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Robust Control For Underwater Vehicle 
Systems With Time Delays 

Michael S .  Triantafyllou and Mark A. Grosenbaugh 

Abstract-Presented in this paper is a robust control scheme for 
controlling systems with time delays. The scheme is based on the Smith 
controller and the LQG/LTR (Linear Quadratic Gaussian/Loop Trans- 
fer Recovery) methodology. The methodology is applicable to undenva- 
ter vehicle systems that exhibit time delays, including tethered vehicles 
that are positioned through the movements of a surface ship and 
autonomous vehicles that are controlled through an acoustic link. An 
example, using full-scale data from the Woods Hole Oceanographic 
Institution’s tethered vehicle ARGO, demonstrates the developments. 

I. INTRODUCTION 

ONTINUOUS exploration of the ocean bottom requires C reliable equipment to withstand the hostile environment. 
Tethered vehicles offer such reliable operation, because the 
surface-support ship can be used to position the underwater 
vehicle, thus reducing considerably the complexity of the under- 
water system. Autonomous vehicle systems that are controlled 
through an acoustic link offer the potential for reliable operation, 
because most of the hardware of the control system can be 
placed onboard a support ship or on land 

In either case, time delays are present in the control action. 
For vehicles controlled through a long tether, the time delay is 
caused by the slow propagation of transverse motions in the 
tether, and it can reach values of 1 to 2 min for a 1000-m cable, 
and 5 min for a 6000-m cable (Fig. 1). For autonomous vehicles 
controlled through an acoustic link, the delay is caused by the 
finite sound speed of water. 

Control in the presence of time delays poses particular diffi- 
culties, since a delay places a limit on the achievable response 
speed of the system. Also, assessing the robustness of the 
closed-loop system to modeling errors, particularly errors in the 
time-delay constant, becomes of paramount importance. 

A scheme to design controllers with guaranteed nominal sta- 
bility for plants involving delays is shown in Fig. 2 and is known 
in the literature as the Smith controller [l]. Attention has been 
paid to this scheme over the years and some of its properties 
have been reported in [2]-[9]. 

Optimal control methods are well developed for linear, time- 
invariant, finite-dimensional systems. Recent progress in the 
design of robust control schemes has resulted in the Linear 
Quadratic Gaussian (LQG) methodology with Loop Transfer 
Recovery (LTR), referred to in the sequel as the LQG/LTR 
methodology [lo], [ 1 11. 

What will be shown here is how the Smith control scheme can 
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Fig. 1. Ship velocity and vehicle velocity as function of time (full-scale 

measurements, tether length equals 1200 m). 
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Fig. 2. Block diagram of the classical Smith control loop showing: (a) 
Reduced loop, and (b) auxiliary loop. 

be combined with the LQG/LTR methodology to achieve robust 
control designs. An example is presented for a tethered underwa- 
ter vehicle system, although the implementation steps would be 
the same for an acoustically controlled autonomous vehicle 
system. 

11. THE SMITH CONTROL SCHEME 

The Smith control scheme was proposed in [ l ]  to handle 
plants containing pure-time delays; i.e., plants having a transfer 
function of the form: 

G ( s )  = G R ( s ) e - S T  (1) 
where GR(s) is a rational transfer function, and 7 denotes the 
time delay. Within the Smith control scheme, one first designs a 
compensator K ( s )  which stabilizes the rational part GR( s) (Fig. 
2(a)). Then an auxiliary loop is placed around the compensator 
K ( s )  to ensure nominal stability of the irrational function G ( s )  
(Fig. 2(b)). 
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showing: (a) Reduced loop, and (b) auxiliary loop. 
Fig. 3 .  Block diagram of the extension of the Smith control scheme 

We now present two multivariable extensions of the basic 
Smith scheme, each handling a system of a particular form. 

