
Securing Software: An Evaluation of Static Source Code Analyzers

by

Misha Zitser

Submitted to the Department of Electrical Engineering and Computer Science

in Partial Fulfillment of the Requirements for the Degrees of

Bachelor of Science in Electrical [Computer] Science and Engineering

and Master of Engineering in Electrical Engineering and Computer Science

at the Massachusetts Institute of Technology

August 29, 2003

Copyright 2003 Misha Zitser. All rights reserved.

The author hereby grants to M.I.T. permission to reproduce and
distribute publicly paper and electronic copies of this thesis

and to grant others the right to do so.

Author

Department of Electrical Engineering and Computer Science

A August 29, 2003

Certified

by

Richard Lippmann
'Thgfs gupervisor

Accepted

by 
Arthur C. Smith

Chairman, Department Committee on Graduate Theses

MASSACHJSET-Ts INS E
OF TECHNOLOGy

JUL 2 0 2004

LIBRARIES
BARKER



Securing Software: An Evaluation of Static Source Code Analyzers
by

Misha Zitser

Submitted to the
Department of Electrical Engineering and Computer Science

August 29, 2003

In Partial Fulfillment of the Requirements for the Degree of
Bachelor of Science in Computer Science and Engineering

and Master of Engineering in Electrical Engineering and Computer Science

ABSTRACT

This thesis evaluated five static analysis tools - Polyspace C
Verifier, ARCHER, BOON, Splint, and UNO - using 14 code examples that
illustrated actual buffer overflow vulnerabilities found in various
versions of Sendmail, BIND, and WU-FTPD. Each code example included a
"BAD" case with one or more buffer overflow vulnerabilities and a
"PATCHED" case without buffer overflows. The buffer overflows varied
and included stack, heap, bss and data buffers; access above and below
buffer bounds; access using pointers, indices, and functions; and scope
differences between buffer creation and use. Detection rates for the
"BAD" examples were low except for Splint and Polyspace C Verifier,
which had average detection rates of 57% and 87% respectively.
However, average false alarm rates, as measured using the "PATCHED"
programs, were high for these two systems. The frequency of false
alarms per lines of code was high for both of these tools; Splint gave
on average one false alarm per 50 lines of code, and PolySpace gave on
average one false alarm per 10 lines of code. This result shows that
current approaches can detect buffer overflows, but that false alarm
rates need to be lowered substantially.

Thesis Supervisor: Richard Lippmann
Title: Senior Scientist, MIT Lincoln Laboratory

2



Acknowledgements

I would like thank my advisor, Rich Lippmann, for his guidance and suggestions
during the whole process. I am also very grateful for the time he spent in proofreading
the thesis and in offering constructive criticism. I would also like to thank all the people
at Lincoln Lab whom I've had many interesting discussions with on the subject of static
code analysis, including Robert Cunnigham, Tim Leek, Roger Khazan, Kendra
Kratkiewicz, and Jesse Rabek. I specifically would like to thank Rob and Tim - Rob for
suggesting that I look at the off-by-one vulnerability in wu-ftpd, and Tim for all his help
in setting up the tools, for his help in writing the small test cases and his help in analyzing
the results. In addition, I would like to thank David Evans for his help with Splint, David
Wagner for answering questions about BOON, Michael Howard for pointing out the
availability of PREfast, Yichen Xie and Dawson Engler for their help with ARCHER,
and Chris Hote and Vince Hopson for all their help on answering questions about
PolySpace. I would also like to thank Doug Stetson for being a great office-mate, and
fellow students, Dave Messing and Nick Malyska, for being cheerful neighbors. Last but
not least, I would like to thank my parents and my sister, Katrina, for providing me with
plenty of moral support. I sincerely apologize to anyone whom I might have forgotten to
thank.

3



Table of Contents

CH A PTER 1 IN TR O D U C TION ................................................................................................................ 6

1.0 W HY IS SOFTW ARE SECURITY IM PORTANT?....................................................................................6
1.1 TYPES OF SOFTW ARE BUGS..................................................................................................................6

1.2 W HY FOCUS ON BUFFER OVERFLOW S?........................................................................................... 7

1.3 A BASIC OVERVIEW OF BUFFER OVERFLOW S ...................................................................................... 8

1.4 W HY ARE BUFFER OVERFLOW S SO COM M ON?.................................. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

1.5 W HAT'S BEING DONE TO STOP BUFFER OVERFLOW S?.................................................................. 11
1.6 G OALS OF THIS THESIS.......................................................................................................................12

CHAPTER 2 TYPES OF BUFFER OVERFLOW ATTACKS ............................................................ 14

2.0 H OW DO BUFFER OVERFLOW S W ORK?...................................... .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 14

2.1 O VERW RITING CODE POINTERS........................................................................................................18
2.2 LOGIC-BASED A TTACKS..................................................................................................................... 19

2.3 A TTACKER INJECTS CODE.................................................................................................................19
2.4 ATTACKER U SES EXISTING CODE ................................................................................................. 20

2.5 H EAP-BASED BUFFER O VERFLOW S...................................................................................................21
2.6 IS THE BUFFER O VERFLOW EXPLOITABLE?.....................................................................................21

CHAPTER 3 APPROACHES TO DETECTING/PREVENTING BUFFER OVERFLOWS...........23

3.0 TYPES OF SOFTW ARE SECURITY TOOLS ...................................................................................... 23

3.0.0 Dynam ic Testing Tools .............................................................................................................. 23
3.0.1 Other Dynam ic A nalysis Approaches .................................................................................... 24
3.0.2 Compiler-based Dynam ic Prevention Tools.......................................................................... 26
3.0.3 Language-based Approach ................................................................................................... 29
3.0.4 Static/Dynam ic Hybrids ....................................................................................................... 31
3.0.5 Operating System Solutions.......................................................................................................33
3.0.6 Static Source Code Analyzers ............................................................................................... 34

3.1 W HY FOCUS ON STATIC ANALYSIS?............................................. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  37

CHAPTER 4 DESCRIPTION OF THE STATIC ANALYSIS TOOLS .......................................... 40

4.0 SPECIFIC TOOLS................................................................................................................................40
4.1 LEXICAL ANALYSIS .......................................................................................................................... 40

4.1.0 Flawfinder 1.22 ........................................................................................................................ 41
4.1.1 ITS4..........................................................................................................................................42
4.1.2 RA T S 2.1 .................................................................................................................................. 43

4.2 SEM ANTIC A NALYSIS TOOLS ........................................................................................................... 44
4.2.0 W hat is abstract interpretation? .......................................................................................... 44
4.2.1 Splint (Secure Program m ing Lint)...................................................................................... 46
4.2.2 BO ON ....................................................................................................................................... 48
4.2.3 AR CH ER (A rray CH eckER) ............................................................................................... 50
4.2.4 PREfix - not included in evaluation .................................................................................... 52
4.2.5 PREfast - not included in evaluation ................................................................................. 54
4.2.6 PolySpace C Verifier ................................................................................................................ 54
4.2.7 Uno ........................................................................................................................................... 55
4.2.8 M C (M eta Compiler) - N ot included in evaluation ............................................................. 56

4.3 SUM M ARY OF STATIC ANALYSIS TOOLS .................................................................................... 58

CHAPTER 5 EVALUATING STATIC ANALYSIS TOOLS - METHODOLOGY..............59

5.0 BUFFER O VERFLOW CLASSIFICATION SCHEME ............................................................................... 59
5.1 SIM PLE TEST CASES...........................................................................................................................63
5.2 REAL VULNERABILITIES....................................................................................................................66
5.3 VULNERABILITIES IN BIND (SEE APPENDIX C)........................................................................... 68

4



5.3.0 nslookupComplain vulnerability: CERT Advisory CA-2001-02........................................... 68
5.3.1 SIG-BUG: CERT Advisory CA-1999-14.............................................................................. 68
5.3.2 NXT-BUG: CERT Advisory CA-1999-14...............................................................................70
5.3.3 IQUERY-BUG CERT Advisory CA-98.05, CVE-1999-0009............................................... 71
5.3.4 TSIG Overflow CA-2001-02 .................................................................................................. 72

5.4 VULNERABILITIES IN SENDMAIL (SEE APPENDIX C) ................................................................... 74
5.4.0 Remote Sendmail Header Processing Vulnerability CA-2003-07 ........................................ 74
5.4.1 Gecos Overflow CVE-1999-0131 ............................................................................................ 75
5.4.2 Sendmail 8.8.0/8.8.1 MIME Overflow CVE-1999-0206 ...................................................... 76
5.4.3 Sendmail 8.8.3/8.8.4 MIME Overflow CVE-1999-0047 ...................................................... 78
5.4.4prescan() overflow CA-2003-12 ............................................................................................ 80
5.4.5 tTflag Buffer Underrun CVE-2001-0653............................................................................ 82
5.4.6 TXT Record Overflow CVE-2002-0906................................................................................. 84

5.5 VULNERABILITIES IN W U-FTPD (SEE APPENDIX C) ................................................................... 85
5.5.0 Off-by-one overflow infbjrealpath () CAN-2003-0466.........................................................85
5.5.1 Mapped CHDIR Overflow CA-1999-13, CVE-1999-0878.................................................... 86
5.5.2 Realpath() Overflow CERT Advisory: CA-1999-03/CVE-1999-0368.................................. 87

5.6 SUMMARY OF VULNERABILITIES................................................................................................... 88
5.7 DISTRIBUTION OF BUFFER OVERFLOWS....................................................................................... 88

CHAPTER 6 RESULTS ............................................................................................................................. 89

6.0 OVERALL RESULTS............................................................................................................................89
6.1 IDIOSYNCRASIES OF THE TOOLS .................................................................................................... 94

6.1.0 PolySpace C Verifier..................................................................................................................94
6.1.1 B O O N ......................................................................................................................................... 9 6
6.1 .2 Sp lin t...........................................................................................................................................9 6
6 .1 .3 U N O ............................................................................................................................................ 9 7
6.1.4 A R C H E R .................................................................................................................................... 9 7

6.2 FALSE ALARMS PER LINES OF CODE ............................................................................................... 97

CHAPTER 7 CONCLUSION .................................................................................................................... 99

REFERENCES..........................................................................................................................................100

APPENDIX A - COM M ON SECURITY VULNERABILITIES..........................................................106

APPENDIX B - DANGEROUS PROGRAM M ING ERRORS.............................................................109

APPENDIX C - WEBSITES FOR OBTAINING SOURCE CODE FOR RETROSPECTIVE
ANALYSIS + LINKS TO VULNERABILITIES ................................................................................... 112

APPENDIX D - MODEL PROGRAM (SENDMAIL REMOTE HEADER VULNERABILITY) .... 114

APPENDIX E.............................................................................................................................................130

5



Chapter 1 Introduction

1.0 Why is software security important?

Most of us rely on software everyday, whether knowingly or not, for such things
as withdrawing money from an ATM, sending e-mail, word processing, surfing the web,
doing our taxes, balancing our checkbook and sending out e-greetings. We have grown
to trust computers and the software that runs on them. We expect software to behave as
specified, to be secure and to be reliable. But what if the e-mail program we use, for
instance Microsoft Outlook, had an exploitable security hole in it? Or what if the web
browsers we use, such as Netscape Navigator or Internet Explorer, had security holes?
We wouldn't feel as safe anymore.

Unfortunately, these are not mere hypothetical scenarios! Many serious security
holes have previously been discovered in Microsoft Outlook, Netscape Navigator,
Internet Explorer and many other popular applications. Fortunately, if such bugs are
discovered by software developers or software auditors, patches, or upgrades, are
released relatively quickly and the software can be protected. If a security hole in
software gets discovered by a malicious hacker, then the situation is far more serious.
Computer crime is a serious problem in today's society. According to the "2003
Computer Crime and Security Survey" conducted by the Computer Security Institute and
the San Francisco Federal Bureau of Investigation's (FBI) Computer Intrusion Squad, 251
organizations reported a total of almost $202 million in financial losses due to cyber
attacks [20]. Cyber attacks can range from computer viruses or worms infecting
company networks and disrupting productivity, to hackers exploiting specific security
holes in software to break into machines. Cyber attacks pose a serious threat to our
nation's critical infrastructure as a whole. According to Richard Clarke, former special
advisor to the president on cybersecurity, the number of software vulnerabilities is "at an
all-time high", and the time between the discovery of a bug and the creation of an exploit
code is diminishing. Also, as Ronn Bailey, CEO of Vanguard Integrity Professionals,
provider of enterprise security software, has pointed out, "We are vulnerable to a
cyberattack of the 9/11 category or greater, and that could happen at any moment" [28].

1.1 Types of software bugs

The most common vulnerabilities in software can be subdivided into several
classes, not all of them necessarily represent security vulnerabilities. Bugs in software
include things such as buffer overflows, race conditions, format string bugs, integer
overflows, integer underflows, memory leaks, dangling pointers, array indexing errors,
divide by zero bugs, truncation errors, failure to drop privileges, bad type casts etc.
These vulnerabilities are briefly described in Appendices A and B. Depending on the
context in which the bug occurs in the software, it can cause varying degrees of damage.
Many of these bugs can be catastrophic. For instance, a "divide by zero error" in a
program might cause a rocket to crash or cause a pacemaker to stop working, resulting in
cardiac arrest! Many of these bugs are often subtle and get triggered only under very

6



specific circumstances. The conditions under which a bug gets triggered might be so rare
that the bug might be dormant in the program code for a long time without being noticed.
You might recall the "Y2K Bug" that caused mass hysteria. This was a widespread
problem affecting many software applications, and it did not gain software developers'
attention for many decades. Many programmers who wrote code when computer
memory was very expensive, chose to save memory by representing dates compactly, for
instance, December 3 1", 1999 was represented as "12/31/99". When the clock would
strike midnight on December 3 1s", 1999, many program timers would simply wrap
around, and January 10, 2000 would get represented as "01/01/00". The results of this
would be catastrophic. Computers would think that the year 1900 had rolled around!
Just imagine the possible side effects of this... For example, the software on your bank's
computer might all of a sudden think that your loans were 99 years overdue! [91] Many
people believed that the side effects of the Y2K bug would be disastrous and would shake
the world's economies and infrastructure. Fortunately, after putting in thousands of
human hours, programmers were able to fix these problems in most affected software,
without too many repercussions.

Certain kinds of software bugs represent security vulnerabilities that can be
exploited by attackers to cause damage. For instance, by feeding a particular input to a
program that triggers a certain bug to manifest itself, an attacker might cause the program
to crash or even worse, be able to gain total control of the computer on which the
program is running. Today, with the omnipresence of computer networks, i.e. the
Internet, an attacker might not even have to be present at your computer to cause damage;
your machine can be damaged remotely, from his own computer, somewhere halfway
across the world. Although all of the bugs listed above are important and should be
eliminated from software, this thesis will focus on only one type of bug, namely buffer
overflows.

1.2 Why focus on buffer overflows?

Buffer overflows are one of the most discussed software security vulnerabilities,
and they have become a frequently occurring problem in the past few years. The first
widely publicized buffer overflow exploit appeared in 1988 as part of Robert T. Morris'
infamous Internet Worm which brought down a considerable portion of the internet [75].
Ever since, buffer overflow exploits have become a popular choice among attackers. For
instance, in 2002, buffer overflow vulnerabilities accounted for approximately 20% of all
security vulnerabilities listed in ICAT's computer vulnerability database [45]. About two
thirds of these buffer overflow vulnerabilities were given the highest level of severity and
were remotely exploitable. In 2003, about 30% of all vulnerabilities in ICAT's database
involved buffer overflows. About half of these buffer overflows were ranked at the
highest severity level and were remotely exploitable. To cite another source, in 2002,
about 64% of Carnegie Mellon CERT Coordination Center's security advisories involved
buffer overflows (See Figure 1). This statistic jumped up to 75% for the first half of 2003
[16]. CERT, unlike ICAT, reports only the most serious of security vulnerabilities each
year. The numbers just cited indicate that buffer overflows are by far the most common

7



and dangerous threat to software security. Sadly, the fraction of vulnerabilities related to
buffer overflows does not seem to be falling.

History of CERT Buffer Overflow advisories

40-

35-

30-

25-

Number 20-

15-

10-

5-

0-

* Advisories
* Overflows

1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003*
Year

Figure 1. *Data for 2003 - January to July
Data for 1988 to 1998 was borrowed from [60].

1.3 A basic overview of buffer overflows

The basic notion of a buffer overflow is quite simple. A buffer is simply a
contiguous block of memory where a program stores data (e.g., an array of characters).
A buffer overflow occurs when data is written to a buffer and some of it gets written
outside of the buffer bounds. This means that data may get written past the upper bound
of the buffer or below the lower bound (buffer overrun or buffer underrun, respectively).
As a result of the buffer overflow, memory locations adjacent to the buffer get
overwritten. By supplying the data that gets written to the buffer and by controlling
which memory locations get overwritten, an attacker may be able to change the execution
flow of a program. In the worst case scenario, an attacker is able to supply arbitrary
attack code that gets executed as a result of the changed execution flow. The attack code

8



in most cases simply starts an interactive program called a shell. The details of how the
flow of execution can be changed are discussed in the next chapter.

