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Abstract

Recent successes with superconducting Josephson junction qubits make them prime
candidates for the implementation of quantum computing. This doctoral thesis details
the study of a niobium Josephson junction circuit for quantum computing applica-
tions. The thesis covers two main areas: 1) the fabrication of sub-micron niobium
Josephson junction devices using a Nb/Al/AlO./Nb trilayer process and 2) mea-
surements of unique quantum properties of a superconducting device proposed as
a quantum bit - the Persistent Current (PC) qubit. The thesis discusses the fab-
rication of niobium Josephson junction devices which is integral to the design and
measurement of the circuit. The devices were fabricated at MIT Lincoln Labora-
tory using optical projection lithography to define features. A technique to produce
more uniform critical-current densities across a wafer is developed within the scope
of the thesis. We also introduce experimental work on the PC qubit performed at
dilution refrigerator temperatures (T c_ 12 mK). Microwave spectroscopy was used
to map the energy level separation between macroscopic quantum states of the qubit
system. We measured the intrawell energy relaxation time Td between quantum lev-
els in this particular device. The intrawell relaxation measurements are important
in determining whether a promising decoherence time can be achieved in Nb-based
Josephson devices, which has a more mature fabrication process compared to other
superconducting fabrication processes.

Thesis Supervisor: Terry P. Orlando
Title: Professor of Electrical Engineering
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Chapter 1

Introduction

1.1 Motivation

Presently, there are two fundamental approaches to increase the computational speed

of a physical computing system. The traditional approach has been to push micro-

electronic transistor sizes to smaller and smaller gate length scales. Intel Chairman

Gordon Moore predicted shortly after the advent of the integrated circuit that the

number of transistors on a chip would double approximately every two years. Since

the introduction of "Moore's Law", there have been two constants: predictions that

the end of Moore's Law is just around the corner, and the semiconductor industry

proving those predictions wrong by producing ever smaller transistors. Next gen-

eration Si CMOS (Complementary Metal-Oxide-Semiconductor) n-gate lengths will

soon migrate to less than 120 nm. None the less, few would argue that the present as-

tonishing rate of progress in computer speed and power can continue forever without

major enhancements in fabrication technology. Multiple revolutionary developments

in integrated circuit technology will be needed to maintain the present rate of growth

of computational power. The microelectronics industry faces several engineering ob-

stacles as it continues to minimize device dimensions. Most importantly, reducing

feature sizes presents an obstacle of a fundamental nature; classical physics can not

correctly describe the behavior of a system as device lengths shrink to near atomic

scales. At these dimensions, the world of quantum mechanics begins to emerge. The
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radical approach to increasing computational speed relies inherently on the princi-

ples of quantum mechanics - this unique form of computing is appropriately called

quantum computing.

Quantum computing does not accelerate digital computation using quantum ef-

fects nor is its computational power connected with the density of qubits. Quantum

mechanics allows one to operate with a superposition of states, simultaneously repre-

senting many different numbers. The main advantage then of quantum computing is

the parallel execution of logic operations using these superposition (entangled) states.

At present, quantum computing offers new efficient methods to solve only a select

number of computational problems. Classical computers can efficiently solve "easy

problems" in polynomial time - the number of steps required to solve these problems

are bounded by a polynomial function of the input size. Such easy problems include

addition, subtraction, multiplying, word processing, etc. Quantum algorithms offers

the ability to solve "hard" problems efficiently such as the factoring of a large number.

The most potentially useful quantum algorithms discovered include Shor's algorithm

[1] for factorization and Grover's algorithm for a database search [2].

1.2 Overview

1.2.1 Quantum Bit: Two-Level Quantum System

The basic building block of a quantum computer is the quantum bit. The quantum

bit or qubit can be described as a two-level quantum system whose state is restricted

to being in an arbitrary superposition of two "basis" states [3, 4]. A classical bit

can only have states 0 or 1 whereas a qubit can be in any linear combination (or

superposition) of states 0 and 1 described by the following wavefunction IT):

IT') = a10) + 311) (1.1)

The numbers a and #3 are complex numbers which satisfy the normalization con-

dition:
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(TIT) = ja12 +1)312 = 1

It is convenient to introduce two parameters 9 and p defined by,

9
a = cos -

2

9
= e1P sin -

2

(1.2)

(1.3)

(1.4)

The parameters 9 and so define a point on a unit three-dimensional Bloch sphere

as shown in Fig. 1-1. In our discussion of the qubit, the Bloch sphere representation

will be helpful in describing the time evolution of our two-level quantum system.

I )

Figure 1-1: Bloch sphere representation of a qubit with state vector I). Parameters
9 and o define a point on the unit-three-dimensional sphere.

Our two-state system has corresponding eigenenergies Eo and E1 . The eigenstates

TI') satisfy the time-independent Hamiltonian of the system described by the time-

independent Schr6dinger equation

HI|I) = EjIW) (1.5)

It is often convenient to represent such a two-level quantum system as a "particle"
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f=1/2

A 
U 

J%1)=(J0)-J1))/dF

I 'i')=(J0)+J 1))/ 42

10) 11)

Figure 1-2: The symmetric double well potential configuration at external parameter
f = 1/2. The eigenstates are then the symmetric and antisymmetric combinations of
the single well wavefunctions 10) and 11) with energy difference E1 - E0 = A.

of spin 1/2, subject to a fictitious "magnetic field" whose direction we conventionally

take to define the z axis. For our qubit system, let us consider the double well

potential shown in Fig. 1-2. For sufficiently high energy barrier U between wells, the

wells are highly localized and the eigenstates of the system correspond to localized

states in each well 10) and 11). For sufficiently low barrier U we obtain coupling

between the two wells. The two-level system can then be described by a Hamiltonian

of the form,

H = + Ao) (1.6)

where the Pauli spin matrices are defined as

0X = ) (1.7)
(1 0

Y = 0 -(1.8)
(i 0

32 CH APT ER 1. INT RODUCTION



UZ = (1.9)
(0 -1)

and A is defined as the matrix element for tunnel coupling between the two wells.

The energy E = (f - 1/2) is the "detuning" parameter or the difference in the ground

state energies of the two wells in the absence of tunnelling. We let f be an external

parameter of our system. The eigenvectors of this Hamiltonian I'Io) and 'I'1) are

then

ITOY ( cos(i/2) (1.10)
sin(V/2)

R 1) = sin(?9/2) 1

cos(t9/2)

where V = arctan(A/E). The corresponding eigenenergies E0 ,1 of the system are

Eo,1 = -FV/2 + 2 (1.12)

Fig. 1-3 shows the eigenenergies of the system as a function of the external

parameter f. If the ratio A/e is small (for f < 1/2 or f > 1/2), the eigenstates of

H are nearly eigenstates of o-,, corresponding to states,

1
TWO) =(1.13)

0

0
P 1) =(1.14)

1

The eigenstates then correspond to the system being localized on either side of

the barrier (in the left or right well). At f = 1/2, A/E > 1 and the eigenstates of

the system are
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i/Vs )
(1.15)

(1.16)

with corresponding energy splitting E1 - EO = A. The eigenstates are then the

symmetric and antisymmetric combinations of the single well wavefunctions 10) and

11).

I1)

(I 0)-I

E

i0))/ P

(10 )+11 i ))/

10) X%

Figure 1-3: The two state quantum system as a function of parameter f. The ground
state (black) of the system has energy EO and the first excited state (gray) has energy
E1 . For zero coupling between the two states, the energy of the two level system
is degenerate at f = 1/2 (indicated by dashed line). Due to quantum tunnelling,
at f = 1/2, the eigenstates of the system are the symmetric and antisymmetric
superposition of the localized well states with energy difference E1 - Eo = A.

We next consider the time evolution of our two-state system. Solving the time-

dependent Schr6dinger equation gives the time evolution of the system

ih- aII(t)) = HI I(t)) (1.17)
Lht

Let us determine the time-dependent state of the system with initial state
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|W(t = 0)) = 01o0) + 011) (1.18)

The time dependent state of the system is found to be

1 1
I'(t)) = ao exp[--Eo(t - to)]I0) + 3o exp[--E 1 (t - to)]I1) (1.19)

in our Bloch sphere representation, 6 remains constant and the phase sp evolves lin-

early with time. The state of the system will precess at a constant height (constant

0) within the Bloch sphere at a rate given by the Larmor frequency

E 1 - E0 (120
WLarmnor - 120)

If resonant microwave radiation is applied to the two-level system the state vector

will oscillate between the two eigenstates 10) and 11). If the system is initially in

the ground state [0(t = 0)) = 10), the time-dependent transition probability P(t) of

finding the system completely in the excited state is described by the Rabi formula

P1 (t) = sin2(_ wV + (AW) 2 ) (1.21)
w? + (Aw) 2

where we define WRabi as the Rabi frequency

WRabi = w? + ( w) 2  (1.22)

Here w, is proportional to the amplitude of the microwaves driving the system

and Aw is the frequency difference between the Larmor frequency and the applied

radiation. Far from resonancel Aw 1> w, 1, the transition probability is nearly zero.

Near resonance, the oscillation amplitude is maximal and the transition probability

will oscillate between 10) and 1) with frequency w1.
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1.3 Physical Systems for Quantum Computing

What system is a feasible candidate for a physical quantum bit? Currently, there is

no clear front runner as a viable large scale quantum computing system. A physical

quantum computer must at least satisfy the few basic requirements outlined by Di-

Vincenzo [4, 5]: 1) ability to prepare qubits in a desired initial state, 2) coherently

manipulate superposition of a qubit's two states, 3) couple qubits together, 4) measure

the state of the qubit, and 5) it has to be well isolated from its environment thereby

relatively free from interactions that induce noise. Essentially any two-state quantum

system that can be addressed, controlled, measured and coupled to its neighbors is a

potential quantum computer.

Many of the physical systems considered for quantum computing are of atomic or

near-atomic dimensions. Each physical system considered has its inherent advantages

and disadvantages. Few macroscopic objects are considered due to the large number

of internal degrees of freedom, therefore making it difficult to preserve coherence of

the quantum system. A partial list of the physical systems actively considered for

quantum computing are:

" Liquid Nuclear Magnetic Resonance (NMR)

" Linear ion-trap

* Cavity QED

" Linear optics with single photons

" Electron spins in quantum dots

" Josephson junction devices

One of the greatest technical challenges to be overcome in realizing a quantum

computer is the preservation of quantum coherence during the computation process;

interaction with any external system or environment destroys this coherence. The

major problem in large scale quantum circuits is the interaction of the surrounding
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environment with the quantum components, leading to irreversible loss and transfer

of information - this process is called decoherence. It is generally accepted that

at least 104 gate operations must be completed before the effects of decoherence

become significant for an error-free quantum computer [6]. This constraint is driving

research efforts in Josephson junction devices to increasing the coherence times by

investigating the environmental noise on the quantum system. Although the time

over which coherence can be maintained is measured to be relatively short (~ 100 ns

- 1 ps) for such devices, current research in the area shows promise for longer coherence

times.

1.3.1 Quantum Computing with Superconductors

Superconducting tunnel junction devices are regarded as one of the most promising

approaches for the development of quantum computing [7, 8]. Over the past twenty

years, superconducting Josephson junction circuits have exhibited macroscopic quan-

tum phenomena such as Macroscopic Quantum Tunnelling (MQT) [9, 10], energy level

quantization [11], and resonant and photon assisted [12] tunnelling between quantum

states. Recent successes with superconducting qubits have enhanced the feasibility of

implementing quantum computing with Josephson devices. Within the past few years,

the observation of a superposition of macroscopic quantum states [13, 14] and time

domain coherent oscillations between quantum states [15]-[20] have been reported

in such devices. Recently, capacitive coupling of superconducting qubits spaced at

large distances (~ 0.7mm) and conditional gate operations have been demonstrated

in these devices [21, 22].

The major advantages to using Josephson junction devices as qubits are:

" Relatively easy to measure due to inherent macroscopic quantum nature of

superconductivity

* Employ current lithographic technology to fabricate identical qubits

e Scalable to large number of qubits
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Insulator

Superconductor 1 Superconductor 2

4d4d

-d12 +d/2 x

Figure 1-4: Superconducting tunnel junction consists of a thin insulating barrier
sandwiched between two superconductors. For sufficiently thin barrier thickness d,
the macroscopic wavefunctions I11) and 10 2) of the superconductors interact.

Ability to combine with on-chip, control electronics (microwave oscillators,

Rapid Single Flux Quantum circuitry)

The basic component of all superconducting devices considered for quantum com-

puting is the Josephson junction. The superconducting tunnel junction consists of

two superconductors separated by a thin insulating barrier, often a metal-oxide layer

(shown in Fig.1-4). With a sufficiently thin (d ~ 10 A) barrier, coherent tunnelling of

Cooper pairs can occur and the macroscopic wavefunctions of the two superconduc-

tors 141) and ['2) will interact. The devices considered for qubits generally have of

order 10' Cooper pair electrons whose collective motion produces a relatively large

flux (10-(D where 4Do = h/2e) or voltage (- 1mV) signals. Indeed, Josephson

junctions have been shown to be ideal structures for the observation of macroscopic

quantum effects.

Modern lithographic techniques have made submicron and nano-scale size Joseph-

son junctions a reality. The superconducting devices studied were fabricated using a

doubly planarized all-refractory technology for superconductive electronics (DPARTS)

process at MIT Lincoln Laboratory [23]. The process is used to produce sub-micron
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junctions using optical projection lithography using an i-line stepper. Starting with

the Nb/Al/AlOx/Nb trilayer formation, the devices are defined using standard deposi-

tion and etching techniques of the various metal and insulating layers. Understanding

the fabrication process is vital to knowing limitations on the circuit parameters and

more importantly, quantifying possible mechanisms for decoherence or dissipation in

these devices.

Superconducting quantum systems may also be scalable up to the minimum num-

ber of qubits that would make a real-life quantum computer useful. Each qubit can

be individually addressed by conventional techniques of electrical engineering. A wide

variety of potential designs and their couplings is available to scale to a large array of

qubits. Capacitive and mutual inductive coupling of these devices have already been

demonstrated in such devices.

Another major advantage to using Nb Josephson junction technology for quan-

tum computing applications is the ability to integrate classical electronic circuits for

qubit control and measurement. Multiple-qubit experiments will ultimately require

several rf control signals and DC bias lines. This, however, presents a cryogenic

engineering challenge if the control electronics are not also in the ultra-cold environ-

ment: high-speed coaxial connections carry a burdensome heat load and noise from

the warmer control circuits to the low-temperature quantum circuits. Fortunately,

there exists a classical electronics family based on superconductive electronics-rapid

single-flux quantum (RSFQ) electronics - that is well suited to integration with ana-

log field sensors, and to precise digital synthesis of voltages [24]. RSFQ circuitry is

a well-established superconducting classical electronics technology that relies on the

storage and transmission of quantized magnetic flux for information processing with

picosecond switching times, allowing many accurately timed control cycles during

a computation. Control at ultra-high speeds should allow successful observation of

quantum phenomena before coherence is lost. RSFQ circuits operate at low temper-

atures (<; 4.2 K)and low powers (~ 1 - 100 pW), both of which will be necessary for

qubit control. Integrating RSFQ and qubit technologies onto a single chip alleviates

the need for high-speed lines and will help enable scaling of the quantum computer
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to hundreds or thousands of qubits. Superconductivity therefore provides an optimal

technology for quantum computing: a scalable qubit with sufficient long coherence

times and an ultra-fast and ultra-precise classical electronics family (RSFQ), both of

which can be integrated into a single circuit (schematic representation shown in Fig.

1-5). Together these technologies offer a unified solution to the challenges posed in

the development of large-scale quantum computers.

coupling
|-- - I

Figure 1-5: A representation of an all superconducting quantum computer. Qubits
are magnetically coupled, controlled using superconducting rapid single flux quantum
(RSFQ) circuitry and readout using a superconducting flux magnetometer.

Niobium Persistent Current (PC) Qubit

Several groups have proposed superconducting tunnel junction circuits as quantum

bits (qubits) for quantum computation (for overview see [8]). The persistent current

(PC) quantum bit proposed by Mooij, Orlando et al. [25, 26] consists of a ~ 10 Pm

sized loop interrupted by three Josephson junctions (shown in Fig. 1-6). One of

the junctions in the loop is smaller by factor a. The two stable states of the PC

qubit have persistent currents of opposite direction when an applied magnetic field

threading the loop is near a half integer value of a flux quanta <bo. A DC Supercon-

ducting Quantum Interference Device (SQUID) magnetometer is inductively coupled
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to the PC qubit and used to measure the circulating flux states of the qubit. The

SQUID employs unshunted, extremely underdamped junctions in order to minimize

decoherence. The overall flux signal of the qubit is determined by averaging over

many repeated switching current measurements on the meter.

At the appropriate magnetic field bias, the PC qubit under investigation has a

double potential well configuration shown in Fig. 1-7. The system has a continuous

degree of freedom (the phase across the junctions <p) associated with a potential

energy function with two nearly symmetric minima separated by an energy barrier.

Using externally applied microwaves, one can induce resonant transitions between

macroscopic quantum levels in the system. A major focus of the thesis has been the

experimental determination of the time to relax (denoted by Td) between quantum

levels within the same well of this double well potential.

1.4 Outline

The doctoral thesis presents studies on the design, fabrication, and measurement of

the Nb persistent current (PC) qubit. The first two sections describe work encom-

passing the Nb superconductive fabrication process. The final sections discuss the

PC qubit and experimental work performed at dilution refrigerator temperatures.

Chapter 2 begins with an overview of the MIT Lincoln Laboratory Supercon-

ducting Device Fabrication Process. The fabrication process is based on a trilayer

process, whereby a Nb/Al/AlO,/Nb sandwich structure is formed in a continuous

process step. Optical projection lithography is used to pattern devices containing

submicron junction structures. The devices are subsequently defined using standard

deposition and etching techniques of the various metal and insulating layers. The

fabrication process is critical to the design of the circuits and its characterization is

vital to understanding possible mechanisms for decoherence or dissipation.

Fabricating highly uniform Josephson junctions for quantum computing appli-

cations and RSFQ circuitry is an essential requirement in the fabrication process.

Chapter 3 presents an anodization technique for the Nb superconductive electronics
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a)

b)

f(

AIO, barrier

Figure 1-6: a) Circuit representation of the Persistent Current (PC) qubit. The PC
qubit consists of a superconducting loop interrupted by three Josephson junctions
denoted by an x, one junction is smaller by factor a. The double well potential of
the PC qubit system is controlled by the external magnetic field f through the qubit
loop. b) Three-dimensional representation of the PC qubit within the Nb trilayer
fabrication process. The three corners of the structure contain a Josephson junction
while the fourth (upper left) contains a via.
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Potential
energy

Figure 1-7: The double well potential configuration of the PC qubit near one-half flux
quantum (<Do/2) magnetic field bias through the loop. The intrawell energy relaxation
time rd between macroscopic quantum levels has been experimentally determined in

a Nb PC qubit.

fabrication process that results in an improvement in critical-current density J, uni-

formity across a 150-mm-diameter wafer. The anodization process is outlined and

metrology techniques to determine the NbO, thickness is discussed. Critical current

measurements were performed on Josephson junctions distributed across the wafer.

The J, uniformity of wafer pairs, fabricated together and differing only in the presence

or absence of the anodization step, was then compared. The cross-wafer standard de-

viation of the J, was typically x3 for unanodized wafers compared to the anodized

wafers. The difference in uniformity is suggestive of an in-process modification from

an unknown cause that is blocked by the anodic oxide. We discuss possible causes

for the difference in J, uniformity.

The superconducting Josephson junction is the basic element of the qubit and

readout device discussed within the thesis. In Chapter 4, we begin with a general

discussion of the Josephson junction. The classical electrical behavior is presented

and under appropriate environmental conditions, we can describe the Josephson junc-

tion circuit using quantum mechanics. From our framework of the basic Josephson
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junction, we describe the Persistent Current (PC) qubit. Under suitable device pa-

rameters, the three-junction PC qubit loop will have two stable energy states corre-

sponding to persistent currents of opposite direction when an applied magnetic field

or frustration f (in units of <b/<Do) is near a half integer value of a flux quanta (Do.

Near f = 1, theoretical results show that one can approximate the Hamiltonian of2'

our circuit as a two level system. The state readout device is another important

component of our qubit system. For our system, a DC SQUID (Superconducting

Quantum Interference Device) magnetometer is used to measure the magnetic flux

produced by the circulating current in the PC qubit. The final section of the chapter

will discuss readout of magnetic flux using a SQUID.

The central work performed within the scope of the thesis is the experimental re-

alization of the Nb PC qubit. Chapter 5 encompasses the entire experimental process

- the setup of the dilution refrigerator unit and low-noise electronics measurement

system, description of the measurement process, and an analysis of experimental

data. One major focus of the experiments on the Nb PC qubit involves microwave

spectroscopy measurements. We can induce transitions between the two states of the

system by applying low-amplitude microwaves to the PC qubit. We have observed a

change in the averaged flux when the microwaves are resonant with the energy level

separation of the system. By applying a select range of microwave frequencies, one

can map the level separation of the quantum system near given tunnel splittings.

Another main focus of the doctoral research discussed in Chapter 5 is determining

the intrawell relaxation time r between macroscopic quantum states within the Nb

PC qubit system. Quantifying the dissipation or relaxation mechanism is extremely

useful in the design of qubits from various new materials, because it indicates whether

the dissipation is at least low enough to make error-tolerant computation feasible. It is

important to know whether a promising decoherence time can be achieved in Nb-based

Josephson devices, which has a more mature fabrication process compared to other

superconducting fabrication processes. The systematic experimental investigation of

decoherence, which is a key issue for superconducting qubits, is sparse due to the

challenge of the time resolution of the measurement. Long decoherence times have
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been demonstrated in some special configurations, however, the limiting sources of

decoherence in the superconducting qubits remain unidentified. The decoherence

time for superconducting qubits, including energy and phase relaxation times, is

predicted to be proportional to the level of energy dissipation, which results from

the coupling between the qubits and its environment. All long decoherence times

(- 1 - l 1 ps) reported have been obtained in NbN and Al Josephson devices. For

our Nb PC qubit system, a simple three-level classical system was employed to model

the dynamic behavior of the PC qubit and determine the energy relaxation time

Td between macroscopic quantum levels. It was experimentally determined that the

intrawell energy relaxation times were of order - 24pLsec, in agreement with previous

theoretical predictions. These long relaxation times suggest a strong potential for

quantum computing employing Nb-based superconducting circuits.

In Chapter 6, we conclude with a summary of major results presented and a brief

discussion of the future direction for Nb qubits. The doctoral thesis involves initial

measurements showing macroscopic quantum behavior within the Nb PC qubit sys-

tem. Further work is needed in both material/process engineering research coupled

with low temperature coherence measurements to produce reliable, high quality (low

dissipation) qubits with long coherence times. Progress to observe coherent oscil-

lations between macroscopic quantum states within this PC qubit system requires

improvements in sample isolation and readout. The observation of driven oscilla-

tions between levels requires engineering a microwave cavity and a method to rapidly

readout the state of the qubit.
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Chapter 2

Superconducting Device

Fabrication

2.1 Introduction - Superconducting Planar Pro-

cessing

The fabrication process of a superconducting circuit has important effects and limi-

tations on the device's overall performance. The successful measurement of a device

first depends on how well the process technology produces the desired geometry and

electrical/physical characteristics [27]. One can easily discuss a submicron Josephson

junction at low current densities J, but in reality how closely can we achieve these re-

sults? One also requires a durable circuit which maintains its characteristics through

repeated thermal cyclings between room temperature and liquid Helium temperatures

and through long durations of time in storage. These considerations show the impor-

tance of a well defined, robust process technology. The successful design, fabrication

and measurement of a device requires active cooperation between circuit designers,

process engineers and low temperature experimentalists.

The superconducting devices discussed within the scope of this thesis are made

in a planar processing or planar technology [28]. Planar processing requires creating

patterned thin layers of materials with various electrical and material properties on
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a supporting substrate. The patterned layers are created, one on top of the other,

thereby forming a complete integrated circuit (IC) on each chip. An important aspect

of planar technology is that each step of the fabrication is applied to the entire

wafer. By adding (deposition) or subtracting (etching or lift-off), one obtains the

desired geometrical structure of the circuit. Planar processing also contributes to the

economic volume production of circuit chips - a 150 diameter wafer can yield several

hundred chips, each 5 mm on a side.

The superconducting trilayer fabrication process is a sophisticated and mature

technology in development since the early 1980s in the IBM computer project. The

trilayer was innovative in that the Josephson junction sandwich was produced in the

same continuous operation, without intermediate patterning of the films [29]. The

development of the Nb trilayer process with the AlOx tunnelling barrier has brought

Josephson junction technology to a level where complex superconducting circuits can

be fabricated reliably [30]. The trilayer fabrication process is continuing to evolve and

new techniques are developed to improve tunnel junction quality, hasten production

of devices, produce smaller feature sizes, increase the yield of working junctions per

chip, etc.

The superconducting devices discussed within the scope of the thesis were fabri-

cated in the Microelectronics Laboratory (MEL) at MIT Lincoln Laboratory, under

the supervision of Prof. Karl K. Berggren. The MEL is a class 10 clean room facility,

defined as less than 10 particles greater than 0.5pm in diameter size per cubic foot

in the air. We use a doubly planarized all-refractory technology for superconduc-

tive electronics (DPARTS) process to fabricate circuits utilizing submicron junctions

[23]. The DPARTS process uses optical projection lithography using an i-line stepper,

chemical mechanical planarization(CMP) of two silicon-oxide layers, a self-aligned via

process and dry reactive ion etching(RIE) of the Nb layers and via etching steps. The

circuits are fabricated in a clean room facility in which silicon devices are produced,

thereby the Nb superconducting technology is able to collaboratively exploit tech-

nological advances within the standard silicon toolset. The following sections briefly

discuss the major components of the DPARTS process. We also describe post-process
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a)

-1 cm

b)

- = 1 cm

Figure 2-1: a) In planar technology, a process step is applied to the entire wafer.
Shown is a 150 mm diameter wafer with a thin-film of Nb deposited on a Si0 2 sub-
strate. b) Completed Nb trilayer superconducting device chips (5mm on a side)
contained in an Electrostatic Discharge (ESD) safe gel-pak.
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test methods to ensure that proper targeting of device parameters has been met.

2.2 Wafer Preparation

The substrate preparation is a critical step in the fabrication of Josephson junction

devices [31]. The substrate provides the mechanical support for the fabricated cir-

cuits. The first step in the process is the wet oxidation of clean, 150-mm diameter,

prime silicon wafers (shown in Fig. 2-2). The initial silicon wafers are approximately

675 pum thick. Oxidation occurs at 1000 'C for approximately two hours in a heated

furnace, producing a thick ~5000 A thermal oxide layer on the surface of the wafer.

The oxidizing species must diffuse through the already formed oxide surface for the

reaction to occur at the interface; the high temperatures aid in this process. Wet

oxidation by a supply of water vapor consumes the substrate surface while forming

the film, resulting in excellent adhesion. The chemical process on the surface of the

wafer proceeds according to the following:

Si(s)+2H20(g) -+ SiO 2 (s)+2H2 (g)

Due to molecular mismatch and thermal expansion differences, the resulting SiO 2

film is under compressive stress. This results in a slight wafer curvature or bending. It

is desirable to produce a stable and reproducible surface for the subsequent deposition

of the Nb trilayer.

