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Review of Experimental Work in Biomimetic Foils
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Abstract—Significant progress has been made in understanding
some of the basic mechanisms of force production and flow manip-
ulation in oscillating foils for underwater use. Biomimetic obser-
vations, however, show that there is a lot more to be learned, since
many of the functions and details of fish fins remain unexplored.

This review focuses primarily on experimental studies on some
of the, at least partially understood, mechanisms, which include 1)
the formation of streets of vortices around and behind two- and
three-dimensional propulsive oscillating foils; 2) the formation of
vortical structures around and behind two- and three-dimensional
foils used for maneuvering, hovering, or fast-starting; 3) the for-
mation of leading-edge vortices in flapping foils, under steady flap-
ping or transient conditions; 4) the interaction of foils with on-
coming, externally generated vorticity; multiple foils, or foils op-
erating near a body or wall.

Index Terms—Biomimetics, fish swimming, flapping foil propul-
sion.

I. OVERVIEW OF LITERATURE

B IOMIMETIC studies and observations from fish and
cetaceans have provided a wealth of information on

the kinematics, i.e., how these animals employ their flapping
tails and several fins to produce propulsive and maneuvering
forces (see reviews in [123] and [27]). Recent work with live
animals has provided important information on the resulting
flow structures [113], [3], [85], [135], [20], [21], [69].

The fluid mechanics and force mechanics of foils have been
investigated with the goal of understanding the principles of
this different paradigm of propulsion and maneuvering, so as
to apply it to enhance existing technology. The tails of some
of the fastest swimming animals closely resemble high aspect
ratio foils. As a result, flapping foils have been studied exten-
sively using theoretical and numerical techniques [72], [137],
[138], [74], [13], [51], [83], [114], [115], [94], [95], and exper-
imentally [109], [17], [68], [6], [98].

II. BASIC PARAMETERS AND DEFINITIONS

In a foil with maximum chord length and maximum span ,
moving at steady speed , and at an angle of attack , the pa-
rameters of relevance are (a) the geometric shape (rectangular,
delta-shaped, etc.); (b) the aspect ratio (AR), defined to be equal
to the ratio of an average span over an average chord; (c) the
angle of attack ; and (d) the Reynolds number ,
where is the kinematic viscosity of the fluid.
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The forces are classified as lift, the component perpendicular
to the velocity , and drag, the component parallel to .

In unsteadily moving foils, we must first parametrize the mo-
tion of the foil. For a foil of chord , moving forward at av-
erage velocity , and oscillating harmonically with a linear
(heave) motion , transversely to the velocity , and an an-
gular (pitch) motion

(1)

(2)

where is the phase angle between heave and pitch, the
heave amplitude, the pitch amplitude, the average pitch
angle, and the frequency of oscillation, we can define
the following nondimensional parameters, in addition to those
for a steadily moving foil:

1) heave to chord ratio ;
2) maximum unsteady angle of attack ;
3) reduced frequency ;
4) Strouhal number, defined as St , where is the

width of the wake of the foil;
5) mean angle of attack, which is equal to .

The Strouhal number is often approximated by taking ,
i.e.,

St (3)

The maximum angle of attack is defined as the maximum value
of the angle , where is defined as

(4)

It should be noted that, with the approximation that
St . Although “St” and can be used

interchangeably, they are both useful; because St controls
unsteady phenomena in the wake, while provides a measure
of unsteadiness with respect to the size of the foil. High force
production and efficient thrust development is often achieved
when the motion of the foil is comparable to its chord; then k
and St are of the same order of magnitude.

The instantaneous force can be decomposed into a trans-
verse component , and an axial component , with respect to
the steady velocity . The transverse force may contain a steady
component, which can serve, as in steadily moving foils, to pro-
vide a constant lift force. The instantaneous axial force may be
positive (thrust) or negative (drag); it typically contains a steady
(average) component, , which can be used to propel a body.
When propulsion is the goal, a propulsive efficiency is defined
as

(5)
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where is the time-averaged power needed to flap the foil. It
must be noted that the force is the net average axial force
acting on the foil; to employ terms from inviscid theory, it is the
difference between the thrust developed through inviscid mech-
anisms by the motion of the foil, and the drag due to the viscous
action of fluid particles. Drag and thrust are inseparable in re-
ality, though, and is the net force that one would measure in
the laboratory.

