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Abstract

This thesis integrates hardware development, data analysis, and mathematical
modeling to facilitate our understanding of brain cognition. Exploration of these
brain mechanisms requires both structural and functional knowledge to (i) recon-
struct the spatial distribution of the activity, (ii) to estimate when these areas are
activated and what is the temporal sequence of activations, and (iii)to determine how
the information flows in the large-scale neural network during the execution of cogni-
tive and/or behavioral tasks. Advanced noninvasive medical imaging modalities are
able to locate brain activities at high spatial and temporal resolutions. Quantitative
modeling of these data is needed to understand how large-scale distributed neuronal
interactions underlying perceptual, cognitive, and behavioral functions emerge and
change over time.

This thesis explores hardware enhancement and novel analytical approaches to
improve the spatiotemporal resolution of single (MRI) or combined (MRI/fMRI and
MEG/EEG) imaging modalities. In addition, mathematical approaches for identify-
ing large-scale neural networks and their correlation to behavioral measurements are
investigated. Part I of the thesis investigates parallel MRI. New hardware and image
reconstruction techniques are introduced to improve spatiotemporal resolution and
to reduce image distortion in structural and functional MRI. Part II discusses the
localization of MEG/EEG signals on the cortical surface using anatomical informa-
tion from MRI, and takes advantage of the high temporal resolution of MEG/EEG
measurements to study cortical oscillations in the human auditory system. Part III
introduces a multivariate modeling technique to identify "nodes" and "connectivity"
in a large-scale neural network and its correlation to behavior measurements in the
human motor system.

Thesis Supervisor: John W. Belliveau Ph. D.
Title: Associate Professor of Radiology
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Chapter 1

Introduction

Complex behavior and cognitive functions of the human brain have been suggested

to be "mapped at the level of multi-focal neural systems rather than specific anatom-

ical sites, giving rise to brain-behavior relationships that are both localized and dis-

tributed' [1]. Thus, for the study of the brain mechanisms, both structural and

functional knowledge is required to answer (i) what is the spatial distribution of the

activity, (ii) what is the temporal sequence of activations, and (iii) how does the

information flow in the large-scale neural network during the execution of the cog-

nitive and/or behavioral tasks. Advanced non-invasive medical imaging techniques

are able to locate brain activities with fine spatial and temporal resolutions. In ad-

dition, quantitative modeling to interpret the data is needed to understand how the

large-scale distributed neuronal interactions underlying perceptual, cognitive, and

behavioral functions emerge.

1.1 Motivation

1.1.1 Neuroimaging using functional magnetic resonance imag-

ing

Over the last few decades, functional brain imaging has become a vivid discipline.

Positron Emission Tomography (PET) was first introduced to map activated brain



areas by metabolic measurements using isotope-labeled marker agents. Later, func-

tional magnetic resonance imaging (fMRI) was introduced [1, 3, 4]. The high spatial

resolution (down to millimeters), the capability to utilize cerebral blood as an endoge-

nous contrast agent [2, 4], and the ease of imaging underlying anatomy soon made

functional MRI (fMRI) a popular tool to map brain functions. Typically, the echo-

planar imaging (EPI) technique [7] is used in fMRI to achieve a fine spatiotemporal

resolution. Owing to advances in magnetic resonance imaging techniques, including

high slew-rate gradients, high quality radio-frequency coils, tailored pulse sequence

designs and image reconstruction algorithms, a temporal resolution of 1-2 seconds and

a spatial resolution of 3-5 millimeter can be achieved for whole brain fMRI. Besides

technological challenges, the temporal resolution of fMRI is constrained by the safety

concerns on acoustic noise, peripheral nerve stimulation, and tissue specific absorp-

tion rate (SAR) [8]. Furthermore, physiology constrains the fMRI: the hemodynamic

measures are secondary to the neural activity and lasts for tens of seconds [9].

1.1.2 Neuroimaging using magnetoencephalography

Single-unit neurophysiological recordings in monkeys have suggested that commu-

nication among brain areas occur on the order of tens to hundreds of milliseconds

[10]. Recordings of scalp potentials and extracranial fields using elecroencephalogra-

phy (EEG) or magnetoencephalography (MEG) provide noninvasive means to study

human brain activity at a high temporal resolution [1, 24]. In contrast to PET and

fMRI, MEG and EEG record neural activity directly and have a millisecond temporal

resolution. MEG and EEG originate mainly from postsynaptic currents in pyramidal

cells, which have an organized cytoarchitecture with orientations of cell apical den-

drite perpendicular to the local cortical surface [9]. To utilize the temporal resolution

of MEG for human brain mapping, we need to map the extracranial recordings back

into the brain. Unfortunately, this inverse problem of MEG is ill-posed [14]: for a

given MEG measurement, there exists an infinite set of current distributions inside

the brain that can fully account for the observed signal, even if the electric potential

and magnetic field were perfectly known everywhere outside the region containing



the currents. Thus, the solution of the MEG inverse problem, i.e, the estimation

of the underlying current sources, requires additional constraints. Two main ap-

proaches to solving the MEG inverse problem are available. In the equivalent current

dipole (ECD) fitting approach, the MEG measurements are modeled by a small set

(usually less than 10) of focal current sources, whose locations, amplitudes and/or

orientations are determined by non-linear optimization [15]. The distributed esti-

mation approaches [21, 19] assume the probability distribution function of current

amplitudes and estimates the current distributions across the whole brain (up to tens

of thousands of sources) at once. Disadvantages of the ECD approach include the

difficulty of determining the number of dipoles and the dependency of the solution

on the initial values for iterative optimization techniques. With distributed current

estimates, these problems are avoided. Furthermore, distributed estimates may be

more realistic in many physiological conditions. However, in special cases, such as

epileptic spike or very focal brain activations (such as elicited by median nerve stim-

ulation), distributed source models may be too diffuse to accurately identify brain

neural sources.

The relative spatiotemporal resolution of fMRI and MEG/EEG is shown schemat-

ically in Figure 1. fMRI and MEG have distinct, yet complementary advantages in

spatial (in fMRI) and temporal (in MEG) resolution. The combination of these non-

invasive whole-brain imaging modalities holds the promise of achieving accurate spa-

tiotemporal characterization of brain function. Specifically, fMRI has been proposed

to be used as an aid for manual placement of ECDs (Ahlfors, Simpson et al. 1999;

Korvenoja, Huttunen et al. 1999). Minimum-norm estimates (MNE) [21], which is a

distributed source model assuming Gaussian distribution of source amplitudes, have

also been extended to incorporate fMRI information [26, 20]. Combining MEG and

EEG can also help to achieve higher spatiotemporal resolution [19, 25].

1.1.3 Brain modeling using data from MRI, fMRI and MEG

In addition to mapping brain activity to answer the "where" and "when" questions,

comprehensive understanding of brain functions requires additional modeling tech-
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Figure 1-1: The spatial and temporal resolution of MEG/EEG and fMRI/MRI.The
goal of the thesis is to push the spatiotemporal resolution toward finer scale as indi-
cated by the gray arrows.

niques to reveal the mechanisms of information flow inside the neural network during

perception, cognition and behavior. Traditionally, univariate techniques, such as

correlation coefficient, t-test and F-test [5, 22], have been used to correlate the ex-

perimental paradigm with the spatiotemporal functional brain imaging data to reveal

the activated brain foci. Nevertheless, under the fundamental assumption that both

focal and distributed functional activities across the whole brain, in both time and

space, underlie the complex perception, cognition and behavior [1], we need to take

into account spatial correlations without treating the data as isolated temporal ob-

servations. The identification of an integrated neural network subserving the tasks of

interest requires not only the identification of the "nodes" among the network, but

also the estimation of the connectivity among these nodes. In addition, the data from

multiple modalities contain information across time, frequency and space. System-

atic classification of this large amount of data can help us to reveal the underlying

processes consisting brain functions.



1.2 Thesis goals and noval contributions

This thesis introduces both hardware improvements and novel analysis methods to

enhance the spatiotemporal resolution of single (MRI, fMRI or MEG) or combined

(MRI/fMRI and MEG/EEG) modalities. In addition, mathematical approaches of

identifying large-scale neural network and its correlation to behavioral measurements

are investigated. The specific goals and novel contributions of the individual projects

are:

1.2.1 Enhancement of spatiotemporal resolution of magnetic

resonance imaging using parallel MRI

Typical whole-head fMRI techniques utilize Echo-Planar Imaging (EPI) with a tem-

poral resolution of ~ 1 second and in-plane resolution down to 3 mm by 3 mm. We

further improve the spatiotemporal resolution of fMRI by making use of multiple

receiver coils. The radio-frequency (RF) coil array was introduced to achieve higher

signal-to-noise ratio (SNR) images [2]. The multiple copies of data from each channel

in the RF coil array consist of distinct observations of MRI signals, modulated by

individual coil sensitivity profiles. Instead of combining individual coil elements for

higher SNR or larger field-of-view (FOV) MRI, parallel imaging was proposed to use

multiple receivers in the array to reconstruct the full FOV images from aliased im-

ages due to incomplete k-space acquisition. Approaches in both the k-space domain

(SMASH) [20] and the image domain (SENSE) [22] have been proposed to unfold the

aliased images.

In this thesis, the possibility of applying the parallel MRI principles to both struc-

tural and functional imaging of the human brain was studied. In addition to using

traditional surface RF coil arrays, I investigated the possibility of using a volume

coil in parallel MRI. Specifically, the birdcage coil, which previously has been mostly

adopted for its homogeneous first mode, has multiple modes with distinct sensitivity

profiles. The combination of homogenous mode and higher order gradient modes en-

ables the application of the parallel MRI principles to volume coils. Parallel MRI can



provide reduction in scanning time and, thus, higher temporal resolution. Alterna-

tively, it can be used to increase the spatial resolution of the functional images within

the same amount of acquisition time. Additional benefits of the parallel MRI tech-

nique include the lower susceptibility artifact due to reduced scanning time (shorter

TE), and the lower EPI acoustic noise due to lowered gradient switching. This ap-

proach holds great potential for high field studies (for example, the 7 Tesla whole

body scanner in the MIT-MGH-HMS Athinoula A. Martinos Center for Biomedical

Imaging). In addition, I investigated algorithms for image reconstruction in paral-

lel MRI. To reconstruct full FOV images without aliasing, the sensitivity profile of

the individual coil elements in the array must be known. We have devised a multi-

resolution approach, based on a discrete time wavelet transform, to estimate the coil

sensitivity profiles from full FOV array reference images. Additionally, we improved

the quality of reconstructed image by regularizing the observation with appropriate

prior information for robust reconstructions. Regularized parallel MRI reconstruction

is particularly beneficial in experiments where the RF coils in the array are not fully

uncorrelated in order to improve the spatiotemporal resolution. In dynamic imaging,

such as fMRI, the applicability of regularization to unfold aliased images in time se-

ries was studied to see if BOLD contrast-to-noise ratio (CNR), which is usually less

than 10% in fMRI experiments, could be preserved in parallel MRI acquisitions.

1.2.2 Localization of brain activity using multiple modalities

with priors

EEG and MEG have a high temporal resolution (milliseconds), but the spatial res-

olution is lower (typically 7-10 mm) compared with fMRI ( 3 mm). Approaches

have been proposed to combine EEG, MEG and fMRI to achieve a higher spatial

and temporal resolution simultaneously. In our laboratory, previous research has de-

veloped a linear estimation scheme for distributed current dipole estimates with the

L2-norm prior. More focal current estimate is obtained with the Li-norm prior. For

distributed current models, with either Li- or L2-norm priors, an accurate anatomical



model is a critical factor in localization accuracy. Furthermore, MEG and EEG data

can be analyzed in the time-frequency domain to assess the spatial distribution of

both the magnitude and phase of the signals as a function of time in frequency bands

of interest.

In this thesis, I developed a framework for using more accurate anatomical in-

formation in MEG/EEG source modeling. High spatial resolution MRI was used to

calculated cortical patch statistics. Characterizations of cortical patch size, surface

normal orientations, and the distribution of surface normals within the individual

patch were used for both better visualization and more accurate localization in dis-

tributed source models using either the L2-norm or the Li-norm priors.

MEG source localization was also used to investigate cortical oscillations, mea-

sured with MEG and filtered at specific frequencies. I used the continuous wavelet

transform to study 40 Hz power and 40 Hz phase locking in the auditory cortex in

response to the external acoustic 40 Hz clicks. Three inverse methods (MNE, noise

normalized MNE and fMRI weighted MNE) were compared in order to optimize spa-

tial precision using both synthetic and empirical data.

1.2.3 Spatiotemporal studies of functional and effective con-

nectivity of large-scale neuronal interactions

The fundamental challenges in functional brain imaging include the identification and

estimation of spatial brain loci responsive to specific cognitive experiment designs and

their associated temporal dynamics. To investigate this spatiotemporal orchestration,

we applied the analysis of functional connectivity (defined as the temporal coherence

among brain areas) and effective connectivity (quantifying the causal effects among

distributed regions) to functional magnetic resonance imaging experiments. Previ-

ously, Partial Least Squares (PLS) [24] has been proposed as a multivariate tool to

reveal distributed brain systems. The benefits of PLS include computational effi-

ciency, multiple contrasts/models detection, and simplification of the interpretation

of decomposed components. For effective connectivity analysis, Structural Equation



Modeling (SEM) has been used with PET data to understand the human memory

system by quantitative modeling of a distributed network in the human brain [27, 28].

This thesis work extended the PLS algorithm into a generalized multivariate

framework not only to inherit advantages from PLS, but also to provide the flex-

ibility to utilize Principle Component Analysis (PCA) or Independent Component

Analysis (ICA) [30] as the decomposition tool. The generalized framework was tested

with synthetic data to determine the optimal algorithm for various experimental sce-

narios. Further exploration of this generalized PLS framework also provided robust

modeling of the mapping between neuroimaging data and behavioral measurements.

Specifically, I explored quantitative models to correlate between the brain energy

consumption as inferred by fMRI and the voluntary movement rates in either the

dominant or non-dominant hand. Using PLS and SEM, I studied the distributed

motor neural systems in both cerebrum and cerebellum to reveal their distinct com-

munications during repetitive finger movement at different rates.
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Chapter 2

Enhancement of spatiotemporal

resolution by parallel MRI

Increased spatiotemporal resolution in MRI can be achieved using parallel acquisition

strategies, which simultaneously sample reduced k-space data using the information

from multiple receivers to reconstruct full FOV images. The price for the increased

spatiotemporal resolution in parallel MRI is the degradation of signal-to-noise ratio

(SNR) of the final reconstructed images. Part of the SNR reduction results if the spa-

tially correlated nature of the information from the multiple receivers destabilizes the

matrix inversion used in the reconstruction of the full FOV image. In this chapter, a

reconstruction algorithm based on Tikhonov regularization is presented to reduce the

SNR loss due to geometric correlations in the spatial information from the array coil

elements. In this method, reference scans are utilized as a priori information about

the final reconstructed image to provide regularized estimates for the reconstruction

using the L-curve technique. This automatic regularization method was found to

reduce the average g-factors in phantom images from a 2-channel array from 1.47 to

0.80 in two fold SENSE acceleration. In vivo anatomical images from 8-channel sys-

tem show averaged g-factor reduction from 1.22 to 0.84 in 2.67 fold acceleration. In a

simulated fMRI experiment, SENSE EPI using regularization in image reconstruction

can benefit the detection power at 2.67- and 4.00-fold accelerations.



2.1 INTRODUCTION

The utilization of multiple receivers in MRI can be exploited for the enhancement

of spatiotemporal resolution by reducing the number of k-space acquisitions. The

folded image that would result with conventional reconstruction is avoided by using

spatial information from multiple coils. Several methods for using this information

have been proposed including the k-space based SMASH method [20, 2] and the image

domain based SENSE approach [22]. By reducing sampling time, these parallel MRI

techniques can be used to reduce image distortion in EPI [4] or diminish acoustic

noise by lowering gradient switching rates [5]. A major price for these advantages is

the decreased image SNR. The reduction in SNR comes from two sources; the reduced

number of data samples, and the instability in reconstruction due to correlations in

the spatial information as determined by the geometrical arrangement of the array

coil. The first is an inevitable result of reducing the number of samples. The second

might be affected by optimizing coil geometry [6, 7] or improving the stability of

the reconstruction algorithm. The increased noise originating from correlated spatial

information from the array elements can be estimated based on knowledge of the

array geometry and is quantified by the geometric factor map (g-factor map) [22].

The reconstruction of parallel MRI can be formulated as linear equations [23]

which must be inverted to obtain an unfolded image from the reduced k-space data

set. If the matrix is well conditioned, the inversion can be achieved with minimal

amplification of noise. While the encoding matrix can still be inverted even if it is

nearly singular, in this ill-conditioned case small noise perturbations in the measured

data (aliased image) can produce large variations in the full FOV reconstruction. This

effect causes noise amplifications in regions of the image where the encoding matrix

is ill conditioned. The restoration of full-FOV images requires the use of additional

information such as the coil sensitivity maps provided by a low spatial resolution full

FOV reference scan. In addition to being required to determine the coil sensitivity

profile that becomes part of the linear equations to be inverted, the reference scan

might also provide a priori information useful for regularizing the inversion process.



In this chapter, we present a framework to mitigate the noise amplification effect in

SENSE reconstruction by utilizing Tikhonov regularization [8]. The advantage of reg-

ularized parallel MRI reconstructions was previously reported [2] on cardiac imaging

using an empirical formula of a fixed fraction (0.05) of the first eigen value, Similarly,

regularized SENSE reconstruction using an empirical regularization parameter was

described by King et. al. [9]. The benefits of incorporating prior information to

reduce the noise level of reconstructed images were reported in [9, 30, 11]. Further

more, it has been reported that regularization can potentially used to unfold aliased

images from an under-determined system, i.e., the aliased pixel number exceed the

RF channels in the array [12]. Nevertheless, no systematic approach has been de-

scribed to provide regularization parameter for SENSE image reconstruction. And

spatial distribution of noise arising from unfolding SENSE images has not been well

characterized when regularization is employed. In this chapter, we employ a full FOV

reference scan and the L-curve algorithm [13] to determine the optimal regulariza-

tion parameter. Also, we demonstrate the effect of regularization on the noise of the

unfolded images by g-factor maps using both phantom and in vivo experimental data.

2.2 THEORY

The formation of aliased images from multiple receivers in parallel MRI can be for-

mulated as a linear operation to "fold" the full-FOV spin density images[29].

A (2.1)

Here y is the vector formed from the pixel intensities recorded by each receiver

(folded image) and is the vector formed from the full FOV image. The encoding

matrix A consists of the product of the aliasing operation due to sub-sampling of

the k-space data and coil-specific sensitivity modulation over the image. The goal

of the image reconstruction is to solve for x given our knowledge of A derived from

understanding the folding process and an estimate of the coil sensitivity maps. While

Eq. (2.1) is expressed in the image domain SENSE approach [22], similar linear



relationships are formed in the k-space based SMASH [20, 2] method. Furthermore,

the same basic formalism is used in either the in-vivo sensitivity method (Sodickson

2000), or conventional SENSE/SMASH methods requiring coil sensitivity estimation.

In general, Eq. (2.1) is an over-determined linear system, i.e., the number of array

coils, which is the row dimension of , exceeds the number of the pixels which fold

into the measured pixel; the row dimension of Y. To solve for z (the full FOV image)

the over-determined matrix is inverted utilizing least-square estimation [22].

X = UY

= (AHx-JA)-AH - (2.2)

where the H superscript denotes the transposed complex conjugate and 'I is the

receiver noise covariance [22]. When T is positive semi-definite, the eigen decom-

position of the receiver noise covariance leads to the unfolding matrix, U, using the

whitened aliasing operator A and the whitened observation Q.

' = VAVH

A = A-1/2 VHA

= A~1/2VH

X= U

= (H A)-1A H (23)

The whitening of the aliasing operator will be used in the regularization formu-

lation introduced in the next section. The whitening incorporates the receiver noise

covariance matrix implicitly allowing optimal SNR reconstruction within the regu-

larization formulation. The noise sensitivity of the parallel imaging reconstruction is

thus quantified by the amplification of the noise power due to the geometry of the

array. This g-factor is thus written [22]
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gpp = 'Xr m a = [(AHA)-1]pp(AHA)PP (2.4)

The subscript p indicates the voxels to be "unfolded" in the full FOV image, and

X denotes the covariance of the reconstruction image vector Y. Here R denotes the

factor by which the number of samples is reduced (the acceleration rate).

2.2.1 Tikhonov regularization

Tikhonov regularization [8] provides a framework to stabilize the solution of ill-

conditioned linear equations. The solution of Eq. (2.1) using Tikhonov regularization

can be written

= arg min{A2 - 2 + A2 L(2 - 2) } (2.5)

Here A2 is the regularization parameter. L is a positive semi-definite linear trans-

formation, and Po denotes the prior information about the solution z. And ||112

represents the L-2 norm. Thus the second term in Eq. (2.5), defined as the prior

error, is the deviation of the solution image from the prior knowledge. The first term,

defined as the model error, represents the deviation of the observed aliased image

from the model observation. The model observation is a folded version solution im-

age. The regularization parameter determines the relative weights with which these

two estimates of error combine to form a cost function. Consider the extreme case

when A2 is zero and we attempt to minimize only the first term. This is equivalent to

solving the original equation, j = Avecx, without conditioning (conventional SENSE

reconstruction.) On the other extreme, when is large, the solution will be a copy of

the prior information . Thus, the regularization parameter A2 quantifies the trade-off

between the error from prior knowledge not describing the current image and the

error from noise amplification from unconditioned matrix inversion. An appropri-

ate choice of A2 (regularization) decreases the otherwise complete dependency on the



whitened model (A) and the whitened observation ( ) to constraint the solution to

within a reasonable "distance" from the prior knowledge (x). Thus the regulariza-

tion increases the influence of prior knowledge full-FOV image information during the

unfolding of the aliased images. Given the regularization parameter A2 and letting L

be an identity matrix, the solution of Eq. (2.4) is written [13]:

-A~~ a ~ _

SZ(fj + (1 - fj)Uj ).
j=1 Sj3

s{1, sjj >> A
= s + A2  = 2, sj <

(2.6)

Here ij, i, and sjj are the left singular vectors, right singular vectors and singular

values of A generated by singular value decomposition (SVD) with singular values

and singular vectors indexed by j. This leads to the following matrix presentations:

I =VFUH9 + V 0VH-0

VAR(x )=VI 2 VH

f s+

S=1- = A 2

A~ + A2

(2.7)

Using regularization and Eq. (2.4), the ratio of the noise levels between the

regularized parallel MRI reconstruction and the original full-FOV image normalized

by the factor of acceleration gives the local geometry factor for noise amplification.

gpp = V (vF2vH1]pp(vs2VH)PP (2.8)

Inside the square root of Eq. (2.8), the first square bracket term denotes the

variance of the unfolding using regularization from Eq. (2.7), and the second square



bracket term denotes the variance of full FOV reference image.

2.2.2 Estimating the optimal regularization parameter using

the L-curve

To determine the appropriate regularization parameter A2 , we utilized the L-curve

approach [13]. Qualitatively, we expect that as regularization increases, more de-

pendency on the prior information leads to a smaller discrepancy between the prior

information and the solution at the cost of a larger difference between model pre-

diction and observation. Similarly, a small regularization parameter decreases the

difference between model prediction and observation at the cost of a larger discrep-

ancy between the prior information and the solution. The L-2 norm is used to quantify

the difference between these vectors. The model error and prior error can then be

calculated [13] using:

p a p - A2 E ((1 -f~f)

(2 9)
1

:V is the j-th element of prior so. Plotting model error versus prior error for a

range of shows the available tradeoffs between the two types of error. A representation

of this plot, termed the L-curve, is shown in Figure 2.1. The optimal regularization

parameter is defined as that which strives to minimize and balance the two error

terms. This occurs in the elbow of the L-curve. Mathematically this is where its

curvature is minimum. The analytic formula [13] for the L-curve's curvature enables

a computationally efficient search for the A2 at the point of minimal curvature.

2.3 METHOD

Phantom studies were performed on a 1.5T clinical MRI scanner (Siemens Medical

Solutions, Inseln, NJ) using a homemade 2-element array. Each element is a circular
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surface coil with diameter of 5.5 cm tuned to the Larmor frequency of the scanner.

The two element coils have a 1.5 cm overlap to minimize inductive coupling. The

array was mounted on curved plastic with curvature radius of 20 cm to conform

the phantom and subjects. A 2D gradient echo sequence was used to image the

homogenous spherical (11.6cm dia.) saline phantom. The imaging parameters are:

TR=100 msec, TE=10 msec, flip angle=10 deg, slice thickness=3 mm, FOV=120 mm

x 120 mm, image matrix=256 x 256. The same scan was repeated with the number

of phase encode lines reduced to 75%, 62.5% and 50%.

The in vivo anatomical images were acquired using a 3T scanner (Siemens Medi-

cal Solution, Inseln, NJ) with an 8-channel linear phased array coil wrapping around

the whole brain circumferentially. Each circular surface coil element was of 9cm di-

ameter and tuned to the proton Larmor frequency at 3T. Appropriate overlapping

between neighboring coils minimized mutual inductance between coil elements. We

used a FLASH 3D sequence to acquire in vivo brain images from a healthy subject

after approval from the Institutional Review Board and informed consent. Param-

eters of FLASH sequence are TR=500 msec, TE=3.9 msec, flip angle=20 deg, slice

thickness=3 mm with 1.5 mm gap, 48 slices, FOV=210 mm x 210 mm, image ma-

trix=256 x 256. The same scan was repeated with the number of phase encode lines

reduced to 50%, 37.5% and 25%. We adopted in vivo sensitivity reconstructions for

both phantom and in vivo experiments to avoid the potential increases in g-factor

due to the mis-estimation of the coil sensitivity maps [2]. Also to illustrate the va-

lidity of utilizing prior information without involving complications from different

spatial resolutions, we employed identical spatial resolution for both reference scans

and accelerated acquisitions. While using a full resolution reference scan defeats the

purpose of the SENSE acceleration for standard radiographic imaging, it is useful for

time-series imaging applications such as fMRI. However, to demonstrate the effect of

regularization when only a low-resolution full-FOV reference scan is available, we also

apply the regularization method to a reconstruction using lower resolution full-FOV

reference images. For this demonstration, we downsampled the full-FOV reference

images by two or four fold (from 256 X 256 matrix to 128 X 128 and 64 X 64 matrix)



and employed the lower resolution reference images as priors in 2-fold and 2.67 fold

accelerated acquisitions. Using regularization allows a smooth tradeoff between repli-

cation of the reference information and noise introduced in the poorly conditioned

inversion that may result from reliance on the measured data alone. It is important,

therefore to have some indication that there is not an over reliance on the reference

data (i.e. that the regularization parameter is not extremely high). For the fMRI ap-

plication, the time series data should not simply replicate the reference data, in which

case subtle temporal changes in the time-series will not be detected (functional CNR

will be lowered). To test the degree to which regularization might reduce the CNR

in an fMRI study we simulated a 2-fold accelerated SENSE fMRI scan consisting of

50 time points for the baseline (resting) condition and 50 time points for the active

condition. An image from the 8 channel array was used as a template to construct

the 100 image series. Model activation was added to half of the images by increasing

the pixel value by 10% in a 4 pixel ROI in the occipital lobe of the left hemisphere.

White Gaussian noise of zero mean was added to the time-series and the images were

reconstructed with and without the regularization method. A two-sample t-test be-

tween the active and baseline conditions was used to measure fMRI sensitivity. In

practice, we calculate the L-curve by iteratively calculating the two terms in the cost

function (Eq. (2.9)) after performing SVD on the whitened encoding matrix. The

search range of the regularization parameter was restricted in range to between the

largest and smallest singular values. The search was done in a 200-sample geometric

sequence, each term of which is given by a multiple of the previous one. The curva-

ture associated with each sample was computed. Subsequently the minimal curvature

was found within this search range. Image reconstruction, matrix regularization and

computation of the g-factor maps were performed on a Pentium-Ill 1GB dual pro-

cessor Linux system with code written in MATLAB (Mathworks, Natick, MA). The

in vivo functional MRIs were acquired from a 3T scanner (Siemens Medical Solution,

Inseln, NJ) with an 8-channel linear phased array coil wrapping around the whole

brain circumferentially (Siemens Medical Solution, Inseln, NJ). A healthy subject was

recruited to the study after the approval from the Institutional Review Board and



informed consent. Visual stimulus of 4-Hz checkerboard flashing was presented using

E-PRIME software (Psychology Software Tools, Inc. Pittsburgh, PA). The visual

stimulus was designed to display either continuous checkerboards flashing for 30 sec-

onds ("on" block), or a 30-second fixation ("off" block). Three "off" blocks and two

"on" blocks were alternatively presented to the subject starting with the "off" blocks.

Imaging acquisition used a 2D gradient echo echo-planar imaging (EPI) sequence with

parameters as: TR=2000 msec, TE=40 msec, flip angle=90 deg, slice thickness=3

mm with 1.5 mm gap, 10 slices, FOV=200 mm x 200 mm, image matrix=64 x 64.

75 volumes of the brain were acquired. The total imaging time is 2 min. and 30 sec.

Parallel imaging acceleration was performed on the phase encoding (PE) direction.

We sub-sampled the full k-space of each EPI volume by skipping every other PE line,

selecting 3 PE lines from a contiguous 8-PE line k-space data, and skipping every 4

PE lines in the full k-space trajectory to simulate 2.00-fold, 2.67-fold and 4.00 fold

acceleration respectively. The reconstruction of SENSE EPI images used the in vivo

sensitivity reconstructions to avoid the potential increases in g-factor due to the mis-

estimation of the coil sensitivity maps. In addition, we also calculated regularized

SENSE image reconstruction in order to decrease g-factors due to the correlations

among array channels. Given the visual stimulus paradigm, t-tests were performed

on the reconstructed SENSE fMRI to contrast "on" and "off' blocks. The detection

powers of the regularized and the non-regularized SENSE reconstructions were com-

puted using the receiver-operating characteristic (ROC) curves. In simulations, due

to the lack of the gold standard of cortical areas selectively sensitive to the present vi-

sual stimulus, we operationally defined the true positive rate as the ratio between the

areas where both SENSE fMRI and full-FOV fMRI showed significant activations,

given a significance level. Also, the false positive rate was calculated as the ratio

between the areas where SENSE fMRI statistics were significant but full-FOV fMRI

were insignificant. At each chosen significance level of full-FOV fMRI statistical map,

ROC curves for both regularized and non-regularized SENSE fMRI were calculated

separately by varying the significance level of the SENSE fMRI statistical map. The

areas under each ROC curve were used to quantify the detection power.



Unregularized Regularized

acceleration mean std. median mean std. median

2.00 1.47 1.56 1.17 0.80 0.52 0.67

1.60 1.43 1.96 1.07 0.76 0.65 0.60

1.33 1.31 1.27 1.00 0.70 0.58 0.50

Table 2.1: G-factors in unregularized and regularized SENSE reconstructions from

phantom images using an 2-channel phased array coil at 50%, 62.5% and 75% phase
encoding.

2.4 RESULTS

Figure 2.2 shows the reconstructed full-FOV phantom images and the associated g-

factor maps from the 1.5T scanner using the spherical saline phantom and 2-element

surface coil array using 1.33-fold (192 lines), 1.60-fold (160 lines), and 2.00-fold (128

lines) accelerations. Although the overall image SNR in this acquisition was rela-

tively high near the surface coils, SENSE reconstruction noise arising from matrix

inversion was significantly improved by the regularization step for all of the acceler-

ated acquisitions (1.33-fold, 1.60-fold and 2.00-fold accelerations). The effect of the

regularization step was greatest for SENSE reconstruction at 2.00-fold acceleration.

The largest reductions in noise were observed near the coil. The bottom panel of

Figure 2.2 shows the g-factor maps for regularized and non-regularized reconstruc-

tions. All the g-factor maps are scaled by the same factor to facilitate comparison.

The regularized reconstructions allow g-factors less than one since prior knowledge

is used. In contrast, the conventional non-regularized reconstructions always have

a minimum g-factor of one. Table 2.1 summarizes the g-factors average, standard

deviation, and the median in 1.33-fold, 1.60-fold, and 2.00-fold accelerations. For the

1.33-fold acceleration case, the regularization provided an average 87% reduction in

the added reconstruction noise. For the 2.00-fold acceleration case, the regularization

provided an average 1.84 fold reduction.