A .  First Multivariable Extension 
Consider a multivariable system with an irrational m x m 

transfer function matrix G( s) which represents a (linear) physi- 
cal system (i.e., a proper contour can be found in the complex 
s-plane such that the Laplace transform of G(s) provides a 
causal impulse response function matrix) and which can be 
written in the following special form: 

where G,(s) is a rational, strictly proper m x m exponentially 
stable transfer matrix, and G,(s) is an m x m irrational trans- 
fer matrix containing no singularities in the right-half plane. Let 
K ( s )  denote an m x m stable compensator designed to stabilize 
G,(s) (the closed-loop scheme involving GR(s)  will be called in 
the sequel the “reduced loop”). Then the scheme of Fig. 3 is 
nominally stable. 

The proof is as follows: The equivalent compensator K , ( s )  in 
the Smith scheme is 

(3) 

Hence the closed-loop transfer function matrix Gc,(s) for the 
Smith controller is 

Gc,(s) = [’+ G ( s ) K d s ) ]  - 1 G ( s ) K l ( 4  

= G ( s ) K ( s ) [  + GR(s )K(s ) ]  - ’  

The reduced-loop system has the closed-loop transfer function 
matrix (Fig. 3): 

GCLR(s) = G R ( s ) K ( s ) [ ’ +  G R ( S ) K ( s ) ] - I .  ( 5 )  

By construction, the reduced loop is stable, hence the reduced- 
loop characteristic polynomial 4 R ( ~ )  contains no zeros in the 
closed right-half plane. Thus the closed-loop system function 
+(s) defined as [12] 

+(s) = @ R ( s ) d e t [ z +  G R ( s ) K ( s ) ]  (6) 
has the same right-half plane zeros as the polynomial of the 
reduced loop, as evidenced from (4), and given that G,(s) has 
no singularities in the right-half plane. This completes the proof. 

~ 
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Our supposition and results parallel similar developments in [4] 
as far as nominal stability is concerned. 

Since the Nyquist plot for G,,(s) is essentially that of the 
reduced loop, one may infer that the system will have similar 
robustness properties to the reduced loop when considering 
variations in GR(s) .  In Section IV, we consider the robustness 
of the system to variations in G,(s). 

B. Second Multivariable Extension 
Next we consider the more general case of a multivariable 

system with m X m transfer function matrix G(s), which is 
open-loop stable and which again may be irrational but cannot be 
written in the form given by (2) .  Again, we assume that a proper 
contour can be found in the complex s-plane, such that the 
Laplace inversion of G( s) provides a causal impulse response 
function matrix. 

Let G,(s) denote an m x m rational, exponentially stable, 
strictly proper transfer function matrix which is obtained by 
simplifying (in any arbitrary manner) G(s). Then if the compen- 
sator K ( s )  is designed for the open loop G R ( s ) ,  the generalized 
Smith control scheme shown in Fig. 3 is nominally stable. 

The proof is as follows: The closed-loop transfer function 
matrix for the reduced system C,,(s) is given by ( 5 ) ,  while we 
find that the closed-loop transfer function matrix for the Smith 
controller Gc,(s) is simply, 

Then following the same steps as in the previous case (i.e., by 
comparing the two closed-loop transfer functions and by virtue 
of the Nyquist criterion [13]), the stability of the first implies the 
stability of the second. 

The requirement for open-loop stability is a basic restriction 
of the Smith controller as shown in [4] and [14]. The basic 
scheme can be modified to remove this requirement [14]. How- 
ever, this will not be pursued here. 

111. DESIGN OF K (  S )  USING THE LQG/LTR 
METHODOLOGY 

In designing the compensator K ( s )  for the reduced loop 
GR(s), we employ the LQG/LTR methodology to ensure suffi- 
cient robustness margins. A detailed account of the methodology 
can be found in [lo], [ 111, and so only a brief description is 
given here. An optimal regulator and a Kalman filter are cas- 
caded in a classical LQG configuration [15], but the regulator is 
parametrized with respect to the scalar weight of the control- 
penalty matrix, denoted as p.  As p tends to zero, it is shown 
that the closed-loop transfer function tends pointwise to the 
Kalman filter transfer function, whose very good robustness 
properties are well known [16], [17]. These properties include: 

1) 60” of phase margin (positive or negative) in each channel, 
separately or simultaneously. 