Inviscid theory [72] predicts efficiency close to 100% under
light thrust conditions and for low frequency of oscillation. This
fails to take into account the effect of drag, which would cause
the net force to become negative when the thrust force is small.
Nonetheless, as described in the following sections, propulsive
efficiency under proper parametric conditions can be high for
foils developing substantial net thrust.

III. STEADILY OR QUASI-STEADILY OPERATING FOILS

Extensive work has been performed in the aeronautics litera-
ture on enhancing lift in foils operating under steady or quasi-
steady conditions, and reducing drag [64].

Streamlining the foil is a first and obvious step. Aspect ratio
is the principal parameter affecting lift production in a stream-
lined foil. High aspect ratio wings provide high lift capacity,
comparable to that predicted for a two-dimensional foil, with
small associated induced-drag coefficient. To reduce the effect
of tip vortices, end appendages have been proposed, which have
an effect similar to end walls—to a certain degree. In practice,
it has been found that end plates are useful only for high lift
coefficient, above 0.3. Trailing vanes, winglets, and tip sails,
are good for improving performance of existing wings, but a
to-be-designed wing can always be made as good without them,
by proper aspect ratio choice.

Various means for reducing or eliminating stall, and for im-
proving lift production of quasi-steadily operating wings have
been proposed, some of them employing some unsteady excita-
tion [75], [136]. Trapped vortices above the suction side of the
wing have been tested, such as the “Kasper wing” [16], [15],
[134], [65]. The stabilization of the vortex on the wing presents
a major problem, since spanwise blowing—or suction—may be
required to ensure that the vortex is not entrained or that the
flow does not separate as vortices of opposite sign are formed,
entraining the attached vortex away from the wing.

Fins are used for stability purposes. The tuna, for example,
has retractable and nonretractable fins; the latter are needed to
control the position of the aerodynamic center, i.e., for stability
of motion. Webb [148], [149] reviews issues of fish stability.

IV. FLAPPING FOILS IN BIRDS VERSUS FISH

Extensive work on flying and swimming animals has iden-
tified some basic mechanisms employed through unsteadily
moving foils to produce the forces needed for propulsion and
maneuvering of birds and fish. The need for large lift forces
in insects has forced them to employ unsteady lift-enhancing
mechanisms mentioned in the previous section. Dickinson [19]
classifies them as delayed stall, rotational circulation, and wake
capture. Delayed stall [77], [88], [89], [32], [43], [18], the
generation of large leading-edge vorticity, possibly stabilized

Fig. 1. Motion definitions.

by spanwise flow through the core of the leading edge vortex,
is well established [81], [23], [99], [18]. Rotational velocity is
also well known to enhance lift if properly timed [88], [89].
Wake capture means the interaction of the foil with previously
shed vortices, especially if energy is recovered from them.

Swimming animals employ some of the same mechanisms
with flying animals to produce forces, but the circumstances of
swimming differ drastically from those of flying: Whereas a pri-
mary goal in flying is the continuous production of steady lift, to
balance the large body weight within a medium with small den-
sity, the major goal in fish swimming is to minimize drag forces
within a medium a thousand times more dense than air—the
generation of steady lift to support the (small) net weight is of
secondary or no importance at all. Fins and foils in water are
used for continuous production of thrust or bursts of short-du-
ration forces for maneuvering; birds must continuously support
their weight, in addition to any other function. A comparison of
the pleated wings of some insects [61] with the perfectly stream-
lined fins of most fish and cetaceans points to fundamental dif-
ferences in function and operational range (Reynolds number)
between fish and birds.