Many applications run as suid (set uid) root. Two common suid root programs in
UNIX are lpr and xterm. Such programs are able to receive special privileges from the
system upon request, even if the user running the program is just an ordinary user with no
special privileges. Gaining root privileges on a machine, or to use the hacker term
"owning a machine", means gaining unlimited power over the machine. If a buffer
overflow is exploited while a suid root program is running with root privileges, an
attacker can spawn a root shell. Once a root shell has been launched, the attacker has the
power of a system administrator. With this newly acquired power, the attacker can view
private data such as users' passwords, read, delete or modify sensitive files, set up a
monitoring station, install back doors (with a root kit), edit logs to hide tracks,
masquerade as someone else etc. It should be noted that even buffer overflows in
programs that are not suid root are dangerous. Very often a user of a particular
application might not have any privileges at all. Gaining a shell would give the user the
privileges that the vulnerable program is running with, which would be better than having
no privileges at all. An attacker with a shell with limited privileges can try to escalate
his/her privileges to root by exploiting another process. Such stepping-stone attacks are
quite common with network servers [59]. Buffer overflow attacks will be discussed in
greater detail in the next chapter.

1.4 Why are buffer overflows so common?

Most serious buffer overflow exploits occur in programs written in the unsafe
languages of C or C++. Other languages, such as Java, ML, Lisp or Python, are not
prone to buffer overflows because they provide automatic bounds checking of buffer and
pointer accesses during run-time. The drawback of these languages is that they are
considerably slower than C and C++. Thus, C and C++ are still the languages of choice
for many speed-critical applications. Many of today's commonly used operating systems,
such as Linux and OpenBSD, are written in C. As a result, there has been a major effort
to prevent buffer overflow vulnerabilities in kernel code [5]. One of the most popular
web servers, Apache, is written in C, as are DNS servers (e.g. BIND), and mail transfer
agents (MTAs) such as Sendmail and QMAIL. A large amount of other legacy code
written in C exists. Much of it is open-source and is security-sensitive. It would be too
impractical to rewrite it all in a safer language. The fact that code is open-source means
that anyone can inspect it for potential vulnerabilities. Thus, finding security
vulnerabilities in open-source, legacy source code before an attacker can find them is an
urgent problem.

As stated above, one of the main reasons for the widespread appearance of buffer
overflows in C/C++ code is the fact that these languages are inherently not secure. These
languages were designed to be fast, powerful, and convenient, but security was not the
primary consideration. For instance, C and C++, unlike most other high level languages,
allow the programmer to directly manipulate memory contents via pointers. Also,
allocation and freeing of memory is left up to the programmer. By contrast, Java does

9



not allow programmers to manipulate memory at a low level, and garbage collection is
done automatically. While having the ability to manipulate memory directly is a very
powerful feature and can lead to highly optimized code, this feature is a major source of
buffer overflows. Writing secure C/C++ code requires the programmer to be highly
aware of security issues such as buffer overflows, race conditions, format bugs etc. This
awareness includes a good understanding of how these problems arise and how to avoid
them. Unfortunately, not all programmers have been trained to program with security in
mind. Very often security gets "thrown in" at the end of the software development
process only as an afterthought, rather than being incorporated into the program from the
very beginning. This approach is very likely to lead to many overlooked security
vulnerabilities. Let's look at some sources of programmer errors that lead to buffer
overflows.

C offers a wide spectrum of string manipulation functions that are quite powerful
and convenient. Unfortunately, many of these functions can be easily misused and can
lead to buffer overflows. Just to illustrate the concept... Strcpy(buffA, buffB) copies the
contents of buffB into buffA, but it does not check to see if buffA is large enough to store
all of buffB. If the current length of buffB is greater than the allocated size of buffA, a
buffer overflow occurs. Thus, strcpyo can only be used safely if the programmer can
guarantee that the output buffer will be large enough to store the input. Ideally, the
programmer would include some sort of a size check before invoking the strcpyo routine.
Similarly, strcat(buffA, buffB) concatenates the contents of buffB to the contents of
buffA, storing the result in buffA, without checking to see if buffA is capable of storing
the result of the concatenation. Again, the programmer should check to make sure that
enough space is left in the output buffer before calling strcatO. If a character buffer
comes from an untrusted source and then gets used as an input to one of these unsafe
functions, a buffer overflow is likely to occur if the input is not sanitized properly. The
list of potentially hazardous C functions is quite long. Some more examples are sprintfO,
getso, memcpyo, wcsncatO, lstrcatO, wcsncpyo [44, p.714]. Many of these unsafe
functions have safer variants, for instance stmcpyo and strncato, but even these functions
can be misused. Many of these functions follow very dissimilar rules of usage, and it is
easy to get the order of arguments mixed up, or to forget an argument, or to misuse an
argument. For example, one important difference between strncatO and strncpyo is that
strncat() always null terminates the destination buffer. Strncat() and stmcpyo, although
considered the safe variants of strcpyo and strcatO, encourage off-by-one bugs (see
Appendix B.3). In order to use these function safely, the programmer has to be
extremely careful.

One source of information about the usage of different C functions is the UNIX
man pages. The man pages often give warnings about the potential hazards of unsafe
functions, such as the ones shown below for the functions cuseridO and getso:

"Nobody knows precisely what cuserid() does - avoid it in portable programs - avoid it
altogether - use getpwuid(geteuid()) instead, if that is what you meant. DO NOT USE
cuserido."

10



"Never use gets(). Because it is impossible to tell without knowing the data in advance
how many characters gets() will read, and because gets() will continue to store
characters past the end of the buffer, it is extremely dangerous to use. It has been used to
break computer security. Use fgets() instead."

Despite such warnings, one can still find real program code out there that uses these
functions. GetsO is one of the deadliest string functions and is a likely source of buffer
overflows!

Many string functions should be disallowed altogether because it is practically
impossible to use them safely. Many functions are deprecated, but nevertheless
programmers continue to use them. Examples of deprecated string functions include
bcmpo, bcopyo, and bzeroO. In addition, some string functions are not portable to many
platforms, and as a result programmers end up using unsafe variants of these functions to
accomplish what they want.

1.5 What's being done to stop buffer overflows?

A significant amount of time and energy has been devoted to finding buffer
overflows in software. Most of the efforts up until very recently have involved manual
code audits. For instance, in September of 1996, an extensive manual security audit of
Sendmail was performed by security experts. Four months later, a buffer overflow was
discovered that had been missed by the manual audit. This is not surprising, for
inspecting approximately 50 thousand lines of code is a difficult and painstaking task
even for experts. In 1998, Reliable Software Technologies found three buffer overflows
in WU-FTPD version 2.4 using a dynamic analysis technique known as fault injection
[37]. Security experts did not think these buffer overflows were exploitable. In other
words, they deemed it very unlikely that a user input could find its way to one of these
buffers, cause a buffer overflow and lead to a security violation. Approximately one year
later, a CERT advisory appeared showing that one of the three detected buffer overflows
was an exploitable vulnerability after all [59]. This is just another example illustrating
that manual security audits are not always perfect. Not only that, this example shows that
even when a potential buffer overflow is discovered, determining whether or not it is
exploitable can be a difficult task (See section 2.6).

Recently, Bill Gates of Microsoft started a strong push towards making
Microsoft's software more secure. Microsoft has begun working on developing a highly
reliable and secure platform. This initiative is known as Trustworthy Computing. In an
email that Bill Gates sent to Microsoft's programmers on January 15 th, 2002, he defined
Trustworthy Computing as "computing that is as available, reliable and secure as
electricity, water services and telephony". In another excerpt from the email, Gates
stated clearly the importance of software security:

"In the past, we've made our software and services more compelling for users by
adding new features and functionality, and by making our platform richly extensible.
We've done a terrific job at that, but all those great features won't matter unless

11



customers trust our software. So now, when we face a choice between adding features
and resolving security issues, we need to choose security. Our products should
emphasize security right out of the box, and we must constantly refine and improve that
security as threats evolve "[39].

As part of this push towards greater security awareness, Microsoft started an
intensive training course to teach its programmers secure programming techniques.
Microsoft also published a book on software security, "Writing Secure Code", by
Michael Howard and David LeBlanc [44]. Another source of information on writing
secure software is a book called "Building Secure Software" by Gary McGraw and John
Viega [82]. This book has served as a basis for several secure programming training
courses. Microsoft also provides its programmers with code analysis tools such as
PREfix[15] and PREfast[71] that help catch security bugs. It would be great if more
software companies were to follow Microsoft's example and begin placing stronger
emphasis on software security.

In order to eliminate security vulnerabilities such as buffer overflows from
software, programmers need good tools. Manual source code auditing is effective only
to a certain extent. Fortunately, there exist several tools that automate the detection of
security bugs in software. Several approaches have been taken in building these tools.
Some tools try to detect buffer overflows dynamically, or during run-time, and require
running the programs on different test inputs. Other tools try to detect buffer overflow
vulnerabilities in programs via static analysis by parsing the source code and looking for
dangerous code. Some researchers have tried to eliminate buffer overflows by
implementing safer string function libraries, and others have chosen to approach this
problem at the operating system level by developing kernel patches. Yet another
approach has been to try to dynamically prevent buffer overflows, not necessarily detect
them, by using special compiler-based tools. All of these approaches will be discussed in
greater detail in chapter three.

1.6 Goals of this thesis

The goals of this thesis are the following:

1) To try to assess the effectiveness of the state-of-the-art static analysis tools for
detecting buffer overflows.

2) To determine the types of buffer overflows that the existing static analysis tools
can detect.

12



The following static analysis tools will be looked at in detail:

PolySpace C Verifier [70]

ARCHER [89]

Splint [34, 35]

BOON [83]

UNO [43]

13



Chapter 2 Types of buffer overflow attacks

2.0 How do buffer overflows work?

There are four regions in the program's memory where buffer overflows can
occur. They are the stack, the heap, the data region, and the bss region. Each of these
regions is used for storing specific types of variables. The stack is used to store local,
fixed-size buffers, other local variables, function arguments, as well as the return
addresses of functions (i.e., the address of the next instruction following the function
call), and some other state, including environment variables. The entire C mechanism of
function calls relies heavily on the stack. The heap stores dynamically allocated buffers.
In C, these buffers are usually allocated using mallocO, callocO, or reallocO calls. The
data region stores initialized global and static variables. The bss region stores
uninitialized global and static variables. A buffer overflow exploit usually needs to be
tailored to the buffer's location. The figure below shows the typical layout of process
memory in UNIX. As can be seen from Figure 2, the stack grows down (i.e. from higher
memory addresses to lower), whereas the heap, bss, data and text segment grow up (i.e.
from lower to higher memory addresses)

Figure 2. Unix Process Memory Layout.
The top of the stack is at the highest memory address, e.g., Oxffffffff, and the bottom of the text segment is
at the lowest address, e.g., OxOOOOOOOO.

14

Stack

Local function variables, function
parameters, saved frame pointers (a.k.a.
old base pointer), return addresses,
environment variables

I I I4 I4 I

Heap

Dynamically allocated buffers (e.g.
ones created using malloco, calloco,
realloco)

BSS segment

Uninit. global variables, uninit. static
variables

Data segment

Initialized global, initialized static
variables

Text segment

Program instructions (assembly)



Here is a simple example program followed by a view of the stack.

#include <stdio.h>
void test (int a, int b, char *p) {
int c;
char buf [12];
strcpy(buf, p);
c = a + b;
return c;

I
int maino{
char *p = "PumpkinPie";
test(1,2,p);
printf("PumpkinPie acquired!\n");
return 0;

}

Assuming a 32-bit word architecture, the corresponding stack contents right before
exiting testO would look something like:

OxOO OxOO OxEF OxBE

OxOO OxOO OxEF OxBE

0 0 0 2

0 0 0 1

EIP3  EIP2  EIP1  EIPo

EBP 3  EBP 2  EBPI EBPo

0 0 0 3

0 0 e i

P n i k

p M u P

Figure 3.

Stack grows this way I

- pointer p in maino

- arg 3 of testO

- arg 2 of testO

- arg I of testO

+- saved return address

- saved base pointer

4- local variable c

+-buf[]

- buf[]

- Beginning of buff].

Here OxBEEF is a hypothetical location in memory of the string "PumpkinPie" (i.e. the
address pointed to by p). This address is located somewhere in the data region of the
program's memory space. When the function mainO gets called, it gets allocated its own
stack frame which stores main's local variables as well as some other state such as
environment variables (the mainO routine is a special case). The only local variable in

15



mainO is the pointer p = OxBEEF. During the execution of a program, a register called
the "base pointer" keeps track of the local context, i.e. which function we're in at the
moment. The base pointer usually points to the first local variable in the current
function's stack frame. So, upon entering mainO, the base pointer points to the location
on the stack containing the pointer p, i.e. OxBEEF. Then, testO gets called, and a new
stack frame gets set up for testO. The first thing that happens is the arguments to testO
get "pushed" onto the stack in reverse order, first the pointer p (OxBEEF), then b, then a.
Then, the return address, EIP, gets pushed on the stack. EIP is the address of the next
instruction that should be executed once the program returns from testO. In this case, it is
the address of the printfo instruction. The base pointer register needs to be updated to
point to the first local variable of the testO function, but we do not wish to lose track of
where the stack frame for maino is located. Thus, the old value of the base pointer
register gets saved as a word on the stack, shown as EBP, and the new value of the base
pointer gets set to the address of the variable c. As you can see from the above picture,
in addition to allocating a word of stack memory for the variable c, three words of
memory get set allocated for the twelve-element buffer, buf[]. The picture above reflects
the contents of the stack right before returning from testO.

Now imagine what would happen if p pointed to a string that was longer than
twelve characters, e.g. "The great bald eagle OxFFEEDDCC". In this case, right before
exiting the function testO, the stack would look like:

B E E F

B E E F

0 0 0 2

o o 0 1

OxCC OxDD OxEE OxFF

E 1 g a

E d I

A b t

A e r g

e h T

Figure 4.

Stack grows this way I

- pointer p in main()

- arg 3 of testo

- arg 2 of testO

- arg 1 of testO

saved return address

<- saved base pointer

<- local variable c

+-buf[]

+- bufi]

+- Beginning of buff].

16



As you can see, the variable c, the saved frame pointer (EBP) and the return
address (EIP) have been overwritten. This example illustrates the basic concept of a
stack buffer overflow. Now, when the function testO begins to return, it will not return to
the printfO instruction in mainO, but rather, to the address OxFFEEDDCC, which in all
likelihood will cause the program to crash. There are many variants of buffer overflows,
some of which we will now describe.

Table 1 below lists some common types of buffer overflow attacks. These attacks
differ in the type of information that gets overwritten and the location of the attack code.
We describe these attacks below.

Attack Type What gets overwritten? Where is the attack code?
Stack-Smashing [3] Function Return Address Injected into overflowed buffer on the

stack.

Injected into a second, attacker-controlled
buffer which can be in any of the
four regions of memory.

An existing program function.

Injected into an environment variable
Return-into-libc [87] Function Return Address Libc
Off-by-one [66] Saved Frame Pointer Usually the stack
Malloc attacks [49] Can overwrite function pointer in Global Injected into overflowed heap buffer.

Offset Table (unlinko technique) via a
heap buffer overflow Injected into a second, attacker-controlled

buffer which can be in any of the
four regions of memory.

Any existing function
Setjmp/longjmp [23] Longjmp buffer (can be stored on stack, Injected into overflowed buffer on stack,

heap, bss or data region) heap, bss or data region.

Injected into a second, attacker-controlled
buffer which can be in any of
the four regions of memory.

Any existing function
Overwrite Function Overwrite function pointer stored on Injected into overflowed buffer on stack,
Pointer [23] stack, heap, bss or data region heap, bss or data region.

Injected into a second, attacker-controlled
buffer which can be in any of
the four regions of memory.

Any existing function
Logic-based [23] Variables such as filenames, user id's, or -----------

other program variables
Table 1: Buffer Overflow Attacks.

17



2.1 Overwriting Code Pointers

Most buffer overflow attacks seek to corrupt code pointers and thus cause attack
code to be executed. Code pointers corrupted by buffer overflows typically are function
pointers, longjmp buffers or pointers in the stack activation record (i.e., the return
address and the saved frame pointer). Such buffer overflow attacks usually overwrite a
code pointer to point to some other code that gets executed later.

The classic buffer overflow attack is known as "stack-smashing" [3]. In a stack-
smashing attack, a local buffer, such as a character array, is stored on the stack and gets
overflowed, and the function's return address gets overwritten. An attacker can
overwrite the return address with the address of the attack code, and thus, when the
function returns, it returns to the attack code instead of the normal return point. Usually,
the attack code contains instructions to start a shell. If the exploited program is running
with root privileges, an attacker can launch a root shell, thus gaining complete access to
the victim's machine. An attacker with root privileges can steal user's passwords, read,
delete, or modify sensitive files, set up back-doors, or cause other damage to the victim's
system.

Instead of overwriting the return address of the function, an exploit can overwrite
the saved frame pointer, which is stored right before the return address in the stack
activation record. A frame pointer is used to keep track of the stack frames
corresponding to the different function calls, and it usually points to the first local
variable in the current stack frame. As a setup for an attack, an attacker would construct
a fake stack frame somewhere in memory with the return address pointing to the attack
code. Subsequently the attacker could overflow a buffer and overwrite the saved frame
pointer to point to the fake stack frame. Upon exiting the current function, the stack
pointer would be made to point to the fake stack frame. Once inside the fake stack
frame, the fake return address would get invoked and control would be transferred to the
attack code. It is interesting to note that overwriting even a single byte of the saved
frame pointer can be enough to yield execution control to the attacker [66]. This type of
an attack could be used to exploit an "off-by-one bug" in code. Well known off-by-one
bugs appeared in Apache's modssl and WUFTPD's glob [44, p.138].

