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Abstract

Voting institutions commonly assign di®erent weights across voters. Most analyses of such
systems assume that the relative in°uence of each player is non-linear in her voting weight.
We reassess this assumption with a distributive bargaining game that closely resembles the
closed-rule, in¯nite-horizon Baron-Ferejohn (1989) model. In equilibrium, voters with lower
weights are typically perfect substitutes for voters with higher weights. Hence, each voter's
power is exactly proportional to her voting weight. An exception occurs when su±cient
numbers of high-weight voters exist. In this case, low-weight voters are relatively more
powerful than high-weight voters because their probabilities of being recognized to make
a proposal are equal to those of high-weight voters. These results call into question the
applicability of power indices such as the Banzhaf index and Shapley-Shubik value, which
are often convex in voting weights.



1. Introduction
Collective decision-making frequently involves situations in which actors have di®erent

numbers of votes. Some institutions use explicit weighted voting rules that assign unequal

numbers of votes or weights to di®erent members. Examples include the European Union

Council of Ministers, the U.S. Electoral College, the International Monetary Fund, the Inter-

national Energy Agency, and the International Co®ee Council. Choice of weights is a subject

of on-going controversy in such bodies. In other institutions, blocs of votes are assembled

and cast together. Important examples are shareholder voting in corporations and voting in

legislatures with uni¯ed parties or factions. How does the distribution of votes a®ect who

gets what?

Elementary microeconomic theory teaches that in competitive situations perfect substi-

tutes have the same price. In a political setting in which votes might be traded or transferred

in the formation of coalitions, one might expect the same logic to apply. If a legislator or

bloc has k votes, that legislator or bloc should command a price for those votes equal to the

total price of k players that each have 1 vote. Put in terms of expected payo®s, then, the

player with k votes should expect to have a payo® k times as great as the payo® expected

by a player with 1 vote. If \expected payo®" can be used as a measure of \power," then the

player with k votes should also expect to have k times as much power as the player with 1

vote.1

In this paper, we present a straightforward model of divide-the-dollar politics that cap-

tures this intuition. We show that the non-cooperative bargaining model of Baron and Fer-

ejohn (1989) leads naturally to the result that expected payo®s are proportional to voting

weights.2

1Theorists working on this problem commonly equate power and expected payo®s. There is some debate
over whether the de¯nition of power should also include the ability to change the outcome, even though
the action does not result in an increase in, and may even lower, the payo® for the pivotal actor. See
Felsenthal and Machover (1998) for a discussion of the issues, especially the distinction between \I-power"
and \P-power". In this paper we use the terms power and expected payo®s interchangeably.

2This is the most widely used model of legislative bargaining, and has been used extensively to study
various aspects of distributive politics and government institutions. See Harrington (1989, 1990a, 1990b),
Baron (1991, 1996, 1998), Baron and Kalai (1993), Calvert and Dietz (1996), Winter (1996), Diermeier and
Feddersen (1998), Banks and Duggan (2000), LeBlanc, Snyder and Tripathi (2000), McCarty (2000a, 2000b),
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There are two types of equilibria. The ¯rst type is an \interior" equilibrium in which each

player's expected payo® is equal to his share of the total voting weight. The second type is a

\corner" equilibrium in which players with the largest weights have expected payo®s that are

proportional to their voting weights but their shares are less than their share of the weight

(so the factor of proportionality is less than one), and players with the smallest weights all

receive expected payo®s greater than their shares of the total voting weight. Which type of

equilibrium occurs depends on the distribution of voting weights.

The intuition is straightforward, and follows from a simple substitution argument. In

the Baron-Ferejohn model, a randomly drawn legislator makes a proposal|a division of the

dollar|which is then put to a vote. Proposers seeks to o®er as little of the dollar as possible

to others, because they keep the residual for themselves. Suppose type-1 players have a

continuation value of 2 and a voting weight of 1, while type-2 players have a continuation

value of 5 and a voting weight of 2. Then rational proposers seeking to minimize the costs

of the coalitions they construct will never include type-2 players in their coalitions (except,

perhaps, because of \integer" issues). Proposers will substitute type-1 players for type-2

players whenever possible, since two type-1 players have the same total voting weight as one

type-2 player, but a total cost that is 4/5 as much.

At a \corner" equilibrium the players can be divided into two distinct groups, de¯ned by

some cuto® weight t0. Players with voting weights less than t0 have expected payo®s that

are greater than their shares of the total voting weights, while players with voting weights

greater than (or equal to) t0 have expected payo®s that are less than their shares of the total

voting weight. All players with voting weights greater than (or equal to) t0 have expected

payo®s that are equal to some µ times their voting weight, with µ < 1. The reason weak

players have expected payo®s that are greater than their shares of the voting weight is their

proposal power. By assumption, this is assigned equally to all players. The corner equilibria

occur when the weakest players are so weak that, even if no other proposers ever include

them as coalition partners, their proposal power alone is enough to yield an expected payo®

Norman (2000), and Eraslan (2001).
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greater than their share of the voting weight.

Most theoretical and applied analyses of weighted voting employ power indices, such as

the Shapley-Shubik value, the Banzhaf index, and the Deegan-Packel index.3 These indices

do not have the feature that perfect substitutes have the same price or expected value.