2.3 Trilayer Fabrication

The Josephson tunnel junction is formed in a continuous trilayer process; a supercon-

ducting metal (Nb) is deposited, another metal layer (Al) is deposited on top then

partially oxidized to form an insulating barrier (AlO,), and finally a second supercon-

ducting metal (Nb) layer is added. The metal films are deposited through sputtering

- sputtering requires a non-reactive gas, in our case argon, to shoot and knock off

atoms of the intended target (Nb or Al). The scattered atoms then settle and adhere
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S10 2 (5000A)

Figure 2-2: Wafer preparation. A - 5000 A silicon oxide layer is thermally grown on
the Si substrate to produce a smooth, planar surface for subsequent trilayer growth.

onto the surface we intend to coat. The Nb/Al/AlO./Nb trilayer is fabricated in a

DC magnetron sputtering system using 6" Nb and Al targets. The system is pumped

until a pressure of <5 x 10- Torr is achieved. The highest possible vacuum must be

achieved in order to produce the purest films of the desired layer. Nb is then sput-

tered at 12 mTorr of Ar pressure and 1500 W of power to form a base-electrode 1500 A
thick. After cooling the wafers for one hour, Al is sputtered at 2 mTorr and 1 kW of

power, forming a ~ 60 A thick layer. After another cooling period, the Al surface

is oxidized by introducing pure oxygen at pressures ranging from 10-1000 mTorr at

times ranging from 10 minutes to 20 hours, the specific time and pressure depend on

the desired current density Jc. The current density J, is defined as the maximum

zero-voltage supercurrent (at liquid helium temperatures) passed through the junc-

tion per unit area. The current density J, depends strongly on the pressure-exposure

time (P -t) product, the dependence given by [32]

j OC (p.- t)-0.4 (2.1)

Long exposure times and high oxygen pressures yield low current densities (thick

51



CHAPTER 2. SUPERCONDUCTING DEVICE FABRICATION

oxide barriers) whereas short exposure times and low pressures yield high current

densities (thin oxide barriers). The current densities J, depend exponentially on

thickness barrier and therefore, obtaining a precise and repeatable current density J,

value is difficult. Typical current densities in this process range from 100 A/cm2 to

10 kA/cm2 . After oxidation, the system is again pumped to high vacuum pressures

< 5 x 10-7 Torr. After another hour cooling period, Nb is sputtered to form a counter-

electrode approximately 2500 A thick. A cross section of the Nb trilayer is shown in

Fig. 2-3. Following trilayer fabrication, the wafers are allowed to cool then cleaned

in a megasonic rinser in a detergent solution, followed by cleaning in deionized water

in a spin-rinser dryer.

A10,
~20 A

A1-5oA

S10 2

Figure 2-3: Nb/Al/AlO,/Nb trilayer deposited in a continuous process step. Inset
shows a closeup of the AlO, tunnelling barrier region showing layer thickness values.

The trilayer is a critical step in the fabrication process and it is imperative that

low-stress films are produced. It was determined that strains in sputtered Nb films

have an important effect on the quality of the junctions, especially small (< 1 x

1 pm2 ) junctions [33]. Other groups have measured strains in Nb sputtered films and

determined that the strain depends heavily on Ar pressure during the Nb sputtering.

At low pressures, the stress is compressive changing to tensile at higher pressure. By
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adjusting the Ar pressure to a zero-stress point (~12 mTorr), we have maintained a

low-stress Nb trilayer film.

2.4 Optical Projection Lithography

In optical projection lithography, a pattern on a mask or reticle is projected onto a

photoresist covered wafer by means of a high-resolution lens between the mask and

wafer [34]. For our system, the patterns are defined using a GCA 5 x reduction 365 nm

i-line stepper. The reticles consist of patterned chromium on a quartz glass plate,

fabricated by an external photomask fabrication company such as Photronics Inc.

to a tolerance of <0.25 pm [35]. The reticle designs were created using a computer

aided design (CAD) layout program (KIC). The optical projection system employs

refractive lenses that provide 5x reduction over a field of 15x 15mm2. The reticle

is put in a stepper whereby a laser-interferometer controlled stage steps and repeats

the pattern across the entire wafer (Fig. 2-4). A wafer map (Fig. 2-5) shows the step

and repeat pattern generated by the lithography step and repeat system.

2.4. OPTICAL PROJECTION LITHOGRAPHY 53



54 CHAPTER 2. SUPERCONDUCTING DEVICE FABRICATION

Light source
(mercury arc lamp)

reticle

5X reduction lens(es)

wafer

-- +y

x

Figure 2-4: Optical Projection
ferred to a resist coated wafer
refractive lenses that provide
interferometer controlled stage
across the entire wafer.

Lithography system. A pattern on a reticle is trans-
by means of a coherent light source and a series of
5x reduction over a field of 15x15mm 2. A laser-
steps (in x- or y- direction) and repeats the pattern
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Figure 2-5: Map of reticle pattern for 150 mm-diameter wafer. Each square box
represents a 15 x 15 mm 2 area whereby the reticle pattern is exposed. The optical
projection lithography system steps and repeats the reticle pattern over the entire
wafer.

A B C D E F G H I

1 D1 E1 F1

2 C2 D2 E2 F2 G2

3 B3 C3 D3 E3 F3 G3 H3

4 A4 B4 C4 D4 E4 F4 G4 H4 14

5 A5 B5 C5 D5 E5 F5 G5 H5 15

6 A6 B6 C6 D6 E6 F6 G6 H6 16

7 B7 C7 D7 E7 F7 G7 H7

8 B8 C8 D8 E8 F8 G8

9 D9 E9 F9
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In optical lithographic systems using chrome-on glass reticles, the minimum fea-

ture size is generally given as [36]

Wmin = 0.8(A/NA) (2.2)

where A is the wavelength of the light and NA is the numerical aperture of the lens

(NA = n sin a). For our system, A = 365 nm and NA ~ 0.45, so we find that

Wmin ~650 nm. This value is comparable to the smallest feature size in the process.

For small wavelength, high numerical aperture lenses, we determine the depth of focus

R, given as [36]

R = A/2(NA) 2  (2.3)

In our system, R ~900 nm, therefore our process requires the surface topography

to be less than ~ 900 nm for a field size 15 x 15 mm2 in order for features to be in focus

during exposure.

For all layers other than the resistor metal and contact pads, we used Shipley

SPR-511A positive tone photoresist, applied at 4000 RPM and baked for one minute

at 95 'C. Spin coating provides a uniform - 1-2 pm thick resist layer. Hexamethyl

disiloxane (HMDS) vapor was used to prime the wafers at 150 C prior to resist

coating. The primer formed bonds with the wafer surface and produced a polar

surface to enhance the adhesion of resist to the substrate. The wafers were then

placed in the optical lithography system. Alignment and exposure (with a dose of

155 mJ/cm2) was then carried out to transfer the photomask pattern onto the resist.

After exposure, the wafers were baked at 95 C for one minute then developed using

Shipley MFT .245. The resist was finally hardbaked at 115 C for one minute. The

final resist pattern is binary, there is no grey scale or depth to the image, only the

presence or absence of resist. The photolithography process is shown in Fig. 2-6.

Liftoff of the resistor layer and contact pads (see sections 2.9 & 2.11) used an

image-reversal process. The wafers were primed as done previously then AZ5214-E-

IR negative photoresist was spun at 4000 RPM to give a ~1.4 pm thick photoresist
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a)

b)po maskE:

c)

Figure 2-6: a) ~ 1p m thick photoresist layer is spin-coated to uniformly coat the
wafer. b) Resist layer is patterned through exposure through a photomask. c) After
exposure, the resist is developed then hardbaked.
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layer. The wafers were exposed to a dose of 30 mJ/cm2 then hardbaked at 110 0C

for 45 seconds. Next, the wafers were flood exposed at a dose of 300 mJ/cm 2 then

developed using two puddles of AZ-327 developer for a total of two minutes. This

process produced undercut sidewall profiles which allowed for clean liftoff of the metal

layer.

2.5 Reactive Ion Etch

In a reactive ion etch, etching occurs by a chemical reaction between the substrate and

atoms or radicals produced in a plasma [36]. The plasma used in microfabrication

is usually generated in either dc or rf glow discharges; however, rf discharges are

generally preferred due to their stability, uniformity and high density of plasmas

generated. The material etched is then desorbed as a volatile gaseous species and

pumped away. Several advantages to using a gaseous rather than liquid medium

include: 1) etch rates tend to be more controllable and 2) the temperature of the

substrate can be better controlled.

Etching of the Nb metal layers was done using a load-locked reactive ion etch

chamber using SF 6 etch gas at 50 W power, 25 mTorr pressure and a platen temper-

ature of 50 C. The backside of the wafer was cooled using helium gas. The etching

process is nearly identical for the counter-electrodes as for the wiring layer and ground

plane. For the base-electrode, we used a higher temperature (80 0C) to etch through

the anodized Nb layer (see next section). The etch endpoint was determined by using

fluorescence spectroscopy using an optical emission spectrometer. The fluorine inten-

sity of both product and reactant peaks were monitored. The endpoint was stopped

by the aluminum oxide barrier in the case of the counter electrode etch or by the

PECVD oxide/thermal oxide layers in the case of subsequent Nb layers. Fig. 2-7a

shows a cross section of the trilayer after RIE of the counter electrode. The RIE etch

process produced a nominal etch rate of ~500 A/min. We used a slight over-etch (<;

10 sec) for all Nb layers except the wiring layer. The wiring layer required a 90 sec

over-etch to adequately remove Nb stringers from the edges of the resistors. The Nb
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stringers typically adhere to the side walls of the resistors, typically near the bottom

region, and could potentially "short" out the resistors if not adequately removed. All

etches were preceded by the etch of two monitor wafers for the purpose of chamber

wall passivation.

a)

SiO,

b)

Sio,

Figure 2-7: a) Patterned counter electrode is reactive-ion etched. b) After RIE,
photoresist is removed by immersion in a stripping agent (ACT-935).

Photoresist was removed after metal and oxide etching using ACT-935 photoresist

stripping agent. The wafers were immersed in ACT-935 at 75 C for 30 minutes,
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removing resist as well as additional residue. After removal of the photoresist, the

wafers were cleaned using deionized water in a dump-rinser and spin-rinser dryer.

2.6 Anodization

Anodization is an electrolytic process in which a metal, in our case Nb, serves as the

anode in a suitable electrolyte. When a current passes through the Nb film in the

electrolytic solution, the surface is converted to its oxide form, the protective NbO,

layer around the junction perimeter is shown in Fig. 2-8. This oxidation progresses

from the solution inward, towards the metal, with the final thickness determined by

the applied voltage. The metal-oxide layer serves as a protective barrier to further

ionic flow [37]. The anodized layer thus serves to minimize plasma, chemical, or other

damage to the junction during further processing steps. Anodization processes of

this sort have been used extensively in the past for the fabrication of Nb Josephson

junctions [38]-[43]. Anodization has been incorporated into the standard Nb super-

conductive process to improve the critical-current-density uniformity of junctions.

This effect will be explored further in the Chapter 3. The following section gives an

in-depth description of the anodization process.

Anodization followed the RIE of the counter-electrode and stripping of photoresist,

so the anodization was unmasked. Anodization was performed in an electrolytic solu-

tion of tartaric acid (HOOC(CHOH) 2COOH) and ammonium hydroxide (NH 40H).

400 g of tartaric acid powder was added to a recirculating bath of an approximately 5L

volume of deionized water (Fig. 2-9a). Then a 28-30% NH 40H solution was added in-

crementally until the measured pH was 5.1 t 0.1 (the total volume of NH 40H solution

added was > 300 ml). The anodization process proceeded as follows: 1) A Pt wafer

(cathode) in the electrolytic solution was grounded while the Nb device wafer (anode)

was connected to a power supply. 2) Shown in Fig. 2-9b, the voltage output of the

power supply was ramped, from 0 V to 20 V, maintaining an initial constant current

of 0.225 A through the wafer. The overall ramp time was approximately 50 sec. 3)

The voltage was then held constant at 20 V. During the voltage hold time, the current
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NbOx

'I
siO.

Figure 2-8: Junction is anodized, producing a protective NbO2 layer and effectively
"sealing" the perimeter of the junction. Dotted white line indicates original surface.

through the wafers dropped exponentially as the NbOx layer densified. 4) When the

current level reached 10% of its initial value, the power supply was abruptly switched

off. The total immersion time was approximately 1.5 minutes. After anodization, the

wafers were cleaned using deionized water in a dump-rinser and spin-rinser dryer.

Anodization produced a ~500 A thick NbOx layer on the surface of the base

and counter-electrode for an anodization voltage of 20 V. Fig. 2-10 shows a TEM

image of the junction region. Sample preparation and TEM imaging of Josephson

junctions was performed by the Microelectronics Center of North Carolina (MCNC)

and TEM Analysis Inc. [44]. The NbOx layer, covering the sidewalls of the counter-

electrode, provides a protective layer around the junction perimeter. Comparing

anodized/unanodized wafer pairs for wafers with 500 A of NbOx, we determined from

step-height measurements that the thickness of anodized wafers was typically 300 A
greater than unanodized wafers. From this we conclude that approximately 200 A of

Nb was consumed in the growth process.
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a)

Nb anode Pt cathode
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Figure 2-9: a) Setup of anodization process. The Pt wafer is used as the cathode
while Nb serves as the anode in the reaction. b) When a current passes through the
Nb film in the electrolytic solution, the surface is converted to its oxide form. The
plot shows the current biased through Nb wafer and voltage output as a function of
time.
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wiring layer

C. E.

NbO,

B. E.

- 100 nm

Figure 2-10: TEM image of the Josephson junction region consisting of a thin AlO.
barrier sandwiched between the base-electrode and counter-electrode. A ~ 500 nm
thick NbO_ layer serves to protect the AlO. tunnel barrier from processing damage.

2.7 Aluminum Oxide Barrier Removal/Low Tem-

perature Oxide Deposition

The AlO, barrier was removed using a wet (chemical) etch - the material is removed

by immersion in a liquid bath of chemical etchant. The wafers were placed in a fresh

bath of 15% phosphoric acid (H3PO4) at 50*C for approximately 90 sec. The barrier

removal was followed by a cleaning step in the dump-rinser and spin-rinser dryer.

Fig. 2-11 shows a cross section of the wafer after AlO, barrier removal.

Plasma Enhanced Chemical Vapor Deposition (PECVD) is an established com-

mercial technique for depositing materials, mainly oxide layers [37]. The maximum

processing temperature allowable in any part of a superconducting circuit process is

determined by the thermal stability of the Josephson junctions. The major advantage

of PECVD is its lower temperature capability compared with other thermally driven

CVD. For example, deposition temperatures of 700 to 900 C are required to deposit

silicon oxide films by thermal CVD. At such high temperatures, the quality of the
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S10 2

Figure 2-11: Exposed AlO. barrier is removed using a wet chemical etch.

aluminum oxide barrier would severely degrade. Other groups report that the qual-

ity of the junctions remain unchanged up to a "catastrophic" temperature, typically

between 180-250 C [45]. For our PECVD system, deposition temperatures of 150 to

200 C were sufficient to deposit SiO 2 films.

Silicon oxide is used as an insulating layer between various metal layers in the

Nb superconducting fabrication process. PECVD silicon oxide films are used as an

insulating dielectric material because of the low deposition temperature and their

relatively low dielectric constant [45]. In PECVD, discharge plasmas are sustained

within chambers where simultaneous Chemical Vapor Deposition (CVD) reactions

occur. The energetic discharge environment was sufficient to decompose gas molecules

into its component species; the net effect of the interactions is to cause chemical

reactions to occur at a much lower temperature than in conventional CVD reactors

without the use of plasma. Previously unfeasible high temperature reactions can be

made to occur on the temperature sensitive Nb trilayer wafers.

For our system, oxide was deposited in a load-locked PECVD chamber using a

combination of 2% SiH 4 (in He) and N20 in a ratio of 9:4 at 900 mTorr pressure and

20 W of power. For our system argon diluted silane serves as the silicon source while
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Figure 2-12: After the AlO, barrier is stripped and the base electrode is etched, a
6000 A PECVD oxide is deposited as an insulating layer.

nitric oxide (N2 0) serves as the oxygen source. The reaction occurred according to

the following

SiH 4(g)+2N2 0(g) -+ SiO 2(s)+2H2 (g)+2N2 (g)

The platen was kept at ~ 150*C and the deposition rate was approximately

400 A/min. For the first PECVD oxide layer, 6000 A of silicon oxide was deposited

while for the second PECVD oxide layer, approximately 7500 A was deposited. Fig.

2-12 shows a cross-section of the wafer after the first oxide deposition. The low deposi-

tion temperature resulted in cracks and voids in the oxide surface. The oxide quality,

namely the refractive index and film density, at such low deposition temperatures is

typically much poorer than the nominal PECVD processing temperature (- 350*C).

However, subsequent planarization (see following section) improved the surface and

may have sealed cracks and removed other defects.
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2.8 Chemical Mechanical Planarization

Chemical Mechanical Polishing (CMP) is the process of smoothing and planarizing a

surface with the aid of chemical and mechanical forces. The technique is widely used

in semiconductor processing and has been incorporated into the Nb trilayer process

by M.B. Ketchen et al. [30]. During CMP, a wafer is pressed against a rotating

platen in order to remove a portion of and planarize the wafer surface. Removal of

the intended layer is aided by a slurry, which acts to lubricate and erode the top of

the wafer.

CMP was used to make self-aligned contact to the counter-electrode and to achieve

a planar oxide surface for the Nb ground plane. The wafer is polished in a single-wafer

polisher with an IC-60 (Rodel, Inc.) polishing pad and ILD-1300 slurry dispensed at

a rate of 100 ml/min. The polish slurry is a dilute colloidal silica based solution. The

wafer was pressed against the polishing pad with a pressure of 4 psi and a back pressure

of 0.5 psi applied to the wafer. The polish rate was approximately 900 A/min, and the

polish variation across the wafer was <+ 10%. To achieve accurate polish endpoints,

CMP was usually done in several steps. After each polish, the oxide thickness was

determined by reflectrometry measurements until the desired thickness was achieved.

Typically CMP removes - 50 nm of the top surface of the counter electrode, therefore

removing the NbO, layer covering the surface and a small portion of the Nb counter-

electrode. After CMP, the wafers were cleaned in a megasonic station using a mild

detergent. Fig. 2-13 shows a cross-section of the wafer after the first CMP process.

The primary performance advantage of CMP is the offer of global planarity needed

for multi-level submicron metallization. The structure must be planarized otherwise

deep large vias, aligned to the counter-electrode, must be incorporated to permit

contact [46]. Global planarity is required as circuit dimensions extend into the sub-

micron regime since lithography tools with high numerical aperture lenses and short

wavelengths have relatively small depths of focus (~ 900 nm) [36]. CMP may also

reduce or eliminate defects on the silicon oxide surface. Other advantages include im-

proved step coverage and a reduction in severe topography, which allows for tighter
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sio.

Figure 2-13: CMP of the oxide layer is used to achieve self-aligned contact to the
counter-electrode and produces global planarity.

design rules. Severe surface topography leads to large variations in resist thickness

making control of dimensions difficult, since thicker resists require longer exposure

times while the thinner are will tend to be overexposed.

2.9 Resistor Metal Deposition and Liftoff

Liftoff is a method of forming a pattern on a substrate following resist exposure and

development. Photoresist is initially spun, exposed and developed to form openings

in the resist where material is to be deposited. The material defined is then de-

posited onto the surface of the substrate. Immersing the wafer into a solvent removes

photoresist as well as the material on top.

The resistor metal in the superconducting device fabrication process was defined

using liftoff. The liftoff process is detailed in Fig. 2-14a-d. The resistor metal uses

100 A of titanium followed by 900 A of platinum. The metal thin films were deposited

by electron-beam evaporation in a rotating platen system. Ti was used to adhere the

Pt to the silicon oxide surface. Although bulk Ti is superconducting below 1 K, for

a sufficiently thin layer, it is resistive for T> 10 mK [47]. Deposition was controlled
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by using a water-cooled quartz crystal microbalance to measure metal thickness.

By adjusting the metal thickness, we targeted the low-temperature (< 4.2K) sheet

resistance to be -0.6 Q/SQ. The liftoff process has several distinct advantages over

other etching methods [36]:

1) Materials such as Pt and Au are extremely difficult to etch selectively.

2) Patterns in multilayers can be easily achieved. The resistor layers and contact

pads in our process consist of two or more layers of differing metals.

3) The substrate is generally not etched or damaged during liftoff.

4) The substrate is kept at a relatively low temperature.

Liftoff of the resistor metal was achieved by immersion in acetone and followed

by a cascade rinse in isopropynol. The wafers were subsequently spin-rinsed and

spin-dried.

One possible drawback to the liftoff process involves contamination of the resistor

edges from out-gassing of the photoresist during metal deposition [48]. Another dis-

advantage occurs during liftoff; metal film on top of the resist often breaks apart and

causes debris that can fall back onto the substrate. We also observed from step-height

measurements that lift-off creates raised metal edges around the resistor edges. This

typically occurs when the photoresist does not have a re-entrant profile.

2.10 Oxide Etch

Contact between Nb metal layers was achieved through an oxide via. The oxide

vias to the base electrode and wiring layers were etched in a rf reactive ion etch

system. The recipe consisted of 800 mTorr of 200/20/20 standard cubic centimeters

per minute (sccm) Ar/CF 4/CHF 3 , using 150W and a cooling stage at -20 C. The

etch rate was approximately 3000 A/min and the etch time was determined from

prometrix measurements of the oxide thickness over the base-electrode. To ensure

adequate contact between either the wiring layer and base electrode or ground plane

and wiring layer, we include a - 25% overetch of the oxide via.
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a)

b)

C) Resistor layer

Figure 2-14: Resistor Layer Liftoff process. a) Negative photoresist is spin coated
onto wafer surface. After exposure, we define areas where the resistor metal layer is
to be deposited. b) Resistor metal layer is deposited in e-beam evaporation system.
c) Liftoff of the resistor metal layer occurs when immersed in a solvent.
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Via

Base electrodeV0

Sw02

Figure 2-15: Oxide vias are formed to gain electrical contact to the base-electrode.

2.11 Niobium Wiring Layer and Contact Pad De-

position

The Nb wiring layer and ground plane were deposited similar to the counter-electrode

and base-electrode (shown in Fig. 2-16a, b). The wafers were loaded into a DC mag-

netron sputtering system. The system was pumped to a pressure of 5 x 10-7 Torr,

Nb was then sputtered at 10 mTorr of Ar pressure and 1500 W power to form a wiring

layer 2500 A thick or ground plane 4000 A thick. After sufficient cooling, the wafers

were unloaded and cleaned in a megasonic station.

The contact pads were deposited by electron-beam evaporation and defined using

liftoff, similar to the resistor metal deposition. The pads consist of 300 A Ti, 3600 A

Pd and 500 A Au. Since Au is a contaminant in the standard silicon fabrication

facility, the contact pads were deposited in a separate processing laboratory. The

metal layers were lifted off in acetone and cleaned in a isopropynol bath. A complete

cross-section of a Nb trilayer circuit is shown in Fig. 2-17 with layer thicknesses values

indicated in parentheses.

M
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a)

Mhg layer

electrode

Base electrode

S10 2

b)

Figure 2-16: a) Nb wiring layer is deposited, patterned then etched. b) After the
second CMP process, the ground plane is deposited, patterned and etched.
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Resistor layer
Pt (900)/ Ti (100)

- A1O, barrier

SiO2 (5000)

Figure 2-17: Cross-section of completed Nb trilayer circuit. Numbers in parenthesis
indicate the thickness values of the layer in A.
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2.12 Process Test Methods

The wafers were tested both in and post-process to determine the overall device pa-

rameters of the circuits being fabricated. In-process testing involved measurements

of the layer thickness and sheet resistances of the metal layers. For the metal lay-

ers, thickness was determined by stepheight measurements using a Tencor P-10 ap-

paratus. For the PECVD oxide layers, thickness was determined by reflectometry

measurements. Post-process room temperature testing was performed using an auto-

mated wafer probing station. Four point measurements were used to determine: 1)

current density Jc, 2) sheet resistance of Nb and resistor metal layers to determine

resistivity and thickness and, 3) process control such as oxide shorts or opens in via

structures. After room temperature evaluation, the wafers are diced into 5 x 5mm2

chips, wire-bonded into an appropriate chip carrier or package, and finally placed in

a low-temperature measurements setup (the post-process method is shown in Fig.

2-18).

Room
temperature Dicing Packaging

testing

Test and
Measurement

Figure 2-18: Post process test methods. After room temperature measurements, the
devices are diced into 5 x 5 mm2 size chips, packaged in a chip carrier, then placed in
a low-temperature measurement setup.

73



CHAPTER 2. SUPERCONDUCTING DEVICE FABRICATION

2.12.1 Room Temperature Evaluation of Junction Critical

Current

The major reason to perform room temperature measurements is to determine the

overall critical-current-density J, across the wafer. Determining J, is imperative

for targeting both on target and unform is critical in the process. Shown in Fig.

2-19, we employ specially designed four-point cross-bridge Kelvin resistor (CBKR)

structures to determine the normal-state resistance R, of the Josephson junction.

Previous studies have shown that the critical current of a junction can be accurately

determined from the room temperature R, measurements [49]. The room temperature

R, was measured using an automated probing station (Ruckers and Kolls 683A Semi-

Automatic Wafer Prober).

V_

V.

Figure 2-19: Cross Bridge Kelvin Structure (CBKR) test structure to measure normal
state resistance R, of junctions.

The critical current of a junction is determined by the empirical relation [49],

IcR, = 0.68 x ~( 1.9 mV (at 4.2K) (2.4)
2e

where A(T) is defined as the superconducting gap voltage. For Nb, A(T = 0) = 3 mV.

If the area A of the junction is known, then the J, is easily determined to be
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1.9 mV
Jc = (2.5)

In order to prevent damaging our junctions, we took two precautions: First, to

prevent electrostatic discharge (ESD) damage, the probing station pins were grounded

before making contact to the junction pads. Second, we used the "make before

break" method before applying current through the junction. This method consisted

of introducing a resistive path parallel to the junction such that any initial current

would run mainly through this resistor. This current path to the junction was then

opened so current then flowed through the junction. This method prevented voltage

from building up across the junction during the measurement.

2.12. PROCESS TEST METHODS 75
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Chapter 3

Improving Uniformity of the

Critical-Current-Density Jc

Uniformity

Controlling the critical-current-density J, uniformity across a wafer is a major chal-

lenge in the Nb Josephson junction trilayer fabrication process. Typically, the J,

variation across a 150-mm-diameter wafer is > 15% for current densities ranging

from 0.1 - 20 kA/cm2. Highly uniform J, is desired for producing low cross-chip

J, variation (cross-chip variation is typically (< 1 %) as well as producing a higher

quantity of chips per wafer at a given critical-current-density. Past results suggested

that anodization of the junction region improves J, uniformity across a wafer [38] [50]

as well as junction quality [51] but this suggestion has never been supported with

direct comparisons between anodized / unanodized wafers fabricated simultaneously.

Anodization has been incorporated into our standard DPARTS process and its effects

on J, uniformity have been studied by directly comparing anodized wafers with unan-

odized wafers [52]. Described in the previous chapter, the anodization procedure was

performed after reactive ion etching of the counter-electrode. Because we felt that

after RIE the junction region could be vulnerable to chemical, plasma and/or other

damage from subsequent processing steps (shown in Fig. 3-la), we anodized the

wafer to form a 50-nm-thick protective metal-oxide layer around the junction perime-
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ter. Fig. 3-1b shows that after anodization the junction region is "sealed" from the

outside environment by a thick NbO. layer. The remaining steps of the process were

modified slightly to account for the presence of this layer.

