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Simulating the Spatial Distribution of Population and Emissions to 2100
Malcolm O. Asadoorian

Abstract
Urbanization and economic development have important implications for many environmental processes
including global climate change. Although there is evidence that urbanization depends endogenously on
economic variables, long-term forecasts of the spatial distribution of population are often made exogenously
and independent of economic conditions. A beta distribution for individual countries/regions is estimated to
describe the geographical distribution of population using a 1° x 1° latitude-longitude global population
data set. Cross-sectional country/regional data are then used to estimate an empirical relationship between
parameters of the beta distribution and macroeconomic variables as they vary among countries/regions. This
conditional beta distribution allows the simulation of a changing distribution of population, including the
growth of urban areas, driven by economic forecasts until the year 2100.
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1. INTRODUCTION

Urbanization and economic development have many important implications, particularly
effects on global environmental change. More specifically, concentrated urban development
leads to concentrated emissions of air pollutants, and these urban populations are then exposed to
relatively high levels of pollution. Although there exists evidence that urbanization depends on
economic variables, long-term forecasts of the spatial distribution of population are often made
exogenously and independent of economic growth assumptions (Henderson, 2003). This paper
seeks to fill this gap by developing a model of urbanization that is used to project the spatial
distribution of population as driven by long-term economic forecasts.

Urban air pollution is now recognized to be a global problem due to the long-range transport
of pollution. Moreover, urban air pollution and climate are closely connected due to shared
generating processes (e.g., combustion) for emissions of the driving gases and aerosols. They are
also connected because the atmospheric lifecycles of common air pollutants such as carbon
monoxide (CO), nitrogen oxides (NOx), and volatile organic carbons (VOCs), and of the
climatically important methane gas (CH4) and sulfate aerosols, all involve the fast
photochemistry of the hydroxyl free radical (OH) (Prinn et al., 2005).

It is common for research concerning long-run projections of global environmental change to
use population density as the primary means to spatially distribute emissions projections. For
example, the Dutch National Institute for Public Health and the Environment’s (RIVM’s)
Emissions Database for Global Atmospheric Research (EDGAR) utilizes population density as
the means to distribute emissions projections for non-point sources (Olivier et al., 2002). In
addition, the MIT Integrated Global System Model’s (IGSM’s) coupled atmospheric chemistry
and climate model includes an urban air pollution sub-model that utilizes emissions projections
distributed by population density (Mayer et al., 2000). However, given that an adequate time-
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series of data is not readily available, these groups and others typically utilize cross-sectional
population data (e.g., year 1990) to distribute their emissions projections for both the short- and
long-term, without projecting any changes in population density.

Modeling regional climate change, including the effects of aerosols and other relatively short-
lived substances, is a next major step in climate change research (IPCC, 2001). For these
projections, the spatial distribution of emissions within countries is of great importance (IPCC,
2000). The growing need for spatially explicit emissions forecasts that depend on where major
population centers are located makes it critical to model the spatial distribution of population,
and dynamically simulate it, driven by forecasts of economic development with long-term time
horizons. Such a model can be used to predict the emergence of new urban areas and the growth
in existing ones. Most importantly, such a model can be used to distribute projected emissions to
more accurately predict the concentration of urban emissions and human exposure for purposes
of examining a wide variety of issues related to global environmental change.

This paper develops a model to simulate a changing distribution of population, including the
growth of urban areas and distribution of emissions projections. The model is constructed to be
driven by long-term economic forecasts, specifically from MIT’s Emissions Prediction and
Policy Analysis (EPPA) Model, a computable general equilibrium (CGE) economic model, and
applied to examine possible future levels of NOx in the absence of environmental policies to
control them; the population model is not designed ad hoc so that it can be driven by other
economic models besides EPPA.

The remainder of the paper is organized as follows. Section 2 provides an overview of the
background literature and issues. Section 3 details the empirical models and data. Section 4 reports
and analyzes empirical results. Section 5 states conclusions and outlines future applications.