Rather, these indices are generally highly nonlinear in the voting weights. Many scholars

see this as quite natural. One example is Lucas:

It is fallacious to expect that one's voting power is directly proportional to the
number of votes he can deliver. Yet many attempts to correct inequalities merely
assign weights to a delegate proportional to the number of inhabitants he repre-
sents, and it is felt that this preserves some equality at the level of the individual
citizens. Paradoxically, those who advocate that they are the main bene¯ciaries
of the weighted systems such as the Electoral College are very often the ones
most hurt by it in terms of power indices... Power is not a trivial function of
one's strength as measured by his number of votes. Simple additive or division
arguments are not su±cient, but more complicated relations are necessary to
understand the real distribution of in°uence (Lucas, 1978, page 184).

Another example is Brams and A®uso:

...a measure like Banzhaf's is not only an eminently reasonable indicator of a
crucial aspect of voting power|the ability of a member to change an outcome by
changing its vote|but also highlights the fact that size (as re°ected by voting
weights) and voting power may bear little relationship to each other (Brams and
A®uso, 1985, page 138).

The standard power indices are justi¯ed in terms of cooperative game theory or axiomatic

approaches. They are based on the idea that all orderings, or winning coalitions, or minimal-

winning coalitions, are equally likely to form, regardless of how expensive or cheap they are.

In contrast, under the competitive bargaining logic expensive coalitions will form rarely or

not at all, and cheap coalitions will form quite often.

The competitive bargaining logic produces several key predictions that di®er from power

indices. First, as noted, at an interior equilibrium the expected payo®s of players depend

linearly on the number of votes. Second, in the corner equilibria, it is the weaker players
3See Shapley (1953), Shapley and Shubik (1954), Banzhaf (1965), and Deegan and Packel (1978) for

de¯nitions of these indices.
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that receive expected payo®s greater than their weight. By contrast, power indices typically

assign disproportionate power to players with higher voting weights. Third, even \dummy"

players can have positive expected payo®s, because all players have some chance of being

chosen as proposer. By contrast, power indices assign zero power to any player with too few

votes to be pivotal in at least one coalition. We view these as testable predictions, and leave

that for further work.

Our results have important implications for the empirical and normative literature on

weighted voting. An extensive literature examines weighted voting and bloc voting in par-

liaments, economic organizations such as the IMF and International Co®ee Cartel, the U.S.

Electoral College, and other institutions. Most of this literature uses power indices, especially

the Shapley-Shubik and Banzhaf indices, to critique various schemes for the distribution of

votes within organizations.4 These arguments have even been used in court cases to justify

various voting schemes (though with limited success). We will discuss the implications of

our results for the Council of Ministers of the European Union, which has been an important

subject of continued controversy because of the EU is of growing importance and because

periodic expansions of the EU require new distributions of voting weights.5 If our results are

right, then voting weights proportional to populations would produce equitable distributions

of payo®s in expectation.

Beyond these applications, our paper represents an important extension of the theoretical

work using the Baron-Ferejohn legislative bargaining model. Our paper is most closely

related to Winter (1996) and McCarty (2000a), who study variants of the Baron-Ferejohn

model with veto players, and to McCarty (2000b) who studies a variant that incorporates

an executive veto. To our knowledge, no previous papers have used the Baron-Ferejohn

model|or any non-cooperative model that incorporates endogenous proposals and majority
4See, for example, Banzhaf (1968), Owen (1975), Merrill (1978), Dreyer and Schotter (1980), Holler

(1982), Bates and Lien (1985), Rabinowitz and MacDonald (1986), Rapoport and Golan (1985), Strom,
Budge, and Laver (1994), Konig and Brauninger (1996), and Calvo and Lasaga (1997).

5See Brams and A®uso (1985), Hosli (1993), Widgren (1994), Lane and Maeland (1995), Lane, Maeland,
and Berg (1995), Teasdale (1996), Felsenthal and Machover (1997, 2001, n.d.), Laruelle and Widgren (1998),
Konig and Brauninger (1998), Holler and Widgren (1999), Garrett and Tsebelis (1999a, 1999b, 2001), Sutter
(2000a, 2000b), Tsebelis and Garrett (2000), and Widgren (2000).
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rule|to study weighted voting.6

2. Model and Results

2.1 The Model

In the model, the players are a continuum of legislators distributed uniformly on L ´
[0; n), where n is a positive integer. Legislators each belong to one of T types, de¯ned by their

voting weights, where 1 · T · n. A type t legislator has a voting weight wt and belongs to

the interval Lt µ L, where L = [Tt=1Lt. We assume that weights are positive integers and

that wi < wj for any i < j, with w1 = 1. For convenience, we also assume that each Lt
is arranged in \increasing" order, so that legislators in [0; 1) belong to L1 (with weight 1)

and legislators in [n¡1; n) belong to LT (with weight wT ). Each type t is subdivided into

nt non-intersecting intervals or blocs of length 1, where
PT
t=1 nt = n. Denote bloc j of type

t Ltj, so that Lt = [ntj=1Ltj.

The legislature works via a generalized majority rule. For any coalition of legislators

C µ L, let lt(C) represent the measure of type t legislators contained within (i.e., the length

of C \ Lt). Let w(C) =
PT
t=1 lt(C)wt represent its total voting weight, and w = w(L) =

PT
t=1 ntwt the combined weight of all legislators. A coalition C is winning if and only if

w(C) ¸ w, where w ¸ w
2 . We denote by W the set of winning coalitions.

This formalization of the legislature, while somewhat arti¯cial, avoids a number of integer

problems. For example, if the set of legislators is discrete and there are at least two types

of legislators, it is possible for optimal minimum winning coalitions to be of di®erent sizes.

