
Enabling Fast Flexible Planning through
Incremental Temporal Reasoning

by
l-hsiang Shu

S.B. in Electrical Engineering and Computer Science
Massachusetts Institute of Technology, 2002

Submitted to the Department of Electrical Engineering and Computer Science

in Partial Fulfillment of the Requirements for the Degree of

Master of Engineering in Electrical Engineering and Computer Science

at the Massachusetts Institute of Technology

September 8, 2003

Copyright 2003 l-hsiang Shu. All rights reserved.

The author hereby grants to M.I.T. permission to reproduce and
distribute publicly paper and electronic copies of this thesis

and to grant others the right to do so.

Author

Department of Electrical Engineering

Certified by

Accepted by-

MASSACHUSETTS INSTtUTE
OF TECHNOLOGY

JUL 2 0 2004

LIBRARIES

and Computer Science

August 8, 2003

Brian C. Williams
qTh s ivi sor

Arthur C. Smith

on Graduate Theses

BARKER

2

Enabling Fast Flexible Planning through
Incremental Temporal Reasoning

by
I-hsiang Shu

Submitted to the
Department of Electrical Engineering and Computer Science

September 8, 2003

In Partial Fulfillment of the Requirements for the Degree of
Master of Engineering in Electrical Engineering and Computer Science

Abstract

In order for a team of autonomous agents to successfully complete its
mission, the agents must be able to quickly re-plan on the fly as unforeseen
events arise in the environment. This requires temporally flexible plans that allow
the agent to adapt to execution uncertainties by not overcommitting on time
constraints, and a continuous planner that replans at any point when the current
plan fails. To achieve both of these requirements, planners must have the ability
to reason quickly about timing constraints.

This thesis provides a fast incremental algorithm, ITC, for determining the
temporal consistency of temporally flexible plans. Additionally, the temporal
reasoning capability of ITC is able to return the conflict or the nature of the
inconsistency to the planner, such that the planner can resolve inconsistencies
quickly and intelligently. The ITC algorithm combines the speed of shortest-path
algorithms known to network optimization with the spirit of incremental algorithms
such as Incremental A* and those used within truth maintenance systems (TMS).
The algorithm has been implemented and integrated into a temporal planner,
called Kirk. It has demonstrated an order of magnitude speed increase on
cooperative air vehicle scenarios.

Thesis Supervisor: Brian C Williams
Title: Associate Professor of Aeronautics and Astronautics

3

4

Acknowledgements

I would like to thank my mom, Sue-yun Shu, my dad, Paul yet-Chao Shu,
my brother, I-Wei Shu, and my grandma Mei-yu Lin for all their support during my
years at MIT.

I also would like to thank my advisor, Brian Williams, for his knowledge
and guidance through which this thesis would not have been possible.

Thanks especially to Jon Kennell, Raj Krishnan, and Sean Lie for giving
me the algorithms background that I needed.

Thanks to everyone at the Model-based Embedded Robotic Systems
group for being the coolest research group at MIT.

Thanks to Margaret Yoon for her incredible administrative assistant skills
and her ability to get all of us free lunches.

Thanks to Highway "Joe" Cattell for thanking me in his thinking. Thanks to
John Mcbean in the hopes that this will get him to thank me in his thesis.
Thanks to Ahmed Elmouelhi because I am sure he did not thank me in his thesis.

5

6

Table of Contents
Chapter 1... 10

Introduction.. 10
1 .1 M o tiv atio n .. 10
1.2 Preliminary Problem Statement...11
1.3 M issio n to th e G o al .. 1 1
1.4 Enabling Continuous Temporally Flexible Planning... 12

1.4.1 Temporal Consistency Requirement ... 12
1.4.2 Achieving Continuous Temporally Flexible Planning .. 13

1.5 Problem Statement ... 13
1 .6 A p p ro ach ... 13

1.6.1 Fast Temporal Consistency with Incremental M ethods ... 14
1.6.2 Continuous Temporally Flexible Planning through Conflict Extraction............................. 15
1 .6 .3 S o lu tio n ... 16

1 .4 T h esis O u tlin e ... 16

Chapter 2... 17

Temporal Consistency in Flexible Temporal Planning .. 17
2.1 RM PL - Reactive M odel-based Programming Language .. 17
2.2 Temporal Networks..18

2.2.1 Simple Temporal Network (STN).. 18
2.2.2 Temporal Plan Network (TPN) .. 19
2.2.3 Example TPN for Soccer Example.. 20
2.2.4 Example Candidate STN for Soccer Scenario ... 21

2.3 Kirk - A Temporally Flexible Planner.. 22
2.4 Temporal Consistency and Candidate Plan Generation .. 24
2.5 Incremental Temporal Consistency on Candidate STNs.. 25

Chapter 3... 27

Tem poral Consistency Checking Algorithm s ... 27
3.1 Determining Temporal Consistency of an STNs ... 27

3.1.1 An STN and its Distance Graph .. 27
3.1.2 Detecting Temporal Inconsistency through Negative Cycle Detection.............................. 29

3.2 Negative Cycle Detection Algorithms... 29
3.2.1 All-pairs Shortest-path Algorithms ... 30
3.2.2 Single-source Shortest-Path Algorithms .. 30
3.2.3 M odified Label-Correcting Algorithm ... 37

3.3 Temporal Consistency of "M ission to the Goal" Scenario.. 39

Chapter 4... 42

The Incremental Temporal Consistency Algorithm (ITC)... 42
4.1 The ITC Algorithm Overview ... 43
4.2 Insufficiency of M odified-label Correcting to Perform ITC .. 44
4.3 Truth-M aintenance Systems and Unit Propagation ... 45

4 .3 .1 L T M S .. 4 5
4.3.2 Unit Propagation and Support .. 45
4.3.3 Clause Deletion and Unsupport... 46
4.3.4 Increm ental Ideas from LTM S .. 47

4.4 ITC Algorithm 's Incremental Update Rules .. 48
4.4.1 Arc Change without Affect to Shortest-Path ... 49
4.4.2 Arc Change Improves Shortest-Path ... 50
4.4.3 Arc Change Invalidates Shortest-Path... 52
4.4.4 Addition and Removal Arcs ... 53

4.5 Incremental Temporal Consistency Algorithm Pseudo-Code..54

7

4.6 Negative Cycle Detection with Conflict Extraction ... 57
4.7 Inconsistency Resolution ... 59
4.8 Algorithm Analysis .. 60
4.9 ITC Algorithm on "M ission to the Goal .. 61

Chapter 5 ... 65

Discussion ... 65
5.1 Implem entation ... 65
5.2 Perform ance .. 65
5.3 Future W ork .. 68

5.3.1 ITC Implem entation W ork ... 68
5.3.1 ITC Evaluation W ork ... 68
5.3.1 ITC Improvement W ork .. 68

5 .3 C o n clu sio n .. 6 9

R eferences ... 70

9

Chapter 1

Introduction

1.1 Motivation

Autonomous robots and vehicles are quickly becoming an integral part of

modern society. These autonomous agents have long been building and

assembling our automobiles and some are even beginning to perform more

everyday tasks, such as mowing our lawns and vacuuming our floors. In the

future, these agents will perform even more complex tasks, such as exploring

and analyzing the Martian landscape and flying unmanned aerial vehicle (UAV)

missions for search and rescue. Due to the dynamic and unpredictable nature of

these planning environments, complex autonomous missions will require

planners that are capable of continuous planning [5]. Continuous planners, such

as ASPEN [10], developed by JPL, are capable of quickly generating time critical

maneuvers given that a change in environment breaks the current mission plan.

For example, excessive temperatures can cause hardware to begin to fail. A

new plan needs to be devised quickly to prevent further damage to that hardware

component. A downside to these continuous planners is that they do not allow

for temporal flexibility, as they assign hard execution times to activities. For

example, these planners schedule a fixed time in the plan for charging batteries.

However, if the charging process actually takes a little longer because of a

decreased charging rate, then this plan would break because activities scheduled

to be performed later in the plan would not be able to start on time. Temporally

flexible planners, such as HSTS [16], allow these smaller perturbations to not

break the entire plan. These planners impose temporal constraints that

guarantee a plans success, but delay assigning fixed times to activities until

execution. The temporal constraints only constrain activities to a minimum and

maximum duration. Least commitment gives a temporally flexible planner the

ability to adapt to unknown environments and execution uncertainties during plan

10

execution and scheduling because some slack is allowed for when activities must

occur.

1.2 Preliminary Problem Statement

For an autonomous agent to be robust to minor uncertainties such as time

delays and also operate in dynamic environments where plans can fail, a

continuous temporally flexible planner must be enabled.

1.3 Mission to the Goal

To motivate the need and use for temporally flexible continuous planning,

we introduce a soccer scenario involving autonomous robotic players. In

addition, we will return to this example later in the thesis, to illustrate the

representations and algorithms necessary for determining temporal consistency.

Teams of autonomous robots have already demonstrated their versatility

by playing games of soccer against other teams of autonomous robots. These

robotic soccer teams are able to plan optimal strategies based on models of the

opponents [8]. Consider a scenario in which two Blue autonomous robotic

soccer players are on a 2-on-1 breakaway ready to attack the Red goal, see

Figure 1.

Figure 1 - Breakaway 2-on-1

11

In this scenario, there are two Blue robots, Blue I and Blue2, and two Red

robots, Redi and RedG. RedG is the goalie for the Red team. Figure 1 shows

the desired paths of the autonomous players with solid black lines and the paths

of the ball in dashed lines.

BlueI attempts to drive the ball towards the goal, but Redi challenges

Blue 1 and forces Blue I to dribble the ball towards the sideline away from the

goal. BlueI anticipates this action by Redi and tries to race towards the corner,

beating Redi, and then centering the ball to Blue2. Blue2 receives the centering

pass and shoots the ball into the goal for the score.

This is a common soccer strategy, however to be successful it is essential

that the robotic soccer players coordinate properly so that Blue2 can take the

shot. In addition, suppose that Redi decides not to decisively challenge Blue I

and instead defend a little closer towards Blue2 in order to try and prevent the

quick centering pass. The Blue team must change its plan of attack in order to

compensate for this change in Red's strategy. The planner must be quick and

agile enough to continuously plan and recover from this change.

1.4 Enabling Continuous Temporally Flexible Planning

1.4.1 Temporal Consistency Requirement
A key task that must be performed by a temporally flexible continuous

planner is to evaluate a candidate plan do determine whether or not an

autonomous agent has sufficient time to complete all of the assigned activities,

given the timing constraints. This is referred to as the temporal consistency of a

plan. For example, an autonomous rover begins work at 9am and needs to

sample and analyze a deep layer of the Martian soil before sunset at 7pm. The

activities of drilling and analyzing together are constrained to last no more than

11 hours, giving the rover a flexible window to perform the activities. However, if

it takes at least 12 hours to drill for samples, the rover will inevitably fail its

mission, since the constraint on drilling time conflicts with the constraint of

finishing before sunset. The requested plan is temporally inconsistent.

12

1.4.2 Achieving Continuous Temporally Flexible Planning
All planners, put simply, generate a plan and then test this plan for validity

before it is executed. This allows for two ways to support continuous planning

with temporal flexibility. Increase the speed of the testing phase by speeding up

the temporal consistency checking algorithm and increase the speed of the

candidate plan selection process by identifying the subset of temporal constraints

that lead to temporal inconsistency. Knowledge of these inconsistent temporal

constraints can then be used by the plan generator to intelligently select the next

candidate plan.

1.5 Problem Statement
To enable a planner to be continuous and temporally flexible, this thesis

will create a fast temporal consistency algorithm with conflict extraction.

1.6 Approach
Our approach to enabling a continuous temporally flexible planner is

developed in the context of the Kirk temporally flexible planner. In this section

we present Kirk and analyze what is needed to make Kirk fast.