Figure 2.3 shows the regularized and non-regularized reconstructed in vivo images

and g-factor maps from the 3T scanner using the 8-channel array coil with 2.67-fold



Figure 2-2: The reconstructed phantom images and g-factor maps using un-
regularized or regularized reconstruction in 50%, 62.5% and 75% phase encoding.
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Unregulanized Regularized

acceleration mean std. median mean std. median

2.00 1.07 0.12 1.02 0.72 0.25 0.66

2.67 1.22 0.23 1.14 0.84 0.31 0.98

4.00 2.04 0.58 1.94 1.52 0.53 1.52

Table 2.2: G-factors in unregularized and regularized SENSE reconstructions from

in vivo images using an 8-channel phased array coil at 25%, 37.5% and 50% phase

encoding.

acceleration, and 2.00 -fold acceleration. The g-factor maps showed noticeable local

decreases in the added noise levels of the regularized reconstructed images. Simi-

larly, regularization helped reduce noise in the temporal lobe in 2.67-fold acceleration

(middle panel). In 4.00-fold acceleration, regularized reconstruction demonstrated

decreased noise in the deep temporal lobe inside insular cortex. Table 2.2 sum-

marizes the g-factor average, standard deviation, and median in the reconstructed

anatomical images. As expected, more accelerated acquisitions resulted in higher

g-factors in either regularized or non-regularized reconstructions. In 2.00-fold accel-

eration, g-factor average was suppressed from 1.07 to 0.72 by regularization (49%

reduction). In 4.00-fold acceleration, g-factor associated noise reduction by regular-

ization is 31% (non-regularized: 2.04, regularized: 1.52). Here, the advantages in

SNR due to regularized reconstruction can be appreciated in the temporal lobe of the

anatomical images (Figure 2.4). In 2.00-fold acceleration, a banded noise region in the

non-regularized reconstruction was minimized (Figure 2.3 and 2.4). The calculated

L-curve is shown in Fig. 2.1 for a representative set of aliased pixels for the 2.0-fold

accelerated case.

The SENSE reconstructions using lowered spatial resolution reference scans are

shown in Figure 2.5 and Table 2.3. In 2.00-fold acceleration using a reference scan

at 50% of the spatial resolution of the accelerated acquisition, the average g-factor

was reduced by the regularization method from 1.08 to 0.73. When employing the

reference scan with 25% of the spatial resolution of the 2.00-fold accelerated acquisi-

tion, the average g-factor was reduced from 1.10 to 0.73. For the higher acceleration



Figure 2-3: The reconstructed in vivo images and g-factor maps using un-regularized
or regularized reconstruction in 37.5% (top panel) and 50% (bottom panel) phase
encoding.
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Reference Unregulanzed Regularized

image

acceleration resolution mean std. median mean std. median

2.00 100/0 1.07 0.12 1.02 0.72 0.25 0.66

2.00 50% 1.08 0.15 1.02 0.73 0.26 0.66

2.00 25% 1.10 0.20 1.01 0.73 0.27 0.67

2.67 100% 1.22 0.23 1.14 0.84 0.31 0.98

2.67 50% 1.21 0.23 1.14 0.86 0.31 1.01

Table 2.3: G-factors in unregularized and regularized SENSE reconstructions from in
vivo images using an 8-channel phased array coil at 2-fold and 2.67-fold acceleration
using reference image of lower spatial resolutions.

(2.67-fold) case a reference scan of 50% of the spatial resolution resulted in an av-

erage g-factor of 1.21. Regularization reduced this to 0.86. In this simple fMRI

model data, the contrast reduction resulting from replication of the reference image

was compensated by the lower noise in the regularized reconstruction. A two-sample

t-test between the active and baseline conditions showed that using regularization

increased the t-statistics from 5.93 to 6.77. For a full-FOV image with matrix size

of 256 X 256, the computation time in estimating the regularization parameters are

72 min., 45 min. and 26 min. for 2.00-fold, 2.67-fold and 4.00-fold accelerations

respectively. After the estimation of the regularization parameters, it takes 44 min,

34 min, and 24 min to reconstruct a single-slice single-measurement aliased image at

2.00-fold, 2.67-fold and 4.00-fold accelerations respectively, including calculating both

regularized and non-regularized unfolded images and their associated g-factor maps.

Figure 2.6 shows the t-statistics of the fMRI data using full k-space, regularized

and unregularized SENSE fMRI acquisitions at 2.00-, 2.67-, and 4.00-fold accelera-

tions. Note that the at the same t-statistics level, less activation areas were revealed.

The lost of BOLD contrast-to-noise ratio (CNR) were potentially due to reduced data

samples in SENSE accelerations. Comparing between regularized and unregularized

SENSE reconstructions shows qualitatively similar activations maps.

Figure 2.7 shows the ROC curves of regularized and unregularized SENSE fMRI

detection at 2.00-, 2.67-, and 4.00-fold accelerations. Compared to the t-statistics of



Figure 2-4: The selected temporal lobe area from the whole brain image as shown
by the white box (top panel). Detailed anatomy from unregularized and regularized
SENSE reconstructions of 2.00, 2.67 and 4.00 fold accelerations.
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Figure 2-5: Detailed temporal lobe anatomy from unregularized and regularized
SENSE reconstructions of 2.00 and 2.67 fold accelerations using reference scans at
50% and 25% spatial resolution of the accelerated acquisitions.
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Figure 2-6: The t statistics maps of full k-space acquisition, 2.00-, 2.67- and 4.00-fold
SENSE accelerations with/without regularization.

4.0 of the unaccelerated fMRI data, 2.00-fold accelerations using regularization or not

does not show significant difference in the ROC curves. In 2.67-fold acceleration, reg-

ularized SENSE reconstruction outperforms unregularized reconstructions when false

positive rate is controlled below 0.12. In 4.00-fold acceleration, regularized SENSE

reconstructions have higher sensitivity and specificity than unregularized reconstruc-

tions. Note that in general the detection decreases when the SENSE acceleration

increases by shifting the ROC curves toward lower right corner. This is potentially

due to the decreased SNR in SENSE acquisitions when more k-space data are skipped.

The ROC areas corresponding to SENSE fMRI reconstruction using regularization

and without regularization at acceleration of 2.00, 2.67 and 4.00 were shown in Figure

2.8. In 2.00-fold acceleration, the ROC areas for fMRI using regularized SENSE

reconstruction are larger than those of unregularized SENSE reconstruction when

the t statistics from data without acceleration varies between 8 and 11. When the

t-statistics from data without acceleration vary between 0 and 7, we found that the

ROC area not using regularization is larger than regularized reconstructions at t

statistics of 2.0, 3.0, 5.0, 6.0, and 7.0. In 2.67-fold acceleration, regularized SENSE

fMRI have lager ROC areas than unregularized SENSE fMRI when the t-statistics
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Figure 2-7: ROC curves for 2.00-, 2.67- and 4.00-fold SENSE accelerations
with/without regularization.

varies between 0 and 12, except t-statistics at 6.0 and 8.0. In 4.00-fold acceleration,

regularized SENSE fMRI has larger ROC area than the unregularized reconstructions

when the t statistics of the unaccelerated SENSE vary from 0 to 11.

2.5 DISCUSSION

The regularization approach introduced in this work was intended to minimize the

SNR loss by constraining the matrix inversion. Mathematically, this is equivalent to

obtaining a compromise between an expected a priori result and the noisy result from

inversion with no conditioning. Such an approach is equivalent to the maximal a pos-

terori (MAP) estimation in stochastic Bayesian modeling. The "optimal" solution in

this scenario thus implies the simultaneous minimizations of model errors and prior

errors, which is graphically represented in the Icurve. The proposed regularized

parallel MRI reconstruction algorithm is expected to be universally workable inde-

pendent of the k-space sampling scheme, the array coil configuration and the imaging
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anatomy. In the regularized SENSE reconstruction, we found that g-factors can be

smaller than 1. A g-factor of 1 indicates that the reconstruction added no additional

noise due to the operation of unfolding the aliased image alone. A g-factor less than

1, which can occur when regularization is employed, indicates that the unfolding

operation itself decreases the stochastic variability of the estimated spin density com-

pared to the full FOV reference scans. This reduction in noise results from the prior

knowledge used in the regularization process. From the original definition of g-factor,

when excluding the effect of number of samples (or the acceleration factor, R) in the

denominator of the first term in Eq (2.4), the g-factor is the ratio of the variance

of the estimated spin density from parallel acquisitions over the variance of the spin

density from the full-FOV reference scan. Since prior information is employed in the

regularized parallel MRI reconstruction, less variability of the estimated spin density

from parallel acquisitions is expected. Thus using regularization can partially com-

pensate the SNR loss due to the reduced samples in the accelerated acquisition. It is

important to note that the reduction reflects the use of prior knowledge, which may

lead to a biased result. A potential concern of employing regularization is thus the

replication of image features of the reference scan in the reconstructed image. This

bias is seen as imparted image blurring in Fig. 2.5 for the high acceleration rate

reconstruction using four fold lower spatial resolution reference images. For an fMRI

time series experiment, later time-points might be biased toward the first reference

image reducing the contrast between the activated and resting state. The model fMRI

data set analyzed here suggests, however, that the CNR of the time series is improved

by the regularization procedure. Thus the contrast reduction is less important than

the noise reduction due to regularization. Another concern of using regularization

in parallel MRI reconstruction is that the noise in the prior reference itself could at

some point be introduced into the reconstruction, thereby limiting the visible SNR

improvements. However, the quality of full-FOV prior image can be improved ei-

ther by multiple averages if parallel MRI is used for dynamic imaging applications,

or by spatial smoothing using kernels with dimensions similar to the signal based

on matched filter theory. The advantage of regularized parallel MRI reconstruc-



tions was previously reported by Sodickson et. al. [2] on cardiac imaging using an

empirical formula of a fraction (0.05) of the first eigen value, Similarly, regularized

SENSE reconstruction using an empirical regularization parameter was described by

King et. al. [9]. Subsequently other studies have demonstrated the benefits of prior

information in parallel MRI reconstructions [12, 15, 30, 11]. In contrast to fixed reg-

ularization strategies, we have utilized an automatic regularization implemented by

the mathematically and computationally convenient algorithms to stabilize the image

reconstruction. This is expected to be more adaptive to different anatomy and coil

configurations. We utilize the so-called "in vivo SENSE" reconstruction approach

described by Sodickson et al [2]. This method substitutes an a priori information in

place of the detailed estimate of the coil profile used by SENSE [22]. In the uniform

phantom, the two methods are identical since the full FOV a priori image is identical

to a coil profile map. We chose the in vivo sensitivity reconstruction approach to

demonstrate the with/without regularization in unfolding effects in "in vivo SENSE"

so that, i) we could demonstrate the g-factor gains independent of issues incurred from

miss-estimation of the coil sensitivity profiles, ii) the inclusion of the phantom study

demonstrates regularization in both "traditional" SENSE and in vivo SENSE since in

vivo SENSE reduces to a form of tradition SENSE in this case, iii) the in vivo SENSE

method has an intrinsic appeal for time series measurements (such as fMRI) where

only small intensity changes are expected relative to the baseline image. Here we also

present the simulated fMRI experiments using SENSE EPI to achieve 2.00-, 2.67- and

4.00-fold accelerations. The concerns for the reduced SNR and contrast-to-noise ratio

(CNR) in BOLD images using SENSE acquisition were observed and quantified by the

ROC analysis. Note that in fMRI, SENSE image reconstruction using regularization

has two competing factors determining the BOLD contrast: signal level is lowered in

SENSE acquisition due to the dependence on the prior information; and noise level

is lowered if regularization is used to reduce the unfolding associated noise amplifi-

cation. In high accelerations, the benefits of reduced noise amplification (measured

by g-factors) may compensate the loss of contrast to yield SNR and CNR increment.

This is shown in the 2.67-, and 4.00-fold accelerations. But such compensation for



SNR and CNR from regularization is compared to the SENSE reconstructions at the

same acceleration. Compared to the full-encoded data, SENSE accelerated EPI has

lowered SNR and CNR due to reduced data samples. In the experiments presented in

this chapter, our regularization approach worked robustly in different field strengths

and array coil configurations and the benefits of reduced g-factor associated SNR loss

were consistently observed. Once the regularization parameters are determined, the

computational reconstruction time is identical to the reconstruction without regular-

ization. Thus the additional computational demand for the proposed technique is

the total time needed to estimate the regularization parameters. The long compu-

tational time required even for un-regularized inversion using MATLAB shows that

this environment is useful only for testing the method. Note that our unfolding of

aliased SENSE images includes calculation of both regularized and non-regularized

reconstructions and their associated g-factor maps. The computation time can be

reduced to 1/4 if only one set of the unfolded full-FOV image is estimated. Compu-

tational speed may be further improved by optimizing code platform. Even given the

closed form model errors and prior errors in Eq. (2.9), searching through different

is necessary to locate the minimal curvature. This could be made more efficient by

using a direct regularization estimation method. In dynamic imaging, the impact on

the increased image reconstruction time due to regularization estimation can be min-

imized by estimating regularizations only once and then using identical regularization

parameters for the repeated time points. This is particularly attractive for function

brain activation studies where the changes with time are quite small. In addition to

the proposed L-curve technique, other automatic regularization estimation methods,

such as generalized cross validation (GCV) [16, 17], can be potentially used for ap-

propriate regularization estimation. In this work we present an approach to employ

regularization in reconstructing parallel MRI data in order to reduce the noise am-

plification of the reconstruction (g-factor). The proposed L-curve algorithm was fully

automatic and showed a significant reduction in average g factors in phantom and in

vivo data at 1.5T and 3T. For some pixels the g factor was reduced below 1 indicating

that the a priori knowledge in the reconstruction reduced the variability below that



of the full-FOV reference scan. The reliance on a priori knowledge did not, however,

reduce functional imaging CNR in a model fMRI experiment. Although the method

was demonstrated using the in vivo SENSE method, the regularization method for

reduction of noise amplification might potentially benefit most variants of parallel

MR reconstruction.
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Chapter 3

Distributed Current Estimates

with a Cortical Orientation

Constraint

In contrast to overdetermined source models with a small number of equivalent current

dipoles (ECD), distributed source modeling of magnetoencephalogram (MEG) and

electroencephalogram (EEG) employs a dense distribution of thousands of current

sources. Previously, anatomical MRI data has been used to constrain the locations

and orientations of the sources on the basis of the cortical geometry, extracted from

anatomical MRI data. Here, this approach is extended by calculating Cortical Patch

Statistics (CPS), which is incorporated into the source models as a Loose Orientation

Constraint (LOC). The proposed approach allows us to take into account the variation

of the cortical surface normal within the cortical patch corresponding to each current

source location. Simulations with single ECDs, 10 mm diameter cortical patches,

and 20 mm diameter patches show that applying the LOC can improve localization

accuracy from 9 mm down to 7 mm in 12 minimum norm estimate (MNE), and from

12 mm to 3 mm in 11 minimum norm estimate, also called minimum current estimates,

(MCE). The refined cortical constraints were applied to in vivo data from auditory

and somatosensory evoked fields.



3.1 INTRODUCTION

Magnetoencepholography (MEG) is a non-invasive tool to investigate the human brain

function with a high temporal resolution of milliseconds [1, 24] by measuring mag-

netic fields ensuing from neural currents in the brain. MEG is closely related to

electroencephalography (EEG), which measures the electric potential distributions

on the scalp. MEG is selectively sensitive to source currents flowing tangentially with

respect to the surface of the head, whereas EEG detects both the tangential and radial

source components. Localization of the sources with these methods is complicated by

the non-uniqueness of the electromagnetic inverse problem. To render the solution

unique several source models with different constraints have been proposed.

The most popular MEG and EEG source modeling approach is to assume the

measured fields can be accounted for by modeling the source by a small number of

focal sources modeled by equivalent current dipoles (ECDs). If multiple sources are

simultaneously active, reliable estimation of the source parameters becomes difficult

due to the non-linear relationship between the source locations and the measured

signals. Whereas global optimization algorithms have been tailored to accomplish

this task [3], the most feasible solutions combine optimization algorithms with partly

heuristic interactive approaches, motivated by prior physiological and anatomical

information. In addition, the dipole maybe an oversimplification as a model for

spatially extended source activity.

As an alternative approach, distributed current solutions have been proposed.

A widely employed distributed source localization approach in MEG and EEG is

based on the 12-norm prior, resulting in diffuse minimum-norm estimates (MNE),

[19, 20, 21]. More focal estimates can be obtained by using an 11-norm prior; the

corresponding minimum-norm solution is often called the minimum-current estimate

(MCE) [36, 37].

Previously, it has been proposed that individual anatomical information, acquired

with structural magnetic resonance imaging (MRI), can be incorporated into the

source localization with -norm constraint. In particular, the locations of the sources



can be constrained to the cortical mantle and their orientations perpendicular to the

local cortical surface [19]. Such a modeling constraint is motivated by the physio-

logical information that the main sources of MEG and EEG signals are postsynaptic

currents in the pyramidal cells on the cortex and that the principal net direction of

the current is perpendicular to the cortical surface [24, 9]. Importantly, in MCE,

the optimization algorithm becomes more straightforward if the orientations of the

sources are known and the source amplitudes are subsequently estimated subject to

constraint. To this end, the MCE implementation described in [37] used the current-

source orientations provided by MNE.

To maintain computational efficiency, distributed source models usually employ

a spacing of 5 - 10 mm between neighboring sources in the discrete source space. In

our previous work with the minimum -norm estimate [20] we employed the cortical

location constraint, with current orientations either unconstrained or strictly con-

strained to the orientation of the cortical normal at each source space point. Because

the preferred net current direction on the cortex is known, omitting the orientation

information available from MRI is obviously a suboptimal way to use the anatomical

constraints. On the other hand, using a strict orientation constraint is sensitive to

slight errors in the MEG-MRI alignment and does not take into account the fact

that the orientation may vary considerably within each cortical patch corresponding

to the source space points. To overcome these problems we have devised methods

to calculate cortical patch statistics (CPS) and incorporated these data as the loose

orientation constraint (LOC). In this chapter, we employ this new approach in the

calculation of both 11 and 12-norm distributed solutions. We will present the theoret-

ical and technical details of our approach as well as simulations with different source

configurations. Analysis of auditory and somatosensory MEG data will be presented

to demonstrate the utility of the approach.



3.2 DISTRIBUTED INVERSE SOLUTIONS

Anatomically constrained minimum-norm estimates The measured MEG/EEG sig-

nals and the underlying current source strengths are related:

Y=AX+N (3.1)

where Y is an m-by-t matrix containing measurements from m sensors over t

distinct time instants, X is a 3n-by-t matrix denoting the unknown time-dependent

amplitudes of the three components of n current sources, A is the gain matrix rep-

resenting the mapping from the currents to MEG/EEG signals, i.e., the solution of

the forward problem, and N denotes noise in the measured data. The most feasible

assumption is that N is Gaussian with a spatial covariance matrix C, to be estimated

from the data. If we further assume that the source amplitudes are also Gaussian

with a covariance matrix R, we obtain the regularized 12 minimum-norm solution,

linearly related to the source currents, as [19]

XMNE = RAT (ARAT + 2C)- 1Y = WY (3.2)

where A2 is a regularization parameter to avoid magnification of errors in data

in the current solution and the superscript T indicates the matrix transpose. This

result can be also interpreted as the Bayesian maximum a posteriori (MAP) esti-

mate, if one assumes that the signals are Gaussian with mean AX and covariance

matrix C and that the a priori distribution of the currents is Gaussian with zero

mean and covariance matrix R/A 2 . However, in the present approach, there is no

physiological information justifying this choice of the prior for currents; the choice

is rather motivated by the simple computational realization of the estimation proce-

dure. Consequently, we prefer not to emphasize here the Bayesian interpretation of

the MNE.

In Eq. (3.2), the current orientations have not been constrained. A priori orien-

tation information can be easily incorporated by replacing the gain matrix by



Afixed = AE (3.3)

where Theta is a 3n-by-n matrix containing the unit vectors pointing to the di-

rections of the currents. If the direction cosines of the kth dipole are Ckx, cky, and

ckz, the kth column of Theta reads

Ok = CkxCkyCkz ... ) (3.4)
3(k-1) n-3k

3.2.1 Spatial whitening

Instead of applying Eq. (3.2) directly, it is convenient to use an equivalent formulation

XMNE = RAT (ARAT + AI)-lY = TWY (3.5)

where

y = C-1/ 2 y

A = C-1/2A (3.6)

are the spatially whitened data and spatially whitened gain matrix, respectively.

This step allows us to simplify the subsequent calculations, since the noise-covariance

matrix of the whitened data is a unit matrix, as indicated by the comparison of Eqs.

(3.2) and (3.5).

3.2.2 Depth weighting

The MNE is known to have a bias towards superficial currents, caused by the attenu-

ation of the MEG and EEG lead fields with increasing source depth. It is possible to

compensate for this tendency by scaling the columns of A with a function, denoted

here by fk for the kth dipole, increasing monotonically with the source depth. A

commonly used choice is



fk = 1/(a- 2a3k-2 + a 3- 1a3k-1 + aska3k)

where ap is the pth column of A and 7 is a tunable parameter. Whereas [27] suggest

= 0.5, we have found in our simulations that this does not provide sufficient com-

pensation. Our preferred value is slightly bigger (7 = 0.6). The alternative Bayesian

interpretation of the depth weighting is that the variance of currents increases with

depth, again hardly justifiable physiologically.

3.2.3 Noise-normalization

In the above, Eqs. (3.2) and (3.5) provide the best-fitting value for the current

amplitudes or, in the Bayesian view, the maximum a posteriori (MAP) estimate. To

make the resulting maps conceptually similar with those calculated in other functional

imaging modalities, Dale et. al [20] proposed that the current values should be

converted into dynamic statistical parametric maps. To this end, we need to consider

the variances of the currents

Wk = (WCWT)kk = ( T)kk (3.8)

For fixed-orientation sources we now obtain the noise-normalized activity estimate

for the kth dipole and pth time point as

X MNE

Zkp = kx (3.9)
Wk

which is t-distributed under the null hypothesis of no activity at the current lo-

cation k. Since the number of time samples used to calculate the noise-covariance

matrix C is quite large, more than 100, the t distribution approaches a unit normal

distribution (i.e., a z-score). If the orientation is not constrained, the noise-normalized

solution is calculated as

(3-7



3E (X(k!N- )+ q )2

Fq= - (3.10)

q=1 3(k-1)+q

Note that under the null hypothesis, Fkp is F distributed, with three degrees

of freedom for the numerator. The degree of freedom for the denominator is typi-

cally large, again depending the number of time samples used to calculate the noise-

covariance matrix. As discussed in [20], the noise-normalized estimates resulting

from the transformations given in Eqs. (3.9) and (3.10) have a smaller depth bias

that the MNEs obtained without depth weighting. Furthermore, the point-spread

function, i.e., the image of a point current source, is more uniform in space in the

noise-normalized estimate than in the MNE.

3.2.4 Cortical patch statistics (CPS)

As stated above, the most feasible anatomical constraint for MEG and EEG source

localization is to restrict the source locations to the cortical mantle, extracted from the

individual's MRI. With modern segmentation methods, the geometry of the cortex can

be automatically triangulated from high-resolution 3D MRI data sets. We employed

the FreeSurfer software [31, 12, 13] to build a triangular cortical surface mesh from T1-

weighted anatomical MRI data (MPRAGE sequence) with a 1-mm isotropic spatial

resolution. In addition to the folded surface, FreeSurfer also computes inflated and

flattened views of the cortex. These views expose the parts of the cortex embedded in

the sulci and are thus particularly useful for visualizing MEG data, which is mainly

sensitive to fissural activity. We used the gray-white matter boundary to generate

the cortically constrained source space. To achieve sufficient anatomical detail, the

triangular tessellation typically consists of 130 000 - 150 000 vertices per hemisphere,

corresponding to an approximate triangle size of 1 mm. For source modeling, this

dense triangulation is subsequently decimated to a grid spacing of 5 - 10 mm. This is

motivated by the limited spatial resolution intrinsic to the source localization using

MEG/EEG and practical computational efficiency concerns. However, this simplified



source geometry may yield inaccurate dipole orientations, which do not take into

account the orientation variation over the patch belonging to each decimated current

source location. Furthermore, the actual areas of the patches have to be taken into

account in the calculations to correctly estimate the current density on the cortex. To

acquire more representative cortical information, we use the original dense cortical

mesh to obtain a stochastic characterization of the cortical patches. We employ

the Dijsktra [14] along the edges of the cortical mesh to calculate the distance from

all vertices to each of the decimated source points. For each vertex of the original

cortical mesh, the closest decimated dipole can be thus determined. Vertices in a given

cortical patch share the same nearest decimated dipole location, as shown in Fig. 3.1.

Given the cortical patch definitions across the whole cortical mantle, we can calculate

the area associated with each decimated dipole source by assigning the area of each

triangle to the associated cortical patch. At the boundary of the cortical patch, the

area of the triangle is divided proportional to the number of vertices belonging to the

same cortical patch, as shown in Figure 3.2. The individual columns of the forward

matrix A are then weighted by the areas of the cortical patches, i.e.,

AA = Adiag(A) (3.11)

where diag(A) is a diagonal matrix with the areas of the patches as its elements.

This transformation means that instead of net current dipole amplitudes at each

source location we now estimate the current density on the patch in units of [Am/m2].

3.2.5 The Loose Orientation Constraint (LOC)

Given the structure of the cortical patches, we estimate the averaged cortical orienta-

tion associated with each patch and the associated standard deviation. Rather than

assigning a fixed orientation to decimated dipole directly, we employ the averaged

orientation within a patch to reduce the effect of sparse sampling of the original tessel-

lation. To further accommodate the deviation around the averaged normal direction

in each cortical patch, we use a Loose Orientation Constraint (LOC) as follows:



Rfd,d} [sin 0d sin 6d1],

Aid} Id=6~~~~~1

X =RAT (ARAT + A2 1g) (3.12)

where R{d,d} are the three diagonal elements of R corresponding to one dipole and

{d} denotes the column indices for one dipole in the forward matrix. [eXe,de,d^,]

is a rotation matrix with ezd pointing to the cortical normal direction, ex^,d and e^,d

being normal to it in the tangential plane. We used three alternatives for computing

the cortically constrained source estimates: without an orientation constraint, with

fixed orientation constraint taken as samples from the complete cortical triangulation,

and the loose orientation constraint. Below, we refer to the three methods as free

orientations (FO), the strict orientation constraint (SOC), and the loose orientation

constraint (LOC), respectively.

3.2.6 Minimum-current estimates

The minimum-current estimate (MCE) [36, 37] can be formulated as the solution of

the optimization problem:

n

minimize ( wi |X I
i=1

subjecttoY, = BX (3.13)

where wi are the weights for dipole sources while tildeY, and B, are the regular-

ized measurement and forward solution for fixed-orientation sources, respectively. As

before, let E be the n-by-3 matrix containing the source orientations and compute

the singular-value decomposition

AAE = UAVT (3.14)



Then

B, = UTA ,

Yr = U7Y (3.15)

where Ur is composed of the first r columns of U. This method of eigenvalue trun-

cation in regularization is closely related to the use of the regularization parameter A'

in Eqs. (3.2) and (3.5). It is easy to show that the latter corresponds to weighting of

the eigenvalues with a smooth transition function instead of the step function implied

by Eq. (3.15).

The above implementation of MCE requires the knowledge of the orientations of

sources. It was previously suggested to employ MNE to estimate the dipole orienta-

tions, and subsequently using Linear Programming (LP) to solve Eqs. (3.13). [37].

In Uutela's approach, cortical location or orientation constraint was not used; the

source space consisted of an even 3D grid of source locations. We propose to use the

LOC together with the cortical source space in the computation of the initial MNE.

The incorporation of brain anatomy from the high-resolution MRI with cortical patch

definitions is expected to give a better approximation for the dipole orientations than

the unconstrained MNE used in [37]. The subsequent anatomically-informed MCE is

then computed given the measurement data, the forward solution, and dipole orienta-

tion estimates from the initial anatomy-informed MNE. Another possibility is to use

a strict orientation constraint in the MCE calculations directly without computing a

MNE first.

3.3 METHODS

3.3.1 Anatomical information from high resolution MRI for

MNE and MCE

The brain anatomy was imaged by high-resolution Ti-weighted 3D volume MRI us-

ing MPRAGE sequence (TR/TE/flip = 2530ms/3.49ms/7o, partition thickness =



Figure 3-1: The 3 dimensional left hemisphere white matter brain anatomical mesh
derived from high-resolution Ti-weighted MRI. The red box indicates the region to
introduce the definition of local cortical patch (see Fig. 3.2).

Figure 3-2: A local cortical patch defined by the thick red lines with average orien-
tation in the red arrow. Blue spots denote the location of the selected dipole after
10-mm decimation. The loose orientation constraint (the 3D dashed cone) is defined
by the average orientation and two tangential directions.
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Figure 3-3: The division of a cortical surface triangulation with vertices V1, V2 and
V3 to different cortical patches. The red dashed line indicates the boundary between
cortical patches. A: the area of the single cortical triangulation.



1.33mm, matrix = 256 x 256, 128 partitions, Field of View = 21 cm x 21 cm) in a

1.5-T MRI scanner (SIEMENS Medical Solutions, Erlangen, Germany). The geom-

etry of the gray-white matter surface in the cortex was subsequently derived from

an automatic segmentation algorithm to yield a triangulated model with approxi-

mate 340,000 vertices [31, 12, 13]. The original triangulation was decimated to a

source space of approximately 7,500 dipoles with 7-mm distance between the nearest

two dipoles (Dale and Sereno, 1993). Subsequently, CPS were calculated using the

methods described above, resulting in the average normal directions, their standard

deviations, and approximate patch areas. In the MCE calculation, the value of r in

Eq. (3.15) was selected to maintain 99% of the power of the singular values. The

weights for currents, in Eq. (3.13), were the Euclidean norms of the columns of . The

orientation matrix was obtained either from an initial MNE using the LOC or from

the average patch normals. In line with [37] we employed Linear Programming [15]

to estimate the magnitudes of dipole sources.

3.3.2 Simulations

In our simulations, we focused our interest to two brain regions, the primary so-

matosensory area and the temporal lobe near the primary auditory cortex. To this

end, we placed sources around the central sulcus on the left hemisphere and around

the Sylvian fissure on the right hemisphere, respectively. Figure 3.4 shows the loca-

tions of 73 simulated sources at somatosensory cortex and 90 simulated sources at

auditory cortex. We employed three source configurations: current dipoles, 10-mm

diameter patches, and 20-mm diameter patches. The orientations of these simulated

sources were adjusted to be perpendicular to the local cortical surface as informed

by anatomical MRI. The ideal sensor measurements on MEG sensors were thus cal-

culated using the forward matrix (A) and the dipole source amplitudes (X). For the

patches, we calculated the forward solution in the complete dense cortical grid and

placed a dipole source of equal amplitude at every vertex within the patch. To ap-

proximate realistic situations where contaminating noise is present, we superimposed

Gaussian noise of zero mean and unit variance on the ideal sensor measurements.



The amplitudes of the simulated brain signals were scaled such that the power signal-

to-noise ratio (SNR) was 100. The SNR here was defined as the ratio between the

instantaneous power of the ideal MEG sensor measurements over that of the MEG

sensor noises.

Distributed source estimates were calculated using MNE, noise-normalized MNE

[20, 25], and MCE. The orientations of source models were unconstrained, strictly

constrained to the average normal within the cortical patch, or loosely constrained.

Specifically, for LOC, Eq. (3.12) 0 d was varied from 0.5 to 5.0 times standard devia-

tions of the distribution of local cortical normal directions (UO) within each cortical

patch. The precision of localization was evaluated by the distance between the center

of mass of the distributed source estimates and the center of mass of the simulated

sources. We define this metric as shift of center of mass, Sm. To avoid influence

from the background insignificant dipole estimates, we used only the dipoles whose

amplitudes exceeded 50% of the maximum amplitude. To demonstrate the behavior

of the solutions when multiple sources are simultaneously active, we simulated two

simultaneously active dipole sources at somatosensory cortex with separation of 21

mm (shown in Figure 3.4C) and subsequently localizing the synthetic MEG sensor

data with free, strict cortical or loose cortical orientation constraints using MNE,

noise normalized MNE and MCE.

3.3.3 Auditory and somatosensory MEG experiments

We also employed data from an auditory and a somatosensory MEG experiments

to test our methods in realistic situations. The experiments were conducted with a

healthy subject with the approval of the Institutional Review Board. Prior to the

experiments an informed consent was obtained from the subjects. In the auditory ex-

periment the stimuli were 60-ms wide-band noise bursts (2 kHz central frequency with

4 kHz bandwidth, 70 ms duration) presented binaurally. A 306-channel MEG system

(Neuromag, Helsinki, Finland) was used to record the neuromagnetic responses. The

measurement bandwidth was 0.1 to 172 Hz and the data were digitized at 600 Hz.

About 200 responses were averaged. In the somatosensory study, the right median



Figure 3-4: The locations of the simulated current sources at the auditory cortex at
right hemisphere (A) and the somatosensory area at left hemisphere (B). Each blue
dot represents an individually active current source of either single equivalent current
dipole, or a 10-mm diameter cortical patch. (C) The locations of two equivalent cur-
rent dipole sources at somatosensory area used to generate simulation to distinguish
two simultaneously active sources. For visualization, cortical surface was inflated and
with dark gray indicating sulci and light gray indicating gyri.



nerve was stimulated at the wrist with 0.5-ms constant current pulses whose ampli-

tude was clearly above the motor threshold. The inter-stimulus-interval between the

pulses was 4 s. The measurement bandwidth was 0.03 to 250 Hz and the data were

digitized at 1004 Hz. About 100 responses were averaged.