2. BACKGROUND LITERATURE AND ISSUES

One of the enduring observations of urbanization is that of Zipf (1949), which has come to be
known as Zipf’s law. Essentially, it applies to the distribution of cities by size. The approach is
empirical in nature and involves ranking all the cities in a country or region and then regressing
the natural logarithm of the rank on the natural logarithm of population. The basic observation of
Zipf’s law is: “when we draw log-rank against log-size, we get a straight line, with a slope,
which we shall call ζ, that is very close to 1. In terms of the distribution, this means that the
probability that the size of a city is greater than some S is proportional to 1/S: P(Size>S) = α/Sζ,
with ζ ≅  1” (Gabaix, 1999, p. 740). Gabaix (1999) provides a comprehensive review of this
literature and demonstrates that Zipf’s law for the distribution of city sizes is robust, indicating
reasons for this universal relationship.

More recent work has focused on identifying underlying economic variables that explain
growth of particular urban areas. For example, Henderson and Wang (2004) develop an
endogenous growth model and then empirically estimate the determinants of growth in a number
of cities by economic factors such as: urban and rural wages, costs of commuting, levels of
technology, levels of education, and urban and rural employment rates.

For the task here, three main issues arise when developing a model to simulate future urban
development for the entire world over a relatively long period. First, the definition of an “urban
area” (e.g., city) is not uniform across countries. For example, the United States Census Bureau
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defines an urban area as a population settlement that has a population density of at least 1,000
people per square mile with a population size of at least 2,500 people (U.S. Census Bureau,
2000). In contrast, Albania defines an urban area as “towns and other industrial centres with
more than 400 inhabitants”; Chile defines an urban area as “Populated centres with definite
urban characteristics, such as certain public and municipal services” (United Nations, 2001b).
Because of this variability, a list of “urban areas” as self-defined by custom in different countries
leads to tremendous inconsistency among them.

Second, a fixed list of urban areas throughout the world obtained from, say, national databases
would provide no basis for adding to the list as populations grow and economies change over
time. Using pre-specified urban areas treats them as exogenous, when it is more informative to
allow urban areas and urbanization to be modeled as endogenously determined by changes in
economic and demographic variables.

Third, in order to estimate a model and use it to generate forecasts, it is necessary to identify
economic determinants of urban growth and urbanization for which historical data is readily
available and which can be forecast (Henderson, 2003; Henderson and Wang, 2004). An
estimated model that appears to explain urbanization extremely well is of little use for
forecasting purposes if one has no forecasts of the future evolution of the explanatory variables.

3. EMPIRICAL MODELS AND DATA

In developing an empirical model of urbanization and urban growth, the three aforementioned
issues must be addressed: the variability of the definition of urban areas, the exogenous treatment
of urban areas, and the “appropriate” economic variables that determine urban growth and
urbanization. The approach outlined in this section does not define urban areas a priori, but
instead models the spatial distribution of population. In doing so, population density can then be
used consistently across countries/regions to define “urban areas” and allow them to be
endogenously, rather than exogenously, determined. Note that for purposes of emissions
projections it is the spatial distribution of population that is most important, not whether the area
is jurisdictionally defined as urban or meets some minimum density requirement.

A possible approach to the first two issues indicated above is to estimate a Lorenz curve for
the spatial distribution of population. The Lorenz curve is commonly used to represent and
analyze the size distribution of income and wealth; the curve relates the cumulative proportion of
income units to the cumulative proportion of income received when the units are arranged in
ascending order of their income (Kakwani and Podder, 1976).

Henderson and Wang (2004) suggest a similar ordering of area units of land from the least
dense to the most dense to describe the spatial distribution of population. Just as the Lorenz curve
is used to describe income inequality, a Lorenz curve for population distribution can describe how
the population of a country/region is more or less equally distributed across the total land area.

This procedure represents the first step in my study. I order the area units by density to
construct Lorenz curves and compute corresponding Gini coefficients for the sixteen regions in
MIT’s EPPA Model using a 1990 1° x 1° latitude-longitude spatial population data set from the
United Nations Environment Programme1. See Table 1 for a description of the EPPA regional

                                                  
1 Each grid cell in a 1° x  1° space is an average area equal to 100 km2, equivalent to 38.61 mi2.
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Table 1. EPPA Version 4.0 – Regional Aggregation.