In the following chapter, we discuss the incorporation of anodization into the

standard Nb superconducting device fabrication process. We then discuss metrology

methods used to determine the thickness of niobium oxide grown. We follow with

a discussion of the effects of anodization on critical-current-density uniformity, pre-

senting room-temperature normal-state resistance R, measurements of junctions. We

conclude with discussion and analysis of our results.

3.1 Incorporating Anodization Process

The modification of the fabrication process to include anodization consisted of three

steps: 1) the development of the anodization process; 2) the integration of the an-

odization step into the existing DPARTS process; and 3) the development of metrol-

ogy methods for process control. Anodization development was described in the

previous chapter and in the following sections we discuss work in integration of the

anodization process and process control methods.

3.1.1 Process Integration

Subsequent process steps after anodization were modified to account for the NbO.

layer. The NbO. layer made it difficult to etch through the base-electrode and to

gain contact through a via to the base- and counter-electrode. We modified the RIE

etching process for the base-electrode slightly from that of the other Nb layers by

performing it at a substrate temperature of 80'C (compared to 50'C for the other

Nb layers). This elevated temperature was needed to etch through the 50 nm NbO.

layer. We also observed an etch undercut profile due to the anodic oxide (see Fig.

3-2). To achieve contact through the anodic layer at the base of the via (between the

base-electrode/wiring layer and counter-electrode/wiring layer) we relied on the 25%

over-etch of the PECVD deposited oxide and the pre-sputter of the wiring layer to
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Si0 2

b)

NbO -5 nm

Figure 3-1: a) Nb Josephson junction after counter-electrode etch but immediately
prior to anodization. Inset shows the thin A1O, barrier region is vulnerable to chem-
ical, plasma and/or other damage from further processing steps. b) Junction region
after anodization. Junction is anodized, producing a protective NbO. layer, effectively
"sealing" the perimeter of the junction. The surface of the counter- and base-electrode
is converted to a metal-oxide layer approximately 50 nm thick. The dotted line shows
the original surface. Note: The anodic oxide causes the surface to swell up and out
slightly during growth.
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promote adhesion between the base-electrode and wiring layer. To achieve contact to

the counter-electrode, we used the polishing from chemical mechanical planarization

(CMP) and the pre-sputter prior to wiring deposition to remove the NbO. grown on

the top of the counter-electrode.

- 100 nm

Figure 3-2: SEM image of NbO. grown on Nb layer. Using an anodization voltage of
20 V, the NbO, layer is approximately 50 nm thick. We also observe an etch undercut
profile due to the anodic oxide.

3.1.2 Thickness Metrology

Determining NbO2 layer thickness is critical for both process control of anodization

and for all subsequent dielectric metrology. In our process, film thicknesses are typ-

ically measured by using spectral reflectometry, for which the optical constants and

thickness of all underlying films are required. Data available in the literature for

bulk and thin-film Nb and NbOx was found to be inadequate: it could not determine

the anodic film thickness accurately from spectral reflectometry or ellipsometry. We

therefore needed to determine the index of refraction n and absorption coefficient k of

the underlying Nb and NbOx as a function of wavelength A. To determine the optical

constants of NbOx we first needed an independent measure of the film thickness. We

used scanning electron microscopy (SEM) images to determine the film thickness.



We then determined the optical properties of the Nb and NbO, film using a Hitachi

U-4000 spectrophotometer with a 12-degree absolute-reflectance attachment. The re-

sulting reflectance data was used to extract the index of refraction n and absorption

coefficients k as a function of wavelength A for a bulk Nb layer and 95-nm-thick NbO

layer. The results are given in Table 3.1. NbO, data varied by a few percent depend-

ing on the thickness of the oxide; the range of Cauchy coefficients was from An =

2.169 to An = 2.236 and from B, = 0.047 to B, = 0.05 while Ak and Bk were zero (the

range is too small to be important for our purposes therefore we simply used Cauchy

coefficients of An = 2.169 and Bn =0.047). For Nb the Cauchy coefficients were An

- 3.20, Bn = -0.086 and Ak = 4.625 and Bk = -0.25. We then compared the film

thicknesses extracted from fitting spectral reflectometry data to measurements from

SEM images for a variety of anodization voltages and found agreement, as shown in

Fig. 3-3. Finally, optical reflectometry and SEM data were compared to ellipsometric

analysis at 632 nm and agreement was also obtained.

80- O SEM
X reflectrometry 03

E60-
M

40-

C.)

20-

n

0-0

0 10 20 30 40
anodization voltage (V)

Figure 3-3: NbO2 film thickness for given anodization voltage. Film thickness is
determined both by reflectometry measurements and SEM images. The solid line
represents the best-fit line to the reflectometry data.

As mentioned previously, we used SEM images to estimate NbOx thickness and

transmission electron microscopy (TEM) images to inspect the anodic film. A SEM

3.1. INCORPORATING ANODIZATION PROCESS 81



CHAPTER 3. IMPROVING UNIFORMITY OF THE
82 CRITICAL-CURRENT-DENSITY Jc UNIFORMITY

Table 3.1: Optical constants of Nb and NbOx. Index of refraction n and absorption
coefficient k values vs. wavelength for Nb thick film and 95 nm thick NbOx film.

Nb Nb NbOx NbOx
A (nm) n k n k

400 2.644 3.144 2.565 2.785 x 10-1

425 2.707 3.262 2.565 1.666 x 10-3

450 2.788 3.362 2.479 0

475 2.871 3.439 2.454 0

500 2.943 3.500 2.433 0

525 3.000 3.550 2.416 0

550 3.038 3.596 2.401 0

575 3.059 3.643 2.388 0

600 3.065 3.697 2.376 0

625 3.058 3.760 2.365 0

650 3.041 3.834 2.354 0

675 3.018 3.920 2.345 0

700 2.992 4.018 2.336 0

725 - - 2.327 0

750 - - 2.320 0

775 - - 2.313 0

800 - - 2.306 0
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AIO,

Figure 3-4: TEM image of an anodized junction showing clearly the sealing of the
junction edge by NbO,. Note the clean interface between the counter-electrode (C.E.)
and wiring layer where the NbO, has been removed by CMP.

image of NbO, grown on a Nb layer is shown in Fig. 3-2. We estimate the thickness of

the NbO, layer to be - 50 nm for an anodization voltage of 20 V. Sample preparation

and TEM imaging of Josephson junctions was performed by the Microelectronics

Center of North Carolina (MCNC) and TEM Analysis Inc. [44]. Prior to imaging,

the junctions were tested at liquid helium temperatures (4.2 K) and found to have

good quality (Vm > 50 mV). TEM images of the anodized junction region is shown

Fig. 3-4. Comparing anodized/unanodized wafer pairs for wafers with 50 nm of

NbOX, we determined from step-height measurements that the thickness of anodized

wafers was typically 30 nm greater than unanodized wafers. From this we conclude

that approximately 20 nm of Nb was consumed in the growth process.

3.2 Effect of Anodization on Critical-Current-Density

Uniformity

In order to determine the effect of anodization on the electrical characteristics of our

junctions, we looked at their normal-state resistance Rn at room temperature. We
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calculated the critical current I of a junction from the R, measurements for a large

quantity of junctions distributed across an entire wafer using an automatic probing

station. From these measurements we determined critical-current-density uniformity

for several anodized / unanodized wafer pairs where, for each pair, the trilayers were

fabricated together.

Room temperature measurements using specially designed test structures were

used to determine the overall critical-current-density across the wafer. We employed

four-point cross-bridge Kelvin resistor (CBKR) structures to determine the normal-

state resistance R, of the Josephson junction as described in previous chapter. From

the R, values obtained at room temperature, we determined the approximate value

of the critical current I, of the junction. From the known junction area (10 x 10 pm 2),

we then able to extract the J, value.

3.3 Results/Analysis

Fig. 3-5 shows the J, percent standard deviation across a wafer for six wafer pairs.

Each pair was fabricated together, the only difference being the presence or absence

of anodization. Also, for each pair of wafers, the trilayer formation was performed

simultaneously. The percent standard deviation of J, was typically - 5% for anodized

wafers but > 15% for unanodized wafers. Overall, unanodized wafers had a factor of ~

3 higher standard deviation compared to anodized wafers. Error in room-temperature

R, measurements due to the finite lead resistance and sizing errors could not account

for this difference in critical-current-density uniformity [49].

Our results suggest that there exists in-process modification of J, that is avoided

or diminished by anodization. The wafer pairs we examined were simultaneously

subjected to the same highly uniform oxidation process involved in producing the

tunnelling barrier, therefore making it unlikely for one wafer to differ significantly in

J, uniformity from the other. Isolating the cause of the modification remains difficult

since many subsequent processing steps are required to produce useful junctions. Pos-

sible sources of damage or contamination of the junction barrier include: stress in the
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Figure 3-5: Comparison of cross-wafer critical-current-density standard deviation of
anodized / unanodized wafer pairs. The wafers shown have J, values ranging between
102 A/cm 2 and 103 A/cm 2 . Lines connect data points on wafers whose trilayers were
deposited together.

Nb film, plasma, and/or chemical sources (photoresist / developer, phosphoric acid,

CMP slurry). Clearly, anodization reduces cross-wafer I, spreads of large junctions

(> 2x2 pm 2 ) suggesting that the anodic oxide layer retards attack of the junction.

However, from separate room temperature and low temperature measurements, we

have determined that anodization does not improve cross-wafer spread of small junc-

tions (< 2x2 pM2 ) since small junction I, is mainly dominated by sizing variation

rather than J, variation and anodization does not appear to affect sizing variation.
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Chapter 4

Superconducting Quantum

Circuits

The Josephson junction is the basic building block of our physical qubit system and

magnetic flux readout device under investigation. The following chapter begins with

the fundamental electrical characteristics of the superconducting Josephson tunnel

junction. The tunnel junction can be described both classically and under appropri-

ate conditions, quantum mechanically. Next, we present a general overview of the

persistent current (PC) qubit, describing previously developed theoretical work. We

end with a discussion of our qubit state readout device - the magnetic flux meter or

DC SQUID magnetometer.

4.1 Superconducting Tunnel Junction

The superconducting tunnel junction consists of two superconductors separated by an

thin insulating barrier ~ 10 A(shown in Fig. 4-1). At sufficiently low temperatures

(T < 9.2 K for Nb), electrons in the superconductors condense into a "superfluid"

with electrons of opposite spin pairing up to form a resulting "particle" known as a

Cooper pair. The Cooper pairs have a net spin of zero, acting effectively as bosons

that condense into the same macroscopic quantum state. In 1962, Brian Josephson

predicted the probability of a Cooper pair tunnelling through the barrier was the same
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Insulator
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Superconductor 1 Superconductor 2
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Figure 4-1: Superconducting Tunnel Junction. The junction consists of two super-
conductors separated by an insulating layer. For a sufficiently thin insulating barrier,
the macroscopic wavefunctions of the superconductors (14'1) and 1,2)) interact.

as that for a single electron. The tunnelling of Cooper pairs is an ordered coherent

process, like the coherent light emitted from a laser. When the barrier width d is

large (d > 100 A) the macroscopic wavefunctions of the two superconductors 141) and

102) do not overlap but if the barrier is sufficiently thin (d - 10 A), the macroscopic

wavefunctions of the two superconductors interact [53].

We analyze the dynamics of the Josephson effect by considering a Josephson junc-

tion in which regions 1 and 2 are the same superconducting metal [54]. The corre-

sponding macroscopic wavefunctions in region 1 and 2 are 14'i) and 102) respectively.

The wavefunctions in the superconductors have an effective density and phase - we

assume the wavefunctions then are of the form,

1b1) = v/ies'0 (4.1)

1'2) =v/5 ei02 (4.2)

where n, and n 2 are the densities of Cooper-pair electrons in superconductor 1 and
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superconductor 2 respectively and 61 and 62 are the associated phase angles of the

wavefunctions in the two superconductors.

The time-dependent Schr6dinger wave equation for the two superconducting re-

gions are:

i = U110i) + T102 ) (4.3)
dt

ih d = U2102) + T101) (4.4)dt

where U1 , U2 are the energy of the system and T is the electron-pair coupling term

or transfer interaction across the insulator. For T = 0, U1, U2 represent the lowest

energy states of the superconductors in regions 1 and 2. If the we connect the two

superconducting regions to the terminals of a battery, there is a potential difference

between across the junction, U1 - U2 = 2eV (where e = lel). Using the form of the

wavefunctions from Eqns. (4.1) - (4.2) into Eqns. (4.3) - (4.4), we have,

Equating the real and imaginary components, we obtain

dn1  2T/nn2s
dt h sin (4.5)

dn2 _ -2T rn-n2 sin 0 (4.6)
dt h

dO1  T n 2  2eV (4.7)-d = - h- cosO6-(4)
dt h n1  2h

dO2  T 1 2eV
dt h n 2  2h

where 0 = 62 - 01. From the above equations, one determines the current density J

from region 1 to region 2 to be dn (or -Aln) or
dt A

2T
J = 2T Vnin2sin 0 (4.9)

h
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for simplicity, we write,

J = J0 sin6 (4.10)

where J = /in2. The final equations describes the time rate of change of the

phase 6 given by,

d9 d02  dO1  2eV (4.11)
dt dt dt h

Eqns (4.9) and (4.11) are the general equations for a Josephson junction.

4.1.1 Current-Voltage Characteristics of a Josephson Junc-

tion

Josephson derived the governing equations for an ideal superconducting tunnel junc-

tion. In the previous section, we showed that an applied current I controls the gauge

invariant phase difference W = cp - W2 between the two superconductors [53]

1 = Ic sin W (4.12)

we define Ic as the critical current or maximum supercurrent the junction can sustain.

At finite temperatures, the critical current I, of the Josephson junction is given by

the Ambegaokar-Baratoff relation

= rA(T) _(T)

Ic(T) = rAT tanh (4.13)2eR. \2kBT(

where R, is the normal state resistance of the junction and the gap voltage A(T) can

be numerically approximated by [55]

7r /(T 2- 1/2

A(T) = A0 cos () / (4.14)

For Nb, A0 = 1.5 mV. When the applied current increases from zero, initially there is

no voltage across the junction. However, when I > Ic, we find from Eq. (4.11) that



a discontinuous voltage V appears across the junction (Shown in Fig. 4-2b) and the

phase difference W evolves with time according to the voltage-frequency relation,

dp- = V (4.15)
dt (Do

where 4F0 is a flux quantum and has the value 4)o = 2.0679 x 10-15 T.m 2.2e

We can model a Josephson junction as an ideal Josephson junction in parallel with

an external shunt resistor R and self-capacitance C, shown in Fig. 4-2a. Describing

the equation of motion, we obtain [56, 57]

V dV
I = Ic sin w + - + C (4.16)

R dt

using Eq. (4.12) and Eq. (4.15), we can rewrite the above equation

hC.. h 2e U
S+ =- I - 1, sin W =(4.17)

2e 2eR h aw

where we define U as,

U = -- (Io - Ic Cos 0) (4.18)
27r

We realize that Eq. (4.17) describes the motion of a ball moving down an inclined

washboard potential U [53]. The self-capacitance C is analogous to the mass of the

object and the 1/R term describes the damping of the system. The degree of tilt of

the washboard is determined by the bias current I. Shown in Fig. 4-3, for I < Ic, the

particle is confined to one of the washboard potential wells, where it oscillates back

and forth at plasma frequency,

w 1 = W /,o21  - (4.19)

where wpo = 27rIc/1FoC. In this state, the time averaged voltage across the junction

is zero, corresponding to (i) =0. As we increase the current above I, the tilt of the

washboard increases such that the potential barrier AU to exit to the next potential
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Figure 4-2: a) RCSJ model of a Josephson junction. A Josephson junction is modelled
as a resistor and capacitor in series with an ideal Josephson junction (denoted by an
x) b) I-V curve of a 6x6pum 2 underdamped Nb Josephson junction at T = 380 mK.
Below a certain bias current value Ic, the junction is in its superconducting state.
When the current exceeds I, the junction switches to its normal resistance state.
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COP

a) I=0

b)

c)SW

I> ISW

Figure 4-3: Washboard potential of the Josephson junction for various applied current
values I. a) for applied current I = 0, the particle oscillates back and forth in a
potential well at frequency w, b) Near I ~ I,, the particle escapes the metastable
well through thermal activation over the potential barrier. c) The junction is in its
finite voltage or "running" state.

well is given by

<b___ I13/2

AlU = 1 - - (4.20)
27r IcJ

The rate to thermally overcome the potential barrier Fth is given by

AU

Fth = 7-,l = ad e kBT (4.21)27r

where ad = 7-AT is the damping parameter of system, which depends strongly on the

quality factor Q. Eqn. (4.20) is valid only for large Q values. Once in its "running"

state, the particle rolls down the washboard potential and a voltage appears across

the junction. In the case of low damping (R -+ oo), the particle is again confined to

a potential well only when I is reduced to a value much less than Ic. A typical I - V

curve of an underdamped junction is given in Fig. 4-2b. For Josephson junctions used
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in quantum computing applications, we are concerned mainly with the underdamped

(hysteretic) case. For this we require

C = CR >> 1 (4.22)

where #c is known as the Stewart-McCumber admittance parameter [58].

4.1.2 Switching Current Distribution of Junction

The measured switching current value of a junction, defined as the current value

at which the junction switches to its finite voltage state, is always less than I, due

mainly to thermal noise in the system. Fig. 4-4 shows a typical switching current

distribution of a Josephson junction. The noise-induced activation is a stochastic

process occurring at a rate dependent on I, the value of the switching current takes

on random values a certain probability distribution P(I) [59]. This distribution is

defined by the condition that the probability the junction switches between I and

I + 61 is P(I)6I. The measured P(I) can be related to the transition rate r over the

potential barrier defined previously. The probability distribution in I is given by

P(I) = T(I)- 1 - P(i)di] (4.23)

where (d) is the bias current ramp rate. From the known capacitance C and critical

current I of the junction, one can use a theoretical fit to compare to the experimental

probability distribution. The effective noise level of the system can be characterized

and determined if the noise in the system is thermal-noise-limited.

Fig. 4-5a shows a series of switching probability distributions P(I) versus applied

current at various temperatures. The P(I) has an intrinsic asymmetry with a tail

at low I and a more abrupt cutoff at high values of I. As temperature is lowered

T -* 0, we expect the probability distribution width u to narrow (standard deviation

decreases shown in Fig. 4-5b) and the average switching current value to increase. As

T is lowered to kBT < hwpo/20, the probability distribution width o is independent of
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Figure 4-4: Switching current distribution of a I, ~ 8p A junction at T 12 mK. 10 3

switching events are taken to create a switching current histogram.

T. At these temperatures, thermal activation over the potential barrier is negligible

and quantum tunnelling effects begin to dominate.

4.1.3 Josephson Junction as a Non-linear Inductor

From the Josephson junction governing equations, we show that the Josephson junc-

tion behaves like a non-linear inductor [60]. The voltage v across an inductor is given

as

dI
v = L d-

dt
(4.24)

using Eq. (4.12) and (4.15) to solve for the inductance of the junction Lj in terms of

the critical current Ic and W,

27rIe cos (2

95

I

(4.25)
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Figure 4-5: a) Switching current probability distribution of I, ~ 2.8y A junction for
various temperatures. As temperature decreases, the switching current I,, increases
and the standard deviation of the switching current decreases.b) Standard deviation
o of the switching current vs. temperature. The standard deviation decreases linearly
with temperature. At sufficiently low temperature, thermal activation is not dominant
and a- saturates.
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4.2. QUANTUM PROPERTIES OF JOSEPHSON JUNCTIONS

We find that the Josephson junction acts as a non-linear inductor Lj. A non-linear

inductor has two important consequences for observing quantum effects. First, the

existence of a wave-packet associated with the phase difference <p can be demonstrated

to decay into a metastable ground state by tunnelling. This process is known as

Macroscopic Quantum Tunnelling (MQT). Second, one can observe the quantized

energy levels spectroscopically since the quantum and classical responses differ when

an external perturbation is applied.

4.2 Quantum Properties of Josephson Junctions

With current fabrication technology pushing the size of tunnel junctions into the

submicron regime, more and more research has involved Josephson junction devices to

study quantum mechanics at macroscopic scales [9]-[22]. For the case of a Josephson

junction enclosed in a ring geometry, the macroscopic degrees of freedom are the

magnetic flux 4D and the charge Q on the junction. We define Q as twice the charge

of an electron e times the number of Cooper pairs N, Q = 2eN. One can design the

circuit such that either the Josephson (magnetic) energy Ei or the charging energy

E, is the significant parameter. In the former case, the magnetic flux enclosed in a

ring geometry is the well-defined quantum degree of freedom and in the latter case,

the number of Cooper pairs on a superconducting island is the well-defined degree of

freedom. If we treat these as operators, the operator 0 is the quantum-mechanical

phase conjugate to the operator Q so we have as our uncertainty relation,

AN ;> 1 (4.26)

Let us determine the Hamiltonian of a single tunnel junction [60]-[62]. We find

that the Josephson junction can be modelled as a non-linear inductor in parallel

with a capacitor (we regard the junctions as dissipationless). The charging (capaci-

tive) energy is due to the sandwich structure of the junction and is the usual energy

associated with a capacitor C,
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1 Q2
UC = -CV2 = (4.27)

2 2C

We determine the free energy required to change the phase of the Josephson

junction. The Josephson energy is calculated by integrating the power dissipated

from the system feo VIdt. V is the voltage generated while the current I is being

changed from zero current at t = 0 to its final current value at time t = to. Using Eq.

(4.12) and (4.15) to write the current I and voltage V in terms of phase, this yields

Uj = Ej(1 - cos p) (4.28)

where Ej = 40c. The total Hamiltonian of our system is found to be,

H 2 + Ei(1 - cos A) (4.29)2C

Let us make the operator replacement for charge in the p representation Q/2e =

N -- i0/0a. For our particular devices, we are mainly concerned with the phase

representation.

a2
H = -4EV 0 2 + Ej(1 - cos 2) (4.30)

where E, = -. The wavefunction for this Hamiltonian depends on the relative2C~

strengths of E, and Ej. We can assume the wavefunction has the form of a Bloch

function XI(W) = E u(p)eik . For the case of Ei >> Ec, we can approximate the

Hamiltonian as a particle confined to a series of harmonic oscillator potentials. The

ground state is then a series of narrowly peaked wavefunctions '(W), with a number

of higher states in this potential minimum resembling the excited states of a harmonic

oscillator,

T(p) ~ exp(- 2/(2o-) 2) (4.31)

where a- is the rms spread in phase p, whose value is chosen to minimize the aver-

age energy of the system. When E, > Ej, the second term in Eq. (4.29) can be
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treated as a perturbation that couples charge eigenstates. For the ground state we

can approximate this as,

T( c) Cos 0 (4.32)

We find then that there are two regimes to our circuit, the phase and charge regime

[60]. Devices fabricated in either the charge or phase regime have been studied to

experimentally verify the competition between Josephson and charging effects. We

have as our two basis states, the phase states and its Fourier transform, the charge

states. The phase eigenfunction is the convenient choice for describing junctions

dominated by the phase-dependent coupling Ei just as the number N eigenfunctions

are useful for discussing junctions in the charging regime.

Proposals to use Josephson systems as qubits have up to now mostly concentrated

on three basic types of implementations, the "Cooper-pair box" ("charge qubit")

and the "rf SQUID ring" / "persistent current (PC) qubit" ("flux qubit") or large

Josephson junction ("phase" qubit). In the first case, a small superconducting island

is connected to a superconducting reservoir by a Josephson junction. At a suitable

bias voltage on the island relative to the reservoir, these states are degenerate in

the absence of Josephson tunnelling, but such tunnelling splits the two states. The

eigenstates correspond to states with N and N +1 Cooper pairs on the island. In this

system the most serious source of decoherence is believed to be fluctuations in the

biasing voltage ("charge noise"). In the second implementation, the "flux qubit", the

system is a superconducting loop interrupted by one or more Josephson junctions,

typically of dimensions ~ p m, and biased by a suitable external magnetic flux. The

eigenstates of this system correspond to different values of the circulating current

and hence of the total flux enclosed in the loop. Fluctuations of the external flux

("flux noise") are a major source of decoherence in this system. We finally consider a

large Josephson junction, the "phase qubit", consisting of a current biased Josephson

junction with relatively large area ~ 10 x 10 ptm 2. Near an applied current slightly

less than Ic, the eigenstates of the system correspond to states of differing voltage
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state tunnelling probabilities. The most serious source of decoherence for this system

is fluctuations from the current source used to bias the junction.

4.3 Persistent Current Qubit System

The Persistent Current (PC) qubit is a promising candidate for a superconducting

flux qubit. We discuss the PC qubit, reviewing previously developed theory, then

follow with a discussion of the flux meter reading out the qubit - a DC SQUID

magnetometer.

4.3.1 PC Qubit

The persistent current (PC) qubit proposed by Mooij, Orlando et al. [25, 26] was

fabricated in a regime where the Josephson energy was significantly larger than the

charging energy (Ej/Ec ~ 100) meaning phase is the well defined quantum variable.

The circuit, shown in Fig. 4-6, consists of a ~10 pm sized loop interrupted by three

Josephson junctions and inductively coupled to a superconducting magnetometer.

Two of the Josephson junctions have equal Josephson coupling energy Ei while the

third (weak) junction has Josephson energy aEj where 0.5 < a < 1.

If we apply a small dc magnetic field through a superconducting loop (with or

without junctions), we can induce a dc persistent current to flow. Under suitable

device parameters, a three-junction loop will have two stable states corresponding to

persistent currents of opposite direction when an applied magnetic field or frustration

f (in units of <b/4o) is near a half integer value of a flux quanta <Do. If we ignore the

self induced flux of the loop, fluxoid quantization states that the phases across the

junctions are constrained by the applied flux through the loop. We find therefore,

SPi - W2 + W3 = -27rf (4.33)

leaving (P1 and W2 as independent dynamical variables.

Plotting the two independent variables 91 and (P2, we find the Josephson potential
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a)

PC ubi DC SQUIDPC Qbit

b)

-5pm

Figure 4-6: Persistent Current Qubit inductively coupled to a DC SQUID. a)
Schematic of the PC qubit circuit. b) Image of the device fabricated at MIT Lincoln
Laboratory Nb trilayer process. The three corners of the loop contain a junction
while the fourth (upper left) contains a via.
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energy Uj landscape is given by a two-dimensional coordinate space,

UJ(soi, (P2) = Ej[2 + a - cos W, - cos W2 - a cos(W1 - W2 + 21rf)] (4.34)

If we let a ~ 0.8, the effective potential is a periodic pattern of local double wells

as shown in Fig. 4-7a. Large potential barriers separate the double wells whereas the

potential barrier between the wells is sufficiently weak such that tunnelling between

levels can occur. The system can be viewed as a particle in the Josephson potential

with the charging energy E, as its kinetic energy. Shown in Fig. 4-7b, by controlling

the externally applied magnetic field near f = j, one can control the energy of the

two minima.

Let us determine the Hamiltonian of our PC qubit. Defining phase coordinates

sP = (so1 + W2)/ 2 and Wm = (so - W2)/ 2 , the Hamiltonian of the PC qubit loop can

be written as,

1 P2 I p2
H=- - _ m + E,[2 + a - 2 cos Wp cos Wm - a cos(27rf + 2 m)] (4.35)

2 2Mp 2 2Mm
Josephson energy

Charging energy

where the momenta is written as PP = -ih/&so, and Pm = -ih/som. The

mass terms depend on the capacitance C of the junctions and are defines as Mp =

2C(Io/27r) 2 and Mp = 2C(1 + 2a)(Io/27r) 2 . We have ignored the energy associated

with the self-inductance Lq of the qubit loop in our Hamiltonian. Calculations have

been performed to verify that for sufficiently small self-inductance of the qubit loop

Lq, its effect can be ignored [63]. The energy bandstructure of the PC qubit, near

f = 1/2, is shown in Fig. 4-8.