The results were compared with equivalent current dipole (ECD) modeling. We

used the Xfit program (Neuromag, Helsinki, Finland) to localize one ECD for both

the auditory and somatosensory evoked field experiments. The location of the esti-

mated single equivalent dipole was then exported to the high-resolution MRI data

and projected to the nearest point on the inflated cortical surface.

3.4 RESULTS

3.4.1 Patch statistics

Figure 3.5a shows the distribution of the standard deviations (Od) of the angles be-

tween all dipoles within a cortical patch and their averaged normal vector. In 99%

of the patches this standard deviation was less than 25 degrees. The median of this

distribution was 10 degrees. Figure 3.5b shows the distribution of the deviate be-

tween the averaged normal vectors within a cortical patch and the normal vector

of the decimated source location associated with the cortical patch. Mostly such a

deviate was between 5 to 10 degrees with the median of 8 degree. In about 3% of the

decimated sources the average normal deviated from the source location normal as

much as 30 degrees. Figure 3.5c shows the distribution of the number of sources in a

cortical patch. On the average, a cortical patch contains 40 dipole sources with the

7-mm decimation. Cortical patches with dipole sources less than 20 and more than 60

constituted only approximately 5% of the total number of patches. The distribution

of the patch areas is shown in Figure 3.5d. With 7 mm decimation, the patches had

an averaged area of 22.76 mm2. The standard deviation of the distribution was 7.4

mm2.
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3.4.2 Simulations

Figures 3.6 and 3.7 show simulation results of MNE, noise normalized MNE, and MCE

using FO, SOC, and LOC with an ECD source at auditory cortex or somatosensory

cortex. In simulations with a simulated ECD source in Sylvian fissure, MNE with

free orientation constraint produced a distance between the ECD and the center of

mass of the estimate of 10.8 mm. Using SOC and LOC with 0 d = 3.5o, Sem was

14.4 mm and 13.8 mm, respectively. Noise normalized MNEs with FO, SOC, and

LOC with 6d = 3.5o correspond to Scm = 12.6 mm, 12.3 mm, and and 12.5 mm,

respectively. In MCE, using dipole orientations estimated by MNE with FO led to

Scm = 12.0 mm. Using MCE with SOC and LOC with 9 d = 2.5ao reduced Sem to 6.9

mm and 5.9 mm, respectively.

Figure 3.7 shows simulations of MNE, noise normalized MNE, and MCE with FO,

SOC, and LOC for a dipole source at left hemisphere somatosensory area. MNEs using

FO, SOC, and LOC with 0d = 4.5aO correspond to Scm = 10.3 mm, 9.6 mm, and 9.5

mm respectively. Note that the MNE with FO and that with SOC were distributed

more around post central gyrus whereas MNE with LOC shifted the source estimates

more anterior and thus corrected this error partially. In the noise-normalized MNE,

these shifts are 7.0 mm, 4.4 mm and 5.3 mm (for FO, SOC, and LOC with 0d= 0.5Ud).

MCE using free orientation constraint has Scm = 6.5 mm. Applying the SOC and

the 0 d = 2.0cr LOC reduced Scm to 3.0 mm and 1.8 mm, respectively.

The simulation results on shift in the center of mass on the auditory area and

somatosensory areas are shown in Figure 3.8. MNE utilizing LOC on single-dipole

synthetic data yields the smallest average Scm (11.3 mm in auditory area and 5.8 mm

in somatosensory area), compared to MNE using either FO or SOC in both auditory

(FO: 11.6 mm, SOC: 12.8 mm) and somatosensory area (FO: 8.5 mm, SOC: 15.2

mm). The medians of these LOC MNEs were 6d= 2.0o. The effect of decreasing

the shift of the center of mass by appropriate LOC was observed systematically with

the more extended synthetic sources as well.

Using noise normalized MNE, Scm's using FO and SOC were on the average ap-



Figure 3-6: MNE, noise normalized MNE and MCE from a single ECD placed in
Sylvian fissure, as indicated by blue dot.
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Figure 3-7: MNE, noise normalized MNE and MCE source localization simulations
from a single ECD placed on somatosensory cortex, as indicated by blue dot.
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proximately 9 mm, independent of both the location of the sources and their spatial

extent. In auditory cortex, using LOC resulted in Sem = 8.1mm, 8.1 mm, and 8.4 mm

for dipoles, 10-mm, and 20-mm diameter cortical patches, respectively. In somatosen-

sory cortex, with LOC, Sem = 8.7 mm, 8.5 mm, and 8.8 mm for dipoles, 10-mm, and

20-mm diameter extended sources, contrasted to Sem = 9.5 mm, 9.4 mm, and 10.0

mm with FO, and 8.5 mm, 8.0 mm, and 8.0 mm using SOC. Our simulations at so-

matosensory area indicated that using SOC could achieve the minimal Sem compared

to using FO or LOC. Nevertheless, this benefit is less 1 mm in average compared

to loose cortical orientation constraint inverse. Finally, MCE with LOC in auditory

cortex shows the least averaged Sem (7.8 mm for dipoles, 7.8 mm for 10-mm diameter

sources, 9.2 for 20-mm diameter sources). Using FO and SOC in MCE makes shifts

in average approximately 12 mm and 14 mm in auditory area. In the somatosensory

area, MCE with dipole orientations taken from the free-orientation MNE resulted in

average Sem's of 2.9 mm, 4.0 mm and 5.0 mm with dipoles, 10-mm diameter, and 20-

mm diameter extended sources. If the dipole orientations are taken from MNE with

LOC, the Sem was reduced to 2.6 mm, 3.2 mm and 3.6 mm with dipoles, 10-mm di-

ameter and 20-mm diameter simulated sources. MCE using a preliminary MNE with

SOC gave averaged Sm's 3.4 mm, 3.7 mm, and 8.6 mm with single ECD, 10-mm

diameter and 20-mm diameter simulated sources, respectively.

Figure 3.9 shows the simulation results of MNE, noise normalized MNE, and MCE

when two sources are simultaneously with 21 mm separation. In MNE, we found that

using LOC with 0 d = 2.0ar can reduce the spatial distribution of the source estimates

at the same threshold, as compared to the free-orientation case. And two loci of

simulated sources were indicated by separate dorsal and ventral MNEs. In the noise-

normalized MNE, LOC and FO can both provide estimates around two active loci.

However, the noise-normalized MNE with SOC failed to produce two separate source

estimates at the threshold to show the most significant 50% estimates. MCE using free

or strict orientation constraint generate estimates with false source locations, which

are located either between two synthetic sources, or in incorrect locations in the post-

central sulcus. Using LOC with 0 d = 2.0ao, MCE can resolve two simultaneously
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Figure 3-9: Simulated two ECD simultaneous sources and the associated MNE, noise
normalized MNE and MCE inverse. Cortical current estimates were normalized be-
tween 0 and 1 to illustrate the spatial distributions.

active sources and localize them within 3 mm accuracy in the central sulcus.

3.4.3 Auditory and somatosensory MEG experiments

For the auditory experiment, Figure 3.10 shows the MNE, noise-normalized MNE,

and MCE of MEG recordings at 100 ms after the onset of the stimulus. The blue spot

indicates the location of single equivalent dipole fitting, which is localized to superior

temporal gyrus. Compared to MCF, MNE and noise normalized MNE are more

diffused. Note that in both MNE and noise-normalized MNE also showed estimated

sources around medial temporal gyrus. The distance between the ECD and the center

of mass of MNE with FO is 5.0 mm. Applying the SOC in MNE yields a distance of

11.4 mm. LOC with in MNE reduces the distance to 11.7 mm. However, examining



FO SOC LOC
S,,, S , S. S. SIM S11

MNE 3.1 6.2 4.0 7.0 3.2 7.0
Noise norm. MNE 11.0 15.0 10.9 12.5 11.6 15.0

MC E 7.8 7.8 2.2 7.5 6.5 7.0

Table 3.1: Shifts of the center of mass (Sem) and the maximum of the estimate
(Smc) from the ECD in MNE, noise normalized MNE and MCE using free orientation
(FO), strict orientation constraint (SOC) and loose orientation constraint (LOC)
in the somatosensory experiment at 100 msec after the onset of the median nerve
stimulation.

the maximum of the MNE estimates revealed that the distances to the ECD locus

were 11.5 mm, 6.8 mm and 6.8 mm using FO, SOC, and LOC, respectively. In

MCE, using dipole orientations estimated from MNE with FO leads to the distance

between ECD and the center of mass of the estimate 6.8 mm. MCE using dipole

orientations estimated by MNE SOC and LOC with 0 d = 2.00- result in Sem = 5.7

mm. These are also values of the distance between ECD and the maximum of MCEs.

Noise normalized MNEs with FO, SOC, and LC with 0 d = 2.0oq lead to the distance

between the ECD and estimates of 9.5 mm, 8.7 mm, and 8.7 mm, respectively. Table

3.1 summarizes these distance measurements.

Figure 3.11 shows MNE and MCE of the somatosensory MEG experiment at 50

msec after the onset of stimulation. The ECD was correctly located at the post-

central gyrus. In MNE, it was found that the estimated activities were mostly from

post-central gyrus with minor activation in pre-central gyrus. The distance between

the center of mass of MNE and ECD with FO, SOC, and LOC with 0d = 2.0a were

3.0 mm, 3.9 mm, and 3.2 mm, respectively. The maximums of MNE using SOC,

FO, and LOC were 6.2 mm, 7.0 mm and 7.0 mm away from the ECD location. The

distances between the center of mass of MCE with FO and SOC are 7.8 mm and

2.2 mm. Using LOC with this distance decreases to 6.5 mm. The maxima of MCE

using FO, SOC, and LOC are located 7.7 mm, 7.5 mm and 7.0 mm off the ECD

location. In the noise-normalized MNE, the distance between the estimate and ECD

using FO and SOC are 11.0 mm and 10.9 mm. In noise-normalized MNE with LOC



Figure 3-10: MNE, noise normalized MNE, and MCE source localizations at 100
msec after the onset of the auditory stimuli. The blue spot indicates the location of
equivalent current dipole (ECD) by single dipole fitting.
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Figure 3-11: MNE, noise normalized MNE and MCE source localizations at 50 msec
after the onset of the median nerve stimulation. The blue spot indicates the location
of optimal fitting of a single equivalent current dipole.

(6d = 2.0ao) the maximum is 11.6 mm away from the ECD locus. Finally, the distance

between ECD and the maximum of current estimates using FO, SOC, and LOC are

15.0 mm, 12.5 mm, and 15.0 mm respectively. Table 3.2 summarizes these distance

measurements.

3.5 DISCUSSION

Structural MRI can provide precise anatomical features of the cortical geometry. This

information can be utilized to derive CPS once the decimation is determined. The



FO SOC LOC

som S.. Sem S". SIM s.
MN E 5.0 13.5 11.4 6.9 11.7 6.9

Noise norm. MNE 9.5 11.2 8.7 7.5 8.7 13.5
MC E 6.9 6.9 5.7 5.7 5.7 5.7

Table 3.2: Shifts of the center of mass (Scm) and the maximum of the estimate (Smax)
from the ECD in MNE, noise normalized MNE and MCE using free orientation (FO),
strict orientation constraint (SOC) and loose orientation constraint (LOC) in the
auditory experiment at 50 msec after the onset of the auditory stimulation.

reason to use CPS in MEG/EEG inverse is that CPS can provide more accurate

description of the brain anatomy once the spatial resolution of forward model is de-

termined. We demonstrated that using CPS in summary can improve the localization

accuracy by posing a loose orientation constraint, as compared to free orientation or

strict orientation constraint inverse. In this study, we found that source modeling

with lead fields proportional to the size of the cortical patch provides qualitatively

reasonable results. This qualitatively validates that (1) the cortical source space

was constructed to achieve reasonable equal spatial sampling, and (2) the number of

sources within each cortical patch, which equals to the product of the density of the

current dipoles and the area of the cortical patch, is approximately uniform across

the whole brain.

The incorporation of the loose orientation constraint with 0 d = 20 ... .30 9 increases

the accuracy of the localization compared with localization with free orientation or

strict orientation constraint, as shown in our simulation results in both auditory

and somatosensory areas with dipolar or cortical patch synthetic sources. We used

the standard deviations (0d), not angles in degrees, in loose orientation constraint,

because the curvatures of cortical patches may vary significantly, depending on their

anatomical locations. For example the cortical patch at the ridge of a gyrus has

fairly flat cortex and small 9 d, and the cortical patch at the junction between a gyrus

and a sulcus is rather convoluted and thus large 6d. In this sense, the loose cortical

constraint using standard deviations (Od ) may less depend on the actual anatomical

position as compared to using specific values of angles.



In our simulations, we found that there is no unique optimal number across the

whole brain for the best utilization of loose cortical orientation constraint in MNE

and MCE. Presumably this is due to the variations of cortical source space sampling

and local anatomical curvature variations. However, in MNE, noise normalized MNE

and MCE, we found that the utilization of LOC is especially critical to achieve both

higher accuracy in localization and better resolution for simultaneously active sources.

The LOC is different from the traditional implementation of MCE using MNE with

free orientation to provide dipole orientation estimates [37] and the MNE with strict

cortical constraint [26]. Here, the motivation of using loose cortical constraint is to

provide more accurate cortical structure after the source space decimation. If the

complete dense forward matrix could be employed in source estimation algorithms,

such a loose cortical constraint may become unnecessary. In such a case, the price is

the higher computational load in both L2 norm, and especially Li norm prior source

modeling. Nevertheless, the ill-posed nature of the MEG/EEG inverse with diffused

point spread and cross talks does not encourage the utilization of full forward matrix

down to millimeter resolution [25]. The proposed loose cortical constraint is thus a

compromise for both computational resolution and sufficient anatomical features in

MEG/EEG inverse.

The other benefit of loose cortical constraint in MNE is that it generates a less

diffuse source estimate compared with localization using strict orientation constraint.

This is because LOC allows a small source component tangential to the cortical surface

to account for the MEG/EEG measurement. Even though not as focal as MCE, MNE

with LOC can potentially help the interpretation of localization results by reducing

the false source estimates in adjacent gyri or sulci, which were typical findings in our

experience when applying strict orientation constraints.

The proposed method to include anatomical information in distributed source

modeling for MEG/EEG was based on the physiological evidences that the orien-

tations of pyramidal cells, which are responsible for dominant MEG signal genesis,

are perpendicular to the cortical surface [24, 9]. This was especially documented in

hippocampus in guinea pig model [9]. Further validations across the whole brain on



human can solidify the utilization of cortical orientation constraints, which would be

of following-up research topic in the future. In this study, we only apply the pro-

posed cortical constraints on MEG data. Due to the similarity of the formulation of

the source localization and physiological nature for signal genesis, such cortical con-

straints are expected to provide similar benefits in EEG localization in distributed

source modeling.
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Chapter 4

Wavelet-based Spectral

Spatiotemporal Mapping in the

Human Brain

This chapter presents a computationally efficient source estimation algorithm, which

localizes cortical oscillations and their phase relationships. The present method em-

ploys wavelet-transformed MEG data and uses anatomical MRI to constrain the cur-

rent locations to the cortical mantle. In addition, the locations of the sources can

be further confined with help of functional MRI (fMRI) data. As a result, we obtain

spatiotemporal maps of spectral power and phase relationships. As an example we

show how the phase locking value (PLV), i.e., the trial-by-trial phase relationship be-

tween the stimulus and response, can be imaged on the cortex. We tested the method

of combining MEG, structural MRI, and fMRI using simulated cortical oscillations

along Heschl's gyrus. We also analyzed sustained auditory gamma-band neuromag-

netic fields from MEG and fMRI measurements. The auditory source areas in the

posterior superior temporal gyrus were chosen because they are difficult to access

with any functional imaging modality. Our results showed that combining the MEG

recoding with fMRI improves source localization for the non-noise normalized wavelet

power. In contrast, it turned out that noise-normalized spectral power or PLV local-

ization do not benefit from the fMRI constraint. We show that if the thresholds are



not properly chosen, noise-normalized spectral power or PLV estimates may contain

false (phantom) sources, independent of the inclusion of the fMRI prior information.

The proposed algorithm can be used for evoked MEG/EEG and block-designed or

event-related fMRI paradigms, or for spontaneous MEG/EEG data sets.

4.1 INTRODUCTION

Oscillations and synchronization of oscillations (phase-locking) have become funda-

mental principles in physics and engineering since the first study by Huygens in 1673.

In both MEG and EEG, the first signal measured was the alpha rhythm which is

thought to be a cortical oscillation originating in the visual cortex and the parietal

occipital junction. Due to advances in both source estimation and signal processing

techniques, such as wavelet transforms, quantitative analysis of the synchronization

of oscillations has recently attracted a lot of interest in order to understand how infor-

mation is encoded and transmitted in the brain. A growing number of studies in both

humans and animals suggest that cortical oscillations, or rhythmic activity at a variety

of frequencies, might be involved in encoding information, and that synchronization

(phase-locking) of cortical oscillations might bind and transmit disparate information

across brain regions (see recent reviews [1, 2, 3]. Recent biologically realistic models,

as well as in vitro and in vivo evidence, suggest that gamma-band oscillations (a

40Hz) are vital in local information processing, while beta oscillations (a 20Hz) are

used to maintain synchrony over longer distances [4]. In the auditory system, cortical

oscillations are well documented [5, 6] and are known to be abnormal in diseased

states such as schizophrenia [7]. The phase relations in the gamma band have been

shown to be important in understanding object perception [8, 9, 10, 11, 12, 2, 13]

abnormal in schizophrenia [14].

Many methods of using spectral analysis on EEG and MEG data have been re-

ported over the past several decades. Some propose wavelet-based techniques to

measure neural synchrony between electrodes or between MEG sensors and an ex-

ternal signal, such as an electromyogram (EMG). However, sensors contain informa-



tion from a variety of brain sources, some of which might overlap. Further, a deep

source oriented in the horizontal plane could produce a false apperent synchrony over

anterior and posterior sensors. Because source estimates overcome many of these

limitations, several methods of source localization of cortical oscillations have been

proposed [15, 16, 17, 18]. Here, we propose a new method which provides the fol-

lowing new features: (1) It creates a map of the cortical oscillations on the cortical

surface; (2) It is able to detect rapidly changing power and phase relations; 3) It can

combine prior information from other functional imaging techniques such as fMRI.

The technique presented in this chapter is based on a combination of a cortically-

constrained minimum norm estimate (MNE) [19, 20, 21] and wavelet-based spectral

analysis employing a complex morlet a complex Morlet wavelet [10, 2, 3]. Wavelets

preserve a high temporal resolution in the gamma band (~ 40 Hz) necessary to

image rapidly time-varying oscillations [10, 2, 3]. We evaluated the new technique

using both simulated and real MEG data. We validated the technique using a well-

characterized simple paradigm: the 40-Hz steady-state evoked magnetic field. This

paradigm was chosen because it produces a well-known periodically varying source

in and around Heschl's gyrus, along the posterior superior temporal gyrus (STG).

We can then quantify the accuracy of the localizations of this oscillation using our

proposed methods. Further, since it is possible to control the magnitude and phase

of the stimulus, we can produce a response with a driven phase relationship neces-

sary to evaluate the method. We will also demonstrate that this technique reveals

spontaneous oscillations, such as the alpha rhythm in the cortical space.

4.2 MATERIALS AND METHODS

4.2.1 Spectral dynamic statistical parametric mapping

Our method to analyze oscillatory activity is called Spectral Dynamic Statistical Para-

metric mapping (sdSPM). It involves the following computational steps: (1) wavelet

transformation MEG sensor data, (2) calculation of the spectral-power minimum-



norm estimate (MNE) and the noise-normalized MNE (dSPM), and (3) calculation

of the phase-locking values. In order to image the induced activity, these steps are

repeated for each trial and the results are averaged across trials. If only the spectral

power of the evoked response is desired, steps (1) and (2) can be calculated together

using the signals averaged over epochs.

4.2.2 The Wavelet transform

To reduce the computational burden, we performed a wavelet transformation of the

MEG signals prior to performing the MNE. The MEG data were first filtered using a

continuous wavelet transform (CWT). Temporal convolution of the MEG signal with

the wavelet centering at center frequency and time produces a temporally localized

frequency response:

00

wi(t, f) = yi(r)IWf (t - r)dr (4.1)

-00

where I', t is the wavelet function and the superscript * indicates a complex

conjugate. yi(T) represents the signal in one MEG sensor and wi(t, f) are the wavelet

coefficients of trial i. For multiple-channel MEG measurements, this convolution is

performed for each individual channel of yi(r) separately. In the transformation we

employed the complex Morlet wavelet [22, 23]:

1 -(r -t)2
fyt(T) = 2irf exp( 2 2 exp(i27rfr) (4.2)

which is the product of a sinusoidal wave centered at f modulated by a Gaussian

with -r - t mean and a2 variance. To select 40-Hz signals, we set f to be 40 Hz and

sigma2 to be 7/27rf. Fig. 4.1 shows the wavelet function between -100 msec and 100

msec with central frequency of 40Hz and 5 cycles duration.
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Figure 4-1: A wavelet filter centered at 40 Hz with 5 cycles. The solid line represents
the real part and the dashed line represents the imaginary part of this linear filter in
the temporal domain.
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4.2.3 Source estimation

To localize the current sources underlying the MEG signals we employed the cortically-

constrained minimum-norm estimate (MNE) [20, 24]. The minimum-norm estimate

can be calculated by applying a linear inverse operator to the measured signals:

Q(t) = Wx(t) (4.3)

where x(t) are the n-channel MEG data at time t and y(t) are the corresponding

current values on the cortex. An expression for W is obtained in closed form, e.g.,

by minimizing

S = (C-1/2(x - Ay) + A2 R-1/2X (4.4)

where C and R denote covariance matrices of the noise and the sources, respec-

tively, A is the gain matrix, i.e., the solution of the forward problem, Ais a regular-

ization parameter [20, 25], and I*112 indicates the 12 norm. Minimization of Eq. (4.4)

over y yields

W = RAT(ARAT + A2C)V (4.5)

The source covariance matrix incorporates a priori assumption on the spatial

distribution of the source currents. It has been proposed that spatial information

from fMRI can be incorporated into the MNE by employing a diagonal R with larger

elements at the locations of significant fMRI activity [26]. The MNE is known to

have a bias towards superficial currents, caused by the attenuation of the MEG lead

fields with increasing source depth. It is possible to compensate for this tendency

by scaling the columns of A with a function, denoted here by fk for the kth dipole,

increasing monotonically with the source depth. A commonly used choice is

fk= 1/(a T- 2 a3k-2 + ar _ la3k-1 + aakask) (4.6)

Where a, is the pth column of A and -y is a tunable parameter. Whereas [27]
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suggest y = 0.5, we have found in our simulations that this does not provide sufficient

compensation. Our preferred value is slightly bigger (- = 0.6 ).

The noise covariance matrix, C, was calculated from the raw MEG data containing

individual trials. We defined the interval of 100 msec before the onset of the trigger

as the baseline period. The covariance matrix of the MEG sensors at each time point

of the baseline were calculated separately:

C = F E - ) (4.7)

where M is the total number of trials, and temporal index t refers to the trigger

of each trial. E < e > is the mean of the measurements within trial i. E < . >

represents the mean operator over the temporal index t.

For spontaneous responses, the noise covariance was calculated from the 2-minute

continuous MEG sensor measurements without the subject (the "empty room noise")

on the same day of the experiment. This is the reference baseline to exclude any

activity other than the subject's spontaneous responses. Mathematically, we can also

utilize Eq. (4.7) to calculate the noise covariance matrix for spontaneous response

estimation. However, in this case there is only 1 trial covering the whole duration of

the empty room noise measurement.

4.2.4 Spectral power and phase locking value calculation

After the wavelet transformation of the MEG sensor data, and subsequent linear

transforming by the inverse operator W of each individual trial, we have

Q(n) = W(If,t(n) 0 yi(n)) (4.8)

We use discrete time index n here to denote the implementation of the calculation

in discrete time instants. Qi(n) denotes the frequency-specific source signal in the

source space at time n of trial i. 0 is the 1-dimensional convolution on the temporal

domain. The convolution is calculated for each channel of yi(n) separately. After
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source localization, the time-varying power P(t) and synchronization index $(t) were

calculated

1 _ H
P(n) = Ediag(Qj(n)Q (n))

H

1(n) = diag(QR(n)Q ())(

'=1 1R(n) RI(n)

diag(*) indicates the operation to get diagonal entries from the operand to gener-

ate a column vector, and the superscript H denotes the Hermitian transpose. Q5R(n)

is the wavelet coefficient from the convolution of filtering matrix and reference time

course. O'R(n) is the phase locking value (PLV) [22] describing the consistent phase

locking between the measurement and the testing time series. In the perfect synchro-

nized case, PLV will be 1, and PLV will be zero of the phase relationship is purely

random. In our experiment, Q~R(n) is the 40 Hz sinusoidal oscillation calculated from

the complex Morlet wavelet. Note that the power and synchronization index was

averaged across trials, not across different time instants.

4.2.5 Noise normalized spectral power using MNE and sta-

tistical inference of PLV

Power estimates on the cortical surface were contrasted with the baseline power aver-

ages. Note that here the baseline is calculated from the raw data with multiple trials

in order to include the trial-to-trial variability, rather than an averaged baseline as is

traditionally done with ERP analysis. We adopted the F-statistics, which is the ratio

of the instantaneous power at the frequency of interest over the averaged baseline

power of the same frequency, to test if statistical significant activities exist [20]:

P(n)
Spowver(n) = diag(WCfW T )
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rVW

Cf = COV(If,t(n) 0 Ybaseiine(n)) (4.10)

ybaseline(n) denotes the temporal concatenation of baseline measurements from

the raw data on MEG sensors. COV(e) is the covariance operator. In the source

localization without a priori dipole orientations, under the null hypothesis Spower(n)

will follow the F distribution with 3 degrees of freedom for the numerator and a

very large number of degrees of freedom for the denominator (the number of trials

multiplied by the samples within each trial).

The statistical significance of phase-locking value can also be derived from the

Rayleigh test [28, 29, 30]. Specifically, when the number of trials in the calculation

is large (exceeding 50), the cumulative distribution function of PLV can be approxi-

mated by the following:

PPLV(n) r exp(-e(n)) (4.11)

Figure 4.2 summarizes the computation of MNE, noise normalized MNE and PLV

on the cortical surface combing MEG, anatomical MRI and/or functional MRI.

4.2.6 Simulation

We performed a simulation of the sustained 40-Hz activity field emanating from the

left superior temporal gyrus (STG), along Heschl's gyrus (HG). The anatomic infor-

mation was derived from the structural MRI acquired for the subject of the MEG

experiment (see Structural MRI section below for further details). After identifying

this region of interest, we placed a patch of current dipoles prependicular to the cor-

tical surface at HG. The cortical surface geometry was provided from an automatic

cortical surface segmentation algorithm [31, 32]. The temporal activity of the source

was modeled as a 40 Hz oscillation, with the onset at 50 msec. Afterwards, a sus-

tained 40Hz activity was maintained for 200msec. The complete epoch was simulated

to be 600 msec with 100 msec baseline. We superimposed Gaussian noise of zero
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Figure 4-2: The schematic diagram illustrating the process of using raw MEG data
to calculate the phase locking value (PLV) and the frequency specific power, as well
as the noise normalized power, of the evoked response on the cortical space with
temporal resolution in milliseconds. The blue lines indicate the pre-stimulus interval,
which contains baseline activities. The red lines indicate the post-stimulus interval for
the calculation of the evoked responses. The green color represents the calculation of
the PLV, which is across both the pre-stimulus and post-stimulus interval. The noise-
normalized power was calculated from the F-test of instantaneous power estimates
and the baseline activities. Note that in the process of inverse, appropriate noise
covariance and spatial prior (fMRI) are necessary for higher accuracy of localization.
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mean and unit variance on each sensor to create a signal-to-noise ratio (SNR) for

each trial of 0.01. 100 trials were produced to resemble a typical MEG experiment

condition. Prior knowledge of neural activation sites was incorporated by manipu-

lating the R matrix in Eq. (4.5) below for either no fMRI weighting or 90% fMRI

weighting, The 90% weighting of the fMRI was chosen to provide the best compromise

between separation of activity from correctly localized sources and minimization of

error caused by missing sources [26]. In the case without fMRI weighting, R is an

identity matrix, whereas with 90% fMRI weighting, entries corresponding to simu-

lated source were adjusted to be 0.9 and all other entries were adjusted to be 0.1.

The MEG signals were calculated with a boundary element model (BEM) [24, 33]

without spatial decimation, which yields a source space of approximately 340,000

source locations. The inverse operator in the simulation was computed with a spa-

tially decimated forward operator at 7-mm resolution on the cortical surface. The

fMRI prior was mapped onto a 7-mm decimated BEM of the gray matter segmented

using FreeSurfer (http://surfer.nmr.mgh.harvard.edu). The location of the simulated

source and the associated fMRI priors are shown in Figure 4.3. We used the re-

ceiver operating characteristic (ROC) curves to quantify the detection power of the

inverse operators. Specifically, true positive rate and false positive rate of and inverse

detection thresholded at level were calculated as

TPR(a) - area(Xsim) A area(X > a)
area(Xsi)

FPR(ae) -(area(wholebrain) - area(Xsim)) A area(X > a) (4.12)
area(wholebrain) - area(Xsim)

Here area(Xim) indicates the area of the simulated sources, area(wholebrain)

indicates the area of the whole brain, and area(X > a) indications the area where the

inverse solution has value greater than a. A is the boolean AND operator respectively.
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Figure 4-3: The locations of the simulated current sources around Heschl's gyrus (HG)
and the superior temporal gyrus (STG) at the temporal lobe of the left hemisphere
are rendered on the inflated cortical surface. The sources are spatially distributed

on the cortical patch of 10 mm diameter (the red patch). 7 fMRI priors (blue spots)
were used for the fMRI-weighted inverse. Here light gray denotes gyri and dark gray

denotes sulci. This color scheme is used throughout the chapter.
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4.2.7 Subject

For the MEG and fMRI measurements a single healthy male volunteer aged 30 was

studied. He had no previous history of hearing loss and tested within the normal range

with our screening audiogram. All research procedures were performed in accordance

with the Institutional Review Board on human research. Written and oral informed

consent were both obtained from the volunteer.

4.2.8 MEG acquisition

Neuromagnetic responses were recorded using a 306-channel MEG system (Elekta

Neuromag OY, Espoo, Finland). During the MEG recording, the subject sat in the

chair with his head inside the MEG dewar. Four head position indicator (HPI) coils

were placed on the subject's head in order to coregister the anatomical MRI and the

MEG sensors. A measurement of the room without a subject was made for 4 minutes

that was later used for estimating the noise covariance matrix (see below). After the

subject was seated inside the dewar, a 2-minute measurement was obtained while the

subject was instructed to rest with eyes open. Another 2-minute measurement with

the subject's eyes closed was also made. Auditory stimuli were delivered by an HP

PC driving a Digidesign sound card to Eartone ER3A transducers (Etymotic, Elk

Grove, Ii, USA). The hearing threshold was defined as the stimulus intensity where

the subject responded correctly approximately 70% of the time. Stimuli consisted of

a series of 1 msec auditory clicks at 25msec intervals (40Hz). Stimuli were presented

at 60dB sensation level (SL). Click trains were generated using Matlab (Mathworks,

Natick, MA) and presented independently, with each click burst occurring 90 times.

Monaural stimuli were presented alternatively to the left and right ear with 1 second

duration and 1 second of silent gap, yielding 4-second trial including 2 seconds for

left ear stimuli (1 second auditory click and 1 second silence) and 2 seconds for right

ear stimuli. The experimental paradigm is shown in Figure 4.4.
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Figure 4-4: The experimental paradigm of auditory stimuli and MEG acquisition.
Right and left aural clicks at 40 Hz were sent alternatively every 4 seconds. Total 90
trials (6 min) were collected for each subject.

4.2.9 Structural MRI

Anatomical information was acquired by a high-resolution Ti-weighted 3D volume

MRI using an MPRAGE sequence (TI/TR/TE/flip = 11OOms/2530ms/3.49ms/7o,

partition thickness = 1.33mm, matrix = 256 x 256, 128 partitions, Field of View =

21cm x 21 cm) using a 1.5T MRI scanner (SIEMENS Medical Solutions, Erlangen,

Germany). The geometry of the gray-white matter surface in the cortex was sub-

sequently derived from an automatic segmentation algorithm to yield a triangulated

model with approximate 340,000 vertices [31, 32]. Subsequently, forward matrices

were separately calculated using either (1) a decimated a source space of approxi-

mate 7,000 dipoles with a 7 mm distance between the nearest two dipoles, or (2)

using all the vertices in the cortical surface triangulation. The geometry of the inner

skull required for the boundary-element model was derived from the segmented MRI

data with a resolution of approximately 5000 trangular elements. [24, 33]. Functional

MRI The fMRI experimental paradigm is illustrated in Figure 4.5. We employed a

sparse imaging paradigm [34, 35], where auditory clicks were presented during the
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Figure 4-5: The fMRI experimental paradigm for auditory stimuli. In each trial, 7
auditory clicks were present during the 7-second inter-EPI silence period, followed by
the 2-second EPI acquisition. Total 50 trials were collected for the subject.

