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Abstract

This paper investigates the behavior of automated production lines subject to quality in-

spection. Machines are unreliable and can fail for different reasons: operational failures stop

the machine without involving quality issues; quality failures lead machines to produce defective

parts without stopping. We analyze a 2-machine-1-buffer line where machines are modelled by

Markov chains with discrete states and separated by a buffer of finite capacity. Using such

models, we analyze how production system design, quality, and productivity are interrelated in

production systems. We show how inventory capacity can influence system yield and produc-

tivity. The approach considers control charts, buffers of finite capacity and a delay in quality

information due to remote inspection. Numerical results and comparisons with simulation are

reported.

1 Introduction

1.1 Motivation

Production system design is a complex task with many different aspects. It starts with the analysis

of all the manufacturing processes required for the realization of the specified product to find the

best utilization of processing machines, inspection stations and storage space. Production system

design has been driven for long time by two separate fields of study. On the one hand Manufacturing

Systems Engineering has developed methods for understanding the behavior of production systems

and has investigated techniques to design efficient factories. It has been focusing on quantity related

issues, like estimating productivity and work in process (WIP). On the other hand, research on

quality improvement like Statistical Quality Control (SQC), Total Quality Maintenance (TQM)

and Six Sigma have investigated methods to better control system processes to increase product

quality. Production system design has a significant impact on product quality in the way that the

performance of the quality control system is affected by the architecture of the production system.

However, there is little literature that deals with both these two fields together and that considers
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quality in a system context. An important class of problem to be investigated is the optimal

allocation of inspection devices and of buffer storages. For this reason, the need for research in this

direction [6] has been expressed in the past few years.

Manufacturers influenced by the success of popular techniques like Toyota Production System,

Lean Manufacturing etc. are working to achieve the highest productivity and the highest quality

while reducing WIP. These popular techniques are, however, qualitative in nature and mainly based

on experience that lack a sound scientific quantitative foundation. For example, Toyota recently

changed their view on inventory and are trying to re-adjust their interoperational storages [4].

Therefore, the behavior of automated production lines subject to quality inspection needs to be

investigated with quantitative techniques to suggest clear and reliable advice to factory designers.

We develop in this paper a model of production line similar in spirit to earlier quantity-oriented

models [5] [1], in that machines are modelled by Markov chains with discrete states and are separated

by buffers of finite capacity. Here, however, the up states have quality information associated with

them, e.g., the yield conditioned on the machine being in each state. Machines are subject to two

different types of failures: operational failures (e.g. motor burnout) and quality failures (e.g. tool

damage). These two types of failures are different in nature and have different mean times to repair

(MTTR). For this reason they cannot be grouped into a single down state but must be modelled

independently.

We develop a 2-machine-1-buffer (2M1B) model in which the first machine has both operational

and quality failures and the second machine has only operational failures. The inspection station

is placed either within the first machine or at the end of the line. On either case, it monitors the

behavior of the first machine. We adopt a continuous time, continuous material model because it can

handle deterministic but different operation times at each station. Using such models, we analyze

how production system design, quality, and productivity are interrelated in production systems. We

show how inventory capacity can influence system yield and productivity. The approach considers

control charts, buffers of finite capacity and delays in quality information. Numerical results and

comparisons with simulation are reported to show the accuracy of the proposed method.

1.2 Quality policy

Machines are unreliable and can fail for different reasons. An operational failure stops the machine

without involving quality issues. Quality failures lead machines to an out-of-control state; in this

state machines are operational but produce defective parts. We make the assumption that once

a defective part has been produced, all the subsequent parts will be bad until the machine is

repaired. This kind of failure happens after changes occur in the machines. For this reason this

2



kind of failure is called persistent-type quality failure [10]. It is very important to catch defective

parts and stop the machine very quickly to minimize the production of bad parts and the waste of

downstream capacity. Inspection stations monitor the behavior of machines by the use of control

charts telling whether a machine is in control or out of control. Quality control charts can work

either on the data obtained from the inspections of produced parts or on the data obtained from

the measurement of process parameters [10]. In this paper only quality control based on inspected

parts is considered. When the control chart identifies an out-of-control situation, the machine that

produced the feature that has been monitored is stopped so that an operator can investigate and

possibly fix the problems that drove it out of control. Different inspection policies can be performed.

For example in this paper all the parts that are processed in the line are measured. Alternatively

it is possible to measure only a fraction of the processed parts. The first policy is performed when

the cost of nonconforming parts is high and the cost of inspection is low. The sampling inspection

policy entails a longer response time but is cheaper than the 100% inspection.

1.3 Literature review

Analytical tools in Manufacturing System Engineering have been developed by Buzacott [2], Gersh-

win [5] and others. In the field of SQC applied to production systems, Montgomery [10] contributed

in the diffusion of statistical process control theory and Raz [12] dealt with the problem of the op-

timal allocation of inspection stations in multistage production lines. Tempelmeier and Burger [13]

and Helber [7] proposed analytical methods for studying production lines with quality stations and

scrap and rework policies.

