) and (4.7) we find:

D 

[AAO] dt T] = [HH1] [T] - [HH2] [Z] + I Xt Id I [ c d] (4.11)
d=l

[II1] [T] - [II2] [z] = 0. (4.12)

where: [GG] [AA2p] - [AA1]

[HH1] [GG] - AA31 [EE] - [AA4] [FF1]

[HH2J [AA3] [EE2] + [AA4] [FF2] + [AA5]

[II1] [DD1] + [DD2] [EE1] + [DD3] [FF1]

[II2] [DD4] - [DD2] [EE2] - [DD3] [FF2]
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[GG], [HH1], [HH2] are block diagonal matrices of order G-K x GK

[II1], [II2] are block pentadiagonal matrices of order G K x G K

Multiplying Eq. (4.11) by [II2] [HH2]-1 and using Eq. (4.12) we can

write:

[KK d TD
[KK] [T] = LL] [T] + [JJ] X [ T [Cd (4.13)

d=l

where: [JJ] [II2] [HH2] -1

[KK] [J] [AO]

[LL] [JJ] [HH1] - [II1]

[JJ], [KK], [LL] are block pentadiagonal matrices of order G-K G-K

Multiplying Eqs. (4.8) by [*]T we can write a more simplified set of

equations than Eqs. (4.8) and (4.13):

D

[KK] d [T] = LL] T] + [JJ] I Xd [Pd ] (4.14)
d=l d d

dt [Pd] = [MMd] [T] - d [Pd] d = 1, . . . , D (4.15)

where: [Pd] [*]T [Cd]

[MMd] [] [Md] []

[Pd] are block vectors of length GK

[MMd] are block diagonal matrices of order G-K x GK

Following the same method used by QUANDRY for solving the transient

equations, Eq. (4.15) is analytically solved assuming a linear behavior for

[MMd] and [T] during a time step. With that assumption, one can find an

expression for [Pdn+l] (tn+l]epesofr[ I] which can now be substituted into
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Eq. (4.14), when that equation is solved numerically by the application of the

0-method. The resultant equations can be written as:

[UU] Tn+l] = [U] (4.16)

[Pdn+l] = Xd [Pdn] + I{[NNd] [Tn+l] + [QQd] [Tn]} d= 1, . . . , D

where: [UU] [SS] - A [LLn+l]
n

[SS] [JJn+l] [RR]

D

[RR] [AAO] - e n [ Nd ]
d=l

[NNd] - f (dAn) [MM n+l]

[QQd] f2 (kd A n) [MMdn ]

+ f2 ( d A n) [MMdn]

+ f3 (kdAn) [MMdn]

[Qd] = [QQd] [Tn]

A - (tn+
n

- tn )

-X Adn
X e
d

f1 (Xd An) =

f 2(dAn) =2 d n~~~~~~~~~~~~
2

dAn

d n
3 1

1-Xd
+ 2. A 

dn)

dn
4

1
dn
5

+ Xd 1 - Xd
dA n - 2. (dAn)dn dn

d n
2

; if A > 0.1dn

1 An 31 if X A < 0.1dn

if X A > 0.1dn( A A ( AA ( AA 

2 - d n - dn I! dn iii if XdAn < 0.1
2 5 2 9 dn
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2 X d2 Xd 1 - Xd- X + 2. - 2 ; if A > 0.1
d n d n

f3 (XdAn) =

1 *d nAII - XA i dn HIAi X A < 0.1
d n 3 2 2 dn 5 18 J dn

[U] jjn+l] [s]

[S] - [R1] + A ((1-e) [R2] + 9[R3] + [R4])

[R1] [AAO] [Tn ]

(4.18)

JR2
n ] = [JJn]-l ELLn] [Tn]

D

[R3] - [Qd]
d=l

D

LR4] - Ad(1 - (1-Xd)) EPdn]
d=l

[NNd], [QQd] , [RR] are block diagonal matrices of order GK x G.K

[SS], [UU] are block pentadiagonal matrices of order G-K x G-K

[Qd], [R1], [R2n], [R3], [R4], [S], [U] are block vectors of length G-K

The matrix [UU] multiplying ET in (4.16) is block penta-

diagonal, and the vector [U] contains a term [Rln ] which involves the

inverse of the block pentadiagonal matrix [Jjn]. Thus to find [U] and

then [Tn+l], two linear systems have to be solved for each time step

calculation. Because the matrix of coefficients in both cases is compact

around the main diagonal, the application of an elimination procedure,

instead of a more complex iterative one, for solving the systems is

acceptable.
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In order to calculate the coupling matrices [F ], [G ] u = x y, z

during the transient, the following expressions are used for estimating

the frequencies representing the time variation of the nodal fluxes and the

precursors concentrations:

k= W n1 n g{k T1 (4.19)
Pgijk ' gk n n-l1

n n 1

)d = dk A= n
ijk k n-l

Note that those values are to be applied to all nodes in a given plane.
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4.2 Computational Implementation

The matrices defined for the numerical solution of the transient

equations are, at most, block pentadiagonal, and a lot of memory would be

required to store their null terms if the full matrices were stored. A

special storage scheme where only the diagonal terms are preserved is thus

appropriate in order to lower the amount of memory needed for the code

representing the theory here developed.