7 seconds silent period between consecutive MRI acquisitions to mitigate the acous-

tic noise generated by gradient switching during the image acquisitions. We used a

gradient echo BOLD pulse sequence on a 3T scanner (SIEMENS Medical Solutions,

Erlangen, Germany) with imaging parameters of TR: 9sec, TE: 30 msec, flip angle:

90 deg., FOV: 200 mm x 200 mm, matrix, 64 x 64, slice thickness: 5 mm with 10%

gap, 24 slices. The analysis of the fMRI data included motion artifact correction

using a 12-parameter rigid-body transformation and spatial smoothing with a 3D

Gaussian kernel with full-width-half-maximum (FWHM) of 6 mm. The experimen-

tal data was subsequently analyzed by the Student t-test to estimate the statistical

significant image voxels between the trials of auditory clicks and the trials of null

baseline condition.
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4.3 RESULTS

4.3.1 Simulation

The simulation results are shown in Figure 4.6A. We averaged the responses of the 200

msec sustained oscillation period to generate snapshots of the power, noise normal-

ized power, and the PLV on cortical surface. The power estimates were normalized

between 0 and 1 to illustrate the relative spatial distribution of the dipole estimates.

Noise-normalized power estimates were kept the original scale to reflect the averaged

F-statistics [20]. After 100 trials, all three metrics localized to the correct hemi-

sphere near the temporal lobe region. Without fMRI prior, the power estimate split

at the Heschl's gyrus into two separate activation loci. The 90% fMRI weighted

power estimates provided a well-matched spatial distribution to the location of the

simulated cortical patch. The noise normalized power estimates cover the location

of the simulated cortical patch but extend to the insula. However, the 90% fMRI

weighted noise-normalized power estimates generate a phantom activation at the in-

feriolateral aspect of the central sulcus. Phase locking values with and without fMRI

priors both cover the location of the simulated patch. Like noise-normalized power

estimates, both PLV simulations also show phantom insular activity and even 90%

fMRI-weighted PLV shows phantom activation along the inferiolateral central sulcus.

Figure 4.6B shows the receiver operating characteristic (ROC) curves for the spatial

sensitivity and specificity of power, noise normalized power and PLV using either no

fMRI prior or 90% fMRJ prior. Note that without fMRI prior, noise normalization

can increase sensitivity and specificity of the detection, compared to MNE. Neverthe-

less, with 90% fMRI weighting, fMRI weighted MNE outperforms noise normalized

power estimates by shifting ROC curve to the left.

4.3.2 Spontaneous MEG measurement and localization

Spontaneous signals were measured in the MEG sensors covering the whole brain

including the parietal lobe. Time-frequency analysis using complex Morlet wavelets
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Figure 4-6: Estimated 40Hz activity along Heschl's gyrus in the simulation study. The
three rows show the MNE 40 Hz wavelet power, noise-normalized MNE 40 Hz wavelet
power, and 40 Hz PLV. The images are temporal averages of the 200 msec oscillation
period. Left panels are the lateral views of the whole inflated left hemisphere. Right
panels are the enlarged views at the temporal lobe. The light blue circle indicates
the location of the simulated 10 mm diameter cortical patch. Receiver operating
characteristic curves for the spatial sensitivity/specificity of 3 cortical space inverse
methods (power, noise normalized power, and PLV) based on the simulations of a
synthetic 10 mm diameter dipole patch at the Heschl's gyrus in the left hemisphere.
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Figure 4-7: The most prominent spontaneous responses at 10Hz during the "eye-
closed" condition (A), and the auditory stimuli evoked responses (B). The top graphs
are the signal strength in the time domain. The associated time-frequency represen-
tations between 6-14 Hz for the spontaneous response and 30-60 Hz for the evoked
responses are also rendered in the bottom graphs. Note that the spontaneous re-
sponse is spectrally centered at 10 Hz with temporal bursts. For the auditory evoked
response, the unfiltered magnetic field strength (fT/cm) vs. time (stimulus presented
at time 0, lasting 900msec) from a single channel over the temporal lobe shows
the middle latency evoked responses (P50m and N100m) as well as the overriding
sustained field.

centered at 6Hz to 14 Hz revealed that the maximal spectral power detected was

approximately 10Hz. Note that the 10Hz spontaneous oscillation was not sustained

but rather occurred in bursts (see Figure. 4.7A). Spontaneous 10Hz oscillation was

localized predominately to the right hemisphere. Before noise normalization, the 10Hz

power was localized to the superficial parietal gyrus around the occipital parietal

junction. Using the noise covariance matrix from 2-minute empty room raw data,

the noise normalized 10 Hz power localized the spontaneous activities to retrosplenial

cortex at the occipital parietal junction (Figure 4.8).

4.3.3 Auditory evoked MEG measurement and localization

The auditory response evoked by the 40 Hz clicks is shown in Figure 4.7B, including

both initial primary evoked response and sustained responses around the temporal

lobe. Specifically, a P50 deflection followed by a N100 deflection was recorded at

around 50 msec and 100 msec after the onset of the auditory stimuli. Subsequently,

a sustained oscillation response began approximately 400 msec after the stimulus
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Figure 4-8: Medial aspects of the 10Hz power and the noise normalized 10Hz power
on the inflated cortical surface during subject's "eye-closed" condition. These snap-
shots are temporally averaged across 20 seconds. Note that the noise normalization
power estimates correct the superficial estimation by MNE from superficial parietal
lobe around the parietal occipital junction to the retrosplenial cortex at the parietal
occipital junction.
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onset and lasted for approximately 400 msec. The MEG channel with the most

prominent evoked fields was shown in Figure. 4.7B. Using auditory clicks, fMRI

revealed that BOLD activation along the left Heschl's gyrus and the superior temporal

gyrus, contrasted with the silent baseline. This is illustrated in Figure 4.9A at a t-

statistics threshold of 12 (uncorrected p < 10-10). The decimated dipoles (with

7 mm spacing) coincided with the fMRI active region were recruited as the priors

for MNE. The source localization of 40Hz power, noise-normalized 40Hz power and

phase-locking values with 90% or without fMRI priors were shown in Figure 4.9B. In

the power illustrations, we average the power between 500 msec and 900 msec, (see

Figure 4.7B), and subsequently normalized between 0 and 1 to illustrate the brain

areas with power exceeding 30% of the maximum. Similar temporal averaging and

source estimate scaling were done for noise normalized power and PLV calculation.

Note that without fMRI weighting, the estimation of source power shifted towards

the superior temporal gyrus (STG). Using fMRI weighting of 90%, significant power

was centered in and around Heschl's gyrus as indicated by fMRI priors. For PLV

localizations, inverse estimates with or without fMRI priors do not differ significantly.

Comparing power and PLV localizations, we found that PLVs with/without fMRI

priors can detect stimulus-sensitive regions including Heschl's gyrus.

4.4 DISCUSSION

Here we demonstrated a compuationally effecient method of a wavelet-based, anatom-

ically constrained MNE to create an image of signal frequency-power and phase on

the cortical surface. In particular, we used the individual anatomy in the forward

model and as a constraint for the location of the sources. The technique allows the

calculation of both the spectral power over some frequency band and the phase rela-

tionships, either between brain regions or between a brain region and the stimulus.

The use of the wavelet transformation allows us to confine the analysis to a desired

short segment of the response.

We emphasize the importance of choosing and calculating the appropriate noise
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Figure 4-9: The t-statistics from 3 runs of fMRI experiments with paradigm shown in
Figure 4.2. The t-statistics were calculated between the auditory click conditions and
the silence conditions. The areas with negative 10-based logarithm of the p-values
(uncorrected p < 10~10) were color-coded and distributed around Heschl's gyrus
(HG), superior temporal gyrus (STG) and insula.
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Figure 4-10: Wavelet-based spectral and phase locking value spatiotemporal maps
using no fMRI prior and 90% fMRJ priors separately.

covariance matrix. For spontaneous activities, such as 10Hz alpha rhythm in our

results, the noise refers to the noise observed extraneous from the subject's brain

activity. Therefore empty room recordings were used to calculate this noise covariance

matrix. For the auditory evoked responses, the noise refers to all activity other than

that elicited by the acoustic stimuli. In this scenario, noise covariance matrix should

be derived from the pre-stimulus interval. Incorrect choice of the noise covariance

causes either over or under estimation of the activity as well as the possibility of mis-

localization of activity. In addition, the noise covariance should always be computed

from the "raw data" before any averaging, even for the evoked responses estimation.

Noise covariance matrix from averaged data always under characterizes the variability

of the measurement and thus leads to over significance in the statistical tests. This

is true because the (co)variance of the averaged data does not account for trial-to-

trial variations. Therefore, raw data in appropriate "baseline" conditions have to be

chosen wisely for accurate noise normalization.

Comparing our simulations and the results from real data, we validated that the

reported technique can be used to detect frequency specific responses at signal to

noise ratio (SNR) as small as 0.01, if up to 100 trials of measurements are available

and the activity is phase-locked to the stimulus (evoked). However, if the activity

is not phase locked to the stimulus (induced) the SNR must be greater than 1, a

118



limitation which is true for measuring induced spectral power Nevertheless, the mag-

nitude of the F statistics and PLV differed in the simulations and the actual MEG

measurements. Potentially this may be due to anatomical variations in the neural

sources (not precisely perpendicular orientations of dipole sources to the local cortical

surface), anatomical information errors from MRI and time varying activities in real

brain responses (changes of spatial distribution and temporal duration of the oscilla-

tions). In the Bayesian estimation theory framework, this can be further improved by

providing more accurate prior information regarding both the spatial and temporal

properties of the brain activations, such as more accurate quantitative description be-

tween BOLD fMRI and MEG measurements. This is a current research topic we are

actively investigating. Further, the relationships between the MEG oscillations and

BOLD fMRI responses have yet to be explored. This relationship could be exploited

in the Bayesian framework as well. It is hoped that this method will make such re-

search possible. Although not explicitly tested here, this method should work well

for detecting interaction of brain regions. Comparison with other source estimation

methods

Currently, several methods have been proposed to map cortical oscillations, each

of which has a particular strength for their application, but none of which meet all

the requirements proposed here. Minimum current estimate (MCE), for example,

[36, 37], assumes sources with exponential probability disitribution funciton. Specifi-

cially, [18] proposed to use MCE to measure simultaneous cortical oscillations, based

on the minimum -norm estimate, using complex Fourier components from sections

of raw MEG signals. Although it is limited to the analysis of spontaneous cortical

oscillations, the method could be extended to include measurements of synchroniza-

tion based on the phase of the Fourier components. It is, however, limited in that it

does not have a high-temporal resolution to measure fast changing oscillations, and

requires a high SNR. Source localizations using beamformer techniques [38, 39] have

been also applied to study neural synchrony, such as Dynamic imaging of coherent

cources (DICS) [16]. This innovative technique is a promising method of detecting

synchronizations between neural networks in the brain, based on source estimation
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using a spatial filter of coherence. Like the MCE technique it is limited, however,

in that it requires a relatively high SNR and makes the assumption of stationary

data, and consequently does not measure short lasting synchronizations. Sekihara

et al [40, 41, 42] recently demonstrated that the stationary data assumption is not

necessarily strict.

The use of the MNE to image cortical oscillations has also been proposed by others

[15, 17]. Hauk et al [17] compared the MNE to a current source density method using

EEG data sets with a wavelet-based frequency domain analysis. Others [15, 43] have

recently performed simulations on various versions of the MNE. They concluded that

MNE is a preferred method, if the regularization is optimized for the region of interest

of the neural source. Compared to these other minimum l2 norm inverse approaches,

our method differs in several ways. First, our solution computes single trial epochs,

or uses clips of spontaneous activity, to create an averaged power spatiotemporal

map. Second, we use a BEM to use the features of the actual head of the individual

subject's MRI to create a power sources estimate directly on the cortical surface,

utilizing a cortical constraint. Third, we also include the ability to create a phase

synchronization map of the brain on the cortical surface. In this case, we show how the

phase relation of the stimulus to the response can be created, but the same principle

can be used to create maps showing synchronization between brain regions, once

provided the reference temporal course from one specific brain region. And last, the

utilization of prior neural activation information from fMRI can essentially help for

correct power localization. This is especially important during the localization of the

evoked responses of auditory responses, because of highly convoluted cortical surface

at the temporal lobe. The anatomy challenges the traditional MNE to give focal

and precise source estimations. Without fMRI priors, it is easy to lead to superficial

source estimates away from Heschl's gyrus.

Our method is very similar to the that proposed by David et al [15] in that both

source estimation methods use a wavelet based spectral analysis and a MNE. Our

method differs in that we calculate the wavelet-based spectral power based on the

power in source space (on the brain surface) across trails, instead of calculating the
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single trial power and single trial phase locking maps as used by David et al. We

have also proposed a method of producing a spectral dSPM with noise normalization

of the MNE.

4.4.1 Limitations

Several limitations of this technique are illustrated in this report. The algorithm's

localizing ability is often limited, especially with activity in and around the Sylvian

fissure, a common problem with imaging peri-Sylvian activity generally and audi-

tory activity specifically. We can see in our results that probable 'phantom' sources

are seen in the posterior inferior frontal lob, insula, and the middle temporal gyrus.

These sources, even with actual measurements, are likely phantom as they are seen

in the simulations as well, due to the close anatomical proximity to Heschl's gyrus.

Due to the anatomical convolution of cortical surface, traditional MNE without a

priori activation loci may lead to mis-localization of auditory neural activities. Us-

ing fMRI, which provides higher spatial resolution brain activation estimates, it is

possible to constrain the localization process to avoid over-estimation of the power

of neuromagnetic sources in traditional MNE. For phase-locking value and noise nor-

malized power estimates, it appears that a priori information could be less essential.

This is because of the intrinsic normalization of PLV calculation by disregarding the

amplitude of dipole estimates in an individual trial. The noise normalization also

tries to compensate the biases on the magnitude of the estimates. Therefore PLV

and noise normalized power localization shows similar sensitivity for either superfi-

cial sources on the gyri or deep sources in the sulci. Although mostly both PLV and

noise normalized power can correct biases toward superficial cortical activities, po-

tential over correction may occur, as we found in both the simulations and real data

that the insula were possibility false activated. So for simultaneous high sensitivity

and specificity, fMRI weighted MNE can be a candidate tool for auditory response

localization. Another limitation of our approach at this moment is that there exists

no deep gray nuclei activity. Thalamocortical interaction is probably responsible for

the generation and maintenance of oscillations in the neocortex. Our group is actively
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investigating and will be a focus for an upcoming study.

4.4.2 Future Applications

The new method detailed here is a general framework and can be extended to include

other imaging technologies including PET, optical imaging, and transcranial Doppler.

Any functional information that can be localized can be included in the source co-

variance matrix and used as prior information and thus improve the localizing ability

of the MEG or EEG data.
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Chapter 5

Multivariate Analysis of Neuronal

Interactions in the Generalized

Partial Least Squares Framework:

Simulations and Empirical Studies

Identification of spatiotemporal interactions within/between neuron populations is

critical for detection and characterization of large-scale neuronal interactions under-

lying perception, cognition and behavior. Univariate analysis has been employed

successfully in many neuroimaging studies. However, univariate analysis does not

explicitly test for interactions between distributed areas of activity and is not sen-

sitive to distributed responses across the brain. Multivariate analysis can explicitly

test for multiple statistical models, including the designed paradigm, and allows for

spatial and temporal model detection. Here, I investigate multivariate analysis ap-

proaches that take into consideration the 4-D (time and space) covariance structure

of the data. Principal Component Analysis (PCA) and Independent Component

Analysis (ICA) are two popular multivariate approaches with distinct mathematical

constraints. Common difficulties in using these two different decompositions include:

classification of the revealed components (task-related signal versus noise); overall
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signal-to-noise sensitivity; and the relatively low computational efficiency (multivari-

ate analysis requires the entire raw data set and more time for model identification

analysis). Using both Monte Carlo simulations and empirical data, I derived and

tested the generalized Partial Least Squares (gPLS) framework which can incorpo-

rate both PCA and ICA decompositions with computational efficiency. The gPLS

method explicitly incorporates the experimental design to simplify the identification

of characteristic spatiotemporal patterns. I performed parametric modeling studies

of a blocked-design experiment under various conditions, including background noise

distribution, sampling rate and hemodynamic response delay. I used a randomized

grouping approach to manipulate the degrees of freedom of PCA and ICA in gPLS to

characterize both paradigm coherent and transient brain responses. Simulation data

suggest that in the gPLS framework, PCA mostly outperforms ICA as measured by

the Receiver Operating Curves (ROCs) in SNR from 0.01 to 100, the hemodynamic

response delays from 0 to 3 TR in fMRI, background noise models of Guassian, sub-

Gaussian and super-Gaussian distributions, and the number of observations from 5,

10 to 20 in each block of a 6-block experiment. Further, due to selective averaging,

the gPLS method performs robustly in low signal-to-noise ratio (;1) experiments. I

also tested PCA and ICA using PLS in a simulated event-related fMRI data to show

their similar detection. Finally, I tested our gPLS approach on empirical fMRI motor

data. Using the randomized grouping method, both transient responses, and consis-

tent paradigm/model coherent components in the 10-epoch block design motor fMRI

experiment can be identified. Overall, studies of synthetic and empirical data suggest

that PLS analysis, using PCA decomposition, provides a stable and powerful tool for

exploration of fMRI/behavior data.

5.1 INTRODUCTION

The analysis of functional magnetic resonance imaging data (fMRI) [1, 2, 3, 4] is

intended to reveal the underlying spatiotemporal interactions of neuronal populations.

This includes the identification and characterization of orchestrated brain areas in
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both spatial and temporal domains. Traditionally, univariate statistical methods

[5, 22, 7, 23], such as the t-test or non-parametric Kolmogorov-Smirnov test and their

associated statistical parametric maps, have been used quite often to detect cognitive

task-related components. A reference temporal profile, which usually is associated

with the experiment stimulus paradigm, is required for hypothesis testing. Such

univariate approaches test brain voxels distributed over the brain independently, and

they ignore the anatomical connections among brain loci. This lack of consideration

of spatial interactions inspired the utilization of multivariate methods for detection

and estimation of spatial activation and temporal dynamics of the brain [9, 10, 24, 32,

13]. Multivariate statistics regard the whole spatiotemporal data as an entity during

estimation of active brain areas. We investigated two different approaches (PCA and

ICA) for data decomposition within our generalized Partial Least Squares framework.

Principal component analysis (PCA) and associated eigen-image [14, 15, 22, 10]

are examples of multivariate methods to decompose the data into subspaces. These

subspaces account for the total spatiotemporal variance in the order of explained

variance. The first eigen-image in PCA represents the spatial brain patterns and

their associated timing which explains the most of the variance. The subsequent

eigen-images explain the residual variance using the constraint of orthonormality to

the preceding eigen-images. PCA is thus, a successive variance decomposition process

with an orthonormality constraint among eigen-images.

Independent Component Analysis (ICA) [30, 32, 13] is an alternative approach.

Unlike PCA, which assumes an orthonormality constraint, ICA assumes statistical

independence among a collection of spatial patterns. ICA uses a linear mixture as-

sumption to decompose the original data into spatially statistically independent com-

ponents. Both PCA and ICA are model-free methods (independent of task paradigm

design) to explore the structure of the data without a priori information. This data-

driven property excludes biases and enables the detection of transient responses and

artifacts inside the data.

The difficulties of applying PCA and ICA to fMRI analysis include the need to

identify separated components and computational requirements. Owing to the size
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of collected fMRI data, PCA and ICA both identify a large collection of intrinsic

structures, which makes it difficult for researchers to establish direct correspondence

between the identified components and the experiment hypotheses. Both PCA and

ICA require high computational power to decompose the data matrix. ICA is espe-

cially computationally expensive compared to PCA, even when utilizing an advanced

algorithm [17].

Regardless of the analysis approach used to explore the data matrix, prior infor-

mation about the design of the experiment is valuable for detection and estimation

of brain activity. The univariate General Linear Model (GLM) framework [22] uti-

lizes experimental paradigms and presumed basis functions to encode multiple null-

hypotheses and confounds in the design matrix as regressors. On the other hand,

PCA and ICA make use of the information about the experimental design after the

decomposition [9, 32], instead of incorporating such information before the decom-

position, like GLM. Thus, PCA and ICA are more data-driven methods due to the

post-hoc identification of decomposed components.

Partial Least Squares (PLS) [24] is a compromise between hypothesis-driven and

data-driven approaches. PLS uses an intermediate step of selective averaging of the

experimental design to incorporate hypotheses explicitly. PCA is then used to de-

compose the collapsed data to reveal intrinsic structures. PLS provides advantages of

dimensional reduction of the data, and signal-to-noise enhancement due to the selec-

tive averaging. The dimension reduction process relieves the difficulties of posterior

interpretation for numerous components resulting from direct multivariate decompo-

sition by PCA.

Traditionally PLS has utilized PCA for decomposition. Here, we extended the

original Partial Least Square framework [24] to incorporate both PCA and ICA as

data decomposition alternatives. Furthermore, a randomized grouping/selective av-

eraging approach was used to generalize the a priori contrast matrix to investigate

possible transient and time-locked activities in both simulations and empirical stud-

ies. To quantitatively evaluate the use of either PCA or ICA in this generalized

PLS (gPLS) framework, we performed parametric simulations for a blocked-design
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fMRI experiment at conditions of various SNR, time of repetition (TR), background

noise models, experimental paradigms, and hemodynamic response delays. Also we

presented the simulation results for an event-related fMRI experiments to test the

differences when PCA or ICA is utilized as the decomposition in PLS. In addition

to modeling studies, we analyzed an empirical blocked-design fMRI experiment of

voluntary finger tapping. We examined the capability of gPLS to detect consistently

task-related components and transient responses, in both task-control single contrast

and parametrically designed multiple contrast experiments. Our generalized Partial

Least Squares approach proposed here, takes advantage of the a priori task paradigm

design, yet allows for detection of potential brain activity un-associated with the a

priori contrast matrix. The pros and cons of using either PCA or ICA decomposition

schemes to optimize fMRI signal detection are discussed.

5.2 THEORY

5.2.1 Multivariate approach to reveal the functional connec-

tivity: PCA

The collected data in functional brain imaging studies can be collapsed into a two-

dimensional matrix, D, which includes both spatial and temporal information and is

referred to the data matrix. Without loss of generality, we assume here that each row

encodes one time-point/condition acquisition for the whole brain, and each column

represents one voxel's time series or voxel's recording across different subjects and

different conditions. For example, Dij represents the value of voxel j in time point i

acquisition.

Different decomposition procedures can be applied to the data matrix to reveal

the internal structures. Here we refer to "Total Decomposition" (TD) as the approach

that directly decomposes the spatiotemporal data matrix, D, by multivariate tools.

PCA decomposes the two-dimensional matrix into orthogonal subspaces, which are

termed latent variables (LV) in the gPLS framework. The outer product of the left
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singular vector and the right singular vector, weighted by the corresponding singular

value, results in each latent variable expressed as:

D = PCAU X PCAS X PCAVT (5.1)

PCAUTPCAU= PCAUPCAU = I

PCA VPCAV PCAVPCAV T = I (5.2)

Here I denotes the identity matrix. Each LV consists of a singular value (a diagonal

entry of PCAS ), one left singular vector (a column of PcAU) and one right singular

vector (a row of PCAV). The left singular vector in each LV (PcAU), which is termed

the "design LV" in the following application of PCA in gPLS, gives the loading of

different time-points/conditions to maximize the explained variance in the associated

LV under the orthonormality constraint to the remaining design LVs. In addition, the

right singular vector (PCAV), which is named "brain LV" in the following application

of PCA in gPLS, gives the loading of each voxel to maximize the explained variance in

the associated LV subjected to the orthonormality constraint to other right singular

vectors. Singular values, PCAS, are metrics to quantify the significance of each LV.

Larger singular values represent a more dominant contribution from the corresponding

LV to the total variance in the data matrix. The proportion of the square of one

singular value over the sum of squares of singular values provides the quantitative

significance of the latent variable. Each design LV provides the physiological inference

of the latent variable, and the brain LV represents the spatial loading of the effect on

different voxels.

The data matrix can be reconstructed from the latent variables created by the

outer product of the corresponding left singular vector and the right singular vector,

weighted by the singular value. The sequential sum of all latent variables constitutes

the least square fit of the data matrix in terms of minimizing the mean square error.

The spectrum theorem describes the reconstruction procedure from the decomposed
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components,

- TD = PCA Sii (PCAU.i X PC AVi.) (5.3)

where PCAU.i denotes the ith column of matrix PCAU, and PCAVi. denotes the ith

row of matrix PCAV-

PCA is the mathematical process to re-organize the total variance in the new

coordinate system by orthogonal rotation. PCA provides such a rotation subject to

the constraints on orthonormality among coordinate axes and maximal variance of

the projected raw data on the new coordinate system after rotation.

5.2.2 Multivariate approach to reveal the functional connec-

tivity: ICA

Independent Component Analysis (ICA) is an alternative multivariate brain imaging

data analysis tool. Instead of decomposing the data into orthogonal subspaces, ICA

minimizes the mutual information among "channels", which refers to rows in the

data matrix [32, 13]. The critical assumption of ICA is that the recorded signal is the

linear time-invariant mixture of several statistically independent components. The

ICA algorithm estimates the mixture matrix and it searches an "un-mixing" linear

operator to restore these spatially independent components. This is formulated as:

D = W x X (5.4)

Each row of X represents one spatially independent component (IC). Observed

data matrix, D, is generated by the linear mixture of these independent components

via the linear mixing operator, W.

Independent components are found by reversing the mixture process.

Z= 1- x D (5.5)

The similarity between the independent components in ICA and the latent vari-
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ables in PCA can be compared by Eq. (5.1) and Eq. (5.5). This generates the

following analogy between PCA and ICA brain latent variables and design latent

variable.

IcA _wi
ICAUei -

ICA V'i -

wei x X. II
ICASii = T (5.6)

S1ICAU.i X IAV.j

where the ||e|| operator denotes the root-mean-square of the vector. The defined

design LV, ICAU, and brain LV, ICAV, are normalized to unit power as they are in

PCA. A diagonal singular matrix can also be constructed by placing defined ICA

singular values in Eq. 5.6c at diagonal entries. Similar to the spectrum theorem in

PCA, the derived design and brain latent variables in ICA reconstruct the original

data matrix by summing up the subspaces by cross product of ICA design and brain

LV weighted by the ICA singular value.

D = ICASii(1CA(i X ICAVi) (5.7)

5.2.3 Functional connectivity analysis by generalized Partial

Least Squares

Partial Least Squares (PLS) [24] is an alternative multivariate approach for analyzing

the functional neuroimaging matrices within the new space of proposed contrasts (or

hypotheses) of interest. The goal here is to generalize the PLS algorithm (gPLS) to

utilize both PCA and ICA as decomposition tools. Like the original PLS approach,

generalized PLS constructs an effect space of reduced dimension via the interaction of

the data matrix D, and the contrast matrix C, which encodes multiple comparisons
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mathematically.

For a data matrix D of n time-points (or conditions) and m voxels, a contrast

matrix C of size c by n can be constructed to incorporate c contrasts, each of which

represents one null hypothesis. The cross-product of these two matrices creates the

effect space E.

E = CT x D (5.8)

By use of the contrast matrix, the dimensionality of the original spatiotemporal

neuroimaging recordings is decreased dramatically compared to the total decompo-

sition of the data matrix in most fMRI experiment scenarios. This leads to the

advantages of gPLS for increased power for signal detection and estimation, resulting

from the weighted averaging provided by the contrast matrix, and for decreased com-

plexity in interpreting the revealed structures within the data due to the reduction

of dimension.

One would like to contrast effects in the temporal domain without temporal over-

lapping. In a task-control experiment to detect baseline-activation differences or in

parametrically designed experiments to reveal condition-related effects, orthonormal

Helmert contrasts [24] can be used as the contrast matrix for multiple conditions

comparison. A Helmert contrast matrix of temporal dimension n is written explicitly

as

0, wheni < j

H = ,wheni = j (5.9)

-1 , wheni > j(ns1+1/(n-)

(n-j)-/1_+1/(n-j)' hn

Each column of the Helmert contrast matrix can be used to represent one null

hypothesis. Two properties of the Helmert basis function are useful for detecting

activation: first, the fact that each basis with sum of entries equal to zero explicitly

implements a matched filter by providing weightings to various temporal observations.
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Each basis tests one single null hypothesis in the selective averaging process by corre-

lating the contrast matrix and the data matrix. Second, all Helmert bases are of unit

variance and orthogonal among each other such that no bias toward any comparison

encoded by an individual basis is generated in the subsequent decomposition.

To perform multiple comparisons, observations are temporally segregated into

groups, and the associated Helmert bases are created to encode the differences among

them. The following decomposition algorithm identifies the coefficients for these bases

by maximizing the total effect created by individual comparison using either PCA or

ICA. For a blocked-design experiment, groups can be either different epochs for a

single subject experiment, or different condition/subject indices for a cross-subject,

parametrically designed study.

In the case of testing a single hypothesis (e.g., detection of baseline-activation

contrast in blocked-design experiment) only one associated contrast vector is created

and traditional PLS fails in this degenerated case, because of the rank deficiency of

the effect space. To resolve this problem, we propose "randomized grouping," which is

essentially making use of the repeated observations by posing multiple null hypotheses

to test differences between partitioned groups. In practice, we may assume there are

g groups in a t-epoch blocked-design experiment, where g < t. A supplementary

contrast matrix encoding the difference of g groups can be created by randomly

partitioning epochs using Helmert bases. The new contrast matrix, consisting of

the baseline-activation contrast vector as well as the epoch difference encoded in

the supplementary contrast matrix, enriches the content of the effect space. The

dimension of the effect space after randomized grouping is still dramatically smaller

than that of the data matrix in conventional experiment setups. This property can be

exploited for iterations of randomized grouping to estimate the errors in the grouping

process.

Using the total decomposition, the dimension of the matrix fed into the multivari-

ate decomposition is often the number of temporal observations, because an fMRI

experiment generates many more spatial voxels than temporal scans. In contrast, the

PLS and gPLS frameworks create the effect space with dimension equal to the num-
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ber of contrasts to be tested. This reduction in dimension provides the advantages of

not only increased power for signal detection/estimation (due to the explicit selective

averaging by columns of the contrast matrix) but also decreased computational com-

plexity due to the reduced row dimension of the effect space. Randomized grouping

further provides the flexibility to manipulate the size and the rank of the effect space.

Various dimension-reduced effect spaces constitute the sampling pool to estimate the

robustness of the subsequent decomposition.

Either PCA or ICA can be applied to the effect space to explore the intrinsic

structures associated with the proposed contrasts. In PCA, revealed latent variables

sequentially account for the total variances in the effect space E, subject to the or-

thonormality constraint. In ICA, however, the mutual information among spatial

patterns of different effects and comparisons is minimized among rows of E. Latent

variables are generated by either PCA or ICA decomposition. Each design LV rep-

resents the loadings of the proposed contrasts, and each brain LV summarizes the

spatial loading of different voxels in the associated LV, which imply the character-

istic brain activity patterns. For both PCA and ICA, the loading at different time-

points/conditions can be obtained by calculating the design score (Sdesign), which

is defined as the product of the contrast matrix and the design LV:

Sdesign = C X U (5.10)

Design scores indicate the physiological implications of the latent variables since

the temporal loadings can be covaried with either the experiment paradigm or the

temporal confounds. The loading of all voxels for each revealed latent variable can be

represented by the brain score (Sbrain), which is defined as the product of the data

matrix and the brain LV:

Sb,.ain = D x V (5.11)

Each column of the brain score constitutes the loading of single brain LV's at

different time points/conditions.
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The name "generalized Partial Least Squares" (gPLS) is derived from the process

to decompose the effect space, which is the temporal covariance between the contrast

designs and the observed data. In total decomposition, people deal with the com-

plete covariance matrix of data, and thus it is computationally expensive. The effect

space is a subset of the complete covariance matrix, correlating all spatiotemporal

observations and null hypotheses encoded in the contrast matrix. gPLS deals with

only a fraction of the complete covariance, enabling the fast computation of latent

variables by reducing the dimension of the matrix to be decomposed. Note that the

generalized Partial Least Squares and total decomposition are equivalent when the

contrast matrix is identity.

5.3 METHODS

5.3.1 Quantifying results from PCA and ICA by Receiver

Operating Curve Analysis

Using simulation data, quantitative comparison of PCA and ICA decomposition was

performed by using Receiver Operating Curves (ROC) to access the detection-cost

characteristics of these two decomposition approaches in the gPLS and TD framework.