Only few papers consider the intersection between quality control and system dynamics. Kim

and Gershwin proposed a method for the evaluation of the performance of a production line con-

sidering the quality control issues and dealing with the delay in the quality information. Colledani

and Tolio [3] proposed an approximate method for the analysis of production lines, in which SQC

techniques are applied, which takes into accent scrap and rework policies.

In this paper we extend the model presented in [8] by modelling the first machine of the 2M1B

line having separate down states for the two types of failures, therefore allowing a better char-

acterization of the machine behavior. Numerical results are compared with those of the previous

model.

1.4 Outline

The paper is structured as follows: in the next section we define the model assumptions and we

investigate the behavior of a machine in isolation. In Section 3 we present the model of a 2-machine-
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1-buffer line and in Section 4 we show the solution technique and its validation. Discussions on the

behavior of production lines with different inspection policies, based on numerical experiments, are

presented in Section 5. Section 6 provides summary of the contribution of this paper and investigate

future research.

2 Mathematical models

2.1 Modelling assumptions

In this section, we specify the assumptions used in this work to model a production line with quality

failure. A manufacturing flow line (also called transfer line or production line) is a system with a

very special structure. It consists of work stations (machines M1, M2, ..., Mk) and finite storage

areas (also called buffers B1, B2, ..., Bk−1) arranged in a linear network. Material flows from

outside the system to M1, then to B1, then to M2, and so forth until it reaches Mk after which

it leaves. Figure 1 depicts a flow line. The squares represent machines and the circles represent

buffers.

Figure 1: Example of Flow Line

We use the assumption of independence of events: events in the future are only contingent on

the present state of the system and otherwise independent of each other and the past events. This

independence assumption allows the system to be modelled as a Markov Process. In production

models, this means that the time between failures of a given machine are independent of previous

failure times and repair times. Other assumptions made here are:

• The line is modelled as a continuous system which has deterministic cycle times and blockage

and starvation.

• The first machine is never starved and the last machine is never blocked.

• The buffer transit time is zero.

• Material flow is conserved: defective parts are reworked or scrapped later elsewhere.
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• Only M1 can have both operational failures and quality failures and these failures are opera-

tion dependent (ODF). M2 has only operational failures (ODF).

• All the failures and repairs are uncorrelated.

• Inspections are nondestructive, operation dependent and have Type II errors only. (H0 is

not rejected although it is false, where H0 is the hypothesis that the machine is producing

non-defective parts.)

• µi is the speed at which Machine i processes material while it is operating and not constrained

by the other machine or the buffer.

• pi is the the reciprocal of the Mean Time To Operational Failure (MTTF) of Mi.

• ri and rQ
i are the the reciprocal of the Mean Time To Repair (MTTR) of operational failures

and quality failures of Mi, respectively.

• gi is the reciprocal of the Mean Time To Quality Failure (MTQF) of Mi. A more stable

operation leads to a larger MTQF and a smaller gi.

• hi is the reciprocal of the Mean Time To Detect (MTTD) of Mi. A more reliable inspection

leads to a shorter MTTD and a larger hi.

• All the indicated transition times are assumed to follow exponential distributions.

2.2 Single machine model

There are many possible ways to characterize a machine for the purpose of simultaneously studying

quality and quantity issues. Kim and Gerhwin [8] proposed a three-state machine model. In their

paper, a machine produces good parts in state 1 and produces bad parts due to a quality failure in

state −1. When the machine is under repair (state 0), an operator can not tell whether the machine

is down due to a quality failure or an operational failure. Therefore, whenever a machine is under

repair, the operator fixes the machine completely so that the machine goes back to state 1. As a

result, the repair rates of the operational and quality down states (r and rQ) are identical. This is

not always realistic because it means that every repair is a quality repair, even if the machine was

in state 1.

In this paper we model a machine as a discrete state, continuous time Markov process as

represented in Figure 2. The model is an improvement of [8] because the machine has five states,

therefore allowing operational and quality failures to have separate down states. This means that
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an operator can perform different repairs associated with different failures; also we can specify

different repair rates r and rQ associated with the two failures. In the previous model, once the

machine was down, the operator checked and repaired every source of failure because he didn’t

know the reason of the failure. The five states are:

• State 1: The machine is operating and producing good parts.

• State D1: The machine is not operating due to an operational failure that occurred when the

machine was in state 1. When this failure is repaired, the machine returns to state 1.

• State −1: The machine is operating and producing bad parts, but the operator does not know

this yet.

• State D−1: The machine is not operating due to an operational failure that occurred when

the machine was in state 1. When this failure is repaired, the machine returns to state −1.

• State DQ: The machine is not operating due to a quality failure. When this failure is repaired,

the machine returns to state 1.