It is possible to change the execution flow of a program by overwriting a function
pointer. To carry out this attack, an attacker needs to find a function pointer that is stored
adjacent to a buffer. This buffer can be located in any of the four regions of process
memory, the stack, the heap, the bss region or the data region. The attacker overflows the
buffer and overwrites the function pointer with a pointer to some other code. When the
program tries to follow the function pointer, it ends up jumping to the attacker's desired
location. This type of an attack was used against the superprobe program for Linux [23].
Another example of an attack that overwrites function pointers uses the unlinkO

technique introduced by Solar Designer[77]. This attack tricks Doug Lea's Malloc into
processing a carefully crafted fake component of heap memory using the unlinkO macro.
As a result, an attacker is able to overwrite a function pointer stored in the Global Offset

Table with a pointer to desired code. This attack has been carried out in the wild against

18



vulnerable versions of the Netscape browser, traceroute (a utility for tracing the route an
IP packet follows from one host to another), and slocate (a program for securely indexing
and searching for files on a file system).

Finally, it is possible to mount an attack by overwriting a longjmp buffer. Setjmp
and longjmp are special constructs that may be used to control program flow in C. By
calling setjmp(buffer), the address of the next program instruction is stored in the
specified buffer. Following the setjmp call, one can later jump to the address specified in
the buffer by calling longjmp(buffer). An attacker can overwrite this buffer with a
pointer to a desired location. Just like function pointers, the buffer may be stored in any
of the four regions of process memory. This type of an attack appeared against Perl
5.003 [23]. A longjmp was used by Perl to recover when a buffer overflow was detected.
The attacker corrupted the longjmp buffer by overflowing an adjacent buffer. When the

buffer overflow was detected, the recovery mode was induced, causing a jump to the
attack code.

2.2 Logic-based Attacks

It is possible to have logic-based buffer overflow attacks where the attacker
changes the logic of the program by overwriting a program variable. Here is a simple
example of a logic-based buffer overflow. Imagine that a character buffer gets stored on
the stack adjacent to a Boolean flag that specifies whether or not the user running the
program can view a certain private file. By flipping the bit of the flag, say from 0 to 1, an
attacker could gain privileges to view the private files. A famous instance of a logic-
based attack occurred in the Morris Worm exploit. The Morris Worm used a logic-based
buffer overflow attack that corrupted the name of a file that would get executed by
fingerd [23]. Logic-based attacks can involve variables stored on the stack, the heap, the
data or the bss regions of memory. Logic-based attacks are not as common as some of
the other attacks, but are just as dangerous.

2.3 Attacker Injects Code

An attacker may inject code via the string that is used to overflow a buffer. If this
is the case, in stack-based attacks, the attacker usually overwrites the return address with
a pointer back to the buffer. It is also possible for an attacker to use two buffers to carry
out an attack. An attacker may inject code into one buffer, without overflowing it, and
overflow another buffer, overwriting an adjacent code pointer to point to the first buffer.
This attack may be used when the unchecked, overflowable buffer is not large enough to
contain the attack code. It may also be used in the case when the overflowable buffer
does have bound checking, but the bound check is done incorrectly. In other words, it
may be possible to overflow the buffer by a few bytes, but not enough to insert the attack

19



code. The two used buffers may be located in different regions of memory. For
example, the buffer containing the attack code may be on the stack, but the overflowed
buffer and the code pointer may be stored on the heap. If the buffer containing the code
is on the stack, it is possible to prevent this type of an attack by making the stack non-
executable, as was done with OpenWall's Linux kernel patch [68]. Finally, an attacker
may be able to use an environment variable to store the attack code. If the attacker has
access to an environment variable, it may be possible to write the attack code into the
environment variable, and then overflow some buffer on the stack, overwriting a
function's return address with the address of the environment variable. Alternatively, it
may also be possible for an attacker to overwrite some function pointer and point it to the
environment variable.

2.4 Attacker Uses Existing Code

An attacker can circumvent a non-executable stack defense by overwriting the
return address of the vulnerable function with the address of another function in the
program, or even a shared library function. Such attacks do not involve code stored in
the overflow string. The attacks that cause a jump into a standard libc function are
commonly known as return-into-libc attacks [87, 88]. The basic idea of the classical
return-into-libc attack is to overwrite a function's return address with the address of a
standard C library routine, such as systemo. By also cleverly placing the arguments to
this C routine on the stack, it is possible to execute function calls such as
system("\bin\sh"), i.e. start a shell. It is even possible to chain several libc function calls
together.

Fortunately, Solar Designer has modified OpenWall's Linux kernel patch to
prevent return-into-libc attacks by mapping libc into the OxOO... memory range. Since
usually the attackers do not know the exact location of the return address on the stack, the
way they manage to overwrite the return address is by repeating the desired address many
times in the buffer until it hits the location of the return address. Since the address of
each libc function now contains a null byte (a buffer terminator character), using a string
function to overflow a buffer and overwrite the buffer with the address of the attack code
would not work (using the repeated address method). In this case an attacker would be
required to know the exact location of the return address. Even if the attacker is able to
guess the exact location of the return address, having a null byte in the libc function
address would prevent him from writing the desired function arguments into the buffer.
It might be possible to cause damage by calling a zero-argument libc function, but the

attacker's job has been made much more difficult. A company by the name of Entercept
Security Technologies also has developed a patented solution for protecting against
return-into-libc attacks [31].

20



2.5 Heap-based Buffer Overflows

Heap-based buffer overflows are becoming more common because of non-
executable stacks. Although it is possible to have non-executable heaps, heaps are more
likely to be executable than stacks. Other major deterrents of stack-based buffer
overflows are dynamic tools such as StackGuard, StackShield, and ProPolice (See 3.2).
Unfortunately, a similar method for protecting heaps is much more complex and does not
yet exist. A fairly recent attack involving a heap-based buffer overflow was the infamous
Code Red Worm of 2001 [19]. It should be noted that heap-based attacks are usually
more complex and are more difficult to mount than stack-based attacks. First, the
unlinkO technique mentioned earlier requires some understanding of the of the heap
memory management routines. Second, in order to mount a successful heap buffer
overflow attack, an attacker must find some security critical variable on the heap that can
be overflowed, e.g., a function pointer, a filename or a user id. This is usually a pretty
difficult task. Two examples of real heap overflow vulnerabilities occurred in Sun
Solaris Xsun and Microsoft IIS [90, 42]. An exploitable heap overflow vulnerability also
appeared in a section of code in BIND responsible for handling transaction signatures
(See 5.3.4).

2.6 Is the Buffer Overflow Exploitable?

As was mentioned in section 1.5, determining whether or not a buffer overflow is
exploitable can be a very difficult task. Once a buffer overflow vulnerability is
discovered, people usually try to come up with a script or a program, a.k.a. an exploit,
that would invoke the vulnerable program with particular inputs, cause a buffer overflow,
and lead to a security violation. Sometimes it might be possible to write an exploit under
laboratory conditions, but not under any ordinary real-life conditions. Under laboratory
conditions one might make certain assumptions that might be hard to justify under real-
life conditions. One might assume that the attacker has access to certain environment
variables, that certain program options have been enabled (e.g. a debug mode), or that
certain flags have been used to compile the program. Vulnerability databases such as
ICAT rank the discovered buffer overflow vulnerabilities according to levels of severity.
The most severe buffer overflows are those that can be exploited remotely and allow the
attacker to execute arbitrary code. Less severe buffer overflows might simply cause a
program to crash, resulting in a denial of service, or they might allow a local user to
elevate their privileges. It is also possible for a buffer overflow to be absolutely
harmless. For instance, imagine an off-by-one bug inside some function that causes a
stack buffer to be overflowed, as a result overwriting one byte of an adjacent local

21



variable. If that local variable has already been used and its value never gets referenced
following the buffer overflow, overwriting the variable will not cause any harm.
Sometimes however a buffer overflow might overwrite one or more local variables and
drastically change the logic of the program. Although this might not allow the attacker to
execute arbitrary code, and it might not even crash the program, it still is a serious
vulnerability, for it would cause the program to behave incorrectly. As mentioned before,
there have been several serious logic-based buffer overflow attacks in real programs.

22



Chapter 3 Approaches to detecting/preventing buffer overflows

3.0 Types of Software Security Tools

Several approaches have been taken to try to detect or prevent buffer overflow
vulnerabilities. These include the following:

1) Dynamic Testing

2) Other Dynamic Analysis Approaches (Mini-simulation + Fault Injection)

3) Compiler-based Dynamic Prevention Tools

4) Language-based Approach

5) Static/Dynamic Hybrids

6) Operating System Approach

7) Static Source Code Analysis

3.0.0 Dynamic Testing Tools

Dynamic testing tools rely on instrumenting the program (source code or binary)
to add buffer bounds checks. Dynamic testing tools allow one to discover buffer
overflow vulnerabilities in a program by running it on different test cases, for instance
with different user inputs or different options set. Most dynamic testing tools that
instrument the binary code or the source code slow down the program execution
significantly. Also, tools such as Purify consume large amounts of memory. This
performance/memory cost might sometimes be acceptable during the testing phase, but it
poses a serious problem if the instrumented code is to be used during normal program
runs. A good thing about Purify is that it requires no source code. Gdb is a less powerful
tool than Purify that allows programmers to step through their program as it executes,
allowing them to see the contents of the stack and the heap. BoundsChecker is a dynamic
testing tool for Windows that is able to diagnose various errors in the static, stack and
heap regions of memory. BoundsChecker also detects things like memory and resource
leaks.

Pros:
Dynamic testing tools have the advantage that all program values are known at

run-time. It is therefore easy to catch illegal pointer de-referencing and buffer bounds
violations. Once an error occurs, finding the cause of the error using dynamic tools is
easy, since the state of the heap and all program variables can be clearly mapped out.

23



Cons:
The dynamic testing approach has some serious drawbacks. First, many buffer

overflow vulnerabilities occur in rarely used code paths. Testing such rare code paths
using dynamic techniques is very difficult and far more time consuming than using static
analysis tools because it requires test cases that cause the paths to be traversed; unless an
input that causes the buffer overflow is used, the buffer overflow vulnerability will not be
detected via dynamic testing techniques. Second, some program code cannot be tested
efficiently with dynamic testing techniques. For instance, a significant portion of
operating system code lies in device drivers and cannot be tested without all the devices
being installed. This is a serious inconvenience. Probably the biggest drawback of most
dynamic analysis tools is the large performance cost. For instance, the dynamic memory
checker, Purify [41], slows down program execution by lOx-30x and substantially
increases memory usage.

Dynamic Testing DOMAIN EFFECT COMMENTS
Tools
Purify [41] C, C++ Instruments binaries to check Good for debugging. Slows

(source code not or buffer access errors, down program execution by
required) memory leaks and many lOx-30x and increases

other errors. Purify catches memory usage substantially.
illegal accesses to
uninitialized or unallocated
memory locations, but does
not detect invalid accesses to
allocated memory locations.

gdb (GNU source-level C, C++ Can step through the program A debugging tool. Not as
debugger) [40] (source code as it executes. Allows one to powerful as Purify.

required) analyze the contents of the
stack and the heap during
run-time.

BoundsChecker[ 1] C++, Delphi Detects and diagnoses errors A debugging tool for Visual
(source code in static, stack and heap Studio. Works on Windows
required) memory, and also finds platform and Microsoft

memory and resource leaks. .NET Framework.
Can find potential buffer
overflows at run-time.
Checks for proper API usage.

Table 2: Dynamic Detection/Prevention Tools.

3.0.1 Other Dynamic Analysis Approaches

An interesting dynamic approach to testing protocol security has been undertaken
by a group of researchers at the University of Oulu, Finland [50]. Their project is known
as PROTOS. The researchers working on PROTOS have developed a method of
functional testing (black box testing) known as mini-simulation. The focus of PROTOS
is on applications that use standard protocols such as HTTP, TCP, SNMP etc. For a

24



given application, the behavior of the protocol is defined manually using attribute
grammars. Source code for-the tested application is not required. Once the attribute
grammar for the protocol has been created, a large class of anomalous and normal test
cases is generated automatically. Test cases include things like malformed packet
headers, invalid checksums etc. The attribute grammar specifying the protocol behavior
is mutated using the test cases, and then protocol execution gets simulated for each test
case. An example simulation might involve a simulated HTTP client sending an invalid
request for a file to a real HTTP server. For each test case, the behavior of the HTTP
server would be observed, namely, did it crash or hang. Fully automating many test runs
is quite difficult for the simple reason that, if the application crashes, it needs to be
restarted. The PROTOS researchers tested several applications, including HTTP
browsers, an LDAP server, and SNMP agents and management stations. Overall, 49
different product versions were tested and 40 of them were found to be vulnerable to at
least a denial-of-service attack (buffer overflow exploits were constructed).
Unfortunately, preparing a single test suite took on average 4.8 man months!

Yet another fairly popular dynamic analysis technique is known as software fault
injection. This technique forces a system to go into an anomalous state during execution
by injecting faults into the source code. Faults are often injected at program interfaces,
both internally and externally. For example, when testing a server, one can send too
many requests to the server, or send it invalid requests. Also, one can make one or more
modules of the program act in unexpected ways, i.e. make a module stop responding or
start sending invalid inputs to other modules. By observing how the system behaves
under anomalous conditions, it is often possible to discover certain inherent
vulnerabilities in the software. A tool by the name of FIST, Fault Injection Security Tool,
developed by Ghosh et al shows some promise [37]. Unfortunately, FIST requires users
to manually prepare code for testing. This is a serious drawback. Other popular fault
injection tools are Fuzz and Ballista [64][52].

Pros:
The PROTOS mini-simulation tool can generate many anomalous test cases

automatically, which can be used to find robustness problems in programs. Fault
injection tools allow you to simulate unexpected inputs and module failures, which can
help identify robustness problems. All of these approaches are language independent and
do not require source code.

Cons:

The mini-simulation technique requires a significant amount of preparation time
for each program, on the order of several months. Automating the execution of programs
using the mini-simulation technique is not easy due to system crashes and hanging.
Similarly, fault injection methods require a great deal of user intervention. Users must
inspect the output for each failed test case resulting in a system crash and determine
where the error might have occurred. The test cases generated by these tools do not
exhaustively cover all possible execution paths. Some applications might have security
features that prevent them from being tested via fault injection.

25



TOOL DOMAIN EFFECT COMMENTS
PROTOS Mini-Simulation Requires a Automatically generates Time required to prepare
[50] grammar many classes of normal and program for mini-simulation

pecifying anomalous test cases for testing (several man months
protocol behavior application robustness per program). Program
(application src., testing. execution not easy to
code not req.) automate (due to halts and

crashes).
FIST, Fuzz, Ballista Different Simulate bad user inputs, Users must prepare code
[37][64][52] applications. module failures, unusual manually for testing.

(source not module interactions etc. Can
required) be used to find robustness

problems and possible buffer
overflow conditions.

Table 3. Other dynamic testing tools.

3.0.2 Compiler-based Dynamic Prevention Tools

The goal of compiler-based prevention tools is to dynamically prevent buffer
overflow exploits from happening. StackGuard and StackShield are two such tools (see
Table 4). These tools compile programs using special compilers, placing in protection
mechanisms that detect and stop specific buffer overflow exploits during runtime.

The basic idea of StackGuard is to write a special value, known as a canary (in
reference to the canaries used by coal miners to detect the presence of dangerous gases),
next to the function's return address on the stack. If the return address gets overwritten,
then so does the canary value. Thus, by monitoring the canary value, StackGuard can
effectively detect any stack-smashing attack. Two types of canaries can be used, a
random 32-bit value calculated at run-time, or a 4-byte "terminator canary" consisting of
a null byte, a carriage return, a line-feed, and an "EOF". The random canary works
because the attacker is unable to guess the canary value. The terminator canary works
because the set of standard C string functions rely on terminator bytes to terminate
character buffers, thus making it impossible to write over and past the terminator canary
using any of the standard C string functions. Although both of these canary schemes
protect against many stack-smashing attacks, they cannot protect against less common
attacks such as the one pointed out by Mariusz Woloszyn (a.k.a "Emsi") [14][30]. The
Emsi vulnerability involves overwriting a function pointer to point to the return address
of a function, and then overwriting the return address through the function pointer. To
deal with such attacks, the StackGuard team came up with a new canary scheme,
whereby the canary placed on the stack is the XOR of a random 32-bit value and the
return address. The random 32-bit value is saved separately in memory. When a
function exits, the 32-bit value is fetched from memory and is XORed with the return
address on the stack. If the result does not match the stored canary on the stack,
execution is halted and a security alert is raised. Unfortunately, the StackGuard team
decided to drop support for the random XOR canary [85]. The reasons for doing so were
not too apparent. A better tool, known as PointGuard, is currently being developed, and
will use the canary method to provide general pointer protection.

26



StackShield is capable of preventing many stack-based attacks, as well.
StackShield implements two security modes, the Global Ret Stack (GRT) and the Ret
Change Check (RCC). The GRT is a separate stack for storing function return addresses
of functions called during execution. Upon entering a function, the return address is
placed on the stack and is simultaneously copied into the GRT, and upon exiting the
function, the address stored in the GRT is used to replace the return address stored on the
stack. Thus, any attacks that overwrite the return address on the stack get stopped by
this method, and execution continues without interruption. The user is not even aware
that an attack was attempted. The drawback of this scheme is that local stack variables
could still have been corrupted. Another limitation of this scheme is that the GRT stores
256 entries by default, thus limiting the stack depth to 256 frames. The other option,
RCC, is simpler and faster. RCC uses a single global variable to store the return address
of the invoked function. When the function returns, the global variable's value is
checked against the return address stored on the stack. If the two values differ, the
program is halted and an alert is raised. Finally, StackShield also attempts to safeguard
function pointers. The key idea is that function pointers should only point to the text
segment of the process memory. Any attacks that attempt to point a function pointer to
injected code will end up pointing to a location in the stack, bss, data or heap regions of
process memory. Thus, restricting function pointers to point only to the text segment of
the memory should prevent such attacks. StackShield adds code before each function call
that uses function pointers. The code declares a global variable in the data segment of
memory. This variable is used as a boundary tag. Before dereferencing any function
pointer, StackShield makes sure that the function pointer points to a memory location
below that of the global variable. If the function pointer points above the global variable,
execution is halted.