The planning process for a temporally flexible planner contains four basic

phases, as shown in Figure 2. First, high level goals are specified. Second,

candidate plans are chosen. Third, the candidate plan is verified and checked for

consistency. Steps 2 and 3 are repeated until a consistent plan is found. Finally,

the consistent plan is passed down to the plan executive for execution.

Temporal planners repeatedly ask whether candidate plans are temporally

consistent as they search to find a feasible plan. As shown in Figure 2, plan

inconsistencies and execution failures, common to dynamic environments,

require numerous iterations through the plan selection and plan verification

phases. Therefore, optimizing the algorithm that performs temporal consistency

checking in the plan verification phase and focusing the ability of the plan

selection phase to choose consistent plans would significantly improve the

performance of the planning process.

13

Inconsistency [

I Goals and Domain Descriptions

Plan Selection
(Choose Execution Thread)

Candidate Plan

Plan Verification
(Perform Consistency Check)

Consistent Plan

Execution
Failure

I Plan Execution
(Execute On-board Hardware)

Figure 2 - Planning Process

1.6.1 Fast Temporal Consistency with Incremental Methods
The speed of the temporal consistency checking algorithm can be

significantly increased by using incremental methods to remember previous work

that need not be recomputed. Since all plans chosen in the plan selection phase

in Figure 2 are derived from the same set of high-level goals in the plan

specification phase, the candidate plan involved in successive queries to plan

verification differs only incrementally. Hence, It is not necessary to start the

temporal consistency check from scratch, but to only check constraints that differ

from the previous candidate. To achieve this, we monitor the difference from

candidate plan to candidate plan and check the temporal consistency by

computing only from the differences. Figure 3 below shows the modified

planning process with incremental temporal consistency checking.

14

Plan Specification
(High-level Goals)

Plan Specification
(High-level Goals)

Goals and Domain Specifications

Plan Selection
(Choose Execution Thread)

Inconsistency Update

Cofict Candidate Plan Rules

Plan Verification Incremental Execution
(Perform Consistency Check) Data Values Failure

Consistent Plan

Plan Execution
(Execute On-board Hardware)

Figure 3 - Planning Process with Incremental Temporal Consistency

The additional module in Figure 3 is added to store the data values

calculated to determine temporal consistency by the plan verification phase.

When a new plan is selected in the plan selection stage, the algorithm monitors

the parts of the plan network that has changed from the previous candidate plan

and then modifies the incremental data values with update rules. The update

rules guide the incremental temporal consistency algorithm to perform less work.

1.6.2 Continuous Temporally Flexible Planning through Conflict Extraction

A temporally flexible planner can increase the speed in which candidate

plans are found through the use of conflict extraction. A conflict is a set of

temporal constraints that force a candidate plan to be temporally inconsistent.

The conflict can be used to guide the plan selection of successive plans. These

plans resolve, or do not contain these conflicts, and consequently are more likely

to be verified as consistent by the temporal consistency algorithm. Focused

search over the plan space reduces the number of iterations through the

generate and test loop of the planning process and thus helps enable continuous

temporally flexible planning.

15

1.6.3 Solution
In this thesis, we introduce and explain a fast incremental algorithm for

checking temporal consistency in order to support continuous temporally flexible

continuous planning, called ITC (Incremental Temporal Consistency). It uses

modifications of a fast shortest-path algorithm from network optimization, FIFO

label-correcting algorithm, and incremental update rules in the spirit of

incremental search algorithms such as Incremental A* [8] and TMS [4] to

accelerate the temporal reasoning process. Additionally, if a candidate plan is

inconsistent, ITC uses a built in conflict extraction mechanism to return temporal

constraints responsible for the inconsistency. This guides the plan generation

phase to resolve or return candidate plans without these conflicts, ultimately

increasing overall planning speed.

1.4 Thesis Outline

The following chapters first give a background of a temporal planner, Kirk,

capable of planning with temporal flexibility and then explain how temporal

consistency is determined within this planner. Next, an overview of the general

approach of how to determine temporal consistency is given. In Chapter 4, the

ITC algorithm is introduced and demonstrated. Chapter 5 shows the

experimental results of the speed improvements of temporal planning using this

incremental method. It also summarizes the thesis and suggests ideas for future

work.

16

Chapter 2

Temporal Consistency in Flexible Temporal
Planning

This thesis introduces an incremental temporal consistency algorithm for

temporally flexible planners. In order to understand how temporal consistency

fits into temporally flexible planners, we provide an overview of Kirk [7] and the

basic structures and algorithms it uses for temporally flexible planning.

Kirk takes as input a high-level goal specification program written in

RMPL, converts this program to a Temporal Plan Network (TPN) which

represents possible threads of execution, selects threads of execution from the

TPN, resolves symbolic constraints, and finally takes this resulting Simple

Temporal Network (STN) and executes it on low-level hardware. The

subsequent sections explain the Kirk planning structures and how they fold into

Kirk planning.

2.1 RMPL - Reactive Model-based Programming Language

As input, Kirk takes an RMPL program specifying high-level goals. RMPL

includes constructs that allow mission designers to express maintenance

conditions, concurrency, synchronization, metric constraints, and contingencies

when creating plans for autonomous robotic teams. An RMPL program written to

control the two Blue robotic soccer players from the example soccer scenario in

Section 1.3 would look as shown in Figure 4.

Score-Goal ()
(parallel

(sequence
(BBotl.goto(corner) [1,8])
(choose

(BBotl.centeringpass-low() [2,2])
(BBotl.centeringpass-high()[9,9])))

(sequence
(BBot2.goto(goal)[1,5])
(BBot2.wait()[0,5])))

(BBot2.shoot() [1,1])

Figure 4 - RMPL Program for Soccer Scenario

17

This example RMPL program shows two concurrent sequences of

activities for the mission Score-GoalO, one for Blue1 and one for Blue2. Each

sequence has a series of activities that needs to be successfully completed in

order for the Blue team to score the goal. Every activity has time bounds

associated with it, specified in brackets, [l,u]. A time bound constrains a

particular activity to last at least / time units and at most u time units. The parallel

RMPL construct constrains the two sequences of activities for Blue I and Blue2 to

start and finish at the same time. This eventual synchronization of Blue1 and

Blue2's activity threads means that Blue2 must finish waiting for the ball as soon

as the centering pass reaches the front of the goal. The choose RMPL construct

allows the planner to make a non-deterministic choice between two alternative

sets of activities. In this example, Blue 1 has the option of kicking either a low

centering pass or a high centering pass to Blue2. Additional details about RMPL

and the supported constructs can be found in [5].

2.2 Temporal Networks
Kirk converts the RMPL program into a graph, called a Temporal Plan

Network (TPN) that represents the possible threads of execution and timing

constraints between activities. It uses the TPN in order to select threads of

execution (what Kirk considers planning), to check the execution feasibility, and

finally to schedule activities to be executed on the fly. Timing constraints are

represented as a simple temporal network (STN), defined in Section 2.2.1.

These pre-compiled graph structures allow for a compact and easily

understandable representation of the plan, support temporal flexibility, and allow

for fast and easy search through the space of possible plans. The objective of

this thesis is to support efficient temporal reasoning and to enable continuous,

but temporally flexible planning. To accomplish this, we will focus on fast

algorithms for reasoning on STNs.

2.2.1 Simple Temporal Network (STN)
An STN has three basic components, nodes, arcs, and binary time

constraints. Each node represents a point in time, such as beginning to turn the

car key when starting a car. An arc represents the existence of a time constraint

18

between two nodes, where the head of the arc represents a timepoint and is later

in time than the node at the tail of the arc. Binary time constraints are enclosed

within brackets, [u], similar to the RMPL example, and are shown above the arc.

These represent the absolute lower and upper bounds of the duration between

two timepoints. For an activity engine-start)[1,5, the STN structure would look

as shown in Figure 5.

[1,5]

Figure 5 - Example STN

Based on the time constraint on the activity, the duration between the two

timepoints Begin-engine-start and End-engine-start must be less than or equal to

5 time units and greater than or equal to 1 time unit.

2.2.2 Temporal Plan Network (TPN)
A TPN extends an STN by adding decision nodes as well as symbolic

constraints.

Decision nodes allow TPNs to represent the multiple feasible threads of

execution specified in an RMPL program. The planner must select the best path

as it is trying to determine a consistent plan of execution. For example, if a Mars

exploration rover has an option to explore a mountainous region or a flatland

region, based on the constraints on the agent, the planner must choose a path

that will be executable. The TPN will represent this as a decision node branching

to a sequence of mountainous activities and a sequence of flatland activities.

A symbolic constraint is used within a mission plan to express conditions

that must be true in order for an activity to be executed. For example, in order for

a UAV to attack a target, the condition must be true that the munitions are armed.

Thus, the planner for the UAV must determine that it needs to arm the missiles

before the missiles can be launched. This is specified within an RMPL program

and in a corresponding TPN by an Ask(condition) and a complementary

Tell(condition). These Ask and Tell conditions are attached to the arcs of a TPN,

19

which constrains each Ask and Tell to have the duration specified by the arc. An

example TPN is shown in Figure 6.

[1,1][1,5]

Ask(Battery-

[0101 haged)[4,4]

Figure 6 - Example TPN

In this TPN example, node A is a decision node, specified by the double

lines forming the oval. The planner has the option of either choosing to take path

ACD or path ABD, but not both. Arcs CD and AB have symbolic constraints

associated with them. The symbolic constraint on arc AB specifies that during

the time between timepoint A and timepoint B, we must have the condition

Battery-Charged for some amount of time. The symbolic constraint on arc CD

specifies that during the time between timepoint C and timepoint D we will assert

the condition Switch-ON for at least 1 time unit, but for no more than 5 time units.

2.2.3 Example TPN for Soccer Example
The TPN for the soccer scenario described in Section 1.3 of the

Introduction is shown in Figure 7. The TPN for this scenario does not contain

any symbolic constraints; however, it does contain a decision node specifying

that Blue I needs to choose the type of centering pass it will kick.

20

[0,0]99] [,0]

[1,5] [0,5]

Figure 7 - TPN of Soccer Scenario

In this TPN, the Start node is not a decision node; hence the two parallel

sequences emanating from it must be selected for execution and started

simultaneously. However, the node labeled Choose is a decision node,

designated by the double lines. For this scenario, the planner must choose one

of the two threads emanating from the Choose node, corresponding to the two

types of centering passes that Blue I can kick. The graph also contains many

[0,0] timing constraints. These [0,0] constraints mean that the next timepoint

following the constraint happens instantaneously after its predecessor. For

example, as soon as Blue I is near the corner, it will immediately kick the ball to

be centered in front of the goal. The goal state is the last node in the graph,

since it has no outarcs, signifying the end of the plan. In this example, the goal

state is the node containing the event End-Blue2-shoot.

2.2.4 Example Candidate STN for Soccer Scenario

It shows an example of the data structure that Kirk generates as candidate

plans. From the TPN in Figure 7, since there are no symbolic constraints, we

just need to ensure that decisions have been made. For this soccer scenario, we

will have Kirk make the decision for BlueI to kick a low centering pass. The

21

resulting candidate plan is shown in Figure 8, with the selected nodes outlined in

bold.

[0,0] If0, 01

Begin-Blue End-Bluel
[0,0] centeringpass [99 enteringpass- [0,0]

high high

[1,8] 0,0] [0,0]

[1,1]

[0,0]

[1,5] OF [0,5]

Figure 8 - Soccer Scenario Candidate STN

2.3 Kirk - A Temporally Flexible Planner
Now that we have described the basic representations manipulated by

Kirk, this section explains how Kirk uses these representations for planning, with

particular focus on how temporal reasoning interacts with plan generation. The

basic Kirk Planning architecture is shown in Figure 9.