The ROC area index is defined as the area under each ROC. An ROC area around 0.5

represents an inferior separation of signal from noise by the testing procedure, while

an area close to 1 implies a good differentiation. Figure 5-1 illustrates the ROCs and

their underlying areas when various thresholds are set to distinguish two Gaussian

distributions of identical unit variance and separated at different means (D).

Given a single revealed brain latent variable and the activated voxel indices, an

ROC area metric (the ROC index) can be obtained. To characterize all latent vari-

ables for detection, a "weighted ROC index" for brain latent variables is defined as

the weighted sum of all ROC areas from all LVs. One possible choice of the weighting

factor for the latent variable i, W, is the latent variable specific "power fraction"

equal to the fraction of the sum-of-squares of singular values.
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Figure 5-1: The ROCs and their area metrics from varying thresholds to distinguish
two Gaussian distributions with unit variance and various mean differences. When
the distance of the mean of two Gaussians is more than 1.8, the ROC area is higher
than 0.9.
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These two ROC area metrics enable the assessment of detection power by either

an individual latent variable or the ensemble of LVs. Ideally, a perfect detection

without either Type-I or Type-II error makes both the ROC index and the weighted

ROC index equal to 1.

The brain LV from either PCA or ICA can be regarded as a multi-dimensional

vector. Due to the normalization in Eq. 5.2 and Eq. 5.6, each brain LV has unit

power, and we propose an angle metric to quantify the (dis)similarity between two

brain LVs by the multidimensional inner-product.

6(V1, V 2) = V1 V 2 (5.13)
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5.3.2 Simulation

Using a blocked-design experiment, a data matrix of dimension 120 rows and 10,000

columns was created to simulate the spatiotemporal observations of 6 epochs, each

of which had a baseline of 10 time points and a stimuli of 10 time points. Values

of the time series of each voxel consist of foreground signal and background noise

at different signal-to-noise ratio (SNR), which is defined as the power ratio of the

artificially created signal patterns and the background noise realizations. Two cate-

gories of signal patterns of activations were created: orthogonal activation patterns

and non-orthogonal activation patterns. In a task-control blocked-design experiment,

orthogonal patterns arise from the perfect alignment of a voxel's activating response

to the timing of the experiment stimuli. Additionally, multiple subjects and/or multi-

ple conditions in the experiments also create temporally, and individually, orthogonal

time series when there is no interaction among conditions and subjects. Note that

non-orthogonal activation delay (NOAD) can be present in the realistic fMRI data

due to the hemodynamic delay of the onset of brain response to the stimuli. We

varied NOAD between 0 to 3 TR in fMRI acquisition to simulate the delays of the

activity relative to the orthogonal activation due to experimental paradigms. In the

conventional TR=2 seconds setting, this is equivalent to accommodating 0 6 sec-

onds hemodynamic response delay. The background noise for each voxel (i) was

assumed to follow three probability distribution functions (PDF): Gaussian distri-

bution, super-Gaussian distribution, and sub-Gaussian distribution. The Gaussian

background noise was created by the normal distribution with zero mean and oQ vari-

ance, denoted by N(0, of), where the variance follows another normal distribution

of ~ N(5, 1). A super-Gaussian noise model was implemented using an exponen-

tial distribution with zero mean, which was equivalent to a kurtosis of 6. We also

adjusted the variance of each voxel's time series to follow another exponential distri-

bution, with the mean equal to 5 and the variance equal to 1. A sub-Gaussian noise

model was created by uniform distribution between -0.5 and 0.5, with the variance of

each voxel's time series following another uniform distribution between 3 and 7.
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The duration of activation for each activated pattern may affect the signal de-

tection. Thus, we varied the temporal sampling rate (TSR), which is defined as the

number of scans in a fMRI experiment within each epoch/condition, to test the dif-

ference in the detection power. TSR changed from 5, 10, and 20, in the six-block

simulations with corresponding changes of the number of rows in the data matrix.

We performed iterative analyses by parametric variations over TSR, SNR, orthogonal

and non-orthogonal patterns, noise models, as well as decomposition schemes by PCA

or ICA. Each combination of simulation parameters was repeated for 30 iterations to

evaluate the averaged performance. This also generated the error estimates for each

set of the simulation parameters. For each gPLS simulation, a contrast matrix used

the Helmert basis Eq. 5.9 to encode the orthogonal contrasts. Total decomposition

of the data matrix by either PCA or ICA at the same parameter settings was also

simulated to contrast the detection power of gPLS.

We compared the outcome of applying PCA versus ICA decompositions to a

simulated event-related fMRI data set. The data were created by the same methods

as outlined in [18]. Briefly, baseline fMRI time series data were extracted from actual

EPI MRI. First, we generated the baseline activity of the simulated datasets by using

a first-order autoregressive plus white-noise model derived empirically by [19]. Then,

for defined epoch in the time series for five "subjects", a 2% signal change was added

to three voxel clusters (3x3x2 voxels/cluster). This signal change was represented

by a modeled hemodynamic response function [20]. Three tasks were modeled for

each subject, one without any change in activation (baseline) and two tasks showing

unique activation patterns.

These data were analyzed using the spatiotemporal variation of PLS [21]. Here the

voxel time-series are expressed in the same dimension so that the resulting data matrix

has space and time extending along the rows of the matrix and observations/subjects

along the column dimension. This enables the same decompositon method to be used

on the data matrix as for PLS on block-design fMRI, but idenifies both the timing

and location of task-related differences. The first latent variables from both ICA and

PCA decompositions are rendered to illustrate the most significant activation.
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Independent component analysis was implemented by the FastICA algorithm [17].

We used the Matlab R11 (Waltham, MA) built-in function to calculate PCA. The

Intel Pentium-Ill 450 MHz PC (Santa Clara, CA) was used as the hardware platform

for the simulation and the data analysis.

5.3.3 fMRI experiments of voluntary finger movement

A Right-handed subject executed a button press using the left hand in response to a

visual stimulus appearing at three different frequencies: 0.3 Hz, 1 Hz, and 3 Hz during

the task conditions using a block design, which consisted of 6 task time points (TR)

and 6 baseline time points per epoch in the 10 epochs. In baseline, a cross hair was

shown at the center for visual fixation. Multislice echoplanar image (EPI) acquisition

was used (1.5 Tesla scanner, SIEMENS, Erlangen Germany) (43 msec TE, 4.2 sec TR,

64x64 matrix, 230mm FOV, 46 axial slices, 3.6mm cubic voxels, 128 time points per

run). The time series were processed using MEDx (Sensor Systems, Sterling, VA).

To correct for within-run interscan head motion, each EPI volume was registered

to the mean of its time series using a linear 6-parameter rigid-body transformation

model employing a least-squares cost function. Image volumes were resampled using

scanline chirp-z interpolation. Global intensity variations were corrected by global

image intensity rescaling, performed by computing the ratio that relates the mean

image intensity in a particular volume to an arbitrary value of 1000. Low-frequency

temporal signal fluctuations were removed by the application of a high-pass filter

with a cutoff of twice the period length. Next, a 3D Gaussian filter (FWHM 6 mm in

all dimensions) was applied to each volume in the time series for spatial smoothing.

Images were then spatially normalized with a 3D warp to an EPI template in Talairach

space. The full time series of the subject's tapping at the rate of 1 Hz was used to

demonstrate the capability of gPLS to identify task-related spatiotemporal structures.

To illustrate the power of multiple comparisons using gPLS, the data of the same

subject tapping the left hand at 3 different frequencies were analyzed to highlight the

frequency-dependent activities. All baseline time points and all task time points in

each tapping frequency were averaged to generate a single fixation mean and a task
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mean, respectively, in order to reduce the dimension of the data, and to minimize the

variability of different epochs.

Two gPLS analyses were separately computed to differentiate the task-control

contrast and finger flexion rate-dependent effects. The first gPLS made use of a

contrast matrix including a paradigm coherent vector representing the "on" time

points, when the subject tapped his fingers at the rate cued by the visual stimuli, and

the "off" time points, when the subject maintained visual fixation only. Additionally,

we manipulated the degree of freedom of the contrast matrix by segregating different

epochs of the experiment paradigm into 2 to 6 groups to differentiate the epoch-

related effects. The second gPLS detected additional finger flexion rate-dependent

effects by using Helmert basis to construct a contrast matrix for comparing three

finger tapping frequencies. Also, we choose 8 randomized groups inside the contrast

matrix to test the robustness of the revealed eigen-structures. Both gPLS analyses

utilized PCA and ICA separately, using 100 iterations to generate error estimates.

5.4 RESULTS

5.4.1 Simulation studies

Signal-to-noise ratio

Fig. 5-2 shows the weighted ROC indices for Gaussian background noise with 5

orthogonal activations in gPLS. Generally, as the SNR increases, the weighted ROC

area from all latent variables using either PCA or ICA increases monotonically. Given

the same SNR, PCA decomposition always gives better detection than ICA in the

simulation. Note the high variability of the ICA results at low SNR (i 0.1).

When the SNR is equal to one, which corresponds to the same level of paradigm-

coherent activation signal and background noise, PCA has a weighted ROC area more

than 0.82, while the weighted ROC area of ICA is only 0.73. The discrepancy between

PCA and ICA prevails across various SNRs. When the SNR is higher than 10, PCA

always has weighted ROC areas of more than 0.95, and ICA has values of around
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Figure 5-2: (Top panel) The weighted ROC area by PCA and ICA using gPLS
from Gaussian background noise at various SNRs. (Bottom panel) The ROC area
from the most correlated latent variable by PCA and ICA using gPLS from Gaussian
background noise at various SNRs. Five orthogonal activation patterns with 6 epochs
and 10 samples in each epoch were simulated here.

0.81. The plateau of ICA detection is about 0.8 when the SNR is greater than 3.16,

while PCA stabilizes the detection power around 0.95 as the SNR is higher than 10.

Most correlated latent variable

The bottom panel of Figure 5-2 also reports the ROC area detection metric of the

"most correlated" latent variable, whose design score has the highest absolute value

of correlation coefficient between the experimental paradigm and the revealed design

score. The observation that higher SNRs correspond to higher ROC areas is still valid

in the most correlated LV metrics for either PCA or ICA in the gPLS framework.

When the SNR is higher than 10, the averaged ROC area by PCA is over 0.95,

while ICA has variable ROC areas between 0.93 and 0.86. Low SNR decreases the
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distinction between PCA and ICA decomposition. As the error bars show, there is

no significant difference in the ROC area metric from PCA and ICA when the SNR

is lower than 0.1. The similar detection power of the single most correlated LV to

that of weighted ROC areas from all LVs at different SNR demonstrates that a single

LV with the most correlated design score and experimental paradigm is capable of

detecting underlying spatiotemporal patterns of activation.

Total Decomposition versus Generalized Partial Least Squares

Figure 5-3 shows the comparison of the detection using gPLS and TD using Gaussian

background noise and 5 synthetic orthogonal signals. The detection by the weighted

ROC area in TD is lower than that in gPLS at SNRs ranging from 0.1 to 100. The

gPLS approach performs better than TD when using either PCA and ICA decomposi-

tions. Presumably this advantage comes from the selective averaging step. When the

SNR equals one, TD using PCA has a maximally weighted ROC area of 0.58, while

TD using ICA is 0.54. gPLS at the same SNR (SNR = 1) has the weighted ROC

area of 0.82 and 0.73 by PCA and ICA, respectively. This comparison quantitatively

shows the advantage of gPLS over TD for higher signal detection. For the ROC area

of the most correlated LV (bottom panel of Figure 5-3), PCA is of similar detection

(ROC area over 0.95) using either gPLS or TD at high SNR (Z 10). ICA in gPLS

demonstrates higher detection than in TD by a larger ROC area at high SNR. When

SNR is lower than 0.03, gPLS or TD provides almost the same insufficient detection,

no matter whether PCA or ICA is utilized. In general, the variability of the reported

ROC metrics from the most correlated LV is smaller in PCA than ICA when SNR is

higher than 1.

Background noise

In addition to the Gaussian distribution, super-Gaussian and sub-Gaussian proba-

bility distribution functions were used to simulate background noises, as shown in

Figure 5-4. With super-Gaussian background noise and using the most correlated

latent variable metric, TD is slightly better than gPLS at high SNR regions (SNR Z

147



0 95 - - ~ - - ~ ~~ - - - ~

090-

080 -- TD PCA
0.75 -DTD ICA

O.W - *gPLS ICA
0.5$

0.45-

0.0 003 010 032 00 3.16 10.00 3160 100,00

0,90. -

0.80D PA
07D -ICA

0.70 gPL.S PCA

*gPLS :ICA

0.55 - i

050

045

040

0 0 03 010 032 1 0 1 3.16 1 00) 31.62 100.00

SNR

Figure 5-3: The weighted ROC area (upper panel) and the most correlated LV (lower
panel) by PCA and ICA using gPLS and TD with Gaussian background noise at
various SNR. Five orthogonal activation patterns with 6 epochs and 10 samples in
each epoch were simulated here.
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Figure 5-4: The most correlated LV by PCA and ICA using gPLS and TD on super-
Gaussian (Top panel) and sub-Gaussian (bottom panel) background noise at various
SNR. Five orthogonal activation patterns with 6 epochs and 10 samples in each epoch
were simulated here.

10) when PCA is employed. In the lower SNR (SNR i 3) contexts, gPLS is superior to

TD using PCA. When ICA is adopted as the decomposition tool, gPLS always out-

performs TD at all SNRs. The sub-Gaussian background noise study (bottom panel

of Fig. 5-4) shows the higher detection using gPLS over TD and PCA over ICA when

the SNR is lower than 1. With the sub-Gaussian background noise, the weighted

ROC area metrics at SNR larger than 1 are slightly higher than the most correlated

LV ROC index (not shown). This suggests that when the background noise follows

a sub-Gaussian distribution, such as uniform distribution, the ensemble of multiple

latent variables has higher detection power than the single most correlated LV.
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Effect of multiple contrasts and hemodynamic delays

The gPLS structure can be used for either multiple hypotheses/activations compari-

son/detection as well as a single contrast identification, as illustrated in Figures 5-5.

In this Gaussian background test bed, when there is only one paradigm-related ac-

tivation signal, detection using only the most paradigm correlated latent variable is

quite efficient (Z 0.99) when the SNR is greater than 1. PCA outperforms ICA when

the SNR is less than 1, except that ICA detects slightly better when SNR equals

0.3, and the delayed activations exist (NOAD = 3 TR). Simulation results show that

when the number of contrasts is low, a single latent variable is adequate to examine

the spatiotemporal structures associated with the posed hull hypothesis encoded in

the contrast matrix. Multiple contrasts detection by gPLS (bottom panel of Figure

5-5) is illustrated using 5 orthogonal activations and 0 to 3 TR delayed signals in the

data (to model hemodynamic delays) at various SNRs. PCA has better detection

than ICA for all SNR and time delays.

The hemodynamic responses in the realistic fMRI might contain voxels with dif-

ferent delays. Thus, we parametrically simulated the delayed activations between 0

and 3 time points, which are 0 to 3 TR delays in fMRI acquisition for the epoch

length of 10 TR. If the data contain only a single paradigm-coherent component,

such delays decrease the detection by PCA in low SNR contexts, but it enhances

ICA detection at two simulation SNRs (SNR = 0.1 and SNR = 0.32). However, PCA

provides higher detection power than ICA with or without hemodynamic delays in all

conditions. In data containing multiple hypothesis-related signals, the delays hinder

the PCA detection in low SNR regions (SNR i 1), but they do not change significantly

when SNR is greater than 10. ICA degrades the detection significantly when there

are multiple delayed activations in higher SNR contexts (SNR , 3). It is worth notic-

ing that ICA has lower detection when delays exist in the multiple contrasts data.

With sufficient SNR, gPLS using PCA is insensitive to the hemodynamic delays in

the data, providing a higher detection power compared to ICA decomposition.
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Figure 5-5: The most correlated LV by PCA and ICA using gPLS on Gaussian back-
ground noise at various SNRs. Single (top panel) or five (bottom panel) orthogonal
activation patterns with 6 epochs and 10 samples in each epoch were simulated. De-
lays between the experimental paradigm and the onset of the voxel activity varied
between 0 to 3 time points (NOAD=O and NOAD=3).
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Temporal sampling rate

Various temporal sampling rates (TSR) were simulated for 5, 10, and 20 scans for

each epoch in a blocked-design experiment. Results suggest that a higher TSR always

has a higher ROC area metric in PCA decomposition at different SNRs, as shown

in Figure 5-6. ICA has a similar tendency to have higher detection power as the

TSR increases. When the SNR is higher than 3, more temporal samplings produce

relatively fewer ROC increments. Increasing the TSR is only advantageous for gPLS,

not for TD. The increased sampling does not enrich the content of data, and both

PCA and ICA suffer from the increased degrees of freedom in the decomposition, as

shown in the bottom panel of Fig. 5-6.

Event-related fMRI simulation

Figure 5-7 shows the most significant 25% of the first brain latent variables in an

event-related fMRI experiment when PCA and ICA were used to decompose the PLS

effect space. Qualitatively, there was no appreciable difference in the results using

PCA vs. ICA decomposition. Both show similar within-voxel activation duration

and the location of the activation loci. This latent variable differentiated the two

conditions with the added activations from each other,and the "baseline" condition.

5.4.2 fMRI motor system study

Movement contrast detection

We found from the singular values that the first LV using PCA and ICA accounts

for 90% and 81%, respectively, of the total effect space variance. The variation of

the singular value from ICA (8.5%) is higher, compared to the variation from PCA

(0.5%) in the 100 iterative analyses.

Figure 5-8 shows the design scores of the most dominant (the 1st) latent variable

in gPLS using PCA and ICA. The corresponding LVs are well correlated to the on-off

experiment paradigm. Either PCA or ICA decomposition can robustly detect the

contrast between the baseline and task conditions in the gPLS framework. Multiple
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153



Figure 5-7: The first brain LV of PCA (top panel) and ICA (bottom panel) decom-
position from an event-related fMRI simulation data.
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Figure 5-8: The design scores of 6 random groupings on different epochs of the left-
hand tapping data. They reveal the task-related components as well as transient
variation in these task-related components. Epoch 4 shows instability in identifying
consistently task-related components.

(100) iterations were used to investigate the variability of the design scores in dif-

ferent epochs. Comparing PCA and ICA, the design scores show that gPLS is able

to detect the consistently task-related structures inside the data matrix, as well as

the transient responses. The 4th epoch of gPLS by both PCA and ICA using 6 ran-

domized groups demonstrated higher variability, representing lower confidence during

task-related component identification.

The spatial patterns of the first latent variable are shown in Figure 5-9. For

comparison, T-test uncorrected p-values are also shown to contrast the detection by

univariate and multivariate approaches. Thresholds are set to 3.5 for base 10 logarithm

p-values for T-test, and 40% of latent variable maximum for gPLS. These values are

chosen for optimal visual comparison between approaches. The cerebellum, visual

cortex, primary motor area, cingulate gyrus, and the medial superior parietal lobule

are shown activated in PCA and ICA decomposition using six random groups and the

experiment paradigm to constitute the contrast matrix. A large amount of similarity

and overlapping between PCA and ICA decompositions is observed. The differences
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Table 5.1: The inner product of the first latent variable revealed by PCA and ICA
at various numbers of randomized grouping. PCA shows consistent similarity at
different randomized group numbers. ICA decomposition varies more greatly than
PCA with a significant difference between 2-group and 6-group random grouping.
Between PCA and ICA, the similarity is low and becomes lower when the number of
random grouping increases.

between the T-test statistical map and gPLS brain LVs are most significant in spatial

extension and distribution of estimated active areas in cerebellum, internal capsule

and superior parietal lobule.

Different random groupings reveal similar significant latent variables in gPLS.

Table 5-1 lists the angles between the most dominant brain LVs as multi-dimensional

vectors. The inner product of two high-dimensional brain LVs quantifies the alignment

and the similarity between them. PCA random grouping is more robust than ICA for

the first LV because of the high inner product (Z 0.999). Brain LVs from ICA vary at

different numbers of randomized grouping with a maximal similarity of inner product

of 0.77, which is analogous to 39 degrees in two-dimensional space. In contrast, 0.992

inner-product is equivalent to 2.9 degrees in two-dimensional space.

Using total decomposition, PCA and ICA generate complex time courses for dif-
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Figure 5-9: T-test brain activity statistical maps and brain latent variables from gPLS
using PCA and ICA decomposition of the effect space with 6 random groups in the
contrast matrix. In these maps, the righ~imisphere is on the right.
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ferent latent variables. The maximum of the correlation coefficient between the design

score and the experiment paradigm is 0.5204 for PCA and 0.3441 for ICA. The as-

sociated spatial patterns are complicated by ventricle false alarms, distributed local

activities, and motion artifacts (not shown), and therefore further processing, e.g.

Canonical Variance Analysis [22], is necessary to make use of these eigen-structures.

5.4.3 Multiple comparisons between finger tapping rates

The design score plots (Fig. 5-10) for the multiplc comparisons of different tap-

ping frequencies illustrate identification of both task-control contrast and tapping

frequency contrast. The distance between the individual mark and zero is propor-

tional to the contribution of that observation to the contrast revealed by the latent

variable. Note that a design score may represent an interaction effects. For example,

a design score with "on-off" contrast ( "on" positive and "off" negative) and "off-on"

contrast ( "off" positive and "on" negative) at different frequencies, characterizes the

differential "on-off" contrasts due to distinct motor frequencies.
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To contrast the "on-off', the first LV revealed by both PCA and ICA using ei-

ther no random groups or 8 random groups identifies the contrast between task and

control states across three tapping frequencies. The 2nd LV of PCA decomposition

represents the interaction of the generalized high tapping rate versus low tapping rate

contrast (weighted average of 3 Hz and 1 Hz versus 0.3 Hz) and the task-control con-

trast. Similar results from ICA decompositions are also present but appeared in the

3rd LV. Interestingly, the 2nd LV from ICA also represents a contrast between task

and control, which is consistent with the inference from the 1st LV. Note that the

tapping frequency contrast is the interaction/modulation of task-control differences

over blocks of different tapping frequencies.

The first three LVs explain all variances in the effect space when no random

group is applied. And they account for 76.5% and 58.3% of total variance in 8

random grouping gPLS using PCA and ICA, respectively. Random grouping detects

the transient responses and variations of different epochs in three tapping frequencies,

as shown in Figure 5-11.

Examining spatial patterns of the brain LVs excludes ventricle activations in the

3rd LV in PCA and 2nd LV in ICA (not shown). The first LVs using PCA and

ICA demonstrate the areas that are more active during task than control conditions

regardless of finger tapping rates. These include the visual cortex, cerebellum hemi-

spheres, and contralateral primary motor cortex. The contrast between the higher

tapping rate and the lower rates revealed by the 2nd LV in PCA and the 3rd LV

in ICA in gPLS suggests that the cerebellum hemisphere, visual cortex and medial

superior parietal lobule are more activated at high-frequency finger tapping. Since

areas indicated by LVs with PCA and ICA are visually similar, only PCA results are

illustrated.

5.5 DISCUSSION

Univariate approaches, such as correlation coefficient analysis and statistical para-

metric mapping [5, 22, 7, 23], are model-driven. Reference functions are provided to
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Figure 5-11: The first brain latent variable from PCA decomposition of the effect
space, representing the areas that are more active during task than control conditions
across all three tapping frequencies. The second brain latent variable from PCA
(similar to the 3rd LV from ICA) highlights the areas that are more active during high
frequency tapping (weighted average of 3 Hz and 1Hz) than low frequency tapping
(0.1 Hz).
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build models for the observed neuroimaging data. Since multiple null-hypotheses have

been explicitly constructed inside the model, identification of components related to

the questions of interest is straightforward. However, the segregation of image voxels

during estimation is problematic because these methods ignore possible anatomically

interconnected neurons and associated activation. It is also possible that voxels might

correlate quite well to the reference function, but they are not significantly correlated

with each other.

We have presented the theory and algorithms to use multivariate data analysis

technique to explore brain mapping based on functional MRI data. Compared to

univariate approaches, multivariate techniques facilitate the identification of interac-

tion among neuronal populations in the data analysis. No additional clustering or

corrected statistics for the estimated active regions are necessary. The multivariate

approach has been verified and adopted for functional connectivity analysis to inves-

tigate temporal interactions among distributed regions in the brain during cognitive

tasks, such as the orchestration of human memory and learning systems. A compar-

ison study of the memory system even supports the assertion that more information

is revealed by multivariate analysis than by univariate processing streams [22].

The conventional multivariate technique is a data-driven model subjected to dif-

ferent mathematical constraints. The data-driven characteristics make the identifica-

tion of components of interest in the revealed structures difficult. This is especially

discussed in Independent Component Analysis (ICA) [32, 13] because of the high vari-

ability of the correlation coefficient between the provided reference function and the

temporal independent component, which is equivalent to the design score in the gen-

eralized Partial Least Squares (gPLS) formulation. The proposed gPLS framework

moderates the difficulty of identifying task-related components by selective averaging

to increase the SNR in the data. gPLS is an extension of Partial Least Squares in the

sense of identical utilization of the contrast matrix. The rank-reduced effect space in

gPLS has advantages of both increased SNR as well as decreased computation time.

The higher power of detection in low SNR data derives from the construction of an

effect space by explicit incorporation of columns of the contrast matrix as averaging

161



factors. The subsequent PCA/ICA decomposition allows the data itself to reorganize

into separate components under distinct mathematical constraints, which are either

orthogonality constraint in PCA or statistical independence in ICA. In gPLS, the

size of effect space is dramatically smaller than the original data matrix. Dimen-

sion reduction in gPLS facilitates efficient calculation for latent variables. Without

gPLS, the size of the matrix is huge for a multiple-subject multiple-task full time

series analysis. In our simulation, even with the improved fast algorithm [17], ICA

is much slower than PCA in the same computational environment. The difference in

computational loading between PCA and ICA is many-fold (PCA is about 10 to 30

seconds depending on the size of the matrix; ICA takes more than 2 to 15 minutes

for the data of the same size). Thus, generalized Partial Least Squares has the com-

bined advantages of being model-driven from univariate statistical procedures by the

essence of contrast matrix correlation, and data-driven characteristics via PCA/ICA

decomposition to explore the interactions inside these data in an integrated way.

Another feature of gPLS is efficient multiple comparisons, which have been re-

ported in studies of the memory system [24] and interactions of sensory systems

[31, 24, 25]. In our simulations and realistic fMRI data, we observe that gPLS is

capable of detecting effects of different conditions. This is essentially accomplished

by providing different "contrast basis functions" in the contrast matrix. Subsequent

PCA/ICA application is then used to estimate the relative contributions of these

contrast bases. Without gPLS, multiple subjects and multiple conditions comparison

is difficult, because of the large data size and unconstrained decomposition. gPLS is

thus a convenient tool for experiments with parametric designs and those reporting

multiple-subjects commonality.

Yet another advantage of gPLS is the simplified identification of latent variables.

Since the data are constructed within hypotheses of interest, the revealed design latent

variable explicitly gives the weighting factors of different hypotheses under the test.

The associated design scores immediately show the temporal representation of the

corresponding structure. A simple correlation coefficient can be applied to categorize

latent variables as either task-related or task-independent as shown in our simulation
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studies. The associated singular values quantify the significance of latent variables

in terms of variance partitioning. Conventional Total Decomposition interpretation

of the revealed latent variables suffers because the correlation coefficient between the

reference function and LV associated temporal components is highly variable and

small. A final complication of using total decomposition comes from the need to do

another canonical variate analysis following the first multivariate decomposition.

In a full-rank effect space, the number of latent variables (or principal components

in PCA and independent components in ICA) is determined by the minimum of the

dimension of the effect space. This fixed-dimension property poses another constraint

in addition to the mathematical requirements of the decomposition algorithm. The

fixed number of decomposed components may consume the degrees of freedom by

partitioning total variance in the data into either hypothesis-related components or

confounds. Thus, the separation of confounds from pertinent contrasts is essential

in analysis of functional imaging data, regardless of using either total decomposition

or generalized Partial Least Squares. However, this problem can be partially alle-

viated by varying the number of groups, which collapses the non-paradigm related

data components together. For example, we dealt with the single subject blocked-

design fMRI experiment by randomly partitioning different epochs in the data into

various numbers of groups. The flexible manipulation of randomized grouping in the

construction of the contrast matrix enables the identification of not only constantly

task-related responses, but also transiently varying responses, as shown in Figure 5-7

and Figure 5-9. This randomization releases the constraint on the fixed number of

components by either PCA or ICA. Various numbers of random groups enable another

statistical inference about the robustness of the detected neural activity structures.

This randomization can be combined with the bootstrap and permutation tests in

the Partial Least Squares approach to provide further confidence in the estimation of

the revealed neuronal interaction.

Between PCA and ICA, it has been claimed that ICA is superior for task-related

components, especially transient responses, and noise detection [32, 13]. And it is

claimed that ICA identifies components following a super-Gaussian distribution more
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efficiently than PCA. Recently, it has been reported that the BOLD fMRI follows a

super-Gaussian distribution [26], which suggests an advantage of ICA over PCA. But

in the gPLS framework, the selective averaging implemented by the contrast matrix

over the raw data compromises such claims; because the Central Limit Theorem sug-

gests that the mixture of independently identically distributed components appears

to be Gaussian. Although the number of averaged samples might not be large enough

to be Gaussian for all cases, and the observations of fMRI time series are not tempo-

rally independent, gPLS still generates a sufficient amount of averaging to increase

detection power. This contributes to the better performance of PCA over ICA in our

generalized Partial Least Squares framework. Such a statement is valid for blocked-

design experiments and has been verified in our simulations of both blocked-design

and event-related fMRI. From our fMRI data, it is evident that PCA is more robust

for the estimation. The revealed most-significant latent variables at different numbers

of random grouping are very similar (inner-product O.99). Our simulation also shows

a smaller standard deviation in PCA compared to ICA. ICA is sensitive to the num-

ber of components to be decomposed, which is equal to the minimum of the number

of rows and columns of the matrix. The observed high variability between the most

significant LVs at different numbers of random grouping decreases the confidence of

estimated spatial patterns derived by ICA.

Realistic hemodynamic responses of voxels have various waveforms including dif-

ferent delays and shapes, as identified by previous studies [27, 28]. Versatile waveforms

deviating from the box-car reference paradigm in blocked-design fMRI experiments

have been modeled at different SNR in generalized Partial Least Squares. Different on-

set delays have also been simulated by assuming different numbers of non-orthogonal

activation delays (NOADs). We simulated that delays may be up to 3 TR in our test

bed of 10 TR, which is equivalent to 30% temporal incoherence. The results suggest

that in most SNR contexts, a single LV from PCA has better detection power than

one from ICA in the gPLS framework. In addition, the most correlated LV might be

quite sufficient to detect task-related components, which include transient variations

if random grouping is employed. Multiple-subjects multiple-conditions comparison
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favors PCA over ICA.

The general conclusion that in the PLS framework, PCA and ICA are comparable

to reveal the significant latent variables is also validated in our event-related fMRI

simulations. This is entirely consistent with our findings in the block design simulation

for the similarity of PCA and ICA detection power in the PLS framework. We suspect

that part of the reason for the agreement comes from the constraint of the solution

space to those spanned by task differences, rather than all dimensions in the data.

To evaluate the power of hypothesis testing under the Neyman-Pearson framework

[29], we used receive operation curves (ROC) to assess the trade-off between Type-1

and Type-2 error. ROC has been adopted for assessment of fMRI signal detection

[30, 31]. The ROC area and weighted ROC area for all LVs in our simulations are

neither unique nor globally optimal methods for assessing the power of detection.

However, singular values are good metrics for quantifying the amount of variance

explained in the model. And, ROC areas correspond conveniently to the trade-off

between Type-1 and Type-2 errors. However, if people are more concerned about one

hypothesis testing error than the other, other metrics should be employed.

Here, we used a linear decomposition approach to reveal the structures in the

data. Nonlinear decomposition can also be used in the gPLS framework as well.

PCA has been extended for identifying nonlinear interactions in brain systems. The

same approach could be applied to the nonlinear identification of different functional

areas when it is applied on the effect space in the future.