Regions/
Countries Description
USA United States of America
CAN Canada
MEX Mexico
JPN Japan
ANZ Australia and New Zealand
EUR European Union (EU) and European Fair Trade Association (EFTA) (Iceland, Liechtenstein,

Norway, Switzerland)
EET Eastern Europe (Czech Republic, Slovakia, Poland, Hungary, Romania, Bulgaria, Slovenia)
FSU Former Soviet Union Countries
ASI South Korea, Malaysia, Philippines, Singapore, Taiwan, Thailand
CHN China and Hong Kong
IND India
IDZ Indonesia
AFR Africa
MES Middle East (excluding FSU countries and Turkey)
LAM Latin America (does not include Mexico)
ROW Rest of the World (remainder of Asia and Turkey)

Note: Ordering is not intended to reflect any ranking of regions.

aggregation and Figure 1 for Lorenz Curves and Gini Coefficients. Since this is a simple
ordering, it is a non-parametric approach to describing the Lorenz curve for population and
requires no a priori assumption about the functional form of the relationship.
Recall, that 0 ≤ Gini ≤ 1, where a value of 0 indicates perfect equality and a value of 1 indicates
perfect inequality. In the spatial context here, as a country’s Gini value approaches one, greater
inequality implies a greater degree of concentration of the population in a relatively small land
area within a region (and vice-versa). From the diagrams in Figure 1, the most fundamental
observation that can be made is that regions with greater land area, as indicated by the number of
grid cells that compose the region, have higher Gini coefficients; for example, regions as United
States, Canada, and the Former Soviet Union have greater land area (i.e. more grid cells) than
Japan, Eastern Europe, and Indonesia. A more formal Spearman (1904) rank correlation test
between the Gini coefficients for each region and the number of grid cells indicates a positive
correlation significant at the 1% level. This raises the question, “why does this significant
positive correlation exist?”. It is not simply land area indicated by the number of grid cells but,
most importantly, the arable proportion of the total land area; it is arable land that captures the
notion of possible “spatial spread” within a country/region. Deserts and tundra are not areas for
potential habitats, except in the United States where, for example, air conditioning makes desert
areas habitable. Therefore, arable land is used as an index of habitable land.

Using 1990 data from the World Bank (2004), the two regions with the lowest Gini
coefficients, Eastern Europe and India respectively, have the largest percentages of arable land of
total land area; in contrast, the region with the highest Gini coefficient, namely Canada, has the
second-lowest percentage of arable land (second only to the Middle East). Granted, this is
correlation and not causality. However, it indicates that the Lorenz curve only serves to describe
the degree of inequality of population, but does not directly shed light on the economic
determinants of this inequality. Thus, it is critical to estimate a functional distribution of
population using a flexible functional form for each region and control for economic
determinants in the process (e.g., arable land, measure of economic growth).
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Figure 1a. 1990 Lorenz Curves and Gini Coefficients for EPPA Regions (continued on next page).

It is also possible to describe the Lorenz curve as a formal functional relationship, requiring
the selection of some underlying distribution function. Some common distributions include:
equal, exponential, shifted exponential, general uniform, and Pareto (1897) distributions
(Gastwirth, 1972). For example, Majumder and Chakravarty (1990) model the probability
distribution of income, comparing the empirical performances of various distributions for United
States income data, including the Pareto (1897), Lognormal, Gamma, Singh-Maddala (1976),
Dagum (1977), and McDonald’s (1984) Generalized Beta distribution. More recent work
expands the realm of distribution functions with a distinct focus on more flexible forms,
specifically the beta distribution, as described in Ortega et al. (1991) and Boccanfuso et al.
(2003). For my purposes, the advantage of moving from a non-parametric description of the
Lorenz curve to using an explicit functional relationship is that it allows me to then estimate the
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Figure 1b. 1990 Lorenz Curves and Gini Coefficients for EPPA Regions.

parameters as a function of economic variables. In other words, the distribution is then
“conditional” on the value of economic variables, shifting the distribution over time as economic
variables change.