As already stated, there are similar mechanisms at work in
fish and birds.

1) The formation of leading edge vortices (“delayed stall”).
2) Influence of shed vorticity through the stable formation

of Kármán streets, or interconnected patterns in fast-
starting foils. What is termed “wake capture” in Dick-
inson [19] is a form of shed vortex-foil interaction.

3) Effective angle of attack and angular velocity (“rota-
tional circulation”).

These mechanisms exist also in fish [3], [85], [135], but not
to the pronounced degree exhibited in insects, for example. In
Anderson et al. [6] a mild leading edge vortex (LEV) is found to
benefit efficiency, but a large LEV leads to very low efficiency
and high drag.

The ingenious description of lift production through the
“Weis–Fogh” mechanism [133], [72] had to be revised by the
development of leading edge vortices, to account for a discrep-
ancy by a factor of three in lift generation [82]. Hence, LEVs
can be a very important factor in lift development. Work with
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Fig. 2. Wake patterns as function of the Strouhal number and angle of attack for ho=c = 1. Points mark the location of experiments reported in [6].

insects and small flying animals shows that LEVs, in conjunc-
tion with potential flow mechanisms, such as the Weis–Fogh
mechanism, can be used to generate large lift forces. There is a
penalty, though, when large LEVs develop, because there are
large separation-like pressure gradients which result in large
drag and lift forces. Investigation of the use of the Weis–Fogh
mechanism for applications, as suggested by Furber and Ffowcs
Williams [35], resulted in relatively low efficiency [121].

Measurements of forces and power in flapping foils [6], [98]
show that for optimal parametric combinations the drag on a
flapping foil is very close to the drag on a steadily towed foil
at zero angle of attack, resulting in high efficiency. In contrast,
insects, which must produce very high lift forces at low or zero
forward speed, generate also high drag [25].

The physical mechanisms of force production in unsteadily
flapping foils have been elucidated for flying animals, because
of the large motions required to produce large lift. The particular
needs of operation underwater, i.e., low drag and high efficiency
at high Reynolds number, result in important differences from
foils used for flying.

V. A REVIEW OF BASIC MECHANISMS

A. Steadily Oscillating Two-Dimensional Foils

The idea of forming spatially periodic patterns of vortices be-
hind flapping foils has come out “naturally” out of the early
work by Lighthill [72] and Wu [137]. More recent work has
studied the effect that different patterns of vortices have on the
forces and efficiency of foils. Triantafyllou et al. [119] per-
formed a stability analysis of the wake to find that there are
nondimensional frequencies (Strouhal numbers, as defined in
Section II) for vortex formation, which are optimal for energy
minimization. Data from flapping foils and swimming fish and

cetaceans show that they have preferred nondimensional fre-
quencies close to those for optimal efficiency [120], [26], [50],
[68], [101], [86], [145], [146], [154], [156].

For two-dimensional foils, and high aspect ratio foils away
from the ends, a planar cut in the wake shows that two vortices
per cycle are the optimal pattern, resulting in the formation of a
“reverse Kármán street”; more than two vortices may form [62],
[68], resulting in degradation of thrust generation and propulsive
performance [62], [6].

Pitching-only foils [62], heaving-only foils [50], and heaving
and pitching foils [109], [6] exhibit reverse Kármán streets. For
large Strouhal number, heaving only foils exhibit an instability
whereby the Kármán street is developed at an angle with respect
to the oncoming velocity, resulting in steady lift. There is no pre-
ferred direction, i.e., the street may be inclined with a positive or
negative angle, depending on the initial conditions, while small
disturbances can cause random switching in direction.

As found in [42], delta wings exhibit no dependence on the
reduced frequency until large angles of attack are used, because
the vortices forming from the sides remain attached and are con-
vected downstream through a helical motion. Hence there is no
characteristic time scale. In contrast, high aspect ratio foils that
form leading edge and trailing edge vortices depend strongly on
reduced frequency.