Another observation is that many of the matrices are only temporary

results used in the process of finding the solutions [Tn+l] and [Pd n+l]

for a given time step. A procedure such as dynamic allocation, in which a

certain area of memory is commonly used by the program to store temporarily

needed results, is thus an appealing approach towards improving calculational

efficiency.

The combination of these two special computational strategies is expected

to make the code faster and less memory-demanding than if a standard matricial

representation were used.
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4.3 Present Status and Future Work

Because some of the software necessary for manipulating the matrices is

being handled by the code itself in order to provide the economy of memory

cited above, special care was needed in the construction and implementation

of the code. There were many intermediary testing stages before the whole

theory was put together. At the moment this has been done, and basic tests,

such as transients with A = or "transients" where actually nothing
n

happens are being performed for very simple reactor configurations. These

tests constitute a check of the precision and stability of the method being

used.

The next step in the implementation of the theory will be to simulate

transient conditions by the variation of the composition of certain nodes.

For many cases, comparisons can be made with results obtained from other

computer codes using a different methodology for the problem.

A step further will be the inclusion of a simple thermal-hydraulic

model such as the one used by QUANDRY, in order to represent feedback effects.
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5. Time Integration Schemes For The Point Kinetics Equations -

Alex Parlos

The running time of computer codes which solve neutron transient

problems is usually directly proportional to the number of time steps

required to cover the time duration of interest. Thus, any calculational

method that allows a decrease in the number of time steps (or, equivalently,

an increase in the size of the time step) will decrease the cost of a

transient calculation. Such savings will be most important for long-running,

spatially dependent transients. However, methods developed for the space-

independent, point kinetics model are still of interest since they may be

extendable to space-dependent calculations and since a fast solution of the

point kinetics equations will permit prediction of transient behavior in

faster than real time, a capability that permits consideration of new

advanced control and safety procedures.

5.1 Theory

The mathematical feature that leads to the need for short time steps

in the numerical solution of transient equations is the fact that some of

the time constants involved in the calculations are very short, while others

are very long. The equations are said to be "stiff".

The basic idea in the formulation and solution of the space independent

kinetics model comes from reference (10). It is the simple observation that

the stiffness characteristic is present only in the time response of the

prompt neutron density but not in that of delayed neutron precursors. With

the usual notation, the point kinetics equations may be written:
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dN(t) = (t)- (t)+ I (t) (5.1)

i=l 11

dC. (t) B

dt I= N(t) - .iCi(t), i = 1, . . ., I (5.2)
dt A 1 

We have explored two methods of overcoming the stiffness problem

associated with these equations.

The first is to write the prompt neutron equation as:

dNt)= (t) N(t) (5.3)
dt

where w(t) is a time-dependent, instantaneous reactor frequency.

Differentiating (5.1) and (5.3), and introducing the effective decay

constant:

2

* C. (t)
i=l 1 

X (t) - (5.4)
e I

* X xiCi(t)
i=l

and solving for @(t) yields

dp (t) +A (t)p(t)
dt e

I

+ i(ki - Ce( t))
i=l

A t) + w(t) + ((t) + (-p(t))
W (t) e

where p(t) is the total reactivity present at time, t.

Thus, substituting (5.3) into (5.1), solving for N(t), and using the

result to eliminate N(t) from (5.2) leads to
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dC. (t)

dt

a. I

+ (t X.C.(t) - X.C.(t), i = 1, , IwA + - p(t) ji i j=l
(5.6)

The above equations represent an I-dimensional system of differential

equations with time-dependent coefficients. They can be time-discretized by

rewriting them as

dC.i (t) I (nl)

=3 .~~ . A C
dt = n+l Pn+l j=l 

I· · · I·-

~- A C. (n+l)
1 1i

+

(5.7)

.i(1-O) I

wn+n n jj-l J

where subscripts and superscripts (n) and (n+l) specify that the time

dependent quantities so labelled are to be evaluated at t or t andn n+l'

where is a user-specified averaging parameter. (Taking = 0 leads

to a fully explicit scheme; = 1 gives a fully implicit method, and

8 = 1 is the Crank-Nicholson approximation.)
2

Integrating Eq. (5.7) from t

relating the C )(n+l) (n)
relating the C to the C.1. 1

to tn+1 leads to a set of equations

Because of their simple structure,

these are analytically invertable. The final result is a one-step formula

for the delayed neutron precussors:
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1 - (1-e) X A
1 n (n)

C. +
1+ OA . 1

n 1

(5.8)

1 i- __ __n n )z X.[ - (-e)x.a ]ecj)j=1 n( n13

n+l A+-n+l

(1-6) (n+lA+-p n+l) N

1+ +A . A
n i

I X ,OA .
_ 3 n 3

l 1+eA X.
i=l n 

for i = 1, . . . , I.