22

[0,0

[0,0]\

1 [2,2] 0

%[O ,0]

TPN (converted from RMPL
I control program)

Phase 1 Incremental Plan
Selection Temporal

toenConsistency

Backtracking Selected Plan Checker

Phase 2 Symbolic Consistency
Checker

Phase 3 Macro Decomposition
Decomposed With Exiansion and Insertion

TPN

STN
Figure 9 - Kirk Planning Architecture

In Phase 1 of Kirk planning, a TPN, generated from a high-level RMPL

program specifying mission objectives, is searched in order to find a temporally

consistent plan. In Phase 2, Kirk resolves symbolic constraints and ensures this

resolution is also temporally consistent. In the final phase, Kirk decomposes

high-level macro activities into lower-level primitive activities.

The backtracking arrow leading from Phase 2 to Phase 1, allows Kirk to

make new decisions for a new candidate plan if the current plan is found to be

inconsistent, either temporally or symbolically. The arrow leading from Phase 3

to Phase 1 allows Kirk to select and examine the new nodes that have been

introduced into the network from the decomposition step. The final plan output of

Kirk has all decision nodes and symbolic constraints resolved and is executed in

the plan runner as described in [13].

Recall that this thesis focuses on developing an incremental temporal

reasoning capability for temporally flexible planning, thus we are concerned

primarily with Phase 1 of Kirk planning. This phase is where Kirk creates

candidate plans, constantly requesting a temporal consistency check, and thus

this phase can benefit the most from a fast incremental temporal consistency

algorithm. This is explained in the Section 2.4 and 2.5. Additional, details

23

regarding the algorithms found in the other phases of Kirk TPN planning not

discussed in this thesis can be found in [5].

2.4 Temporal Consistency and Candidate Plan Generation

In order to understand, how an incremental temporal consistency

algorithm can be incorporated into Kirk TPN planning, we must first understand

how temporal consistency is integrated into Kirk plan generation. This section

describes exactly how Kirk selects a candidate plan and ensures its temporal

consistency.

Phase 1 of Kirk TPN planning chooses a candidate plan by searching

through the TPN graph. Beginning with the start node of the graph, the algorithm

checks whether the node is a decision or non-decision node. If it is a non-

decision node, the algorithm simply extends the plan to the head node of all

outgoing arcs and adds these nodes to the set of nodes to be examined later. If

the node is a decision node, then the algorithm decides on one particular

outgoing arc and extends the mission plan to the head of this arc. The algorithm

terminates when there are no more nodes left to expand, meaning that all

branching paths have reached the final goal node. The candidate plan is then

passed on to the next phase.

As the candidate plan is built up node by node and arc by arc, it must be

checked for temporal consistency. Temporal consistency means that there

exists an assignment of times to each timepoint in the temporal network such

that all of the temporal constraints are satisfied. For example, in the STN shown

in Figure 10, we would like our Mars exploration rover to take a picture of the

sunset as seen from Mars.

24

[25,40]

[0,0] [0,0]

Oegln- [20,20] 'End-
sunset sne

Figure 10 - STN for photographing Martian sunset

We know that the sunset on Mars lasts for exactly 20 minutes, however it

takes the rover at least 25 minutes to drive to a location where it can prepare the

camera and take the picture. Thus we know that if we try to execute the STN

shown in Figure 10, where the rover begins preparations for the photo at the

same time the sunset begins, the plan is guaranteed to fail. This is called a

temporal inconsistency since it is impossible for the rover to take the photograph

of the sunset, given the requirement that it must start preparation as soon as the

rover sees the Martian sunset beginning.

Within Phase 1 of Kirk, candidate plans are checked for temporal

consistency every time two paths in the search converge, indicating that there is

a synchronization in the plan. This ensures that there will exist a possible

assignment of times to timepoints such that an autonomous agent will be able to

complete its mission task. If Kirk finds a partial candidate plan to be temporally

inconsistent, it will backtrack, select a different branch at a decision node and

test this new partial candidate for consistency. It is useless to continue to build

up a partial candidate plan that is inconsistent, because the candidate will remain

inconsistent, no matter how many nodes or arcs are added.

2.5 Incremental Temporal Consistency on Candidate STNs

As described in the previous section, candidate plans are tested for

temporal consistency as a plan is built up, every time two paths converge.

Because these candidates are incrementally constructed, successive candidate

plans are very similar to the preceding candidate, often differing only by a few

25

nodes and arcs. The new or changed nodes and arcs typically comprise a small

percentage of the overall candidate plan. This suggests that when checking for

temporal consistency, it is unnecessary to check the entire candidate starting

from scratch. The consistency of successive plans can be determined by storing

the data values used to calculate the consistency of the previous graph, by

analyzing how the new candidate differs from the previous candidate and by

updating only those affected data values. This mechanism is in the spirit of a

range of incremental algorithms such as Incremental A* [8], where the best start

distance at each node is carried over from search to search, and truth

maintenance systems where logical consequences are carried over, as clauses

are added and removed from the propositional theory [4].

An incremental temporal consistency algorithm that returns the minimum

set of constraints that result in the temporal inconsistency can also speed up

candidate plan generation. The plan generator can be much more focused in

finding a temporally consistent plan by making use of conflicts, the minimum

subset of constraints that lead to inconsistency. If every time the incremental

algorithm discovers an inconsistency, then the planner is capable of focusing its

plan generation by not choosing plans containing the conflict. This strategy can

further improve the performance of the incremental algorithm used to speed up

Phase 1 of Kirk planning.

26

Chapter 3

Temporal Consistency Checking Algorithms

For enabling continuous temporal planning, the planner needs a fast

algorithm to test for temporal consistency. This chapter begins by describing

exactly how temporal consistency is determined. It then introduces two groups of

algorithms that can be used to check for consistency; specifically, all-pairs

shortest-path algorithms (APSP) and single-source shortest-path algorithms

(SSSP). The chapter gives a more in-depth treatment of the SSSP label-

correcting algorithm since the incremental temporal consistency algorithm,

developed in Chapter 4, is based on this SSSP algorithm. The subsequent

chapter discusses how this algorithm is generalized to perform incremental

temporal consistency checking.

3.1 Determining Temporal Consistency of an STNs

The temporal constraints of a candidate plan are expressed as an STN.

An STN is checked for temporal consistency by first converting the STN to an

equivalent representation, called a distance graph. The STN is temporally

consistent if and only if its corresponding distance graph does not contain a

negative cycle [3].

3.1.1 An STN and its Distance Graph
An STN and its distance graph have the same nodes. An STN is

converted to a distance graph by mapping each arc of the STN to two additional

arcs, one in the forward direction and one in the reverse direction. The forward

arc is labeled with the value of the upper time bound and the reverse arc is

labeled with the negative of the lower time bound value. Figure 11 shows this

conversion

27

U

-I

STN Distance Graph

Figure 11 - STN to Distance Graph Conversion

The nodes in a distance graph represent timepoints just like in an STN.

The arcs in the distance graph, however, correspond to an upper bound on the

distance between the two timepoints. For every arc, the difference in time

between the timepoint at the head of the arc and the timepoint at the tail of the

arc must differ by a value less than or equal to the distance on that arc. The

equation below shows specifies how each timepoint constraint for an STN is

converted to a constraint for the distance graph for an arbitrary arcij.

T.T E [u] T--T sun T -T.:!-I
STN Distance Graph

As an example, in Figure 11, timepoint B is executed at most u time units

after timepoint A. Similarly, since timepoint A occurs before timepoint B,

timepoint A must be executed at most -/ time units after timepoint B, or

equivalently, timepoint A must be executed at least / time units before timepoint

B.

Figure 12 shows the distance graph of the soccer scenario candidate

STN, given in Section 2.6.

28

20

0 - D2

0 0

0 Begin-Blue1 9 End-Blue1

centeringpass enteringpass

0 0 high _9 high 0 0

0

0 A

0 0
0 5 . 0 5 0

Figure 12 - Distance Graph of Soccer Scenario

3.1.2 Detecting Temporal Inconsistency through Negative Cycle Detection

As mentioned above, in order for an STN to be temporally consistent, the

equivalent distance graph of the STN must not contain a negative cycle. This is

proved rigorously in [3]. Intuitively, since the edge weights in the distance graph

represent the amount of time that an event must happen before another event

(i.e. event B must happen at least / time units after event A and event A must

happen at least u time units before B), then a negative cycle in the distance

graph would correspond to having a temporal constraint saying that a timepoint

must happen at most some positive time units before the same timepoint (i.e.

event A must happen at least 5 time units before event A). Having a constraint

such as this makes little sense and is the basis for the intuitive argument.

3.2 Negative Cycle Detection Algorithms
Several algorithms exist for detecting negative cycles in graphs that

contain negative edges. Many of these methods are applied to network

optimization problems in which it is possible that, as an arc is traversed, some of

the cost that has already been accumulated can be regained or decreased. In

this section, we review two classes of negative cycle detection algorithms, All-

29

-- TU - tm'-L

Pairs Shortest-Path (APSP) and Single-source Shortest-Path (SSSP). A more

thorough treatment is given to the SSSP label-correcting algorithm, since it is the

basis for the incremental temporal consistency checking algorithm contributed by

this thesis.

3.2.1 All-pairs Shortest-path Algorithms
An all-pairs shortest-path algorithm returns the shortest-path from u to v

for every pair of nodes u and v in a graph. This information can be represented

in the form of an N by N matrix, where N is the number of nodes in the graph and

each element ai; in the matrix represents the shortest path from node i to node j.

Figure 13 shows on the right the matrix that is returned when an APSP algorithm

is run on the distance graph shown on the left..

5 10
m LKBC

A 3 15

B 3

C 2 13

-2 0

Distance Graph APSP Matrix

Figure 13 - APSP Example

For an APSP algorithm, a negative cycle is detected if a diagonal element

of the APSP matrix, a1i, is less than zero. In the example shown in Figure 13, we

see that there are not any negative values in the diagonal elements of the matrix,

and consequently, this graph is temporally consistent. Thus, to determine

temporal consistency, any APSP algorithm can be run, such as Floyd-Warshall's

algorithm, and the resulting APSP matrix can be scanned for negative diagonal

elements. A detailed presentation of Floyd-Warshall's algorithm and other APSP

algorithms can be found in [2].

3.2.2 Single-source Shortest-Path Algorithms
In order to find a negative cycle in the distance graph, it is unnecessary to

compute the shortest-path for every pair of nodes, as compiled by APSP

algorithms. If a negative cycle exists, it can be detected by just computing the

30

shortest-paths from one single node to all the other nodes, SSSP. The reason

only a SSSP needs to be performed is because if a node is involved in a

negative cycle, then the shortest-path to that node from any source node

connected to it is -w. This is because a shortest-path can continually loop along

the negative cycle, reducing path distance indefinitely.

Using only a SSSP algorithm offers significant saving over an APSP

algorithm algorithm. As an example, the runtime for Floyd-Warshall's APSP

algorithm is e(n3), where n is the number of nodes in the graph. The SSSP

algorithm given in Section 3.2.3, the FIFO label-correcting algorithm, has a worst-

case runtime of O(nm), where n is the number of nodes and m is the number of

arcs in the graph. Before fully introducing the FIFO label-correcting algorithm,

this section first discusses the generic label-correcting algorithm and then gives

insight into a modified label-correcting algorithm.

Generic Label-Correcting Algorithm
The basic pseudo-code for the generic label-correcting algorithm is shown

below.

Definitions: Generic Label-Correcting
Algorithm(Graph G)

d(i): the best known start distance or the
temporary distance from the start node to {01} for all s E V(G)
node i before termination of the algorithm. {02 } d (s) = -

{03} d(sstrt) = 0
d (i): the true shortest path distance from {04} while some arc (i, j) is
the start node to node i. violating,

{05} d(j) = d(i) + c(i,j)

V(G): the nodes of graph G.