Fig. 2 [6] summarizes the observational data on the flow
around two-dimensional flapping foils as function of the angle
of attack and the Strouhal number. The Strouhal number is
defined as St , where denotes the frequency of foil
oscillation, denotes the characteristic width of the created jet
flow, and is the speed of the foil.

We distinguish several regions: In regions A and B St
the wake does not roll up into discrete vortices; in region B a
very weak leading edge vortex appears for , but
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Fig. 3. DPIV velocity data for the foil at its minimum heave position, and
St = 0:45;A=c = 1; � = 30 ; � = 13:3 ;  = 90 [6].

the wake retains its wavy form. For angles of attack larger than
about 50 a “piston” mode appears where leading and trailing
edge vortices form and roll up in the wake to form four vortices
per cycle. In region E, for angles of attack smaller than 5 , the
wake does not form distinct patterns. Region C, contained in the
limits: and St , is characterized
by the formation of a clear reverse Kármán street. A leading
edge vortex forms for angles of attack larger than about 10 ,
increasing in strength with increasing angle of attack, which is
amalgamated with trailing edge vortices to form two vortices per
cycle. Region D St is characterized by the formation of
leading edge vortices, which interact with trailing edge vorticity
to form four vortices per cycle. Data for lower show nearly
identical trends as far as the wake form is concerned; the forma-
tion of a leading edge vortex depends on , however.

The presence of a leading edge vortex is strongly influenced
by the angle of attack. In region C, for St between 0.2 and 0.5,
strong thrust develops from a reverse Kármán street, accom-
panied by up to a moderately strong leading edge vortex. Re-
gion C contains the region of optimal efficiency found in the
force experiments. In region D, for St larger than 0.5, strong
thrust develops accompanied by the formation of two vortices
per half-cycle, which have opposite circulation and, in general,
different strength. Regions A and B are characterized by low or
negative thrust, and a wavy wake with no distinct vortex forma-
tion; the leading edge vortex is very weak. In region E, for very
small angles of attack, very small or negative thrust develops.

Foils oscillating around a steady angle of attack produce
asymmetric wakes, sine they generate a steady lift force [32],
[33]. The wake may be inclined with respect to the oncoming
flow, and/or contain larger eddies on one side of the wake,
and/or a larger number of vortices on one side of the wake
versus the other side. In a hovering mode, i.e., at zero oncoming
speed, this allows to vector the force produced [33].

In a study on the efficiency of flapping foils [6], the LEV
slightly augmented propulsive efficiency when its circulation is
mild, but caused the performance to deteriorate when it grew in
strength. LEV can merge with trailing edge vortices to produce a
reverse Kármán street. Fig. 3 shows a mild leading edge vortex

Fig. 4. DPIV velocity data for the foil at its maximum heave position, and
St = 0:30;A=c = 1; � = 30 ; � = 52:7 ;  = 90 [6].

forming on a flapping foil; behind it a reverse Kármán street
forms (vortices at the top and center and bottom left). Fig. 4
shows a strong leading edge vortex, which has been shed and
has reached the trailing edge of a flapping foil. Again, a reverse
Kármán street forms back in the wake, consisting primarily of
leading edge vorticity.

In inviscid hydrodynamic theory, the Kutta condition, i.e., the
imposition of the following condition: the velocity leaves tan-
gentially from both sides of the foil at the (presumed sharp)
trailing edge, with continuous pressure across the edge. This is
fundamental to deriving the forces and flow patterns around a
steadily or unsteadily moving foil and although the Kutta con-
dition is an artifact of inviscid theory, it adds to our physical
understanding; hence it is interesting to consider whether it is
valid in an unsteadily moving foil as well.

Evidence of apparent failure of the Kutta condition at large
frequencies led to a number of investigations, which concluded
that the Kutta condition is valid if one takes into account pos-
sible vortices forming close to the trailing edge [87], [108], [93].