Figure 2: Proposed five-state machine model

2.3 Isolated machine behavior

When a machine is in state 1, it can fail due to an operational failure such as a motor or fuse

burnout. In that case it goes to state D1 with probability rate p. After that an operator fixes it,

6



and the machine goes back to state 1 with probability rate r. Sometimes, due to an assignable

cause, the machine goes out of control and begins to produce bad parts, so there is a transition

from state 1 to state −1 with a probability rate of g. The machine, when it is in state −1, can be

stopped for two reasons: it may experience the same kind of operational failure as it does when it is

in state 1; or the operator may stop it for repair when he learns that it is producing bad parts. In

the first case it goes in state D−1 at rate p. Then an operator fixes the machine without knowing

it was making bad parts. Therefore, only the operational failure is repaired and when becoming

operational the machine will still make bad parts. It returns to state −1 at rate r. In the second

case the transition from state −1 to state DQ occurs at probability rate h. In this case the operator

fixes the quality failure and the machine goes back to state 1 with probability rate rQ. Operational

failure rates do not depend upon whether the machine is in state 1 or in state −1. The transition

rate between −1 and D−1 is the same as that between 1 and D1.

To determine the production rate of a single machine, we determine the steady-state probability

distribution, calculated based on the probability balance principle: in steady state, the probability

rate of leaving a state is the same as the probability rate of entering that state. We have

(g + p)P (1) = rP (D1) + rQP (DQ) (1)

(h + p)P (−1) = rP (D−1) + gP (1) (2)

rQP (DQ) = hP (−1) (3)

rP (D1) = pP (1) (4)

rP (D−1) = pP (−1) (5)

The probabilities must also satisfy the normalization equation:

P (1) + P (−1) + P (D1) + P (D−1) + P (DQ) = 1 (6)

The solution of (1)-(6) is

P (1) =
hrrQ

hrrQ + grrQ + phrQ + pgrQ + ghr
(7)
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P (−1) =
grrQ

hrrQ + grrQ + phrQ + pgrQ + ghr
(8)

P (D1) =
hprQ

hrrQ + grrQ + phrQ + pgrQ + ghr
(9)

P (D−1) =
pgrQ

hrrQ + grrQ + phrQ + pgrQ + ghr
(10)

P (DQ) =
phr

hrrQ + grrQ + phrQ + pgrQ + ghr
(11)

The total production rate, including good and bad parts, is

PT = µ(P (1) + P (−1)) = µ
(h + g)rrQ

hrrQ + grrQ + phrQ + pgrQ + ghr
(12)

The effective production rate, the production rate of good parts only, is

PE = µP (1) = µ
hrrQ

hrrQ + grrQ + phrQ + pgrQ + ghr
(13)

The yield is

Y =
PE

PT
=

P (1)
P (1) + P (−1)

=
h

h + g
(14)

2.4 Simplified two-machine-one-buffer (2M1B) model

2.4.1 State aggregation: from five-state to two-state machine model

In production lines, machines are stopped either because an operational or a quality failure occurred,

or because they are starved or blocked by other machines. The simplest non-trivial model of a

production line is a two-machine-one buffer line (2M1B). The 2M1B model is particularly useful

in the study of long lines because it is used as a building-block in the decomposition technique

[5]. In this paper, only the first machine has quality failures and needs a five-state model. The

second machine having only operational failures can be described with the same two-state model

as the one proposed by Gershwin [5]. We assume that neither the first machine nor its operator,

when producing, can distinguish between good and bad parts; from this point of view each part is

identical to the others. The control station will then determine if a part is defective or not. Because

of the assumption that each machine works on different features, quality failures at an operation

do not influence the quality of other operations. This mean that if a machine produces a bad part,

other machines will not see any difference between this part and a good part. Buffers also will not
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see any difference in the flow of parts that pass through them, when one of the machines starts

making bad parts. This allows us to treat machines as having only one up state and several down

states. Therefore, in first approximation we can add together the different down states and we end

up with a two-state model.

In reality in a production system every machine has quality failures. Therefore each machine

has a behavior that can be captured with a five-state model. However, for systems with finite

buffers, studying models with more than one machine with five states leads to a very complicated

system of differential equations. For example, in a two-machine line with both machines having five

states, we must solve a system of 25 internal transition equations and many boundary equations.

The transformation of a five-state machine into a two-state machine, allows us to study lines where

each machine has quality failures and where there is a finite buffer.

Here, we derive a relationship between a five-state and a two-state model: the two up states of

the five-state-machine (state 1 and state −1) are consolidated into the up state of the two-state-

model, as depicted in Figure 3. The three down states of the five-state model are consolidated into

the down state of the two machine model. We refer to the five-state model with the superscript 5

and to the two-state model with the superscript 2. The parameters of the two-state model are p′

and r′. From equations (7)-(11) we have:

Figure 3: Transformation of a five-state model into a two-state model
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P 5(1) =
hrrQ

hrrQ + grrQ + phrQ + pgrQ + ghr
(15)

P 5(−1) =
grrQ

hrrQ + grrQ + phrQ + pgrQ + ghr
(16)

P 5(D1) =
hprQ

hrrQ + grrQ + phrQ + pgrQ + ghr
(17)