ProPolice is a gcc patch developed by Etoh and Yoda. It is very similar to
StackGuard in its main approach - canaries are used to detect stack-smashing attacks.
What is novel about ProPolice is that it tries to protect local variables, i.e. it can prevent
many logic-based buffer overflow attacks. It goes about this by allocating all the
character buffers at the bottom of the stack, next to the old base pointer. This ensures
that when a buffer gets overflowed, none of the local variables can get overwritten. The
unfortunate thing about ProPolice is that it was noticed to be quite unstable [85].
According to Wilander and Kamkar, ProPolice was the most effective of the three
compiler-based tools discussed. During testing, ProPolice prevented 8 out of 20 buffer
overflow attacks without halting the program, and stopped 2 out of 20 by halting the
process.

Microsoft's C/C++ compiler from Visual Studio .NET comes with a special /GS
option that allows developers to build their applications with a so-called 'buffer security
check'. The /GS option is essentially a Win32 port of Crispin Cowan's StackGuard.
Unfortunately, the /GS protection mechanism can be bypassed. When the /GS option is
enabled, a special user-defined handler can be installed which gets called when a stack-
smashing attack is detected. The address of the user handler's code is stored in a global
variable called userhandler. Suppose that during a buffer overflow attack the attacker
somehow overwrites some pointer, P, and makes it point to the location of the global
variable userhandler. Now, suppose later on in the function, the contents of some

27



buffer, B, get copied to the location pointed to by the local pointer P. If during the buffer
overflow the attacker can overwrite B, he can overwrite it with arbitrary data, i.e. address
of the attack code stored in the overflowed buffer. Thus, when the stack-smashing attack
finally gets detected, the user-defined handler will be called. Unfortunately, the variable
storing the address of the user handler code will have been overwritten, so the program
will jump to the attacker's code and execute arbitrary instructions (See [62] for an
example exploit).

Last but not least, several people have also proposed adding patches to the
standard gcc compiler that would add bounds checking code to buffers [12][58][48].
Table 4 lists some of the well known compiler-based tools just mentioned.

Pros:
Compiler-based tools automatically install protection, and programmers do not

need to modify source code. These tools can detect and stop specific types of buffer
overflow exploits during run-time. For instance, StackGuard and StackShield can
prevent stack-smashing attacks. Tools such as PointGuard [23] can detect many potential
problems with illegal pointer de-referencing or pointer-overwrite attacks.

Cons:
All source code needs to be recompiled with a special compiler. Although such

tools can prevent many buffer overflow exploits, their main drawback is that they usually
turn a buffer overflow attack into a denial of service attack by terminating the program.
All of the discussed compiler-based tools are not able to prevent buffer overflow attacks
on buffers in the heap/BSS/data regions of memory. The problem with compiler patches
is that they impose a large performance penalty and an increase in code size. Execution
time and code size may experience an increase by a factor of three or more [38].

See Table 4 on the following page.

28



Compiler- DOMAIN EFFECT COMMENTS
based Tools
StackGuard [25] Protects C Detects stack-smashing attacks Halts program when attack is detected.

source programs by placing a canary between the
function's return address and the
old base pointer.

ProPolice[33] Protects C Places canaries before the old Halts program when attack is detected.
source programs base pointer. Is able to detect ProPolice is somewhat unstable.

typical stack-smashing attacks.
Also protects non-buffer stack
allocated variables.

StackShield [78] Protects C Detects stack-smashing attacks. Two modes: Global Ret Stack, Ret Range
source programs Can also detect frame pointer Check

and function pointer overwrite
attacks. GRT: prevents stack-smashing attacks,

does not terminate program

RCC: detects attack and halts program.

Microsoft's /GS C/C++ source Very similar to StackGuard. Halts program when attack is detected.
option [62] programs Prevents stack-smashing attacks Part of the C/C++ compiler in Visual

using canaries. Studio .NET.
PointGuard [23] Protects C an detect many function Places canaries next to code pointers.

source programs pointer (function pointers and longjmp buffers)
overwrite attacks. Halts program when illegal pointer

dereference is detected.

gcc compiler Protects C Modifies compiler to add bounds Execution time and program size can
patch [12][58] source programs checking for each buffer. increase by 2x.

Jones and Kelly Protects C A gcc patch that performs Slows down program by 5x-6x.
[48] source programs ynamic buffer bounds checking

without modifying pointer
representation.

Table 4: Compiler-based Dynamic Buffer Overflow Prevention Tools.

3.0.3 Language-based Approach

Some researchers have attempted to solve the problem of buffer overflows by
implementing safer alternatives of the dangerous C functions (See Table 3). Libsafe
[6][8][9] is a dynamically loaded library that intercepts calls to dangerous routines in the
shared glibc library (including strcpyo, strcatO, getwdo, getso, scanfO, realpatho,
sprintfO) and replaces them with safer wrapper functions. Each wrapper function
computes a maximum size bound for each local buffer. This bound is computed based on
the distance between the beginning of each buffer and the beginning of the saved frame
pointer. If the source buffer of the string function is within the established size bound,
the corresponding string function is executed normally. If however the source buffer
exceeds the maximum allowable buffer size, then like StackGuard, Libsafe terminates the
program, thus turning a buffer overflow attack into a denial of service attack. Although
Libsafe protects against stack smashing attacks involving common string functions, it
does not prevent attacks that overflow a stack buffer and overwrite another local variable.

29



Another limitation of the Libsafe solution is that it does not work on code compiled with
the -fomit-frame-pointer switch, which is often used to give the GCC/x86 compiler one
more register to allocate. [26].

An enhancement of libsafe known as Libverify has been developed. For each
function call, Libverify copies the return address onto a special "canary stack" stored on
the heap. Upon exiting the function, the return address stored on the stack is compared
against the address stored on the canary stack. If the two addresses match, execution
continues normally, but if they differ, the program is terminated, and an alert is issued.
Libverify is able to protect against exploitation of a larger class of string functions than
Libsafe. A major shortcoming of Libverify is that the integrity of the canary stack itself
is not protected.

Microsoft has developed a library known as StrSafe that implements safe string
handling functions [79]. To use the StrSafe library one would have to replace every
occurrence of an unsafe C string handling function with the safer StrSafe alternative.
This would require significant programmer effort, and thus would not be an ideal

solution for dealing with legacy code.

Another language-based approach has been to implement safe string modules,
such as the C++ string module or Libmib [61]. Using such modules would mean that all
source code would need to be rewritten. Also, interfacing with old libraries that rely on
unsafe buffer implementations would be extremely difficult [38].

Pros:
Programs that have been made compatible with the safe libraries or the safe string

modules would avoid buffer overflows. Also, future programs written using these safer
language constructs would eliminate buffer overflows.

Cons:
As mentioned above, libsafe and libverify transform buffer overflow attacks into

denial of service attacks. Also, they don't prevent logic-based attacks, where a local stack
variable gets overwritten. Libsafe doesn't work on code compiled with the -fomit-frame-
pointer switch. Libverify has the weakness that the canary stack isn't protected. In order
to work with libraries such as StrSafe or new string modules such as libmib, much of the
old code would have to be rewritten. Interfacing with old libraries that rely on unsafe
buffer implementations would be difficult.

See Table 5 on the following page.

30



Language- DOMAIN EFFECT COMMENTS
based
Solutions

ibsafe [6] glibc library Dynamically loaded library that replaces erminates the program

[8][9] calls to unsafe glibc functions with safer when an illegal buffer
variants. Prevents stack smashing attacks. access is detected. Does

ot work on code
compiled with fomit-
frame-pointer switch.
Does not stop overflows
within local stack
variables, e.g. overwriting
local function pointers.

Libverify[8] glibc library Enhancement of Libsafe that alters all If return address on
functions to copy the return address to a function stack does not
"canary stack" on the heap. This address is atch the address stored
compared against the one on the stack before on the canary stack, the
exiting function. program is terminated and

alert is raised. Integrity of
canary stack is not
protected.

StrSafe [79] Protects C A library of safer C string handling Would require rewriting
programs functions. large parts of the code.

Not good for securing
egacy code.

Libmib [61] Protects C Implements a safe string module. Old code would have to be
programs rewritten. Interfacing with

old libraries that use
unsafe buffers would be
difficult.

Table 5: Language-based Solutions.

3.0.4 Static/Dynamic Hybrids

A tool called CCured attempts to transform C code into a safer dialect with little
or no user intervention. CCured uses a compiler that performs static analysis on a C
program and attempts to determine which pointer uses are safe and which are not. If it
cannot ascertain that a pointer is used safely, the compiler adds efficient checks to the
source code that are meant to catch out-of-bounds references at runtime. This selective
insertion of run-time checks helps keep the performance overhead fairly low. The
instrumented C program usually experiences a slow-down of about a factor of two, which
might not be too high a price to pay if good code security is desired. If a buffer overflow
occurs during the execution of a CCured-compiled program, the program gets terminated,
and an error message is displayed. Thus, CCured does not eliminate the actual buffer
overflow from a program; instead, it turns an overflow into a denial of service. It should
also be noted that sometimes the CCured compiler is not able to transform the C source

31



code into safe code automatically and requires that the user make slight modifications to
the original source code.

Another group of researchers has developed a safer dialect of C known as
Cyclone. The Cyclone compiler uses a hybrid static/dynamic approach, similar to that of
the CCured tool. The Cyclone compiler performs static analysis on the Cyclone source
code and inserts runtime checks into the compiled output whenever it can't ascertain that
the code is safe. Cyclone has several classes of pointers that are represented differently
from C. For instance, the so-called "fat pointer" in Cyclone stores not only an address,
but also certain bounds information. Using fat pointers allows Cyclone to better ensure
that pointers are within bounds. The major disadvantage of Cyclone is the difficulty of
porting C code into Cyclone. While CCured takes C code and translates it into safer code
with little or no code annotations required by the user, porting C code to Cyclone usually
requires programmers to change about 10% of the code by inserting special Cyclone
commands. Only after the programmer has changed about 10% of the C program by
hand, can the Cyclone compiler do its magic. Cyclone differs from C enough so that
veteran C programmers might be reluctant to use it [47]. See table 6.

TOOL DOMAIN EFFECT COMMENTS
CCured [65] C Hybrid static-dynamic tool that uses a type Speed penalty due to runtime

(source code inference algorithm to eliminate the need checks is 0-150%. Performs
required) for too many checks. Forbids certain fewer checks than Purify and

ointer-integer conversions and some other does not consume a lot of extra
C idioms. Representation of certain memory. Because of the modif.,
pointers is changed. Source code is pointer representation, interfacing
transformed into safer code. with binary-only libraries is

complicated.
Cyclone[47] Dialect of C Cyclone compiler does static analysis on Cyclone designed to eliminate

Cyclone source code and inserts runtime buffer overflows. Porting from C
checks into compiled output in places code to Cyclone is not very easy;
where it can't ascertain safety. Checks for about 10% of code needs to be
NULL pointer dereferencing are added. modified. Some Cyclone

applications are up to 3 xs slower
than the C programs. Using fat
pointers causes a large space
overhead.

Table 6. Static/Dynamic Hybrid Tools.

Pros:

Writing programs in a safer dialect of C, such as Cyclone, would make them less
susceptible to buffer overflows. Porting a C program to Cyclone is more realistic than
porting it to Java. CCured and Cyclone stop buffer overflows from causing damage by
terminating the program. CCured and Cyclone try to instrument the program with run-
time checks efficiently, inserting them in only special cases, rather than blindly
instrumenting all buffer accesses.

32



Cons:

Porting from C to Cyclone is not very easy. Cyclone is significantly different
from C. Program slow-down will be noticeable; Cyclone applications can run up to three
times slower than C applications, and CCured programs can experience a slow-down of a
factor of two. Both CCured and Cyclone turn buffer overflow attacks into denial of
service by terminating the program. Because CCured modifies the internal representation
of pointers, being able to interface with binary only programs is difficult.

3.0.5 Operating System Solutions

Some researchers have suggested an operating system approach to solving the
buffer overflow problem (See Table 7). For instance, Solar Designer has implemented a
Linux kernel patch for a non-executable stack [68]. This patch is capable of preventing
stack-smashing attacks. In addition, this patch maps the shared libe routines into the
OxOO... memory range. This prevents a class of attacks known as return-into-libe
(discussed later). There is a drawback to this patch solution, however; some processes
actually require code to be executed on the stack. For instance, Linux relies on an
executable stack for its signal handlers, and gcc uses an executable stack for function
trampolines for nested functions. Solar Designer's patch detects a process that uses
trampoline calls and makes the stack executable for that process. The patch tries to
accommodate signal handlers by making the stack only temporarily executable for the
duration of the signal handler. Thus, these special cases of trampoline calls and signal
handlers could potentially be exploited for buffer overflow attacks [24]. Recently, the
OpenBSD group announced an upcoming release of its operating system that will attempt
to eliminate buffer overflows completely [55]. Their solution is based on three ideas: the
use of a randomized memory location for the stack, the use of canaries to detect stack-
smashing attacks, and the separation of main memory into two distinct parts, one writable
and one executable, but not both. The goal of this last feature is to prevent attackers from
writing and then executing their own code.

Pros:
The Linux kernel patch can prevent stack-smashing attacks and return-into-libe

attacks. Programs run on the new OpenBSD system would be more resistant to buffer
overflow attacks.

Cons:
The Linux kernel patch does not protect against heap-based buffer overflow

attacks. The patch does not prevent all stack-based attacks; signal handlers and nested
functions are vulnerable to buffer overflow attacks. Code run on other operating systems
is not protected by this patch. All operating systems for which the program is intended
would need to be patched. Porting legacy code to a new operating system would

33



probably be difficult.

Operating DOMAIN EFFECT COMMENTS
System
Solutions

penWall [68] Linux 2.2 Stack is made non- Maps shared libc routines into 0x00... memory
kernels executable. Prevents range. This prevents most return-into-libc

stack-smashing attacks. attacks. Does not prevent all stack-based buffer
Also prevents most overflows. Signal handlers and trampoline
return-into-libc attacks. function calls are allowed to execute code on the

stack, and thus are susceptible to buffer
overflow attacks.

OpenBSD [55] OpenBSD OS Prevents many buffer Uses a randomized stack memory location and
verflows. canaries to detect stack-smashing attacks. Also,

divides main memory into two sections, one
writable and one executable.

Table 7: Operating System Solutions.

3.0.6 Static Source Code Analyzers

Static analysis tools attempt to find buffer overflow vulnerabilities in source code
(sometimes binary code) without running it. Table 8 lists some of the existing static
analysis tools. Most of the tools listed will be evaluated in this thesis. The set of static
source code analyzers can be divided into two main categories: lexical analysis tools (or
syntactic) and "deep analysis tools" (or semantic) (See Tables 8 and 9 below). The
lexical tools are based on pattern matching; they find dangerous looking syntax or the use
of dangerous functions, and subsequently raise a flag. Lexical tools do no semantic
analysis on the source code. Lexical tools include RATS, FlawFinder, ITS4 and
BugScan. BugScan is a commercial tool that differs from the other lexical analysis tools
in that it analyzes binary code rather than source code. BugScan is able to disassemble
an executable file and map the control and data flow of the program. The other group of
static analysis tools attempts to perform some sort of semantic analysis on the source
code. These tools are more sophisticated than the lexical analysis tools and often can
catch subtle bugs that the lexical tools cannot. The advantage of lexical tools is that they
are fast. They are often good for a first pass on the code, and they can help catch some of
the straightforward buffer overflow vulnerabilities by pointing out dangerous code areas.
The drawback of lexical tools is that they tend to generate a very large number of false
alarms. Most security-sensitive legacy code has been hand-inspected and tested with
some lexical tools for potential buffer overflows. In order to catch the subtle buffer
overflow bugs that may still be lurking there, one must use more sophisticated tools.
The deep analysis tools for finding buffer overflows include ARCHER, BOON,
PolySpace C Verifier, PREfast, PREfix, Uno, Splint, and PC-Lint/Flexe-Lint.

34



Pros:
Unlike dynamic testing tools, some static analysis tools are capable of

exhaustively testing all possible execution paths. Static analysis tools do not depend
on being able to run the code. Static analysis tools allow you to discover the root of the
problem, so that it can subsequently be eliminated from the code.

Cons:
A disadvantage of static code checkers is that the source code is always required.

The static analysis tools may have to do complex analysis to be able to detect subtle
buffer overflow vulnerabilities. Another problem with static analysis tools is that often
imprecision is introduced as a result of the heuristics used for finding buffer overflows.
In general, determining whether a program has a buffer overflow is an undecidable
problem, so heuristics have to be used. Also, some static analyzers require significant
programmer effort to annotate the code. Lastly, tracking down buffer overflow
vulnerabilities based on error messages of the static analyzers can be time consuming.