2) Infinite upward gain margin and one-half reduction gain 
margin in each channel, separately or simultaneously. 

3) The condition for this asymptotic result is that the open-loop 
plant contains no nonminimum phase zeros. 

IV. ROBUSTNESS PROPERTIES OF THE ROBUST SMITH 
CONTROLLER 

We will refer in the sequel to a “Robust Smith Controller” to 
denote a Smith control scheme whose compensator K ( s )  has 
been designed based on the LQG/LTR methodology. 
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The nominal system in the Smith control scheme enjoys the 
same robustness properties as the reduced scheme, as shown 
above. Hence the closed-loop transfer function matrix has the 
robustness properties mentioned in the previous section, pro- 
vided that the reduced (rational) transfer function used to design 
the compensator has no nonminimum phase zeros. 

We consider a multivariable system with transfer function 
matrix G(s). Let G N ( s )  denote the nominal value of the same 
transfer function which is subject to (unknown) variations. Then 
the design of the auxiliary loop in Fig. 3(b) is based on G N ( s ) ,  
where the rational transfer function matrix GR(s) is obtained as 
a reduction of G N ( s ) .  In this case, the closed-loop transfer 
function matrix Gcu( s) becomes: 

Gc,(s) = G ( s ) K ( s )  

-{I+ G , ( s ) W  + [G(s) - G N ( s ) l K ( s ) J - l .  (8) 

We distinguish two cases: An additive variation and a multi- 
plicative variation. 

A .  Additive Variation 
If the variation in the plant is in the form of an additive error 

as defined by the matrix E in Fig. 4(a), then the stability-robust- 
ness test requires [ 111: 

(9) 

then the robustness criterion provides: 

C. Application to a System with a Pure Time Delay 
It is of interest to focus on a system which contains delays and 

consider the robustness of the Robust Smith Controller to errors 
in the time-delay constant. 

We consider an open-loop system with the nominal transfer 
function matrix: 

G N ( s )  = GR(s )epSrN (15) 

where GR(s) is a strictly proper, stable, rational transfer func- 
tion that contains no nonminimum phase zeros. Let K ( s )  denote 
the LQG/LTR controller which stabilizes GR( s). We consider 
now the Robust Smith Controller and in particular, a modeling 
error in the time-delay constant. Let r denote the actual value of 
the time constant, and rN be the nominal value around which the 
system has been designed. The error can be cast as an output 
multiplicative error-i.e., if G( s) denotes the actual open-loop 
transfer function matrix, then 

G(s) = GN(s)e-f ir- 'N) 

= [ + W ]  G N ( 4  (16) 
where 

where am,[ A ]  and ami,[ A ]  denote the maximum and minimum 

the variation is in the form of an additive matrix A( s), such that 
singular values of matrix A ,  respectively. If we consider that Z + E(  s) = Ze-s(r-TN). (17) 

Given (16) and based on the stability-robustness test of (12), we 
G ( s )  = G N ( s )  + A ( s )  (10) find: 

then the robustness criterion takes the form: 

amax[ A ( s ) K ( S ) ]  < .,in[ G R ( s ) K ( s ) ]  ' (11) 

B. Multiplicative Variation 
If the variation in the plant is in the form of a multiplicative 

error as defined by the matrix E in Fig. 4(b), then the stability- 
robustness test is [ 1 11 

a m , [ ~ ( j w ) l  < ~ m i n [ ~ ~ ! s ( j w ) l .  (12) 

If we consider the following variation: 

G ( 4  = G / ( S ) G R ( S )  

G N ( S )  = G / N ( s ) G R ( S )  (13) 

11 - e - . i W ( 7 - 7 N )  1 = Jz - 2cos [w(7-  T N ) 3  < 1. (18) 