With a continuum of legislators, no coalition builder will ever want a coalition with weight

greater than w. As the examples in Section 3 suggest, this setup does not a®ect the results

substantially.7

6Other non-cooperative models of n-person bargaining include Selten (1981), Binmore (1987), Gul (1989),
Chatterjee, Dutta, Ray, and Sengupta (1993), and Moldovanu and Winter (1995), Hart and Mas Colell (1996),
and Okada (1996). To our knowledge, none of these has been applied to the study of legislative politics.
Merlo and Wilson (1995) study distributive politics under unanimity rule. Finally, other cooperative solution
concepts applied to weighted voting games include bargaining sets, bargaining aspirations, the kernel, and
the competitive solution. See, for example, Scho¯eld (1976, 1978, 1982, 1987), McKelvey, Ordeshook and
Winer (1978), Bennett (1983a, 1983b), and Holler (1987).

7We hope that this simplī cation proves useful for future work on distributive politics in legislatures.
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We consider the closed-rule, divide-the-dollar game studied by Baron and Ferejohn (1989).

In each period, the moves are as follows. Nature randomly draws a proposer from the set of

legislators. This draw is uniform on L and i.i.d. across periods, so that the probability of

the proposer belonging to any given bloc is always 1=n. The proposer proposes a division

of the dollar, subject to the constraint that all members in the proposer's bloc receive the

same payo® as herself.8 The proposer can thus be thought of as the bloc's \spokesperson"

or \representative." All legislators then vote for or against the proposal. If the proposal

receives weight w in support, then the dollar is divided and the game ends. If the proposal

is rejected, then a new proposer is randomly drawn and the game continues. We look at

the in¯nite-horizon game, with no discounting. The game can be treated as a sequence of

identical subgames, where each subgame begins with nature's move to draw a proposer. To

conserve on notation, we omit reference to time periods except where necessary.

In each period, the strategy for a proposer in bloc j of type t can be represented as

follows:

Xtj : ffjf : L! <+;
Z

L
f(z)dz · 1; f (z) = k for all z 2 Ltjg;

where z represents the position of a generic legislator and k ¸ 0 is the payment o®ered to all

members of the proposer's bloc. Each legislator's voting strategy is then simply a function

mapping the o®ered amount to a probability of voting:

Á : <+ ! ¢(f0; 1g):

We impose two standard tie-breaking rules. First, legislators who are indi®erent between

the o®ered proposal and continuing to the next period vote for the proposal.9 Second,

legislators vote as if they were pivotal. Because of the continuum of legislators, a measure

zero set of legislators cannot a®ect the outcome, but voting `non-pivotally' is clearly weakly

dominated for any individual legislator, and strictly so for any set of legislators of positive

measure.

2.2 Results
8Since each bloc consists of only legislators of a single type, only the proposer's bloc, and not her exact

location, is relevant. We make this assumption so that each legislator's \recognition probability" is positive.
Otherwise, the continuation payo® of each legislator will be 0.

9It is straightforward to verify that assuming otherwise would make the proposer's maximization problem
not well de¯ned.
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We look for symmetric, stationary, subgame perfect equilibria (SSSPE's). Symmetry

means that all players of the same type are treated symmetrically (although di®erent types

may be treated di®erently). Stationarity means that each player uses history-independent

strategies at all proposal-making stages, and voting strategies that only depend on the current

proposal. SSSPE's will have the following properties. By symmetry, for each type t, the

continuation value of all type-t players at the beginning of each subgame will be equal. By

stationarity, these values will also be the same for each subgame. Let vt be the continuation

value of type-t players at the beginning of each subgame.

These restrictions allow us to narrow the set of proposals that may occur in equilibrium.

At an SSSPE, the proposer must o®er at least vt to a type-t player in order to obtain

that player's support. Since proposers wish to minimize their o®ers, every legislator (other

than those in the proposer's bloc) must be o®ered either vt or 0 in equilibrium. For each

coalition C, let v(C) =
PT
t=1 vtlt(C) be the total \cost" of C. For a proposer in bloc Ltj,

let vt = minfCjLtjµC;C2Wg v(CnLtj) be the minimum total payment proposed to coalition

partners outside of Ltj. All legislators in Ltj then receive 1¡vt. Also, let qt be the average

probability that a legislator in Ltj is chosen as a coalition partner, given that someone outside

of Ltj is the proposer.10 Then,

vt =
1
n

(1¡ vt) +
n¡1
n

qtvt

Or,

vt =
1¡ vt

n¡ (n¡1)qt
(1)

The following proposition characterizes the SSSPE's for the \interior" case. In any

equilibrium the expected payo® (continuation value) of each legislator is proportional to his

voting weight.

Proposition 1. Suppose w · w + n¡ 1. Then at any SSSPE, vt = wt=w for all t.

Proof. See Appendix.

In the equilibrium of Proposition 1, v t = w=w¡ vt = (w¡wt)=w for all t, so we can solve

10Note that vt and qt do not depend on j, since by symmetry they are identical across blocs within Lt .
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equation (1) for qt to obtain

qt = 1 ¡ w ¡ w
(n¡1)wt

Clearly, qt is strictly increasing in wt. Thus, the main reason types with higher voting weights

receive higher expected payo®s in equilibrium is that proposers are more likely to choose

them as coalition partners. Note also that in the case of simple majority rule (w = w=2),

the condition in Proposition 1 becomes w · 2(n¡1).