P 5(D−1) =
pgrQ

hrrQ + grrQ + phrQ + pgrQ + ghr
(18)

P 5(DQ) =
phr

hrrQ + grrQ + phrQ + pgrQ + ghr
(19)

For a two-state machine in isolation, the probability of the machine being in each state is:

P 2(1′) =
r′

p′ + r′
(20)

P 2(0′) =
p′

p′ + r′
(21)

The probabilities of the states of the five-state model are calculated as follows:

P 5(1) + P 5(−1) = P 2(1′) (22)

P 5(D1) + P 5(D−1) + P 5(DQ) = P 2(0′) (23)

For the failure and repair parameter of the two-state machine we proceed as follows: we add

together the failure rates p and pQ

p′ = p + pQ (24)

where pQ is obtained by considering DQ. The probability rate of exiting state DQ must be equal to

the probability rate of entering it from state 1′. This is an approximation because in the five-state

model there is no transition from state 1 to state DQ. Then

pQ =
rQP 5(DQ)

P 2(1′)
(25)

The repair rate of the two-state model r′ is obtained with a weighted average of operational

and quality failure:
1
r′

=
p

p′
1
r

+
pQ

p′
1
rQ

(26)
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2.4.2 Infinite buffer case

Before we consider the general 2M1B line with a finite buffer we analyze two extreme situations. In

the first, the storage space between the two machines is infinite. In this case the first machine (M1)

never suffers from blockage. In the second case, there is no buffer space between the machines. This

is the other extreme where blockage and starvation take place most frequently. In zero-buffer lines

whenever one of the machines stops, the other one also stops. In addition, if the machines have

different operation rates, when both of them are working, the production rate is min[µ1, µ2]. To

derive expressions for the total production rate and the effective production rate, we observe that

when there is infinite buffer capacity between the two machines (M1, M2), the total production

rate of the 2M1B system is a minimum of the total production rates of M1 and M2. The total

production rate of machine i is given by (12), so the total production rate of the 2M1B system is

P∞
T = min

[
µ1

(h1 + g1)r1r
Q
1

h1r1r
Q
1 + g1r1r

Q
1 + p1h1rQ + p1g1r

Q
1 + g1h1r1

, µ2
r2

p2 + r2

]
(27)

The probability that machine M1 does not add non-conformities is the same as (14). The

probability that machine M2 does not add non-conformities is 1 since the second machine does not

have quality failures. Since there is no scrap and rework in the system, the system yield is

Ysys =
h1

h1 + g1
(28)

As a result, the effective production rate is

P∞
E = YsysP

∞
T (29)

2.4.3 Zero buffer case

To calculate the production rate we follow the method of Kim and Gershwin [8]; for a detailed

explanation refer to [11]. The total production rate is:

P 0
T =

Min[µ1, µ2]

1 + pb
1

rb
1

+ hb
1gb

1

rb
1(h

b
1+gb

1)
+ pb

2

rb
2

(30)

where the superscript b refers to the reduction of the probability rates for the fastest machine. The

effective production rate is

P 0
E =

hb
1

hb
1 + gb

1

P 0
T (31)
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In the next Section we study 2M1B model with finite storage capacity. For a each set of

parameters, the results of the 2M1B line with buffer of finite capacity must lie between the two

extreme cases.

3 Solution method for a Finite-Buffer System

In this chapter we study a 2M1B line in which the first machine is represented by a five-state model

and the second machine by a two-state model. We present the model, a solution technique and a

validation of the proposed 2M1B line model.

Figure 4: 2M1B line

The state of the 2M1B line illustrated in Figure 4 is (x, α1, α2) where:

• x: the amount of material in buffer B with 0 < x < N

• α1: the state of machine M1 (α1 = 1, −1, D1, D−1 or DQ)

• α2: the state of machine M2 (α1 = 1 or 0)

The parameters of machine M1 are µ1, p1, r1, g1, h1, r
Q
1 . The parameters of machine M2 are

µ2, p2, r2. The buffer size is N . The probabilistic behavior of the 2M1B is described by probability

density functions (f(x, α1, α2)) when buffer B is neither empty nor full, and by probability masses

(P (0, α1, α2) and P (N,α1, α2)) when the buffer is empty or full. If we find all the probability

density functions and the probability masses, we can calculate the performance measures of the

2M1B line. The probability density functions and probability masses are to be found by solving

the internal transition equations and the boundary transition equations presented below.

3.1 Internal Transition Equations

When the buffer is neither empty nor full its level can rise or fall depending on the states of the

machines. Since it can change only a small amount during a short time interval, it is reasonable to
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use a continuous probability density f(x, α1, α2) and differential equations to describe its behavior.