Semantic DOMAIN EFFECT DEPTH OF ANALYSIS
Static Analysis
Tools
ARCHER [89] source Memory checker capable of detecting buffer Inter-procedural, flow-sensitive, context-

overflows. Uses a form of abstract/symbolic sensitive, fully symbolic.
program interpretation.

PREfast* [71] C, C++ source A sister tool of PREfix that is able to detect Works only within procedures. Runs on single
several classes of run-time errors, including file programs.
buffer overflows, using a form of abstract
interpretation.

PolySpace C Verifier* C source Detects run-time errors such as buffer Works across procedures and is able to track

[70] overflows, divide by zero, use of relationships among several variables. Highly
uninitialized memory, integer overflows, memory intensive. Deep analysis takes a long
shared memory violations etc. Uses a time.
sophisticated form of abstract interpretation.

BOON [83] C source Detects buffer overflows using integer range Inter-procedural, flow-insensitive. Catches buffer
constraint analysis. overflows only in string manipulation routines.

SPLINT [34, 35] C source Finds programming errors such as missing tra-procedural; requires user annotation for
arguments, undeclared variables, improper inter-procedural analysis.
return statements, nested comment symbols.

It is also capable of finding buffer overflow
and format string vulnerabilities.

Uno[43] C source Detects Uninitialized variables, Inter-procedural, control-flow sensitive
dereferencing of Nil-pointers, and Out-of-
bounds accesses.

C-Lint /C+ source Performs strong type checking and value Similar to Splint. With code annotation it is
/FlexeLint* [67] tracking. Detects certain buffer overflow possible to do inter-procedural analysis.

bugs, uninitialized variables, out-of-bounds
rray accesses. Checks for correct usage of

.... _ _ertain standard C functions.

Table 8: Semantic Static Source Code Analyzers.
* - Commercial tools

35



Lexical DOMAIN EFFECT DEPTH OF
Static ANALYSIS
Analysis
Tools
ITS4 C/C++ A simple lexical tool that scans source code for Grep-like tool. Simpler
[81][18] source potentially dangerous functions that could result in than RATS and

buffer overflows. Can also detect some race lawFinder. Tries to
conditions. assess risk level of each

warning, provides simple
description of problem
and suggests a simple fix.

RATS [74] C, C++, A lexical tool for detecting common buffer overflows Grep-like tool. Reporting
Perl, PHP, and race conditions (such as TOCTTOU). Scans for more condensed than that
Python uses of potentially dangerous C functions. of FlawFinder. Uses
source greedy pattern searching.

Also, uses some
semantic inspection of
program.

FlawFinder C/C++ A lexical tool similar to RATS. Uses a database of Grep-like tool similar to
[84] source vulnerable functions to perform simple pattern RATS. Does not do any

matching on source code. Can detect some buffer semantic analysis of
overflows, format string vulnerabilities, race source code.
conditions, meta character risks, system code
problems and poor random number generation.

BugScan* Most Finds bugs in executables using lexical static Installed on network and
[13] Windows analysis. Disassembles the binary and maps the accessed through web

and Linux control and data flow. Detects things like overflows, interface. Users upload
x86 binaries poor random generators, race conditions. binary programs to the

appliance for analysis.
Report can be viewed
_online or as XML file.

Table 9: Lexical Static Source Code Analyzers.
* - Commercial tools

36



3.1 Why focus on Static Analysis?

So far, different approaches to detecting buffer overflows in software have been
presented. Table 10 summarizes the pros and cons of the different approaches.

Approach PROS CONS
Dynamic Testing Program values known at run- oming up with test cases to exercise all

time. If an error occurs at run- xecution paths is very difficult. Not only that,
time, tracking it is easy. Source ne must come up with test cases that trigger a
code is not always required. buffer overflow. Program execution during

testing slows down a great deal, and memory
usage goes up. Being able to run the program is
not always convenient. (testing device driver
code requires the device)

Mini-Sim., & Language independent. Source Programs require significant preparation time.

Fault Injection code not required. Generate User must analyze the failed tests to determine
many test cases automatically. what the source of the problem is. Automating
Good for robustness testing. the execution of the program is not easy due to

system crashes/hanging.

Dynamic Can stop specific types of buffer Effectively turn buffer overflow attacks into

Prevention overflows from causing damage denial of service by terminating the program.
during run-time. Source code needs to be recompiled with special

compiler. Compiler patches usually slow down
program execution significantly.

Language Stop buffer overflows by using Many of these approaches transform buffer

approach safe libraries or string modules. overflows into denial of service. Interfacing
with old libraries is difficult. Not ideal for
securing legacy code.

Static/Dynamic Safer dialects such as Cyclone Porting from C to Cyclone is not trivial and

Hybrids minimize the chance of buffer requires one to modify ~10% of the code.
overflows. Porting from C to Cyclone and CCured turn a buffer overflow into
CCured or Cyclone is more denial of service.
realistic than porting to Java.
Cyclone and CCured can stop
buffer overflow attacks at
runtime.

OS-based Can prevent many buffer inux kernel patch does not prevent heap-based

Solutions overflow attacks (esp., stack- verflows. Making the stack non-executable
smashing). still leaves room for certain stack-based buffer

overflows, i.e. in signal handlers. Porting a
legacy program to a new operating system
might not be trivial.

Static Analysis All execution paths can be Source code is always required. Imprecision
analyzed without running the due to analysis heuristics exists. Sometimes
program. Discover the root of there are many false positives. 100% detection
the problem, so that it can be ate is theoretically impossible. Sometimes
_eliminated. require users to annotate code.

Table 10. Pros and Cons of different approaches to detecting/preventing buffer overflows

The most effective way to combat buffer overflows is to eliminate them from the
source code before the software gets released to the public, i.e. get down to the root of the

37



problem. We argue that the best way to achieve this is through static source code
analysis. Let us first summarize the deficiencies of the other approaches.

As was discussed above, dynamic testing tools have a large performance
overhead, and it is almost impossible to dynamically test every execution path. Without
having a test case that triggers a buffer overflow, a dynamic testing tool such as Purify is
useless for finding buffer overflows. The mini-simulation and fault injection approaches
have the same drawback - the automatically generated test cases are not guaranteed to
exhaustively cover all execution paths. In both the mini-simulation approach and the
fault injection approach, a great deal of user-intervention is required: 1) the user must
first prepare the program for testing, which can take months, as in the case of the
PROTOS mini-simulation tool, 2) the user usually must be present to restart the system
whenever it hangs or crashes during testing and 3) following the test runs, the user must
inspect the output of the failed test cases and try to determine the source of the problem,
which is not a trivial task. Currently, none of the runtime prevention tools can prevent all
types of buffer overflows, and more importantly, such tools turn buffer overflow attacks
into denial of service attacks. The operating system approach has succeeded in
preventing only certain kinds of buffer overflows. This approach also presents a
portability issue for legacy source code; the old code would need to run on the new
operating system. The language-based approaches of implementing safer string handling
functions or safer string modules have their own share of serious drawbacks, as described
earlier. The language-based solution may eliminate buffer overflows from future
programs, but it is not ideal for securing legacy code. Finally, porting C programs to
safer dialects such as Cyclone can be non-trivial. As a programming language, Cyclone
is sufficiently different from C, that it would be a challenge convincing veteran C
programmers to abandon C altogether and program in Cyclone instead. Both Cyclone
and CCured have the same drawback as other dynamic prevention tools; they turn a
buffer overflow attack into a denial of service attack.

Static source code analysis tools get down to the root of the problem by trying to
detect actual errors in the code. By pinpointing the bug in the program, the programmer
can then fix the code and eliminate the possibility of a disaster occurring. Most
importantly, static analysis tools have the capability to analyze all execution paths in the
program and thus can find insidious bugs that lurk in rarely executed code paths that
dynamic testing techniques would probably miss. One might argue that a disadvantage of
static source code analysis is that source code is always required, but in the case of
analyzing open-source programs, this is not a problem. And if a program is not open-
source, it should be the manufacturer's responsibility to ensure that the software is bug-
free. The bottom line is that programmers need good development tools. During
software development, source code will always be available.

A disadvantage of many static analysis tools is that they are imprecise and often
yield many false positives. Imprecision can result from heuristics used in analyzing
source code. Research in improving static analysis techniques is currently quite active.
Many C programs are so complex that not having any false positives is almost
impossible. Also, unfortunately, having a 100% detection rate is theoretically impossible

38



(See Halting Problem or Rice's Theorem). However, if we can create a tool that detects
most bugs, most of the time, then that would be a huge success.

Since there is such a vast amount of open-source, legacy programs written in C,
the primary objective right now should be to secure these programs. A secondary
objective should be to come up with development tools that will help ensure that future
programs that get written are free of buffer overflow vulnerabilities and other bugs. Of
all the approaches discussed so far, static source code analysis offers the greatest
potential for meeting these two important objectives. This thesis therefore focuses on
current state of the art static source code analysis tools.

39



Chapter 4 Description of the static analysis tools

4.0 Specific tools

The set of static analysis tools can be divided into two broad categories - the set of
tools that do only lexical analysis and the set of tools that do some sort of semantic
analysis. The three most well known lexical analysis tools are ITS4, Flawfinder and
RATS. This thesis will focus on five semantic analysis tools: PolySpace's C Verifier,
ARCHER, BOON, Splint and Uno. Some other semantic analysis tools that were not
included in this evaluation are PREfast, PREfix, and Flexe-Lint. PREfast is a tool
designed for testing Windows software, specifically device driver code, and since the
programs we analyzed were all written for Unix-based systems, we decided to exclude
PREfast from the evaluation. PREfix is a heavy-duty, inter-procedural tool used
internally by Microsoft. Unfortunately, we were not able to get a copy of PREfix for
evaluation purposes. Flexe-Lint is a commercial tool similar to Splint.

4.1 Lexical Analysis

Lexical analysis tools use pattern matching, sort of like the Unix grep command,
to find dangerous code constructs. Flawfinder, RATS and ITS4, all have a database of
names of standard C functions that could potentially lead to buffer overflows if not used
correctly. This database includes mostly string manipulations functions such as strcpy (),
strcat (), sprintf () etc. The vulnerability database also includes certain other dangerous
functions that can introduce "tainted state" into the program, for example getso or
getenvo. Both of these functions take inputs from the user-space - gets () reads in a line
of characters from the standard input, and getenv () returns the contents of a specified
environment variable. Thus, one should treat the outputs of these functions as tainted, i.e.
one should not trust the outputs to be safe. Other possible sources of taintedness are
functions that read input from files, such as fgets (), any function that take inputs from the
command line, such as scanf (), and functions that read data from network packets. What
differentiates the three lexical tools we've mentioned is mainly the size of their databases,
the types of vulnerabilities they target, the number of programming languages they can
work on, and the type of output they provide. Some of the tools attempt to sort their
warnings by risk level. The risk level not only depends on the function being called, but
usually the parameters, as well. This is a useful feature for programmers to have, for they
can save time and concentrate on the high risk calls only, if time is a priority. The major
drawback of lexical analysis tools is that they give a large number of false alarms. Most
lexical analysis tools are not capable of distinguishing between safe and unsafe uses of
dangerous functions, and so they end up flagging every appearance of a dangerous
function call, such as strcpy(. If a program contains a hundred strcpyo calls, going
through the list of warnings and weeding out the false positives could be very time
consuming. The advantage of lexical analysis tools is that they are usually very fast, and
they can often help programmers find simple bugs. Besides buffer overflow
vulnerabilities, some of these lexical tools can find other types of bugs such as format
string bugs, race conditions and poor random number generation. We will now discuss
the specifics of Flawfinder, RATS and ITS4.

40



For comparison, we will show the output of each of these tools on the following
simple program, test.c, involving an unsafe use of strcpy 0:
The program is annotated to show line numbers.

test.c:

1. #include <stdio.h>
2. #include <stdlib.h>
3. #include <string.h>
4.
5. int main({
6.
7. char buf[5], bufB[]= "Abra Cadabra";
8.
9 /* BAD*/
10. strcpy(buf, bufB);
11.
12. return 0;
13.1

4.1.0 Flawfinder 1.22

Flawfinder was written by David Wheeler in a programming language known as
Python. The first version of this tool was released in May 2001. It should be noted that
Flawfinder was developed around the same time as RATS of Secure Software Solutions.
This tool uses a database of vulnerable functions to perform simple pattern matching on
the source code. Flawfinder is able to understand C and C++ source code. The types of
vulnerabilities it scans for are buffer overflows, format string vulnerabilities, race
conditions, meta character risks, system code problems and poor random number
generation. Flawfinder 1.22 has a database, or a ruleset, of 127 vulnerable functions in
C/C++ code. Flawfinder sorts its warnings by risk. The risk level depends on the
function being called and its parameters. For example, a call involving a constant string,
e.g. strcpy(buf, "Alice), would be considered less risky than a call involving variable
buffers, e.g. strcpy(buf1, buf2).

A typical warning message generated by Flawfinder gives:

1. The name of the file.
2. The line number on which the suspected error occurs.
3. The character position.
4. The name of the suspect function.
5. Description explaining the cause for alarm.
6. A possible fix.

Flawfinder allows one to specify HTML reporting of warning messages if desired.

41



Here is the output of Flawfinder 1.22 on test.c:

Examining test.c
test.c:10: [4] (buffer) strcpy:
Does not check for buffer overflows when copying to destination.
Consider using strncpy or strlcpy (warning, strncpy is easily misused).

test.c:7: [2] (buffer) char:
Statically-sized arrays can be overflowed. Perform bounds checking,
use functions that limit length, or ensure that the size is larger than
the maximum possible length.

Number of hits = 2

Number of Lines Analyzed = 13 in 0.69 seconds (67 lines/second)
Not every hit is necessarily a security vulnerability.
There may be other security vulnerabilities; review your code!

Notice that Flawfinder tells you the total number of lines analyzed, the number of
warnings (hits), and the total time spent analyzing the code.

4.1.1 ITS4

The release of ITS4 was first announced in late 2000 by a group of researchers at Secure
Software Solutions, now Cigital. ITS4, or It's the Software Stupid!, is a lexical analysis
tool that scans C and C++ source code and builds a token stream of the code. The tokens
are matched against dangerous functions in a database. The current version of ITS4
contains 145 functions in its database. These functions involve buffer overflow
vulnerabilities and race conditions. The database also includes a few pseudorandom
functions that could potentially be used unsafely in security-sensitive code.

A typical error message generated by ITS4 contains:

1. The name of the file.
2. The line number of the error.
3. One of six risk levels: NORISK, LOWRISK, MODERATERISK, RISKY,

VERYRISKY, MOSTRISKY.
4. The name of the suspect function
5. Reason why alarm was raised (i.e. function is high risk for buffer overflows)
6. Whether or not the function is tainted (i.e. can retrieve inputs from external

sources such as files, command line, or network packets)
7. A possible fix.

The programmer can set the risk level cut-off threshold via a command line argument (0
= no risk, 5 = most-risky). Having a cut-off of 0 would produce the most number of
warnings, whereas having a cut-off of 5 would produce the fewest number of warnings.

42



This flexibility to set the risk threshold can be useful for a programmer who only wants to
focus on warnings above a certain risk level.

Here is the output of ITS4 for test.c:

test.c:10:(Very Risky) strcpy
This function is high risk for buffer overflows
Use strncpy instead

4.1.2 RATS 2.1

RATS, or Rough Auditing Tool for Security, is a tool that was developed by
Secure Software Solutions around the same time as Flawfinder. RATS has the advantage
of being able to scan source code written in several languages: C, C++, Perl, PHP and
Python. RATS was designed to detect buffer overflow vulnerabilities and race
conditions. The database of C functions that RATS recognizes is much richer than those
of Flawfinder and ITS4. Here is a summary of the number of functions recognized for
each of the programming languages:

Entries in perl database: 33
Entries in python database: 62
Entries in c database: 334
Entries in php database: 55

RATS uses a greedy pattern matching algorithm to find vulnerable functions in the
source code, so a scan for printf will also match sprintf, vsnprintf, and print. This may
create many false positives.

A typical RATS warning includes:

1. The name of the file.
2. The line number.
3. Risk level.
4. The name of the function.
5. Description of problem, often specifying what checks need to be made to ensure

safety.

RATS has a capability to generate HTML reports. It is also possible to add some XML
reporting features.

43



Here is the output of RATS for test.c:

Analyzing test. c
test.c:7: High: fixed size local buffer
Extra care should be taken to ensure that character arrays that are allocated
on the stack are used safely. They are prime targets for buffer overflow
attacks.

test.c:9: High: strcpy
Check to be sure that argument 2 passed to this function call will not copy
more data than can be handled, resulting in a buffer overflow.

Total lines analyzed: 13
Total time 0.001527 seconds
8513 lines per second

Notice that RATS, like Flawfinder, gives you the total number of lines analyzed and the
total time elapsed. It also gives the effective speed of scanning (i.e. lines per second).

4.2 Semantic Analysis Tools

4.2.0 What is abstract interpretation?

Researchers have been studying static code analysis for several decades. A
powerful technique known as abstract interpretation was pioneered in the mid-70s by
Patrick Cousot et al [22]. Abstract interpretation has become the main approach for
doing semantic code analysis, and all of the tools that are described in this section, with
the exception of Splint, use some form of abstract interpretation/symbolic analysis.
There are, however, significant differences between these tools, particularly in the types
of algorithms that are used to solve constraints among variables. The underlying
principles of abstract interpretation are as follows.