The next proposition characterizes the SSSPE in the \corner" case. In this case, the types

with the smallest voting weights have expected payo®s greater than their relative weight,

while those with the largest weights receive expected payo®s lower than their relative weight.

Also, for all types t ¸ t0, expected payo®s are proportional to voting weights.

Proposition 2. Suppose w > w+ n¡ 1. Then all SSSPE have the following properties: (i)

there is a type t0 > 1 and a number µ < 1 such that vt = µwt=w for all t ¸ t0 and vt > wt=w

for all t < t0, and (ii) qt = 0 for all t < t0.

Proof. See Appendix.

These equilibria might or might not be \unique," depending on the distribution of voting

weights. For some con¯gurations there is a unique type of equilibrium|that is, a unique

cuto® value t0. For other con¯gurations there are several types of equilibria, each associated

with a di®erent cuto® values.

2.3 Discussion

In a corner equilibrium, the high-voting-weight type are \underpaid" relative to their

voting weight, while it is the low-weight types that are \overpaid." This is the opposite of

what tends to happen for many of the power indices.

The intuition behind this result is that equal proposal probabilities disproportionately

bene¯t voters with low weights. A corner equilibrium occurs when the expected payo® to

some low-weight voter is greater than his share of the weight, even when no other proposers

ever choose him as a coalition partner. The high payo® that occurs in the event that he (or

someone in his bloc) is proposer determines his entire expected payo®. This suggests that if

recognition probabilities were adjusted to re°ect voting weights, linearity in expected payo®s
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and voting weights would be restored. The following result establishes the existence of such

equilibria.

Remark. Suppose w > w + n¡ 1 and the recognition probability of each type t voter is

wt=w. Then there exists an SSSPE such that vt = wt=w for all t.

Proof. See Appendix.

We therefore expect that payo®s proportional to voting weights will be more likely when

recognition probabilities follow the same pattern as voting weights.

Note also that corner equilibria are more likely to occur when the threshold for victory

w is low, since lower values of w imply greater bene¯ts to being proposer. Thus, we expect

linear payo®s when w is high, that is, when the collective choice rule is supermajoritarian.

An open rule also makes proposing less valuable, since the proposer must o®er higher payo®s

to his coalition partners and must often build supermajorities to reduce the probability of

counter-proposals (see Baron and Ferejohn, 1989). Thus, we also expect that linear payo®s

will be more likely under an open rule.

Finally, the following comparative statics results follow immediately. Except for types

that \corner", a small increase in voting weight always increases a player's expected payo®,

but a small increase in proposal probability does not. For the types that corner (these are

the types with low voting weight), a small increase in voting weight carries no bene¯t (since

these types will still \never" be included in a coalition), but a small increase in proposal

probability increases the expected payo®.

3. Examples of Finite Legislatures

The propositions above apply to in¯nitely large legislatures. However, as the following

examples show, the basic logic underlying the propositions holds for ¯nite legislatures as

well, even legislatures with few players.

Before proceeding with the examples, we must consider the matter of voting weights. In

the continuum case studied in section 2, each weighted voting game has a unique represen-

tation (up to a set of measure zero). If we change the weights of any set of players with

positive measure, then we change the set of winning coalitions, producing a di®erent game.
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Each ¯nite weighted voting game, however, can be represented by many di®erent vectors of

weights|that is, there are di®erent vectors of weights that produce the exact same set of

winning coalitions. Which weights should we choose to characterize a given ¯nite weighted

voting game?

A weighted voting game is homogeneous if all minimal winning coalitions have exactly

the same total voting weight. Isbell (1956) shows that if a game has a homogeneous repre-

sentation, then this representation is unique, and the voting weights are minimum integer

weights. Note that in the continuum formulation in section 2, the weights are homogeneous.

Table 1 compares the Shapley-Shubik index, Banzhaf index, and expected payo®s under

the competitive bargaining game, for all strong four-, ¯ve-, and six-player weighted voting

games.11 We present each game in terms of its minimum integer weights. We calculated the

unique expected payo®s supportable by SSSPE's to all of these games.12 We also computed

the Shapley-Shubik and Banzhaf power indices for these games.

Based on the results in the table, we make the following conjectures for ¯nite games: For

homogeneous games that satisfy the conditions of proposition 1, expected payo®s will be

linear in the homogeneous weights. For homogeneous games that satisfy the conditions of

proposition 2, expected payo®s will di®er from the homogeneous weights as in proposition 2.

For non-homogeneous games that satisfy the conditions of proposition 1, expected payo®s

will be linear in the minimum integer weights. For non-homogeneous games the conditions of

proposition 2, expected payo®s will di®er from the minimum integer weights as in proposition

2. We stress that these are only conjectures. However, as the table shows, they hold for all

strong four-, ¯ve-, and six-player weighted voting games.

The right-hand side of the table shows how di®erent the power indices are from the

expected payo®s of the competitive bargaining game. In many cases the di®erences are

slight, but in some cases they are quite large|see, for example, the ¯ve-player game with

weights (3; 1; 1; 1; 1), and the six-player game with weights (4; 1; 1; 1; 1; 1) and (4; 3; 3; 1; 1; 1).

In all cases, the expected payo®s of the players with the largest weights are lower than their

Shapley-Shubik and Banzhaf indices (except one case where they are the same). In all but

11A simple game is strong if the complement of a losing coalition is always winning|so, there are no
blocking coalitions.

12The uniqueness proofs are case-by-case and repetitious so we omit them.
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one case, the expected payo®s of the players with the smallest weights are lower than their

power indices.