In summary, adoption of the multivariate analysis tool depends on the spatiotem-

poral structure of the data and the experimental questions. We show gPLS provides

computational efficiency and flexibility for testing hypotheses at different levels. And

gPLS can be used for either single or multiple hypotheses testing by two alternative

decompositions: PCA and ICA. While PCA seems to out perform ICA in several of

our scenarios, a conservative conclusion would suggest that neither can be favored

when applied in the PLS framework.
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Chapter 6

Differential Spatiotemporal

Visuomotor Neural Network for

Dominant and Non-dominant

Voluntary Hand Movement

Here we present a robust multivariate modeling technique, based on the analysis of

partial covariance between functional magnetic resonance imaging and behavior mea-

surements, to disclose the quantitative relationship between whole-brain functional

activation and repetitive manual movement rates. In an fMRI experiment of right-

handed subjects (n=12) executing thumb flexion at frequencies distributed around

0.3 Hz, 1 Hz and 3 Hz by dominant and non-dominant hands respectively, we revealed

a distributed neural network that includes primary motor area, supplementary motor

area, visual cortex, cerebellum, thalamus, and putamen/globus pallidus. We found

that this network demonstrates differential BOLD signal dependency on the rate of

voluntary manual movement by either hand, with the dominant hand activity more

linearly rate dependent (between 0.3Hz and 2 Hz) and the non-dominant hand more

non-linearly rate dependent. Subsequent effective connectivity analysis by Structural

Equation Modeling of cortico-thalamic-cerebellar sub-circuits shows that both the
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left and right cortico-cerebellar circuits exhibit rate-related modulations in relation

to movement of the contralateral hand. The SMA-putamen-globus pallidus-thalamus

loops in both hemispheres were estimated to be constantly active across movement

frequencies and the hand employed in repetitive movement. The proposed approach

can be applied to resolve spatiotemporal dynamics of large-scale brain networks.

6.1 INTRODUCTION

The control of voluntary movement requires integrated activity of distributed inter-

hemisphereic brain areas [1, 2]. Previous positron emission tomography (PET) [3, 4],

and functional magnetic resonance imaging (fMRI) [5, 6] studies have suggested

that motor coordination includes bi-hemispheric cerebral motor areas (primary mo-

tor (Ml), lateral pre-motor areas and supplementary motor areas (SMA)), as well

as sub-cortical areas, such as thalamus and cerebellum [7, 8]. To investigate the

motor system using neuroimaging techniques, repetitive finger movement have been

widely employed to study the somatotopic distribution [6, 9] of differential responses

due to movement complexity [7, 5, 10], brain asymmetry [11, 12, 13, 14], and the

correspondence between the movement and metabolic rate [8, 15, 16, 17]. During

repetitive voluntary manual movements, previous PET results showed a linear de-

pendency of the regional cerebral blood flow (rCBF) on the rate of simple repetitive

finger movement in the primary sensorimotor area [8, 18]. Subsequent fMRI studies

also confirmed the linear relationship between the primary motor area blood oxygen

level dependency (BOLD) and movement repetition rate [15, 17, 19]. Nevertheless,

secondary motor areas, including lateral premotor and supplementary motor area

(SMA), showed nonlinear rate dependent responses using either PET [8, 16] or fMRI

[17]. Concerning other brain areas in functional motor system, the responses of cere-

bellum during repetitive manual movement have remained a topic of speculation, as

well as the recently observed "deactivation" patterns seen in motor areas [20, 21, 14].

In this study, we explore the motor system using a repetitive manual movement

paradigm. Different from studies using univariate analysis, we chose a multivariate
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method to characterize the whole brain pattern of functional activation, including

areas subserving the visuomotor tasks and connections among these functional loci.

The hypothesis is that there exists an interwoven functional network for motor co-

ordination, potentially including not only motor system for planning and execution,

but also sensory perception. Additionally, such a neural network would demonstrate

differential regional activities modulated by the connections between functional areas

across different conditions. To do this, we employed the multivariate approach to

investigate the integrated network including "nodes" (functional active areas) and

directional "paths" (the connection modulating functional areas), both of which con-

sist of the "neural context" of the functional motor system. This is different from

the traditional univariate approaches, which ignore the interconnectedness of areas

in the characterization of functional responses [22, 23]. Here, we explored not only

the "functional connectivity", the temporal correlations among loci in the brain dur-

ing behavior/cognitive tasks, but also the "effective connectivity", the quantitative

causal influence among brain regions during different conditions. Specifically, we in-

terrogated the asymmetrical spatiotemporal responses elicited by dominant and non-

dominant manual movement at different rates, the functional modulations between

left and right hemisphere, as well as between cerebellum, subcortical structures and

cerebrum.

Here, we utilized the multivariate robust modeling algorithm based on Partial

Least Squares (PLS) framework [24, 25] to take advantage of computational efficiency

and simultaneous multiple-contrast comparisons. We extended the PLS analysis by

utilizing collections of basis functions to investigate the optimal spatiotemporal model

correlating fMRI BOLD signal and repetitive movement rates. This novel modeling

method enables the direct modeling between volumetric neuroimaging data and be-

havioral measurements across spatiotemporal scales, and is especially suitable for

parametrically designed neuroimaging experiments. Results of both functional and

effective connectivity are presented.
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6.2 METHODS

6.2.1 FMRI experiments and image acquisition

Twelve subjects executed unimanual thumb flexions to a repeating visual stimulus.

Before entering the MRI, subjects were trained on the task and asked to respond using

the same response pad that they would use inside the MRI. They practiced the task

until stable response rates were achieved. Stimuli consisted of a fixation cross and,

during the task condition, a bright annulus that flashed around the fixation mark. The

annulus subtended 2-degrees and was present for 100 ms. Subjects were instructed to

execute a button press response upon stimulus presentation and their response time

and accuracy were recorded using a fiber optic response pad (fORP; Current Designs,

Inc., Philadelphia, PA). The experiment was designed to be a pacing task, in which

the stimulus served to keep subjects entrained, rather than a stimulus-response task.

Subjects were instructed at the beginning of each imaging run whether to respond

with their right or left thumb. Each subject participated in six data acquisition

runs during a single imaging session. Subjects executed movements with either the

dominant (right) or non-dominant (left) thumb at three different rates: 0.3 Hz, 1

Hz and 3 Hz. The order of presentation was pseudo-randomized. During the course

of the experiment, subjects lay supine in the MRI system and viewed the stimulus

projected onto a rear-projection screen. For the task condition, they were instructed

to move in time with the stimulus using only the thumb specified by the experimenter

at the beginning of that run. During the control condition, subjects were instructed

to lay still relax and focus on the fixation cross. Ten blocks of movement task and

control alternated in each acquisition run. Kinematic data were recorded to assess

task compliance. Multislice echo-planar image (EPI) acquisition was used (43 msec

TE, 4.2 sec TR, 64x64 matrix, 230mm FOV, 46 axial slices, 3.6mm cubic voxels, 128

time points per run) in the 1.5 Tesla scanner (Sonata, SIEMENS Medical Solutions,

Erlangen, Germany).
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6.2.2 Preprocessing of data

The fMRI time series were processed using MEDx (Sensor Systems, Sterling, VA). To

correct for within-run interscan head motion each EPI volume was registered to the

mean of its time series using a linear 6-parameter rigid-body transformation model

employing a least-squares fit. Image volumes were resampled using scanline chirp-z

interpolation. Global intensity variations were corrected with global image intensity

rescaling, performed by computing the ratio that relates the mean image intensity

in a particular volume to an arbitrary value of 1000. Low frequency temporal signal

fluctuations were removed by application of a high-pass filter with a cutoff of twice

the period length. Next, a 3D Gaussian filter (FWHM 6 mm in all dimensions) was

applied to each volume in the time series. Images were then spatially normalized with

a 3D warp to an EPI template in Talairach space.

We created two separate data matrices for dominant (right) hand and non-dominant

(left) hand experiments respectively. To reduce the between-run variability, a differ-

ence image from each subject created by the difference between the mean of task

conditions and the mean of control conditions were generated for each movement rate

for both hands. The pre-processed whole-brain fMRI images at each time point were

then reshaped into one row vector in the data matrix. The experiment consisted of

3 conditions (0.3 Hz, 1 Hz and 3 Hz tapping) and 12 subjects, making total 36 rows

in the two data matrices for dominant (right) hand and non-dominant (left) hand

respectively.

6.2.3 Identification of nodes of large-scale neural network by

generalized Partial Least Squares

We present the mathematical framework for identifying spatiotemporal characteristics

of large-scale neural network using generalized Partial Least Square in the appendix.

In summary, the robust gPLS modeling uses the basis functions parameterized by the

behavioral measurements to correlate the spatiotemporal neuroimaging data. Sub-

sequent employment of multivariate decomposition dissects the collapsed factors be-
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tween brain images and behavior data, and thus it leads to the spatial distribution

and temporal dynamics of functional systems. The robust gPLS analysis yields, first,

design latent variables (design LVs) and temporal scores showing the quantitative

relationship between the BOLD responses at sensitive regions and the employed basis

function parameterized by the behavioral measurements, i.e. the repetitive movement

rate. Secondly, the brain latent variables (brain LVs) that elucidate their spatial dis-

tribution of the sensitive regions to the revealed BOLD-behavior relationship. And

finally, singular values quantify the relative power in multiple revealed spatiotemporal

models.

During spatiotemporal gPLS modeling, we used the a constant and a linearly

rate-dependent basis, as well as sigmoid functions with different transitions slope (n)

and shifts (r,), to build basis b based on the repetitive manual movement rate r to

model the fMRI data. Sigmoid functions are written explicitly as:

1
1 + exp(-rq(r - .))

Transition slopes of sigmoidal functions were varied by 1, 2, 4 and 8. And shifts

of sigmoid functions were varied by 0, 0.3 1, 2 and 3. These give to the corresponding

bases rendered in Fig. 6.1.

In each gPLS analysis of either dominant (right) or non-dominant (left) hand data

across 3 motor tapping frequencies, 100 iterations were calculated to reveal and to

test the robustness of the spatiotemporal models. In each iteration, data from an

individual subject at one tapping frequency was reserved for cross validation. The

reduced data and the chosen basis functions were used to identify the spatiotemporal

models. The cross-validation metrics was then calculated in 100 iterations, the aver-

age of which generated the cross-validity of the model. The spatiotemporal models

with the minimal cross validation errors were considered to be optimal, in terms of

robustness. Further details of gPLS were described in the Appendix 3.

To test if the spatiotemporal model is tapping-rate independent, linearly tapping

rate-dependent, or nonlinearly tapping rate dependent, various Hotelling's -statistic
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Figure 6-1: The sigmoid basis functions with different shifts and transitions employed
in the gPLS analysis. Each analysis utilizes one sigmoid basis function in addition to
a constant and a linear basis.

and associated p-values were calculated. The optimal model was compared to the

constant basis (the zeroth-order model) and the constant basis plus linearly rate

dependent basis (the first-order model) to test whether the spatiotemporal models

are motor-rate independent or linearly dependent for dominant and non-dominant

hand separately.

6.2.4 Network analysis by Structural Equation Modeling

Using the first dominant brain LV with Z-scores thresholded at 45, we identified

regional activated areas and recruited them into the network analysis. To construct

the anatomical model for the effective connectivity analysis using Structural Equation

Modeling (SEM), connections between nodes in the neural network were obtained

by literature reviews to provide a directional interconnected anatomical model with

unknown path coefficients. Variances of the nodes were calculated separately at

a specific movement rate from dominant and non-dominant hand data to give the

endogenous source variance of each node in the network.

The identification of the directional paths was implemented by SEM based on the
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formulation by McArdle and McDonald [26]

C = (I - A)-'S[(I - A)-I]T (6.2)

where S denotes the endogenous source variance matrix between the nodes of the

network, I is the identity matrix, and A is the path coefficient matrix with entry Ai, j

at the i% row and the j% column quantifying the connection from node j to node i.

The H superscript represents the transpose of the matrix. C represents the observed

covariance matrix among nodes in the network, which can be estimated from the time

series as described above. To estimate the path coefficients, we adopted the maximal

likelihood estimator, which minimizes the following cost function [27, 28]:

1
- In det (C)| -In Idet (<b)I + Tr[CDC-'] - p (6.3)
2

where Tr[e] denotes the trace of a matrix, and det(e) denotes the determinant of

a matrix. <D represents the sample covariance matrix, and p is the number of paths

in the anatomical model.

We used the non-linear optimization tool from Matlab (Natick, MA) to search

the minimum of the cost function. Repetitive estimation of path coefficients for each

condition was computed for 50 times, each of which performed a 2-sample bootstrap

from 12 subjects: namely 2 subjects' data were replaced by the other 2 subjects' at

the same tapping frequencies using the same hand. The ratios between mean values

and standard deviations for path coefficients among iterations with values smaller

than 0.6745 (two-tails p-value=0.5 in N(0, 1)) were considered insignificant paths.

6.3 RESULTS

6.3.1 Functional connectivity revealed by gPLS

Spatiotemporal models using combination of constant, linear and sigmoid functions of

various shifts and transitions in leave-1-out cross validation chose the different optimal

models for dominant and non-dominant hand movements: sigmoid at transition slope
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(r ) 8 and shift (r) 0 with constant and linear bases are optimal for non-dominant

hand data; sigmoid at transition slope (I) 1 and shift (r,) 0 with constant and linear

bases are optimal for dominant hand data. The cross validation error for these two

are 107.9 and 113.2 for non-dominant hand and dominant hand respectively. The

relative significance of LVs can be quantified by the total variance in the effect space

explained by each LV, which is equivalent to the ratio of the square of the singular

values. For the non-dominant (left) hand data, the first LV from optimal model

accounts for 35% of total variance, and in dominant (right) hand data, the first LV

from the optimal model accounts for 69% of the variance.

The temporal scores describe the mapping between the behavioral finger tapping

rate and the normalized whole-brain fMRI BOLD responses. Figure 6.2 shows the

temporal scores of the first LV in the identified optimal model. In the figure, the gray

bars depict the actual finger tapping rates in 3 major frequency ranges around 0.3Hz,

1Hz and 3Hz. The dashed lines in both left and right hand models represent the stan-

dard deviation of the temporal model estimations from 100 iterative computations.

The first LV of the optimal model for the dominant (right) hand indicates a more lin-

ear relationship between the rate of finger flexion and fMRI BOLD responses around

0.3 Hz to 2 Hz. The non-dominant (left) hand optimal model shows a more non-linear

relationship between the figure flexion rate and the normalized fMRI signal. Note the

plateau in the BOLD-behavioral relationship after 0.7 Hz when non-dominant hand

was employed.

To identify if these responses are either frequency independent, linearly frequency-

dependent or nonlinearly frequency-dependent, hypothesis tests using Hotelling's -

statistics were performed for both hands against the frequency independent model

(constant) and against the linearly frequency-dependent model. The Hotelling's T2_

statistics comparing the non-dominant hand optimal model to the constant and the

linear models are 1.9X108 and 8X108 respectively, both of which have p-value less

than 0.01%. Comparing dominant hand's optimal model to the constant and the

linear models gives the T 2 -statistics of 4X108 and 1.8X108 (pi 0.01). These results

show that the dominant (right) hand 1st LV is linearly rate-dependent, while the
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non-dominant (left) hand 1st LV is nonlinearly rate-dependent.

From 100 iterative cross-validations and the subsequent thresholding at Z-score

of 45, the spatial distribution of the activation areas is shown in Brain LV. The first

Brain LV of the dominant (right) hand tapping identified regions including ipsilat-

eral cerebellum, bilateral visual areas in the occipital lobe, contralateral thalamus,

putamen/globus pallidus, primary motor (Ml) area and supplementary motor area

(SMA). These regions represent the spatial distribution of the brain area whose BOLD

fMRI signals are with motor-rate dependency on the first temporal scores, as shown

in Figure 6.2. For the non-dominant (left) hand motor movements, the first Brain

LV identified also the ipsilateral cerebellum, bilateral visual areas in the occipital

lobe, contralateral thalamus, putamen/globus pallidus, M1, and SMA. These areas

are shown in Figure 6.3A and 6.3B. The stereotaxis Talairach coordinates of local

maxima in the first Brain LVs by dominant and non-dominant hands are reported

in Table 6.1, with additional anatomical labels, Brodmann's Areas (BA) and the as-

sociated node names in the subsequent network analysis by SEM. To compare the

detection of active brain areas between PLS and univariate methods, correlation co-

efficient maps using the BOLD-finger flexion rate were rendered in Figure 6.3C and

6.3D for left and right hand movements respectively. Note that univariate correlation

coefficient detected more activation in cerebellums and visual cortex, while the basal

ganglia and SMA activities were less active or missed.

The regional BOLD signals were shown in Figure 6.4, where we separated the

brain activated area detected by PLS into two lateralized categories containing ip-

silateral cerebellum and contralateral M1, globus pallidus/putamen, thalamus and

SMA. Note that the activities were more activated in the cerebral areas contralateral

and cerebellar areas ipsilateral to the hand employed for movement. And in general

the BOLD signals increases at faster movement rates.

6.3.2 Effective connectivity revealed by SEM

To evaluate the modulation of connections in the functional neural network of vol-

untary movement between dominant and non-dominant hands at different frequen-
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Figure 6-2: Relationship between the manual repetitive rates and the global brain
BOLD signal. Gray bars depict the actual repetitive movement ratcs recorded
from subjects. From right-handed subjects (n=12), fMRI responses elicited by non-
dominant hand movement demonstrates a more non-linearly rate dependence on the
frequency of the motor tasks, while dominant hand shows more linear rate depen-
dency. The dashed line illustrated the unit standard deviation estimated from 100
iterative analyses.
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Figure 6-3: The active brain arcas from first Brain LV by generalized Partial Lcast
Square analysis for left hand movement (A) and right hand movement (B). The BOLD
responses from these areas have differential sensitivity on the rate of the repetitive
movement by dominant or non-dominant hand as shown in Figure 6.2. The unit in
these figures are the Z-scores calculated from 100 iterative leave-1-out cross valida-
tions. The maps of correlation coefficients between repetitive movement rates and
BOLD images were shown in (C) and (D) for left and right hand movements re-
spectively. The blue traces in (C) and (D) denote the active regions detected by
PLS.
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Table 6.1: Talairach coordinates, anatomical labels and Brodmann's Areas of brain
regions showing high sensitivity to the repetitive motor rate dependency shown in
Figure 6.3.
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Figure 6-4: The regional BOLD signals revealed by PLS for left hand and right
hand movements at 0.3 Hz, 1Hz and 3Hz. For each condition, the brain areas were

separated two lateralized system containing ipsilateral cerebellum and contralateral
M1, Putamen/Globus pallidus, SMA and thalamus.

cies, the previous behavior-data informed gPLS was used to identify "nodes" in the

anatomical models. Functional areas include bilateral cerebellum hemispheres, thala-

mus, putamen/globus pallidus, supplementary motor area (SMA) and primary motor

(M1) areas. The inter-connected anatomical model consists of three main loops: ip-

silateral cerebellar- contralateral thalamus-contralateral M1 loop, contralateral SMA-

putamen/globus pallidus-thalamus loop, and contralateral M1-putamen/globus pallidus-

thalamus loop. In addition, bi-directional connections between the primary motor ar-

eas in both hemispheres and SMA-M1 connections are also included. Previous meg-

netoencephalography study in motor control proposed a similar cerebellar-striatal-

cerebral connectivity [29]. These directional connections are illustrated in Fig. 6.5.

The values of effective connectivity estimated by SEM were reported in Table 6.2

for dominant (right) and non-dominant (left) hand at rate centered at 0.3 Hz, 1 Hz

and 3 Hz respectively. Figure 6.6 illustrates the values of effective connectivity after

thresholded by the Z-score of 0.6745 (two-tails p-value=0.5), where red arrows indi-

cate positive path coefficients, and blue arrows represent negative path coefficients.

The width of an arrow corresponds to the value of the path. The paths with absolute
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Figure 6-5: The anatomical model for structural equation modeling (SEM) to evalu-
ate the modulation of the distributed neural network for voluntary motor movement.
Nodes of the network included bilateral cerebellum, primary motor (Ml), supplemen-
tary motor area (SMA), thalamus, and collapsed putamen and globus pallidus. The
arrows indicate the direction of casual influence.
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Z-scores less than 0.6745 were drawn by gray color to indicate the lack of statistical

significance.

During low frequency ( 0.3 Hz) repetitive thumb-index finger flexion using non-

dominant (left) hand, the major positive active connections were from left cerebellum

to right thalamus with an estimated path coefficient of 0.61, as well as the connection

from right M1 to left cerebellum with a path coefficient of 0.51. The path coeffi-

cients from in the SMA-putamen/globus pallidus-thalamus loop in both hemispheres

were also positively prominent. The effective connectivity between M1 areas in both

hemispheres failed to reach statistical significance. Note that a negative connectivity

was observed from right cerebellum to left thalamus during the 0.3-Hz non-dominant

hand finger flexion. For the dominant (right) hand tapping at the same 0.3 Hz, active

connections were from right cerebellum to left thalamus and then to left Ml with

estimated path coefficients of 0.23 and 0.70 respectively. The SMA-putamen/globus

pallidus-thalamus loops in both hemispheres were found to be positive and of statis-

tical significance. One statistically significant negative connection from thalamus to

M1 of right hemisphere was observed.

During the 1-Hz voluntary non-dominant (left) hand movement, the effective con-

nectivity in the ipsilateral cerebellum-contralateral thalamus-Mi loop was found to

be positively active. We also estimated positive right SMA-right M1 effective connec-

tivity and positive right SMA-right putamen/globus pallidus connectivity. The con-

nectivity from right SMA to right M1 was also found statistically significant (path

coefficient = 0.90). For dominant (right) hand 1Hz movement, we found that the

ipsilateral cerebellum-contralateral thalamus connectivity was statistically insignifi-

cant, but the contralateral thalamus-Mi connectivity was positive and stronger than

in the 0.3Hz. The connectivity from contralateral M1 to ipsilateral cerebellum was

found significantly positive. The effective connectivity among contralateral thalamus

to SMA, and from contralateral SMA to contralateral putamen/globus pallidus were

both positive. The SMA-Mi connectivity was found significantly positive in both

hemispheres.

3-Hz non-dominant (left) hand effective connectivity was remarkable for the fol-
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lowing positive paths: left cerebellum to right thalamus (0.22), right thalamus to right

M1 (3.04), right M1 to left cerebellum (0.49). The paths in the SMA-putamen/globus

pallidus-thalamus loop on the both left and right hemispheres were all positive. Note

that significant negative effective connectivity was estimated also from left thalamus

to left M1 (-1.13). Dominant (right) hand finger tapping at 3Hz revealed positive

effective connectivity paths: from right cerebellum to left thalamus (0.15; not statis-

tically significant), from left thalamus to left M1 (1.45), and from right M1 to left

cerebellum (0.48). Both hemispheres showed strong positive thalamus-SMA connec-

tivity. The connectivity from SMA to M1 was found to be significantly positive in

both hemispheres.

6.4 DISCUSSION

In this study, we utilized a network analysis to reveal brain and behavioral lateral-

ization and conditional modulation in a large-scale neural network. In summary, the

results showed the integration of the functional visual system and the motor system

by using generalized Partial Least Squares (gPLS) framework [24, 25], which iden-

tifies nodes in the network, and subsequent Structural Equation Modeling (SEM),

which quantifies the connections between functional areas. The gPLS approach suc-

cessfully revealed the orchestration of human functional visual and motor systems,

as well as within the motor system, during the passive voluntary manual movements.

This indicates the capability of the proposed multivariate modeling technique to iden-

tify functional coherent activities without a priori anatomical constraints. Different

from previous studies revealing the region-specific relationship between the rate of

repetitive manual movement and brain imaging data, our approach considers the

interaction among distributed regions of brain during spatiotemporal brain activity

identification. The results from the combination of PLS and SEM provide the general

spatiotemporal descriptions of brain functions at the system level.

The particular novelty in this research is the proposal of robust multivariate linear

modeling to decompose the partial covariance matrix between the behavioral mea-
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Figure 6-6: The path coefficients for non-dominant (left column) and dominant (right
column) hand in repetitive finger flexion. Top: 0.3 Hz; Middle: 1 Hz; Bottom: 3 Hz.
The widths of the arrows correspond to the estimated path coefficients, which are
also reported on top of the arrows. Red arrows represent positive path coefficients
and blue arrows represent negative path coefficients. Arrows with absolute Z-score
less than 0.6745 (two-tail p-value i0.5) were considered insignificant and were plotted
in gray. The right of the figure represents left hemisphere.
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surements and neuroimaging data. Conventionally, multivariate analysis of functional

images suggested the combined Principle Component Analysis (PCA) and Canonical

Variate Analysis (CVA) [22] method for the analysis of PET data. Later Partial

Least Squares (PLS) [24] uses PCA to dissect the projection of functional data to

multiple contrasts of interest. Compared to the multivariate techniques analyzing

the variance structure within functional images directly, the advantages of PLS in-

clude simultaneous multiple contrast comparisons, computational efficiency and the

simplified procedures in the post-hoc interpretation of the decomposed data struc-

tures. These advantages are all derived from the decomposition of the collapsed ef-

fects into orthogonal subspaces mathematically constrained using PCA. Alternative

constraint was also suggested to minimize mutual information among decomposed

components using Independent Component Analysis [30, 31, 32]. Recently we pro-

posed generalized Partial Least Squares (gPLS) to adopt PCA and ICA flexibly [25].

We suggested that gPLS is capable of detecting both transient and consistent activi-

ties by randomly categorizing repetitive observations into groups. Additionally, such

a randomized grouping approach can assess the robustness of the decomposed compo-

nents. However, the question about selecting the appropriate randomized grouping

number is not resolved. In this paper, we propose using both cross-validation as

well as data fitting to determine the "optimal" order of brain model. The identical

principle can be applied to select the "optimal" randomized grouping number, since

vectors encoding randomized grouping indices represent basis functions in the con-

text of modeling transient and consistent responses. In general, data is modeled more

accurately as assessed by smaller error between the original collection of observations

and the modeled data, because more degrees of freedom are introduced in the mod-

eling. This corresponds to more basis functions in the spatiotemporal multivariate

modeling, and subsequently less model fitting error due to the richness of the bases

to span the data space. The cost of the decreased model fitting error at higher or-

ders of bases is the "robustness" of the model. An ideally robust model works stably

across all observations. Stochastically, it is equivalent to small fluctuations between

the predicted and the observed data. Given finite data samples, we tested the ro-

190



bustness of the model by "leave-one-out" cross validation. As shown in the results,

higher order basis functions generate larger cross-validation error, because the model

is sensitive to these. The contradiction between model accuracy, which is reflected

in model fitting error, and model robustness, which is quantified in cross validation

error, set a balanced point to trade off an optimal model compromising both essential

error characteristics.

In gPLS where behavioral data is used to build spatiotemporal models, basis

functions are required for the identification. In theory, we have no preferences to-

ward any basis functions, as long as the basis functions in the model are capable of

capturing features in the data, which implies that the span of the basis functions con-

tains the effect space constructed by correlating neuroimaging data and behavioral

measurements. Either discrete or continuous basis functions are feasible alternatives

in experiment designs. Here we want to relate the continuous external behavior

measurement (finger tapping rate) to the functional brain images. In the previous

study of similar experimental design but with region-of-interest (ROI) analysis, it

has been shown that either linearly rate dependent model or step-function like model

are optimal for different areas in the brain [8]. The proposed sigmoid basis func-

tion with parametrically varying shifts and transitions is thus capable of exploring

a model between linear rate dependency and a step function to better characterize

the whole brain BOLD responses to the finger flexion rates. As shown in the gPLS

results, differential behavior-BOLD responses were identified between dominant and

non-dominant hand movements. This approach is especially suitable for parametri-

cally designed fMRI experiments to interrogate the quantitative relationship between

neural activity and behavior measurements.

Based on the gPLS and SEM, we successfully found that the anatomical com-

ponents of functional rate-dependent motor system, including primary motor cortex,

supplementary motor area, thalamus, putamen, globus pallidus and cerebellum. At

different rates, such a large-scale neural network exert orchestration during dominant

and non-dominant hand movement by the integrated modulation on the connectivity

among these areas, as well as localized region-specific activity. In general, the gPLS
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elucidated two distinct networks elicited by dominant and non-dominant hand ac-

tive movement as cued by visual stimuli. The linearly rate-dependent characteristic

of dominant hand movement between 0.3 Hz and 3 Hz corresponds to the previous

findings from SPECT [33], PET [8, 16] or fMRI [15, 17, 19]. The non-dominant hand

demonstrated a nonlinearly rate dependent activity: increasing responses from 0.3

Hz to about 1 Hz for repetitive manual movement, and then a plateau between 1

Hz and 3 Hz. Different from the traditional region-based univariate modeling, our

gPLS approach highlighted the global whole brain activity to complete the integrated

visiomotor tasks. The results indicate that bilateral primary motor, supplementary

motor areas, thalamus, putamen, and globus pallidus as well as cerebellum hemi-

spheres, were involved in the movement, while they exerted different weighting dur-

ing dominant and non-dominant hand movement. The integrated functional motor

system confirmed the previous neuroimaging studies' proposing the movement rate

dependent system consisting of contralateral primary motor, contralateral thalamus

and ipsilateral cerebellum [8, 34, 15, 19, 35, 36, 37]. The visual cortex was found

to be active with rate dependency in this study, potentially because of the visual

cues present in the experiment, which also matched the previous neuroimging finding

[38]. The differential rate dependency between dominant and non-dominant manual

movement supports the brain asymmetry as evidenced by previous anatomical [11]

and functional [12] findings.

Structural Equation Modeling in this study revealed several interesting findings:

first, the lateralized motor loop consisting of paths from ipsilateral cerebellum to con-

tralateral thalamus and then to contralateral M1 was found to demonstrate stronger

positive modulation as the movement rate increases. This finding is well matched

to previous ROI -based analyses [8, 18, 16] showing stronger M1 and cerebellum

activities at faster movement rates. At slow repetitive rates, strong effective connec-

tivity from ipsilateral cerebellum to contralateral thalamus was observed. While at

faster repetitive rate, the effective connectivity from ipsilateral thalamus to ipsilat-

eral M1 was found to be dominant. Secondly, the SMA-putamen/globus pallidus-

thalamus loop is consistently active across 3 different rates in both dominant and
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non-dominant hand movements. This showed that the significant involvement of

this corticostriatal system in repetitive manual movement. Interestingly, the con-

nectivity in this coritcostrial subcircuit is mostly positively modulated, except for

the contralateral putamen/globus pallidus - thalamus connection at 1Hz condition in

both dominant and non-dominant hand movement. Thirdly, the SMA to M1 mod-

ulation demonstrated differential connectivity in non-dominant and dominant hand

repetitive movements: using non-dominant hand, contralateral SMA to contralateral

M1 connectivity was only active during slow rate movement; while using dominant

hand, SMA to M1 connectivity in both hemispheres was found almost active at all

movement rates, except the ipsilateral SMA-ipsilatearl M1 connectivity during slow

(0.3 Hz) repetitive movement. Lastly, the revealed negative modulation toward the

ipsilateral M1 area corresponds to the recent deactivation patterns in the neuroimag-

ing studies [20, 21, 14]. The suppression of ipsilateral primary motor area might

be from either ipsilateral thalamus or from contralateral M1, as shown in the SEM

results from both dominant and non-dominant hand movements in our experiment.

These significant negative modulations confirmed the deactivation observations and

the hypothesis of suppressing mirror movement [21, 14]. Using SEM, we found that

cerebellum hemispheres participated in the repetitive manual movement with distinct

patterns. First, we found cerebellum's activity is rate dependent, and therefore our

gPLS is capable of including cerebellum hemisphere during functional connectivity

exploration. Secondly, through effective connectivity analysis, we found both signifi-

cant input and output projections to and from cerebellum. This corresponds to the

previous finding that cerebellum has both significant sensory and motor functions

[39].

The network analysis of human motor system has the implications to apply this

to the categorization of left-handedness or right-handedness. Since the handiness is

derived from long-term habitation on top of innate anatomical features, which is still

under controversy [11, 40], we expect that learning might change both the functional

connectivity and effective connectivity of the motor system. A specific example is

the recent report about the modification of effective connectivity through visuomo-
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tor learning [41]. Clinically, we expect this technique would reveal the differential

responses for motor system, especially when contrasting the normal subjects and the

neuro-degenerative diseases or stroke patients. Recently, the effective connectivity

was applied to show that patients with Parkinson's Disease demonstrated charac-

teristic enhancement of attentional modulation on the effective connectivity between

SMA and pre-motor [42]. Such findings regarding the performance of the whole brain

functional motor system may be further utilized to provide better management for

motor rehabilitation and early diagnosis.
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Chapter 7

Conclusion

7.1 SUMMARY

In this thesis, I investigated approaches to improve the spatiotemporal resolution of

human brain imaging using either the magnetic resonance imaging (MRI) along, or

the combined MRI/functional MRI (fMRI), and magnetoencephalogram (MEG). The

goal to achieve high spatiotemporal resolution in millimeters and milliseconds were

approached by hardware and software efforts. On top of the high spatiotemporal

resolution brain imaging data, I also studied the approach to reveal large-scale neural

networking, including both the nodes and the connectivity of the network, and its

correlates to macroscopic behavior measurements. These developments were proce-

dures to better under human brain function during perception, cognition and motor

hehaviors. We wish to utilize the technique developed in this thesis to answer (i)

where are the foci of brain activity, (ii) when are these areas activated and what is

the temporal sequence of activations, and (iii) how does the information flow in the

large-scale neural network during the execution of the cognitive and/or behavioral

tasks.