At the appropriate applied frustration f, we find the system has two low eigenen-

ergies that are well separated from higher energy states (shown in Fig. 4-9a). Near

f = 1, theoretical results show that one can approximate the Hamiltonian of our

circuit as a two level system given by [25, 64],
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Figure 4-7: a) Josephson Energy Phase space near applied field f = 1/2 (f = 0.495)
plotted as a function of p, and 02. The Josephson energy potential consists of a
periodic series of double well potentials. b) Energy along the trajectory indicated by
the arrow. A unit cell contains two local minima. By varying the frustration, the
double well potential configuration changes.
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1
H = 2( + Au) (4.36)

where o, and u. are Pauli spin matrices described previously. We define A as the

tunnel splitting at f = 1. The energy bias E is given by:

= I<DO (f - (4.37)

where Ip is the circulating current in the qubit. The system has for its two lowest

eigenenergies E+,

1
E-,+ = F 1 2 + .2 (4.38)

If A/E is small, the eigenstates of H are nearly eigenstates of c, corresponding

to states in which the system is localized in one well or another. At f = 1, we

expect degeneracy between the two states in the absence of quantum coherence. For

sufficient coherent tunnelling, the eigenstates of the system IT+) and IT-) are the

symmetric and anti-symmetric superpositions of the left 10) and right 11) well states

IT+) = 2(10) - 1)) (4.39)

1
IT-) = -(10) + 1)) (4.40)

The expectation value of the circulating current is calculated to be (Icic) = aE/af

[26]. For the two lowest energy states, we find the circulating currents will be of

opposite direction (shown in Fig. 4-9b).

For millikelvin temperatures and low environmental noise, we expect damped

coherent oscillations between the two potential wells. When the energy levels between

wells are equal, the mixing of the two energy states between wells produces an energy

gap A. We explain this gap by the following [65]: As the particle tunnels between

the two potential wells, it lowers its kinetic energy by spreading its wavefunction over

both wells. As a result the mixed ground state is shifted down by A/2 with respect
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Figure 4-8: Eigenenergies of first four energy levels of PC qubit near f=1/2. Parame-
ters are for: Ej = 1.6 meV, E, = 12.5 [eV, a = 0.6. At f = 1/2, the energy splitting
between the ground state (black) and first excited state (gray) is A ~ 4 GHz.
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Figure 4-9: a) Two-level system. Ground state energy (black) and first excited state
energy (gray) of the PC qubit loop as a function of applied frustration f. Classically
(dashed lines), we expect a degeneracy point at f = j. With sufficient tunnel cou-
pling, the energy levels are separated by a gap A. Shown above are the double well
potentials (with two lowest energies indicated) at given applied frustrations. b) The
circulating current of the PC qubit as a function of frustration for the ground state
(black) and first excited state (gray).
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to the individual wells. The corresponding anti-symmetric state is slightly higher in

energy (A/2) resulting in an excitation gap of A. We define regions where the energy

levels between the double wells line up and an energy gap occurs as a level crossing

or a resonant tunnelling event.

Unfortunately measuring this energy gap or observing a superposition of macro-

scopic states is extremely difficult due to decoherence by the environment. We require

the eigenenergy splitting be much larger than the thermal energy fluctuations of the

system (kBT < A). Although it is unclear that the thermal energy fluctuations ex-

perienced by the qubit are well-approximated by kBT, it should certainly accepted

that kBT is a bound. At T = 1 K, the thermal energy is roughly 20 GHz. Therefore,

an experiment at temperature T = 10 mK is subject to thermal energy fluctuations

of roughly kBT - 0.2 GHz. Since the device temperature is often significantly higher

than the phonon temperature, we would ideally like at least a factor 10 higher in the

energy splitting at f = 1/2 (A > 10kBT). Thus, we nominally desire A ~ 1 GHz to

achieve a large initial population (i.e., approach unity occupation probability) in the

qubit ground state at f = 1/2.

Dephasing and Relaxation within the Spin-Boson Model

The major problem in superconducting circuits is the interaction of the surrounding

environment with the quantum components, leading to irreversible loss and transfer

of information or decoherence. Critical to an effective quantum computing is the

extent to which the phase relation between the 10) and 1) components of the wave

function is preserved. By the phenomenon of decoherence, any irreversible interaction

of a quantum-mechanical system with its environment destroys the phase relations

between the quantum states. The effect of decoherence in randomizing the relative

phase is usually quantified by the dephasing time T,, with the inverse given as the

dephasing rate F. In addition to T,, it is useful to define the energy relaxation time

Trea, defined as the 1/e time to relax to its ground state from the first excited state.

The inverse of the energy relaxation time is given as 'relax [66]. In general, dephasing

occurs on a much faster time scale than relaxation.
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The relaxation time and dephasing time for our PC qubit system is determined

by applying a spin-boson model. The spin-boson model considers a dissipative two-

level system - the environment is modelled as a bath of LC oscillators coupled to the

modes of the quantum system. The influence of the oscillator bath on the qubit is

described by the environmental spectral density function J(w) given as

J(w) =7 C 6 Wi) (4.41)
2 CiWi

where ci is the coupling strength to the i-th oscillator and wi is the resonant frequency

of the i-th oscillator.

The relaxation rate Frelax and dephasing rate F,, are then determined by the

environmental spectral density function and the energy level separation 6E between

the ground and first excited state by,

r T-Jax = J(w) coth ( l (4.42)
reax Telx 2 ( JE 2kBT x_,=W

-1 11 1 (EN 21  -Eo -wN
0, = P- 2 ~ r-el a lim [J(w) coth (4.43)

2 "' 2 TSE w--+0 2kBT

In particular, we are interested in the ohmic dissipation of our quantum system,

corresponding to a spectrum

7r
J(w) = -azhW (4.44)

2

which is linear at low frequencies up to some cutoff frequency. The dimensionless

parameter oz describes the dissipation or damping of our system and is inversely

proportional to the quality factor Q,

aL OC 1/Q (4.45)

if we assume that the environment can be modelled as an ohmic bath, then we can

estimate the decoherence times of a PC qubit in which the qubit states are those of

opposite circulating current [14, 20, 26]. The energy relaxation and phase decoherence
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times are then given in the spin-boson model for an ohmic environment by [8, 66]

lrFOL5E . E\
Irelax = T-%, ~ h i2 T1 coth 2B (4.46)Frlx Trlx- h (2kBT

1 1 + 27raLkBT 2

~ - rla,+ h Cos (4.47)

where the mixing angle 7 = tan1 (A/JE).

Although extremely instructive, the spin-boson model is a simple model to ana-

lyze the decoherence in our system. A general method to study qubit decoherence

by environmental noise has also been developed [67]. Other experimental environ-

ments, such as influence of the SQUID readout device [68, 69], have been considered

to determine the noise coupling into the system. The measurement efficiency and

measurement-induced decoherence of the readout device has been investigated.

4.3.2 DC SQUID Magnetometer

The success of the macroscopic quantum experiments is enhanced by the convergence

of two superconducting technologies, a device exhibiting macroscopically observable

quantum coherence and a sensor exhibiting nearly ideal sensitivity to variations in

magnetic flux. For our system, a DC SQUID (Superconducting Quantum Interference

Device) magnetometer is used to measure the magnetic flux produced by the circulat-

ing current in the PC qubit. SQUIDs are natural candidates as magnetometers since

they are extremely sensitive detectors of magnetic flux and can be fabricated in the

same process as the qubit [56]. For our system, the SQUID uses unshunted junctions

that are extremely underdamped, in order to minimize decoherence of our quantum

system. For high effective shunt resistances, we acquire lower noise from the SQUID

in the superconducting regime (when no measurement is performed).

A schematic of a DC SQUID is given in Figure 4-10. The SQUID consists of two

Josephson junctions connected in parallel in a superconducting loop. If we ignore the

resistance and self-capacitance of the two junctions, the total current I, through the

SQUID is given by [53]
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lC1, Pi

lb?

is0 Ic2, T2

Figure 4-10: Circuit diagram of the DC SQUID. The DC SQUID consists of two
Josephson junctions connected in parallel in a superconducting loop (Ici, cp1, and Ic2,
Sc2 are the critical current and phase difference across the junctions respectively. A
bias current Ihua is ramped to determine the total flux 4JSQ threading the SQUID
loop.

I' = I,, sin W1 + Ic2 sin 2 (4.48)

where Ici, 91, and Ic2, 92 are the critical currents and phase difference of the two

junctions respectively. If we let the two critical currents Ici and c2 be equal (Ici =

c2 = Ic) and impose the fluxoid quantization condition

01 - W2= - 2 7r(SQ (4.49)

we then obtain

I' = 21 cos(1r~sQ) sin(Soi + 7rDsQ) (4.50)

where (ISQ is the total flux through the SQUID loop given by,

SUPERCONDUCTING QUANTUM CIRCUITS110 CH APT ER 4.
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SQ = f + LsQIC sin(7rDsQ) cos( oi + 7rF4 sQ) + MIcirc (4.51)
applied flux flux from self-inductance flux produced by the PC qubit

where LSQ is the self-inductance of the SQUID loop, M is the mutual inductance

between the SQUID loop and PC qubit, and Icirc is the circulating current in the PC

qubit. The switching current I,, value is found to have a periodic modulation for

an externally applied magnetic field (Shown in Figure 4-11). For the DC SQUID, we

define the parameter 3L,

1L = 27rLsQIc/Fo (4.52)

which determines the depth of modulation of the switching current. For maximum

switching current modulation, we require 3 L to be small 3L < 1 For our DC SQUID

magnetometer, fL ~ 0.9. If we ignore the inductance of the SQUID loop, we find

I' = 2Ic1cos(7rDsQ)1 (4.53)

Shown in Fig. 4-11a, the critical current I' is periodic with the applied magnetic

flux (DSQ. The small inductance of the PC qubit produces a small Mhi" < 10-2 o

flux signal. The flux signal in the SQUID is measured by ramping the bias Ibia, current

through the device and recording the current level I,, where the SQUID jumps from

the superconducting branch to the finite voltage (dissipative) branch. Escape to the

voltage state is a stochastic process even when the external flux through the SQUID

is fixed. This results in a large spread in IM in a histogram of switching events.

Although we measure the total flux JSQ through the SQUID, we are able to measure

changes in the state of the PC qubit, due to a change in circulating current near

applied frustration f = 1/2. The resulting qubit signal is a ~ 100 nA "step" like

feature within the SQUID modulation curve as shown in Figure 4-11b.

4.3. PERSISTENT CURRENT QUBIT SYSTEM ill
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Figure 4-11: Simulation of the DC SQUID modulation assuming the SQUID self-
inductance LSQ = 0 and critical current I, of the SQUID is 12puA. The arrows
indicate the 3<Do/2 periodic qubit step signal and dashed box highlights a PC qubit
step. For our parameters, we assume MI ~ 10--2<D% b) Blow-up of the PC qubit step
signal (- 100 nA) due to the change in circulating current of the PC qubit.
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Chapter 5

Experimental Realization of a Nb

Persistent Current Qubit

It is valuable to investigate Nb-based Josephson devices as potential qubits. Nb has

advantages over other technologies - it has a more mature fabrication capability and

can be incorporated with existing RSFQ technology. Initial measurements on the PC

qubit were performed at the Delft University of Technology with Al/AlO./Al junc-

tions fabricated in a shadow evaporation technique [14]. Spectroscopy measurements

demonstrated a superposition of macroscopic quantum states in the Al qubit. Coher-

ent temporal oscillation experiments have determined the energy relaxation time and

dephasing time of the Al qubits to be ~ 900 ns and ~ 20 ns respectively [20]. Pre-

vious methods to determine dissipation in these devices are applicable at relatively

high temperatures (T ~ 0.55 K) [70] or rely on indirect measurements of switching

probabilities [71, 72]. For Nb based structures, experimental investigation of deco-

herence is sparse due to the challenges of both fabricating Nb devices of sufficient

quality and the difficulty in the time resolution of the measurement. Quantifying

the dissipation in Nb devices is extremely useful because it indicates whether the

dissipation is acceptable to make error-tolerant computation feasible.

The following chapter discusses experimental progress in Nb/Al/AlO,/Nb Joseph-

son junction qubits measured at dilution refrigerator temperatures, with an emphasis

on determining the energy relaxation time rd between macroscopic quantum levels.

113



CHAPTER 5. EXPERIMENTAL REALIZATION OF A NB PERSISTENT
114 CURRENT QUBIT

The low-temperature experimental setup, which is vital to minimizing noise and de-

coherence in our system, is detailed and the measurement process is discussed. The

main aspect of the research involves off-chip microwave spectroscopy experiments to

probe the energy bandstructure of the system. We can induce transitions between

the two distinct energy levels of the system by applying low-amplitude microwaves

resonant with the energy level separation. Time-resolved measurements of the in-

trawell energy relaxation time Td between macroscopic quantum levels are presented

[73]. From the low-temperature measurements, one can infer a decoherence time for

these Nb devices. The measured relaxation times (~ 24p s) suggest a strong potential

for quantum computing employing Nb-based superconducting circuits.

Initial measurements on the Nb PC qubit (fabricated at MIT Lincoln Laboratory)

were performed at 3He refrigerator temperatures. At T ~ 300 mK, time-ordered

measurements of the two states of the qubit probed the thermal activation rate over

a potential barrier [74, 75]. Using a model that incorporates thermal activation, the

system parameters (Ej - 4 meV and E, - 2 peV) were extracted and a quality factor

Q for the Nb PC qubit was estimated to be ~ 3 x 105. The flux biasing of the devices

effectively transformed the impedance seen by the qubit by a factor of (3LJ/M)2,

where Li = <Do/(27rlc) is the Josephson inductance of each of the three junctions in

the qubit. The results of the quality factor Q are in approximate agreement with

independent measurements of the subgap resistances of MIT Lincoln Laboratory Nb

Josephson junctions (Rsuba, ~ 10 MQ) at low temperatures (T ~ 1 K). The large Q
value for these devices show great promise for Nb-based qubits.

At sufficiently lower temperatures (T ~ 20 mK), where thermal activation is neg-

ligible, macroscopic resonant tunnelling or DC level spectroscopy between quantum

levels have been observed in Nb PC qubit structures [76, 77]. Depending on the ex-

ternal parameters, the system may have multiple quantum energy levels in one of the

two wells, where each level has approximately the same magnetization. The quantum

levels are measured by observing resonant tunnelling between the two wells of the

double well potential configuration. Fig. 5-1 are plots of the qubit state probability

(theory and experiment) vs. frustration when the SQUID magnetometer current bias



is ramped at two different rates (a) 4 mA/ms and (b) 0.8 mA/ms. The probability

that the state will transition from 1 to 0 depends on the tunnelling rate and the time

for the system to remain in the level crossing region. The rate of resonant transition

from the lowest energy level in one well to a high energy level in another well was

determined theoretically for a double well potential configuration [78]. The slower

ramp rate (0.8 mA/ms) results in a higher probability that the qubit transitioned to

the 1 state, which is made clear by the developing peaks marked by the vertical lines.

Since the flux bias which the qubit sees is constantly changing (due to the changing

circulating current in the DC SQUID as the bias current is ramped), the sharp peaks

in the state probability indicate the qubit has passed through an energy bias which

gives a high tunnelling rate. It also shows that it spends a significant amount of time

at that level alignment only for certain external flux biases. Thus, when the current

ramp rate is slower, the indicated peaks are expected to increase, which is consistent

with experiment. By measuring the width and height of the tunnelling peaks as a

function of the SQUID ramp rate, the fitted value of the intrawell relaxation time rd

between macroscopic quantum levels has been determined to be of order ~1 - 10 ps.

5.1 Nb PC Qubit Sample Parameters

We begin with the overall parameters of our Nb PC qubit device and DC SQUID flux

meter (sample parameters are summarized in Table 5.1 and 5.2). The PC qubit has

an area 16 x 16 pim 2 and the DC SQUID loop has an area 20x20 /m 2. The linewidths

of the loop are approximately ~ 1 pm wide. The ratio of SQUID to PC qubit area was

approximately 3/2, such that the change in flux signal from the qubit would occur at

the most sensitive region of the SQUID's (I.,) modulation curve. The self-inductance

of the loops were calculated using FASTHENRY, a three-dimensional inductance

extraction program [79]. We estimate the self-inductance of the PC qubit loop and

DC SQUID loop to be 40 pH and 50 pH respectively and the mutual inductance M

between the two loops to be 20 pH. From measurements of step regions in the DC

SQUID modulation curve, the mutual inductance M is estimated to be 25 pH [76].
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Figure 5-1: The qubit state probability when the SQUID is ramped at a rate of a)
4 mA/ms and b) 0.8 mA/ms. The solid lines correspond to the theoretical model,
while the solid circles are experimental data points. The slower ramp rate results in
a higher probability that the qubit will transition to the 1 state, as is made clear by
the growing peaks marked by the vertical lines.
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5.1. NB PC QUBIT SAMPLE PARAMETERS

The two junctions of the SQUID had nominal junction sizes of 1.2 x 1.2 pm 2 and the

qubit had junction sizes of 0.5x0.5 pm2 for the smaller junction and 0.6 xO.6 pm2 for

the two larger junctions, giving a ~ 0.7. The current density J, of the sample was

~ 400 A/cm2. The total critical current of the DC SQUID I' was measured to be 12 pA

and the critical current of the PC qubit was estimated from the area of the smaller

junction and current density Je to be 1-2 pA. We therefore estimate the maximum

flux signal change from the three junction loop to be MIcirc ~ 10-2 (Do. The SQUID

was shunted with on-chip 2 pF capacitors in order to increase the effective mass C

of the SQUID, thereby lowering its LC resonant frequency. The shunt capacitor is

formed by the Nb base electrode and wiring layers as the capacitor plates and the Si0 2

insulating layer for the dielectric. From the given sample parameters, a bandstructure

of the qubit (Shown in Fig. 5-2) is calculated, showing the level crossings of the system

Table 5.1: PC Qubit Sample Parameters
Qubit junction dimensions 0.5x0.5 pm2 (small)

0.6x0.6 pm2 (large)
0.6

Loop area 16x16 pm2

Loop Inductance 40 pH
Circulating Current 1-2 pA

Ei 2.1 meV 500 GHz
Ec 2-4 peV 0.5-1 GHz

Ei/Ec 500-1000

Table 5.2: DC SQUID Parameters
DC SQUID junction dimensions 1.1x1.1mi2

Loop area 20x20 pm 2

Loop Inductance 50 pH
Total Critical Current I' 12 pA

/L 0.2
Shunt Capacitance 2 pF

Mutual inductance M to qubit 20 pH
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Figure 5-2: Energy band structure of PC qubit near f=1/2 for parameters given
in Table 5.1. Note the tunnel splitting or level crossings occur at certain values of
frustration f causing an energy "gap" between levels (indicated by arrows).
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5.2 Experimental Implementation

vibration
isolation insert
system

Figure 5-3: The dilution refrigerator floats on a vibration isolation table. Outside
the inner vacuum can (IVC) sits a superconducting magnet and a 4-layer Cryoperm
magnetic shield assembly.

Measurements on the PC qubit were performed in a standard Oxford Kelvinox 400

Dilution Refrigerator with a base temperature of ~10 mK. The temperature of the

refrigerator is reached through evaporative cooling of concentrated 3He into a heavier

"dilute" phase within a mixing chamber. Shown in Fig. 5-3, the dilution refrigerator is

supported by a vibration isolation table which minimized vibrational disturbances to

the qubit system. All electrical connections were thermally anchored at various stages

along the insert to reduce heat load on the mixing chamber and sample. Temperature

measurements were determined using a Femtopower thermometry system, allowing
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useful measurements to be made of the ruthenium oxide resistance sensors at the

mixing chamber. The resistance measurements allowed for accurate thermometry

measurements down to ~ 20 mK.

Circuit chip

Carrier chip

5 mm

Figure 5-4: Circuit chip bonded within chip carrier. Gold wire bonds electrically
connect the circuit chip to the carrier.

The sample was mounted on a chip carrier (shown in Fig. 5-4) that was en-

closed in an oxygen-free-copper sample cell (Fig. 5-5), thermally anchored to the

mixing chamber of the dilution refrigerator and magnetically shielded by four lay-

ers of cryoperm-10 p-metal located outside the vacuum can but within the He-filled

dewar. The p-metal shielding was used to attenuate unwanted external magnetic

field fluctuations by a factor ~ 102. Extensive effort was made to isolate the sample

from external noise coming down the DC lines. All electrical leads connected to the

SQUID were carefully filtered by Electromagnetic Interference (EMI) filters to the

battery-powered room temperature electronics. RC filters at the 1 K stage were used

to give cutoff frequencies of 10 kHz. We used stainless steel powder filters, located at

the mixing chamber, to attenuate high frequency (-20 dB at 1 GHz) electrical noise.

The powder filters consisted of three inch long copper tubes, filled with stainless steel

powder, housing a 1 m long coiled wire. The copper sample cell was used to shield

the sample from 50 mK blackbody radiation. Additionally, a copper shield, anchored



to the 50 mK stage, was used to shield the entire assembly from radiation at tem-

peratures > 50 mK. Shown in Fig. 5-5, microwaves were injected to the qubit via a

separate semirigid cryogenic coaxial cable with 20 dB attenuators at the 1 K pot and

the mixing chamber. The microwave cables were terminated with a small (- 1 cm)

loop placed approximately 1 cm above the sample, inductively coupling microwave

radiation to the qubit loop. The external magnetic field was applied to the sample

by a superconducting solenoid wrapped around the vacuum can located in the liquid

4He bath. The solenoid consisted of -100 turns of superconducting wire producing

a field of - 20 mG per mA. A room temperature ir filter on the magnet field lines

was used to attenuate high frequency (-6 dB at 30 kHz) noise. A smaller solenoid,

located within the sample cell, provided a means to produce pulsed state preparation

magnetic fields to the sample. The entire low temperature assembly is shown in Fig.

5-6.
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a)

RC filters

ji-wave cables -

attenuators
(at mixing chamber)

b)
mixing chamber

(Tbase = 12mK)

p-wave cables

powder filters

rf tight
sample cell

Figure 5-5: a) High frequency cable setup to irradiate microwaves to the qubit sample.
Cables are attenuated at the mixing chamber and 1 K stage and directly enter the
sample cell. b) The sample is mounted in a oxygen-free copper sample cell thermally
anchored to the mixing chamber. The electrical lines for the bias and voltage leads
are filtered by copper powder microwave filters to attenuate high frequency (> 1 GHz)
noise.



5.3 Current Bias and Measurement Scheme

The electronics measurement setup is shown in Fig. 5-7. The bias current through the

DC SQUID was generated by an Agilent 33250A Arbitrary Waveform Generator at a

ramp rate between 100 Hz to 250 Hz. The voltage waveform generator was optically

isolated from the sample using a BURR-BROWN IS0100 device and current biased

through a 100 kQ resistor. The bias current was ramped linearly to a current value

slightly greater than the critical current of the DC SQUID then ramped down to a

slightly negative offset value (- 0.1 V) to ensure the SQUID returned to its zero voltage

state. When the device switched from the superconducting state, the resulting gap

voltage (V,,p = 3 mV) was amplified (x 100) by a low-noise AD624 battery powered

precision instrumentation amplifier. An Agilent 53132A Universal Counter recorded

the time elapsed between a bias current of zero to its switching current value 'S,.

The corresponding time elapsed rswitch is then linearly proportional to the switching

current value. The discontinuous switching current measurement method is presented

in Fig. 5-8.

Typical switching current distributions consisted of 103 switching events taken at

a fixed magnetic field. Shown in Fig. 5-9a is a typical Current-Voltage curve of the

DC SQUID. The hysteretic I - V is similar to that of a single junction of comparable

critical current value. Below a certain switching current value, the SQUID is in the

superconducting state. Ramping the bias current through the DC SQUID to a value

greater than the switching current causes the SQUID to jump to its finite voltage

state. Fig. 5-9b shows the corresponding switching current histogram of the DC

SQUID at a fixed magnetic flux. The stochastic nature of the switching event creates

a current distribution, similar to the switching current distribution of a single junction

described in section 4.1.2.
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I

Data-acquisition and control
(hardware & software)

Figure 5-6: Experimental Measurement setup. The lines to the DC SQUID readout
device are filtered at the 1 K stage and mixing chamber (12 mK). Using battery-
powered electronics, the current through the SQUID is ramped and the switching
current value is determined. The PC qubit is magnetically flux biased using an
external magnet located in the 4 K bath. An internal magnet at the mixing chamber
is used for state preparation. An external microwave source is used to irradiate the
sample.
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5.3. CURRENT BIAS AND MEASUREMENT SCHEME

The applied magnetic field was swept in small increments (- 0.03 m4o) and at a

given (fixed) magnetic field value, the average switching current values were recorded

(Fig. 5-10). As described in Section 4.3.2, we observe a cosine-like periodic modu-

lation of the average switching current vs. magnetic field. The current through the

large magnet solenoid (located outside the IVC) was supplied by a Yokogawa 7651

Programmable DC Source. Near 24o of the DC SQUID (14o for the PC qubit), we

observed a small change in flux signal (~ 10-2 '1o) produced by the PC qubit (shown

in Fig. 5-11a). The periodicity of the flux signal was observed to occur at 2Io of the

DC SQUID as expected. The signal alternated between persistent current flowing to

enhance then subtract from the applied magnetic field. From the histogram plots,

one finds the PC qubit is in a bimodal state near f = 1, a single measurement of the

flux will find the state in either of the two circulating current states. For f < j the
2

lower switching current corresponds to state of the system in the lower potential well

and for f > j, the higher switching current corresponds to the state of the system

in the lower potential well. Overall, the system tended to remain in its lowest energy

state.
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Figure 5-7: Circuit diagram for current bias and voltage readout. a) The waveform
is generated using a waveform generator, optically isolated from the sample. b)
Cables are filtered at the 1 K stage using RC filters and at the mixing chamber using
copper powder filters (CPF). c) The resulting gap voltage is amplified (x 100) using
a precision instrumentation amplifier.
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a) Bias current 'bias

b) Voltage across
DC SQUID

c) Time measured Tswitchi 'sAitch2 sWftCh3
from counter

trigger 1 trigger 2

time (a.u.)

Figure 5-8: Discontinuous Switching current measurement. a) Current Bias is linearly
ramped to a current slightly higher than the switching current level of the DC SQUID.
At a given current value the dc SQUID switches to the finite voltage state. The
switching current value is inferred from the time to switch measurement. This process
is repeated N ~ 10' times for a given magnetic field.
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Figure 5-9: a) Current-Voltage Characteristics of the DC SQUID at T = 15 mK and
zero magnetic field. b) Typical switching current histogram of DC SQUID consisting
of 103 measurements.
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Figure 5-10: DC SQUID Average Switching current (Is.) modulation (solid line) is
periodic in applied magnetic field. Near f=1/2, we detect a change in the circulating

current of the PC qubit, indicated by an increase in the switching current standard

deviation (dashed line).
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A detailed plot of the qubit "step" region (average and contour) is shown in Fig.