4. An Application: Council of Ministers of the EC (EU)

The basic logic developed here has a wide range of applications. We consider here the

weighted-voting scheme used for the Council of Ministers of the European Community, as

that has been the subject of extensive debate.

The Council of Ministers of the European Community (now Union) uses a ¯xed-weight

voting system. Each member country casts a single vote, but the votes have di®erent weights,

to compensate for di®erences in country size. Choice of weights has become increasingly

controversial as the EC and now EU expands to include more countries. And, the EC and

EU have been criticized for not being more attentive to the subtleties of power indices in

weighted voting systems (e.g., Felsenthal and Machover, n.d.).

For simplicity of exposition we consider the weights under the original EC. In the original

EC, the distribution of votes was France 4, Germany 4, Italy 4, Belgium 2, the Netherlands

2, and Luxembourg 1. Also, the Council uses Quali¯ed Majority Voting. In the original EC,

at least 12 of 17 votes were required to pass a measure.

Brams and A®uso (1985), Lane and Maeland (1995), Felsenthal and Machover (1997,

n.d.), and others have calculated the power indices for the Council in each of these periods.

The Banzhaf index resembles the other indices, so we discuss that measure here. The values

of the Banzhaf index for France, Germany, and Italy in the original Council of Ministers

are .238 each. The values for Belgium and the Netherlands are .143, and the value for

Luxembourg is 0. Traditional power indices assign zero power to Luxembourg in the ¯rst

period, because that country could never be pivotal in any minimum winning coalition.

According to the Banzhaf index, Belgium and the Netherlands have power (.143) than their

vote weights (.118) or than their minimum integer weights (.125).

The Baron-Ferejohn model predicts a nearly proportional pattern of expected payo®s to

Council members. The expected payo®s are nearly proportional because in each case we

reach a corner equilibrium. To calculate the expected values of the competitive bargaining

payo®s, begin by describing minimum integer weights that characterize the game. The
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original weights are (4; 4; 4; 2; 2; 1), and the quota is 12. The minimum integer weights are

(2; 2; 2; 1; 1; 0), and corresponding quota is 6. There are, then, three types of players|those

with weight of 2 (call these A's), those with weight of 1 (B's) and those with weight 0 (C's).

The expected payo®s in this game are determined by two equations. First, the expected

payo®s must sum to 1. So, 3VA + 2VB + VC = 1. Let VB = µ. Then VC = 1 ¡ 8µ. Second,

the player with weight zero retains a certain amount of value if it is chosen. Because the

type C player (Luxembourg) is a dummy player its integer weight is 0. However, it still

might be chosen as a proposer (with probability 1/6) and this proposal power gives it a

positive expected payo®. If Luxembourg is chosen as proposer, it must include all three type

A players or any two of the type A players and both type B players to have the necessary

coalition size. In equilibrium, this player will pay the price of the 6 votes (i.e., 6µ) and keep

the remainder. As a result, the expected value for the type C player is VC = 1 ¡ 6µ. Using

these two equations, µ = 5=42, and expected payo®s may be calculated readily.13

The expected payo®s to the competitive bargaining game nearly equal the weights. The

expected payo®s are VA = 10=42 = :238, VB = 5=42 = :118, and VC = 1=21 = :048. The

vote weights are .235, .118, and .059 for A, B, and C, respectively. Note that although the

dummy player receives much more than its Banzhaf value of zero, it's expected payo® is its

vote share in the original game.

Expansion of the EC in 1973 added the United Kingdom, Denmark and Ireland. The new

system gave 10 votes each to France, Germany, Italy, and the UK; 5 votes each to Belgium

and the Netherlands; 3 votes each to Denmark and Ireland; and 2 votes to Luxembourg.

At least 41 of 58 votes were required to pass a measure. The values of the Banzhaf index

were .167 for the countries with weight of 10; .091 for the countries with weight of 5; .066

for countries with weight of 3; and .016 for countries with weight of 2. Again Luxembourg

seems to get short shrift. Luxembourg is no longer a \dummy," but it has a Banzhaf power

measure of .016, with .034 share of the votes. By contrast, the competitive bargaining model

has the following expected values: .170 for countries with weight of 10; .085 for countries

with weight of 5; .057 for countries with weight of 3; and .035 for countries with weight
13This does not establish uniqueness of the equilibrium expected payo®s. It is straightforward, however,

to show that they are unique.
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of 2.14 It is worth noting that the competitive bargaining payo®s are nearly linear in the

original voting weights. Also, the addition of other countries decreases each of the original

member's expected payo®.

A non-cooperative bargaining model with an endogenous agenda, then, does not have the

paradoxical °avor of other power indices. Luxembourg's Banzhaf value grows from nothing

to .016, even though its share of the votes shrinks drastically from 1 out of 17 to 2 out of 58.

This might re°ect the subtle nature of power, or it might re°ect problems with the Banzhaf

index, such as those noted by Holler (1982, 1987) and Garrett and Tsebelis (2001). The

Baron-Ferejohn model apparently does not have this feature. Luxembourg's vote share fell

and its power fell. It is ultimately an empirical matter whether this model better captures

the essence of collective decision making in the EU.

5. Discussion

Our analysis di®ers from past e®orts to analyze power in situations involving unequal

numbers or weights of legislators votes. We have used a standard model of legislative bar-

gaining due to Baron and Ferejohn to capture the \cost" of being a coalition member and

have arrived at a proportional index. Conventional power indices are based on the notion

that all combinations of coalition partners are equally likely. The intuition behind the pro-

portional index. Any actor with k votes has the same price or expected value in vote trading

as k actors with 1 vote each.