Equation (18) restricts the bandwidth of the system, as shown 
in Fig. 5 ,  providing a rough estimate of the cut-off frequency 
W,: 

D. Application to a Single Input-Single Output System 
with Nonminimum Phase Zeros 

system with the following transfer function: 
We consider an open-loop, single input-single output (SISO) 

G(s) = G,(s)(s - a)  (20) 
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Fig. 6. Disturbances at plant input. 

where a is positive, and Gl(s) is a strictly proper, stable, 
rational transfer function that contains no nonminimum phase 
zeros. A nonminimum phase zero poses intrinsic difficulties for 
control, as outlined in some detail in [18]. The essence of these 
difficulties is the noninvertibility of the plant, hence making a 
close connection between a nonminimum phase zero and a time 
delay. In fact, if we set: 

s - a  

s + a  
G(s) = G*(s)- 

where 

GAS) = G,(s)(s + 0) (22) 

then the last term on the right-hand side of (21) is the first-order 
Pade approximation of a delay. Hence the Smith control scheme 
can be applied directly, substituting the ratio (s - a) / (s  + a) 
for the delay and using G2(s)  as the reduced plant transfer 
function. Thus, robustness of the system with a nonminimum 
phase zero is achieved. 

V. DISTURBANCE REJECTION 
We consider the SISO case and study rejection of disturbances 

N ( t )  at the input (Fig. 6). In a classical control scheme (i.e., 
when G(s) is rntional and K l ( s )  = K ( s ) ) ,  the output y (s )  is 
given as 

For good disturbance rejection it is sufficient to have I N(s )  I 
1 K ( s )  1 .  For the Smith scheme described by ( l ) ,  we find: 

We concentrate on the response due to the disturbances N ( s )  by 
setting r ( s )  = 0 in (24). Since K ( s )  is based on GR(s ) ,  we 
have K(s)G,(s) %- 1, hence: 

y N ( s )  = G , ( s ) e - S ' N ( s ) ,  if Is71 = O(1) 

We conclude from (25) that disturbance rejection is achieved 
over the low-frequency range, defined by the condition that 
w 7  e 1, such that the magnitude of K(s)G,(s) is not allowed to 

4 
v(t) 

Fig. 7.  Tether-mass positioning system (in air). 

become arbitrarily large, since: 

Under these conditions, 

and hence if 1 K ( s )  I S I N(s )  1 ,  then I y (s )  I Q 1. 

VI. GOOD COMMAND FOLLOWING 
Continuing our consideration of the SISO plant and in view of 

(24), we find that the requirement for good command following 
is that I G ( s ) K ( s )  I S 1 over the frequency range of interest. In 
this respect, the Smith scheme has the same properties as 
classical feedback systems and we need not pursue the subject 
any further. 

VII. Two EXAMPLES OF THE ROBUST SMITH 
CONTROLLER 

The first example considers the SISO system with open-loop 
transfer function: 

e-'* 
G(s) = ___ 

(s+ 1 ) *  

We first apply LQG/LTR to the rational part of the transfer 
function, GR(s )  = l / ( s  + l)*, and recover, in the limit, the 
target-loop transfer function. Then the robustness condition ( 18) 
provides a direct assessment of robustness in terms of the 
recovered loop parameters [ 111 and the delay mismatch. 

For the second example we consider a more complex system 
which in fact resembles the actual system under study, the 
remote positioning of a mass M through a vertical tether of 
length L ,  mass per unit length m, and (presumed constant) 
tension T (Fig. 7). The most important difference from the 
actual system (considered in the next section) is the absence of 
fluid drag. The transfer function G(s) between the imposed 
motion at the top U( t )  and the response of the mass U( t )  is 

1 

[ 7 sinh ( f ) + cosh (411 G(s) = (29) 
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Fig. 8. Principal system under study, consisting of a dynamically posi- 
tioned surface ship, a long tether, a passive survey vehicle, and a remotely 
operated vehicle connected to the survey vehicle through a second tether. 

where 

c =  E.  
This expression can be nondimensionalized to give: 