A basic question is whether a sinusoidal motion constitutes
optimal kinematics for a flapping foil, or if a different motion
would provide better efficiency. Koochesfahani [64] studied var-
ious deviations from a purely pitching oscillation of a foil and
found that the purely sinusoidal motion produces a clean re-
verse Karman street, whereas any other motion produces ad-
ditional vortices per cycle. Since a reverse Karman street is
found to require minimal energy, this shows that a purely oscil-
latory pitching motion is optimal. For a heaving, and a heaving
and pitching motion, Hover et al. [155] found that the optimal
kinematics in terms of propulsive efficiency are not purely si-
nusoidal heave and pitch motions; instead, for maximum effi-
ciency, a multifrequency heave motion was used that, in com-
bination with a sinusoidal pitch motion, produced a purely har-
monic angle of attack.

B. Steadily Oscillating Three-Dimensional Foils

In three-dimensional foils, the vortical patterns must connect
with each other and with the foil producing them. The idea
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Fig. 5. Vortical patterns in a rectangular foil with aspect ratio 3, oscillating at
Strouhal number 0.18 (from [150]). The patterns in the flow are isocontours of
the � eigenvalue [153].

of a chain of alternately inclined—with respect to the direc-
tion of motion—interconnected vorticity rings, as sketched by
Lighthill [72]—provides a consistent qualitative picture for the
flow structure behind oscillating foils. Recent work [20], [21],
[69] shows the formation of ring-like vortical structures by fish
fins.

Detailed flow visualization in flapping foils provides a more
complex picture [31], [33], [45]. The overall picture in three-di-
mensional wings is a “curious mixture of two-dimensional and
three-dimensional vortex developments” [33]. The presence of
leading edge vortices further complicates the connection of the
vortical structures.

Fig. 5 is a sketch based on numerical simulations (DNS) by
Guglielmini [150] at , showing the vortical patterns
behind a rectangular foil with AR at moderate Strouhal
number. The patterns resemble irregular rings, or “pancakes,”
concatenated as expected by the circulation laws. This picture
is in agreement with experimental results by Elllenrieder et al.
[140]. The rings are often not simple, i.e., intermediate intercon-
nections appear as in the first two rings behind the foil shown in
Fig. 5, which may become weak and invisible at later stages (St
lower than 0.2), or may develop into large, separate branches for
higher St.

The performance of three-dimensional foils depends on the
reduced frequency (or, equivalently, the Strouhal number), the
foil shape and aspect ratio, and the angle of attack. The effect of
the aspect ratio on the forces is reduced as the reduced frequency
increases, because the tip vortices are of alternating sign, hence
the induced velocities are significantly reduced. This observa-
tion, first made by Karpouzian et al. [51], was also reported in
the numerical study of Cheng et al. [14]. Recent detailed data on
three-dimensional foils [80] show little degradation of propul-
sive performance for moderate aspect ratio foils, compared with
the results for two-dimensional foils.

For high Strouhal number and angle of attack, it is known
from two-dimensional foils that four vortices per cycle form.
As shown in Fig. 6 for the same rectangular foil of Fig. 5 (as-
pect ratio 3) and higher St , the vortical patterns evolve
in a significantly different way: Two distinct branches appear,
drifting away from each other. The interconnections are not
simple, but distinct ring-like structures form, which in a vertical
planar cut, near the center-plane, would appear as four major
vortices per cycle.

Scherer [109] reports efficiency in rectangular, moderate as-
pect ratio wings of up to 70%. Lai et al. [67] report efficien-
cies up to about 75% (with scatter) for a flapping rectangular

Fig. 6. Vortical patterns in a rectangular foil with aspect ratio 3, oscillating at
Strouhal number 0.35 (from [150]). The patterns in the flow are isocontours of
the � eigenvalue [153].

NACA 16–012 foil with aspect ratio 4. DeLaurier and Harris
[17] report efficiencies in the range of 18–50% for a rectangular
NACA 0012 flapping foil with aspect ratio of four, oscillating
with heave amplitude equal to 0.625 chords at Reynolds number
30 000.