Ultimately, the value of the model rests on its empirical validity. Analyses of coalitions

governments provide some validation for the linear result. Browne and Franklin (1973) and

Browne and Frendreis (1980) ¯nd that the distribution of cabinet seats to parties is linear

in the parties' seat shares, rather than non-linear, as predicted by power indices. Though

not direct tests of the model developed here, these empirical ¯ndings are broadly consistent

with our argument that the expected payo®s will typically be proportional to seat shares.

Further evidence for a fairly linear relationship between expected payo®s and voting

weights comes from analyses of the distribution of economic bene¯ts. A growing literature

examines the association between the distribution of public expenditures across geographic
14The minimum integer weights are (6; 6;6; 6;3; 3; 2; 2; 1), and the quota is 25 votes. These are the relevant

weights for the analysis of the game, and the equilibrium is at a corner.
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and the political power or voting weight of the legislators representing those areas. Several

studies note the linear pattern in these data (Bates and Lien 1985; Rodden 2001). Further

work along these lines is needed.

The argument o®ered here, then, looks quite promising as a basis for further empirical

and theoretical inquiry.

Obvious extensions of our analysis are to examine the non-cooperative coalition formation

in variety of contexts. The model presented here can be generalized further and adapted to

other decision-making situations. First, further analysis of competitive legislative bargaining

should allow for di®erent recognition rules and amendment procedures, especially open rules.

Our intuition is that an open rule will act like a supermajority requirement (w > w=2)|it

will lower proposal power, making corner equilibria less likely and the interior equilibrium

is more likely. Second, the model can be applied to more complicated organizations, such

legislatures with committees and to bicameral legislatures. Third, we hope to extend the

analysis to allow actors to have more complicated preferences that include distribution of

expenditures or positions and \spatial" policy. Strom, Budge, and Laver (1994), for example,

look at modi¯ed Shapley values where constraints are placed on which coalitions can form

due to insurmountable ideological di®erences.

Finally, this analysis bears directly on debate over the meaning and nature of power.

Traditional power indices only re°ect the in°uence that individuals have at the voting stage

of the legislative process. Agenda-setting is another part of the process, however, and must

be included in any complete analysis of legislative power. Incorporating proposal power

changes the nature of power indices. In the case of the Baron and Ferejohn model, much

of the non-linearity that has produced paradoxical results vanishes. The expected payo®s

become more nearly linear in the vote shares, and even dummy players receive positive

payo®s.
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Appendix

Proof of Proposition 1. (Existence) If vt = wt=w for all t, then for each type t, vt =

(w¡wt)=w. Substituting for vt and vt in equation (1) and solving for qt then yields qt =

1 ¡ (w¡w)=((n¡1)wt). Clearly, qt is strictly increasing in wt, and qt < 1 for all t. Also,

since w1 = 1, the assumption w · w+n¡1 implies that q1 ¸ 0. So qt 2 [0; 1) for all t.

Mixed proposal strategies for all players that sustain the equilibrium are as follows. Let qt
be represented more generally as qt = 1

n¡1[(
PT
i=1

Pni
j=1 ½ijt)¡1], where ½ijt is the equilibrium

probability that a legislator of type t is included in a coalition formed by a proposer in bloc j

of type i.15 Let Lt be written [It; ¹It), where It =
Pt¡1
i=1ni and ¹It = It+nt, and let ° » U [0; 1].

Given ½ijt, if i6= t the proposer o®ers vt to the following members of Lt:
(

[It + °nt; It + (°+½ijt)nt] if ° + ½ijt < 1
[It; 2It + (°+½ijt)nt ¡ ¹It] [ [It + °nt; ¹It) otherwise.

The proposer o®ers 0 to all other members of type t. If i = t, then the proposer o®ers vt to

legislators in LtnLtj in an identical fashion, and 0 to all other members of type t.

(Uniqueness) We now show that there is no equilibrium where vt 6= wt=w for any type

t. The relative cost of each type can be expressed as vtw=wt. If vtw=wt > vrw=wr , then

type-t players cost more per unit of voting weight than type-r players, and are therefore

strictly less desirable as coalition partners. Let µ = mintfvtw=wtg · 1 be the relative price

of the cheapest types, and let TC = ft j vtw=wt = µg be the set of cheapest types, and

let TE = ft j vtw=wt > µg be the set of other (i.e., more expensive) types. We show that

TE6= ; leads to a contradiction.

First, note that qt < 1 for all t 2 TC . To see this, let v = minfCjC2Wg v(C) represent

the cost of the least-costly winning coalitions. Then vt = v¡vt for all t 2 TC (since for any

t 2 TC, a type-t proposer will build a coalition that costs exactly v , including the proposer's

own bloc). Equation (1) can then be written as vt = (1¡v)=((n¡1)(1¡qt)). If qt = 1, then

vt =1, a contradiction.

Next, note that if qt < 1 for all t 2 TC, then w(TC) > w¡wT (i.e., the set of legislators

with types in TC is decisive). Thus, proposers always choose all of their coalition partners
15This may be generalized further by allowing legislators within blocs to use di®erent mixed strategies,

but this will not be necessary.
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from TC , and v = µw=w.