5-11. Fig. 5-11a is a plot of the average switching current value (I,.) vs. frustration

whereas Fig. 5-11b is a contour plot of the switching current distribution - each verti-

cal segment is a switching current histogram and the gray scale represents the number

of switching events. The qubit is initially prepared in the higher switching current

branch using a state preparation pulse (detailed in next section). At certain frus-

trations, macroscopic tunnelling between adjacent wells is at a maximum. At these

given level crossings, resonant tunnelling causes transitions to the lower switching

current state, indicated by small population distributions in the lower switching cur-

rent branch at f ~0.49, f ~0.495 and f ~0.5 (indicated with arrows in Fig. 5-11b).

As described in Sec 5.1, previous work on Nb PC qubits investigated the resonant

tunnelling event, or DC level spectroscopy, between macroscopic quantum levels [76].

5.4 Spectroscopy Measurements on PC Qubit

Off-chip spectroscopy of the qubit energy levels was achieved using microwave pulses

to produce photon induced transitions or resonant transitions between quantum

states. For each measurement trial (Fig. 5-12), we first prepared the qubit in a

particular state (state 11)) by tilting the double well potential. This was performed

by applying an appropriate frustration via a 200 ps current pulse through the inner

solenoid, to a regime where the system has a single well and then waited a sufficiently

long time (- 1 ms) for the system to relax to its ground state. We used an Agilent

33250A Function Generator to apply the magnetic field state preparation pulse to the

sample. After the qubit had relaxed to its ground state, the potential was tilted back

to the frustration where it was to be measured. At dilution refrigerator temperatures,

the qubit will have a finite probability of remaining in state 1), which is effectively

metastable on the timescales considered in the experiment. Second, we used an Ag-

ilent E8257C Analog Signal Generator to apply a 600 psec microwave pulse to the

qubit, inducing transitions between an energy level in the right well and a higher

energy level in the left well (shown in Fig. 5-12). Fig. 5-13 indicates the location of
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Figure 5-11: a) Blowup of qubit "step" region, corresponding to a change in circulat-
ing current. Data represents average of 10' switching events b) Contour plot of the
"step" region. The qubit is initially prepared in the higher switching current and at
given level crossings (indicated with arrows), resonant tunnelling causes transitions
to the lower switching current state.
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a)
1. Magnetic field-state preparation i

2. Apply Microwave Pulse

3. Ramp Bias Current Ib

time (a.u.)

b) f0b) f 0.485 f > 0.5

2
hv
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10) 11)

Figure 5-12: a) Pulse sequence used for Spectroscopy measurements. First, the state
preparation pulse localizes the qubit in a metastable state. Second, resonant mi-
crowaves are applied to the system. Third, the bias current 'bias through the SQUID
is ramped, thereby measuring which well the system is in. b) Pulse sequence effect on
double well at f ~ 0.485. The state preparation produces a magnetic field (f > 0.5)
pulse which localizes the system in the right well. Microwave radiation, at the indi-
cated frequency, causes transitions between the energy level in the right well to the
highest energy level in the left well. Ramping the bias current determines which well
(left or right) the system is in.
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the resonant transitions from the bandstructure of the PC qubit near f = 1/2. At

low temperatures, the qubit will have a finite probability of remaining in 1), which is

effectively metastable on the time scale considered. We then applied microwaves with

duration time -r, inducing transitions between states 11) and 10). After the microwaves

were shut off, the bias current bis, of the SQUID was ramped through values slightly

higher than its critical current Ic, thereby reading the qubit state, 10) or 1i). For a

fixed frustration, this procedure was repeated more than 10' times to minimize sta-

tistical error in the measurement. A histogram of the switching current clearly shows

the probability distribution of the qubit state occupation. Shown in Fig. 5-14 are

a series of contour plots of the switching-current histograms (for varying microwave

frequencies applied) obtained by scanning the frustration at T ~ 12 mK. Each ver-

tical slice is a switching current histogram, and the gray scale represents the number

of switching events (proportional to the switching probability).

0."

'N' 30-

2

.475 0.48 0.485 0.49 0.495 0.5

frustration ( (Do )

Figure 5-13: Calculated energy-level diagram of the PC qubit using qubit parameters
determined from independent measurements. The arrow marks where the photon
induced transitions occurred.
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Figure 5-14: Contour plots of the switching current distribution (a) without mi-
crowaves, and with microwaves at (b) v = 6.77 GHz, (c) 7.9 GHz, and (d) 9.66 GHz.
In each plot, the left-most tip of the upper branch corresponds to a fixed frustra-
tion point f ~ 0.484. Without microwave irradiation, the population in the upper
branch (state 11)) decreased continuously to zero as the frustration decreased from
1/2. Microwaves pumped the population from state 11) to state 10) at the resonant
frustration, the bias point at which the microwave frequency matched the energy level
spacing between two states. The white arrows indicate that the resonant frustration
moves toward 1/2 with increasing microwave frequency, in agreement with the qubit
energy structure.
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A bimodal structure in the switching-current distribution, caused by the opposite

persistent current of the qubit, was observed at f ~-0.485. The lower branch represents

the qubit in the 10) state, and the upper branch represents the qubit in the 11)

state. The substantial population in state 1) demonstrates that we had successfully

prepared the qubit in 11), because, near fq ~ 0.485, the qubit had a much higher

single-well ground-state energy in 11) than that in 10). However, the energy barrier

height and width relative to the lowest energy level of state 1) were small enough

so that the qubit had a large probability of tunnelling to 10). A high probability

of transition from one well to another can occur when energy levels on the left well

are resonant with levels on the right well. The left-most tip of the higher branch

marked a fixed frustration point fq ~0.484, below which it was not possible for the

qubit to stay in 11), because the double well potential becomes a single-well state.

Microwaves, with frequencies matching the energy difference between 1) and the

highest level of 10), were used to generate transitions between the two states. The

most striking feature of the contour plots is that a population "gap" or depleted region

(i.e., zero population region) in the 1) branch was created by the microwaves (Fig.

5-14(b) to (d)). With increasing microwave frequency, the gap moved away from the

left-most tip, as expected from the energy level structure (Fig. 5-13). The "gap"

resulted from the initial population in the right well driven between the right and

left well, eventually decaying to the ground state in the left well. The quantitative

agreement between the gap position and the energy level structure confirmed that the

gap resulted from the microwave induced transitions between the two macroscopic

quantum states 11) and 10)3 (the third excited energy level of the state 10)). Fig. 5-15

shows the average switching current values vs. frustration with different microwave

frequencies applied. As we increase the frequency, we observe the "dip" (induced by

the resonant transitions) shift with frustration. By mapping the energy separation,

Fig. 5-16 shows the change in frustration vs. applied microwave frequency. The

observed slope (Av/Af ~ 4 -6 GHz/m~bo) of the two resonant positions is consistent

with the bandstructure calculations shown in Fig. 5-13. We also observe for a fixed

frequency v = 8.78 GHz, the resonant "dip" increases in amplitude for increasing

135



CHAPTER 5. EXPERIMENTAL REALIZATION OF A NB PERSISTENT
136 CURRENT QUBIT

microwave power (shown in Fig. 5-17). For large microwave power, we expect the

microwaves to create a significant population distribution in the left (10)) well.

NO p-waves

v=5.96GHz
11.6 -

v =6.77GHz

11.4v - =7.9GHz

11. - v=9.66GH~z

V

11.0v _ =10.67GHz

10.8-

0.49 0.50
frustration ( Do)

Figure 5-15: Traces of the average switching current (I.,) versus frustration, mea-
sured with indicated microwave frequencies v applied. Power is fixed at 0.5 mW. Dips
in the traces (indicated with arrow) occur when microwaves are resonant with the
energy difference between quantum levels. Using a range of frequencies v, we are able
to map the energy level separation between quantum levels.

The photon induced transitions at the indicated applied frequencies were an in-

coherent process - the microwave pulse duration of 600 ps, much longer than the

estimated decoherence time (0.1 - 100 ps) [14, 20, 26]. Additionally, no periodic vari-

ation of population with varying pulse duration (for long pulses) was observed. In a

simple two-level system, observing such a gap would be unexpected for an incoherent

transition, since the population in the lower level (10)) should always be larger than

0.5 in that case. In order to address this gap phenomenon in our double-well potential

system, a multi-level pump-decaying model is introduced, which will be discussed in

the following section.
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Figure 5-16: Mapping the energy level separation v for a given change in frustration

at f ~ 0.485 and f = 0.49. The resonant microwave dip (shown in Fig. 5-15)
shifts with microwave frequency.The calculated slope values are consistent with the
bandstructure calculations
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Figure 5-17: Traces of the average switching current (I,) versus frustration, mea-
sured at fixed frequency v = 8.78 GHz but varying microwave power. Dips in the
traces (indicated with arrow) increase in amplitude as power increases.
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5.5 Energy Relaxation Time Measurements

For simplicity we consider only three levels in our system (shown in Fig. 5-18), the

initial (prepared) state I 1)o, the 10)3 state to which radiation induces a transition, and

the state 10)2 to which the population of 0)3 decays. More accurately, the state 10)3

decays to 10)2, 10)1, and 10)o, but for ease of calculation, we collectively label these

states as 10)2 with an overall effective intrawell decay rate -yd = 1/r. The temporal

evolution of the three-level system under microwave irradiation is thereby described

by the following three coupled rate equations:

dP1 0 - _ 1 P1 o+(7 1 +7 2)P03 (5.1)
dt

dt = -YPo - (71 + 72 + -Yd)P03 (5.2)

d Pt

dP02 = 7dP (5.3)

in which P10, P03, and P02 are the occupation probabilities of level 11)o, 10)3 , and

10)2 respectively. -y is the stimulated transition rate between 11)o and 10)3, and '72 is

the spontaneous relaxation rate from 10)3 to 11)0. Generally, for a given system, -Yi is

proportional to the microwave power Pfg and -y2 can be considered to be a constant.

For the initial condition P10(0) = 1, with P03(0) = P0 2 (0) = 0, Eqns. (5.1)-(5.3)

can be solved analytically. For 71 ;> -y, which is satisfied in our experiment, the

probability of finding the qubit remaining in the state 11)o at t > 1/(27, + '72 + -7d) is

given by

Pio(t) ~ a, exp(-t/T') (5.4)

where a, depends weakly on the microwave power and can be considered as a constant

in the relevant time scale.

From Eqns. (5.1)-(5.4), we obtain a linear second order differential equation,
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f 0.485

V S4hv

T
Ya 2

10)2

10 )1

10 )0

Figure 5-18: a) Double well potential at f ~ 0.485. Microwave radiation, for the
indicated frequency hv, causes transitions between the energy level in the right well
I1)o to the highest energy level in the left well 10)2. 7Y is the stimulated transition
rate from I1)o to 10)3 and y2 is the spontaneous relaxation rate from 10)3 to 11)o.

Relaxation (at rate -yd) occurs between 10)2 and I0)o.
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_2___ d P1 0

dt2 + (27 + y2 + 7d) dt + -Yd1PO = 0 (5.5)

The general solution to Eqn. (5.5) is of the form,

P10 = aierjt + a2er2t (5.6)

where a,, a2 , r1 and r 2 are constants. Solving for r1 and r 2, we find

-(2-y' + y2 + yd) V(271 + y2 + 'yd)2 -
4 Y1Yd (57)

= 2

We assume y1, -y2 > 27d therefore, (2-y1 + y2 + yd) > 2V/77j5 then,

-r,2 ~ -( 2  7 + y2+ -y) ± (2 yi + 2 +-i-7 )(l - (2,1 +-2y2 )2) _ 7 'Y1
2 (2 71 + 72 + 7Y)

(5.8)

The overall interwell time T for the transition from state I1)o to state 10)o is then,

' ~(2+ 7 2) d=(2 + APrf )rd (5.9)

and A is the coupling constant between the microwave source and the qubit. We note

for strong driving (large pumping effects) APrf> 72. Therefore, at high microwave

power, the overall decay time r' saturates to

r 2 d (5.10)

The physical picture of the three-level pump-decaying process is that microwaves

populate the highest level with a population P03 oc 1/(2 + 72/7Y1), which decays to

the lowest level with a rate -yd. Therefore, the effective decay rate of the population

of the initial state is given by Eqn. (5.9), and with r sufficient long, Pio(t) -> 0;

this agrees with the experimental observations.

A significant impact of Eqs. (5.4) and (5.9) is that r can be determined by mea-

suring Pio(t). Because the switching current 1,, of 10) is smaller than that of |1),
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Figure 5-19: Resonant dips at for microwave pulse length r = 0.2, 0.5, 0.8 and 1 ms.

For long microwave driving times, most of population relaxes to state 10)o.

pumping the system from state 11) to state 10) will generate a dip in the switching

current IS average as a function of frustration, and the dip amplitude is proportional

to 1 - P10 . The applied radiation produces a population distribution between state

11)o and state 10)3, with a relaxation time rd associated with the decay from 10)3 to

10)o. Fig. 5-19 shows the dip amplitude for different microwave irradiation times, TP.

The nominal power of the microwave source was Prf = 31.6 pW. For small irradiation

time, we expect the population distribution in state 10)3 to be small and therefore

the probability to find the system in the left well is approximately zero for short r

radiation time. For longer radiation time, we continually produce transitions from

state 11)o to state 10)3, whereby in state 10)3 the system relaxes to state 10)2. Fig. 5-20

is a series of plots of the maximum dip amplitudes as a function of the microwave ir-

radiation time, Tr. For Fig. 5-20a, Pr1 = 31.6 MW and the time constant T', obtained

from a best fit, is 130 ±20is. It should be noted that r' is not equal to rd, but, rather,

it depends on y2/71. For large Pf, (i.e., y > 72), we expect the equal population

distribution between states 10)3 and 11)o then subsequent relaxation to the system
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Figure 5-20: The amplitude of the microwave resonant dip as a function of microwave
duration Tp for microwave frequency v = 9.66 GHz and nominal power a) P 1 =
31.6p1 W, b) P = 125.9p W and c) P 1 = 500.OpW. The solid squares are experi-
mental data and the solid line is a best fit to an exponential decay. From the best fit,
we can obtain a value for the overall transition time r' for a given microwave power.
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Figure 5-21: r' vs. microwave amplitude for v = 9.66 GHz. The solid line is a best
fit to Eqn. (5.9). For increasing Prf, -r' saturates to 2Td (denoted by dashed line).

ground state I0)o. Thus for large Pr!, we showed previously that r' is limited by the

relaxation time rd and will saturate to 27d. For 71 - y2, we are able to determine

Td by measuring the microwave power dependence of r'. Shown in Fig. 5-21 is T'

measured at various microwave powers. T' saturates at about 50 Ps for Pqf > 200 PW.

By adjusting 7 2 /A and Td as fitting parameters, we obtained rd 24.3 J 2.7 ps from

a best fit to Eqn. (5.9), which is consistent with dc tunnelling measurements. The

measured intrawell relaxation time is of the same order of magnitude as the reported

energy relaxation times in NbN and Al-based qubits [17]-[20]. Note that 72 is another

important parameter which determines interwell energy relaxation. Unfortunately,

the value of 72 could not be extracted from the fitting, due to the unknown cou-

pling constant A. Future experiments in which microwave coupling is independently

characterized should allow the extraction of 72.

The primary effect of the environmental dissipation on the intrawell dynamics of

the PC qubits is that, at low temperature (kBT < E1 - Eo), the width of an excited

level with energy E. is given approximately by
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'Yd ~ -n (5.11)
-Q

where Q is the quality factor of classical small oscillation in the potential well [80,

81). From r we determined Q - 5 x 105, close to the value obtained from thermal

activation measurements at intermediate temperatures 0.3 - 1.2 K [74, 75]. Note that

Q is proportional to the subgap resistance, which ideally depends on the temperature

as [82],

Rsubgap 0c eA/lkBT (5.12)

where A is the superconducting gap voltage discussed in section 4.1.1. The tempera-

ture independence of Q suggests the presence of additional environmental sources of

dissipation [26].

This long intrawell relaxation time is important for experiments in quantum com-

puting in two ways. First, the lower two energy levels in the left well, I0)o and 10)1,

could themselves be used as the two qubits states, with a third state 10)3 used as the

read-out state. Because the PC qubit had no leads directly connected to it and the

magnetic coupling circuit is optimally designed to lessen the effects of the electromag-

netic environment, the PC qubit is much less influenced by this environment than

are other similar single-junction schemes. Second, assuming the environment can be

models as an ohmic bath, as in the spin-boson model, then we can estimate the deco-

herence times of a PC qubit in which the qubit states are those of opposite circulating

current [14, 20, 26]. The energy relaxation and phase decoherence times within the

spin-boson model for an ohmic environment were discussed in section 4.3 [66]. For

our PC qubit system, aL ~ 1/Q is the quantum damping parameter [82] which we

estimate using our measured Q value. For our Nb PC qubit operating with oppo-

site circulating currents states (for instance, biased near fq ~ 0.484<bo where A ~2

GHz and SE ~ 4 GHz), a conservative estimate gives Trelax 30 ps and -r, 20 pas at

15 mK. We emphasize that an ohmic environment model may not adequately describe

all sources of decoherence; these times must be viewed as estimates pending experi-
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mental verification. Nonetheless, for a typical Rabi frequency A = 1 GHz, we obtained

a quantum quality factor Q > 10', larger than the oft-quoted basic requirement for

error-tolerant quantum computer.

5.5.1 Simulations of the Quantum Behavior

We previously employed a classical multi-level system to characterize the experimental

behavior of the PC qubit system. Since the measurement process is incoherent (state

readout is performed on a much longer time scale than the decoherence time), we do

not expect to observe the periodic evolution of the qubit state with pulse duration.

For rapid state readout ( ns ramp time), we expect to observe driven quantum

oscillations between states 10)3 and 11)o. Therefore, a quantum mechanical model of

the PC qubit is needed to simulate the time evolution of the system when driven with

applied microwave radiation.

A simple three-level quantum system with energy relaxation or damping is used

to model the PC qubit system biased at f ~ 0.485. The system has energy level

3) in the right well and levels 12) and 11) in the left well (shown in Fig. 5-22).

We incorporate energy relaxation into our model by employing operation elements

for amplitude damping. Our treatment considers the double well potential of the

PC qubit within an open system, enabling us to describe the effect of noise and

energy loss of the quantum system. For our system, we consider relaxation from

state 13) to state 11) with rate 731 and relaxation from state 12) to state 11) with rate

y21. Microwaves induce coherent oscillations between states 13) and 12) at frequency

A. We characterize the system using the density operator language, convenient to

incorporate energy dissipation into our system.

The system is initially prepared in the metastable state 13) (right well)

(0

13) = 0 (5.13)

The density operator language is convenient to incorporate energy dissipation.
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12)

I13)
Y21

Y31

Figure 5-22: PC qubit double well potential at f ~ 0.485. Resonant microwaves
induce transitions between 13) and 12). Due to energy dissipation, damping occurs
between levels 12) and 11) at rate y2 and between 13) and |1) at rate 7/31.

Suppose a quantum system is in one of a number of states I'i), we define the density

matrix as

(5.14)

where pi is the probability in state I0i). We note that Ei pi = 1 with pi > 0. We

define the initial density matrix po to be

po = 13)(31 = /(0 0 0

0 0 0

0 0 1

(5.15)

The Hamiltonian HR using the rotating wave approximation couples the states 13)

and 12) when radiation is applied and is given by,

p = ENpO@i (Oil
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HR=

0

0

0

0

0

A

0

A

0

I (5.16)

where A is the driven oscillation frequency between state 13) and 12). The time

dependent density matrix is given by,

p(t) = eiHt poe -iHt (5.17)

If we consider no damping effect (perfect isolation from the environment), we

expect continuous coherent oscillations between levels 13) and 12). If we now consider

damping between levels 13) and 11) as well as from levels 12) and 11), the density

matrix is found by

(5.18)p(t') = E Ekp(t)El = Eop(t)Eo + E 1 p(t)E'
k

where E0 , El are the damping operators between levels 13) and 11). The amplitude

damping operators from state 13) to state 11) are given by,

1

0

0

0

0

0

0

0

0

0

-/I- IP31

1

0

0

0

V1731

0 I
I (5.19)

(5.20)

where 1I31 = 1 - exp(-t/r3 ) and T31 is the energy relaxation time between state 13)

and 11).

We now consider damping from state 12) to state 11) at a rate Y21. The density

matrix p(t") after time t" is then
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p(t") = E 2p(t")E2 + E3 p(t")E3 (5.21)

where E2, E3 are the damping operators between levels 12) and 11). The amplitude

damping operators E2 and E3 are given by,

1 0 0

E2= 0 1- F 21  0 (5.22)

\0 0 1

0 r 0

E3 0 0 0 (5.23)

\0 0 1

where F21 = 1 - exp(-t/r 21 ) and w21 is the energy relaxation time between state 12)

and 11).

The overall probability in state 13) as a function of time is then given by p3,3(t).

Fig. 5-23 shows a simulation of the probability of the system in the right well (13)) as

a function of time with T21 = 20 pts and T31 = 200 ps. The system oscillates between

state 13) and 12), with an exponential envelope caused by damping to the system's

lowest energy level |1).
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Figure 5-23: Probability in state 13) as a function of time for parameters A = 10 MHz,
T31 = 200 ps and r2 = 20 Ms. For sufficiently long driving times, the system eventually
relaxes to the system's lowest energy state 11).
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5.5.2 Waiting Time Measurements

a)
1. Magnetic field-state preparation Imagnet

I I
I I

2. Ramp lbias

time (a.u.)

b) f~ 0.485

10)2
1)0

1 0),S
V~j Vinter

Figure 5-24: Double well potential structure. The particle is initially prepared in the
metastable state I 1)o within the right well. At rate "ner, the system relaxes to the
ground state energy of the system j0)o, in the left well.

To verify the stability of energy state in the right well in time, we examine the

interwell energy relaxation between quantum states. The qubit is biased to exhibit

an asymmetric double-well potential (shown in Fig. 5-24). Interwell population

transitions were generated by first initializing the system in the "ground state" of the

higher-energy well using a state preparation pulse, then waiting for time T.ait for the

population to relax to the lowest-energy state in the right well (i.e., the true system

ground state). We assume an exponential decay to state 11)o of the form

M
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Figure 5-25: Average switching current value plots for varying waiting times. Top
curve for no state reparation pulse. As the waiting time between state preparation and
readout increases, we observe a significant increase in the lower state 10) population
due to interwell relaxation.

Pio(t) ~ b1 exp(-t/rinter) (5.24)

where P10 is the initial population in state, b1 is a constant, and rite, is the interwell

energy relaxation time. By increasing the waiting time between state preparation and

measurement, we observed an increase in the lower-energy well population at level

crossings (Shown in Fig. 5-25).

5.6 Experimental Challenges-Future Considerations

Several technological improvements are needed to enhance the experimental progress

of the Nb PC qubit. Coherent oscillations experiments will require 1) a well-isolated

environment for qubit control and 2) a stable magnetic field source. The difficulty

in achieving the proper microwave environment and a steady magnetic field bias is

characterized and new methods will be presented (in Appendix B) to overcome these

experimental hurdles.

From the switching current response of the SQUID readout device, it was de-

termined that strong resonant coupling within this cavity occurred at microwave
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Figure 5-26: DC SQUID (I,,) for given applied microwave frequencies at zero mag-
netic field. Strong coupling between the microwaves and DC lines results in suppres-
sion of I at certain the frequencies. A microwave package has been designed to
eliminate these unwanted resonances (See Appendix B).

frequencies near or at the qubit energy level separation of interest (Shown in Fig.

5-26). At zero applied magnetic field, the DC SQUID switching current value was

recorded as the microwave frequency was swept from 0 - 10 GHz. The length of the

DC bias lines (~ 3-4 cm.) was of comparable length to the applied radiation (10 GHz

corresponds to 3 cm) therefore the radiation coupled predominantly to these DC mea-

surement lines. At a resonant frequency of the cavity, mode oscillations suppressed

the switching current value of the DC SQUID. A microwave package, whose first res-

onance frequency is higher than the energy levels separation, has been designed and

fabricated to reduce or eliminate these oscillations for greater qubit control.

In order for coherent oscillations to be observed, the frustration at which the

PC qubit is biased must remain stable in order to maintain a constant energy level

separation. To apply an external magnetic field through the qubit a superconducting

magnet is used, driven by a Yokogawa current source. Fig. 5-27 shows the Fourier
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Figure 5-27: DC SQUID (I.,) 1/f noise. For a fixed magnetic bias, the switching
current of the DC SQUID is sampled at 250 Hz for a - 10 hr time period.

transform of the switching current measurements for a 10 hour period (repetition

frequency 250 Hz). Fluctuations in the critical current of the junctions I cause 1/f

noise in the switching current value of the DC SQUID.

5.7 Summary

This chapter presented low temperature measurements of a Nb PC qubit. The mea-

surements first required design of the electronics measurement apparatus and low

temperature sample environment to minimize noise coupling to the quantum sys-

tem. Considerable effort was made to reduce the effects of electrical, vibrational and

magnetic noise coupling into our system. At dilution refrigerator temperatures, spec-

troscopy was used to map the energy level separation between quantum states. We

observed resonant transitions between quantum levels, at microwave frequencies rang-

ing from 5-10 GHz which were consistent with theoretical predictions of the calculated

bandstructure of the qubit. After probing the energy level separation, the intrawell
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relaxation time r was directly measured by generating resonant transitions between

macroscopically distinct quantum states using varying microwave pulse lengths. By

varying the driven microwave pulse length, we observed dynamic population distri-

butions between potential wells. A multi-level decay process was then observed and

the intrawell relaxation time Td was determined to be 24pus with a quality factor Q
greater than 10'. The measured relaxation time and Q are consistent with previ-

ous experimental work on the Nb PC qubits. The decoherence time is predicted to

be proportional to the level of dissipation, which results from the coupling between

the qubit and environment [83]. The corresponding phase-decoherence time within a

spin-boson model is inferred to be - 20 ps for these devices. These measurements in-

dicate that flux qubits operating between wells would also have sufficient decoherence

times, demonstrating good prospects for well-fabricated Nb trilayer junctions to be

used as superconducting qubits. Nonetheless, measurements to observe coherent os-

cillations between quantum states will require a well-isolated microwave environment

for optimum qubit control.



Chapter 6

Conclusions

6.1 Summary of Results

Superconducting qubits, the PC qubit in particular, continue to show great promise

for large scale quantum computing applications. The largest drawback to macro-

scopic qubits was thought to have been the rapid rate of decoherence within such

systems. Recent studies in superconducting qubits show that this view may be pes-

simistic - improvements in fabrication technology and low-temperature measurement

techniques will eventually lead to longer decoherence times.

This thesis investigates the experimental implementation of the Nb PC qubit.

The PC qubit has been designed, fabricated in a standard Nb trilayer process, and

measured at dilution refrigerator temperatures. The doctoral research involves under-

standing the fabrication process to design an appropriate Nb PC qubit and readout

device for the low-temperature measurement setup. Further work is necessary to

quantify the decoherence mechanisms in the PC qubit system - both from internal

(fabrication) and external (low temperature environment) factors.

The MIT Lincoln Laboratory superconductive device fabrication process was used

to produce submicron Josephson junctions for both quantum computing applications

and RSFQ circuitry. Requirements for coherent quantum devices monolithically in-

tegrated with classical electronics required targeting of exact fabrication parameters

and producing high quality Josephson junctions. The anodization process was one
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method investigated to improve critical current-density Je uniformity. We compared

J, uniformity of wafer pairs, fabricated together, with the only difference being the

presence or absence of the anodization step, and showed cross-wafer J, standard de-

viation is a factor 3 higher for unanodized wafers. To control for anodization, the

wafer pairs we examined were simultaneously subjected to the same highly uniform

oxidation process involved in producing the tunnelling barrier. The results suggest

that there exists in-process modification of J, that is avoided or diminished by an-

odization. Isolating the cause of the modification, however, remains difficult since

many subsequent processing steps are required to produce useful junctions.