Note that, in this final form, Eqs. (5.3) and (5.1) have been used to

(n) (n)
express a sum Z.X.C. in terms of N . Equations (5.4), (5.5) and (5.8)

1 1 1

form a complete system of equations that can be solved iteratively for

n+l n+l
W and C ,i = 1 . . , I, assuming that p is known.1, n+l

Then, equation (5.3) can be solved for N

Nn+lN

n
, assuming knowledge of N :

t
= Nn exp (f n + l (t)dt)

tn

The integral in equation (5.8) can be calculated explicitely using

(5.5) and making the following approximation,

A) + (t) t+ X (t) << -p(t)
W W e ]

(5.9)

(5.10)

which is quite accurate for operational transients.

Summarizing, the following approximation are made in this approach.

(1) In the calculation of w(t) for use in (5.8)

t)<< (t) + X (t) + -p(t)
w(t) e A
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tn+l

(2) In the calculation of f w(t)dt, approximation (5.10). is used.
t
n

(3) The delayed neutron equations are time-discretized.

(4) p(t) and C (t) are assumed linear in ts[t , t ]

(This is consistent with approximation (3) ).

The second approach to eliminating stiffness from the point kinetics

equations is a modification of the method suggested in reference (10).

The kinetic equations are written as (5.1) and (5.2), and as in the

first method, Eq. (5.2) is transformed into Eq. (5.6). Defining, the source

I

S(t) = I k.C.(t) (5.11)
j=l j

we can rewrite (5.1) as

dN(t) = ( N(t) + S(t) (5.12)
dt A

As in the first approach, equation (5.6) is discretized in time, and

equation (5.12) is rewritten (in view of (5.3) as

w(t) - p(t)- + S(t) (5.13)
A N(t)

The discretized equation (5.8) along with (5.11), (5.12) and (5.13)

form a complete set that can be solved iteratively to obtain the power

behavior in time. It should be noted that equation (5.12) can be solved

analytically if it is assumed that p(t) and C. (t) are linear in [t , t ]
1 n n+l'

an approximation consistent with the finite differencing of equation (5.6).

The difference in the two approaches is the fact that the prompt neutron

equation is not included in the iteration for w(t) in the first method,
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whereas the second method requires its inclusion.

To summarize: the following approximations are made for the second

method.

(1) Time discretization of the delayed neutron precussor equation.

(2) p(t) and the Ci(t) are assumed to be linear in t E[t , t +1]

(This approximation is consistent with (1) ).

5.2 Numerical Results

Two example problems are presented in order to demonstrate the

accuracy of the two methods.

The first problem is a relatively fast ramp reactivity insertion of

reactivity of 10C/sec. for 8 sec. Thus the final core reactivity is 80¢.

The reference solution was obtained from Ref. (10). All powers are normalized

to unit initial values. Table (5-1) shows the results

Time (s) Ref. 1st Method (% Rel. Er.) 2nd Method (% Rel. Er.)

2 1.3382 1.3386(.0299) 1.3382(0.)

4 2.2283 2.2311(.1257) 2.2286(.0135)

6 5.5815 5.6157(.6127) 5.5846(.0555)

8 4.2781E+01 4.5024E+01(5.2430) 4.2996+E01(.5026)

Table (5-1) Test of Methods (1) and (2) for 10¢/sec Ramp Insertion;

Normalized Power vs Time.

The reference was calculated using At=10- 4 sec. The other two calcu-

lation were performed with At=0.l sec. Best accuracy was found using 's
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of 1.0 and .5 respectively. The computational effort for the two methods was

.03 cpu sec. per real sec. and .07 cpu sec/simulated sec. respectively.

The second example problem is a ramp reactivity insertion at the

operational level of 5ma/sec for 5 sec. The reference calculation was

-4
taken from Ref. (11) and was performed with At=10 sec. The results are shown

in Table (5.2). (Power is in KW.)

Time (s) Ref. 1st Method (% Rel. Er.) 2nd Method (% Rel. Er.)

1 1005.90 1005.75(-.015) 1005.86(-.004)

2 1013.02 1012.78(-.024) 1013.01(-.001)

3 1021.23 1020.91(-.031) 1021.22(-.001)

4 1030.45 1030.06(-.038) 1030.44(-.001)

5 1040.65 1040.21(-.042) 1040.65(0.0)

Table (5-2) Tests of Methods (1) and (2) for 5m~/sec Reactivity

Ramp Insertion; Power in Kilowatts vs Time

Both methods were run with At= lsec. Any time step smaller than lsec.

reproduced the reference solution correct to the first decimal digit. The

computational times were such that the first method ran 250 times and the

second method 85 times faster than real time.

Comparing the two methods we see that the second method, although more

accurate, is computationally more expensive. For an operational transient,

the first method gives acceptably accurate results and runs much faster than

real time.
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