Next, since proposers always buy minimal winning coalitions drawn from TC , for t 2 TE ,

qt = 0 and vt = v¡µwt=w. Substituting in equation (1) then yields:

vt =
1
n
¡ µw
nw

+
µwt
nw

for all t 2 TE :

Also, as noted above,

vt =
µwt
w

for all t 2 TC :

From equation (1), vs = (1¡vs)=n for all types s 2 TE . Also, vt is strictly increasing in

qt, so vr > (1¡vr)=n for all r 2 TC . Thus, vr = wrµ=w > vs > wsµ=w, and all types in TE

must have smaller voting weights than all types in TC . That is, there exists a cuto® type

t0 > 1 such that TE = f1; :::; t0¡1g and TC = ft0; :::; Tg.
The sum of the continuation values must be 1, so:

1 =
TX

t=1
ntvt

=
t0¡1X

t=1
nt
h 1
n
¡ µw
wn

+
µwt
wn

i
+

TX

t=t0
nt
hµwt
w

i

= 1¡ µw
w

+
³ µw
wn
¡ 1
n

´ TX

t=t0
nt +

µ
wn

t0¡1X

t=1
ntwt +

µ
w

TX

t=t0
ntwt

= 1¡ µw
w

+
³ µw
wn
¡ 1
n

´ TX

t=t0
nt +

µ
n

+
µ
w

³
1¡ 1

n

´ TX

t=t0
ntwt:

Rewrite this as

1
n

TX

t=t0
nt = µ

h 1
n
¡ w
w

+
w
wn

TX

t=t0
nt +

1
w

³
1¡ 1

n

´ TX

t=t0
ntwt

i
:

Using the fact that µ < 1 and rearranging then yields:

1
n

³
1¡w

w

´ TX

t=t0
nt <

1
n
¡ w
w

+
1
w

³
1¡ 1

n

´ TX

t=t0
ntwt: (3)

We now show that equation (3) cannot hold when w · w + n¡ 1. De¯ne the function

Ã(t0) by:

Ã(t0) =
1
n
¡ w
w

+
1
w

³
1¡ 1

n

´ TX

t=t0
ntwt ¡

1
n

³
1¡w

w

´ TX

t=t0
nt ; t0 = 1; 2; :::; T:
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Then equation (3) holds if and only if Ã(t0) > 0. Note that Ã(1) = 0. Taking di®erences,

Ã(t0+1)¡ Ã(t0) = nt0
h 1
n

³
1¡w

w

´
¡
³
1¡ 1

n

´wt0
w

i
:

When t0 = 1, the term in square brackets is non-positive if w · w+n¡1. Also, the term in

square brackets is decreasing in t0 (since w1 < w2 < : : : < wT ). So, if w · w+n¡1, then

Ã(t0) is weakly decreasing in t0, for all t0 ¸ 1. Since Ã(1) = 0, this implies that Ã(t0) · 0

for all t0 > 1.

Thus, at any equilibrium we must have vt = wt=w for all t. So, the equilibrium is unique,

up to di®erences in the probabilities of choosing di®erent coalition partners that do not a®ect

the players' expected payo®s. QED

Proof of Proposition 2. (i) First we show that there is no `proportional' equilibrium; i.e.,

for some t and constant ´, vt 6= ´wt=w. Note ¯rst that ´ = 1; otherwise,
PT
t=1 ntvt 6= 1.

Suppose that vt = wt=w for all t. Then vt = w=w ¡ vt = (w¡wt)=w, and by equation (1),

qt = 1 ¡ (w¡w)=((n¡1)wt). But since w1 = 1, the assumption w > w+n¡1 implies that

q1 < 0: contradicton.

Thus the relative prices of types must vary. As in the proof of Proposition 1 let µ =

mintfvtw=wtg · 1 be the relative price of the cheapest types, and let TC = ft j vtw=wt = µg
be the set of cheapest types, and let TE = ft j vtw=wt > µg be the set of other (i.e., more

expensive) types.

We claim that qr < 1 for all r 2 TC and qs = 0 for all s 2 TE . To see this, let

v = minfC2Wg v(C). Then vr = v¡vr for all r 2 TC. Equation (1) can then be written as

vr = (1¡v)=((n¡1)(1¡qr)). If qr = 1, then vr = 1, a contradiction. Next, note that if

qr < 1 for all r 2 TC, then w(TC) > w¡wT (i.e., the set of legislators with types in TC

is decisive). Thus, proposers always choose all of their coalition partners from TC. Thus,

v = µw=w, and qs = 0 and vs = v¡µws=w = µ(w¡ws)=w for all s 2 TE .

Substituting into equation (1), vs = (1¡vs)=n for all types s 2 TE. Also, vt is strictly

increasing in qt, so vr > (1¡vr)=n for all r 2 TC . Thus, vr = wrµ=w > vs > wsµ=w, and all

types in TE must have smaller voting weights than all types in TC. That is, there exists a

cuto® type t0 > 1 such that TE = f1; :::; t0¡1g and TC = ft0; :::; Tg.
Mixed proposal strategies for all players that sustain the equilibrium are as follows. Let
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qt be represented more generally as qt = 1
n¡1[(

PT
i=1

Pni
j=1 ½ijt)¡1], where ½ijt is the equilibrium

probability that a legislator of type t (t 2 TC) is included in a coalition formed by a proposer

in bloc j of type i. Let Lt be written [It; ¹It), where It =
Pt¡1
i=1 ni and ¹It = It+nt, and let

° » U [0; 1]. Given ½ijt, if i6= t the proposer o®ers vt to the following members of Lt:
(

[It + °nt; It + (°+½ijt)nt] if ° + ½ijt < 1
[It; 2It + (°+½ijt)nt ¡ ¹It] [ [It + °nt; ¹It) otherwise.