For example, the probability of finding both machines operational with the buffer level between x

and x + δx at time t + δt is given by f(x, 1, 1, t + δt)δx, where

f(x, 1, 1, t + δt) = − (g1 + p1 + p2)δtf(x + (µ2 − µ1)δt, 1, 1) + r1δtf(x + µ2δt,D1, 1)+

+ rQ
1 δtf(x + µ2δt,DQ, 1) + r2δtf(x − µ1δt, 1, 0) + o(δt)

The first term, except for a factor of δx, is the probability of transition from between (x + (µ2 −
µ1)δt, 1, 1) and (x + (µ2 − µ1)δt + δx, 1, 1) at time t,to between (x, 1, 1) and (x + δx, 1, 1) at time

t + δt. After linearizing and letting δt → 0, this equation becomes

f(x, 1, 1) = (µ2−µ1)
∂f(x, 1, 1)

∂x
−(g1+p1+p2)f(x, 1, 1)+r1f(x,D1, 1)+rQ

1 f(x,DQ, 1)+r2f(x, 1, 0)

In steady state ∂f
∂t = 0. Therefore we have

(µ2 −µ1)
df(x, 1, 1)

dx
− (p1 + g1 +p2)f(x, 1, 1)+ r1f(x,D1, 1)+ rQ

1 f(x,DQ, 1)+ r2f(x, 1, 0) = 0 (32)

In the same way we derive the other nine internal transition equations:

−µ1
df(x, 1, 0)

dx
− (p1 + g1 + r2)f(x, 1, 0) + r1f(x,D1, 0) + rQ

1 f(x,DQ, 0) + p2f(x, 1, 1) = 0 (33)

(µ2−µ1)
df(x,−1, 1)

dx
−(p1+h1+p2)f(x,−1, 1)+r1f(x,D−1, 1)+g1f(x, 1, 1)+r2f(x,−1, 0) = 0 (34)

−µ1
df(x,−1, 0)

dx
− (p1 + h1 + r2)f(x,−1, 0) + r1f(x,D−1, 0) + g1f(x, 1, 0) + p2f(x,−1, 1) = 0 (35)

−(r1 + r2)f(x,D1, 0) + p2f(x,D1, 1) + p1f(x, 1, 0) = 0 (36)

µ2
df(x,D1, 1)

dx
− (r1 + p2)f(x,D1, 1) + r2f(x,D1, 0) + p1f(x, 1, 1) = 0 (37)

−(r1 + r2)f(x,D−1, 0) + p2f(x,D−1, 1) + p1f(x,−1, 0) = 0 (38)
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µ2
df(x,D−1, 1)

dx
− (r1 + p2)f(x,D−1, 1) + r2f(x,D−1, 0) + p1f(x,−1, 1) = 0 (39)

−(rQ
1 + r2)f(x,DQ, 0) + p2f(x,DQ, 1) + h1f(x,−1, 0) = 0 (40)

µ2
df(x,DQ, 1)

dx
− (rQ

1 + p2)f(x,DQ, 1) + r2f(x,DQ, 0) + h1f(x,−1, 1) = 0 (41)

3.2 Boundary Transition Equations

The boundary transition equations depend on the relative speeds of machines M1 and M2. We

have three different cases that we must analyze separately. Within each case we have a set of lower

boundary equations (when the buffer is empty) and upper boundary equations (when the buffer is

full). We report here only the case of the two machines having equal speeds (µ1 = µ2). The other

cases are similar and are discussed in detail in [11]. For the lower boundary we first determine the

transient states, that is, they have zero steady state probability:

P (0, 1, 0) = P (0,−1, 0) = 0 (42)

These states are transient because P (0, 1, 0) cannot be reached from any state and P (0,−1, 0) can

only be reached from P (0, 1, 0).

P (0,D1, 0) = P (0,D−1, 0) = P (0,DQ, 0) = 0 (43)

These states are transient because for example P (0,D1, 0) can be reached only from itself or

P (0, 1, 0). It cannot be reached from P (0,D1, 1) or P (0, 1, 1) since the second machine cannot

fail. Then we characterize the boundary equations:

−r1P (0,D1, 1) + p1P (0, 1, 1) + µ2f(0,D1, 1) = 0 (44)

−r1P (0,D−1, 1) + p1P (0,−1, 1) + µ2f(0,D−1, 1) = 0 (45)

−rQ
1 P (0,DQ, 1) + h1P (0,−1, 1) + µ2f(0,DQ, 1) = 0 (46)

−(p1 + g1 + p2)P (0, 1, 1) + r1P (0,D1, 1) + rQ
1 P (0,DQ, 1) = 0 (47)
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−(p1 + h1 + p2)P (0,−1, 1) + r1P (0,D−1, 1) + g1P (0, 1, 1) = 0 (48)

µ1f(0, 1, 0) = p2P (0, 1, 1) (49)

µ1f(0,−1, 0) = p2P (0,−1, 1) (50)

For the upper boundary region we first determine the transient states:

P (N,D1, 1) = P (N,D−1, 1) = P (N,DQ, 1) = 0 (51)

P (N,D1, 0) = P (N,D−1, 0) = P (N,DQ, 0) = 0 (52)

and then we characterize the boundary equations:

−r2P (N, 1, 0) + p2P (N, 1, 1) + µ1f(N, 1, 0) = 0 (53)