In Chapter 2, I presented an approach to employ regularization in reconstructing

parallel MRI data in order to reduce the noise amplification of the reconstruction (g-

factor). The proposed L-curve algorithm was fully automatic and showed a significant

reduction in average g factors in phantom and in vivo data at 1.5T and 3T. For some
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pixels the g factor was reduced below 1 indicating that the a priori knowledge in the

reconstruction reduced the variability below that of the full-FOV reference scan. The

reliance on a priori knowledge did not, however, reduce functional imaging CNR in a

model fMRI experiment. Although the method was demonstrated using the in vivo

SENSE method, the regularization method for reduction of noise amplification might

potentially benefit most variants of parallel MR reconstruction.

The parallel MRI study also included hardware building efforts. In Appendix 1,

I demonstrated a volume birdcage coil for accelerated image encoding with parallel

acquisition methods using SENSE principles. The coil is degenerately tuned with

both the standard homogeneous modes and the first gradient mode of the birdcage

coil resonant at the Larmor frequency. Conventional and anti-symmetric coupling

structures allow allow imaging from each of these modes simultaneously. I demon-

strated the coil for SENSE type reconstruction with acceleration factors of up to 2

fold. The maximal 2-fold acceleration in this dual-mode degenerate birdcage coil offers

the potential to extend SENSE type image reconstruction methods to applications

demanding uniform whole brain coverage.

Appendix 2 presented an automatic method to estimate the coil sensitivity profile

and use it to correct the inhomogeneity of surface coil MRI using wavelet transforms as

well as for parallel imaging reconstruction using SENSE. The Daubechies maximally

flat filter bank was found to have good computational efficiency and approximation

of coil sensitivity map. The optimum level could be automatically determined by

the defined inhomogeneity index from the corrected image and estimated coil profile.

Thus the method uses neither presumed digital filter specifications or the knowledge of

the electromagnetic properties and the location of the RF coil. Reconstructed images

showed both cortical and sub-cortical structures farther away from the surface coil

with relatively constant contrast. The corrected surface coil images have both higher

SNR than volume coil images and homogeneous contrast and brightness. Surface

coil images corrected in this way were found to be usable with automated image

segmentation software. The coil sensitivity profile estimation was applied to the

accelerated parallel MRI of brain images using an 8-channel array coil to reduce the
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image encoding time by a factor of 2 allowing either the reduction of susceptibility

distortions or increased spatial resolution at given imaging time.

Chapter 3 presented an approach to utilizing anatomical MRI data to calculate

Cortical Patch Statistics (CPS), which is incorporated into the source models as

a Loose Orientation Constraint (LOC). The proposed approach allows us to take

into account the variation of the cortical surface normal within the cortical patch

corresponding to each current source location. Simulations with single ECDs, 10 mm

diameter cortical patches, and 20 mm diameter patches showed that applying the

LOC can improve localization accuracy from 9 mm down to 7 mm in minimum norm

estimate (MNE), and from 12 mm to 3 mm in minimum norm estimate, also called

minimum current estimates, MCE). The refined cortical constraints were applied to

in vivo data from auditory and somatosensory evoked fields.

In Chapter 4, I presented a computationally efficient source estimation algorithm,

which localizes cortical oscillations and their phase relationships. This method em-

ploys wavelet-transformed MEG data and uses anatomical MRI to constrain the cur-

rent locations to the cortical mantle. In addition, the locations of the sources can

be further confined with help of functional MRI (fMRI) data. As a result, I obtain

spatiotemporal maps of spectral power and phase relationships. As an example I

show how the phase locking value (PLV), the trail-by-trial phase relationship be-

tween the stimulus and response, can be imaged on the cortex. I tested the method

of combining MEG, structural MRI, and fMRI using simulated cortical oscillations

along Heschl's gyrus. I also analyzed sustained auditory gamma-band neuromagnetic

fields from MEG/fMRI measurements. The auditory source areas in the posterior

superior temporal gyrus were chosen because they are problematic to image with any

functional imaging modality. Our results showed that combining the MEG recoding

with fMRI improves source localization for non-noise normalized wavelet power. In

contrast, it turned out that inclusion of fMRI data does not improve noise-normalized

spectral power or PLV localization. I show that if the thresholds are not properly cho-

sen, noise-normalized spectral power or PLV estimates may contain false (phantom)

sources, independent of the inclusion of the fMRI prior information. The proposed
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algorithm is appropriate for evoked MEG/EEG and block-designed or event-related

fMRI paradigms, or for spontaneous MEG/EEG data sets.

In Chapter 5, I investigated multivariate analysis approaches that take into consid-

eration the 4-D (time and space) covariance structure of the neuroimaging data in or-

der to explicitly test for multiple statistical models, including the designed paradigm,

and to allow for spatial and temporal model detection. In particular, Principal Com-

ponent Analysis (PCA) and Independent Component Analysis (ICA), which are two

popular multivariate approaches with distinct mathematical constraints, were stud-

ied in the proposed generalized Partial Least Square (gPLS) framework. Common

difficulties in using these two different decompositions include: classification of the

revealed components (task-related signal versus noise); overall signal-to-noise sensi-

tivity; and the relatively low computational efficiency (multivariate analysis requires

the entire raw data set and more time for model identification analysis). Using both

Monte Carlo simulations and empirical data, I derived and tested the gPLS framework

which can incorporate both PCA and ICA decompositions with computational effi-

ciency. The gPLS method explicitly incorporates the experimental design to simplify

the identification of characteristic spatiotemporal patterns. I performed parametric

modeling studies of a blocked-design experiment under various conditions, including

background noise distribution, sampling rate and hemodynamic response delay. I used

a randomized grouping approach to manipulate the degrees of freedom of PCA and

ICA in gPLS to characterize both paradigm coherent and transient brain responses.

Simulation data suggested that in the gPLS framework, PCA mostly outperforms

ICA as measured by the Receiver Operating Curves (ROCs) in SNR from 0.01 to

100, the hemodynamic response delays from 0 to 3 TR in fMRI, background noise

models of Guassian, sub-Gaussian and super-Gaussian distributions, and the number

of observations from 5, 10 to 20 in each block of a 6-block experiment. Further, due

to selective averaging, the gPLS method performs robustly in low signal-to-noise ratio

(il) experiments. I also tested PCA and ICA using PLS in a simulated event-related

fMRI data to show their similar detection. Finally, I tested our gPLS approach on

empirical fMRI motor data. Using the randomized grouping method, both transient
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responses, and consistent paradigm/model coherent components in the 10-epoch block

design motor fMRI experiment can be identified. Overall, studies of synthetic and

empirical data suggested that PLS analysis, using PCA decomposition, provides a

stable and powerful tool for exploration of fMRI/behavior data. In summary, adop-

tion of the multivariate analysis tool depends on the spatiotemporal structure of the

data and the experimental questions. I showed that gPLS provides computational

efficiency and flexibility for testing hypotheses at different levels. And gPLS can

be used for either single or multiple hypotheses testing by two alternative decom-

positions: PCA and ICA. While PCA seems to out perform ICA in several of our

scenarios, a conservative conclusion would suggest that neither can be favored when

applied in the PLS framework.

Chapter 6 presented a robust multivariate modeling technique, based on the analy-

sis of partial covariance between functional magnetic resonance imaging and behavior

measurements, to disclose the quantitative relationship between whole-brain func-

tional activation and repetitive manual movement rates. In an fMRI experiment

of right-handed subjects (n=12) executing thumb flexion at frequencies distributed

around 0.3 Hz, 1 Hz and 3 Hz by dominant and non-dominant hands respectively, a

distributed neural network that includes primary motor area, supplementary motor

area, visual cortex, cerebellum, thalamus, and putamen/globus pallidus was identi-

fied. This network demonstrated differential BOLD signal dependency on the rate of

voluntary manual movement by either hand, with the dominant hand activity more

linearly rate dependent (between 0.3Hz and 2 Hz) and the non-dominant hand more

non-linearly rate dependent. Subsequent effective connectivity analysis by Structural

Equation Modeling of cortico-thalamic-cerebellar sub-circuits showed that both the

left and right cortico-cerebellar circuits exhibit rate-related modulations in relation

to movement of the contralateral hand. The SMA-putamen-globus pallidus-thalamus

loops in both hemispheres were estimated to be constantly active across movement

frequencies and the hand employed in repetitive movement. The proposed approach

can be applied to resolve spatiotemporal dynamics of large-scale brain networks.
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7.2 FUTURE WORKS

The parallel MRI principle was found to be capable of improving spatiotemporal

resolution and reducing the artifacts during echo-planar imaging. However, people

utilizing parallel MRI technique suffer from lowered image SNR due to two factors:

the reduced number of data samples and the unfolding associated artifacts. This

thesis presented an algorithm using L-curve technique to minimize the noise amplifi-

cation from the latter factor. In the future, other regularization parameter estimation

methods, such as Generalized Cross Validation (GCV) or direct regularization based

on SNR of the linear syste, are of potential advantages of reducing g-factors and im-

proving the computation efficiency (reducing the time for regularization parameter

estimation) respectively. Nevertheless, the former disadvantage (lowered image SNR

due to reduced data samples) is not fully investigated. Other encoding schemes to

improve the SNR efficiency in parallel MRI acquisition are worthwhile for further in-

vestigation. Using Fourier imaging principle, variable sampling in the phase-encoding

direction with dense sampling around the low spatial frequency band and sparse sam-

pling around the high spatial frequency band may improve the SNR efficiency during

unfolding the aliased image from array elements. This is because that most energy

of the Fourier encoded imaging has energy concentrated around the low spatial fre-

quency region. Another possibility to mitigate the problem of SNR loss in parallel

MRI is to use other encoding basis functions. Using encoding basis functions sim-

ilar to the individual B1 field sensitivity profiles of the RF coils in the array may

reduce the error derived from interpolating Fourier bases using measurements from

individual array coils.

The spatiotemporal resolution of the MEG/EEG localization method can be im-

proved by more accurate anatomical and physiological information. This thesis pre-

sented an approach to utilize high spatial resolution MRI to provide more accurate

cortical surface information, including curvature and area, in MEG/EEG localization

procedure. Nevertheless, we need more validation on the assumption that the genesis

of MEG/EEG signal is originated from the pyramidal cells with primary orientation
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perpendicular to local cortical surface. A description on the orientations and the den-

sity of the pyramidal cells in gray matter can be valuable information in improving

the forward model of MEG/EEG inverse. This anatomical information (at approxi-

mately 5 mm 7 mm resolution) could potentially obtain by modern MRI diffusion

imaging technology. Other investigations on tuning parameters in the inverse process,

such as depth weighting correction, regularization parameter estimation, and provid-

ing spatial prior information of the neural activity from other imaging modalities, can

also be valuable for improving the localization precision.

This thesis also presented a study on the cortical oscillation using high temporal

resolution MEG data. The study on the oscillatory properties of the neural activity

may reveal the mechanisms of information processing within local cortical area and

transmission across different loci. I combined the minimum norm inverse, phase lock-

ing value, and wavelet transform to provide temporally resolved brain dynamics on the

cortical surface. Applying this technique to study large-scale neural network across

cerebrum and cerebellum can reveal the structure and function of neural networks.

Specifically, the oscillatory property can provide information for causal information

flow from one cortical area to another. Therefore effective connectivity analysis can

build a credible anatomical model. This is particularly useful in Structural Equation

Modeling. Via the time-resolved measurements from MEG/EEG, dynamic Struc-

tural Equation Modeling can be implemented to show dynamic neural network at

millisecond and millimeter scale.
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Appendix A

A degenerate mode birdcage

volume coil for sensitivity encoded

imaging

We demonstrate a volume birdcage coil for accelerated image encoding with parallel

acquisition methods such as SENSE. The coil is degenerately tuned with both the

standard homogeneous modes and the first gradient mode of the birdcage coil resonant

at the Larmor frequency. Conventional and anti-symmetric coupling structures allow

allow imaging from each of these modes simultaneously. We demonstrate the coil for

SENSE type reconstruction with acceleration factors of up to 2 fold.

The spatial distribution of the added noise from the SENSE reconstruction (g-

factor map) due to geometrical arrangement of the two-channel system is estimated.

The spatially averaged g-factors were found to be 1.21, 1.36 and 1.55 for 1.3, 1.6 and

2.0-fold accelerations respectively. The system was demonstrated textitin vivo using

accelerated and non-accelerated anatomical brain images at 1.5T. The maximal 2-fold

acceleration in this dual-mode degenerate birdcage coil offers the potential to extend

SENSE type image reconstruction methods to applications demanding uniform whole

brain coverage.
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A.1 INTRODUCTION

Although first proposed for increasing sensitivity and spatial coverage, simultane-

ous imaging from multiple surface coils has recently seen widespread use as a way

of decreasing image encoding times utilizing either SENSE based or SMASH based

techniques [20, 22]. These methods rely on the differing spatial profiles of the array

elements to reconstruct the under-sampled image. Successful reconstruction favors

spatially differing sensitivity profiles such as those derived from a non-overlapping

(gapped) array of surface coils [20, 22, 29]. The surface coil array, especially those

utilizing smaller surface coil elements, necessarily have a sensitivity profile which de-

creases with depth into the tissue. Clinical applications, however, often favor the

homogeneous coverage of the birdcage coil. For this reason, volume birdcage head

coils have become the standard for clinical brain imaging. Because of its excellent ho-

mogeneity and simple spatial relationship of its two orthogonal homogeneous modes,

the uniform birdcage mode alone does not provide the additional spatial information

needed for SENSE reconstruction. The higher order modes of the birdcage, however,

have substantially differing spatial magnitude profiles from the uniform mode, and

all of the modes differ from one another in phase profile. In this case, the benefits

of parallel imaging encoding acceleration schemes can be achieved while preserving

uniform image acquisition.

Detection of the MR signal from degenerate modes of the birdcage coil has been

explored for both SNR enhancement [4, 5] and for decreased image encoding times

[6]. In order to evaluate the potential for SENSE acceleration with uniform signal

detection, we utilize a degenerate mode birdcage in which the homogeneous and

gradient modes of the coil are simultaneously detected. The two homogeneous modes

are combined in quadrature and detected in receiver 1 and the first gradient mode of

the birdcage structure is also tuned to the Larmor frequency and detected in receiver

2. The spatially differing nature of the two modes makes them well suited to a

maximum of 2-fold acceleration with the SENSE method. The uniform nature of the

homogeneous mode provides image uniformity nearing that of traditional birdcage
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coils.

A.2 METHOD

An eight-rung low-pass quadrature birdcage volume coil (26.3 cm diameter and 33.5

cm length) tuned for a 1.5T scanner (Siemens Symphony Sonata, Siemens Medi-

cal Solutions, Iselin NJ) was constructed for this study. The birdcage was used in

"receive-only" mode. The body coil was used for uniform excitation. The homoge-

neous (lowest frequency) mode of the low-pass birdcage was connected to the first

receiver using a four-port (00, 900, 1800, 2700) drive with conventional capacitive

coupling. The Oo, 90o, 180o, and 270o legs were combined with a conventional 90o

hybrid coupler driving two rungs 90o apart, in conjunction with two A/2 RG-58 coax-

ial cables connecting opposite rungs of the driving legs, as shown in Fig. A1-1B. This

4-port drive is necessary to ensure that only the uniform mode is coupled into the

first receiver. The next highest mode of the birdcage (a gradient mode) shows a high

sensitivity at the periphery of the coil and a decreasing sensitivity profile near the

center of the birdcage. There is no B1 field at the center of the coil. In addition

to the linear change in B1 magnitude across the diameter, opposite sides of the coil

have a B1 field phase difference of 180o. Since the 2nd (gradient) mode of the con-

ventional low-pass birdcage resonates at a higher frequency than the uniform mode

it is necessary to selectively perturb the frequency of this mode to make it resonant

at the Larmor frequency. For the coil geometry used, the gradient mode resonated at

a frequency 11.5MHz above the uniform mode. In this work, we tuned the gradient

mode to the Larmor frequency using a resonant anti-symmetric coupling structure

around the coil, whose symmetry allows coupling only to the gradient mode [5]. This

anti-symmetric coupling structure has a zigzag anti-Helmhotz configuration shown in

Fig. Al-iC. Although not resonant at the Larmor frequency, adjusting the resonant

frequency of the anti-symmetric coupling structure allows it to be used to pull the

gradient mode of the birdcage to a lower frequency. Its anti-symmetric symmetry

does not allow it to perturb the resonance frequency of the homogeneous mode. The
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signal coupled out of the anti-symmetric structure via capacitive coupling was con-

nected to the second receiver. The configuration of the dual-mode birdcage volume

coil is illustrated in Figure Al-i. Active pin diode traps were placed on every other

rung to actively detune the birdcage structure during RF transmission using the body

coil. An active RF trap was also mounted on the gradient mode anti-symmetric cou-

pling structure to avoid the coupling between body coil and this structure during RF

transmission. Additionally, four passive RF cable traps were placed where the coaxial

cables connected to the coil to block common-mode currents on the cables.

The birdcage coil was tested on the bench using a network analyzer (Hewlett-

Packard model 4395A, Palo Alto, CA). S1 1 parameters were measured for both the

homogeneous mode and gradient mode separately to ensure sufficient tuning and

matching. Coil tuning and identification of the modes was also performed using S12

measures and appropriate shielded inductive probes. Isolation between the homo-

geneous and gradient modes was measured with an S12 measure between the two

modes. To test the coil performance and noise amplification during SENSE acquisi-

tion, phantom images were acquired using a gradient echo sequence (TR/TE/flip =

100ms/5.4ms/90o, FOV = 170 mm x 170 mm; slice thickness = 5mm; Image matrix

= 256 x 256). In addition to the full phase-encoded images (100% phase encoding

(PE), 256 PE lines), we acquired aliased images of 75% (192 PE lines), 62.5% (160

PE lines) and 50% (128 PE lines) of full 256 phase encoding steps. Unfolding of the

images to full FOV were reconstructed by textitin vivo sensitivity reconstruction [23].

Specifically, this if formulated by the following linear equation:

y = A (A. 1)

y is the under sampled data from the array coil, i denotes the unknown spin

density, and A is the encoding matrix representing the undersampling [29]. Noise

amplification from parallel MRI was estimated by the g-factor [22]:

g = /[(AHTA)-1 H]p(AH1IJA)p (A.2)

212



Figure A-1: (A) The geometry of the dual-mode degenerate birdcage. B) The coupling
circuit for the coil. C) Detail of the anti-symmetric coupling structure to pull the
frequency of the gradient mode to the Larmor frequency and to selectively couple to
the gradient mode.
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where A is the encoding matrix; T is the noise covariance matrix; and H denotes

Hermitian operation. The noise covariance matrix was assumed to be diagonal (noise

uncorrelated between the receivers). Noise levels were estimated from the signal

variance in the airspace outside the head in raw complex images. The SNR of each

mode was measured by region of interest measurement from the magnitude image

produced by each receiver. The spatial profile of the reception field of each mode was

visualized by plotting a line through the center of the phantom.

In vivo anatomical images were also collected from a healthy subject using the

same 1.5T scanner using slab-excitation 3D FLASH sequence after the approval by

the Institutional Review Board and informed consent. The imaging parameters for

anatomical images were TR/TE/flip = 20ms/4ms/27o, FOV = 200 mm * 200 mm *

144 mm; slice thickness = 3.0 mm; 48 partitions; Image matrix = 256 (x)* 256 (y) *

48 (z). In addition to the full phase-encoded images (100% phase encoding (PE), 256

PE lines), we acquired aliased images of 75% (192 PE lines), 62.5% (160 PE lines)

and 50% (128 PE lines) of full 256 phase encoding steps. To assess the uniformity

in the reconstructed images, we computed the standard deviation as a percent of the

mean value within the white matter region defined by manual segmentation.

A.3 RESULTS

Prior to connecting the zig-zag structure to collapse the gradient mode and the ho-

mogenous mode, the splitting of the two modes was found to be 11.5 MHz. By

starting with the tuning of the zig-zag structure far below resonance and adjusting

its capacitance, the gradient mode can be steadily adjusted down in frequency until

it superimposes on the uniform mode. The S12 parameter was measured between the

gradient mode and the combined quadrature homogeneous modes of the coil. The

isolation on the bench without loading was 30 dB, which decreased to 23 dB when

loaded with a spherical saline phantom of 25 cm diameter. Figure A1-2 shows the in-

dividual phantom images from the homogenous mode and gradient mode as detected

by the two independent receivers. Qualitatively, the phantom magnitude image of
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Figure A-2: Phantom images from homogenous mode (right) and gradient mode
(left). SNR plots from the cross section depicted by the blue dashed line.

the homogeneous mode gives a relatively constant reception across the FOV. The

gradient mode, however, shows the predicated sensitivity field pattern; almost null

reception sensitivity at the center of the coil and high sensitivity near the periphery

of the coil.

The phantom SNR of the homogenous mode of the quadrature-driven birdcage

was found to be 68 with standard deviation of 3 across the FOV. The gradient mode

produced an maximum SNR of 84 at the edges of the phantom and a minimum SNR

of 0.2 near the center. The lower panel of Figure A1-2 shows the SNR plotted for each

mode for the central line of pixels in a transverse slice through the phantom. For this

line, the homogenous mode has maximal SNR of 76 and minimal SNR of 62 (average

71, standard deviation 3), while gradient mode has maximal SNR of 82 and minimal

SNR of 10 (average 44, standard deviation 22). The noise amplification in the SENSE

acquisition due to the geometrical arrangement of the array coil was assessed using
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SENSE acceleration Median Average Std. Dev. Max Min

1.33(75%) 1.00 1.21 0.87 40.32 1.00

1.60 (62.5%) 1.09 1.36 1.53 160.51 1.00

2.00 (50%) 1.29 1.55 1.46 87.68 1.00

Table A.1: The g-factors of the accelerated SENSE acquisitions at 1.33 (75% of full
PE), 1.60 (62.5% of full PE), and 2.0 (50% of full PE). In the table, acceleration
is the reciprocal of the ratio between the number of phase encoding line in SENSE
acquisition and in full-FOV acquisition

Eq. A2.2. The measured g-factors are listed in Table A1-1. As expected, the median

and average g-factors increase when the acceleration factor increases. Figure A1-3

shows the g-factor maps for 3 accelerated acquisitions in Table Al-i.

Figure A1-4 shows an axial slice from a normal volunteer for the full FOV acqui-

sition and SENSE reconstruction using 1.33 fold acceleration (PE=75%) and 2.0 fold

acceleration (PE=50%). The top panel shows the two anatomical images from the

homogeneous and gradient channel separately. The center of the brain had signifi-

cant reduced signal in the gradient mode image. The standard deviation across white

matter in the brain slice was 19.2% of the mean for the homogeneous mode in the full

FOV reference image. The standard deviations of the white matter pixel intensity in

the 1.33-fold and 2.0-fold SENSE reconstructions were found to be 20.6% and 21.0%

of the mean.

A.4 DISCUSSIONS

In this study, the uniform and first gradient modes of a birdcage coil are simultane-

ously detected to enable SENSE acceleration with a traditional birdcage structure.

The homogenous mode, which gives uniform FOV coverage, and the gradient mode

with its spatially varying B1 field provide independent views, which can be used for

the SENSE reconstruction. Since the maximum acceleration factor is determined by
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Figure A-4: In vivo brain magnitude images from the quadrature homogeneous mode
(A) and the gradient mode (B) in full-FOV reference scan. The reconstructed im-
age from 1.3 and 2.0 fold accelerated SENSE acquisition is shown in (C) and (D)
respectively.

218



the number of independent receivers (usually the number of elements in the array),

the dual mode birdcage coil is limited to 2-fold SENSE /SMASH acceleration. For

an n rung birdcage there exist n/2 +1 modes, which could in principle be detected

and utilized for increased SENSE accelerations. The higher order modes, however,

tend to be similar to the gradient mode in magnitude, but their more complicated

spatial distributions of B1 phase might be useful for SENSE reconstruction. Like

the structure demonstrated here to selectively couple into the first gradient mode,

dedicated coupling structures that exploit the phase relationship of the higher modes

might prove workable.

The aliased air space region in the calculated g-factor maps was found to have a

significantly higher G-factor than other areas within the image. This is typical for

SENSE reconstruction and results from the ill conditioned matrix inversion when a

low signal air-space region is aliased with the brain. The areas with increased g-factor

could also be further improved by conditioning the inversion process [23] to decrease

the noise amplification in SENSE.

Most coils developed for brain imaging with SENSE reconstruction have utilized

traditional overlapped surface coil arrays or gapped surface coil elements. For exam-

ple, an optimized 8-channel gapped phase array for brain SENSE [8] showed good

sensitivity and better g-factor performance than the birdcage demonstrated here, but

the uneven spatial SNR distribution may be problematic for clinical applications. The

inhomogeneous surface coil image intensity profile may be corrected during or after

the SENSE reconstruction [3, 11, 19]. However, the SNR variations across the head

are not compensated using this approach. In this work we demonstrate an approach

for clinical imaging which allows modest SENSE acceleration factors while preserving

the uniform detection efficiency required by many clinical imaging applications.
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Appendix B

A wavelet based approximation of

surface coil sensitivity profiles for

correction of image intensity

inhomogeneity and parallel

imaging reconstruction

We evaluate a wavelet-based algorithm to estimate the coil sensitivity modulation

from surface coils. This information is used to improve the image homogeneity of

magnetic resonance imaging when a surface coil is used for reception, and to in-

crease image encoding speed by reconstructing images from under-sampled (aliased)

acquisitions using parallel MRI methods for higher spatiotemporal image resolutions.

The proposed algorithm estimates the spatial sensitivity profile of surface coils from

the original anatomical images directly without using the body coil for additional

reference scans or using coil position markers for electromagnetic model-based calcu-

lations. No prior knowledge about the anatomy is required for the application of the

algorithm. The estimation of the coil sensitivity profile based on the wavelet trans-

form of the original image data was found to provide a robust method for removing
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the slowly varying spatial sensitivity pattern of the surface coil image and recover-

ing full FOV images from 2 fold acceleration in 8 channel parallel MRI. The results

using bi-orthogonal Daubechies 97 wavelets and other members in this family were

evaluated for Ti-weighted and T2-weighted brain imaging.

B.1 INTRODUCTION

Increasing the sensitivity of cortical functional MRI is desirable for either reducing

the amount of inter-subject averaging needed to detect subtle cortical activations

or for increasing the spatial resolution of the mapping technique. The decrease in

detected MR signal at higher resolution is confounded by an accompanying increase

in the susceptibility induced spatial distortions in single shot echo planar imaging

(EPI) as a percentage of the voxel dimension due to the lengthened readout. Both of

these problems can be partially addressed with the use of phased array surface coil

detectors which offer the potential to both increase the MR detection sensitivity in

the cortex and reduce susceptibility induced image distortions by reducing the length

of the EPI readout using the SENSE method [1].

A volume birdcage head coil is conventionally used to achieve homogeneous spatial

reception at loci distributed over the whole brain. However, surface coils and surface

coil arrays offer the potential for an increase in sensitivity of up to 5 fold in the cortex

compared to volume coils at the expense of signal spatial homogeneity [2, 3]. While

the phased array technique improves the homogeneity of the images in the plane of

the array compared to a single surface coil, the image intensity is still significantly

brighter near the coils than deeper in the brain. Thus, the surface coil detector

has an inherently inhomogeneous reception profile that leads to a variation in image

brightness across the head. This significantly degrades the utility of the images for

evaluation of anatomy in the cortex and can also impair automated segmentation

of brain structures. For example, in our Ti-weighed array images, the signal in the

cortex near the coils is approximately 3 fold higher than in the deep gray structures

even though these gray structures have similar intensities in a uniform head coil
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acquisition. This difference is considerably greater than the contrast between adjacent

gray and white matter whose intensities differ only by 22% in a high contrast T1-

weighted image.

The surface coil intensity variation is, however, a slowly varying function of posi-

tion and is amenable to theoretical prediction or measurement. Once the signal inten-

sity changes due to the coil's reception efficiency are determined, the resultant image

intensity variations can be greatly reduced by dividing the original images by the coil

sensitivity map. Several different methods have been described for determining the

surface coil intensity profile [4, 5, 6, 2, 7, 8, 9, 3, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19].

These methods use either a theoretically generated model [2, 9] of the coil or the

information in the image itself [4, 6, 3] to generate the expected coil sensitivity map.

In the first case, knowledge of the location and orientation of each surface coil is re-

quired in addition to a B1 field map generated from the coil geometry. In the second

case, the image variations due to coil fall-off must be separated from those due to

anatomical variations. The coil intensity profile can be approximated by a low-pass

filtered version of the original image since the coil intensity profile is generally a slowly

varying function of position while the anatomic information occurs at higher spatial

frequencies. This approach has been demonstrated in a number of different forms

[3, 10, 18, 19]. The low-pass filter based approximation of the surface coil profile

requires a priori knowledge of the anatomy and coil fall-off in order to determine the

appropriate cut-off spatial frequency which separates the low frequency variations due

to coil fall-off from the higher spatial frequency variations arising from the anatomy.

The largest anatomical artifact incurred when estimating the coil profile based on

a low pass filtered version of the original image originates from the air-tissue interface

under the coil. This is typically the highest contrast area of the image due to its close

proximity to the coil and the complete lack of signal from the air region. Furthermore,

the air region is often uniform on the length scale of the low pass filter resulting in

an underestimate of the coil map near the skin-air boundary. Similarly, the low pass

filtered version of the image generates a poor approximation of the coil sensitivity map

near any other large low signal regions such as the lateral ventricles in T1 weighted
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images. When this underestimated coil profile map is used to normalize the original

image, the result is a residual brightness near the interface.

The approximation of the coil intensity profile can be improved by using a body

coil image to determine anatomical content in the original image at the expense of

acquisition time [15, 16]. If a body coil image is used, it must have high enough

spatial resolution and image contrast to allow the anatomical features of the surface

coil image to be extracted. The large anatomical features such as the edge of the

head can also be explicitly removed from the image prior to the low pass filtering

[3]. This requires some a priori knowledge about the location of the high contrast

features thus limiting the method's robustness to unexpected features such as large

cystic or contrast enhancing regions.

Prior to removing the spatial variations in the detected intensity of the individual

array elements, it is beneficial to characterize their spatial information and use this

information to decrease the acquisition time of high speed imaging techniques such as

EPI. Recent methods which utilize the parallel nature of phased array acquisition to

decrease the number of gradient encoding steps needed in the phase encode direction

include k-space domain methods such as SMASH [20, 21] and image domain methods

such as SENSE [22]. In principle these techniques allow the number of phase encode

steps to be reduced by a factor of up to the number of elements in the phased array.

The reduced number of phase encode steps (under-sampling in k-space) results in a

"folded" or aliased image. The information from the coil sensitivity maps is then

used to unfold the aliased images [20, 22, 23]. The shorter image encoding period

is beneficial for improving the spatiotemporal resolution of fMRI or reducing the

susceptibility induced distortion in EPI. Thus in brain MRI, improvements in the

estimation of surface coil sensitivity profiles can be exploited for both homogeneous

visualization of the image and decreased encoding times.

Here we propose a method to estimate the surface coil sensitivity profiles using

only post-hoc processing of the anatomical surface coil image. This coil sensitivity

estimation can be utilized to correct image intensity variations, and to reconstruct

full FOV images in parallel MRI for high spatiotemporal resolution brain images. The
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method mitigates the effect of edges in the estimation of the coil sensitivity map by

using an iterative maximum value projection method to improve the approximation

of the coil sensitivity profile near the edge of the head. The slowly varying intensity

changes, which comprise the estimated coil sensitivity map, are determined from a

filter bank implementation. This method allows the comparison of multiple levels

of spatial filtering. The optimum level of filtering is determined by an automated

analysis of the coil profile smoothness and the spatial variance in the corrected images.

B.2 METHOD

The images from a surface coil can be viewed as the product of the true anatomical

image and a function representing the spatial modulation imposed on the image by the

surface coil reception profile. Thus, the true homogeneous image, C[A], is modulated

by the coil sensitivity, S[n-], to generate the observed inhomogeneous image, Y[n'],

where n' is the position vector in 3D space. Thus our goal is to get an estimate,

S[n], of the true coil sensitivity profile, S[ii]. The intensity-corrected reconstruction

image, C[A], which represents an approximation of the true anatomical image is then

expressed in terms of the ratio of the original data, Y[i] and the estimated coil

sensitivity profile.

Y [i]O[] = ,i] EG R3 (B. 1)
S[n]

If aliased images are acquired in order to reduce encoding time, an unfolded image

is generated by inverting the folding process which is represented by a kspace under-

sampling matrix. Since kspace is under sampled, the additional spatial information

available from the multiple receive channels is needed to complete the matrix inver-

sion. We have applied the standard SENSE reconstruction method and generated a

g-factor map depicting the noise added in the unfolding process [22]. The surface coil

intensity profile S[n] from the measured image is used as an input for the SENSE

unfolding method.
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B.2.1 Multi-resolution analysis

We estimate the coil intensity profile using a hierarchical filter bank structure to ef-

ficiently implement a Multi-Resolution Analysis (MRA) [Daubechies I, 1992; Strang

G and Nguyen T, 1996; Vaidyanathan PP, 1993] of the original inhomogeneous MRI.