I adopt the approach of Nelson and Preckel (1989), utilizing the conditional beta distribution
to model the probability distribution of population density individually for each of the sixteen
EPPA regions. Nelson and Preckel (1989) demonstrated the broad application of the conditional
beta distribution by using it to model the probability distribution of agricultural output,
estimating a stochastic production function and allowing the shape-parameters of the distribution
of output to be functions of economic variables (i.e. conditioned on economic variables).
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As Nelson and Preckel (1989) point out, “…distributions can be significantly skewed either to
the right or to the left. The beta distribution has such flexibility. In addition, the beta distribution
is well known and mathematically tractable. All of the moments of the distribution exist and are
simple functions that are ratios of polynomials in the parameters of the distribution” (p. 371).
Given a beta distributed random variable, X ∼  Beta (α, β) with 0 ≤ X ≤ 1, α > 0, and β > 0, the
probability density function of an (unconditional) beta random variable can be expressed as:

X)X1(X

)X1(X
f(X) 1

0

11-

11-

d∫ −

−

−

−=
βα

βα

The distribution can be conditioned on a vector of determinants, Z, by expressing the shape-
parameters α and β as functions of Z, namely α(Z) and β(Z).

The third issue indicated previously is concerned with identifying the “appropriate” economic
determinants of urban growth and urbanization to condition our beta shape-parameters. Recall,
determinants found to be important by Henderson and Wang (2004) include such economic
factors as: urban and rural wages, costs of commuting, levels of technology, levels of education,
and urban and rural employment rates. However, it is relatively difficult to generate long-term
projections for these variables. Moreover, they are not variables typically predicted within a
global CGE framework. Yet, over the long-term and across the wide range of economic
conditions among countries, one can reasonably expect variation in these shape-parameters to be
functions of broad economic measures such as gross national product (GNP) per capita and
national population per unit of arable land area, most of which are predictions of the long-term
EPPA Model.

The 1990 1° x 1° latitude-longitude spatial population data set from the United Nations
Environment Programme is utilized to construct a distribution of population density for the
sixteen EPPA regions in the world. With the goal of using long-term economic forecasts from
EPPA to make projections of urbanization and the spatial pattern of pollutant emissions, the
urbanization model is therefore estimated for these specific EPPA regional groups. The EPPA
Version 4.0 divides the world into its sixteen economic regions each with a number of economic
sectors and input factors and produces projections, including emissions of both greenhouse gases
and major criteria air pollutants. Most importantly for this study, it produces projections on GNP
that are tied to population and labor productivity growth rates (Babiker et al., 2001). For base-
line model data, year 1997 data from Purdue University’s Global Trade, Assistance, and
Production (GTAP) Version 5 database is the primary source used by EPPA (Dimaranan and
McDougall, 2002). In addition, it utilizes the United Nations (2001a) national population
projections. These EPPA model projections of GNP and national population per unit of arable
land are utilized as the primary economic determinants of urban growth and urbanization.

Maximum likelihood estimation is first employed to fit the distribution of population density
to the two-parameter (unconditional) beta distribution for each of the EPPA regions individually.
Maximum likelihood estimation of the beta distribution produces consistent, asymptotically
normal and efficient estimates of α and β, subject to the condition that both parameters be
greater than one in order for the beta distribution to be unimodal; this condition was fulfilled for
all EPPA regions.
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Empirical implementation of the conditional beta model requires that a functional forms for
α(Z) and β(Z) be selected. As Nelson and Preckel (1989) point out, the functions α(Z) and β(Z)
must be consistent with the regularity conditions for maximum likelihood estimation. In addition,
“…arguments for simplicity and parsimony might justify linear or log-linear functions” (p. 372).
After some experimentation, log-linear specifications were selected for both the α and β
functions. Thus, the functions α(Z) and β(Z) can be expressed generally as:

LN(α)i = γγγγLN(Z)i + εα (1)

LN(β)i  = ξξξξLN(Z)i + εβ (2)

where i indicates the ith EPPA region, γγγγ and ξξξξ are vectors of parameters, and εα  and εβ are
stochastic error terms with the usual properties.