−r2P (N,−1, 0) + p2P (N,−1, 1) + µ1f(N,−1, 0) = 0 (54)

−(p1 + g1 + p2)P (N, 1, 1) + r2P (N, 1, 0) = 0 (55)

−(p1 + h1 + p2)P (N,−1, 1) + r2P (N,−1, 0) + g1P (N, 1, 1) = 0 (56)

µ2f(N,D1, 1) = p1P (N, 1, 1) (57)

µ2f(N,D−1, 1) = p1P (N,−1, 1) (58)

µ2f(N,DQ, 1) = h1P (N,−1, 1) (59)
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3.3 Normalization equation

In addition to the internal and boundary equations, all the probability density function and masses

must satisfy the normalization equation:

∑
α1=−1,1,D1,D−1,DQ

∑
α2=0,1

[∫ N

0
f(x, α1, α2)dx + P (0, α1, α2) + P (N,α1, α2)

]
= 1 (60)

4 Solution Technique

4.1 Solution of the Internal Equations

We are dealing with ordinary linear differential equations with constant coefficients. Therefore it is

logical to assume an exponential form for the solution to the steady state density functions. This

approach worked successfully in the continuous model with perfect quality [5] and with a simpler

model of quality failure [8]. Therefore, we assume a solution of the form:

f(x, α1, α2) = eλxG1(α1)G2(α2) (61)

in which we must determine λ,G1(1), G1(−1), G1(D1), G1(D−1), G1(DQ), G2(1), G2(0), a total of

8 unknowns. This form satisfies the transition equations if all of the following equations are met.

After substituting (61) into (32) - (41) we have:

{λ(µ2−µ1)−(p1+g1+p2)}G1(1)G2(1)+r1G1(D1)G2(1)+rQ
1 G1(DQ)G2(1)+r2G1(1)G2(0) = 0 (62)

−{λµ1 + (p1 + g1 + r2)}G1(1)G2(0) + r1G1(D1)G2(0) + rQ
1 G1(DQ)G2(0) + p2G1(1)G2(1) = 0 (63)

{(λ(µ2−µ1)−(p1 +h1 +p2)}G1(−1)G2(1)+r1G1(D−1)G2(1)+g1G1(1)G2(1)+r2G1(−1)G2(0) = 0

(64)

−{λµ1+(p1+h1+r2)}G1(−1)G2(0)+r1G1(D−1)G2(0)+g1G1(1)G2(0)+p2G1(−1)G2(1) = 0 (65)

−(r1 + r2)G1(D1)G2(0) + p2G1(D1)G2(1) + p1G1(1)G2(0) = 0 (66)

{λµ2 − (r1 + p2)}G1(D1)G2(1) + r2G1(D1)G2(0) + p1G1(1)G2(1) = 0 (67)
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−(r1 + r2)G1(D−1)G2(0) + p2G1(D−1)G2(1) + p1G1(−1)G2(0) = 0 (68)

{λµ2 − (r1 + p2)}G1(D−1)G2(1) + r2G1(D−1)G2(0) + p1G1(−1)G2(1) = 0 (69)

−(rQ
1 + r2)G1(DQ)G2(0) + p2G1(DQ)G2(1) + h1G1(−1)G2(0) = 0 (70)

{λµ2 − (rQ
1 + p2)}G1(DQ)G2(1) + r2G1(DQ)G2(0) + h1G1(−1)G2(1) = 0 (71)

Now we have 10 equations in 8 unknowns. Thus, there must be eight independent equations and

two dependent ones in order for us to determine these quantities. To simplify the study of this

system, we can divide each equation by the most frequent G1(α1)G2(α2) within that equation.

Therefore we divide equation (62) by G1(1)G2(1), equation (63) by G1(1)G2(0), equation (64) by

G1(−1)G2(1), equation (65) by G1(−1)G2(0), equation (66) by G1(D1)G2(0), equation (67) by

G1(D1)G2(1), equation (68) by G1(D−1)G2(0), equation (69) by G1(D−1)G2(1), equation (70) by

G1(DQ)G2(0), equation (71) by G1(DQ)G2(1) and we can define new variables:

G1(D1)
G1(1)

= A1
G1(D−1)
G1(−1)

= A2
G1(DQ)
G1(−1)

= A3

G1(DQ)
G1(1)

= B1
G1(1)

G1(−1)
= B2

G2(1)
G2(0)

= C

If we rewrite equations (62) - (71) we have:

λ(µ2 − µ1) − (p1 + g1 + p2) + r1A1 + rQ
1 B1 + r2

1
C

= 0 (72)

−λµ1 − (p1 + g1 + r2) + r1A1 + rQ
1 B1 + p2C = 0 (73)

λ(µ2 − µ1) − (p1 + h1 + p2) + r1A2 + g1B2 + r2
1
C

= 0 (74)

−λµ1 − (p1 + h1 + r2) + r1A2 + g1B2 + p2C = 0 (75)

−(r1 + r2) + p2C + p1
1

A1
= 0 (76)