In general, MRA decomposes the image into a series of orthogonal "coarse approxi-

mations" sub-space and "fine details" sub-space at different spatial resolutions. After

breaking down the image into sub-components of different resolution, the original im-

age can be regenerated from the direct sum of the sub-images if desired [Daubechies I,

1992; Strang G and Nguyen T, 1996]. When applied to discrete images, this method

is referred to as the discrete-time wavelet transform, DWT. [Vaidyanathan PP, 1993]

In estimating coil sensitivity profiles with the iterative analysis low-pass filter

bank, the cut-off spatial frequencies are progressively lowered until very little spatial

information is left in the image. Since the coil sensitivity map consists of the slowly

varying sensitivity profile of the coil and the details subspace likely contains mainly

anatomical information, we estimate S[il] from the low-pass filter data only. This

estimate of the coil sensitivity map is computed at each level of the MRA.

In implementation, we use the bi-orthogonal maximally-flat Daubechies' wavelet

and scaling functions [24, 25]. The property of symmetric wavelet and scaling func-

tions of this implementation avoids any pixel shift in the filtered data. Also, the

Daubachies' bi-orthogonal wavelet family allows the choice of the number of vanish-

ing moments in the filter. This determines the number of zeroes of the discrete digital

filters' spectrum; more zeroes provide a higher approximation accuracy. Specifically,

we choose Daub97 bi-othorgonal filter banks in our studies. In this notation, the first

digit represents the length of analysis filter, which is also the support of the analy-

sis scaling/wavelet function. The second digit describes the length of synthesis filter

bank. Daub97 filter banks have 3 zeros at ir for the low-pass filter in synthesis filter

bank. Thus their approximation power for signal reconstruction is equal to cubic

polynomials at each spatial scale.
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B.2.2 Application to coil sensitivity profile estimation

While a given level of the MRA of the original surface coil image could be used alone

to estimate the coil sensitivity profile, this leads to an underestimation of the coil

sensitivity map in the vicinity of high contrast edges in a similar manner to other

low pass filter based estimates. These high contrast features may arise from anatomy

inside the brain (e.g. ventricles), or from the air-skin interface. To address this

problem, we use an iterative process to improve the estimation near the high contrast

edge. This method is applied to each level of the multiple resolution analysis. The

generation of the coil sensitivity map at a given MRA level is formed by taking

the maximum value projection (MVP) of the approximation subspace (low spatial

frequency information) generated by the MRA with the original image. The maximum

value projection of two input images is an image whose pixel values are the pixel by

pixel maximum of the two input images. Thus the intensity of a given pixel in the

maximum value projection image is defined to be that of the greater of the two

corresponding pixels in the two input images. In order to form the coil sensitivity

estimate from a given level of the MRA, the MRA and maximum value projection

are repeated iteratively. In this process the MVP of the output of the MRA and the

original image is re-analyzed with the MRA method at a given level. The result of

the MRA is then re-compared with the original image using MVP and the output is

re-analyzed with MRA at the same level. Thus the input for the (i + 1)'h application

of the discrete wavelet transform is generated from a maximum value projection of

the current result (jth iteration) and the original image. The process is outlined in

Fig. A2-1. We stop the iteration when the total power in the difference image formed

from two consecutive iterations is less than 1% of the power in the current iteration.

The iterative MVP process reduces the underestimation of the signal at a high

contrast interface (such as the brain-air boundary). An example using 1-dimensional

data is illustrated in Fig. A2-2. The projection helps to preserve the original high

pixel intensity on the bright side of an edge while increasing the pixel intensity on

the darker side of a high contrast edge. The process has the effect of filling in the low
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Figure B-i: Schematic diagram of the iterative estimation of coil sensitivity profile at
a specific level 1 by Discrete-time Wavelet Transform (DWT) based on the Maximum
Value Projection (MVP) of the previous estimate and the original inhomogeneous
input raw image. LPO denotes the cascade of a low-pass filter and a 2-fold down-
sampler. LP1 denotes the cascade of 2-fold up-sampler and synthesis low-pass filter.

signal intensity regions in a smooth fashion while preserving the local maximum on

the tissue side of the interface. Thus, for the edge of the head, the accuracy of the

coil map is improved on both sides of the interface.

Once the iterative maximum value projection process converges for a given level

of MRA, the process is repeated at the next level. Thus for an image matrix of 2", n

levels of the coil sensitivity profile estimates are generated, each at a different spatial

resolution. Each level of estimation employs both the DWT and maximum value

projection. Any of these levels of MRA estimation could, in principal, be used as

$[ii] to either generate the corrected version of the original image, or to reconstruct

full-FOV images in parallel MRI.

B.2.3 Automatic selection of optimal reconstruction level

For an image matrix of 2", the wavelet-based method provides n distinct coil sensitiv-

ity profiles at different levels of spatial smoothing. For each level, an inhomogeneity-

corrected image can be obtained by pixel-by-pixel quotient of the original image over

the estimated profile pattern. Automatic selection of the optimal reconstruction level

can be achieved by defining a metric of how well the algorithm has done at removing
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Figure B-2: Simulation of one-dimensional data (thin solid line) with superimposed
slowly varying trend (thick solid line) and signal from anatomical contrast. The sharp
edge is a simulation of the abrupt signal change at an anatomical boundary such as the
air-scalp interface. The first estimation (dotted line) without maximum projection
underestimates the sensitivity -at the boundary. Iterative maximum projection of the
previous estimate and the original data (dashed line) provides better approximation
of the global trend in the data, especially in the brain region near the boundary.

the variance in the image due to the coil profile. This metric cannot be a simple mea-

sure of image variance since image variance is minimized when both the coil profile

and the fine spatial scale anatomic variations are removed from the image. Qualita-

tively, the optimal reconstruction would contain a high contrast between parenchymal

tissue types and low pixel value variance within individual structures. Additionally,

the estimated coil sensitivity profile is expected to be spatially smooth due to the

electromagnetic properties and the topologies of the coil. We defined an "inhomo-

geneity index", I,, as a metric of how well the algorithm removes the coil profile at

each level 1. The MRA level which generates a corrected image with the minimum

inhomogeneity index is chosen as the best approximation of the coil profile. The index

is a product which attempts to minimize variance V within a loosely defined tissue

type, and maximize the smoothness 64 of the coil map and contrast C, between tissue

types

I, = - x '1 (B.2)
C,

Here V denotes the pixels intensity variability within a tissue type in the recon-
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structed anatomical image at spatial level 1. And C, denotes the contrast between

tissue types in the reconstructed anatomical image. 01 is an estimate of the spatial

smoothness of the estimated coil sensitivity profile. Thus the inhomogeneity index

is computed from both the corrected image and estimated coil profile generated at

each spatial level. We use the Gaussian Mixture Model (GMM) [26, 27] to categorize

the intensity histogram of the reconstructed images. In GMM, the pixel intensity

histogram of an image is assumed to follow multiple Gaussian distributions, each of

which is characterized by the unknown mean pk, variance Ek and probability pA. The

probability of a pixel with value ( is written:

p(s) = Pk- exp( ) (B.3)
k=1 2.?r j kj

GMM parameters p, pk, and Ek can be calculated using Expectation-Maximization

(EM) algorithm [4, 26]. The variance in the corrected image, V, is calculated as the

sum of all variances (Ek) of the Gaussian models, and the contrast of the corrected

image, C1, is the difference between the Gaussian distributions with the lowest and

the highest mean value as a metric of image contrast. We evaluated the use of 2 to

6 Gaussians in our model. Using 3 Gaussian distributions in Ti-weighted images,

the histogram of the corrected anatomical image at the optimal level can be ap-

proximately partitioned into gray matter, white matter and scalp lipids. The spatial

smoothness of the coil 01 is calculated by convoluting a 3-pixel by 3-pixel discrete

Laplacian operator over the estimated coil sensitivity profile and summing the pixel

values of the resulting map [28].

B.2.4 Image acquisition for image intensity inhomogeneity

removal

Images were acquired using a 3T scanner (Siemens Medical Solutions, Iseln NJ) with

a home built two or four-element bilateral surface coil array. The array elements con-

sisted of 9 cm diameter surface coils. The imaging pulse sequence was an Ti-weighted

MPRAGE 3D volume exam (TR/TE/flip = 2530ms/3.49ms/7o), partition thickness
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= 1.33mm, matrix = 256 x 256, 128 partitions, Field of View = 21cm x 21 cm or a

T2-weighted Turbo Spin Echo (TSE) sequence (TR/TE/flip = 6000ms/97ms/160o,

slice thickness = 3mm, matrix = 512 x 448, Field of View = 22cm x 19.2 cm). The

3D images were cropped to 256*204 matrix size to minimize the background airspace

for visualization purpose before inhomogeneity correction. The array elements were

placed over the subject's temporal lobes. To compare the corrected surface coil image

with a uniform coil, the nearest anatomical slice prescription and imaging parameters

were applied to a birdcage head coil. The utility of the image correction algorithm

for rendering surface coil images suitable for automated segmentation algorithms was

tested by using the FreeSurfer [Fischl B, et al., 1999] (http://surfer.mgh.harvard.edu)

segmentation package. Both the original and intensity corrected 3D T1 weighted

isotropic 1mm resolution MPRAGE images were processed.

B.2.5 Parallel MRI acquisition and reconstruction

For parallel MRI acquisition and reconstruction, a home-built 8-channel 3T head array

consisting of a linear array of 9cm diameter circular surface coils wrapped around

the head was used to test the algorithm for SENSE parallel image reconstruction.

Images were under-sampled in the phase-encode direction by 50% (skipping every

other phase-encoding line) to achieve 2-fold acceleration. A TI weighted FLASH

sequence (TR/ TE = 450ms/12ms, slice thickness = 3mm, matrix = 256 x 256, Field

of View = 19cm x 19cm) was to obtain axial slices through the brain. Given the

estimated coil sensitivity maps from each coil acquired with a full FOV reference

image, the aliased images were unfolded using a standard SENSE approach [29].

Noise amplification from the geometrical arrangement of the array coil elements is

calculated by the G-factor map.

B.3 RESULTS

The original 256x204x128 uncorrected 3D T1 images were corrected to give 6 distinct

coil profile estimations at 6 spatial scales. In the uncorrected image (Fig. A2-3),
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Figure B-3: The raw image acquired from bilateral phased array. White bar shows
the location of the elements of the array.

white matter signal intensity is 280% higher near the coils than deeper in the brain.

This wide variation in image intensity arises primarily from the coil reception profile.

Adjacent gray and white matter regions differ by only 22%. Thus, the coil's reception

profile makes most of the anatomy difficult to visualize with a single window and level

setting.

Figure A2-4 shows the estimated sensitivity profiles derived from Daubechies-97

(Daub97) filter bank and maximum value projection at each level (1 to 6). The cor-

rected images obtained from each level are shown in Fig. A2-5. Reconstruction using

level 1, 2 or 3 fails to preserve the local brain structures because the estimated profile

includes anatomical features which are then partially removed during the division

step (Eq. A2.1). Level 6 coil profile is too spatially smoothed to effectively remove

the coil intensity effects. Each level of corrected image required an average of 4.73

seconds per level of computation for a 256x204 image slice using a 450MHz Intel
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Figure B-4: Estimated sensitivity profiles and inhomogeneity indices for each of the
6 levels of wavelet decomposition and reconstruction. Level 5 (surrounded by the
white dashed line box) was found to provide the optimal estimation based on the
inhomogeneity index.

PentiumR III processor (Santa Clara, CA).

The optimum level used to estimate the coil sensitivity profile was determined

by the quantitative inhomogeneity index in Eq. A2-2. The indexes computed with

a 3 Gaussian GMM are shown in Fig. A2-4. Level 5 provided the minimum in-

homogeneity index of the 6 levels regardless of the whether 2,3,4,5 or 6 Gaussians

were used in the GMM. After correction, visualization of deep sub-cortical structures

is considerably improved. The visibility for gray and white matter as well as the

contrast between them is maintained for both cortex and deep gray structures at

the same window and level. The reconstructed image contained peak-to-peak value

white matter differences of 39% compared with differences of 280% in the original

image. When the Ti-weighted volumetric images were processed with the automated

segmentation algorithm, the image intensity normalization was found to be sufficient

to allow automated segmentation while the unprocessed surface coil images could not

be processed with this package.

The maximum value projection was found to significantly improve the coil profile

estimation near high contrast edges. Fig.A2-6 shows one-dimensional profile of the
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Figure B-5: Six levels of correction by Daub97 filter bank. Reconstruction at level 5

(surrounded by white dashed line box) provided the optimal reconstruction based on
a minimization of the inhomogeneity index.

original image through the third ventricle with the coil sensitivity profile estimates

with and without maximum intensity projection overlaid. The coil profile generated

from a non-iterative, low pass filter based approach is also overlaid. The low pass

filter consisted of a 26 mm (32 pixel by 32 pixel) moving-average low-pass kernel

filter. This level of spatial smoothing is roughly equivalent to that of the level 5

MRA. Omission of the MVP step resulted in a 50% underestimation of the image

data at the edge of the brain. Adding the MVP algorithm with a 1% convergence

criteria reduced this error to approximately 5%. Less than 5 iterations of the MVP

were required for convergence with a 1% criteria for each spatial level of the MRA.

The convergence times for a given level of the wavelet based method with and without

the MVP step were a maximum of 6.7 and 2.3 seconds respectively.

Figure A2-7 and A2-8 compares a standard birdcage head coil image with the

corrected surface coil image. The uncorrected phased array image temporal lobe

white matter SNR ranged from 351% to 466% higher than in the volume head coil

birdcage image. For midline structures such as the corpus collosum, the gain was

27%. Figure A2-9 shows application of the method to T2 weighted images.

Figure A2-10 shows the application of the DWT generated coil intensity profiles
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Figure B-6: A cross-section from the unprocessed image data at the location of the 3rd
ventricle (solid line) overlaid with the sensitivity profile estimate without maximum
intensity projection (MVP) (dotted line), and the sensitivity profile with MVP (thick
dashed line). Without iterative MVP, the coil sensitivity profile is under-estimated
at the brain-air boundary, as predicted in the simulation (shown in Fig. A2-2). MVP
alleviates the underestimation and is more precise at sharp contrast boundary. Also
overlaid is a coil intensity profile estimation using a moving-average (MA) low-pass
filter with a 32X32 pixel kernel (thin dashed line).
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Figure B-7: Comparison of corrected phased array image (left) and volume head
coil image (right). The advantage of phased array acquisition for higher SNR at
regions near to the array coil is observed. The contrast of the white and gray matter
is improved and maintained relatively constant compared to the original array coil
image (Fig. A2-3). The inhomogeneity reduction on the array coil image using DWT
and maximum value projection even improves the visibility of the deep brain areas
at comparable contrast to the head coil image.

Figure B-8: The detail of the temporal lobe from the corrected phased array surface
coil image (left) and the birdcage head coil image (right).
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Figure B-9: Application of the DWT estimation of coil sensitivity profile and MVP
to a T2-weighted image for inhomogeneity correction. The 2-channel array coil was
placed at bi-temporal lobe. The uncorrected image is shown at left. The corrected
image (right) shows more details at deep brain compared to the original one.

to the generation of coil sensitivity maps of the individual array coils for parallel

reconstruction applications. The coil maps are well matched to the high sensitivity

regions of the anatomical images. The reconstructed full-FOV image from a 2 fold

undersampled (aliased) image is shown in Figure A2-11. Note that the SENSE re-

constructed image is more noisy than the original full-FOV reference image, because

in SENSE only 50% of the original k-space data was acquired. This leads to at least

degradation of SNR. To further quantify the amplification of noise in SENSE, we

provided G-factor map in Figure A2-11. The average G-factor over the whole FOV

is 1.15 with standard deviation 0.0952. Maximal G-factor is 1.43, minimal G-factor

is 1.0, and the median of G-factor is 1.14.

B.4 DISCUSSIONS

Improving the sensitivity and encoding time constraints of structural and functional

brain imaging is essential for revealing the physiological processes in cognitive, sensory

and motor systems. Development of high field scanners and improved brain array coils

offer the potential to increase the resolution and sensitivity of non-invasive MR imag-

ing methods. Body coil or volume head (birdcage) coils provide highly homogeneous
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Figure B-10: The full-FOV reference images from an 8-channel array coil (top panel)
and their optimal sensitivity profile estimates (lower panel) using DWT and MVP.
The sensitivity profiles correlate well to the anatomical images from individual chan-
nels in the array as identified by the well-matched localized high sensitivity areas at
different angular angles in this domed head array coil.
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Figure B-11: Reconstructed full-FOV image from an 8-channel array coil using root-
mean-square of individual channels (left) and SENSE acquisition with acceleration
of 2.0 (right). Reduced-FOV images are acquired from skipping every other line in
k-space. Standard SENSE reconstruction was used to unfold the collapsed aliased
images from all 8 channels in the array for full-FOV reconstruction. The degraded
SNR in the SENSE acquisition is mainly due to subsampling of k-space data by half,
and therefore a degradation of SNR at least by sqrt2. G-factor map associated with
the reconstruction of SENSE image was shown to illustrate the noise amplification
on top of the SNR degradation resulting from the reduced k-space sampling. In the
optimal scenario G-factor would be an uniform matrix with value 1.
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MR images. However, the SNR of volume coils in cortical regions is lower than that

of surface coils. The image inhomogeneity from surface coils, however, compromises

its application in functional imaging because of the intrinsic wide variation of image

brightness arising from the coil sensitivity profile. In addition to making the images

hard to visualize, the wide dynamic range of the surface coil image confounds the use

of automated segmentation measurements of cortical parameters such as thickness

and curvature or the automated identification of deep gray structures. [Dale AM, Fis-

chl B, et al., 1999]. If the image inhomogeneity isslue is overcome, these applications

could potentially benefit from the improved resolution available from the 3 - 4 fold

increase in cortical sensitivity of the arrays compared to volume coils since the cortex

is relatively poorly resolved on standard (1 mm resolution) structural MRIs.

Array coils are also valuable for decreasing the magnetic field susceptibility dis-

tortion in functional imaging by allowing the reconstruction of echoplanar images

with reduced encoding times. The susceptibility induced distortion becomes espe-

cially problematic for high field (3T and above) studies since the image distortion

scales with field strength. The application of parallel imaging methods enables the

accelerated image acquisition when multiple receivers are available and therefore a

proportional reduction in susceptibility distortion. An estimate of the coil profile is a

prerequisite for most of these methods. We show that the wavelet based estimation

method can provide this estimate for the reconstruction of 2 fold accelerated SENSE

images.

One of the significant features of this method is the iterative maximum value

projection (MVP) at each level in multi-resolution analysis of the anatomical image.

This method was found to be fast, robust in convergence, and improve the estimate

of the coil map near the high contrast air-scalp interface. Without the MVP step, the

wavelet transform estimation of the coil profile underestimated the coil profile data

by 50% at the edge of the brain. Adding the MVP algorithm with a 1% convergence

criteria reduced this error to approximately 5%. While we demonstrate the MVP

method in conjunction with a multiresolution wavelet analysis to generate the low-

pass filtered image, the iterative MVP approach could be used with other low pass
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filter types in order to reduce the underestimation of the coil sensitivity profile near

sharp contrast boundaries.

To select the optimal level of the coil sensitivity profile estimation using MRA, we

propose a metric of the inhomogeneity index at each spatial level by using measures

from the estimated coil sensitivity profile and the inhomogeneity corrected anatomical

image. While other metrics might be possible, this method was found to provide

the level that subjective analysis of the images would have chosen. The automated

method worked for both 2D and 3D images of both T1 and T2 contrast and was

found to be insensitive to the number of Gaussians used in the model. While for a

certain range of image parameters it might be possible to choose the MRA level 5

based on prior knowledge of 256 matrix images and the coil used, the use of the more

general approach does not increase the processing time significantly.

The proposed methods were tested in this study on a 3T MRI scanner using 3

different configurations of phased array coils (2-channel, 4-channel and 8-channels) for

images of T1 and T2 weighted contrasts to test the robustness of the wavelet-based

approach across image contrast and coil geometries. Since the goal of surface coil

imaging is increased sensitivity and resolution, the study concentrated on 3T images.

We have also applied the method to 1.5T images (not shown here) with similar results.

In addition to the Daubechies 97 filter banks, which can approximate the in-

put image with precision of the 3rd order approximation at different spatial scales,

we also employed other shorter filters of the same filter family to test the different

performance. Potentially, shorter filters can save computational time. Using the T2-

weighted image in Figure A2-9, Figure A2-12 shows the coil sensitivity estimates and

corrected images obtained from Daubechies 53, 75, and 97 bi-orthogonal filter banks.

All the filter implementations improve the visualization of the image by showing both

cortical and deep brain structures such as the basal ganglia with a single window and

level parameter. In all cases level 5 gives the best coil sensitivity estimation. Al-

though the coil sensitivity estimates obtained from the three filter banks are similar

in many respects, there are differences. Because the Daubechies 53 synthesis filter

bank has support of 3 and 1 vanishing moment at , the approximation ability of

243



this filter bank is linear functions. Since the surface coil profile drops off faster than

linear, the Daub53 filter results in a poorer approximation and produces a highly

peaked shape in the estimated sensitivity map with a cross-like artifact. Daub75 and

Daub97 have 2 and 3 vanishing moments at in the synthesis filter bank. This enables

corresponding scaling functions to have better approximation to the smooth drop off

of the surface coil.

Fig. A2-12. Coil sensitivity map estimations (top panel) and reconstruction

(bottom panel) using Daub53 filter bank (upper panel), Daub75 filter bank (middle

panel) and, Daub 97 filter bank (lower panel)

The accuracy of coil sensitivity estimation has been estimated by analyzing in-

tensity deviations over structures that are known to be homogeneous, such as white

matter. An alternative approach is to compare to a theoretical estimation. While a

simple Biot-Savart type B1 field calculation works reasonably well for a single loop coil

[9], the geometry of the array is more complicated to even describe. This is especially

true of the semi-flexible arrays used in this work. A major confound is the coupling

between array elements. This is modulated by both coil geometry, coil loading on the

body, and electrical interactions with the preamplifiers. The coupling matrix of the

8-channel array has 28 parameters which depend on how the coil is flexed and how it

is placed on the head as well as geometry and preamplifier tuning. All of these factors

make it impractical to simply measure these couplings on the bench. In the absence

of direct measurement, a realistic model would have too many free parameters to be

useful for comparison. Additionally, at dielectric effects in the head are significant (on

the 30% level) requiring a full Maxwell equation simulation. While these have been

performed for idealized birdcage coils, we are not aware of simulations for surface coil

arrays.

Recently, the promising parallel MRI techniques [Pruessmann KP, et al., 1999;

Sodickson DK and Manning WJ, 1997; Sodickson DK and McKenzie CA, 2001] en-

able accelerated image acquisition when multiple receivers are available. The recon-

struction of full-FOV image depends on the estimation of coil sensitivity modulation.

Using our method, the reconstruction of reduced-FOV images from multiple receivers
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is feasible without additional reference scans. Coupling with the regularization tech-

nique, we demonstrated initial results of robust parallel MRI reconstruction for brain

imaging when our sensitivity profile estimation technique is utilized [30]. The com-

munity of brain research can benefit from the proposed algorithm in this study for

either the accelerated image acquisition, or the enhanced spatial resolution due to

parallel MRI acquisition. Further advantages of the application of parallel MRI in

brain imaging include the reduced susceptibility artifacts in Echo planar imaging ac-

quisition because of the shorter read-out time, and the alleviated acoustic noise in

fMRI experiment because of the reduced gradient switching required for the k-space

trajectory transverse. These are especially important in high field MRI for brain

imaging. When the field strength is stronger than 3.0 Tesla, the susceptibility arti-

facts and unbearable acoustic noise (potentially larger than 130 dB) are so prominent

as to challenge the conventional acquisitions. Parallel MRI with the reduced phase-

encoding provides one solution to this difficulty. And our automatic coil sensitivity

profile estimation method enables the reconstructions of parallel MRI in a convenient

and computationally efficient way.

The proposed methods were tested in this study in 3.0 T MRI scanner using 3

different configurations of phased array coils (2-channel, 4-channel and 8-channels)

for images of TI and T2 weighted contrasts. Therefore this wavelet-based approach

is robust across the spatial position, sizes and geometries. Concerning the validity of

this approach at other field strength, the method is also working for 1.5 T scanner

to correct image inhomogeneity when bi-temporal lobe 4-channel surface coils are

employed to acquire images in our preliminary studies (not shown here). As the field

strength going up to more than 3.0T, it is expected that the acquired images are

more inhomogeneous due to an almost 2-fold increase in the B1 field inhomogeneity

[31]. As stated above, parallel imaging may partially address this technical difficulty.

Nevertheless, both pos-hoc imaging processing or parallel imaging rely heavily on the

estimation of the coil sensitivity profile estimation.

In this study, we proposed a dyadic wavelet decomposition of original surface coil

image to estimate the coil sensitivity map. This multi-stage approach is equivalent
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to an iterative low-pass filtering, with the cut-off frequency at the current spatial

resolution equal to half of the highest frequency in the previous spatial resolution.

This division in frequency might be further improved by wavelet packet algorithm

[Strang G and Nguyen T, 1996], which divides the input image into both high-pass and

low-pass bands at all spatial resolutions. The wavelet packet approach allows for finer

division of cut-off frequency at the cost of increased computation time. However, this

can be combined with textita priori knowledge about the feasible resolution informed

by dyadic DWT to locate the possible "optimal" spatial resolution. The subsequent

finer division of spatial resolution might provide even more precise coil sensitivity

profile estimation. And this will be the research topic in the near future.

In this study, we demonstrate an automatic method to estimate the coil sensitivity

profile and use it to correct the inhomogeneity of surface coil MRI using wavelet trans-

forms as well as for parallel imaging reconstruction using SENSE. The Daubechies

maximally flat filter bank was found to have good computational efficiency and ap-

proximation of coil sensitivity map. The optimum level could be automatically deter-

mined by the defined inhomogeneity index from the corrected image and estimated

coil profile. Thus the method uses neither presumed digital filter specifications or the

knowledge of the electromagnetic properties and the location of the RF coil. Recon-

structed images show both cortical and sub-cortical structures farther away from the

surface coil with relatively constant contrast. The corrected surface coil images have

both higher SNR than volume coil images and homogeneous contrast and brightness.

Surface coil images corrected in this way were found to be usable with automated

image segmentation software. The coil sensitivity profile estimation was applied to

the accelerated parallel MRI of brain images using an 8-channel array coil to reduce

the image encoding time by a factor of 2, allowing for either reduction of susceptibility

distortions or increased spatial resolution at given imaging time.
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Appendix C

Multivariate linear modeling of

brain images

C.1 Multivariate linear modeling

Assuming the observed spatiotemporal functional imaging data consists of uncorre-

lated spatiotemporal models and it can be formulated as following:

D = MANT + E (C.1)

where M and NT are unitary matrices of dimension m x p and p x n respecitively.

They represent p uncorrelated models in time and space, and p < m, n. A is a p x p

diagonal matrix describing the significance of each spatiotemporal model, which con-

sists of one column of M and one row of NT. The residuals are modeled in E. In the

linear modeling framework, we can further decompose the temporal characterization

of models, M, as linear combinations of basis function matrix, B:

M=BC (C.2)

Here columns of B are basis functions to consist each of the temporal models in

individual column of M. And C is the matrix for basis coefficients. Without loss of

generality, we assume the basis functions are orthogonal.
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BTB = I (C.3)

Here I denotes an identity matrix.

To achieve orthogonal basis functions, we apply the Singular Value Decomposition

(SVD) to an arbitrary set of basis function. The left singular vectors satisfy the

orthogonal criterion.

SVD
Barbitrary = UBSBVB

B = UB (C-4)

This basis-whitening process simplifies the basis function selection in most of the

experiments. Therefore, we can utilize versatile basis functions to construct spa-

tiotemporal models. The relationship between the whitened and the original bases is

a linear transformation:

Barbtra-y= BO, whereO = SB T (C.5)

Replacing (A3.2), (A3.4) and (A3.5) into (A3.1), we have

D = BCANT + E (C.6)

And the temporal characterization of the temporal model is written explicitly

using either orthonormal bases of an arbitrary basis family.

M = BC

= BarbitraryO-1 C

= BarbitraryVBSB1 C (C.7)

To reveal uncorrelated spatiotemporal models, the residual E is removed by pro-
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jecting the data matrix D into the span of basis functions:

D, = B(BT B) -BT D

= BBT(MANT)

= BCANT (C.8)

Here we use PLS technique to identify coefficients of the bases. An effect space,

E, is constructed by projecting time series of voxels in the data matrix on to these

bases. The orthonormality of the bases ensures no biases toward any encoded effect.

E = B TD,

= BT B(BT B)-lBT D

= CANT (C.9)

Assuming that spatiotemporal models are uncorrelated, we can derive that the

coefficients of the basis for temporal models are also uncorrelated:

I= MTM

SCT BT BC

=CTC (C.10)

Since both model descriptions in both spatial and temporal domains are orthog-

onal, we can use SVD to decompose the effect space to reveal the basis function

coefficients and their spatial loading. Singular Value Decomposition (SVD), which

is mathematically equivalent PCA, is applied on the effect space for least-square or-

thogonal subspaces.
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E sVD CANT

CTC = I

NNT = I (C.11)

Each column of the coefficient matrix C along with the whitened basis matrix B

constitutes the temporal characterization of a spatiotemporal model. And each row

of the matrix NT quantifies the spatial loading of the same model. Stemming from

the terminology of Partial Least Squares, each column of C is called a temporal latent

variable (temporal LV), and each row of NT is called a spatial latent variable (spatial

LV). Additionally, we can also derive the "spatial scores" and "temporal scores" as:

Stemporai = BC

Sspatia = DN (C.12)

Clearly the temporal score is equivalent to the temporal characterization of single

spatiotemporal model. Examining both temporal scores and spatial LV using prior

knowledge about the experiment design and the neuroanatomical information pro-

vides explanatory inferences and confidences of the spatiotemporal models. In the

proposed multivariate modeling approach, temporal scores and spatial LVs predict

the functional image signals at various conditions and time instants. If the basis

functions are continuous, we can further exploit the reveal temporal LVs to interpo-

late and extrapolate the neuroimaging signals in the whole brain. Singular values are

the normalization factors to scale the temporal LVs and spatial LVs to the original

data matrix.
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C.2 Robust modeling by cross validation for opti-

mal model selection and statistical inferences

Given a finite set of data, multiple choices of basis functions can fit the data to an

arbitrary precision. However, the goodness of fit of the model usually increases at the

cost of model complexity. Also the robustness of the model, which is defined here as

the inverse of the discrepancy between of the model prediction and new observation,

decreases when the model becomes complicated. Based on the limited number of ob-

servation, we propose the "leave-k-out" cross-validation scheme to test the robustness

of the multivariate model. Basically, we randomly remove k observations, which are

rows in data matrix, from the data matrix. Provided with the basis function, tempo-

ral LVs, singular values and spatioal LVs, the omitted observations can be predicted

from the revealed spatiotemporal models

De, = BCANT

= Bar bitrary VBS 1 CANT (C.13)

The difference between Dcv and the omitted rows of D, D, during model identi-

fication consists the goodness of fit of the cross validation. Cross validation error is

defined as the mean value of the root-mean-squares difference between Dev and D.

em = ||D - De|IIr (C.14)

Here ||6||2 denotes the Frobenius norm, sum of squares of matrix entries.

In addition to cross-validate the whole model, as shown in Eq. (C.14), we can

only cross validate the data on the sub-space created by the set of the select indices

{O}:

D10} = BarbtraryVBS 1 Cl0 AI 1 (N101 )T
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E = Barbitrary VBS 1 Cle}

Djo} = e(ETE)leTD (C.15)

The cross validation error metric allows for the quantitative assessment of the

model robustness and model selection among the model family. Iterative random

sampling the data matrix along the observation dimension provides the stochastic

measurement of robustness and fitting quality for linear models at various orders.

Utilizing the computational efficiency of the gPLS algorithm, multiple realizations of

the model of can be identified within reasonable time. This leads to the pool of both

model-fitting error and cross validation error for each model.

To compare two different models at various order, we can calculate the distribu-

tions of the "coefficients", 1, for basis functions.

DCV = Barbitrary (VBS 1CAN T )

= Barbitrary ( (C.16)

Samples of V's are generated from the randomized cross-validation process. The

statistics to compare two models (1 and (2) is the Hotelling's T2 -statistic

T 2 
- 12 (1 - 1(- (C.17)

(ni + n 2 )

Here #5 denotes the mean of the column i of the coefficient matrix. ni and n2

are the number of iterations in cross validation for model. o represents the order

of the basis (the number of entries in the coefficient vector #i; assuming both phi

and #, are of the identical order after padding necessary zero entries ). Under the

null hypothesis that the two coefficient vectors are of no significant difference, the

distribution is of T 2 is given by

ni +n2 - 0 - 1 T2 ~ F (C.18)
(ni + n 2 - 2)o "'nln2-o-1
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