1 

G(.?) = P.? sinh (as) + cosh (CY.?) (30) 

where 
S 

S =  (31) T 

and 

A rational approximation G R ( s )  is obtained for low frequen- 
cies (representing an equivalent pendulum) in the form: 

1 
G R ( S )  = - 

g 2 + 1 ‘  (33) 

We may apply LQG/LTR to (33) and recover the target loop, 
thus guaranteeing for the nominal loop the good robustness 
properties of the Kalman filter loop. The robustness tests express 
directly the robustness to parameter mismatch, such as the tether 
properties or the mass M .  

VIII. APPLICATION TO TETHERED UNDERWATER 
VEHICLES 

The physical system under study is seen in Fig. 8. Here, a 
surface ship is shown positioning an underwater vehicle through 

I I I I I I I I 
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Fig. 9. Command following of a submerged-survey vehicle that is being 
positioned through the commanded movements of a surface ship. The 
desired vehicle position consists of a rising ramp, a constant value, and then 
a declining ramp. “Actual” vehicle position was calculated using the 
nonlinear numerical model of [24] with the ship position as input. 

a long tether. The vehicle may be searching the ocean floor or 
mapping the topography of the bottom, or it may be the platform 
for a smaller vehicle equipped with its own thrusters. 

For bottom search, the tether has a length that is slightly 
larger than the water depth. Since 85% of the ocean is deeper 
than 2500 m, tethers are usually very long, having slow dynam- 
ics with time constants in the range of 1 to 5 min. Manually 
controlling the vehicle is almost impossible, because human 
operators cannot control systems with such long time constants. 
As we have shown, automatic control requires special attention 
when handling systems with time delays, making this problem 
different from the vehicle control problem studied, for example, 
in [19]. 

The experiments reported in [20]-[23] established the basic 
properties of the open-loop system (Fig. 8). The underwater 
vehicle is to be controlled through dynamic positioning (DP) of 
the surface vessel. The DP system uses the surface ship’s 
thrusters to provide the control force and hydrophones and 
submerged pingers to position itself. The DP system may be 
modified to utilize the measured position of the underwater 
vehicle, so as to achieve the desired goal directly. 

The dynamics of the tether and attached vehicle have been 
modeled by a set of nonlinear partial differential equations as 
described in [24], and the predictions have been confirmed by 
direct comparison with the full-scale data. By comparing the 
results of the nonlinear model to parametric models, the follow- 
ing approximation was derived for the transfer function between 
imposed ship motion and vehicle response: 

(34) 

where m = 1, b = 1 . 1  x and 7 = 40 
s. The model is valid for a cable 2500-m long and a vehicle 
weighing 17 OOO N in air. 

Subsequently, we applied LQG/LTR to the function G,(s) 
and used the extended Smith scheme to obtain a controller [25 ] .  
Fig. 9 shows results from one simulation, demonstrating com- 
mand following. For the actual system we employed the nonlin- 
ear model. The desired path is shown by the dotted line (a rising 
ramp, a constant value, and a declining ramp returning the 
vehicle to its original position). The dashed line represents the 
actual vehicle position. The ship-commanded position (i.e., the 

c = 2.58 x 
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control output, shown by the solid line) has the features of a 
strong lead controller, characteristic of the Smith scheme. The 
initial delay is intrinsic to the system and causes the initial 
deviation from the desired path (which is unavoidable). Good 
overall performance is achieved, given the crudeness of the 
approximations used in deriving (34). 

IX. CONCLUSIONS 
A control scheme has been presented, based on  extensions of 

the Smith controller and the LQG/LTR methodology, to handle 
systems with time delays, or more generally with irrational 
transfer functions. The methodology is applicable to underwater 
vehicles which are controlled through an acoustic link or teth- 
ered vehicles which are positioned through the movements of a 
surface-support ship. An example of the method is presented for 
the tethered underwater vehicle ARGO, whose dynamics involve 
long delays of the order of several minutes. 
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