Low-temperature measurements investigated decoherence within these fabricated

Nb-based PC qubits. The measurements required careful design of the electronics

measurement apparatus and low temperature sample environment to minimize noise

coupling to the quantum system. Initial measurements on the Nb-based qubit mapped

the energy level separation between quantum states using spectroscopy. We observed

resonant transitions between quantum levels, at microwave frequencies ranging from

5-10 GHz which were consistent with theoretical predictions of the calculated band-

structure of the device. The intrawell relaxation time Tr was then directly measured

by generating resonant transitions between macroscopically distinct quantum states

using varying microwave pulse lengths. By varying the microwave pulse length or

microwave power, we observed dynamic population distributions between potential

wells. A multi-level decay process was then observed and the intrawell relaxation time

Td was determined to be 24ps with a quality factor Q greater than 10'. The measured

relaxation time and Q are consistent with previous experimental work on the Nb PC

qubit fabricated at MIT Lincoln Laboratory. The relatively long relaxation times

and high Q value indicates that these intrawell levels are well-isolated from the elec-

tromagnetic environment and are themselves potentially favorable qubit levels. The

decoherence time is predicted to be proportional to the level of dissipation, which re-

sults from the coupling between the qubit and environment [83]. The corresponding

phase-decoherence time within a spin-boson model is inferred to be longer than 20 1ps

for these devices. These measurements indicate that flux qubits operating between

156 CH APT ER 6. CONCLUSIONS



wells would also have sufficient decoherence times, demonstrating good prospects for

well-fabricated Nb trilayer junctions to be used as superconducting qubits. Consid-

ering the attractiveness of Nb-based qubits from the point of view of robust and

well-developed, mature fabrication methods, these relaxation times suggest that they

are a promising candidate for realizing a scalable quantum computer.

6.2 Future Work

Further work is needed in both material/process engineering research coupled with

low temperature coherence measurements to produce reliable, high quality (low dissi-

pation) qubits with long coherence times. Continued feedback between circuit design,

fabrication and low-temperature measurements are required to converge on a success-

ful PC qubit sample. Successful low temperature measurements also requires careful

isolation techniques to minimize noise to the sample. The successful qubit device then

requires the thorough understanding and consideration of the fabrication methods,

qubit sample design, and low-temperature setup.

Progress within the Nb superconducting fabrication technology requires materials

research to further improve the viability of using Nb devices for quantum computing

applications. The scope and depth of the fabrication facilities enhance the probability

of success in the fabrication of high quality Josephson junctions for qubits. A new fab-

rication process (Ten day or TD process) has recently developed for rapid turnaround

in the process time. The ten day process relies on three Nb metal layers to form a

circuit (using anodized Nb as an insulating layer). The standard fabrication process

can be modified to this Nb/Al/AlO./Nb fabrication technology, such as the addition

of a second aluminum layer on top of the aluminum oxide, and thickening of both

aluminum layers, have also been suggested to improve performance. The thickened

aluminum is known to improve the barrier chemistry. Although Nb is better lattice-

matched to the AlO. barrier, this modification may reduce leakage due to pinhole, or

other defects in the barrier, while still retaining a high gap voltage. The use of ultra

low-Je junctions (J, - 10 A/cm2 ), which are correlated to reduced sub-gap current,
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may also be employed for the PC qubit.

Future work on the low temperature measurements of the PC qubit will focus on

observing coherent oscillations between distinct quantum energy levels. At the proper

energy level separation, one can apply varying (between 1 ns - 10pts) microwave pulse

lengths to drive transitions between levels. One then finds the probability of finding

the system in a given well is periodic with microwave driving time. Progress to

observe coherent oscillations between macroscopic quantum states within this PC

qubit system requires improvements in sample isolation and readout. Improving

isolation between the quantum system's environment, which accompanies advances

in low-temperature measurement techniques, will lengthen the dephasing time Tvaprhi.

The observation of Rabi oscillations therefore requires engineering a microwave cavity

and devising a method for rapid measurement capability to readout the state of the

qubit. The immediate objectives for the measurement of timed coherent oscillations

are:

* Design and install a microwave package that incorporates DC magnetic field

biasing capability and allows microwave irradiation inside the package. Progress

on the microwave package is discussed in Appendix B.

* Implement high-bandwidth cables for the SQUID current bias and voltage read-

out lines. Demonstrate ~ 100 MHz bandwidth (approx. 10 ns resolution) capa-

bility. Copper powder filters will be used to filter these lines above ~1 GHz.

" Demonstrate microwave irradiation using on-chip coplanar waveguide termi-

nated with an inductor and show that this applied irradiation is largely decou-

pled from the DC SQUID. Progress on the on-chip waveguides are discussed in

Appendix B.

The research presented in this thesis shows the potential of superconducting qubits

for large scale quantum computing applications. Many challenges, most importantly

the decoherence effect in superconducting qubits, must be overcome to realize a useful

Josephson junction device. The basic studies on the Nb PC qubit presented are the
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initial step in the development of a practical superconducting qubit. Nonetheless, the

study of macroscopic quantum effects in superconducting devices continues to be an

academically challenging and fruitful area of research.
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Appendix A

MIT Lincoln Laboratory DPARTS

Process

The MIT Lincoln Laboratory doubly planarized all-refractory technology for super-

conductive electronics (DPARTS) process is used to fabricate submicron Nb/Al/AlO./Nb

Josephson junction devices. The DPARTS process uses optical projection lithography

using an i-line stepper, chemical mechanical planarization(CMP) of two silicon-oxide

layers, a self-aligned via process and dry reactive ion etching (RIE) of the Nb layers

and via etching steps. In general, the base electrode (M2), counter-electrode (M3)

and wiring layer (M4) are used to form Josephson junctions circuits while a fourth

Nb layer (M5) is used as a ground plane layer to minimize magnetic coupling between

circuit elements. Two SiO 2 layers (12 and 13) are used as passivation or insulating

layers. The resistor layer (R1) is used as a resistor metal layer. Finally, the contact

pad layer (M6) is used to gain electrical contact to the Nb Josephson junction circuits.
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Figure A-1: MIT Lincoln Laboratory Abbreviated process flow.
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Table A.1: Given layer, conventional layer name, material and final thickness values
in MIT Lincoln Laboratory Low Temperature Superconducting Device Fabrication
Process.

Layer Conventional Layer name Material *Thickness(A)
Base-electrode M2 Nb 1500

Counter-electrode M3 Nb 2000
First PECVD Insulating layer 12 SiO 2  3500

Resistor R1 Ti/Pt 100/900
Wiring M4 Nb 2500

Second PECVD Insulating layer 13 Si0 2  6000
Ground plane M5 Nb 4000
Contact pad M6 Ti/Pd/Au 300/3600/500

*Final layer thickness value at its maximum, which can be less than the deposited thickness value.
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DPARTS Process at MIT Lincoln Laboratory

a)

SIO.(5000A)

c)

e)

A.2o A

d)

NbO,

'I

f)

S1.

Figure A-2: a) First step is wet oxidation of prime silicon wafer. b) Nb trilayer
deposited. Inset shows a closeup of the AlO tunnelling barrier region. c) Counter-
electrode(M3) is reactive-ion etched. d) Junction is anodized, producing a protective
NbO, layer, effectively "sealing" the perimeter of the junction. Dotted white line
indicates original surface. e) After the barrier is stripped and the base electrode(M2)
etched, PECVD oxide(12) is deposited. f) CMP of the oxide layer is used to achieve
self-aligned contact to the counter-electrode(M3) and produces global planarity.
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12 via h)

Sb 2
2

S102 S102

i) j)

Insulator Insulator

M2 M2

Sb 2  SIO

Figure A-3: g) Resistor layer(R1) is defined by liftoff technique. 12 vias are etched to
gain electrical contact to the base-electrode(M2). h) Wiring layer(M4) is deposited,
patterned and etched. i) Second PECVD oxide(13) layer is deposited then planarized.
Ground plane(M5) is deposited, patterned, then etched. j) Contact pads(M6) are
deposited and defined using liftoff.
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R1
Pt (900)/ Ti (100)

- AIO barrier

SiO 2 (5000)

Figure A-4: Cross-section of completed Nb trilayer circuit.
indicate layer thickness values in A.

Numbers in parentheses
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Appendix B

Microwave Environment

The observation of driven coherent oscillations between macroscopic quantum levels

will require careful qubit control and isolation from the environment. In order to

create the proper microwave environment for the qubit, one requires: 1) the design

of on-chip coplanar waveguide structures to provide high frequencies radiation (-

1 - 10 GHz) to the qubit sample and 2) engineer a microwave cavity to suppress

resonant modes coupling to the SQUID bias and readout lines. The following section

describes the effort taken to undergo a proper microwave environment for the PC

qubit.

B.1 On-chip Coplanar Waveguide Considerations

We describe the on-chip coplanar waveguide (CPW) structure designed to guide mi-

crowaves near the qubit sample (- 10 - 100 pm away). As shown in Fig. B-1, the

coplanar waveguide consists of a center strip of width S with two ground planes

connected parallel to and in the plane of the strip, a distance W away. The CPW

is terminated with a large shunt inductor (L ~300 pH) used to couple microwaves

inductively to the sample. The shunt inductance value L is calculated using FAS-

THENRY. At the characteristic microwave frequencies used (- 1-10 GHz) to excite

the qubit, we try to match the impedance of the waveguide to the load impedance.

The characteristic impedance of the coplanar waveguide structure is calculated using
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[46]

(B. 1)30 In [2

for 0 < k < 0.707 where,
k- S

k= S+2W

The effective dielectric constant Ere is given by,

Er +1
Ere = 2

tanh{1.785 log(h/W) + 1.75} + kW {0.04 - 0.7k + 0.01(1 - 0.lEr)(0.25 + k)}1

(B.3)

where h is the height of the dielectric below the waveguide and W is the distance

from the ground plane to the center strip.

The effective parameters for the CPW are given in Table B.1.

Table B.1: Parameters of the on-chip coplanar waveguide.
Parameter Definition Value

k center strip width 2 ym

h height of dielectric 0.5 prm

L inductance of shunt inductor 300 pH

M mutual inductance bet. inductor and PC loop -0.1-1 pH

ZL (©10 GHz) load impedance 20 Q

Ze _ impedance of CPW 50 Q

(B.2)
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B.1. ON-CHIP COPLANAR WAVEGUIDE CONSIDERATIONS

a)

b)

r I

ZL=j o L

Figure B-1: Coplanar waveguide structure: a) the CPW consists of a center strip of
width S with two ground planes connected parallel to and in the plane of the strip,
a distance W away. The structure sits on a dielectric substrate E, of thickness h. b)
The end of the CPW is terminated by a shunt inductor ZL
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B.2 Microwave Package Design Considerations

Spectroscopy measurements on the Nb PC qubit were performed in a ~ 1 in cylindrical

copper sample space. From the switching current response of the SQUID readout

device, it was determined that strong resonant coupling within this cavity occurred

at frequencies near or at the qubit energy level separation of interest (Shown in Fig. 5-

26). At a resonant frequency of the cavity, mode oscillations increase and damp away

slowly. Therefore, operating the qubit in a microwave package, whose first resonance

frequency is higher than the energy levels separation, will greatly improve microwave

control. By applying microwave frequencies at the level separation of the qubit, below

the cutoff frequency of the package, narrow microwave pulses (- ns) can be applied.

Ideally, the end result is a constant electromagnetic response of the switching current

of the DC SQUID in the frequency range 1 - 10 GHz.

SQUID current bias
and voltage readout lines chip Co-planar waveguide

K-connectors
(microwave radiation)

Figure B-2: MIT Lincoln Laboratory microwave package. The package consists of
a gold-plated copper cavity containing an alumina substrate to guide signals to the
device chip. Four microstrip lines lead from the ssmb connectors to the SQUID. A K-
connector is used for microwave irradiation. The microwaves travel along a co-planar
waveguide to an small loop inductor which couples the radiation to the qubit.
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B.2. MICROWAVE PACKAGE DESIGN CONSIDERATIONS

A copper microwave package has been designed to optimize experimental mi-

crowave control of the PC qubit. The microwave package designed by MIT Lincoln

Laboratory is shown in Fig. B-2. The package is a gold-plated oxygen-free copper

with inner dimensions of 0.80" and 0.90" and outer dimensions of 1.40" and 1.26"

with an alumina substrate placed within the cavity. The 5x5 mm2 chip is mounted

directly on the gold-plated surface using a square block at the center of the alumina

substrate. The alumina substrate is attached to the copper package using three screws

which act as metallic vias. The DC SQUID lines from the outside are connected to

the package using four ssmb panel mounts (50 Q, 6 GHz nominal bandwidth). On

the inside, small wires connect the panel mounts to microstrip lines on the alumina

substrate. Microwave radiation used to drive the qubit transitions enters the package

through a 40 GHz K-connector. The K-connector feedthrough is mounted directly to

a co-planar waveguide using a dedicated soldering tool to achieve a good 50 Q match.

The co-planar waveguide (on the alumina substrate) to the circuit chip is also a 50 Q

design. The microwave radiation can then be applied using either an on-chip inductor

or terminated with a small (- 1 cm) metallic loop. The microwave package lid holds

a bobbin, which is used to mount a Nb-wire solenoid directly above the device. The

coil is used to magnetic field bias the qubit and has a low bandwidth (~kHz).

We can estimate the cavity modes of the rectangular cavity. We assume the

copper package is a freespace cavity ([o, co) with highly conducting walls. The

lowest cavity-mode frequency is obtained along the longest internal dimension of the

cavity, a=0.9in=2.3cm. A cavity mode is established when a number of N half-

wavelengths can be accommodated. In terms of the cavity dimensions a = 0.9 in =

2.3 cm, b = 0.8 in = 2.0 cm, and d = 0.22 in = 0.55 cm, the resonant frequencies for

the Transverse Electric (TE) and Transverse Magnetic (TM) cavity modes are found

for an ideal cavity to be [85],

f =mn - j ) + (-) + (-) (B.4)
f 2.. ndEi a b d

for integers 1, m, n = 0, 1, 2... and c, is the relative dielectric constant and c = 3 x
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108 M/s. We estimate E, 1. The five lowest cavity-mode frequencies are given in

Table B. 1. Since we are interested in frequencies ranging from 1-10 GHz, the lowest

resonant mode fiio may couple strongly to the SQUID and qubit. A future effort will

be made to reduce the size of the cavity such that the lowest resonant mode is much

larger than the microwave frequencies of interest fiio > hVa,,pplied 10 GHz.

Table B.2: Five Lowest Resonant Modes of Microwave Package.
Cavity mode Frequency (GHz)

fi1o 7.95
f21o 15.0
f120 16.4
fioi 28.0
foil 28.3
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Improved Critical-Current-Density Uniformity by
Using Anodization

Daniel Nakada, Karl K. Berggren, Earle Macedo, Vladimir Liberman, and Terry P. Orlando

Abstract-We discuss an anodization technique for a Nb
superconductive-electronics-fabrication process that results in an
improvement in critical-current-density J, uniformity across a
150-mm-diameter wafer. We outline the anodization process and
describe the metrology techniques used to determine the NbO.
thickness grown. In the work described, we performed critical
current Ic measurements on Josephson junctions distributed
across a wafer. We then compared the J uniformity of pairs of
wafers, fabricated together, differing only in the presence or ab-
sence of the anodization step. The cross-wafer standard deviation
of J, was typically ~ 5% for anodized wafers but > 15% for
unanodized wafers. This difference in J. uniformity is suggestive
of an in-process modification from an unknown cause that is
blocked by the anodic oxide. It is interesting that small junctions
do not see an improvement in I, uniformity-apparently the
anodization improves only the J uniformity and not the variation
in junction size. Control of J. is important for all applications of
superconductive electronics including quantum computation and
rapid single-flux quantum (RSFQ) circuitry.

Index Ters-Anodization, critical-current-density, Josephson
junctions.

I. INTRODUCTION

C ONTROLLING the critical-current-density 
J, uniformity

across a wafer is a major challenge in the Nb Josephson
junction fabrication process. Typically, the J, variation across a
150-mm-diameter wafer is > 15% for current densities ranging
from 0.1-20 kA/cm2 . Highly uniform J, is desired for pro-
ducing low cross-chip Jc variation as well as producing a higher
quantity of chips per wafer at a given critical-current-density.
Past results suggested that anodization of the junction region
improves Jc uniformity across a wafer but this suggestion has
never been supported with direct comparisons [1]-[3]. In this
paper, we address our efforts to incorporate anodization into our
standard Nb process and we study its effects on Jc uniformity
by directly comparing anodized wafers with unanodized wafers.

The Josephson junctions were fabricated in a class- 10 clean-
room facility at MIT Lincoln Laboratory. We used our standard
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b)
mO"

4 , ...s

NbO,

Fig. 1. a) Nb Josephson junction after counter-electrode (C.E.) etch but
immediately prior to anodization. Inset shows the AlO. tunneling barrier
region. b) Junction region after anodization. The surface of the counter- and
base-electrode (B.E.) is converted to a metal-oxide layer approximately 50 nm
thick. The dotted line shows the original surface. Inset shows amount of anodic
oxide grown and consumed. The anodic oxide causes the surface to swell up
and out slightly during growth.

doubly planarized all-refractory technology for superconduc-
tive electronics process [DPARTS] [4]. The substrates were
150-mm-diameter prime silicon wafers, thermally oxidized
to produce a 500-nm-thick SiO2 layer. The Nb/Al/AlO./Nb
trilayer was then deposited, followed by patterning of the Nb
counter-electrode (C.E.) using optical projection lithography.
Reactive ion etching (RIE) of the counter-electrode was
performed in a load-locked chamber using SF6 gas. Because
we felt that after RE the junction region could be vulnerable
to chemical, plasma and/or other damage from subsequent
processing steps (shown in Fig. 1(a), we anodized the wafer
to form a 50-nm-thick protective metal-oxide layer around the
junction perimeter. Fig. 1(b) shows that after anodization the
junction region is "sealed" from the outside environment by

1051-8223/03$17.00 © 2003 IEEE
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a thick NbO. layer. The remaining steps of the process were
modified slightly to account for the presence of this layer, as
described in Section II.

We first outline the anodization procedure and its incorpo-
ration into the standard Nb superconducting device fabrication
process. We then discuss metrology methods used to determine
the thickness of niobium oxide grown. We follow with a discus-
sion of the effects of anodization on critical-current-density uni-
formity, presenting room-temperature normal-state resistance
measurements of junctions. Finally we conclude with discus-
sion and analysis of our results.

II. ANODIZATION PROCESS DESCRIPTION

The modification of the fabrication process to include an-
odization consisted of three steps: 1) the development of the
anodization process; 2) the integration of the anodization step
into the existing DPARTS process; and 3) the development of
metrology methods for process control. In this section we de-
scribe work in each of these areas.

A. Anodization Process

Anodization is an electrolytic process in which a metal, in our
case niobium, serves as the anode in a suitable electrolyte. When
a current passes through the Nb film in the electrolytic solution,
the surface of the Nb is converted to its oxide form. This oxi-
dation progresses from the solution inward, toward the metal,
with the final thickness determined by the applied voltage. The
metal-oxide layer serves as a protective barrier to further ionic
flow [5]. Anodization processes of this sort have been used ex-
tensively in the past for the fabrication of Nb Josephson junc-
tions [1], [6]-[10].

For our process, anodization followed the RIE of the counter-
electrode and stripping of photoresist, so the anodization was
unmasked. Anodization was performed in an electrolytic solu-
tion of tartaric acid (HOOC(CHOH)2COOH) and ammonium
hydroxide (NH40H). 400 g of tartaric acid powder were added
to a recirculating bath of an approximately 5L volume of deion-
ized water. Then a 28-30% NH40H solution was added incre-
mentally until the measured pH was 5.1 ± 0.1 (the total volume
of NH40H solution added was > 300 ml). The anodization
process proceeded as follows: (1) A Pt wafer (cathode) in the
electrolytic solution was grounded while the Nb device wafer
(anode) was connected to a power supply. (2) The voltage output
of the power supply was ramped, from 0 V to 20 V, maintaining
an initial constant current of 0.225 A through the wafer. The
overall ramp time was approximately 50 sec. (3) The voltage
was then held constant at 20 V. During the voltage hold time, the
current through the wafers dropped exponentially as the NbO,
layer densified. (4) When the current level reached 10% of its
initial value, the power supply was abruptly switched off. The
total immersion time was approximately 1.5 minutes. After an-
odization, the wafers were cleaned using deionized water in a
dump-rinser and spin-rinser dryer.

B. Process Integration

Subsequent process steps were modified to account for the
NbO. layer. The NbO. layer made it difficult to etch through

TABLE I
OPTICAL CONSTANTS OF NB AND NbO,. INDEX OF REFRACTION n AND
ABSORPTION COEFFICIENT k VALUES VS. WAVELENGTH FOR NB FILM

AND 95 NM THICK NbO. FILM

Nb NbO,,

X(nns) nt k nt

400 2.644 3144 2.565 2.78SxI 0

425 2707 3.262 2.565 1.666x00

450 2788 3362 2.479 0

475 2,871 3439 2.454 0

5_W 2.943 3.500 2,433 0

525 3000 3.550 2416 0

550 3,038 3.596 2.401 0

575 3.059 1643 2.388 0

600 3,065 3.697 2.376 0

625 3,058 3760 2.365 0

650 3.041 3834 2.354 0

675 3.018 3.920 2.345 0

700 2.992 4.018 2.336 0

725 - - 2.327 0

750 - - 2.32 0

775 - - 2.313 0

800 - - 2.306 0

the base-electrode and to gain contact through a via to the base-
and counter-electrode. We modified the RIE etching process for
the base-electrode slightly from that of the other Nb layers by
performing it at a substrate temperature of 80'C (compared to
50*C for the other Nb layers). This elevated temperature was
needed to etch through the 50 nm NbO, layer. We also observed
an etch undercut profile due to the anodic oxide (see Fig. 3(a)).

To achieve contact through the anodic layer at the base of the
via (between the base-electrode/wiring layer and counter-elec-
trode/wiring layer) we relied on the 25% over-etch of the
PECVD deposited oxide and the pre-sputter of the wiring layer
to promote adhesion between the base-electrode and wiring
layer. To achieve contact to the counter-electrode, we used the
polishing from chemical mechanical planarization (CMP) and
the pre-sputter prior to wiring deposition to remove the NbO1
grown on the top of the counter-electrode.

C. Thickness Metrology

Determining NbO., layer thickness is critical for both
process control of anodization and for all subsequent dielectric
metrology. In our process, film thicknesses are typically
measured by using spectral reflectometry, for which the optical
constants and thickness of all underlying films are required.
Data available in the literature for bulk and thin-film Nb and
NbO. was found to be inadequate: it could not determine the
anodic film thickness accurately from spectral reflectometry
or ellipsometry. We therefore needed to determine the index of
refraction n and absorption coefficient k of the underlying Nb
and NbO, as a function of wavelength.

To determine the optical constants of NbO, we first needed
an independent measure of the film thickness. We used scan-
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Fig. 2. NbO. film thickness for given anodization voltage. Film thickness is
determined both by reflectometry measurements and SEM images. The solid
line represents the best-fit line to the reflectometry data.

ning electron microscopy (SEM) images to determine the film
thickness. We then determined the optical properties of the Nb
and NbO2, film using a Hitachi U-4000 spectrophotometer with
a 12-degree absolute-reflectance attachment. The resulting re-
flectance data was used to extract the index of refraction n and
absorption coefficients k as a function of wavelength for a Nb
layer and 95-nm-thick NbO. layer. The results are given in
Table I. NbO., data varied by a few percent depending on the
thickness of the oxide; the range of Cauchy coefficients was
from An = 2.169 to An = 2.236 and from Bn = 0.047
to B, = 0.05 while A, and B were zero (the range is too
small to be important for our purposes therefore we simply used
Cauchy coefficients of An = 2.169 and Bn = 0.047). For Nb
the Cauchy coefficients were An = 3.20, Bn = -0.086 and
Ak = 4.625 and B = -0.25. We then compared the film
thicknesses extracted from fitting spectral reflectometry data
to measurements from SEM images for a variety of anodiza-
tion voltages and found agreement, as shown in Fig. 2. Finally,
optical reflectometry and SEM data were compared to ellipso-
metric analysis at 632 nm and agreement was also obtained.

As mentioned previously, we used SEM images to estimate
NbO. thickness and transmission electron microscopy (TEM)
images to inspect the anodic film. A SEM image of NbO, grown
on a Nb layer is shown in Fig. 3(a). We estimate the thickness
of the NbO. layer to be ~ 50 nm for an anodization voltage of
20 V. Sample preparation and TEM imaging of Josephson junc-
tions was performed by MCNC and TEM Analysis Inc. Prior to
imaging, the junctions were tested at liquid helium temperatures
(4.2 K) and found to have good quality (Vm > 50 mV). TEM
images of the anodized junction region is shown Fig. 3(b).

Comparing anodized/unanodized wafer pairs for wafers with
50 nm of NbO2, we determined from step-height measurements
that the thickness of anodized wafers was typically 30 nm
greater than unanodized wafers. From this we conclude that
approximately 20 nm of Nb was consumed in the growth
process.

III. EFFECT OF ANODIZATION ON CRITICAL-CURRENT-DENSITY

UNIFORMITY

In order to determine the effect of anodization on the electrical
characteristics of our junctions, we looked at their normal-state

b)

NbO
-. 10

100 nm

Fig. 3. a) SEM image of NbO. grown on Nb layer. b) TEM image of an
anodized junction showing clearly the sealing of the junction edge by NbO..
Note the clean interface between the counter-electrode and wiring layer where
the NbO. has been removed by CMP.

resistance Rn at room temperature. We calculated the critical
current I of a junction from the Rn measurements for a
large quantity of junctions distributed across an entire wafer
using an automatic probing station. From these measurements
we determined critical-current-density uniformity for several
anodized/unanodized wafer pairs where, for each pair, the
trilayers were fabricated together.

A. Room Temperature Measurements

Room temperature measurements using specially designed
test structures were used to determine the overall critical-cur-
rent-density across the wafer. We employed four-point
cross-bridge Kelvin resistor (CBKR) structures to determine
the normal-state resistance Rn of the Josephson junction. Pre-
vious studies have shown that the critical current of a junction
can be accurately determined from the room-temperature Rn
measurements [11]. The room-temperature Rn was measured
using an automated probing station (Ruckers and Kolls 683 A
Semi-Automatic Wafer Prober). In order to prevent damaging
our junctions, we took two precautions: First, to prevent
electrostatic discharge (ESD) damage, the probing station pins
were grounded before making contact to the junction pads.
Second, we used the "make before break" method before
applying current through the junction. This method consisted
of introducing a resistive path parallel to the junction such that
the current ran mainly through this resistor. This current path
to the junction was then opened so current then flowed through
the junction. This method prevented voltage from building up
across the junction during the measurement.
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Fig. 4. Comparison of cross-wafer critical-current-density standard deviation
of anodized/unanodized wafer pairs. The wafers shown have J, values ranging
between 102 A/cm2 and 10' A/cm2 . Lines connect data points on wafers
whose trilayers were deposited together.