Violating arc: any arc(ij) where do) > d(i) +
c(i,j)

Figure 14 - Pseudo Code fore Generic Label-Correcting Algorithm

The generic label-correcting algorithm computes an upper bound on the

shortest-path distances and then iteratively tightens these bounds [1]. The

generic label-correcting algorithm is based on the concept of violating arcs. A

violating arc is an arc(ij) that has d(j) > d(i) + c(ij) and identifies to the algorithm

where these shortest-path distance may be updated. If there are not any

violating arcs, then the algorithm is finished and d(i) = d*(i), meaning that we have

found the shortest-path from the start node to all other nodes.

31

Looking at the code, the generic label-correcting algorithm starts off by

first initializing all start distances to the largest upper bound possible, co, since at

the start, it is unknown what the path length to each node is (lines (01-02)}). The

start distance for the start node is then initialized to 0, since the best distance

from the start to itself must be 0 (line {03}). In the iterative step, lines {04-05),

the algorithm continually updates the start distances for the nodes at the head of

violating arcs until there are no longer any violating arcs. When the loop exits,

the algorithm is finished and the shortest-paths have been found.

2

d(A)= 0 d(B)=2

-3

Figure 15 - Simple Example of the Generic Label-Correcting Algorithm

The example in Figure 15 shows the first iteration step of the generic

label-correcting algorithm on a simple distance graph. The start node, A, has an

initial start distance of 0. This start distance is then propagated along the first

violating arc, AB, and therefore updating the start distance value at B to be 2.

Figure 15 shows the snapshot of the algorithm at this point, after one update

step. The dashed line shows which arcs are violating and still need updating.

Termination Conditions
The generic label-correcting algorithm terminates when no more violating

arcs exist. If the distance graph contains a negative cycle, the algorithm will

never terminate. Instead, it will continuously update the nodes on violating arcs

forever since the absolute shortest-path for a path containing a negative cycle is

-0

32

.

2
"0 - FMff

d(A)= -1 d(B)= 2

-3

Figure 16 - Violating Arcs from Distance Graph with Negative Cycle

For example, in the above simple distance graph, Figure 16, currently arc

AB is violating. If we update arc d(B) to equal 1, d(A) + c(arcAB), then arc BA will

then become violating. The algorithm will then update d(A) to equal -2. Now,

again arc AB is violating. Therefore, since there exists a negative cycle, either

arc AB or arc BA will always be violating arc and the generic label-correcting

algorithm will continually update the start distance values of nodes A and B.

There are a few basic ways to terminate the generic label-correcting

algorithm given that the search graph contains a negative cycle. One such

method is to stop the algorithm as soon as a shortest-path distance, d, becomes

smaller than a specified lower bound. Generically, for any graph, the lower

bound -nC can be used, where n is the number of nodes in the graph and C is

the max(I c1 I), or in other words, the maximum absolute value of a cost on an

arc. The value -nC is the lower bound because the greatest cost acyclic path for

a graph can have at most n-1 arcs. If there exists a shortest path to a node with

cost less than -nC, and the largest possible return path to the source node has

cost nC, then there must exist a negative cycle. Thus, the algorithm can

terminate if any distance value is less than this bound.

Termination for STNs Chosen From TPNs
The magnitude of the bound affects how long the SSSP algorithm must

cycle before it terminates and detects the negative cycles. A concern about the

bound -nC is that it can be quite conservative. In this section we show that for

STNs selected and built from TPNs, a tighter lower bound of 0 can be used.

When running the label-correcting algorithm on a distance graph

converted from an STN that was selected from a TPN, the distance values do not

need to reach all the way down to -nC for the algorithm to terminate, the

33

algorithm can stop when any shortest-path distance value for any node reaches

below zero. The property of these STNS that allows for zero to be the lower

bound is that STNs always contain timepoints (excluding the start) that must be

assigned times that are equal to or later than the start node. The input temporal

network always contains timepoints (excluding the start) that must be assigned to

times equal or later than the start node. A network containing a timepoint that is

constrained to happen before the start node is not allowed as input.

2 -3

start

-1 3

Figure 17 - Illegal Distance Graph of STN of a Plan

Figure 17 shows a distance graph that is not allowed in Kirk planning.

This network constrains node C to happen at least 1 time unit before the start

node since the shortest path from node A to node C is -1. Since node C

precedes A, a correct STN would need to label C as the start node. STNs

selected from TPNs naturally have this start node and therefore constrains all

other nodes to happen after the start.

Given that all timepoints of candidate STNs of plans must occur after the

start node, it guarantees that all timepoints have a negative cost path back to the

start node. Thus, if the shortest-path distance value at a node or timepoint is

computed to be negative during some iteration of the SSSP algorithm, then since

there exists a negative cost path back to the start node from the argument stated

above, then we are guaranteed to have a negative cycle. Because of this

property of candidate STNs created from TPN plans, the algorithm can terminate

as soon as it discovers a distance value less than zero.

Generic Label-Correcting Algorithm as a Consistency Procedure

There are a few modifications that need to be made in order to change the

generic label-correcting algorithm to be a consistency procedure for STNs.

Generally, the algorithm either calculates the SSSP or it fails and returns that

34

there is a negative cycle. In this thesis, we need a temporal consistency

procedure to return true or false indicating the temporal consistency of the input

graph. The procedure should return true if the graph does not have a negative

cycle and false if the graph does contain a negative cycle. In the remainder of

the thesis, the consistency procedure version of the label-correcting algorithm will

always be referred to when the label-correcting algorithm is mentioned.

Generic Label-correcting Example with Soccer Candidate STN

The figure below shows the first few steps of the generic label-correcting

algorithm run on a part of the distance graph from the soccer scenario. In the

initial step, all of the d-values are initialized to co except for the start node which is

initialized to a value of 0. All violating arcs in the graph are represented by

dotted and dashed lines. The arbitrary arc chosen for update is shown with

dotted lines and all other violating arcs are shown in dashed lines.

35

d=0

.- 8 ~8 0
:0

d=O
d O 94 -'qMd=8

d=oo d=8

d==0 d=00 d=

d= -. d=0
\0

0 0 57P 0'. 5 .1

() d=00 d=00 (3)

d=0
d=O d=0

) Violating arc -

4....... Violating arc
to be exoanded 0 5

(2) d=00

Figure 18 - Generic Label-Correcting Algorithm On Partial Soccer Scenario STN

At step (1), there are two violating arcs, the arc between Start and Begin-

Blue2-goto-goal and the arc between Start and Begin-Blue 1-goto-corner. The

first violating arc is arbitrarily chosen for update and Begin-Blue 1-goto-corner is

updated and assigned a d=O. Once this violating arc is updated (step (2)),

additional arcs may also become violating. In this scenario, only the arc between

Begin-Blue1-goto-corner and End-Blue1-goto-corner becomes a newly violating

arc. In step (3), we choose to update this newly violating arc, assigning d=8 to

End-Blue1-goto corner. The algorithm continues until there are either no more

violating arcs or a termination condition has occurred.

36

d=O

MW M

3.2.3 Modified Label-Correcting Algorithm
A key issue for label-correcting algorithms is finding an effective

mechanism for implementing efficiently. For label-correcting algorithms, the

efficiency is dependent on the process of searching for violating arcs. At the

simplest level, the algorithm can simply scan all the arcs in the graph until it finds

one that is violating. This process is repeated for every violated arc until

termination. However, this is very time consuming since a large number of non-

violating arcs are scanned. To support fast temporal consistency detection, we

build upon the modified label-correcting algorithm, that implements violated arc

detection very efficiently. We will also use the same idea underlying this

modification as the basis for our incremental algorithm.

The modified label-correcting algorithm simply refers to an implementation

of the generic label-correcting algorithm where a queue of updated nodes is

maintained, in order to check for outgoing arcs that might be potentially violating.

Consider why only the updated nodes need to be examined. If during a

particular iteration of the algorithm, the d-value for a node was not updated, then

no new information is learned about the shortest-path to that node. Any arc

emanating from that node that was not violating before the update is still not

violating after the update, and need not be scanned. Conversely, if an update

occurs for a particular node i, then d(i) + c(ij) may have become less than do),

hence any out arc (ij) may have become violated. Hence to find violated arcs, it

is sufficient to add each update node to a queue and then examine all the

outarcs of any node on the queue.

At initialization of the modified label-correcting algorithm, only the start

node's outarcs are potential violating arcs because the other node's start

distances are set to oo. Thus, only the start node is put initially in the queue. As

nodes are taken out of the queue and updates occur, theses updated nodes are

added to the queue, requiring additional examination of the outarcs of the

queued node. Once the queue is empty and consequently no arcs remain, we

have the optimal shortest-path solution.

37

The worst-case running time for a label-correcting algorithms is much

faster than any all-pairs shortest-path algorithm, O(nm) versus O(n 2logn + nm) of

Johnson's APSP algorithm. However, using the modified label-correcting

algorithm with an efficient implementation of the update queue, the average case

runtime of the algorithm can be reduced significantly, sometimes to O(m) [1].

In this thesis, we build upon a variant of the modified label-correcting

algorithm that is implemented with a FIFO (first-in first-out) queue to perform

negative-cycle detection for temporal consistency. The FIFO queue removes

nodes from the queue in the same order that they were added into the queue.

We choose the FIFO label-correcting algorithm is the fastest available polynomial

time algorithm for determining shortest-path.

Generic Modified

Label-Correcting Algorithm Label-Correcting Algorithm

(Graph G) With FIFO Queue

(Graph G)

{01} for all s e V(G) * - Initialize - {00} for all s e V(G)
{02} d(s) = -{02} d(s) = -

{03} d(sstart) = 0 {03a} d(Sstart) = 0
{03b} insert (Sstar t)

{04} while some arc(i,j)4-Violating Arcs--{04a} while !Q.empty()

is violating, {04b} u = Q.pop()
d(j) > d(i) + c(i,j)

{05} d(j) = d(i) + c(i,j)+- Update--+{05a} for v E Succ(u)
{05b} dval = Update(u,v)

{06} if d(j) < 0 {06} if(dval) < 0
{07} return false; {07} return false;

{08} return true; {08} return true;

value
{09}
{10}
{11}
{12}

Update(p,x)

if (d(x) > d(p) + c(p,x))
d(x) := d(p) + c(p,x);

Q.Insert(x, d(x));

return d(x);

Figure 19 - Pseudo Code for Modified Label Correcting Algorithm

This pseudo-code for the FIFO modified label-correcting algorithm has the

same basic structure as the generic label-correcting algorithm. There is an

initialization where all distance values are initialized to oo (lines {01-02)) , and

the start node d-value is set to 0 (line {03 }) . In the modified label-correcting

algorithm, there is an additional initialization step of adding the start node into the

38

queue, since the start node is the only node that contains outarcs that are

potentially violating at the start. Both algorithms continue to update d-values by

selecting violating arcs, for the generic label-correcting algorithm via arc

examination and for the modified label-correcting algorithm via removing nodes

from the queue, until there are no more violating arcs. In both cases, if a d-value

falls below the threshold for negative cycles, the algorithms returns false,

signifying an inconsistency. If the graph is consistent, both of the algorithms

terminate, either after the queue is empty for the modified label-correcting case

or and no violating arcs exist for the generic label-correcting case.

3.3 Temporal Consistency of "Mission to the Goal" Scenario
Consider the application of the label-correcting algorithm to the soccer

example. When applied to the "Mission to the Goal" candidate STN, shown in

Figure 8, the label-correcting algorithm determines that the graph is temporally

consistent. We can verify this visually by looking at the paths that lead up to the

synchronization node in Figure 8, Begin-Blue2-shoot. At this synchronization

timepoint, Blue I must have centered the ball from the corner and Blue2 must be

at that destination point of the centered ball. If we add up the upper and lower

time constraints for BlueI to perform its task by the synchronization node, we see

that it must take Blue 1 at least 3 time units and at most 10 time units to complete

all the activities. Similarly, it must take Blue2 at least 1 time unit and at most 10

time units to complete its tasks. Thus, there is a consistent overlap where, if we

force Blue I and Blue2 to execute within 3 and 10 time units, then the mission will

succeed.