The goal of abstract interpretation is to simulate all paths of a program without
ever executing any code. During the simulation of a program, "abstract values" are
associated with the variables of the program, instead of concrete values that would be
used during actual execution. An abstract value is defined as a set of concrete values.
Thus, an abstract value assigned to a variable specifies a range of concrete values that the
variable might take on. Probably the simplest example of abstract values would be
integer ranges, or intervals, that indicate the range of values an integral valued variable
might take on.

The main idea of abstract interpretation is to symbolically step through a
program and for each variable keep track of all possible values that it could take on at

44



each point in the program. Each program construct (e.g. loop, conditional, assignment
etc) modifies abstract values of the variables involved in a specific way. This is
illustrated below through an example program. Imagine the following code which has
been annotated for easy reference:

1. void taint-add(int y) {
2. int x;

3. scanf("%d", &x);

4. if (x < 10)
5. x=x+ 1;
6. else
7. x=x- 1;

8. return x + y;
9. }

10. int mainO{

11. int y, z;
12. char buf[] = "Hello World";

13. y = 2;
14. z = taint_add(y);

15. return buf[z];
16. 1

For the sake of the example, we will choose to track only integer valued variables.

We begin by evaluating the program abstractly inside of mainO. Upon entry
into main, y and z are undefined and can take on any value between -00 and 00, so their
abstract values are [-oo, oo]. Next, on line 13, y gets assigned to 2, changing y's abstract
value to [2, 2]. On line 14, z gets assigned taint-add(y). We now step inside taintaddO.
Inside taintaddO, x is read in from the standard input and thus can take on any integer
value. Thus, an abstract value of [-co, cc] is assigned to x following the scanfO statement.
Now, we encounter an if-statement. We evaluate the two branches of the if-statement,
and for each branch we update the abstract value for x. If x < 10, then upon exiting the
if-statement, x will take on the abstract value [-oo, 10]. On the other hand, if x >=10 upon
entry into the if-statement, then upon exiting the if-statement, x will take on an abstract
value of [9, oo]. Finally, depending on which branch of the if-statement was followed,
the return value of taintaddo will take on the abstract value [-cc, 10+y] or [9+y, cc]. In
our case, since the abstract value of y was [2, 2], the two possible return values are [-cc,
12] and [11, oo]. So, getting back to the mainO routine, z can have two abstract values [-

45



00, 12] or [11, oo]. The variable z is used as an index into the array buf which consists of
12 characters, including the null terminator. Thus, the minimum allowable value for z
can be 0 and the maximum value can be 11. At this point, our abstract interpreter would
raise a flag, since it is possible to index buf with an illegal index, i.e. z >=12 or z<O. This
example illustrates the power of abstract interpretation to analyze programs. As was
shown, all possible paths of the program were analyzed without running the program on
specific inputs. Abstract analysis can be extended to deal with many other programming
constructs, such as loops and switch statements. Abstract values can be defined for other
types of variables besides integral valued variables.

We now look at the specific approaches taken on by our suite of static
semantic analysis tools.

4.2.1 Splint (Secure Programming Lint)

LCLint, the predecessor of Splint, was developed by David Evans et al of
University of Virginia. LCLint was enhanced to deal with security related software bugs,
and in 2002, this enhanced version of LCLint became known as Splint. Splint finds
programming errors such as missing arguments, undeclared variables, allocated memory
not being freed, improper return statements, nested comments etc. A large fraction of
warnings that Splint issues are not security related at all. However, Splint can be used to
find buffer overflows and format string vulnerabilities as well.

Splint, unlike the lexical tools just discussed, works on the semantic level.
The creators of Splint describe their approach as a combination of several "lightweight
static analysis" techniques, so for lack of a better name we will use this descriptor as
well. To be truly useful, Splint requires the programmer to make annotations, or
semantic comments in the source code. These annotations specify certain pre-conditions
and post-conditions that may apply to function parameters, function return values, as well
as global variables and structure fields. For example, one may declare a function

parameter to be not null using the annotation /*@notnull@*/. At any call-site in the
program where the function parameter might become null, Splint will report a warning.
Similarly, it is possible to declare return values and global variables as being not null.
Splint has its own version of annotated standard C library function headers. For instance,
the Splint library declares getso with the annotation /* @warn bufferoverflowhigh "Use
of gets leads to a buffer overflow vulnerability... "@*/. Hence, whenever calls to getso
are encountered, Splint raises a buffer overflow warning.

To help catch array bounds violations, Splint uses two clauses, "requires" and
"ensures", and four buffer attribute annotations, maxSet, maxRead, minSet, and
minRead.

46



Here is a simplified example of how Splint annotates the string function
strcpyO inside standard.h:

char *strcpy(char *sl, char *s2)
/*@requires maxSet(sl) >= maxRead(s2) @*/
/*@ensures maxRead(sl) == maxRead(s2) @*/

maxRead(b) gives the value of the highest index i such that b[i] can be read. maxSet(b)
gives the value of the highest index i such that b[i] can be set to some value. minRead
and minSet are defined similarly. Before each function call, Splint checks that all the
pre-conditions are met, i.e. the "requires" clauses are satisfied, and that the post-
conditions are ensured. Constraints for variables, functions etc., are generated at the
expression level and are stored in the corresponding node in the parse tree. Some
constraints get generated automatically. For instance, the declaration "char
buf[MAXSIZE]" generates the post-conditions "maxSet(buf) = MAXSIZE - 1" and
"minSet(buf) = 0". If Splint later encounters an expression of the form "buf[i] = x", it
will generate pre-conditions "maxSet(buf) >= i" and "minSet(buf) <= i" and then try to
verify that these pre-conditions hold true. If Splint is unable to verify that i <=
MAXSIZE - 1 and i >= 0, it will issue a warning. Splint also uses certain algebraic rules
involving pointer manipulations, such as maxSet(ptr + i) = maxSet(ptr) - i.

To some extent, Splint is able to track tainted variables, or variables that might
have values obtained from an outside source, such as the standard input, a file, a network
packet etc. To track tainted variables, Splint annotates several standard library functions
inside tainted.xh. For example, to say that printfO expects an untainted parameter, Splint
annotates printfo as "extern int printf (/*@untainted@*/ char *format, ...) ;". Using taint
analysis it is possible to detect certain format string vulnerabilities, i.e. where the format
string passed to a printf family function comes from an outside environment.

To deal with control flow constructs such as loops (e.g. for-loops and while-
loops), Splint uses certain heuristics. Unfortunately, Splint can analyze only the most
common loop constructs. David Evans et al assume that the programmer will follow
stylized, common loop conventions, which does not seem like a very safe assumption to
make. Programmers are likely to deviate from conventional programming styles. One
interesting assumption that Evans makes is that any buffer overflow that occurs inside a
loop will be apparent either in the first or the last iteration. Thus, to assure loop safety,
Splint only needs to verify that all the constraints are satisfied in the first and the last
iterations of the loop. If the initial values for the loop variables, such as the loop index,
are known and the final values are known or are easily computable, Splint can carry out a
safety analysis for the loop. For instance, given a loop of the form "for (init; *buf;
buf++)", Splint assumes that the loop will get executed for maxRead(buf) iterations.
Now, if some variable inside the loop gets incremented by one during each iteration,
Splint will estimate that variable's final value to be initvalue + #iterations, or initvalue
+ maxRead(buf).

47



When analyzing source code, it is suggested that Splint be run iteratively
several times, each time either changing the code, i.e. fixing a bug, or making an
annotation. Splint is able to check about 1000 loc per second, so running it several times
does not impose a huge time penalty. Finally, it is important to note that Splint will not
be able to detect any sort of inter-procedural errors, unless annotations are used. The
goal of our evaluation is to test tools that can find bugs in legacy software through static
analysis without having to modify the source code. Thus, for our evaluation we decided
to opt against annotating source code.

4.2.2 BOON

BOON was developed by David Wagner as part of his PhD work and was
publicly released in July 2002 (BOON stands for "Buffer Overrun detectiON").
Unfortunately, BOON is only a "working prototype" and not a fully supported tool. It is
not very well documented and might contain bugs. The basic assumption that Wagner
made was that most buffer overflows occur in string buffers. Consequently, the focus of
BOON is on string buffers.

BOON treats a character string, S, as a pair of integers: the size allocated,
alloc(S), and the actual number of bytes currently used, len(S). BOON models all string
functions in terms of their effects on these two properties of string buffers. For each
string declaration or usage of a string function, an integer range constraint is created via
pattern matching. As different execution paths are analyzed, BOON generates two
ranges, one for alloc(buf) and one for len(buf). Each of the ranges represents a
conglomeration of all the possible values that alloc(buf) or len(buf) can ever take on
inside the program.

To illustrate this concept, suppose that at the end of the analysis BOON concludes that
len(buf) and alloc(buf) take on values only in [a,b] and [c,d], respectively [83]. There
are three possibilities at this point:

1) If b<=c, we can safely conclude that buf never gets overflowed.

2) If a>d, we can conclude that buf always gets overflowed.

3) If the two ranges overlap, buf might get overflowed or it might not. BOON
conservatively issues a warning at this point.

48



Here is an example of a bug that BOON would detect:

int mainO{
char bufA[10];
char bufB[4];

strcpy(bufA, "Hello");
/* BAD */
strcpy(bufB, bufA);
return 0;

}

BOON issues the following warning:

Almost certainly a buffer overflow in 'bufB@maino':
4..4 bytes allocated, 6..6 bytes used.
<- siz(bufB @mainO)
<- len(bufB@maino) <- len(bufA @mainO)

Unfortunately, the fact that BOON is flow-insensitive (i.e. ignores order of
statements and control flow statements such as if-statements, loops, switch statements)
causes a high rate of false positives.

Here is an example of a program that would cause BOON to false alarm:

#include <stdio.h>
int mainO

char *buf;
int i;

scanf("%d", &i);

if (i < 0)
buf = "Hi";

else
buf = "Bob";

printf("buf = %s\n", buf);

return 0;
}

In the above program, if i < 0, len(buf) = 3, whereas if i >= 0, len(buf) =4. BOON will
conglomerate these two values together into a range, namely the closed interval [3, 4].

49



Similarly, if i<O, alloc(buf) = 3, and if i >= 0, alloc(buf) = 4. BOON will generate the
range [3, 4] for alloc(buf). All string variables, S, must satisfy the constraint "len(S) <=
alloc(S)". In this particular case, since the two ranges for len(S) and alloc(S) overlap,
BOON is unable to assure string safety and issues the following warning:

Slight chance of a buffer overflow in 'buf@nmaino':
3..4 bytes allocated, 3..4 bytes used.
<- siz(buf@mainO)
<- len(buf@mainO)

It should be noted that BOON is capable of doing a limited amount of inter-
procedural analysis. On the down side, BOON does not handle function pointers and
doubly referenced arrays, such as command line arguments. BOON has the capability to
detect very simple pointer aliasing bugs, and it deals with C structures to some extent.
All C structures of a compatible type are treated as potentially aliased. These
capabilities will be explored in greater depth in the Methodology and Results chapters.

4.2.3 ARCHER (Array CHeckER)

This is a very new tool, actually still in the development stage, created by a
group of researchers (Xie, Chou, Engler) at Stanford University. ARCHER is an inter-
procedural, flow-sensitive, context-sensitive, fully symbolic tool for detecting memory
access errors. It has found many security holes such as buffer overruns. Unlike
Splint/LCLint, ARCHER does not require annotations. ARCHER is able to exhaustively
analyze all possible execution paths, and at the same time achieve good performance.

ARCHER uses bottom-up inter-procedural analysis. After parsing the source
code into abstract syntax trees, ARCHER records caller-callee relationships between
functions. This information is later used to construct an approximate callgraph which is
used for determining the order for examining functions. It is only an approximate
callgraph because ARCHER does not follow function pointers. This approximation
leads to some imprecision, i.e. missed errors, but as the authors claim, it does not increase
the number of false positives. ARCHER simulates the body of the C function and creates
so-called symbolic triggers, or conditions on the function parameters that result in
memory access violations (i.e. bad array indexing). These triggers are used to deduce
new triggers for the callers, and so on. Once the top-most caller is reached, if any of its
triggers are satisfied, a memory violation flag is raised.

The following is an example taken from the original ARCHER paper. It
illustrates ARCHER's ability to do inter-procedural analysis.

50



1. int aa(int flag, int *buf, int i, int j)
2. {
3. if (flag)
4. return buf[i];
5. if ((flag & OxfO) > 0)
6. return bufU];
7. return 0;
8. }
9.
10. int bb(int *buf)
11. {
12. aa(l, buf, 5, 5);
13. }

14. int cc(void)
15. 1
16. int *buf;
17.
18. buf = (int *) malloc(sizeof(int) * 6);
19. bb(buf + 1);
20. 1

ARCHER begins in a bottom-up manner by analyzing the code for aaO first.
The first buffer access it sees is on line 4. This access only occurs if flag is not equal to
0. ARCHER generates two triggers for line 4, that look something like:

(flag # 0) and (f(i) < 0)
(flag # 0) and (f(i+1) > length(buf))

where f(i) = offset(buf) + i*sizeof(int).

These two triggers indicate two scenarios in which an out-of-bounds buffer access would
occur. If either of these two triggers gets satisfied at some point, an error is reported. To
continue our example, no triggers are added for the buffer access on line 6 because
ARCHER does not handle non-linear conditions, i.e. flag & OxfO. Next, ARCHER goes
up one level in the callgraph to bbO. Inside bbO, the call to aaO causes aa's two triggers
to be invoked and evaluated using the parameters. Thus, since flag = 1, the two triggers
get simplified to:

f(5) < 0
f(5+1) > length(buf)

where again, f(i) = offset(buf) + i*sizeof(int).

These two triggers become the triggers for bbO, and ARCHER finally reaches the top of
the callgraph inside ccO. Once inside ccO, ARCHER sees the allocation of buf on line
18, and deduces that length(buf) = 6 * sizeof(int), and offset(buf) = 0. Finally, when bbO

51



is called on line 19, the triggers for bbO are loaded and evaluated with offset(buf) =
sizeof(int). The trigger "f(6) > length(buf)" is satisfied, and so ARCHER issues a buffer
overflow warning. This example illustrates that ARCHER is able to detect fairly
complex inter-procedural bugs.

The creators of ARCHER have made an interesting assumption; if an array is
accessed without any bounds checking whatsoever, it is assumed that the programmer has
some knowledge of the safety of such an array access. Thus, ARCHER ignores such
unchecked array accesses. On the other hand, if some bound checking is attempted,
ARCHER will perform analysis to ensure that the array accesses are indeed safe. The
latter assumption might cause ARCHER to find complicated bugs, yet miss certain trivial
bugs.

4.2.4 PREfix - not included in evaluation

PREfix is a sophisticated inter-procedural static analysis tool, known as a
model checker, which was designed to be run on large code bases. As a matter of fact, it
is used internally by Microsoft to test its software. Rumor has it that every couple weeks
or so Microsoft runs PREfix on the entire Windows code base to detect potential buffer
overflows and other bugs. Unfortunately, PREfix is not available to the general public.
Although PREfix could not be included in this evaluation, it sounds like a promising
static analysis tool and thus, it is briefly discussed here. The technical name for the type
of approach employed by PREfix is "heuristic model checking". Let us see exactly what
that means...

To begin, a model must be constructed for each function. For each function,
different possible execution paths within the function are analyzed (the maximum
number of paths to be analyzed can be specified by the user). A path is analyzed by
traversing the function's abstract syntax tree and evaluating the relevant expressions and
statements in the tree. For each execution path, PREfix uses a virtual memory model to
track the values of the variables and the memory use. PREfix is quite good at following
conditional control flow constructs (e.g. if, goto, switch). It is also able to prune out
impossible paths based on its knowledge of the program state. Following the analysis of
the different paths, the results are summarized and are used to build a single model for
the behavior of the function.

A model for a function can be described by certain constraints, or pre-
conditions, and results, or post-conditions. Similar to ARCHER, PREfix uses a bottom-
up approach to generate the constraints for each function. To illustrate this, suppose
function aO is called by bO, which is called by co. PREfix will first generate constraints
on aO, then constraints on bO, and finally constraints on co. The building of a model for
a function also relies on the concept of guards. A set of guards is simply a set of
conditions that must be true in order for a function to result in a certain outcome. As a
simple example, take a look at the function below [15]:

52



int null_ptrjtest (int *p)
{
if (p == NULL)

return NULL;
return *p;
}

This particular function null_ptrjtest() has two outcomes. The first outcome has the
result (post-condition) of returning NULL. The second outcome has the result of
returning a value equal to the one in memory pointed to by p. The guard for the first
outcome is the condition "p = NULL" and the guard for the second outcome is the
condition "p # NULL". For the first outcome, the only precondition is that p is
initialized. For the second outcome, there are three preconditions - 1.) p must be
initialized, 2.) p must be a valid pointer, 3.) The memory pointed to by p must be
initialized. Without guards it would be impossible to separate the NULL case from the
valid pointer case.

By creating models for each function, PREfix is able to carry out an effective
inter-procedural analysis of the whole program. To analyze the entire program, PREfix
begins with the leaf functions of the call graph and proceeds bottom-up from the root.
PREfix simulates each function and reports any detected defects. To simulate a function,
PREfix first fetches its model. All the guards for the model are evaluated to determine all
possible outcomes for the function. In order for an outcome to be possible, all of its
guards must be true. Once all possible outcomes have been enumerated, PREfix begins
by selecting an eligible outcome. Notice that more than one outcome will be possible
when some of the guards are unknown. Once an eligible outcome has been selected, any
unknown guards are filled in with assumed values. Following this, all pre-conditions are
tested. If any of the pre-conditions cannot be ascertained to be met, an error is reported.
All eligible function outcomes are tried. As the analysis proceeds up the call graph,
models for functions that have already been simulated are available for simulation of any
callers higher up in the call graph.