The presence of a leading edge vortex in three-dimensional
foils depends strongly on the maximum angle of attack, and
hence the specific load on the foil. The structure and connec-
tion of leading edge vorticity is a difficult subject, because flow
visualization pictures are not typically clear. Maxworthy [82]
had proposed that in three-dimensional wings leading edge vor-
tices are helical vortices, which connect to the tip vortices. Nu-
merical simulations in the wing of a hovering insect [95], [73]
show a similar structure. This provides for a vorticity shedding
mechanism different than in two-dimensional foils, since a he-
lical vortex need not separate to convect downstream. Freymuth
[33] shows pictures for low aspect ratio foils under high angle
of attack, where both leading and trailing edge vorticity forms.
The trailing edge vortices are connected back to the foil edges
with alternating sign tip vortices, which appear at some point to
cancel each other. This leads to the formation of vortex ring-like
structures. The leading edge vortices also form rings but the flow
is much more confused. Hence, it is possible to both have a di-
rect connection between the leading edge vortex and the tip vor-
tices, and have leading edge vortex shedding.

Leading edge vortices are an intricate part of flapping foil
vorticity above a threshold angle of attack and Strouhal number.
In a three-dimensional foil these leading edge vortices appear to
be interconnected at the ends with bound vorticity and with shed
vorticity.

A study of the qualitative and quantitative effect of the leading
vortices as their strength increases from the mild values associ-
ated with enhance efficiency by Anderson et al. [6] to the very
intense values found in insect flight [25] has not been performed
yet. Such a study will provide a bridge in out understanding be-
tween the properties of fins for swimming to those of fins for
flight.

1) Three-Dimensional Foils in Combinations of Feathering,
Rowing, and Flapping Motion: In a series of papers Kato [52],
[53], [54] has considered the forces generated by a foil with
aspect ratio of order 1—the aspect ratio found typically in the
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pectoral fins of fishes [126]. The fins performed three types of
motion (see also Fig. 1):

1) rowing, i.e., forward-backward motion;
2) feathering, i.e., a twisting (or pitching, as defined in

Fig. 1) motion about the axis of the fin;
3) flapping motion, i.e., rolling motion (inducing a heave-

like motion, as shown in Fig. 1) about the root attachment
of the fin transversely to the flow, when a steady stream
exists.

The basic conclusion is that the propulsive efficiency of feath-
ering or flapping foils (lift-based) is larger than the efficiency of
drag-based rowing foils, in agreement with Walker and West-
neat [128] who show a maximum efficiency of 10% for drag-
based, contrasted with about 60% maximum efficiency for lift-
based propulsion. Rowing is better suited for force generation in
the absence of forward speed, however, providing better maneu-
verability, since it produces substantial thrust but small trans-
verse forces. Also, it is found that a nonsinusoidal feathering
motion combined with a sinusoidal rowing motion produces
thrust accompanied with small transverse forces. Maximum ef-
ficiencies of the order of 45% are reported for the lift-based
mode of propulsion Kato [55], [56].

C. Multiple Foils and Foils Interacting With Bodies

When two or more foils operate side by side, or foils operate
near a wall or are attached to a vehicle, there are important inter-
action effects taking place. For example, two foils side by side
may have strong vortex-to-vortex interaction effects resulting in
a drag wake and serious deterioration of performance. Likewise,
interaction with bodies can have similar effects.

Bandyopadhyay et al. [10] study a streamlined vehicle
equipped with two flapping foils in close proximity. Force and
efficiency measurements and flow visualization results, show
strong interaction effects that require more parameters than the
ones used for single foils.

Flow visualization in two side-by-side foils shows, similarly,
that when foils oscillate very close to each other, a strong drag-
wake-like flow develops between the foils causing efficiency
deterioration. Experiments with two foils flapping in antiphase,
to emulate the Weis–Fogh mechanism [121], show that such
strong interaction can produce sufficient thrust to propel a ship.