Figure 20 demonstrates the beginning three steps of the FIFO label-

correcting algorithm run on the STN for the soccer scenario candidate plan. As

before, only part of the candidate STN will be used to illustrate how the algorithm

operates. The dotted lines in this figure show which arcs will be updated or need

to be examined for update on the next iteration.

39

18

Figure 20 - FIFO Label-Correcting Algorithm On Soccer Scenario STN

40

d=0

0:
:0

'.0
0 .

d=00

000 Od=0

d=0

d=0

d=o0

d=00

d=O

0
0

0 o

Step 1

FIFO Queue

(1) Start

Step 2

FIFO Queue

(1) Begin-Bluel goto-corner
(2) Beqin-Blue2 qoto-qoal

Step 3

FIFO Queue

(1) Begin-Blue2 goto-goal
(2) End-Bluel qoto-corner

8'A 1

d=o0

d=00

d=0

0

0/

0\ 0

010
8\\-

d=8

90@

d=o
0

0.

d=0

- - ------ ------

The example shows that at initialization (Step 1, Figure 20), only the start

node has been inserted into the queue, meaning that all outarcs from the start

node need to be examined for violation. Once the algorithm is finished checking

the outarcs and updates the heads of the violated edges, it removes the start

node from the queue and adds the updated nodes into the queue. In this case,

since both Begin-Blue I goto-corner and Begin-Blue2 goto-goal were updated in

Step 1, both nodes are added into the queue. Step 2 expands the node Begin-

Blue1 goto-corner. For this expansion, only End-Blue1 goto-corner needs to be

updated and is therefore added to the queue. The arc leading from Begin-Blue1

goto-corner back to the Start does not improve the shortest-path value of the

Start node, therefore, the Start node is neither updated nor added to the queue.

For Step 4 (not shown), Begin-Blue2 goto-goal would be expanded next,

resulting in additional nodes being added to the queue. As previously stated, this

graph is temporally consistent and therefore the algorithm terminates with non-

negative start distances, d-values, when the queue is empty.

41

Chapter 4

The Incremental Temporal Consistency Algorithm
(ITC)

Incremental algorithms can significantly increase the speed of a task

because much of the work that was performed for previous calls to tasks can be

reused in successive searches. These algorithms are most advantageous when

the successive tasks that the incremental algorithm is run on are similar to

previous tasks.

As a simple example of where an incremental algorithm can be useful,

consider a planning task for an autonomous taxi that navigates through a large

metropolitan city. Suppose the autonomous taxi has planned a route from the

airport to a hotel. However, early on in the drive, the taxi learns of a road block in

the city near where the hotel is located. The taxi must plan a new path in order

to reach its destination. It would be wasteful to throw away what is currently

known to be the best path to the hotel and start a new search from scratch, since

the path has only changed near the hotel and not near the airport. A new search

would require re-examination of all paths going from the airport to the hotel. This

is how a non-incremental algorithm works on the taxi problem. It has no

mechanism to remember what has been computed previously.

It would be much more efficient to start with the optimal path that is

already known from the airport to the hotel, and then update the parts of the path

affected by the road block in the city. Incremental algorithms for path planning

problems exist, such as Incremental A* [8] and D*[15]. Reusing previous work is

the main idea behind incremental algorithms, and consequently the ITC algorithm

develops this idea for STNs.

This chapter first introduces the ITC algorithm. It then gives a quick

introduction to truth maintenance systems (TMS) and discusses how concepts

from TMSs and the modified label-correcting algorithm (Section 3.2.3) are

combined in order to achieve the ITC algorithm. This is followed by an example

42

of how the ITC algorithm detects negative cycles and extracts the conflicts, which

summarize temporal inconsistencies.

4.1 The ITC Algorithm Overview

The Kirk temporal planner requests temporal consistency checks on STNs

of candidate plans as they are built up node by node (Section 2.4). As a result,

the STN of the new plan differs from the previous STN only by a few arcs and

nodes. This means that only the previously computed shortest-path values that

are affected by the newly chosen arcs and nodes need to be updated. Temporal

consistency of an STN can therefore be determined with fewer nodes updated.

Sometimes, this results in an order of magnitude in savings, as is empirically

demonstrated in the Chapter 5. Additionally, if the ITC algorithm finds that a

candidate STN is inconsistent it will return a set of simple temporal constraints

that result in the inconsistency, referred to as a conflict. The conflict tells the plan

generation algorithm which decisions contributed to the inconsistency. This

allows it to make more informed decisions about what candidate to consider next

in order to resolve the inconsistency. This ultimately speeds up the planner's

ability to find a consistent candidate plan. A discussion of conflict extraction

algorithms for optimal search together with a performance analysis can be found

in [14].

Candidate Plan Generation

New or Modified
Constraints Inconsistency

(Arcs) I And Conflict

Updae Rles_,Shortest-path Values(df)
Update Rules Back Pointers(b)

Incremental Temporal Consistency
Chocking Algorithm

Figure 21 - Diagram of ITC Algorithm

43

Figure 21 shows how the ITC algorithm interacts with the Kirk temporal

planner, as it performs incremental temporal consistency. Once a candidate plan

is initially generated by the plan generation phase, it is sent to the ITC algorithm

to be checked for temporal consistency. The ITC algorithm either finds the

candidate plan temporally consistent and the planner passes the consistent plan

to its next stage or it finds the candidate temporally inconsistent and returns a

conflict, consisting of simple temporal constraints. The plan generation phase

can then use the conflict to find a new candidate plan that resolves the conflict.

As plan generation makes modifications to the plan, it communicates these

changes to the ITC algorithm. ITC uses this information to determine which

nodes need their start distances updated when consistency is checked and

which ones do not.

4.2 Insufficiency of Modified-label Correcting to Perform ITC
In order to perform any type of temporal consistency checking, we must

use an algorithm that is capable of detecting negative cycles. As discussed in

Section 3.1, the FIFO modified-label correcting algorithm is a good choice

because it is very fast, and consequently supports the needs of a fast continuous

planner. It also has some of the capabilities needed to perform incremental

updates. In particular, the modified label-correcting algorithm can handle an arc

that improves a node's shortest-path distance since all it needs to do is add this

node to the queue and propagate down the line. However, the modified-label

correcting algorithm is not capable of handling cases in which an edge distance

increases the shortest-path to a node and as a consequence a new shortest-path

must be found. To handle this case, a new strategy of keeping track of which

shortest-paths distances on nodes affect each other needs to be incorporated.

We develop this strategy in Section 4.4. However, we first examine the

incremental update methods of a truth maintenance system (TMS), since a TMS

deals with an analogous issue for truth updates when clauses are removed.

44

4.3 Truth-Maintenance Systems and Unit Propagation
Truth maintenance systems (TMS) [4], developed in the late-1970s, were

widely used in the Al community for solving problems where the truth of facts are

added and then later retracted. A TMS determines the truth of propositions. It

provides justifications for its conclusions, recognizes inconsistencies, remembers

previous derivations, and guides searching by identifying propositions

responsible for inconsistencies. TMS have been used frequently in applications

for system analysis, diagnosis, and other deductive tasks [6]. The incremental

temporal consistency algorithm described in this thesis offers and analogous set

of four capabilities, and uses concepts analogous to a TMS' set of supports in

order to intelligently reuse previous calculations. This section describes how a

truth maintenance system works, specifically, the LTMS [9]. Later on in Section

4.3.4, we show how this algorithm is analogous to the incremental temporal

consistency algorithm.

4.3.1 LTMS
LTMS operates on propositional sentences, containing clauses and

literals. A literal is a proposition, representing a fact, or the proposition's

negation, (e.g. Q or -,Q). A clause is a disjunction of literals (e.g. XvYvZ).

Lastly, a propositional sentence is a conjunction of clauses (e.g. (,nXvMvC) A

(-,JvKvM) A (XvJvZ)). For additional details on propositional logic, see [12].

The job of an LTMS is to maintain and return the truth of propositions,

given some initial premise. Therefore, the LTMS has two basic tasks. First,

given a propositional sentence and the premises, it must be able to identify those

literals that must be true. Second, once it has determined the truth of the

propositions, whenever a clause is added or removed, it quickly determines how

this change alters the truth of the propositions. An LTMS achieves these tasks

with two functions, propagate and unsupport.

4.3.2 Unit Propagation and Support
If some literal in a sentence is known to be true, then the consequences of

this knowledge must be propagated to all clauses containing this literal.

45

Additionally, an LTMS also keeps track of how a literal was assigned a truth

value by storing which clause entailed this literal. This clause is called a support.

The pseudo-code for this propagation step is shown in Figure 22.

procedure propagate(clause A)
{01} if all literals in A are false except 1, and 1 is

unassigned
{02} then assign true to 1 and

{03} record A as a support for 1 and
{04} for each clause C mentioning "not 1",
{05} propagate(C)

Figure 22 - Pseudo Code for Propagation in LTMS

The first line updates clause A by searching for an unassigned literal of

clause A that must be assigned to true. If the literal exists, it is set to true and the

algorithm remembers that clause A is the support for why literal / is true. This

truth assignment is then propagated by updating any clause containing the literal

-/, which has just become false (line { 05 }). At the completion of running this

procedure, any literal that is true by unit resolution on the clauses will be set to

true. Additionally, the clause that determined the truth of each literal will be

stored as the support for that literal.

4.3.3 Clause Deletion and Unsupport
If a clause is deleted, then just as in the support case above, this

information is propagated to in order to update which literals are true.

procedure unsupport(clause D)
{01} if D supports some proposition p
{02} then delete p's support and truth assignment;

{03} for each support C containing p //Delete consequences
{04} unsupport(C);

{05} for each clause A containing p //Resupport p
{06} then propagate(A);

Figure 23 - Pseudo Code for Unsupport in LTMS

In this procedure, if removing a clauses unsupports proposition, p, then

clauses that contain p and support other propositions may no longer be a valid

support. Unsupport is run on each of these clauses to recursively invalidate the

truth of all propositions that they support (lines {03 -04 }) . Hence, Lines { 05-

46

0 6 } try to re-support each proposition that lost its support, once all the

consequences of that proposition are unsupported.

4.3.4 Incremental Ideas from LTMS
We see from the pseudo-code for an LTMS that a key method that the

system uses to determine what needs to be updated is through a tree of support.

The truth of a proposition is supported by the clause that entailed the truth.

When that clause is removed, the proposition that it supported is no longer

entailed from that clause, therefore all clauses that contain this proposition need

to be re-examined. With this method, a TMS can quickly find all clauses and

propositions that depend on the removed clause to derive the current truth

assignments. If the removed clause does not support any propositions as

identified by the unsupport function, then when the clause is removed no update

is required beyond just removing this clause.

Through the use of supports, the algorithm finds the exact number of

clauses that need to be reconsidered when unit propagation step is restarted,

thus saving a significant amount of recomputation.

4.3.5 ITC analogs to LTMS

The ITC algorithm needs to maximize speed by minimizing work, thus in a

negative cycle detection algorithm this means speeding up the SSSP algorithm,

by reducing the number of distances that need to be calculated. This can be

achieved in much the same way as LTMS uses support to find invalidated

clauses. For ITC, it uses its support tree to find invalidated shortest-paths.

We begin to develop the analogy between the two algorithms by first

stating that updating a truth value for a proposition is analogous to assigning a

shortest-path distance to a node. Both must determine if the new value should

replace the old. In addition, removing a clause that supports a proposition

thereby invalidating its truth assignment, is similar to removing or increasing the

distance on an arc in the distance graph, such that the distance value assigned

to that node is invalidated (it becomes more than the shortest-path distance).