λµ2 − (r1 + p2) + r2
1
C

+ p1
1

A1
= 0 (77)
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−(r1 + r2) + p2C + p1
1

A2
= 0 (78)

λµ2 − (r1 + p2) + r2
1
C

+ p1
1

A2
= 0 (79)

−(rQ
1 + r2) + p2C + h1

1
A3

= 0 (80)

λµ2 − (rQ
1 + p2) + r2

1
C

+ h1
1

A3
= 0 (81)

We notice that equations (75), (77), (79) and (81) are linearly dependent on the others, therefore

are eliminated. If we rearrange equations (76), (78) and (80) we obtain

A1 =
p1

r1 + r2 − p2C
(82)

A2 =
p1

r1 + r2 − p2C
= A1 (83)

A3 =
h1

rQ
1 + r2 − p2C

= B1B2 (84)

From equation (73) we derive λ

λ =
1
µ1

[
−(p1 + g1 + r2) + r1A1 + rQ

1 B1 + p2C
]

(85)

We then substitute A1, A2, B2, λ into equations (72) and (74)+(72). We denote µ2−µ1

µ1
= δ − 1.

After rearranging we have two equations in two unknowns (B1 and C)

B1 = f(C) =
(p1 + g1 + r2)

rQ
1

+
(p2 − r2)

rQ
1 δ

− p2(1 − 1/δ)C

rQ
1

− r1p1

rQ
1 (r1 + r2 − p2C)

− r2

rQ
1 δC

(86)

C = f(B1) =
rQ
1 + r2

p2
− g1h1

p2

[
h1 − g1 + rQ

1 B1δ
]
B1

(87)

If we plug equation (87) into (86) we get a single equation g(B1) with one unknown. In Figure 5

we display the plot of (88). It is very easy to locate the roots of the function with numerical tools

and thus obtain the solution to the internal equations.
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For a detailed explanation of the numerical techniques adopted here, refer to [11].

g(B1) = −(p1 + g1 + r2)(δ − 1) − (p1 + g1 + p2) + rQ
1 δB1

+
r1p1δ(h1 − g1 + rQ

1 δB1)B1

(r1 − rQ
1 )(h1 − g1 + rQ

1 δB1)B1 + g1h1

+(δ − 1)

[
rQ
1 + r2 − g1h1

(h1 − g1 + rQ
1 δB1)B1

]

+
p2r2(h1 − g1 + rQ

1 δB1)B1

(rQ
1 + r2)(h1 − g1 + rQ

1 δB1)B1 − g1h1

= 0 (88)
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Figure 5: Plot of equation (88)

The other internal expression parameters are obtained from (72)-(88).

The general expression of the probability density function is

f(x, α1, α2) =
RN∑
i=1

cifi(x,α1, α2) (89)

where RN is the number of roots of equation (88).

The remaining unknowns, including coefficients ci i = 1, 2..., RN and probability masses at the

boundaries, can be calculated by solving the boundary transition equations and the normalization

equation.
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4.2 Solution of the Boundary Equations

The boundary equations (43) – (59) are linear equations in which the unknowns are the probability

masses and the coefficients in equation (89). Some of the probability masses are 0 according to

the equations, and functions fi(x, α1, α2) are found by solving the internal transition equations in

Section 3.1. The boundary equations can be simplified as follows:

• Eliminate the probability masses which are known to be 0.

• Temporarily set P (0, 1, 1) = 1.

• Substitute f(x, α1, α2) = c1f1(x, α1, α2) + c2f2(x, α1, α2) + c3f3(x, α1, α2) + c4f4(x, α1, α2) +

c5f5(x, α1, α2)

where fi(x, α1, α2) = eλixGi
1(α1)Gi

2(α2).

Then, we have an equation AX = B where X is a vector of coefficients ci and of probability

masses. This equation is in matrix form and can be solved using a linear equation solver; all the

unknowns are expressed as multiples of P (0, 1, 1). Then, the value of P (0, 1, 1) can be calculated

from the normalization equation (60).

4.3 Evaluation of performance

Throughput

The total production rate, the production of good and bad parts is:

PT = P 1
T =

∑
α2=0,1

µ1

[∫ N

0
(f(x, 1, α2) + f(x,−1, α2))dx + P (0,−1, α2) + P (0, 1, α2)

]
+

+ µ2

[
P (N,−1, 1) + P (N, 1, 1)

]
(90)

The effective production rate of the first machine is:

P 1
E =

∑
α2=0,1

µ1

[∫ N

0
f(x, 1, α2)dx + P (0, 1, α2)

]
+ µ2P (N, 1, 1) (91)

The fraction of parts produced by the first machine that are good is Y1 = P 1
E

PT
.