Year 1997 data for Z variables are obtained from the most recent edition of the World Bank’s
(2004) World Development Indicators. Formally, I estimate the following equations:

LN(α)i = γ0 + γ1 LN(GNPPC)i + γ2 LN(POPDEN)i + εα (3)

LN(β)i = ξ0 + ξ1 LN(GNPPC)i + ξ2 LN(POPDEN)i + εβ (4)

Where GNPPC is the real gross national product per capita measured in Purchasing Power Parity
(PPP); POPDEN is the national population per unit of arable land.

As estimated, the α and β parameters affect the normalized shape of the beta distribution. In
addition, I also make the maximum density grid cell a function of both GNPPC and POPDEN,
econometrically estimate the model, and test the significance on the maximum population
density for each region (i.e. the grid cell with the highest population); this shifts the distribution
in absolute terms. Specifically, the following additional equation is empirically estimated:

LN(MAX)i = ξ0 + ξ1 LN(GNPPC)i + ξ2 LN(POPDEN)i + εβ (5)

Where MAX is the maximum population density for each EPPA region.
The correct exchange rate to use in the context of long-term projections has been an issue of

some recent contention. It is generally recognized that market exchange rates (MER) provide an
unreliable basis for making cross-country comparisons of income. Thus, it is necessary to
estimate relationships such as those above using PPP conversion factors (e.g., McKibbin et al.,
2004). Note that the EPPA model is solved in MER because it must deal with international trade,
and trade occurs at MER. For purposes of forecasting urbanization using my estimated model, I
apply fixed PPP conversion factors for 1997 (the EPPA base year) to convert EPPA projections
of MER-based GNP to PPP.

4. EMPIRICAL RESULTS AND ANALYSIS

Table 2 reports the regression results for equations (3), (4), and (5) using White’s (1980)
robust variance estimator to correct for heteroskedasticity. In general, goodness-of-fit based on
the R2 measure is relatively good for all models given the cross-sectional nature and small
sample size of the data. In terms of estimated coefficients, we find that all are consistently
significant at the 10% level. Most importantly, however, it is the predicted impact of the
independent variables on both shape-parameters, α and β, as well as the maximum population
density, which will collectively determine the shape of the overall probability distribution.
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Table 2. Estimation Results.

Equation #:
Number of Observations:
Dependent Variable:

(3)
16

LN(αααα)

(4)
16

LN(ββββ)

(5)
16

LN(MAX)
INTERCEPT 3.676 (4.73)* 14.980  (6.05)* 15.519  (16.32)*
LN(GNPPC) –0.259 (3.12)* –0.946  (3.37)* 0.010  (1.91)*
LN(POPDEN) 0.023 (1.94)* –0.486 (2.27)* 0.438  (4.11)*
R2: 0.430 0.377 0.473

Notes: 1) Absolute t-statistics in parentheses.
2) * = Statistically significant at the 10% level.

For present purposes, the output of EPPA solved without any emissions-reducing policy
provisions (i.e. “business-as-usual”) is used to generate projections of GNP from year 2005 to
2100, in five year time-steps, for each of the sixteen economic regions. These projections are
then applied to the estimated equations (3), (4), and (5) respectively, to generate the predicted
shape-parameters, maximum population density, and corresponding beta distributions for each
EPPA region.

For ease-of-exposition, projected conditional beta distributions for all sixteen EPPA regions
are generated at twenty year time-steps from years 2020 to 2100, as well as the estimated
conditional beta distribution for base-year 19972. A sample of three regions is presented in
Figures 2 through 43. These projected distributions are generated only to illustrate the impact of
changing α and β shape-parameters and maximum population density on the general shape of the
beta distribution. It is important to note that these projected distributions truncate the tails as they
asymptotically approach the horizontal axis. Thus, the right end-point of the horizontal axis does
not indicate the maximum population density value for each region.