For both the LTMS and ITC, all consequences that depend on an invalidated

truth assignment or distance value must also be invalidated. With this parallel,

47

ITC can use a recursive unsupport function similar to that for the LTMS, in order

to invalidate all shortest-paths that have been invalidated by the changed arc.

This procedure quickly identifies which nodes needs to be re-evaluated in order

for the algorithm to find the shortest-path distances; saving the work of re-

examining all nodes.

4.4 ITC Algorithm's Incremental Update Rules
ITC's incremental update rules for an arc change are divided based on

how the arc change affects the shortest-path distance at its head node, when an

edge weight changes. There are three types of effects that can occur, (1) no

effect to the current shortest-path, (2) improving the shortest-path, and (3)

invalidating the current shortest-path.

First, the arc can change in such a way that the shortest-path to a node is

unaffected. This may be the case either with an arc increase or decrease. The

graph in this case requires no updates because the shortest-path distances have

not changed.

Second, a decrease in an arc distance can improve the shortest-path

distance to a node such that it is now better to traverse through that arc. The

improved arc can either previously be in the shortest-path of the node or not be

in the previous shortest-path. This case can be handled using the modified-label

correcting algorithm strategy for updates because the improved distance at this

node can be propagated further down the graph simply by adding it to the queue

and checking for violating arcs.

Lastly, an increase in arc distance can alter the value on the shortest-path

to a node such that the shortest-path is now worse than what it was before. This

case cannot be handled by the modified label-correcting algorithm. The modified

label-correcting algorithm requires that all start distance values be upper bounds,

however, when the arc distance increases, this is no longer guaranteed. To get

on track we must identify the start distance values that are no longer valid

because of the edge cost increase. In particular, all paths that depend on the

previous shortest-path through the node also have incorrect distance values. For

this case, the strategy used in a TMS of tracing the set of support to determine

48

consequences can be applied. ITC must recursively invalidate all start distances

that are supported by the invalid distance on the node directly affected by the arc

increase and all successor nodes that depend on this node.

To allow for successors to be invalidated recursively, the ITC algorithm

adds a predecessor pointer, p, to every node. The predecessor pointer of a

particular node n points to the node that directly precedes node n in the best

known shortest-path. For example, suppose that reaching node Yfrom the start

node in the shortest manner requires traversing through arc XY, then the

predecessor pointer for node Ywould be set to X. This tells us that in the best

path to node Y from the start node, node X must be visited directly prior to

visiting node Y. This is equivalent to saying node Y is supported by node X in

the LTMS terminology. If it is unknown how to get to a particular node, then that

node's predecessor is set to unknown.

The next three subsections describe how the ITC algorithm deals with the

three cases previously outlined.

4.4.1 Arc Change without Affect to Shortest-Path
Recall that the first case involves any arc change that does not affect the

shortest-path of the head node. The arc distance can increase as long as it is

not on the current shortest-path of the head node. It can decrease as long as the

path through this edge to the head node is better than the current shortest-path

at the head node. Figure 24 shows the instance of this case where an arc

increases in its distance.

d=5

g 2

d=6

Graph Structure 2*3 d=7
p=g

d=5

h 3

Figure 24 - Arc Change without Improvement or Affect

49

In Figure 24, the current best way to get to node j is to go through node g,

as specified by the predecessor pointer of node j. This path reaches node j with

a cost of 7. The figure indicates that arcij increases from a cost of 2 to a cost of

3. With the distance increased, the d-value for node jfor a path through the

newly changed arc would be 9. This value is still worse than the current best

value of 7, therefore, the d-value at node j does not need to be updated. If no d-

values are affected by an arc change, then no further updates need to be

performed. All start distances are up-to-date and the consistency of the graph is

preserved.

The pseudo-code for this case is shown in Figure 25, however, in the

complete pseudo-code for the algorithm in Section 4.5, this case is not shown

because it performs no action.

{01} if (d(arc.head) < d(arc.tail) + c) AND
p(arc.head) * arc.tail)

{02} return;

Figure 25- Pseudo Code for Arc Change without Affecting Shortest-Path

The first condition in line { 01 } tests that the start distance for the head

node has not improved. The second condition tests that the arc is not on the

current shortest-path for the head node. If both conditions are true, then we have

the situation as described above, and no action is performed.

4.4.2 Arc Change Improves Shortest-Path
Frequently, an arc change will improve the cost of an arc, and

consequently the shortest-path to one or more nodes. This can happen both

when the changed arc is on the current shortest-path or not on the current

shortest-path to the head node. In either case, the rules are applied the same

way. The distance value of the node at the head of the arc needs to be updated

appropriately and this updated distance value propagated to successor nodes.

Figure 26 below shows the case when the arc that improves the distance value

at the head node is not on the shortest-path for that node.

50

9 2

2d0 d=7* 6
Graph Structure 2 J p=g*j

d=5

h 3

Figure 26 - Arc Change Improves Shortest-Path
The figure shows arcij reducing in cost from 2 to 0. With this change, the

shortest-path distance to node j can be decreased from 7 to 6, by first going

through node i. Both the d-value and the predecessor pointer for node j therefore

need to be updated. The predecessor pointer should now point to node i instead

of node g, representing that we should traverse through node i, in the shortest

path to node j and the d-value should be updated to represent this new shortest-

path of distance of 6. As a final update step, since the successor nodes of node j

can be affected by the improvement to node fs d-value, node jis added to the

algorithm's update queue. When the node is subsequently dequeued, the

outgoing arcs from node j are examined for updates. The pseudo-code for this

case is shown in Figure 27.

{01} if (d(arc.head) > d(arc.tail) + c)
{02} d(arc.head) d(arc.tail) + c;
{03} p(arc.head) arc.tail;
{04} Insert(arc.head);

Figure 27 - Pseudo Code for Arc Change Improves Shortest-Path

The code starts by testing whether the start distance value has improved

for the node at the head of the arc (line ({oi) . If it has, then ITC first updates the

head node's d-value (line {02 }) sets the predecessor pointer to the node at the

tail of the arc,(Iine (03 1) and then inserts the changed head node so that the

successors are updated (line f04}).

51

4.4.3 Arc Change Invalidates Shortest-Path
In the final case, an increase in the distance worsens the current shortest-

path to a node. In this case, the node at the tail of the arc is the predecessor for

the node at the head of the arc. The set of parent nodes for the changed arc's

head node must then be re-examined to determine the new best shortest-path.

Additionally, since all nodes supported by this affected node also have invalid

shortest-path distances, a recursive function must be called to invalidate all

nodes supported in the chain. Once the d-values have been updated, the

parents of the affected node can be enqueued and a new start distance may be

propagated from this node. Figure 28 below shows this scenario.

d=5

9 2

d=6 6o

Graph Structure I p=i *?

d=5

h 3

Figure 28 - Arc Change without Improvement and Shortest-Path Affected

Again arcij has increased in value, but this time it cannot be treated as just

an arc increase with no affect. Since node fs d-value of 6 was calculated by

traversing through the changed arc, the value atj is no longer valid. An update

must be performed on all of nodefs parents in order to find the new shortest-

path distance to node j. This is done by adding all of node fs parents to the

queue. Additionally, since node j, may support other nodes elsewhere in the

graph, ITC must recursively invalidate the d-values and predecessor pointers of

all nodes that use node j in their shortest-path, as well as the d-values and

predecessor pointers of node j. This is done by setting their d-values to 00 and

changing the predecessor pointers to unknown. When the temporal consistency

algorithm is restarted and nodes are evaluated from the queue, the algorithm

52

calculates and updates node j with the new best path since node j's parents are

in the queue. The pseudo-code for this case is given in Figure 29.

{O1} if (d(arc.head) < d(arc.tail) + c) AND
{02} p(arc.head) arc.tail
{03} d(arc.head) -;
{04} p(arc.head) unknown

{05} InvalidateSupports(arc.head);

{06} InsertParents(arc.head);

Figure 29 - Pseudo Code for Arc Change Invalidates Shortest-Path

Line to1) of the pseudo-code checks that the path for the changed arc is

longer than the shortest-path. Additionally, line {02} checks that this path was on

the shortest-path of the head node. If both conditions are true then, in line { 031,

ITC resets the distance value of the head node and in line (04) , the

predecessor pointer is set to unknown. Lines {05-06} perform the recursive

invalidation of supported successors and insert the invalidated node's parents

into the queue.

4.4.4 Addition and Removal Arcs
Often the change in the graph is not a changed arc distance, but an

addition of a new arc or the removal of an existing arc. With additions and

removals one of the above three scenarios above can still be applied by mapping

the arc addition and removal to a distance decrease and increase.

If a new arc is added, then the new arc distance is treated as being

previously set to co and now changed to a the arc distance. Then the arc addition

can fall into either the case where the shortest-path distance to a node is

improved (Section 4.4.2) or the case where the shortest-path to a node is

unaffected (Section 4.4.1).

If an arc is removed, then the new arc distance is treated as being set to C*

from a previous value. The arc removal case can then fall into either the case

where nothing is affected by the removal of the arc, Section 4.4.1, or the case

where a new path to the head node of the arc must be found, Section 4.4.3.

53

4.5 Incremental Temporal Consistency Algorithm Pseudo-Code

When the planner requires a temporal consistency check on an STN of a

candidate plan, G, it will call Check Tempora/Consistency. Depending on

whether the consistency check is starting from scratch or incrementally, the

planner will call either Initialize or ModifyConstraint, respectively, before the call

to CheckTemporalConsistency. When CheckTemporalConsistency returns, it will

either return a conflict if there is an inconsistency or it will return no conflict if the

graph is consistent.

(Ol}
(02}
(031
(041
(051
(061

Q := 0
for all sEV(G)
d(s) = -;
p(s) = unknown;

d(ssart) = 0;
Q. Insert (sstart)

Conflict
CheckTemporalConsistency (G)
{07} while !Q.empty()
(08} u = Q.pop()
(091 for v E Succ(u)
(10} dval = Update(u,
(11} if(dval) < 0
(12} c = CompletedC
(13} if(c)
(14} return Extrz
(151 return 0;

v)

ycle (v)

actConf(c, 0);

Conflict
ExtractConflict(c,1)
(281 if l.contains(c)
(291 return 1;
(301 else
(311 l.add{c};
(32} ExtractConflict(p(c),l);

void
ModifyArc (arc, c)
(33} setCost(arc,c);
(34} if (d(arc.head > d(arc.tail) + c)
(35} d(arc.head) d(arc.tail) + c;
(36} p(arc.head) arc.tail;
(37} Insert(arc.head);
(381 elseif (d(arc.head) < d(arc.tail) + c)

AND (p(arc.head) == arc.tail))
(391 d(arc.head) := -;
(40) p(arc.head) := unknown;
{41} InvalidateSupports (arc.head);
(421 InsertParents(arc.head);

value
Update (p, x)
(161 if (d(y) > d(x) + c(x,y))
(17} d(y) d(x) + c(x,y);
(181 p(y) X;
(191 Q.Insert(y);
(20} return d(y);

Node
CompletedCycle (v)
(21} if L.contains(v)
(22} return v;
{23} else
(24} L.add(v)
(25} return 0;

void
ModifyConstraint (x, y, 1, u)
{26} ModifyArc(arc(y,x),-l)
{27} ModifyArc(arc(x,y),u)

void
InsertParents (n)

(431
(441
{45}
{461
(471
(481
{491
(50}
51}

for all m E Pred(n)
Insert (m);
if(p(m) == n)

if(Cm 5tart)

d(m) 0;
else

d(m)
p(m) := unknown;
InsertParents (m);

void
InvalidateSupports(n)

(52} for s E Succ(n)
(531 if(p(s) == n)
(54} d(n) -;
(551 pn) := unknown;
(56} InsertParents(s);
(57} InvalidateSupports(s);

Figure 30 - ITC Algorithm Pseudo Code

54

void
Initialize()

The Initialize function empties the queue, Q, resets all d-values to be c*,

and resets all predecessor pointers, p(i), to be unknown, lines {01-04}. It then

sets the start node's d-value to be 0 and adds the start node into the queue, lines

{05-06}. This sets up the algorithm data structures such that when

CheckTemporalConsistency is called, it is a completely new run and all paths to

nodes need to be examined.