From the R, values obtained at room temperature, we de-
termined the approximate value of the critical current I, of the
junction. From the known junction area (10 x 10 tam2 , we then
extracted the Jc value. Fig. 4 shows the Je percent standard devi-
ation across a wafer for six wafer pairs. Each pair was fabricated
together, the only difference being the presence or absence of
anodization. The percent standard deviation of Jc was typically
~ 5% for anodized wafers but > 15% for unanodized wafers.
Overall, unanodized wafers had a factor of ~ 3 higher standard
deviation compared to anodized wafers. Error in room-temper-
ature R, measurements due to the finite lead resistance and
sizing errors could not account for this difference in critical-cur-
rent-density uniformity [11].

IV. ANALYSIS AND DISCUSSION

Our results suggest that there exists in-process modification
of J, that is avoided or diminished by anodization. The wafer
pairs we examined were simultaneously subjected to the same
highly uniform oxidation process involved in producing the
tunneling barrier, therefore making it unlikely for one wafer to
differ significantly in Jc uniformity from the other. Isolating
the cause of the modification remains difficult since many
subsequent processing steps are required to produce useful
junctions. Possible sources of damage or contamination of the
junction barrier include: stress in the Nb film, plasma, and/or
chemical sources (photoresist/developer, phosphoric acid, CMP
slurry). Clearly, anodization reduces cross-wafer Ic spreads of
large junctions (> 2 x 2 /Lm 2) suggesting that the anodic oxide
layer retards attack of the junction. However, from separate
room temperature and low temperature measurements, we
have determined that anodization does not improve cross-wafer
spread of small junctions (< 2 x 2 ILm 2 ) since small junction Ic
is mainly dominated by sizing variation rather than Jr variation
and anodization does not appear to affect sizing variation.

V. CONCLUSION

Our central work involves the development and incorporation
of an anodization process into an existing Nb superconducting
fabrication process and demonstrating its effect on J, unifor-
mity. We initially developed the anodization procedure, then
determined how to modify the existing standard process to
include the anodization step. This work required thickness
metrology development involving spectral reflectometry
measurements, SEMITEM imaging and step-height profile
measurements. From the normal-state resistance measurements
of junctions, we then determined the critical-current-density
across anodized/unanodized wafer pairs. Our results show that
anodization allows for higher Jc uniformity across anodized
wafers than unanodized wafers. This enables us to produce the
small (< 1%) J, cross-chip variation that is required for RSFQ
circuits, and to increase the quantity of chips per wafer with
the desired J.

ACKNOWLEDGMENT

The authors would like to thank the Lincoln Laboratory
Analog Device Technology Group and X. Meng for helpful
comments and discussion, T. Weir and G. Fitch for help with
room temperature testing, and D. Baker and the Lincoln Labo-
ratory Microelectronics Laboratory for help with fabrication.

REFERENCES

[1] X. Meng, L. Zheng, A. Wong, and T. Van Duzer, "Micron and submicron
Nb/A-AlOJ/Nb tunnel junctions with high critical current densities,"
IEEE Trans. Appl. Supercond., vol. 11, no. 1, pp. 365-8, March 2001.

[2] H. Nakagawa, G. Pepe, H. Akoh, L. Frunzio, R. Cristiano, E. Esposito,
S. Pagano, G. Peluso, A. Barone, and S. Takada, "A new fabrication
process of superconducting Nb tunnel junctions with ultralow leakage
current for X-ray detection," Jpn. J. Appl. Phys., pt. 1, vol. 32, no. 10,
pp. 4535-7, October 1993.

[3] S. Morohashi and S. Hasuo, "Experimental investigations and analysis
for high-quality Nb/Al-AlO./Nb Josephson junctions," J. Appl. Phys.,
vol. 61, no. 10, pp. 4835-49, May 1987.

[4] K. K. Berggren, E. M. Macedo, D. A. Feld, and J. P. Sage, "Low T.
superconductive circuits fabricated on 150-mm-diameter wafers using
a doubly planarized Nb/A1O./Nb process," IEEE Trans. Appl. Super-
cond., vol. 9, no. 2, pp. 3271-4, June 1999.

[5] J. L. Vossen and W. Kern, Thin Film Processes II. Massachusetts: Aca-
demic Press Inc., 1991, pp. 25 1-5.

[6] X. Meng, A. Bhat, andT. Van Duzer, "Very small critical current spreads
in Nb/Al-A1O./Nb integrated circuits using low-temperature and low-
stress ECR PECVD silicon oxide films," IEEE Trans. Appl. Supercond.,
vol. 9, no. 2, pp. 3208-11, June 1999.

[71 H. Kroger, L. N. Smith, and D. W Jiie, "Selective niobium anodization
process for fabricating Josephson tunnel junctions," Appl. Phys. Lett.,
vol. 39, no. 3, pp. 280-2, 1981.

[8] M. Bhushan et al., "Nb-AlO. -Nb SNAP technology for 125 mm wafers
developed in partnership with silicon technology," in Superconductive
Devices and Their Applications in Proc. SQUID '91 Conf, H. Koch and
H. Luebbig, Eds., New York, 1992, pp. 265-70.

[9] M. Bhushan and E. M. Macedo, "Nb/AlO./Nb trilayer process for
the fabrication of submicron Josephson junctions and low noise dc
SQUID's," Appl. Phys. Lett., vol. 58, no. 12, pp. 1323-5, 1991.

[10] T. Imamura and S. Hasuo, "Characterization of Nb/AlO. -Al/Nb junc-
tion structures by anodization spectroscopy," IEEE Trans. Magn., vol.
25, pp. 1131-4, 1989.

[11] K. K. Berggren, M. O'Hara, J. P. Sage, and A. H. Worsham, "Evaluation
of critical current density of Nb/Al/AlO./Nb josephson junctions using
test structures at 300 K," IEEE Trans. Appl. Supercond., vol. 9, no. 2,
pp. 3236-9, June 1999.

178

114



PHYSICAL REVIEW B 69, 144518 (2004)

dc measurements of macroscopic quantum levels in a superconducting qubit structure
with a time-ordered meter

D. S. Crankshaw, K. Segall, D. Nakada, and T. P. Orlando
Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139,

USA

L. S. Levitov
Department of Physics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA

S. Lloyd
Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA

S. 0. Valenzuela, N. Markovic, and M. Tinkham
Department of Physics, Harvard University, Cambridge, Massachusetts 02138, USA

K. K. Berggren
Massachusetts Institute of Technology Lincoln Laboratory, Lexington, Massachusetts 02420, USA

(Received 1 October 2003; published 22 April 2004)

dc measurements are made in a superconducting, persistent current qubit structure with a time-ordered
meter. The persistent-current qubit has a double-well potential, with the two minima corresponding to magne-
tization states of opposite sign. Macroscopic resonant tunneling between the two wells is observed at values of
energy bias that correspond to the positions of the calculated quantum levels. The magnetometer, a supercon-
ducting quantum interference device, detects the state of the qubit in a time-ordered fashion, measuring one
state before the other. This results in a different meter output depending on the initial state, providing different
signatures of the energy levels for each tunneling direction.
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I. INTRODUCTION

The study of mesoscopic quantum effects in supercon-
ductors is motivated both by interest in the extension of
quantum mechanics to the macroscopic world' and by the
possibility of constructing a quantum information processor.2

Macroscopic quantum effects, such as resonant tunneling,3

quantum superposition states,4'5 and time-dependent coherent
oscillations, 4 8 have recently been observed. In these experi-
ments, measurements were made on flux, '5 charge,6 and
current. 7 8

One particular superconducting system that has been un-
der study is the persistent-current qubit (PC qubit), a super-
conducting ring interrupted by three Josephson junctions.9

When an external magnetic flux bias near one-half of a flux
quantum ((Do= h/2e) is applied, the PC qubit has two stable
classical states of electrical current circulating in one direc-
tion or the other, resulting in measurable opposing magneti-
zations. It can be modeled as a double-well potential in a
three-dimensional potential landscape (one dimension for
each junction's phase variable, or three other variables which
span the space), where the minimum of each well corre-
sponds to one of these two magnetization states. Depending
on the parameters, the system may have multiple quantum
energy levels in one of the two wells, where each level has
approximately the same magnetization. Energy levels in a
similar system, the radio-frequency superconducting quan-
tum interference device (rf SQUID), have been measured by

0163-1829/2004/69(14)/144518(9)/$22.50

PACS number(s): 74.50.+r

studying resonant tunneling between the two wells. 3 Experi-
ments on an rf SQUID have used a separate, damped SQUID
magnetometer as the meter. This approach gives a continu-
ous readout of the magnetization, but also couples unwanted
dissipation into the system.

In a recent paper, we showed how coupling an under-
damped dc SQUID magnetometer to a PC qubit resulted in
time-ordered measurements of the two states, where one
state is observed before the other.10 In those experiments, we
studied the classical, thermally driven regime of operation.
In the present paper, we detail the effects of a time-ordered
meter on the dc measurements of the PC qubit in the quan-
tum regime. The quantum levels are detected by observing
resonant tunneling between the two wells. The positions of
the energy levels agree well with calculations of the qubit
energy band structure, and the energy bias of level repulsions
indicates where tunneling occurs between the two wells.
While the PC qubit has inherent symmetry between the two
states, the time ordering of the measurements causes an
asymmetry in the meter output. We demonstrate this asym-
metry, and also show how the meter shifts the positions of
the energy levels as a function of the SQUID current bias.
Finally, by measuring the width and height of the tunneling
peaks as a function of the SQUID ramp rate, we find a fitted
value of the intrawell relaxation of order microseconds.

II. QUBIT PARAMETERS AND MEASUREMENT PROCESS

The qubit and dc SQUID are both fabricated at Lincoln
Laboratory in a niobium trilayer process." The circuit dia-
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179
02004 The American Physical Society



PHYSICAL REVIEW B 69, 144518 (2004)

+

aE

EE

'co 'co VSQUID

,L f

(a)

(b/ 2 )Lq - 93 + (b/2)Lq

1flYXfY
91 In)

h

E2

+

92-

(1-b)Lq/2 _ (1-b)Lq/2

(b)

FIG. 1. (a) A circuit diagram of the qubit structure, a three-
junction loop, and the two-junction SQUID. (b) The circuit diagram
used to derive the quantum-mechanical model of the qubit. The
inductance is distributed among the branches, the inductance on the
branch of the smallest junction having a value of bLq (symmetri-
cally split on either side of the junction), while the inductances on
the other two branches each have a value of (1 - b)Lq/2. The node
phases 01 and 02 are shown in the figure.

gram is shown in Fig. 1. The qubit consists of a supercon-
ducting ring interrupted by three Josephson junctions, two of
which are designed to have the same critical current, I, and
the third of which has a critical current of aIr , where a is
less than 1. The meter is a dc SQUID magnetometer which
surrounds the qubit. It has two equal Josephson junctions
with critical currents of Ico, where Ico>Ic. The PC qubit
loop is 16X 16 pm2 in area, and the dc SQUID is 20
X 20 Am 2 in area, with self-inductances of about Lq

= 30 pH and L, =60 pH, respectively. They have a mutual
inductance of approximately M = 25 pH. These inductances

are calculated using FASTHENRY, 12 then refined through ex-
perimental measurements of the SQUID's response to mag-
netic field, as explained in the Appendix. The critical current
density of the junctions is 370 A/cm 2 and the critical current
of the SQUID junctions is measured to be IcO = 5.3 puA, con-
sistent with an area of 1.4 ptm 2. I, and a can be determined
experimentally from our previous thermal activation studies,
which give a=0.63 and Ic =1.2 uA. 10 These values are
within the range of estimated values from the process param-
eters.

By changing the magnetic flux through the PC qubit, the
depth of each well of the double-well potential changes, with
one becoming deeper as the other becomes shallower. The
energy bias (,-) is the energy difference between the minima
of the two wells. (We will also use it to indicate the differ-
ence between energy levels in opposite wells, using a sub-
script to indicate which energy levels we are measuring the
difference between.) It is periodic with frustration, fq , which
is the magnetic flux bias of the qubit in units of flux quanta.
At fq = 0.5, the depths of the two wells are equal, and near
this value the energy bias varies almost linearly with frustra-
tion, such that s is approximately 4 7raEj(fq-0.5), where
Ej=IIo/2 7r is the Josephson energy of each of the two
larger junctions of the qubit.

In our previous experiments,10 we observed the rate of
thermal activation of the qubit's phase particle (the term for
the wave function of the qubit's phase) above the barrier
between the two wells. At low temperatures, thermal activa-
tion is insufficient to overcome this barrier within the mea-
surement time scale when fq = 0.5. In this case, hysteresis is
observed, where the PC qubit remains in the state in which it
is prepared until it is measured, even though this state is no
longer the minimum energy state. During the measurement,
the SQUID goes to its voltage state, where it oscillates, and
since its oscillations are strongly coupled to the qubit, the
qubit is effectively randomized. Thus the hysteresis is not
observable without preparing the qubit prior to each mea-
surement. The qubit can be prepared in a state by changing
its magnetic flux bias to a value where the system has a
single well and allowing the qubit to relax to its ground state,
then bringing it back to the magnetic flux bias where it is
measured. The qubit will remain in the state where it was
prepared, either the left well (the 0 state) or the right well
(the 1 state), until either thermal activation or quantum tun-
neling provides the opportunity to escape to the opposite
well.

III. ENERGY LEVEL STRUCTURE CALCULATIONS

The full Hamiltonian for the qubit in Fig. 1(a) is given in
Eq. (1),

+1 -<os2 1 cosC 2 2H=- C +p C+2r ' aCj _ 03

+ Ej(1 - COSp) + Ej(1 - COS 2) +aEj(1 - COS 3)

(1)
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Here C. is the junction capacitance of each of the larger
junctions, and 'pi is the phase difference across junction i. If
the inductance of the qubit is small enough, the phase of the
three junctions is highly confined by flux quantization, and
only two independent variables are necessary to describe the
Hamiltonian. The requirement for this approximation is that

PL /Lj< 0.01,13 where Lq is the inductance of the qubit
loop and Lj is the Josephson inductance of each of the larger
junctions. This is not the case in our sample, where #&L
= 0.1. In order to correctly solve the Hamiltonian of our
device, we need to include the inductance and solve for the
three-dimensional Hamiltonian. We start by making a change
of variables from the phases of the three junctions to 01 and
02, which are node phases, and In, which is the current
around the PC qubit loop (we later use the variable I, to
denote the persistent current in the qubit, but I, is technically
the expectation variable in each state, while Im is the quan-
tum variable, thus I,=(In)). These variables are shown in
Fig. 1(b). This gives us the equalities in Eq. (2) for convert-
ing the phase variables of the junctions into 01, 02, and
IM"

1 -b 2w LqIm +f
E) _1~ 2 2 (Do ,

(P=()+1- b 21TLqIm +f
2 2 \ 2 2 (Do ,

(P3=E)2- 1 - (b)27r q~ +f . (2)

The variable b, which describes how the self-inductance
of the qubit is divided among its branches, is arbitrary so
long as it is less than 1. We can define its value as 1/(1
+2a) so that it eliminates any product terms of the time
derivative of IM and the time derivative of either I or 02 in
the Hamiltonian. By changing variables again, this time to

E+=(0 1+E 2)/2 and 0 - =( 1 -E 2)/2, while defining the
effective masses associated with these two variables as M+
= 2 ((Do/ 2 7r)2Cj and M_ =(2+4a)(Do/27r)2Cj, we get
the Hamiltonian in Eq. (3),

1 1 a
H=_M 0+2++_M_0 G 22+ - CjLqIm

+E {2+a-2 cosE+

X Cos E)_ 1- b2,r LqIm +f
\2 (DGo

- a cos 2-2 - (b)2 7r Lqlm +fq (3)

While complex, this is numerically solvable by discretiz-
ing the variables )+, 0- , and I_ into 0 +, 0- , and Imk,
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FIG. 2. An energy band diagram of the PC qubit with the pa-
rameters described in the text, with the magnetic flux bias of the
qubit in units of flux quanta (fq) as the horizontal axis. The transi-
tions between the 0 and 1 states occur at the avoided level cross-
ings. These are atfq=0.4 7 8, 0.483, 0.487, 0.488, 0.494, and 0.500
on the left side, labeled E, D, C', C, B, and A, respectively. On the
right side, these are at fq=0.500, 0.506, 0.512, 0.513, 0.517, and
0.522, labeled a, b, c, c', d, and e. The energy levels in the double-
well potential above the energy band diagram are likewise labeled.
C in the energy band diagram comes from the alignment of a (in the
right well) and C (in the left well), while c in the energy band
diagram comes from the alignment of energy levels A and c. Since
all the alignments are between a higher energy level in the deeper
well and the lowest level in the shallow well, the avoided level
crossings are designated by the label of the energy level in the
deeper well.

respectively, and creating a Hamiltonian matrix whose ele-

ments are Hpq=(E+.P -. ImkIh + 0 - Im), where p and q
are indices that map onto all the permutations of i, j, k and
r, s, t, respectively. H is a square matrix where each side has
a length equal to the product of the number of discretized
elements of 0+, 0-, and Im. The matrix must be kept
sparse in order to solve on a computer due to memory limi-
tations, and the band structure in Fig. 2 shows the eigenval-
ues of this Hamiltonian matrix as the external magnetic flux
bias is changed. The inclusion of self-inductance changes the
energy band diagram, most significantly by reducing the
level repulsion, since the barrier between the two wells is
greater due to the need to overcome the qubit's self-
inductance. The junction capacitance (C) is the most
roughly estimated of the qubit's parameters, and thus serves
as the sole fitting parameter for the level crossing locations.
A value of 28 fF for C gives a good fit. The first six avoided
crossings, counting outward from fq = 0.5, are labeled, using
a, b, c, c', d, and e for the level crossings when fq is greater
than 0.5, and using A, B, C, C', D, and E when fq is less
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than 0.5. C and C' (and their equivalents in the other direc-
tion, c and c') are difficult to discern due to their proximity.
Although the energy scales are such that some of the avoided
level crossings appear to actually cross in this figure, there is
a small amount of energy level repulsion even at f, = 0.5.
There are multiple energy levels in each well, and each la-
beled level crossing corresponds to the alignment of the low-
est level in one well and one of the energy levels in the other
well, as is shown in the double well potentials in Fig. 2. This
results in two eigenstates-a symmetric state and an anti-
symmetric state-spanning both wells, with an energy differ-
ence equal to the level splitting shown in the energy band
diagram, allowing the classical state of the qubit to change as
the phase particle oscillates between wells.

IV. RESULTS AND DISCUSSION

To determine the state of the PC qubit, we ramp the elec-
trical current in the dc SQUID until it switches to the voltage
state. The measuring dc SQUID remains in the zero-voltage
state as long as the current through it is below the switching
current, which is determined by the total magnetic flux
through the SQUID; when it passes this current it develops a
finite voltage. The nominal value of the switching current is
Iswo = 2IcoIcos(irfs), where Ico is the critical current of each
of the two SQUID junctions and fs is the total magnetic flux
through the SQUID in units of flux quanta, although the
SQUID may switch early due to thermal excitation or quan-
tum tunneling of the SQUID phase particle. Since the qubit's
two states have different magnetizations, the two states in-
duce different switching currents in the SQUID: I0 for state
0 and I1 for state 1. The stochastic process that describes the
switching of the SQUID has a variance that is measurable
but significantly smaller than the signal we are measuring
(the difference between Io and Ii). The ramp rate is typically
4 pA/ms and the difference between Io and I1 is 0.5 pA,
which gives a delay of 125 ps between the polling of the 0
state and the 1 state. If the qubit is in the 0 state, the SQUID
switches as soon as it arrives at I0. If it is in the 1 state and
remains there, the SQUID does not switch until it reaches I1.

Figure 3 illustrates the observed hysteresis of the qubit.
Part (a) of this figure shows the probability of measuring the
qubit in each state by plotting P1 - P0 , where P1 is the prob-
ability of finding it in state 1 and P0 is the probability of
finding it in state 0. It also shows one-dimensional cuts of the
double-well potential at different magnetic fields. The solid
curve is P,-- P0 when the system is prepared in the 1 state,
while the dashed curve shows this measurement when it is
prepared in the 0 state. This measurement occurs at -20 mK
bath temperature, where the thermal energy is kfiT
~1.7 peV. Part (b) of this figure shows how the difference

between the 50% point of the two curves shown in (a)
(marked by the line labeled w) varies with temperature. We
call this difference the "hysteresis width." The width is con-
stant up to T= 200 mK, then decreases linearly as tempera-
ture increases. The hysteresis width should not vary with
temperature as long as kBT< h W, where wo is the resonant
frequency of the qubit, which is equal to 28 GHz. This gives
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FIG. 3. (a) The hysteresis measurement at 20 mK bath tempera-
ture. Above the figure are one-dimensional cuts of the potential that
show the shape of the double-well potential at the various frustra-
tions. The plot shows the proportion of switching events where the
qubit is measured in the 1 state minus the proportion where it is
found in the 0 state (P 1- PO) against the magnetic flux bias of the
dc SQUID in units of flux quanta (fs). The solid line is for a qubit
prepared in the 1 state, represented in the double-well diagrams as a
solid circle. The dashed line shows the measured qubit state when it
is prepared in the 0 state, corresponding to the dashed circle in the
double-well potential diagrams. The dashed line shows numerous
peaks and dips, while the solid line's structure is less pronounced.
Multiple scans over the same region produce the same results. The
width of the hysteresis is labeled in this figure with a w. (b) As the
temperature increases, the hysteresis loop closes. The points on this
graph show the width of the hysteresis loop (w) vs temperature. It is
nearly constant for low temperatures and nearly linear for higher
temperatures. The line serves as a guide for the eyes.

a turnover point of 210 mK, consistent with the measure-
ment. Thermal activation causes the qubit to change state
once the barrier is on the order of kBT, and the barrier height
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changes linearly with magnetic flux bias. The hysteresis
width intercepts zero at 550 mK, or 47 peV.

The hysteresis loop closes as the temperature increases.
The hysteresis width corresponds to the points where the
probability of escape from the shallow well is approximately
50%, or Pesc = - e-r=0.5. Since the ramp time is on the
order of 1 ms, we can calculate F tto be approximately 700.
Thermal activation gives an escape rate of th
= (7.2A Uwo/2irQkBT)exp(-AU/kBT). Calculations of the
potential energy, confirmed by previous experiments,
show how the barrier between the two states, A U, varies
with the magnetic flux bias of the qubit.10 Near fq= 0.5, the
barrier for the qubit to make the transition from the 1 to the
0 state can be written as A Ujo(fq)-A U(0.5)+2TaE(fq
-0.5), where 2 7aEj=950 peV. AU(f =0.5) is
2 raEj{2 cos~[21(1 - a)2/3] - cos~ 1[(1 - a) /3a2]}, or
about 210 peV,10  or 2.4 K. AUoi(fq)-A U(0.5)
-2 iaEj(fq-0.5) is the barrier for the transition from 0
and 1 at the same flux bias. A U(fq)/kBT, which appears in
both the exponent and the prefactor, is the dominant term in
Fr. The other terms in the prefactor are wo, the simple
harmonic-oscillator frequency of the well (equal to 28 GHz),
and the quality factor Q, which is 3 X 105 as calculated in
Ref. 10. The value of A U(fq)IkBT, which would give a rth
of 700, is 9. Referring to part (b) of Fig. 3, we can apply the
values of the temperature and the barrier of the shallow well,
A U(fq), to the slope of the line to find the constant value of
A U(fq)/kBT, which is found to be 7.3, about 20% off from
the theoretical value of 9.

Figure 4 shows the number of switching events at various
values of current and magnetic flux bias. The horizontal axis
represents the externally applied magnetic flux to the SQUID
in terms of frustration, while the vertical axis corresponds to
the current bias of the SQUID. The coloring indicates the
number of switching events that occur at each point in the
external flux bias and current bias coordinates. In the experi-
ment, 103 measurements are taken at each value of external
flux bias, so each vertical slice represents a histogram of
these measurements. Over most of the parameter space, this
figure shows that two preferred states exist, corresponding to
the 1 and 0 states of the qubit. These states create two
"lines" across the figure, reminiscent of the results in
Ref. 14.

However, the detailed signatures of the switching events
when the qubit is prepared in the 1 state [Fig. 4(a)] differ
from when it is prepared in the 0 state [Fig. 4(b)], even
though the energy biases are mirror images of each other
around fq=0.5, as shown by the double-well potentials
drawn above Fig. 3(a). Figure 4(a) shows stripes in the re-
gion in between the two lines of switching currents, whereas
Fig. 4(b) has no switching events in this in-between region.
The two lines of switching currents in Fig. 4(b) shows is-
landlike regions, whereas Fig. 4(a) does not. The plots in Fig.
3, which are derived from the same data, also reflect this
asymmetry. Although Figs. 4(a) and 4(b) show a range of
flux bias where both states can be measured, an important
difference between the two plots is the path followed by the
SQUID in bias current and external magnetic field, which is
illustrated by the dashed line in the two figures. Rather than
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FIG. 4. (Color) (a) A plot of the switching events at various
external flux biases when the qubit is prepared in the 1 state, taken
at 20 mK bath temperature. Each vertical slice is a histogram of an
ensemble of switching measurements taken at a fixed external flux
bias, where the colors represent the number of switching events at
each current bias. The horizontal axis is the external flux bias of the
SQUID, fs. The solid lines are lines of constant fq that correspond
to level crossings in the qubit labeled according to the convention in
Fig. 2. The path followed when the current bias of the SQUID is
ramped is not a straight vertical line, since the external flux bias is
also changing due to the state preparation. The path for a represen-
tative measurement, where fs =0.72, is shown by the dashed line.
(b) The switching events when the qubit is prepared in the 0 state,
also at 20 mK. Note that the dashed line is briefly tangential with
one of the solid lines. The dashed line represents fs =0.753.

being completely vertical, indicating a ramp in SQUID cur-
rent while the external magnetic field is held constant, the
external magnetic field also changes during the current ramp
due to the preparation of the qubit state. The total magnetic
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field seen by the qubit also changes due to coupling from the
SQUID's circulating current. These, along with the influence
of the time-ordered measurements, result in differences in
the data due to macroscopic quantum tunneling.

We first consider the data in Fig. 4(a), where the system is
initially prepared in the 1 state. When the qubit is prepared in
the 1 state, it will remain there as long as the bias is such that
the local minimum exists, unless it has some mechanism to
escape this local minimum, such as thermal activation or
macroscopic quantum tunneling. At 20 mK bath temperature,
thermal activation is effectively frozen out, and macroscopic
quantum tunneling is the dominant process; therefore, one
expects to see tunneling at the locations of the energy level
crossings on the left side of the band diagram in Fig. 2. The
probability that the state will make a transition from 1 to 0
depends on the tunneling rate and the time that the system
remains in the level-crossing region. Note that if the qubit
makes the transition to the 0 state before the SQUID bias
current reaches I, but after the current is past Io, the SQUID
switches immediately, and we record a switching event in the
region between I0 and I1. One might expect vertical stripes
to appear between I0 and I1 at the external flux biases corre-
sponding to the level crossings. The observed stripes are in-
stead curved because the total flux bias of the qubit, fq,
depends on the flux coupled from the readout SQUID as well
as the externally applied flux, Jfxq. The total flux biasing the
qubit is fq=f~ +MIcir/? 0 , where fjt is the externally
applied flux bias, M is the mutual inductance between the
dc SQUID and the qubit, and Ici, is the circulating current
in the SQUID. The circulating current in the dc SQUID
decreases as the bias current increases. The circulating
current is calculated from the Josephson equations
of a SQUID with a finite self-inductance to be Icir
=IcO sin(irf's)1i -1ia/[2Ic, cosgrf')]2 , where fs is the ef-
fective flux bias of the SQUID, which follows the equation
fsl=fs+MIp/(Do+Ls/ciA/o. Here fs is the externally ap-
plied flux bias to the dc SQUID and Ls is the self-inductance
of the SQUID. I, is the persistent current in the qubit, which
is nearly constant at aI, = 760 nA, and whose sign depends
on the state in which the qubit is prepared. The appearance of
Icir in fs requires that the circulating current be solved self-
consistently. This calculation shows that the qubit's effective
flux bias approaches the externally applied flux as it moves
closer to the switching current. Figure 5 shows how f
changes as the current is ramped. Lines of constant effective
flux bias are drawn in Fig. 4(a) and the stripes in the switch-
ing events match up with these lines of constant fq. Further-
more, the lines of fq that match up to the stripes indicate the
effective flux biases where the level crossings occur in the
qubit, and these stripes compare well to the calculated level
crossings of the qubit (shown in Fig. 2) based on the param-
eters we obtained from thermal activation experiments.15 By
ramping the bias current more slowly, the system spends
more time near the level crossings that have a smaller tun-
neling rate and they show up more clearly; in this way, all
the level crossings have been mapped out and show all the
expected energy levels. 16 The effect of the ramp rate is dis-
cussed further below.