The proposer o®ers 0 to all other members of type t. If i = t, then the proposer o®ers vt to

legislators in LtnLtj in an identical fashion, and 0 to all other members of type t. QED

Proof of Remark. It is su±cient to show that for each type t there exists an interior

average recognition probability qt such that vt = wt=w. Adapting from (1),

vt =
wt
w

(1¡ vt) +
w¡wt
w

qtvt:

In any such equilibrium, vt = w=w ¡ vt, and thus:

vt = vt(1 ¡
w
w

+
wt
w

) +
w¡wt
w

qtvt:

qt =
w¡wt
w¡wt

:

Since w > w > wt, qt 2 (0; 1).

Mixed proposal strategies satisfying qt are derived analogously to those in the proofs of

Propositions 1 and 2. QED
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Table 1
Power Indices vs. Expected Payo®s

Voting Power Indices Relative to
Weights Power Indices & Expected Payo®s to Expected Payo®s

2,1,1,1 .500 .167 .167 .167 1.25 0.84 0.84 0.84
.500 .167 .167 .167 1.25 0.84 0.84 0.84
.400 .200 .200 .200

3,1,1,1,1 .600 .100 .100 .100 .100 1.40 0.70 0.70 0.70 0.70
.636 .091 .091 .091 .091 1.48 0.64 0.64 0.64 0.64
.429 .143 .143 .143 .143

2,2,1,1,1 .300 .300 .133 .133 .133 1.05 1.05 0.93 0.93 0.93
.286 .286 .143 .143 .143 1.00 1.00 1.00 1.00 1.00
.286 .286 .143 .143 .143

3,2,2,1,1 .400 .233 .233 .067 .067 1.20 1.05 1.05 0.60 0.60
.385 .231 .231 .077 .077 1.16 1.04 1.04 0.69 0.69
.333 .222 .222 .111 .111

2,1,1,1,1,1 .333 .133 .133 .133 .133 .133 1.17 0.93 0.93 0.93 0.93 0.93
.333 .133 .133 .133 .133 .133 1.17 0.93 0.93 0.93 0.93 0.93
.286 .143 .143 .143 .143 .143

4,1,1,1,1,1 .666 .067 .067 .067 .067 .067 1.50 0.60 0.60 0.60 0.60 0.60
.750 .050 .050 .050 .050 .050 1.69 0.45 0.45 0.45 0.45 0.45
.444 .111 .111 .111 .111 .111

3,2,1,1,1,1 .400 .200 .100 .100 .100 .100 1.20 0.90 0.90 0.90 0.90 0.90
.393 .179 .107 .107 .107 .107 1.18 0.81 0.96 0.96 0.96 0.96
.333 .222 .111 .111 .111 .111

2,2,2,1,1,1a .233 .233 .233 .100 .100 .100 1.05 1.05 1.05 0.90 0.90 0.90
.233 .233 .233 .100 .100 .100 1.05 1.05 1.05 0.90 0.90 0.90
.222 .222 .222 .111 .111 .111

3,3,2,1,1,1 .300 .300 .200 .067 .067 .067 1.10 1.10 1.10 0.74 0.74 0.74
.286 .286 .214 .071 .071 .071 1.05 1.05 1.18 0.78 0.78 0.78
.273 .273 .182 .091 .091 .091

For each weighted voting game, the ¯rst line gives Shapley-Shubik indices, second line gives
Banzhaf indices, and third line gives the expected payo®s from equilibrium of legislative
bargaining game.
a = non-homogeneous game
b = corner-solution in legislative bargaining game
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Table 1 (continued)
Voting Power Indices Relative to
Weights Power Indices & Expected Payo®s to Expected Payo®s

4,2,2,1,1,1 .467 .167 .167 .067 .067 .067 1.71 0.92 0.92 0.74 0.74 0.74
.462 .154 .154 .077 .077 .077 1.69 0.85 0.85 0.85 0.85 0.85
.364 .182 .182 .091 .091 .091

3,2,2,2,1,1a .300 .167 .167 .167 .100 .100 1.10 0.92 0.92 0.92 1.10 1.10
.300 .167 .167 .167 .100 .100 1.10 0.92 0.92 0.92 1.10 1.10
.273 .182 .182 .182 .091 .091

4,3,3,1,1,1b .367 .267 .267 .033 .033 .033 1.47 1.07 1.07 0.40 0.40 0.40
.346 .269 .269 .039 .039 .039 1.38 1.08 1.08 0.40 0.40 0.40
.250 .250 .250 .083 .083 .083

3,3,2,2,2,1ab .234 .234 .167 .167 .167 .033 1.03 1.03 1.10 1.10 1.10 0.36
.234 .234 .167 .167 .167 .033 1.03 1.03 1.10 1.10 1.10 0.36
.227 .227 .152 .152 .152 .091

4,3,2,2,1,1ab .368 .231 .134 .134 .067 .067 . . . . . .
.357 .214 .143 .143 .071 .071 . . . . . .

. . . . . .
5,2,2,2,1,1ab .533 .133 .133 .133 .033 .033 . . . . . .

.542 .125 .125 .125 .042 .042 . . . . . .
. . . . . .

For each weighted voting game, the ¯rst line gives Shapley-Shubik indices, second line gives
Banzhaf indices, and third line gives the expected payo®s from equilibrium of legislative
bargaining game.
a = non-homogeneous game
b = corner-solution in legislative bargaining game
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