The CheckTemporalConsistency function will return either the conflict

resulting in inconsistency or no conflict when the graph is consistent. It is called

whenever temporal consistency needs to be determined. In line t111, the

function checks for the termination condition to see if the lower bound is reached

signifying a negative cycle. Once the lower bound is reached, the algorithm

calls CompletedCycle at every update step (line {12 }). CompletedCycle adds

the node that is currently being updated to a list so that it can be checked

whether the algorithm has finished walking through the negative cycle. When

CompletedCycle discovers a cycle it will return the first node discovered in the

negative cycle, otherwise it will not return a node. Line (13} checks if a node is

returned by CompletedCycle and allows the algorithm to call ExtractConf (line

J14}) with this so that the negative cycle can be determined and returned by the

algorithm.

The Update function performs the update step as in the modified label-

correcting algorithm. If there is a better path to a node y by going through node

x, as checked by line (16}, then the function sets the predecessor pointer of

node y to traverse through node x and also updates the d-value at node y to the

new cost of traversing through node x (lines (17-18}). The insert step at line

{ 19 }, allows the algorithm to update successors of this node by adding them to

the queue. Returning the d-value in the final step is important for the termination

step, where the d-value is checked to make sure it has not dropped below zero

as described in Section 3.2.2.

lnsertParents is a helper function to the ModifyArc function. As discussed

in the previous section, sometimes the shortest-path to a node needs to be re-

determined because the previous shortest-path was altered by changing the

55

distance on an arc. InsertParents inserts all of a node's parents into the queue (

lines {43-44}), such that they will all be examined by the algorithm and a new

shortest-path to that node can be determined. Built into the code beginning at

line {46} is a special case condition where while inserting a parent node we find

that the predecessor pointer, p(i), points to the node whose parents we are

inserting. The potential for this is frequent with the distance graphs of temporal

networks because every temporal constraint has both a forward arc and a return

arc, representing the upper and lower bounds. If this happens, the algorithm

needs to reset all the values of this particular parent and insert the parent's

parents into the queue. If this parent is the start node, we can automatically set

the d-value to 0 as opposed to co, since the distance to the start node is always 0.

Simply, if we want to know what the shortest-path to a node is, we check its

parents. If we do not know what the shortest-path to the parent is then we check

the parent's parent and so on.

The InvalidateSupports function performs the recursive call to invalidate all

nodes dependent on a node whose start distance value is no longer valid. It

checks all the children of the node that is invalidated, resets their d-values and

predecessor pointers if the successor node uses the invalidated node as a

support (lines {53-55}). It then calls InsertParents on all nodes that have

invalidated d-values so that new shortest-paths can be found to these nodes (line

{56}). Lastly, it performs the recursive call to InvalidateSupports on the child

node so that the successors of the successors can be invalidated (line {57 }).

The function CompletedCycle returns a node contained in a negative cycle

if the algorithm has finished walking through the cycle. It returns a 0 node

otherwise. CompletedCycle detects cycles simply by storing each updated node

in a list and compares successive updated nodes with this list. If the node is

contained in the list, then that node is returned as a member of the negative

cycle. If it is not contained in the list, the node is added and a 0 is returned

meaning that no cycle was found.

ModifyConstraints takes as input two nodes and the upper and lower

bound constraints between them. This function is a convenience function that

56

allows the planner to change constraints on the STN of the candidate plan.

ModifyConstraints translates STN constraints to distance graph constraints as

described in Section 3.1.1. It then calls ModifyArc on these distance graph

constraints.

ExtractConf is a conflict extraction function that returns the nodes involved

in the negative cycle. It takes as input an initial node within the cycle and

recursively walks the predecessor pointers at each point, adding the current node

to a list of nodes already traversed. It detects a cycle by checking whether the

current node being walked is in the list of nodes already traversed. This list is

returned as the conflict.

The last function, ModifyArc, is the main function involved with the

incremental temporal consistency algorithm. Given a changed arc, it updates

this arc and performs the appropriate steps, as illustrated in the discussion in

Section 4.4, to initialize Q, d-values, and p(i) in such a way that a call to

CheckTemporalConsistency will return a correct answer quickly. For each

changed arc, this function must be called separately.

4.6 Negative Cycle Detection with Conflict Extraction
ITC detects negative cycles in the same manner that the modified-label

correcting algorithm detects negative cycles. The difference for ITC is that it cuts

off as soon as a d-value becomes negative, rather than less than -nC (Section

3.2.2). As ITC updates the start distances of each node, it checks to see if that

updated start distance has surpassed the lower bound of zero. Once this lower

bound is surpassed the algorithm continues until a negative cycle has been

completely traversed. The set of inconsistent edges can the be found by

following the predecessor pointers. Consider the inconsistent graph shown

below in Figure 31. It shows the values just after a negative cycle has been

detected. ITC has stopped at node B because the d-value has fallen below zero.

57

d=4
p=A

d=2 23

p=S

d=0 2=7
p-none P=C

-- 2

3

d= -1
p=D

Figure 31 - Example ITC Negative Cycle Detection

Notice that in this graph, the set of edges involved in the inconsistency

cannot be extracted by following the predecessor pointers. This is because the

negative loop has not yet been closed at arc BA. The reason the loop has not

been closed is because the negative cycle was detected early due to an

extremely negative edge, DB, which plunges the d-value dramatically. The

algorithm stops here because of the property discussed in Section 3.2.2 on why

termination can occur for temporal networks at a lower bound of zero. Thus, the

negative cycle has not been completely traversed.

In order to extract the nodes involved in the conflict, ITC needs to continue

walking the negative cycle until it comes back to the node at which it detected the

inconsistency. This will set all predecessor pointers so that the source of the

conflict can be identified. Figure 32 shows the state of the algorithm once the

conflict extraction step has been performed.

58

d=- I
p=A

d=-3 2 3

d=O Afe- = 2 d=2

P--noneVEIIA P=C

-- 2

3

d= -10
p=D

Figure 32 - Example ITC After Conflict Extraction

As the figure above shows, node A's predecessor pointer now points to B,

completing the cycle. We can now extract the conflict with the predecessor

pointers and report that this graph was found to be inconsistent with the negative

cycle ACDBA. Notice that once ITC initially detects a negative cycle, it shifts

gears from a shortest-path algorithm to a conflict extraction algorithm. Therefore,

the start distance values that are computed in the extraction step only help to

identify the negative cycle. The values themselves are useless to the shortest-

path algorithm because they will never converge since the shortest-path to a

node in the graph connected to a negative cycle has the distance -co (Section

3.2.2).

4.7 Inconsistency Resolution
A planner will take the conflict from the ITC algorithm and intelligently

select a new candidate plan that does not contain this inconsistency. Consider

how ITC performs an incremental update after a planner has shifted from an

inconsistent candidate plan to a new candidate. For example, imagine in Figure

31, the planner changes activity CD so that its upper bound is increased to 10.

This corresponds to an increase in the distance of CD from 3 to 10. Using the

update rules, from Section 4.4, the resulting values for the ITC algorithm is

shown in Figure 33.

59

d=4
p=A

d=-2 2 10

d=O 2 d=o

p Qnone ue C p=

3

Queue: C B A D

d=oo
P=?

Figure 33 - ITC Algorithm After Inconsistency Repair

ITC detects that the new CD arc has invalidated the shortest-path distance

to node D. Thus, it first invalidates D by setting its start distance value to 00 and

predecessor pointer to unknown and then goes on to invalidate all nodes

supported by D, in this case node B. Since node B supports no other nodes,

once it is invalidated the invalidation algorithm terminates. For every node that is

invalidated a new shortest-path for that node must be found. Thus, the parents

of both B and D are added into the queue as seen in Figure 33.

Since changing arc CD to 10 greatly increased the path that was on the

negative cycle, this altered graph is temporally consistent. The ITC algorithm will

return this answer after it has updated and removed all nodes from the queue.

4.8 Algorithm Analysis

The label-correcting algorithm is guaranteed to find the shortest-path

distances and negative cycles given that the d-values are always an upper bound

to the true shortest-path distance and the final graph does not contain any

violating arcs [1]. Since ITC uses exactly the same mechanism that the label-

correcting algorithm uses to detect temporal inconsistencies, then as long as the

update rules for ITC maintain d-values to be upper bounds on the true shortest-

path distance, and do not miss potential violating arcs, then ITC will also be

guaranteed to find the shortest-path distances and negative cycles. In the

paragraphs below, we will give informal arguments to why this is true for ITC.

60

WO

ITC guarantees that violating arcs will always be examined. The only way

for an arc that is not violating to become violating is for the d-value at the tail of

the arc to decrease or if the d-value at the head of the arc to increase. Given a

decrease in the d-value at the tail of the arc, ITC update rules add the tail node to

the queue meaning that the arc will later be examined later. Given an increase at

the head of the arc, ITC adds all the parents of this node into the queue in order

to examine potential violating arcs going into this node. Additionally, since an

increase at the head node can potentially increase the d-values of nodes

supported by this head node, a recursive check must be performed on each an

every node that is supported. This ensures that nodes that arcs that need to be

updated are added to the queue.

ITC guarantees that d-values are always upper bounds, or the true start

distance. When an arc changes, the d-values can potentially no longer be the

upper bound on the true start distance. When ITC no longer knows how a d-

value is calculated, meaning that that node is no longer supported, ITC will

recursively invalidate that node and all nodes supported by it. Invalidation sets

each d-value to oo, restoring the upper bound guarantee.

4.9 ITC Algorithm on "Mission to the Goal"

The ITC algorithm can save a significant amount of computation when the

planner has to re-determine the temporal consistency of a similar STN graph. To

illustrate this on a larger planning domain then the examples given above, let us

consider ITC on another candidate STNs from the soccer scenario described in

Section 1.3.

The Red defender decides that it will change its strategy to try and

confuse the Blue team. Redi now decides to play closer to Blue2 instead of

challenging Blue1's attack on the goal. This new strategy prevents Blue1 from

sending a quick centering pass to Blue2 because Redi would be able to

intercept it. However, if Blue1 can predict this move by Redi and re-plan such

that the centering pass is made by kicking the ball high over Red1, then the plan

to score a goal would again succeed.

61

The difference is that this type of centering pass takes significantly more

time to complete, resulting in changed temporal bounds on the centering pass

activity. The TPN illustrating both STNs is shown in Figure 34, with the new

contingency plan represented with the shaded nodes.

[0,0] Begin-Blue1 [2,2] End-Biue1 ,0

[1,1]

[00][0, 0] [0'0]

[1,5] [0,51

Figure 34 - "Mission to the Goal" with New Temporal Bounds

The new temporal bounds on the high centering pass constrain the pass

to take 9 time units, which is about 5 times longer then the previous low centering

pass. However with the temporal bounds specified for the "mission to the goal",

the mission is still feasible even with the high floating centering pass selected.

First, we can again visually inspect the STN and determine that it is

temporally consistent and the "mission to the goal" may succeed. Adding up

temporal bounds again before the synchronization node shows that Blue1 now

must complete its set of activities no sooner than 10 time units and no later 17

time units. Blue2's time constraints have not changed from the previous STN

and must complete its set of activities no sooner than 1 time unit and no later

than 10 time units. Again, there is a non-empty overlap (even though much

smaller) and we can see that if both Blue robots complete there task in exactly 10

time units then the mission will succeed.