Dual foils have also been tested for efficiency. One of the
issues in dual foils is the strong interaction between the wakes
of the foils, which can take many forms:

• wakes can collapse into a single wake;
• wakes interact strongly forming two jets divided by a

backflow region, which can deteriorate performance
seriously;

• foils can be well separated, providing good thrust perfor-
mance.

When foils flap against a body, or against a second foil, the con-
ditions of the Weis–Fogh mechanism apply. Large forces are
produced but these include large drag forces, while the resulting
vortical patterns usually are different from single foils. In Tsu-
tahara and Kimura [121] the Weis–Fogh mechanism is used to
produce thrust for ship propulsion. Two rectangular plates with
aspect ratio 1.8 were used up to Reynolds number 300 000. The

efficiency was up to 58% for angular amplitude of 15 , lower
for other conditions. Bandyopadhyay et al. [9], [10] employed
two foils flapping against a middle flat plate. They report effi-
ciencies up to 30%, while the vortical patterns form a rapidly
expanding wake.

D. Foils Interacting With Oncoming Unsteady Flows

Foils will invariably operate in environments that contain un-
steady flow such as waves near the surface of the ocean; and
large vortical structures and/or turbulence when operating in the
wake of a propelled body, or in the wake of another foil or pro-
peller. Several foils interacting with each other, a foil in the wake
of sharply maneuvering object, foils operating with a turbulent
ocean are only a few examples.

The study of the interaction between the wake of an upstream
body and a downstream foil, the study of the interaction be-
tween foils in cascade, and foils in turbulent flow, require an
understanding on how externally generated vorticity interacts
with foil generated vorticity. Hence, multiple foils interacting
with each other; and foils in the wake of upstream bodies, sub-
ject to organized shed vorticity or wake turbulence, require an
understanding of how such vortical interactions affect the per-
formance of the foils. This information can be valuable, since
it can be used to preserve performance through sensing and
closed loop control; and to study under what conditions—and
how—such interactions can be used to actually improve propul-
sive performance [40].

Sparenberg and Wiersma [112], Koochesfahani and Dimo-
takis [63], Gopalkrishnan et al. [40], Streitlien et al. [115], and
Beal et al. [11] have performed theoretical and experimental
studies on the interaction of foils with upstream vorticity.
Gopalkrishnan et al. [40] identified three modes of interaction.

• Upstream vortices are repositioned and then interact
destructively with foil-generated vortices of the opposite
sign to create a field of weak vortices (destructive mode),
resulting in substantial increase of efficiency.

• Upstream vortices are repositioned and then join foil-gen-
erated vortices of the same sign to create a field of vig-
orous vortices (constructive mode), resulting in increase
of thrust at the expense of reduced efficiency.

• Upstream vortices are repositioned and then pair with foil-
generated vortices of the opposite sign to create a field
of vortex pairs, appearing in visualization as “mushroom-
structures,” resulting in a wide wake (pairing mode), re-
sulting in a great variety of responses depending on the
timing of vortex pairing.

Further work by Anderson [3] showed that there is one more
dimension to the problem: leading edge vorticity can interact
early with oncoming vorticity, resulting in patterns that re-
semble qualitatively the three major patterns of Gopalkrishnan
et al. [40] but differ in several aspects of the flow especially
close to the foil, hence affecting performance.

E. Maneuvering Foils

Flapping foils that are used to generate forces for maneu-
vering must either provide a steady lift force, often in addition
to thrust, or provide a short-lived, high-magnitude force. There
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is close connection between flapping foils used for propulsion
and those used for maneuvering since both depends on unsteady
flow mechanisms to develop forces. The details differ, however,
and hence the physical mechanisms and properties have differ-
ences as well.

Experiments to study the development of transient forces are
relatively few. They contain cases of foils performing a transient
motion [2], [98], [80]; foils performing a flapping motion with
a superimposed bias angle to develop steady lift forces [88],
[89], [98]; and combination of rowing, plunging, and feathering
motions with bias angles to develop nonsinusoidally varying lift
forces that can be used for positioning and maneuvering [52],
[54], [55], [56], [79].