Average Inventory

The average number of parts in the buffer is:

x̄ =
∑

α1=−1,1,D1,D−1,DQ

∑
α2=0,1

[∫ N

0
xf(x, α1, α2)dx + NP (0, α1, α2)

]
(92)
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4.4 Numerical Results

The mathematical model for the two-machine-one-finite-buffer system has been solved. We compare

analytical and simulation results in this section. But as we have indicated, we represent discrete

parts in this model as a continuous fluid and time as a continuous variable. On the other hand,

in simulation and in most real systems, both material and time are discrete. For simulation, a

transient period of 100,000 time units and 1,000,000 time units of data collection period are used.

Figure 6 illustrates the comparison of the total production rate and the average inventory from

the analytic model and the simulation respectively. By changing machine and buffer parameters,

30 cases are generated and % errors are plotted in the vertical axis. The parameters for these cases

are given in [11] and are randomly chosen. The % errors in the production rates are calculated

from

PT %error =
PT (A) − PT (S)

PT (S)
× 100(%)

where PT (A) and PT (S) are respectively the total production rate calculated from the analytical

model and estimated from the simulation. We find the % error for the effective production rate PE

in a similar way. The % error in the average inventory is calculated from

Inv %error =
Inv(A) − Inv(S)

0.5 × N
× 100(%) (93)

where Inv(A) and Inv(S) are average inventory estimated from the analytical model and the

simulation respectively and N is buffer size. This equation is an unbiased way to calculate the

error in average inventory. The average absolute value of the % errors in the total production rate,
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Figure 6: Numerical results

the effective production rate, and the average inventory are 0.14%, 0.22%, and 4.8% respectively.

21



The observation that the production rates estimates are better than average buffer level estimates

is consistent with the rest of the literature [5] [8].

5 Quality information feedback

Sometimes inspection stations are designed to perform multiple inspections at the end of the line.

When a bad part is detected, the machine that made that feature is informed of its out-of-control

condition and stopped. (This is called quality information feedback.) An example of the quality

information feedback in 2M1B systems is when M1 produces defective features but does not have

inspection, and M2 has inspection and it can detect bad features made by M1.

As detailed in [8], the mean time to detect a bad part is function of the size of the buffer and

not only of the sampling policy adopted. In fact, the presence of parts in the buffer delays the

inspection of that operation. To take into account the quality information feedback we adjust the

transition rate h1 of M1 from state −1 to state DQ, and we call it hQ
1 . We define

χ21 =
h21

µ2
(94)

where 1
h21

is the mean time until the inspection at M2 detects a bad part made by M1 after M2

receives the bad part. We call Kb
1 the expected number of bad parts generated by M1 before it is

stopped by quality information feedback (from the time it enters state −1 until it enter state DQ).

It is given by

Kb
1 = (w + 1)χ21 + (w + 2)(1 − χ21)χ21 + (w + 3)(1 − χ21)2χ21 + . . . (95)

where w is average inventory in the buffer B. After some mathematical manipulation we obtain

Kb
1 = w +

1
χ21

(96)

hq
1 is the inverse of the mean time needed for the second machine to detect a bad part produced

by M1.

hq
1 =

µ1

Kb
1

(97)

Since the average inventory is a function of hq
1, and hq

1 is dependent on the average inventory, an

iterative method is used to get these values. We compare analytical and simulation results as done

in the previous section. The average absolute value of the % errors in the total production rate,
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the effective production rate, and the average inventory are 0.21%, 0.54%, and 6.84% respectively.

Figure 7 illustrates the comparison of the total production rate and of the effective production rate.
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Figure 7: Numerical results for the quality information feedback case

In Figure 8 we let the buffer size increase from 1 to 50 and we compare two situations: we

place the same inspection station first within the first machine and then at the end of the line

to catch defective parts made by the first machine. The second case has quality information

feedback. The total production rate with remote inspection is always higher than than with local

inspection. This is intuitive because the machine is stopped less frequently when making defective

parts. However, for this reason the system yield is monotonically decreasing as the buffer size

increase. In this example, the effective production rate increases up to a certain point and then

decreases monotonically as the buffer size increases. This is explained by the fact that a little

increase in the buffer size, when it is very small, gives an higher increase in effective production

rate than the decrease given by the delay of the quality information. It is very important to observe

that the system yield is a function of the buffer size if there is quality information feedback. All

these remarks are coherent with those presented by Kim and Gershwin [8].

6 Conclusion

In this paper we have analyzed how production system design, quality and productivity are inter-

related. Starting from the model presented in [8] we developed a new Markov process for machines

with both quality and operational failures. The first machine is described by a five-state model that

makes it possible to consider separately the two types of failures, thus allowing a better character-

ization of the real system. The second machine is described by a two-state model. The inspection

station has been placed either within the first machine or at the end of the line and the two kinds

of systems have been compared. When the inspection station is placed at the end of the line we
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Figure 8: Performances comparison between models with local and remote inspection
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analyzed how the buffer causes a delay in the quality information. This delay reduces the system

yield. We presented analytic models, solution techniques, performance evaluations and validation

of a 2M1B line. The present model allows system designers to investigate different configuration

to reach a target effective production rate. The 2M1B line could be used in future as a building

block in the decomposition techniques for the study of longer lines.
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