62

77- - - - - - ---- -_ - - W4 _-_ I-

Using an ITC, we find that only a few nodes need to be updated in order to

determine the temporal consistency of the new plan. The figure below shows

which nodes need to be examined in order to determine the temporal

consistency of the newly revised STN given that we have already calculated the

consistency of the previous mission plan.

[0, 10,01A [0, [0101

[0, 1,' 10 0,01 10, lo [,01

[1,1 [1,1

[0,0 0,0] (0,01 [0 00'01

,5] [0,51 1,51 [0,51

Figure 35 - Examined Nodes for Figure 36 - Examined Nodes for
Non-Incremental Algorithm Incremental Algorithm

In Figure 35 and Figure 36, the darker ovals are nodes that require

examination and the lighter ovals are those that are not examined. Figure 35

shows that only the nodes directly affected by the change in the centering-pass

activity need to be updated. In this robotic soccer scenario, the ITC algorithm

performed 77% less work than if a non-incremental algorithm. However, for

larger more complex STN graphs, the savings can be much more dramatic when

using an incremental temporal consistency algorithm. Chapter 5 will empirically

demonstrate this claim.

Next consider the case where the centering pass takes longer than 9 time

units, in which case the mission plan, the plan to score a goal, would become

temporally infeasible. The reason is because the mission can succeed only if

Bluel's pass reaches Blue2 when Blue2 is in front of the goal. If the pass takes

any longer, Blue2 will no longer be waiting for the pass in front of the goal and

thus will not be able to shoot the ball. A visual inspection by adding up the timing

constraint for Blue 1 and Blue2 shows that there is no overlap between possible

execution times, if the centering pass takes longer than 9 time units. Figure 37

63

below shows the number of nodes that the ITC algorithm will traverse in order to

determine this temporal inconsistency.

[0, [0,01

[0, 1'81 0] [,0]

(0,0 0,0] [0,0]

,5 [[0,51

Figure 37 - Examined Nodes for Incremental Algorithm with Inconsistency

Although, the savings is less significant for this scenario when the

centering-pass activity produces an inconsistency, only 8%, the one node not

remained unexamined demonstrates the exact motivation behind incremental

algorithms. All of the nodes that need to be re-examined in Figure 37 are exactly

the nodes that are involved in the temporal inconsistency. In general, it is the

case that temporal inconsistencies will see less savings then successive

searches that return temporal consistency because inconsistencies usually have

to be propagated through the cycle before it to be detected. However, with

incremental candidate generation as described in Section 2.4 and conflict

direction, the majority of candidate plans will be consistent and a smaller fraction

will be inconsistent.

64

Chapter 5

Discussion

This chapter describes how the ITC algorithm is implemented and then

integrated into the Kirk Flexible Temporal Planner. It then gives the performance

data of the ITC algorithm compared to previous temporal consistency algorithms.

The chapter then concludes with a summary of the main contributions in the

thesis and some suggestions for future work.

5.1 Implementation
The ITC algorithm is implemented in C++ and integrated into the Kirk

Temporal Planner/Executive. The algorithm is implemented as a separate stand-

alone module, with its own STN representation. Thus, the module is capable of

returning the temporal consistency of any input STN and does not have to be run

through Kirk.

5.2 Performance

The incremental algorithm was tested on a real world cooperative air

vehicle scenario, where UAVs attack two targets. In the scenario, each UAV is

required to destroy two targets but has a choice between two different sets of

targets. The planner must choose one set of targets for each UAV to attack.

Once this choice is made, each UAV performs five activities, (1) fly to targetl, (2)

attack targetl, (3) fly to target2, (4) attack target2, (5) return to base.

Figure 38 shows that the size of the plan on which the two algorithm were

tested on. Notice that it grows linearly with the number of UAVs being

considered because each added UAV performs a constant number of activities.

65

Number of Nodes in TPN

(A

0z
0

.I
E
Z

2500-

2000 -

1500 -

1000 -

500 -

0
73 82 911 10 19 28 37 46 55 64

Number of UAVs

Figure 38 - Number of Nodes in TPN for MICA scenario

The data shown in Figure 38 gives the basic idea of the size the planning

structure that Kirk is dealing with.

The number of UAVs versus the number of queue insertions for the

corresponding plan is graphed in Figure 39. The thesis claims that the ITC

algorithm reduces the amount of work a temporal consistency algorithm has to

perform by examining fewer nodes than the modified label-correcting algorithm.

The number of queue insertions is directly proportional to the number of nodes

examined.

Comparison of the Number of Queue Insertions

40000
35000
30000
25000
20000
15000
10000
5000

1 10 19 28 37 46 55 64 73 82 91

Num be r of UAVs

Figure 39 - Queue Insertion Comparison

Figure 39 shows that the trend for both the incremental and non-

incremental temporal consistency algorithm is that the number of queue

66

0

C

0

E
z

-Non-incremental

Algorithm
-Incremental

Algorithm

insertions increase as the number of UAVs is increased. This is because the

resulting graph of the plan given to the algorithm becomes larger and larger as

shown in Figure 38. Additional UAVs add additional activity sequences, resulting

in more nodes and arcs, which ultimately leads to added examination when

determining temporal consistency. For the ITC algorithm, the number of queue

insertions grows much slower than for the non-incremental algorithm.

Figure 40 shows the time it took the algorithms to determine the temporal

consistency of each plan.

Comparison of Algorithm Runtime

12 -

10
-- Non-incremental

Algorithm

r. ---- Incremental
Algorithm

20

1 10 19 28 37 46 55 64 73 82 91

Num ber of UAVs

Figure 40 - Runtime Comparison

Figure 40 shows that both algorithms again increase in runtime in the

same manner as they increase in the number of queue insertion when the

number of UAVs in the scenario is increased. (The jagged edges in the graph

corresponds to context switching between processes on the test computer.)

The graph in Figure 40 is consistent with the graph in Figure 39 because

the number of queue insertions should be directly proportional to the amount of

time the algorithm takes. This is because the majority of time spent determining

temporal consistency is in examining nodes from the queue. Again, the ITC

algorithm has a much slower rate of growth.

Both graphs show at least an order of magnitude improvement on ITC vs

repeated FIFO label-correcting algorithm on this particular planning domain.

67

5.3 Future Work
The future work that needs to be performed can be broken up into three

sections, (1) ITC implementation work, (2) ITC evaluation work, and (3)

innovative ideas that improve ITC further.

5.3.1 ITC Implementation Work
The interface into Kirk translates the Kirk TPN planning object with

selected activities and converts it into a complementary C++ data structure that

the ITC algorithm can understand. This is not the optimal method to integrate the

algorithm into Kirk since the translation process takes a significant amount of

time, especially on very large input graphs. However, this implementation is

sufficient to evaluate the performance of Kirk over the current temporal

consistency algorithm, FIFO label-correcting algorithm. The ITC algorithm will

need to be integrated into Kirk so that Kirk can take full advantage of ITC's

capabilities.

The interface into the Kirk plan selection process is also yet to be

implemented. Interfaces and protocols at both the Kirk plan generation and ITC

conflict extraction phase first need to be determined.

5.3.1 ITC Evaluation Work
It would be very interesting to see if the conflict returned by the ITC

algorithm is capable of significantly speeding up the plan generation step by

focusing the search. However, the algorithm for how the Kirk planner would

resolve inconsistencies has not yet been determined. This algorithm involves

deciding which decisions to change given the set of temporal conflicts.

A true random plan generator needs to be implemented so that

performance evaluations on ITC are not so domain specific. Currently, the plans

tested on the ITC program increased breadth of the graph as the size of the

graph increases. More insight on the performance of ITC might be gained by

evaluating larger sized graphs with increased depth.

5.3.1 ITC Improvement Work
For the ITC algorithm, in the case where a shortest-path distance value

becomes invalidated, many nodes are added to the queue because both nodes

68

containing distance values supported by this changed shortest-path, and the

parents of these nodes need to be re-reexamined. With this many nodes, the

ITC algorithm could achieve additional time savings by being able to determine

which node would be best to be examined first. There is an ordering of these

nodes for which the ITC algorithm performs the least amount of arc and node

examinations. The ITC algorithm currently uses a FIFO queue, which just pops

the node that has been in the queue the longest. However, a use of a priority

queue could be provide additional speed savings.

5.3 Conclusion
The ITC algorithm has been shown to be capable of enabling continuous

temporally flexible planning. Based on the results shown in Section 5.1, ITC

achieves fast temporal reasoning by reusing work as demonstrated with Figure

39, graphing the number of queue insertions. This is demonstrated empirically

by the order of magnitude cost savings that ITC has over non-incremental

algorithms for temporal consistency.

ITC combines a fast shortest-path and negative cycle detection algorithm

from network optimization along with the incremental update rules based from

incremental algorithms such as Incremental A* and truth maintenance systems.

This allows ITC to quickly determine the temporal feasibility of a candidate plan,

thus speeding up the verification phase of a temporally flexible planner.

Additionally, ITC also guides temporally flexible planners to choose

candidate plans that are more likely to be temporally consistent, by returning to

the planner the minimum set of temporal constraints, or conflict, that caused a

previously considered candidate plan to be temporally inconsistent. The plan

generation phase of a temporally flexible planner can then use this information to

bias the search against candidate plans that contain the conflicting temporal

constraints.

69

References

[1] R. Ahuja, T. Magnanti, J. Orlin. Network Flows: Theory, Algorithms, and

Applications. Prentice Hall, 1993.

[2] T.H. Cormen, C.E. Leiserson, R.L. Rivest. Introduction to Algorithms. MIT

press, Cambridge, MA, 1990.

[3] R. Dechter, I. Meiri, J. Pearl. Temporal Constraint Networks. Artificial

Intelligence, 49:61-95, May 1991.

[4] J. Doyle. A Truth Maintenance System. Artificial Intelligence 12

(1979):231-272

[5] T. Estlin, G. Rabideau, D. Mutz, S. Chien. Using Continuous Planning

Techniques to Coordinate Multiple Rovers. Electronic Transactions on

Artificial Inttligence, 4:45-57, 2000.

[6] K. Forbus and J. de Kleer. Building Problem Solvers. The MIT Press,

1993.

[7] P. Kim, B. Williams, and M. Abrahmson. Executing Reactive, Model-

based Programs through Graph-based Temporal Planning. In

Proceedings of IJCAI-2001, Seattle, WA, 2001.

[8] S. Koenig and M. Likhachev. Incremental A*. In Advances in Neural

Information Processing Systems 14, 2001.

[9] D. McAllester. Truth Maintenance. In Proceedings of AAAI-90, 1990,

1109-1116.

[10] G. Rabideau, R. Knight, S. Chien, A. Fukunaga, A. Govindjee. Iterative

Repair Planning for Spacecraft Operations in the ASPEN System.

70

International Symposium on Artificial Intelligence Robotics and Automation

in Space (ISAIRAS), Noordwijk, The Netherlands, June 1999.

[11] P. Riley and M. Veloso. Planning for Distributed Execution Through Use of

Probabilistic Opponent Models. In Proceedings of the Sixth International

Conference on Artificial Intelligence Planning Systems, Toulouse, France,

April 2002.

[12] S. Russell, P. Norvig. Artificial Intelligence: A Modern Approach. Prentice

Hall, 1995.

[13] 1. Tsmardinos, N. Muscettola, and P.Morris. Fast transformation of

temporal plans for efficient execution. In AAAI-98, 1998.

[14] B.C. Williams and R.J. Ragno. Conflict-directed A* and its role in model-

based embedded systems. Journal of Discrete Applied Math, 2002.

[15] A. Stentz. Optimal and efficient path planning for partially known

environments. In Proceedings of IEEE International Conference on

Robotics and Automation, May 1994.

[16] N. Muscettola, P. Morris, B. Pell, and B. Smith. Issues in temporal

reasoning for autonomous control systems. In Autonomous Agents, 1998.

71