0.525

0.52

0.515

0.51

0.505

0.5

0.495'
0 0.2 0.4 0.6 0.8

..

%Prepared in the 1 state

... .. . .. .... .....

Time (ms)

FIG. 5. The trajectory followed by fq during the SQUID bias
current ramp when fs=0.753 (fs=0.753 would correspond to
fq =0.469 if the qubit were not influenced by the circulating current
in the SQUID). The solid lines are level crossings of the qubit
(labeled according to the convention in Fig. 2), while the dashed
lines are the paths followed when the qubit is prepared in the 0 state
and in the 1 state. The plateau that occurs when the qubit is pre-
pared in the 0 state causes sharp peaks in the data due to the time
during which the qubit flux bias lingers at a level crossing. The
dashed-dotted lines are the times at which the switching currents for
states 0 and 1 are reached for each value of fq.

We now consider the data in Fig. 4(b), where the qubit is
initially prepared in the 0 state. If the qubit remains in the 0
state, then the SQUID switches to the voltage state at I0. The
qubit cannot change from the 0 state to the 1 state after Io,
since by that point the SQUID will already have switched. If
there is a transition from 0 to 1, this must happen before the
qubit reaches I0. There are no observed switching events
when the current bias is between I0 and I1, indicating that
once it makes the transition from 0 to 1 it does not return.
This is expected if after tunneling into one of the higher
energy levels of the deeper well, it relaxes to a lower energy
state where it is no longer in alignment with the energy level
of the shallow well. Figure 6(a) shows the same data as Fig.
4(b), but simplified to the probability of finding the qubit in
each state, Pl- P0 . The large population shift in Fig. 4(b) at
fs=0.755 is represented in Fig. 6(a) by the peak labeled c.
Slowing down the measurement has a noticeable effect when
the qubit is prepared in the 0 state, shown by how the peaks
grow larger from part (a) to (b) while maintaining their po-
sition, indicating that the probability of transition grows due
to the slowing of the SQUID ramp rate. This suggests that
the tunneling rate from the 0 to 1 state is comparable to the
time over which the levels are near alignment in the SQUID
ramp. If the rate were much faster, then all the population
would tunnel to the 1 state. If it were much slower, then none
of the population would tunnel.

Recall that the flux bias of the qubit is fq=fqXt
+ MIcir /4I0 . Since Icir changes as the SQUID is ramped, and
tXV is pulsed when the qubit is prepared, fq is a function of
time. In the qubit's preparation, the external magnetic field is
pulsed in either the positive direction (to prepare it in the 1
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FIG. 6. The qubit state when the SQUID is ramped at a rate of
(a) 4 ptA/ms and (b) 0.8 pA/ms. The solid lines correspond to the
theoretical model, while the solid circles are actual data points. The
two show reasonably good agreement. The slower ramp rate results
in a higher probability that the qubit will move to the 1 state, as is
made clear by the growing peaks. The oscillations in (b) between
fs= 0.748 and 0.755 are artifacts of the numerical simulation. They
decrease as resolution is increased, but resolution is limited by com-
puter memory constraints. The peak labels correspond to the
avoided crossings indicated in Fig. 2.

well) or the negative direction (to prepare it in the 0 well). It
returns from the preparation while the SQUID's bias current
is ramping. The change in Ici during the SQUID ramp is the
same regardless of the well in which the qubit is prepared.
Thus, when the qubit is prepared in the 1 state, the two
factors sum, while preparation in the 0 state causes the two
factors to oppose one another. In the case of preparation in
the 0 state, the state preparation and the MIci, magnetic fields
balance for roughly 50 us, where the flux bias of the qubit is
nearly constant. This is seen in Fig. 5. When prepared in the
1 state, the curve shows a continuous change in f9 , while fq
plateaus briefly when the qubit is prepared in the 0 state. If
this plateau corresponds to an energy bias where there is a
high rate of quantum tunneling between the wells, this re-
sults in a strong probability of tunneling which gives a sharp
peak in the measured data (P1 - PO).

V. SIMULATIONS OF TRANSITIONS

To simulate the effect of the SQUID current bias ramp on
the state of the qubit, an equation for the tunneling rate is
needed. These measurements resemble those taken in Ref. 3
and described theoretically in Ref. 17 to give an equation for
the rate of transition from the lowest energy level in one well
to a high energy level in the other,

Id e
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where r71 is the transition rate for level crossing i, A, and s,
are the tunnel splitting and energy bias of the specific level
crossing, respectively, and F, is the rate at which the qubit
relaxes from the high energy level in the deeper well to one
of the lower energy levels. The transition is not considered
complete without this decay, which prevents the phase par-
ticle from returning to the original state. A, is a function of
the quantum model of the qubit, and can be calculated from
the parameters that we already know. sei, the energy bias, is
the energy difference between the energy levels in either
well. This is equal to 4iTaEj(fq--f,), where f, is the posi-
tion, in magnetic flux bias, of the individual level crossing
we are considering. We will approximate F, to be a constant
for each level crossing. This relaxation to the lower energy
levels is the fitting parameter, with the guideline that the
higher the energy level, the more quickly it should relax.
Running a simulation of the transition probability as fq
changes during the SQUID current bias ramp gives Figs. 6(a)
and 6(b), showing a match between the theoretical model
and the experiment at two different ramp rates. Using this
model with theoretically calculated numbers for Ai, the fit-
ted values for F, are (13 ps)~1 for the first excited state,
(15 ps)-1 for the second, (75 As)-1 for the third [which
corresponds to a transverse mode of the oscillator and is
weakly coupled to the other energy levels], (1 ps)-1 for the
fourth, and (1 ps) 1 for the fifth. These are long decay times
for intrawell relaxation. Recent spectroscopy data also sug-
gest an intrawell relaxation time on the other of tens of
microseconds.1 8 It should be noted that the theory allows
some trade-off between A and Fi, so that a smaller A would
correspond to a faster relaxation time. Environmental fluc-
tuations may effectively decrease A, while increasing F,,
implementing this trade-off. While we modeled this reduc-
tion in Ai using Wilhelm's formulation,19 the exact amount is
necessarily uncertain since it depends on the total environ-
ment of the qubit, which we cannot directly observe.

There are several strong peaks in these data, including
two that are right next to each other. In the quantum model of
the qubit, the only point that would give two level crossings
so close together would be due to a transverse mode of the
three-dimensional well, which produces an energy level of
the first excited state in the E)+ direction near the energy
level as the second excited state in the E)_ direction. We
presume that we are able to observe this mode only because
of an asymmetry in the two larger junctions, due to fabrica-
tion variances, since perfectly symmetric junctions would
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FIG. 7. (a) This is the dc SQUID switching current curve, which
approximately follows 1,,o=2Iocos(rf's)j. The locations of the
qubit steps are circled. The dc SQUID switching current is periodic
with magnetic field, while the qubit step is nearly periodic. (b) The
solid squares represent the deviations of the measured qubit step
locations from a perfect periodicity of 1.53 SQUID periods per
qubit period, while the solid line shows the magnetic field from the
SQUID's circulating current which couples to the qubit. This is
periodic with the SQUID's frustration, and accounts for the devia-
tions from perfect periodicity.

not produce a coupling between the transverse mode energy
level in the deep well and the lowest state in the shallow
well.

Using data from preparation in both states, we have ob-
served energy levels within each well, which are separated
from the ground state by frequencies of 28, 53, 60, and 72
GHz. This is measured from the location of the stripes when
prepared in the 1 state and the location of the peaks when
prepared in the 0 state, using the estimation that s
~47raEj(fq-0.5). The locations of these level crossings
agree well with the energy band diagram in Fig. 2, which is
calculated by numerically finding the eigenstates of the
Hamiltonian.
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VI. SUMMARY

In summary, we have observed macroscopic quantum tun-
neling in a persistent current qubit. The observed stripes
when the qubit is prepared in the 1 state, even more than the
distinct variations in the state populations when it is prepared
in the 0 state, indicate quantum level crossings of states in
the qubit's wells. We used these observed stripes and varia-
tions to determine Ec, our only unknown parameter after the
results in Ref. 10, so that the quantum simulation gives the
same crossings as those measurements. Once the location of
the level crossings was determined, the probability of tunnel-
ing led to an estimate of the intrawell relaxation times in the
tens of microseconds. Experiments are underway to observe
coherent oscillations between the states.
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APPENDIX:

Calculating the mutual inductance between the dc SQUID
and the qubit is straightforward. The self-inductance of the
SQUID can be determined from the transfer function of mag-
netic flux to switching current. From these values, we can
calculate the circulating current in the SQUID as it varies
with frustration. The shape of this curve, especially its mini-
mum and any bimodal features due to multiple wells in its
potential, tells us the value of #3 L,S = Ls /L j,s , the ratio of the
SQUID's self-inductance to its Josephson inductance. Figure
7(a) shows the periodicity with which the qubit step appears
in the SQUID transfer function. Since the SQUID is 1.53
times the size of the qubit, the step should appear at every
1.53 periods in the SQUID curve. This periodicity arises be-
cause, while both the SQUID and the qubit have a periodic-
ity of (DO, the SQUID receives more flux due to its larger
size. However, the qubit is not perfectly periodic, as is shown
in Fig. 7(b), where the points mark Afrx, the difference
between the qubit step's position and where it would appear
if it occurred with perfect periodicity. This deviation indi-
cates that there are sources of magnetic field other than that
applied by the external magnet, the strongest of which is the
field coupled to the qubit by the circulating current in the dc
SQUID. (The SQUID is also influenced by the circulating
current in the qubit, but since this is only one-seventh of the
value of the circulating current in the SQUID, it can be
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safely neglected.) The total field seen by the qubit is fq

=fs/1.53+MIcir/ND, where fs is the frustration of the
SQUID from the externally applied field and Icir is the cir-
culating current in the SQUID. Thus Afe" t=fq-fs/1.53

PHYSICAL REVIEW B 69, 144518 (2004)

= MIcir /o. If we use a least-squares fit to find a value of M
that causes MIcir/ o to intersect the Afqxt data points, we
can solve for M, which we find to be about 25 pH. This
produces the curve in Fig. 7(b) that intersects the data points.
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Energy Relaxation Time between Macroscopic Quantum Levels
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We measured the intrawell energy relaxation time rd = 24 As between macroscopic quantum levels
in the double well potential of a Nb persistent-current qubit. Interwell population transitions were
generated by irradiating the qubit with microwaves. Zero population in the initial well was then
observed due to a multilevel decay process in which the initial population relaxed to lower energy levels
during the driven transitions. The decoherence time, estimated from rd within the spin-boson model, is
about 20 p.as for this configuration with a Nb superconducting qubit.

DOI: 10.1103/PhysRevLett.92.117904

Recent successes with superconducting qubits (SQs)
have enhanced the feasibility of implementing quantum
computing (QC) with Josephson devices [1-9]. Rabi os-
cillations, which are a preliminary requirement of QC,
have been reported in charge, phase, and flux qubits [3-
8]. However, the systematic experimental investigation
of decoherence, which is a key issue for SQs, is sparse
so far due to the challenge of the time resolution of the
measurement. Although long decoherence times have
been demonstrated in some special configurations
[4,5,8,10], the limiting source of decoherence in the SQs
remains unidentified. On the other hand, the decoherence
time for SQs, including energy and phase relaxation
times, is predicted to be proportional to the level of
dissipation, which results from the coupling between the
qubits and the environment [11,12]. Therefore, quantify-
ing the dissipation is extremely useful in the design of
qubits from various new materials, because it indicates
whether the dissipation is at least low enough to make
error-tolerant QC feasible. Previous methods to deter-
mine the dissipation of devices are either applicable at
relatively high temperatures [10] or rely on indirect mea-
surements of switching probabilities [13]. In addition, all
long decoherence times (-1 ps) reported have been ob-
tained in NbN and Al SQs [4,5,8,10]. It is important to
know whether a promising decoherence time can be
achieved in Nb-based SQs, which has a more mature
fabrication capability. In this Letter, we present time-
resolved measurements of the intrawell relaxation time
Td in a Nb persistent-current (PC) qubit. We found that
T d = 24 As. The corresponding phase-decoherence time
within a spin-boson model (SBM) is inferred to be longer
than 20 As. These long decoherence times indicate a
strong potential for QC employing Nb-based SQs.

A PC qubit is a superconducting loop broken by three
underdamped Josephson junctions (JJs) [Fig. 1(a)]. Two
JJs are designed to have the same critical current, and
the third one is designed to be a times smaller. For 0.5 <

117904-1 0031-9007/04/92(11)/117904(4)$22.50

PACS numbers: 03.67.Pp, 03.65.Yz, 85.25.Cp, 85.25.Dq

a < 1 and with an externally applied magnetic field close
to a half-flux quantum FDO/2, the system is analogous to a
particle in a two-dimensional potential well with eigen-
energies calculated in Ref. [14]. However, the lowest
relevant states effectively reflect a particle in a one-
dimensional double-well potential with quantized energy
levels shown in Fig. 1(b), and whose classical states in
each well correspond to macroscopic persistent currents
of opposite sign [15]. The potential shown in Fig. 1(b) can
be tilted by changing the frustration fq, the magnetic flux
threading the loop in units of (Do. The two classical states
are coupled via quantum tunneling through the barrier
between the wells. In addition, the system can interact
with a monochromatic electromagnetic (microwave)
field, and microwaves with frequency matching the en-
ergy level spacing can generate transitions between the
two macroscopic quantum states, namely, photon-
induced transitions (PITs) [2,8].

The samples used in this study were fabricated at MIT
Lincoln Laboratory in a Nb trilayer process [16]. The
critical current density is J, - 370 A/cm2 . The critical
currents of the large and small JJs in the qubit, deter-
mined from thermal activation studies [17], are IC ~ 1.2
and 0.75 pA, respectively (a ~ 0.63). The qubit energy

A) b (b) 10) 10)
10), -

10). ~ I)ra) )
lox

FIG. 1. (a) Schematic of the PC qubit surrounded by a readout
dc SQUID. (b) Schematic of the qubit's double-well potential
with energy levels for an applied frustration close to 0.485Do.
Microwaves pump the qubit from the lowest level of 11) (|1)o) to
the third excited level of 10) (10)3), then decay to the second
excited level of 10) (10)2) with a rate Yd.
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level structure calculated using qubit parameters is shown
in Fig. 2 of Ref. [14]. The persistent current in the qubit
loop can be read out by a dc SQUID which surrounds the
qubit For our device parameters [14,17], the persistent
current will generate an additional magnetic flux of
-3 m4)0 in the SQUID, resulting in a 0.3 /zA change in
the switching current I, of the SQUID that can be easily
detected at T < 50 mK. The sample was mounted on a
chip carrier that was enclosed in an oxygen-free-copper
sample cell and thermally anchored to the mixing cham-
ber (MC) of a dilution refrigerator. The devices were
magnetically shielded by four cryoperm-10 cylinders
surrounding the inner vacuum can. All electrical leads
that connected the SQUID to room temperature elec-
tronics were carefully filtered by electromagnetic inter-
ference filters (at 300 K), RC filters (at 1.6 K), and copper
powder filters (at 15 mK). Microwaves were injected to
the qubit via a separate semirigid cryogenic coaxial cable
with 20 dB attenuators at the 1 K pot and the MC.
Battery-powered low-noise preamplifiers were used for
all measurements. The diagnostic tests performed on JJs
indicated that there was no significant extrinsic noise in
our system.

Spectroscopy of the qubit energy levels was achieved
using microwave pulses to produce PITs. For each mea-
surement trial (Fig. 2), we first prepared the qubit in state
11) by tilting the potential (i.e., applying frustration) to a

regime where the system has a single well and then wait-
ing a sufficiently long time. After the qubit had relaxed to
its ground state, the potential was tilted back to the frus-
tration where it was to be measured. At low temperatures,
the qubit will have a finite probability of remaining in |1),
which is effectively metastable on the time scales consid-
ered in this Letter. We then applied microwaves with du-
ration time tpu1, inducing transitions between states 11)
and 10). After the microwaves were shut off, the bias cur-
rent of the SQUID was ramped through values slightly
higher than its critical current Io. The qubit state (10) or
11)) was then read out from the current at which the
SQUID switched to a finite voltage state [0 or 1 in
Fig. 2(d)]. For a fixed frustration, this procedure was
repeated more than 103 times to minimize the statistical
error. A histogram of I,, clearly shows the probability
distribution of the qubit state occupation. Shown in Fig. 3
are contour plots of the switching-current histograms
obtained by scanning the frustration at T = 15 mK.
Each vertical slice is a histogram of I and the color
represents the number of switching events (proportional
to the switching probability). A bimodal structure in the
switching-current distribution, caused by the opposite
persistent current of the qubit, was observed at fq ~
0.4850Do. The lower branch represents the qubit in the
10) state, and the upper branch represents the qubit in the
|1) state. The substantial population in state |1) demon-
strates that we had successfully prepared the qubit in 11),
because, near fq ~ 0.4850'o, the qubit had a much higher
single-well ground-state energy in 11) than that in 10).
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FIG. 2. Time profiles of (a) bias frustration, (b) microwave
amplitude, (c) SQUID bias current, and (d) SQUID voltage for
one measurement trial. 0 and 1 indicate that the qubit states (10)
or |1)) result in different I,.

However, the energy barrier height and width relative to
the lowest energy level of state |1), denoted as 11)o, were
small enough so that the qubit had a large probability of
tunneling to 10). The leftmost tip of the higher branch
marked a fixed frustration point fq ~~ 0.4840o, below
which it was impossible for the qubit to stay in 11),
because the potential becomes essentially a single-well
10) state. Microwaves, with frequencies matching the
energy difference between 1 1) and one of the levels of
10), were used to generate transitions between states |1)

,ap
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FIG. 3 (color). Contour plots of the switching current distri-
bution (a) without microwaves and with microwaves at
(b) v = 6.77, (c) 7.9, and (d) 9.66 GHz. In each plot, the left-
most tip of the upper branch corresponds to a fixed frustration
point fq ~ 0.484(D0. Without microwave irradiation, the popu-
lation in the upper branch (state 11)) decreased continuously to
zero as the frustration decreased from FO/2. Microwaves
pumped the population from state 11) to state 10) at the resonant
frustration, the bias point at which the microwave frequency
matched the energy level spacing between two states. The white
arrows indicate that the resonant frustration moves toward
%D/2 with increasing microwave frequency, in agreement
with the qubit energy structure [Ref. [14]].
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and 10). The most striking feature of the contour plots is
that a population "gap" (i.e., zero population region) in
the 11) branch was created by the microwaves [Figs. 3(b)-
3(d)]. With increasing microwave frequency, the gap
moved away from the tip, as expected from the energy
level structure [Ref. [14]]. The quantitative agreement
between the gap position and the energy level structure
confirmed that the gap resulted from the microwave PIT
between the two macroscopic quantum states 1 1) and 10)3
(the third excited energy level of the state 10)). We believe
that the PIT here was an incoherent process, because the
microwave pulse duration was 600 ps, much longer than
the estimated decoherence time (0.1-100 ps) [2,8,15].
Additionally, no periodic variation of population with
varying pulse duration (for long pulses) was observed.
In a simple two-level system, observing such a gap would
be unexpected for an incoherent transition, since the
population in the lower level (I1)o) should always be larger
than 0.5 in that case [18]. In order to address this gap
phenomenon in our multilevel system, a multilevel pump-
decaying model is introduced.

For simplicity we considered only three levels, the
initial state 11)0, the 10)3 state to which radiation induces
a transition, and the state 10)2 to which the population of

10)3 decays. More accurately, the state 10)3 decays to 10)2,
10)1, and |0)o, but, for ease of calculation, we collectively
label these states as 10)2 with an overall effective intrawell
decay rate Yd 1/dr. The temporal evolution of the
three-level system under microwave irradiation is thereby
described by the following three coupled rate equations:

dP 10  -y 1 P10 + (Yi + Y2)P0 3, (1)
dt

dP03 = yIP 10 - (Y1 + Y2)P03 - YdPo3, (2)
dt

dP02 = YdPo3, (3)
dt

in which P10 , P0 3, and P02 are the occupation probabilities
of levels |1)o, 10)3, and 10)2, respectively. yi is the stimu-
lated transition rate between 1 1) and 10)3, and Y2 is the
spontaneous relaxation rate from 10)3 to 11)o. Generally,
for a given system, Ti is proportional to the microwave
power Prf, and Y2 can be considered to be a constant [18].
For the initial condition P10 (0) = 1, with P03(0) =

P02(0) = 0, Eqs. (1)-(3) can be solved analytically. For
Y1 ; Yd, which is satisfied in our experiment, the proba-
bility of finding the qubit remaining in the state 11)o at
t > 1/( 2 y + Y2 + Yd) is given by

P10(t) ~ al e-1r, (4)

where a, depends weakly on the microwave power and
can be considered as a constant in the relevant time scale,

rl - (2 + T2/1i)rd = (2 + T2/APrf)rd, (5)

and A is the coupling constant between the micro-
wave source and the qubit. The physical picture of the
three-level pump-decaying process is that microwaves

117904-3

populate the highest level with a population P03  1/
(2 + T2/Ti), which decays to the lowest level with a
rate Yd. Therefore, the effective decay rate of the popu-
lation of the initial state is given by Eq. (5), and with t
sufficiently long, P10 (t) -+ 0; this agrees with the experi-
mental observations.

A significant impact of Eqs. (4) and (5) is that rd can be
determined by measuring P10 (t). Because I., of 10) is
smaller than that of |1), pumping the system from state
|1) to state 10) will generate a dip in the Isw average as a
function of frustration, and the dip amplitude is propor-
tional to 1 - P10 . Figure 4 shows the dip amplitude as a
function of the microwave irradiation time tpu. The nomi-
nal power of the microwave source was Prf = 31.3 LW.
The time constant r', obtained from a best fit, is 130 ±
20 ps. We emphasize that r' is not equal to Td, but, rather,
it depends on T2/TI. For large P 1 (i.e., y >> T2), r' will
saturate to 2 7d. For y - Y2, we are able to determine Td
by measuring the P 1 dependence of r/. Shown in Fig. 5
is r' measured at various Pf. r' saturates at about 50 ps
for P1 > 0.2 mW. By adjusting T2/A and rd as fitting
parameters, we obtained rd 24.3 2.7 As from a best
fit to Eq. (5), which is consistent with dc tunneling
spectroscopy measurements [14]. This long intrawell en-
ergy relaxation time is of the same order of magnitude
as the reported energy relaxation times in NbN and
Al-based qubits [4,5,8,10]. Note that Y2 is another im-
portant parameter which determines interwell energy
relaxation. Unfortunately, we could not directly extract

Y2 from the fitting, because we do not know the coupling
constant A. Future experiments in which microwave cou-
pling is independently characterized should allow the
extraction of T2-

The primary effect of the environmental dissipation on
the intrawell dynamics of the PC qubits is that, at low
temperature (kBT < level spacing), the width of an ex-
cited level with energy E, is given approximately by Yd =
E,/Q, where Q is the quality factor of the classical small

60
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tPui (ms)
0.8 1.0

FIG. 4 (color online). The amplitude of the microwave reso-
nant dip as a function of microwave duration tpu1. The micro-
wave frequency v = 9.66 GHz and nominal power Pf =
31.3 pW. The solid squares are experimental data and the
line is a best fit to an exponential decay. The inset shows the
resonant dips at tpul = 0.2, 0.5, 0.8, and I ms, from top to
bottom.
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FIG. 5 (color online). r' vs microwave power for
9.66 GHz. The solid line is a best fit to Eq. (5).

V =

oscillation in the potential well [19]. From rd we deter-
mined Q ~ 5 X 105 , close to the value obtained from
thermal activation measurements at intermediate tem-
peratures 0.3-1.2 K [17]. Note that Q is proportional to
the subgap resistance, which ideally depends on the tem-

perature as ~eAs/kBT [20], where A, is the superconduct-
ing gap voltage. The temperature independence of Q
suggests the presence of additional environmental sources
of dissipation [15].

This long intrawell relaxation time is important for
experiments in QC in two ways. First, the lower two
energy levels in the left well, I0)0 and |0)1, could them-
selves be used as the two qubits states, with a third state
10)3 used as the readout state. Because our PC qubit had
no leads directly connected to it and the magnetic cou-
pling circuit is optimally designed to lessen the effects of
the electromagnetic environment, the PC qubit is much
less influenced by this environment than are other similar
single-junction schemes [5,6,9]. Second, if we assume
that the environment can be modeled as an Ohmic bath,
as in the SBM, then we can estimate the decoherence
times of a PC qubit in which the qubit states are those of
opposite circulating current [2,8,15]. The energy relaxa-
tion and phase-decoherence times are given in the SBM
for an Ohmic environment by [11]

rrelax raLsin E/h,

-1 = 7-e /2 + 2raLkBTCOS2 7/1h,relax c

(6)

(7)

where AE is the energy difference between levels in
opposite wells, 77 ~ tg (A/AE) is the mixing angle, A
is the tunneling amplitude between the wells, and aL -
1/Q is the quantum damping parameter [19] which we
estimate using our measured Q value. For our Nb PC
qubit operating with opposite circulating currents states
(for instance, biased near fq 0.485'DO, where A -
2 GHz and AE ~ 4 GHz), a conservative estimate gives

Trelax 2 30 As and r, ; 20 ps at 15 mK We emphasize
that an Ohmic environment model may not adequately
describe all sources of decoherence; these times must be
viewed as estimates pending experimental verification.
Nonetheless, for a typical Rabi frequency il = 1 GHz,

.9 ' ' ' ' ' -
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we obtained a quantum quality factor > 104, larger than
the oft-quoted basic requirement for error-tolerant QC.
Considering the attractiveness of Nb-based SQs from the
point of view of robust and well-developed fabrication
methods, these times indicate that they are a promising
candidate for realizing a scalable quantum computer.

In summary, we directly measured the intrawell re-
laxation time of a Nb-based PC qubit by generating PITs
between macroscopically distinct quantum states. A
multilevel decay process was observed with an intrawell
relaxation time of about 24 As and a Q factor of greater
than 105, indicating that these intrawell levels are well
isolated from the environment and are themselves a good
qubit candidate. Likewise, these measurements suggest
that the flux qubits operating between wells could also
have sufficient decoherence times, demonstrating good
prospects for well-fabricated Nb junctions, with their
more mature technology, to be used as SQs.
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