From Figures 2 through 4, the most fundamental observation that can be made is that, as
gross national product and national population increase over time, we project that the distribution
is shifting rightward to more population-dense grids for each of the regions. Moreover, the shape
of the distribution is becoming less right-skewed and more normalized, with a relatively larger
spread. Specifically, for China (Figure 3), we predict that 90% of the distribution consists of
grids ranging between 0.07 and 0.3 million persons per 100 km2 in year 1997, with the largest
cities located to the right of this interval. In contrast, we predict that by year 2100, 90% of this
distribution will consist of grids ranging between 0.4 and 3.7 million persons per 100 km2; for
China, the grid cell with the maximum population density is predicted to increase from 16.4
million in 1997 to 17.5 million in 2100. Essentially, this implies that relative growth is expected
to yield a change in the distribution of population from, what can be considered, more rural to
urban areas with urban sprawl. That is, the area with the most-dense population becomes slightly
more populous, but many areas become moderately- to extremely-densely populated, relatively
speaking. Table 3 provides a summary of the projected conditional beta distributions for all
sixteen EPPA regions.

                                                  
2 The amount of arable land is held constant for all calculations given the lack of availability of future projections for

the relevant time period.
3 Diagrams for all sixteen regions are available upon request.
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Figure 2. United States (USA) -
Projected Probability
Distribution of Population
Density to Year 2100.

Figure 3. China (CHN) -
Projected Probability
Distribution of Population
Density to Year 2100.

Figure 4. Europe (EUR) -
Projected Probability
Distribution of Population
Density to Year 2100.
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Given these results, it is critical to isolate and explain which of the three factors of the beta
distribution, namely α, β, or MAX, has the most significant impact on its shape. From the
regression results in Table 2, it is evident that the estimated β equation (3) yields the largest
estimated coefficients in terms of magnitude, particularly for LN(GNPPC). Although United
Nations (2001a) national population projections approach a zero rate of growth for each region
by 2100, EPPA projects consistent increases in GNPPC for each region. In short, it is the
relatively large estimated coefficient for LN(GNPPC) combined with increasing GNPPC, which
are primarily driving the relatively large decreases in our predicted β’s until year 2100 and,
ultimately, driving the shift in the population distribution to more population-dense grids.
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Table 3. Summary of Projected Beta Distributions 1997 versus 2100.

Density of the Grid Cells that contain
90% of the Population

Maximum
Population Density

Total Number
of Grid Cells

Lower Limit Upper Limit
USA - 1997 33,535 281,724 7,320,575 1028
USA – 2100 110,091 2,066,114 8,766,257 1028
CAN – 1997 13,431 107,840 5,072,912 685
CAN – 2100 44,660 878,157 5,902,739 685
MEX – 1997 60,237 252,102 10,799,286 227
MEX –2100 231,501 2,386,186 13,933,452 227
JPN – 1997 517,415 3,439,821 26,103,307 77
JPN – 2100 1,195,778 14,863,422 26,133,053 77
ANZ – 1997 10,724 74,867 4,271,523 632
ANZ – 2100 34,915 655,432 5,204,611 632
EUR – 1997 27,596 201,060 7,037,624 744
EUR – 2100 56,380 1,159,443 6,360,667 744
EET – 1997 36,204 98,605 7,227,918 199
EET – 2100 62,333 609,020 6,216,168 199
FSU – 1997 23,032 123,375 8,651,612 2451
FSU – 2100 70,376 949,400 8,030,357 2451
ASI - 1997 29,928 58,485 6,159,596 208
ASI – 2100 63,273 377,545 7,866,321 208
CHN – 1997 70,085 293,984 16,413,928 653
CHN – 2100 352,285 3,676,095 17,496,956 653
IND – 1997 161,968 261,312 12,971,459 329
IND –2100 354,239 1,944,539 16,907,118 329
IDZ – 1997 118,980 374,572 17,228,131 292
IDZ – 2100 457,873 3,311,639 22,153,368 292
AFR – 1997 528,554 2,796,153 3,451,149 2233
AFR – 2100 653,573 5,232,690 5,128,681 2233
MES – 1997 34,331 136,184 9,494,958 490
MES – 2100 186,080 1,411,696 15,469,112 490
LAM – 1997 30,946 168,194 9,738,322 1716
LAM – 2100 161,411 1,661,996 12,849,604 1716
ROW – 1997 194,818 977,044 23,217,873 893
ROW – 2100 1,107,162 8,671,352 33,454,239 893