Hertel [46] and Ahlborn et al. [2] showed that a flapping foil
develops a pair or pairs of interconnected vortices (which appear
like rings in a three-dimensional view) when starting from a
position of rest and performing a complete cycle of heave or
pitch motion. Drucker and Lauder [20], [21] show the formation
of sequences of inclined, interconnected ring-like structures in
the wake of flapping pectoral fins of live fish.

As reported in Ohmi et al. [89], the bias angle in a pitching
foil plays a significant role in determining the flow patterns up
to a threshold Strouhal number—in the nomenclature of the au-
thors, instead of Strouhal number, they use the product of re-
duced frequency and angle of oscillation.

In [98] and [80] a bias angle is used to produce steady lift
in unsteadily flapping foils. Significant steady and unsteady lift,
which is much higher, up to an order of magnitude, than under
steady conditions, can be produced. The moderate aspect ratio,
three-dimensional foil in Martin et al. [80] produced steady
and unsteady lift forces comparable to those experienced by the
two-dimensional foil employed by Read et al. [98]. This demon-
strates once more that end-effects are less important in unsteady
foils than steady foil, in accordance with the findings in [51],
[14], and [25].

F. The Influence of Cavitation on Foil Performance

While cavitation in steadily moving foils is understood [5],
this cannot be said for unsteady foils, where vortices form close
to the foil, migrate in its wake, and interact with each other. The
interaction among the tip vortices is of the destructive type, since
the angle of attack is oscillatory—which explains why reduced
frequency has often a beneficial effect, i.e., reducing cavitation.

Cavitation in unsteadily moving foils is known to be influ-
enced by the reduced frequency of oscillation, but the infor-
mation is very sparse and restricted to mostly visual observa-
tion [5], [45]. The vortical structure around the foil affects the
cavitation properties significantly, so such an investigation must
follow immediately after the investigation on the structure of the
flow around and behind foils. First, the optimal range of foil op-
eration must be investigated, i.e., with moderate angles of attack
and Strouhal number; followed by larger angles of attack.

G. Effect of Geometry and Flexing Stiffness of Foils

Fish fins present great variability in shape, aspect ratio and
structure, depending on the application they are intended for.
Pectoral fins, for example, may have the shape of moderate- or
low-aspect ratio foils for some fish; while for others, such as

whales, large aspect ratio foils are used. Also, the flexibility of
the foils ranges greatly. Foils can flex along their chord and/or
along their span. Fish certainly employ passive flexibility and
possibly actively controlled flexibility.

Kemp et al. [141] report experiments with a low-aspect ratio
pitching foil, whose propulsive efficiency may double when the
flexibility of the material is optimized. The material used in this
study is relatively soft, allowing substantial flexing; hence the
mechanism involved is that of resonance, i.e., added-mass en-
ergy storage and release within a cycle. Similar use of spring-
like materials has been shown to improve efficiency in theoret-
ical studies [142] and in observations in animals [143]. The fact
that low-aspect ratio wings can develop adequate efficiency is
due to the alternating sign of the tip vortices, which reduce the
“downwash” substantially, as noted earlier by Karpouzian et al.
[51].

In a recent paper, Prempraneerach et al. [144] show that
efficiency in high aspect ratio foils can increase substantially,
exceeding 80%, with small effect on the thrust, when chordwise
flexibility is optimized. The material used is relatively stiff,
causing a camber of the order of a few percent of the chord.
A detailed parametric study shows that an optimal value of
nondimensionalized elastic stiffness can be selected, which
also provides a scaling law for chordwise flexible foils.

The significant improvement in propulsive efficiency through
properly selected flexibility provides an explanation for the fact
that many fish fins are flexible, more so than in birds, where lift
production is more important than efficient thrust generation.
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