PREfix is path-sensitive, incomplete (due to the restriction on the number of
paths analyzed), and unsound (due to approximations). Unlike its sister tool PREfast,
PREfix was designed to be run on large code bases (e.g. millions of lines of code).
According to Bush, Pincus, and Sielaff, on the order of 90% of errors (invalid pointer
references, bad storage allocation, using uninitialized memory, bad file operations etc.)
are caused by interaction of multiple functions. It is exactly for that reason that PREfix
places a strong emphasis on inter-procedural simulation. PREfix tries to cut down on
false positives by not reporting errors when it is unsure. Sometimes PREfix reports
several defects for a single underlying cause. PREfix is good at dealing with very large
and complex code bases. To summarize, here is a quote from the creators of PREfix,
"Complexity is managed by using adjustable thresholds on path coverage, merging

53



equivalent outcomes in models of called functions, employing heuristics to choose paths
well, and using lazy techniques to trim paths only when necessary"[15].

4.2.5 PREfast - not included in evaluation

PREfast should not be confused with its sister tool PREfix [15]. PREfast
comes prepackaged with the Microsoft Windows 2003 Driver Development Kit.
PREfast, unlike PREfix, works only within procedures and operates on single file
programs. PREfast was meant to be a fast and light weight tool, hence the name.
PREfast was designed to be used iteratively during the process of writing the code, rather
than being used on finished programs. When trying to run PREfast on a large piece of
code, it is recommended that one split up the source code into smaller sections (less than
10MB each) and then run the tool on each section separately.

One of the main goals of PREfast is to detect memory violations such as
buffer overflows. For each function in the program, PREfast analyzes all the possible
execution paths (unless it can eliminate certain paths using knowledge about some local
state). Thus, PREfast is said to be path-sensitive. PREfast can detect paths where a
variable is used without being initialized, and it can also detect paths that leave a variable
uninitialized. On the down side, PREfast does not keep track of global state; as a result,
many false alarms may result from this weakness. For the same reason, PREfast is
unable to prune out certain impossible execution paths that depend on global variables.

In addition to buffer overflows, PREfast can catch uses of uninitialized
memory, de-referencing of NULL pointers, memory leaks, format string bugs, illegal
type casts, ill-defined loops(i.e. infinite loops that should probably be finite), dead code
etc.

One thing to note about PREfast is that it has a nice XML-based graphical
interface for displaying the results of the test run. The tool allows one to navigate the
source code through hyperlinks, and it even traces the whole execution path leading to
the error.

4.2.6 PolySpace C Verifier

The C Verifier is a static analysis tool that attempts to do sophisticated
abstract interpretation. The company that developed this tool, PolySpace Technologies,
was founded by one of the pioneers of abstract interpretation, Patrick Cousot. PolySpace
Technologies has targeted its static analysis tool towards the embedded application
industry. As a result, the class of errors they focus on is slightly different from the
classes of errors that are targeted by the other tools discussed so far. For instance,
catching errors such as division by zero, sqrt(negative number), de-rereferencing of null
or out-of bounds pointers, access conflicts for shared memory, reading of uninitialized
variables, and illegal type casts is a very important part of C Verifier's analysis. In

54



addition, catching never-ending loops and unreachable, or dead, code is also a part of C
Verifier's repertoire. Of course, catching buffer overflows is an important aspect of C
Verifier's analysis as well, but it is not the primary focus. Bugs that result simply in the
application halting are very dangerous in the embedded application industry, never mind
remotely exploitable buffer overflows. Just imagine what would happen if a critical
sensor in an airplane stopped working because of a divide by zero bug! The results could
be catastrophic!

Perhaps the major difference between PolySpace's C Verifier and ARCHER,
PREfast, Uno and BOON is that PolySpace claims to do a lot more tracking of variable
relationships during program simulation. Being able to track relationships between two
or more variables is necessary in order to detect such bugs as divide by zero. For
instance, suppose there exists an assignment inside a function that looks like w = x/(y -
z). The question that PolySpace attempts to answer is "Can y - z ever equal 0?" If the
relationship between y and z is tracked throughout the program, PolySpace can determine
whether or not it is possible for y to equal z. Tracking relationships between many
variables is very complicated; the analysis is very memory intensive and takes a
significant amount of time. It is possible to run the C Verifier in one of several modes,
0, 1, or 2, depending on the depth of analysis desired.

4.2.7 Uno

Uno is a relatively young static analysis tool developed by Gerard J.
Holzmann of Bell Laboratories [43]. The name Uno derives from the three software
defects that the tool targets: the use of Uninitialized variables, dereferencing Nil-pointers,
and Out-of-bound array indexing. Uno is a model checker, similar to the tool PREfix. In
addition to being used to detect the latter defects, Uno can be extended to test software
for specific user-defined, application-dependent properties. User-defined properties are
written as ANSI-C functions and make use of a small library of primitives that allow
access to program's dataflow information. An example of a user-defined extension could
be a function that ascertains that the particular program obeys certain locking rules. A
simple locking rule might say that if a function calls a lock function (to disable
interrupts), it must later call an unlock function (to enable interrupts) within the same
function before returning. Failure to properly lock or unlock code during execution
might pose a serious security risk! Another example of a security property that a
programmer might want to verify in a program is the proper handling of process
privileges. For instance, if a program raises the process privileges to that of a super-user,
it should drop the super-user privileges when they are no longer needed.

Uno is an extension of the public-domain compiler front-end tool known as
ctree. Ctree generates a parse tree for each procedure in the program, and Uno converts
the parse tree to a control-flow graph for the procedure. The control-flow graphs are used
by Uno to perform local intra-procedural analysis. A special dataflow analysis module is
used to keep track of the state of all the data objects in the program. The dataflow
module marks each data object with a special tag that specifies whether or not the object

55



has been declared, initialized, invoked as a function pointer, evaluated as a variable,
dereferenced, assigned a new value, or if its address has been taken. For the purpose of
detecting out-of-bounds errors, the dataflow module collects information about each
array, such as its known bounds and information about variables that are used to index
the array.

The basic operation of Uno can be described as a two-pass process. During
the first pass, Uno analyzes each source file separately and performs local analysis of
each function. During this stage, Uno checks the usage of local function variables and
statically declared global variables. Uno uses the technique of abstract interpretation to
keep track of possible value ranges for each variable at each point in the program.
Different execution paths are analyzed and if possible, infeasible paths are pruned.
Consider the following simple example. Suppose that during the execution of a particular
path the assignment "x=7;" gets encountered and later on an "if (x > 10)" branch is
encountered. In this scenario, Uno would recognize that the path "...x=7; ...x>10" is
impossible. Put simply, Uno uses the context of the execution path analyzed so far to
determine where the path can lead in the future. Uno also uses intermediate files to save
any information that it thinks might be useful later on during the global analysis stage.
For each function, Uno constructs and saves a list of functions that can be called from
that function. This information is used in the second phase to model the inter-procedural
behavior of the program.

Following the first pass, each function has a corresponding control flow
graph. In the second pass, Uno performs global analysis based on the information it has
collected and stored in the intermediate files. In this phase, Uno checks the usage of any
non-static global variables, focusing on any pointer dereferencing operations. Also,
based on the information obtained in the first pass, Uno can now construct a function
call-graph and abstractly simulate the entire program. Uno starts with the main () routine
and recursively works its way to all the other functions that can be called, via a depth-
first search. If at any point during the simulation an inconsistency is detected, Uno
reports an error.

4.2.8 MC (Meta Compiler) - Not included in evaluation

The MC tool was developed by Dawson Engler et al, at Stanford University.
This tool allows a user to write lightweight compiler extensions to ensure that specific
security rules are followed. For instance, an array should not be indexed without first
doing a bounds check on the index. Similarly, a string copy should not be performed
without first checking that the source string does not exceed the length of the destination
buffer. Thus, the meta-compiler could potentially be a good tool for detecting buffer
overflow vulnerabilities. The basic operation of MC can be described as follows.

The user provides a list of "untrusted sources" and "trusted sinks." Untrusted
sources include functions that have arguments coming from untrusted environments, i.e.,
the network, user specified arguments etc (they include routines such as copyin (),

56



copyinstr ( )). They also include system calls. The list of trusted sinks includes array
accesses (e.g. a[x]), loops (e.g. while(i < x)), copy routines (e.g. memcpy (p, q, x), bcopy
(p, q, x)) that take length arguments that could be tainted, routines that perform user-
kernel copy operations (e.g. copyout (k, u, x), copyin (u, k, x) ), and memory allocation
routines (e.g. malloc (x), kmalloc (x)). The user writes an FSM description for each
particular rule in a language known as METAL. The states of the FSM are typically
bound to variables or expressions. Any variable coming from an untrusted source will be
assigned a tainted state, and the MC will check to see if the variable is ever properly
sanitized. If the variable is correctly sanitized, MC will enter a stop state and the variable
will no longer be tracked.

Engler et al used MC to implement a so called range-checker, which was
geared for detecting out-of-bounds array accesses. The range checker starts by assigning
a state called "tainted" to an untrusted variable x, and if it ever sees a check of the form
"x < something", it changes x's state to "need lb", (need lower bound). If the range
checker later encounters a check of the form "something < x", x is no longer tracked, and
the particular thread tracking x goes into a stop state. Similarly, if the range-checker had
first encountered a check of the form "something < x", x would have transitioned from
the "tainted" state into the "need ub" (need upper bound) state. If a "tainted" variable
ever reaches a trusted sink, a flag is raised. The user is free to define other patterns to be
matched against, besides simple lower bound and upper bound checks.

One difficulty encountered by the designers was being able to differentiate
between incoming and outgoing network packets (only incoming packets should be
checked). The heuristic used was: if the checker sees memory allocation involving packet
structures (e.g. malloc ( )), then it is very likely that the code is building an outgoing
packet. Otherwise the packet is assumed to be incoming.

MC uses both intra-procedural and inter-procedural analysis. Using inter-
procedural analysis it tries to derive functions that could consume tainted data (i.e. trusted
sinks) as a result of being called from known tainted functions, or functions that produce
tainted data (untrusted sources) as a result of containing a call to a known tainted
function. Also, MC tries to derive any routines whose arguments could reach a trusting
sink, in which case, it will track these arguments. If any of these arguments could
become tainted, a flag will be raised.

Last but not least, MC follows around function pointers. If a tainted value is
passed to a function pointer, MC checks whether the function pointer can possibly point
to a function whose arguments can reach a trusting sink.

57



4.3 Summary of Static Analysis Tools

The table below summarizes the "claimed" analysis capabilities of the
discussed static analysis tools.

Tool Name Availability f Analysis Strategy Analysis Capabilities

Lexical Lightwt. Abstractl Lightweight Control Inter- Taint String Functions
(Grep- Static Symbolic Compiler Flow procedural
like) Analysis Interpretation Extensions

with
Annot.

Flawfinder Open-source * *

ITS4 Open-source * *

RATS Open-source I * _*
Splint Open-source * * * *

with src. with src.
annot. annot.

MC Research * * * *

BOON Open-sourceI* I_* *

Prefix Internal use ** * *

at Microsoft

PREfast Commercial * * *

ARCHER Research/ * * *

Proprietary.

UNO open-sourceI * * * _ I
C Verifier PolySpace * * * *

F. . .. (cmmerciaI)
Table 11. Claimed capabilities of static analysis tools.

58



Chapter 5 Evaluating Static Analysis Tools - Methodology

5.0 Buffer Overflow Classification Scheme

Buffer overflow vulnerabilities in software are like disease-causing microbes.
Just like there are many different kinds of microbes, there are many different kinds of
bugs that lead to buffer overflows and it would be nice if one could classify them. By
being able to uniquely identify each buffer overflow vulnerablity, one can get a better
understanding of what the distribution of buffer overflow vulnerabilities is like in real
programs. We would like to be able to answer questions like: "What fraction of buffer
overflows in open-source programs involves buffers on the stack, the heap, the bss region
and the data region? What fraction of buffer overflows involve pointers being passed
through several procedure calls? What kinds of buffers tend to get overflowed the most;
are they character buffers, integer buffers etc? Are the buffers self-contained or are they
members of C structures or unions? And so on." Only once we have an idea of what the
true distribution of buffer overflows is like in real programs, can we say which static
analysis tools would work best on real programs. For instance, if it turns out that most
buffer overflow vulnerabilities involve inter-procedural calls, then tools that only do
intra-procedural analysis would not be too useful for detecting such bugs. This section
outlines a classification scheme that we developed for classifying the different types of
software bugs that lead to buffer overflows. The classification scheme is based on
thirteen fields, each field being represented by a single hexadecimal digit. We now
describe these fields.

digit 1: WRITE/READ

Is this an illegal write or an illegal read?

o write e.g buf[i] ='A';
1 read e.g. c = buf[1000];

digit 2: WHICH BOUND

Which bound gets violated, the upper or lower?

o upper bound e.g. buf[sizeof(buf)] = 'A';
1 lower bound e.g. buf[-1] = 'A';

59



digit 3: TYPE

What type of data is stored in the buffer?

O char
1 int
2 float
3 wchar
4 pointer (e.g. char *buf[i])
5 unsigned int
6 uchar
7 signed char
8 guint8
9 gchar
A double

digit 4: WHERE

Where in memory is the buffer that gets overflowed?

0 on the stack
1 on the heap
2 in data region (declared static, initialized data)
3 in bss data (declared static, uninitialized data)
4 in shared memory

digit 5: SCOPE

Where is the buffer allocated and where is it overrun?

0 allocated in main, overrun in main
1 allocated as global, overrun in main or function
2 allocated in main, overrun in function in same file (inter-procedural)
3 allocated in a function, overrun in same function
4 allocated externally, overrun in different file (inter-file)
5 allocated in one func, overrun in same file, different func (inter-procedural)

digit 6: CONTAINER

Is this buffer inside of a container?

0 no, self contained
1 yes, an array of buffers

60



2 yes, a struct containing a buffer
3 yes, a union containing a buffer
4 yes, an array of structs containing buffers

digit 7: INDEX/LIMIT COMPUTATION

How is the integer index
... or length provided to str*/mem*/... function)
... or limit for accessing "for" loop,
computed?

a constant
a variable
a linear expression
a nonlinear expression
the return value of a function
the contents of an integer array
none

e.g.
e.g.
e.g.
e.g.
e.g.
e.g.
e.g.

a[2] , *(a+2)
a[i]
a[5*i+2]
a[i%3], a[(unsigned char) i], a[i*i]
a[randomo]
a[b[i]], a[*b]
*p++

digit 8: ACCESS METHOD

How is this buffer read/written?

0 via an index e.g. a[i] ='a'
1 via a pointer e.g. *p ='a'
2 via a function e.g. strncpy (a,b,3)
3 mixed, i.e one branch of if-statement overflows buffer

through function and other through pointer
4 via doubly dereferenced pointer e.g. *(*p) = 'a'
5 standard C macro (e.g. PUTSHORT('A', ptr))

digit 9: ALIAS

Is the buffer accessed through an alias or an alias to an alias?

o no aliasing, access is through the original
1 yes, it is accessed through an alias to the original e.g. ptr = buf; *ptr = 'a';
2 yes, it is accessed through an alias to an alias to the original

61

It is

0
1
2
3
4
5
6



digit 10: CONTROL FLOW

Is the overflow in some way obfuscated by program control flow, i.e., does the
buffer overflow occur inside an if-statement block, a switch case, conditional
statement etc?

0 no
1 yes, through an if statement
2 yes, through a switch statement
3 yes, through a cond statement e.g. (i>4) ? i++; i--;
4 yes, through a goto statement
5 yes, through a setjmp statement
6 yes, through a function pointer
7 yes, through recursion
8 yes, through (shudder) mutual recursion

digit 11: LOOPS

Does the overflow happen within a loop construct?

0 no, no loop
1 yes, in a for loop
2 yes, in a do-while loop
3 yes, in a while loop
4 yes, nested loops (i.e while loop inside a for loop)

digit 12: ASYNCHRONY

Is the buffer overflow obscured by some asynchronous program construct?

0 no
1 yes, via threads API (analysis tool doesn't understand API)
2 yes, via a forked process API
3 yes, via a signal handler API
4 yes, via threads data asynchrony
5 yes, via process data asynchrony
6 yes, via signal handler data asynchrony

62



digit 13: TAINT

Is the buffer overflow in some way influenceable externally?

o no
1 yes,
2 yes,
3 yes,
4 yes,
5 yes,

through argc/argv
through environment variables, getenv(name)
by reading from a file
through packet data (i.e., read from socket)
through calls such as getcwd, pwd etc.

5.1 Simple Test Cases

Once a classification scheme had been established, a set of approximately 50 pairs
of test cases was created to try to evaluate the strenghts and the weaknesses of the
different semantic analysis tools. The test cases were simple programs, usually not
spanning more than twenty lines of code. The test cases were written in pairs - a bad
version of the program and a fixed version of the program. The test cases were designed
to try to cover all thirteen axes of our classification scheme. However, we did not create
an exhaustive list of test cases covering all possible combinations of the thirteen fields;
for the most part, each test case included a bug for which most of its fields were the
default value and one or two fields deviated from the default. Take a look at the example
programs below. These two test programs could be named something like: test-
0001001000100-BAD.c and test- 0001001000100-OK.c.