Because of the significant impact of the predicted β’s on the shape of our beta distributions, I
test the robustness of the estimated equation (3). Following Kennedy (2003), I first test for
“influential observations” by eliminating a single observation (i.e. a single region) from the
estimation, repeating this process for each of the sixteen regions (p. 373). Next, I run a series of
regressions with observation-specific dummies for each of the regions, testing whether each
observation is an outlier (p. 379). Results of both tests support the robustness of the estimated
equation (3) as reported in Table 2.

As noted earlier, I do not assume or impose a fixed definition of an urban area. Figure 5 and
Figure 6 represent global Geographical Information System (GIS) population density maps for
both actual 1997 and projected changes of 1997 versus 2100, respectively. A graduated scale is
employed for each map in order to illustrate the fact that, depending on how one defines an urban
area, one may draw different conclusions as to the rate of urban growth and urbanization. In
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Figure 5. 1997 Actual Population Density.

Figure 6. Change (∆) in Population Density, 1997 versus 2100.

other words, the threshold or “cut-off” imposed on the graduated scale will affect the projected
number of urban areas.

From Figure 6 we predict that, for a relatively large number of grid cells, population density
will decrease by the year 2100. This result is primarily driven by the fact that United Nations
national population projections from 1997 to 2100 exhibit slowing rates of growth, with the
United States and Canada being two of the major regions achieving zero growth by 2100 (United
Nations, 2001a). The first interval indicates grids with the largest predicted decreases. Although
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relatively difficult to see on the map, the cell with the largest predicted decrease of 225,000
persons is Lucknow, the modern capital of Uttar Pradesh, representing the most populous state in
India. However, this predicted decrease is accompanied by predicted increases as large as
195,000 persons in grid areas surrounding Lucknow such as the southern state of Madhya
Pradesh.

The second largest predicted decrease of 134,000 persons is located in the largely rural Nara
and Mie prefectures of Japan. Most interestingly, the immediately neighboring grid to the west of
Nara and Mie is the Osaka/Kyoto/Kobe portions of the Kansai region, which is predicted to have
the largest global increase in population of 8,805,000 persons from 1997 to 2100. Moreover, the
immediately neighboring grid to the north of Nara and Mie is the Chubu region, which includes
Nagoya with a predicted increase of 387,000 persons by 2100; Osaka and Nagoya represent the
second and third largest cities in Japan, respectively. It is also important to note that the second
and fifth largest predicted increases in population globally are in the largest city of Tokyo and
Fukuoka located in the Kita/North-Kushu regions, respectively. Although United Nations
(2001a) national population projections indicate that, by the year 2100, Japan will achieve an
approximately zero national population growth rate, this analysis predicts that there will be a
relatively large change in the distribution of its population.

In addition to Japan, the region of Mexico illustrates a similar pattern. More specifically, the
model predicts decreases in population for Monterrey, the third largest city of Mexico, as well as
for the relatively mountainous area of Sierra Madre Occidental in Durango city. This is
accompanied by the third largest predicted global increase in population for Mexico City by year
2100. Like Japan, United Nations (2001a) national population projections indicate that by year
2100, Mexico will reach an approximately zero national population growth rate and, apparently,
also experience a relatively large change in the distribution of its population.

In Figure 6, an interval with limits ranging from –10,000 to 0 is utilized to highlight the grids
in which there is largely no change in population density. From the map, regions such as the
Former Soviet Union, Latin America, Africa, as well as Australia and New Zealand have a
relatively large proportion of grid cells in which there are no predicted changes in population,
1997 versus 2100.

Given the fact that EPPA consistently projects increases in GNPPC for each region and the
United Nations (2001a) forecast of zero national population growth by year 2100, the amount of
arable land across regions, an index of habitable land, appears to largely account for the
differences in predicted changes of the distribution across regions. More specifically, India
possesses the largest percentage of arable land among the regions, 55%, and may be reason for
the possible change in distribution outside of major existing cities into more rural areas. In
contrast, Japan and Mexico have relatively small proportions of arable land, both approximately
13%, and may explain the predicted increases in population mostly for existing cities and
predicted decreases in rural areas.

The United Nations (2001b) projects that, “Over the next 15 years, the number of mega-cities
in the more developed regions will remain unchanged as will that in the least developed
countries, but five additional mega-cities are expected to emerge in the less developed regions”
(p. 75). Although these are relative short-term projections, in general, the predicted trend is the
development of mostly urban agglomerations with less than 10 million inhabitants (i.e. “small
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cities”) as opposed to “mega-cities” that exceed this population (United Nations, 2001b). From
the results here, it is evident that the amount of arable land in conjunction with relative growth in
both income per capita and national population collectively predict a region-specific pattern of
urban growth and urbanization.

In order to demonstrate the application of this urbanization model to distributing emissions
projections, Figure 7 illustrates EPPA year 2100 projections for NOx generated from non-
agricultural (i.e. urban) sources, solved without any emissions-reducing policy provisions (i.e.
“business-as-usual”), as compared to the base-line actual 1997 data distributed at the regional
level. From a regional standpoint, the largest percentage increases in the Middle East, Eastern
Europe, and China; the smallest percentage decreases are in Canada, the Former Soviet Union,
and Africa. Projected conditional beta distributions are utilized to calculate predicted
probabilities for individual grid cells within each region. In this context, the predicted beta
probability should be viewed as the percentage of NOx emissions that are distributed to that grid
cell. By following the common approach of utilizing a static cross-section of population density,
it implies that the percentage of total emissions allocated to each grid cell is constant over time
because of the fact that the population distribution is assumed constant. Therefore, even if
increases in NOx are projected to year 2100 for all regions as in Figure 7, this means that the
spatial pattern would remain unchanged with only increased projected emissions distributed to
each grid. The greatest benefit of the model here is that the percentage of total emissions
allocated to each grid cell changes over time according to changes in relative growth of income
per capita and national population, as well as the (fixed) amount of arable land.

Figure 8 illustrates the actual 1997 base-line NOx emissions, distributed within each region;
Figure 9 shows the predicted change in the spatial distribution of NOx emissions for year 1997
versus year 2100. Although Figure 7 indicates projected increases of NOx for all EPPA regions
as a whole, Figure 9 clearly demonstrates decreases for some grid cells when emissions are
distributed within each region; this is especially true for the Former Soviet Union, Eastern
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Europe, and India. In contrast, China, the United States, and the European Union and European
Fair Trade Association countries, generally show increases, though a relatively large degree of
variability with respect to the magnitude of the change in emissions distributed across the entire
spatial landscape.

Figure 8. 1997 Distribution of NOx Emissions.

Figure 9. Change (∆) in Distribution of NOx Emissions, 1997 versus 2100.
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5. CONCLUSIONS

In order to project the distribution of emissions for purposes of generating long-run
projections of global environmental change, it is critical to dynamically model the spatial
distribution of population driven by forecasts of economic variables over the long-term. In this
spirit, this paper developed an integrated approach that incorporates a CGE economic model and
an estimated model of determinants of the spatial distribution of population.

Although the United Nations (2001b) predicts a general trend in the development of mostly
urban agglomerations with less than 10 million inhabitants (i.e. “small cities”) as opposed to
“mega-cities” that exceed this population, the model in this paper demonstrates a more variable
pattern of urban growth and urbanization across regions of the world. More specifically, it is the
amount of arable land in conjunction with relative growth in both income per capita and national
population that collectively predict a region-specific pattern of urban growth and urbanization.

Besides its stand-alone value, the application of this model to distribute emissions projections
based on the projected distribution of population is essential. Because of the unique atmospheric
chemistry of urban areas, the ability of this model to project urban growth and urbanization
represents a significant step to improve emissions concentration predictions in urban areas. This
is especially important to more accurately estimate the total population exposure to air pollution
for the purpose of examining air pollution health-impacts as well as other issues under the rubric
of global environmental change.
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