/*BAD Version*/
#include <stdio.h>
#include <stdlib.h>

int maino{

/*OK Version*/
#include <stdio.h>
#include <stdlib.h>

int maino{

int i;
char *buf = (char *) malloc(20);

for(i = 0; i<21; i++){
/*BAD*/
bufli] = 'a';

int i;
char *buf = (char *) malloc(20);

for(i = 0; i<20; i++){
/*OK*/
buf[i]= 'a';

}

return 0;

}
return 0;

I

63



There were a few exceptions to the single deviation rule, as in the example
programs shown below. Here two fields deviate from the default value, namely the
location of the buffer and the type of buffer.

"BAD Version"
#include <stdio.h>
#include <stdlib.h>

"OK Version"
#include <stdio.h>
#include <stdlib.h>

int main({ int mainO{

char **buf, *bufA = "Alice";
int i;

buf = (char **) malloc(2*sizeof(char *));

for(i=O; i<3; i++){
/*BAD*/

buf[i] = bufA;

}I

return 0;

}

char **buf, *bufA = "Alice";
int i;

buf = (char **) malloc(2*sizeof(char *));

for(i=O; i<2; i++){
/*OK*/
buf[i] = bufA;

}

return 0;

I

These two test cases could be named test-0041001000100-BAD.c and test-
004 1001000100-OK.c, respectively. Notice, that the thirteen fields of the fixed program
are the same as those of the bad program; we don't care how the program was fixed.

Here is another program that illustrates the improper usage of a string function.
What programmers sometimes forget is that stmcato automatically null terminates the
destination buffer. Here the programmer has forgotten to leave space for the null byte,
resulting in an off-by-one overflow.

Test-000000420000-BAD.c
String Functions, Off-by-one bug in stmcato:

#include <stdio.h>
#include <stdlib.h>
#include <string.h>

int maino{
char buf[6] = "Hi";
char bufB[] " there";

#include <stdio.h>
#include <stdlib.h>
#include <string.h>

int maino{
char buf[6] = "Hi";
char bufB[] = " there";

/*BAD*/
strncat(buf, bufB, sizeof(buf)-strlen(buf));

return 0;

I

/*OK*/
strncat(buf, bufB, sizeof(buf)-strlen(buf)-1);

return 0;

I

64



The set of test cases that we created had a pretty good coverage of the different
types of buffer overflows. The test cases included all possible locations of the
overflowed buffer, i.e., the stack, the heap, the bss and the data regions, different scope
scenarios, e.g., inter-procedural vs. intra-procedural, different control flow constructs,
e.g. if statements, for loops, while loops, switches, and tainted and untainted cases.

To illustrate the complexity of analysis that static analysis tools need to carry out,
we show two fairly simple programs that would give a lot of trouble to most of the
semantic analysis tools.

In the following program, a global variable, num, is used as an index to a buffer.
A call to changejindex(void) has the side effect of changing the global variable. In order
to catch the particular bug, a tool would need to be able to do dataflow analysis, control-
flow analysis, handle global variables, and perform inter-procedural analysis.

Inter-procedural:
/*inspired by code segment from mutt-1.3.28/sendlib.c*/

#include <stdio.h>

static int num;
static char buf[4];

void change-indexo{
num = 4;

}

void writetobuf ({
if (num == 2)
changeindexO;

/*BAD*/
buf[num++] = 'a'; /* illegal write here*/

}

int maino {

#include <stdio.h>

static int num;
static char buf[4];

void changejindex()
num = 0;

I

void write to buf (){
if (num == 2)

change-indexo;

/*OK*/
buf[num++] = 'a';

I

int maino {

num = 2;
writeto-bufo;

return 0;

num = 2;
writeto-bufo;

return 0;
I }

65



The following program is interesting because it involves tainting a buffer by reading from
the command line, and using a nested control flow statement. An if-statement is used as
a test for breaking out of a for-loop.

Tainting and Control Flow:
/* based on code from Ethereal 0.9.8: packet-rtsp.c:716 */

#include <stdio.h>
#include <string.h>

int maino{
int i;
char buf[8];

#include <stdio.h>
#include <string.h>

int maino{
int i;
char buf[8];

scanf("%7s", buf);
for(i=0; i<sizeof(buf); i++){

if (buf[i] == 'N')
break;

}
/* BAD */
/* possible out-of-bounds write */
buf[i] ='M';

return 0;

}

scanf("%7s", buf);
for(i=0; i<sizeof(buf); i++){

if (buf[i] == 'N')
break;

I
if (i == sizeof(buf))

return 1;
/*OK*/
buf[i] ='M;

return 0;
I

Roughly 50 simple test programs were constructed as part of this thesis work. The test
cases are being used by other researchers to analyze the performance of static code
analysis tools, and the results will be presented elsewhere. The remainder of this thesis
focuses on real buffer overflow vulnerabilities, rather than the simple test cases.

5.2 Real Vulnerabilities

To test the effectiveness of our suite of static semantic analysis tools, we chose to
analyze three applications: BIND (Berkeley Internet Domain), WU-FTPD (Washington
University FTPD), and Sendmail. BIND is the most popular software used for running
DNS servers. WU-FTPD is a very popular FTP daemon, and Sendmail is currently the
most popular mail transfer agent (MTA). All three of these applications have had several
serious buffer overflow vulnerabilities publicized in the past several years. Fourteen
severe buffer overflow vulnerabilities were selected for this study. Most of the
vulnerabilities allowed a remote attacker to gain full control of the system running the
vulnerable software and execute arbitrary code. The goal of this retrospective analysis
was to see if any of the semantic analysis tools would have been able to detect any of
these vulnerabilities.

66



I began by trying to run Splint on a vulnerable version of Sendmail, version
8.12.4. It soon became apparent that getting Splint to run on the entire version of
Sendmail was not going to be easy. Splint issued many parse errors regarding specific
type definitions such as uchar and ujlong. Even though all of the types in question
were defined either in Sendmail include files or standard C include files, Splint was not
able to continue with analysis without user intervention. I obtained from David Evans,
the creator of Splint, a page-long list of definitions that were required in order for Splint
to run on Sendmail. Similar problems were encountered when I tried analyzing an old
version of Sendmail using ARCHER. ARCHER was able to carry out some analysis of
the code, but it terminated with a cryptic "divide by zero error". PolySpace's C Verifier
did not fare much better. It took a PolySpace expert to come up with a script that
contained all the necessary flags, and to create a list of all the necessary #define
statements and include files, in order for C Verifier to be able to analyze the code for
Sendmail 8.12.4. Seeing how difficult it was to get all of the tools to analyze large and
complex programs like Sendmail (40K+ lines of code (LOC)), we decided that a better
strategy would be to try to extract as much code from the real programs as possible,
making sure to contain the buffer overflow vulnerabilities, and to create smaller, self-
contained model programs.

Every possible attempt was made to try to preserve the general structure of the
vulnerable code when creating these model programs. For instance, if the buffer
overflow vulnerability involved cross-procedural calls, the model program had to
preserve this structure. By extracting as much code as possible, the relative complexity
of the model programs would remain close to the complexity of the real program. Any
strange code that served to obfuscate the bug in the real program would obfuscate the bug
in the smaller model program. Extracting code from BIND, WU-FTPD, and Sendmail
was especially difficult when the vulnerability involved several procedure calls. On
average five to seven hours were spent in the process of constructing each model
program and getting it to compile with the -Wall and -pedantic gcc flags. Being able to
compile the test program with these flags is strongly recommended, especially for testing
programs with PolySpace's C Verifier. For each of the "BAD" model programs, i.e.,
programs containing the specific vulnerabilities, an "OK" version of the model program
was also constructed, where the problems had been fixed.

Although being able to analyze the original programs would be ideal, the results
of analyzing the model programs would be instructive as well; if a tool could detect any
of the buffer overflow vulnerabilities in the model programs, there would be high hope
that the tool could also detect these vulnerabilities in the original version of the program
(after serious hand-holding and expert configuration). Another goal of this experiment
was to see if the tools could differentiate between the "BAD" programs and the
corresponding "OK" programs without raising many false alarms. Each of the fourteen
vulnerabilities was classified using the scheme described in section 5.0. To see one of
the model programs involving a recent Sendmail vulnerability refer to Appendix D.

67



5.3 Vulnerabilities in BIND (See Appendix C)

Vulnerabilities in BIND, the software that powers most DNS servers, are
especially grave since the operation of the Internet relies on the proper functioning of
DNS servers. By subverting a single DNS server, an attacker can compromise the
integrity of the majority of websites on the Internet. Several of the buffer overflow
vulnerabilities that we are about to discuss allow a remote attacker to gain full control of
the vulnerable DNS server and execute arbitrary code on the machine running the DNS
server. One of the vulnerabilities allows a remote attacker to crash the name server, thus
resulting in a denial of service.

5.3.0 nslookupComplain vulnerability: CERT Advisory CA-2001-02

On January 2 9 1h, 2001, a CERT security advisory was published regarding a
vulnerablity in versions of BIND prior to 4.9.8. This vulnerability involves a stack buffer
overflow in a function called nslookupComplaino.

Classification of buffer overflow: 0000306201004.

When a DNS server running BIND 4 receives a query with a hostname to be
resolved into an IP address, the server first tries to resolve the name locally, by checking
the local zone files and the local cache. If the name server is unable to resolve the
hostname locally, it tries to delegate the job to another name server. BIND retrieves from
a local database a list of name server records, or NS records, for name servers that are
responsible for the hostname in question. Once the list of NS records has been retrieved,
BIND will try to find out the IP address corresponding to each of the NS records in the
list by calling nslookupO. The original name server will then use the list of IP addresses
to query other name servers in order to try to resolve the original hostname. During the
process of creating the list of IP addresses of the name servers, nslookupo checks each of
the IP addresses it finds for validity. If the IP address is invalid, e.g. 0.0.0.0 or
255.255.255.255, nslookupo complains by calling a function called nslookupComplaino.
nslookupComplaino is responsible for generating an error message to be logged to
syslog.

While generating the error message, nslookupComplaino uses sprintfo to store
the message into a fixed size buffer that resides on the stack. No size check is performed
to see if the buffer is large enough to store the entire complaint. As a result, an attacker
may be able to construct a long query that overflows the stack buffer and overwrites the
return address of nslookupComplaino with the address of the attacker's shell code.

5.3.1 SIG-BUG: CERT Advisory CA-1999-14

This vulnerability was published in November 10, 1999 and it involves a buffer
overflow because of improper handling of SIG records.

68



Classification of buffer overflow: 0060301212004

Several versions 4.x and 8.x of BIND are susceptible to an attack that causes the
DNS server to crash resulting in denial of service. Name servers use SIG records as a
means of authenticating themselves to other name servers and vice versa. The SIG
records contain cryptographic signatures and key information that allow the recipient
name server to verify that the sender is indeed who it claims to be. A function called
rrextract() (where rr stands for resource record) is responsible for parsing SIG records,
along with other types of records. This function contains a memcpyo call that does not
properly validate the size argument.

Inside of rrextract() there is a switch statement that deals with SIG resource
records. Inside the switch statement, the resource record that has been received from the
network gets modified and gets stored into a data buffer, which gets referred to via a
pointer called cp . For the SIG record, the data that gets written to cp 1 includes the
signer's name and the signer's signature among other things. The vulnerable code looks
something like this:

static int rrextract(...){

u_char data[MAXDATA*2];

switch(type){ /* do stuff for each type of resource record */

case TSIG:

cpl = (uchar *)data;

* Expands the signer's name and puts it into cpl */
/ n is the length of the compressed signer's name */
n = dn-expand(msg, eom, cp, (char *)cpl, (sizeof data) - 18);

if (n<0) f
hp->rcode = FORMERR;
return (-1);
}

cp += n;
cpl += strlen((char*)cpl)+l;

/* Finally, we copy over the variable-length signature into cpl.
Its size is the total length of the received resource record (dlen), minus what
we have copied so far, NSSIGSIGNER + n bytes..

*/

n = dlen - (NSSIGSIGNER + n);

if (n > (sizeof data) - (cp 1 - (u-char *)data)) I

Exit with an error!

}

69



/* Finally copy the signature into cp 1, which points to data[] *
memcpy(cpI, cp, n);

The problem in the above code is that the third argument to final memcpy call, n,
can end up being negative, i.e. if dlen < NSSIGSIGNER + n. If n comes out negative,
then the if-statement before the memcpy will get skipped (unless the compiler casts n to
an unsigned integer during the comparison). The third argument of memcpy always gets
cast to an unsigned integer, so a negative n will get interpreted as a very large positive
number, approximately 4GB on a 32 bit architecture. The memcpy will end up writing
close to 4 billion bytes to the data buffer and will cause the DNS server to crash!

5.3.2 NXT-BUG: CERT Advisory CA-1999-14

This vulnerability was published as a CERT advisory on November 1, 1999,
along with the SIG-BUG vulnerability. This vulnerability involves a buffer overflow in
the code handling NXT resource records, and can allow a remote attacker to execute
arbitrary code running with the privileges of the target DNS server, usually root. BIND
version 8.2 is vulnerable.

Classification of buffer overflow:0060301212004

A malformed response from one DNS server to another, containing a NXT record,
can trigger a buffer overflow in the buffer designed to store the response. The overflow
is similar to the one described in the SIG-BUG discussion. The function for parsing NXT
record responses is also rrextracto, and the NXT case is one of the cases of a switch
statement, like the SIG case. Here is what the case for NXT records looks like:

1. case T_NXT:
2. n = dnexpand(msg, eom, cp, (char *)data, sizeof data);
3. if (n < 0) {
4. hp->rcode = FORMERR;
5. return (-1);
6.
7. if (!nsnameok((char *)data, class, NULL, response_trans,
8. domainctx, dname, from.sin addr)) {
9. hp->rcode = FORMERR;
10. return (-1);
11. 1
12. cp += n;
13. cpl = data + strlen((char *)data) + 1;
14. memcpy(cpl, cp, dien - n);
15.
16. cp += (dlen - n);
17. cpl += (dlen - n);
18.
19. /* compute size of data */
20. n = cpI - (u-char *)data;
21. cpl = (u-char *)data;

70



22. break;

The overflow occurs in the memcpy on line 14. The problem here is that the
program never checks to see if dlen - n bytes fit into the data buffer, i.e., the buffer
pointed to by cp 1. Dlen is the length of the received resource record as specified in the
packet header. An attacker can create a fake DNS packet reply that contains a large fake
dlen. This would cause an overflow in data[]. This overflow can be used to mount a
stack smashing attack resulting in root compromise of the DNS server. If dlen - n is
negative, that quantity would get cast to a very large positive number, and data[] buffer
would get overflowed with approx. 4GB, resulting in a crash, i.e., denial of service.

Here is how an attacker could carry out an attack. Suppose that there is a master
name server that controls some domain Y.com. An attacker first secretly inserts an NS
record, N, for a fake subdomain X.Y.com into the master DNS server's database, such
that the IP address of the name server in the NS record is the IP address of an attacker-
owned machine. Then the attacker queries any desired target DNS server, using a tool
such as nslookup, for some fake hostname Z in the fake domain X.Y.com, i.e.,
Z.X.Y.com. Since Y.com falls under the authority of the hacked master name server, the
target name server queries the master DNS server to try to resolve the subdomain
X.Y.com. The master DNS server cannot resolve the subdomain locally and retrieves the
malicious NS record, N, and the query gets referred to the attacker-owned "DNS server".
The attacker-owned "DNS server" is simply a machine that is patiently listening for
queries on the well-known DNS port, 53, and upon receiving a query, it automatically
delivers an exploit code to the target DNS server in the form of a fake NXT record reply.

5.3.3 IQUERY-BUG CERT Advisory CA-98.05, CVE-1999-0009

This advisory was published on April 8 th, 1998. Versions of BIND 4.9 prior to
4.9.7 and BIND 8 releases prior to 8.1.2 were found to be vulnerable to a buffer overflow
resulting from improperly bounds checking a memcpyo call when responding to inverse
query requests.

Classification of buffer overflow: 0000301200004

A remote attacker can cleverly craft an inverse query request on a TCP stream and
either crash a DNS server or execute arbitrary code.

Let's take a look at the code that handles inverse query requests:

static enum req-action
req-iquery(HEADER *hp, u-char **cpp, uchar *eom, int *buflenp,

u_char *msg, struct sockaddrin from)

int dlen, alen, n, type, class, count;
char dnbuf[MAXDNAME], anbuf[PACKETSZ], *data, *fname;

/* read in domain name, type, class, ttl...*/
GETSHORT(dlen, *cpp); /* get dlen */

71



*cpp += dlen; /* increment *cpp by dlen */

switch (type)
case TA:

if (!nsoptionp(OPTIONFAKE_IQUERY))
return (Refuse);

break;
default:

return (Refuse);

I
ns-debug(nsjlog-default, 1,

"req: IQuery class %d type %d", class, type);

fname = (char *)msg + HFIXEDSZ;
alen = (char *)*cpp - fname;

/* BAD */ /* Copy everything but the header into anbuf */
memcpy(anbuf, fname, alen);
data = anbuf + alen - dlen;
*cpp = (u char *)fname;
*buflenp -= HFIXEDSZ;
count = 0;

The overflow occurs in the final memcpy call, labeled BAD. As in the NXT-
BUG, dlen can be fake, in which case anbuf[] will get overflowed. In an iquery dlen
should equal INT32SZ, or four bytes, where the four bytes correspond to the four fields
of an IP address. If dlen is not equal to four, it is an invalid iquery. Unfortunately, the
above code has no check for invalid iqueries. If dlen is a large value, then alen will be a
large value, possibly larger than PACKETSZ, in which case anbuf will get overflowed.

5.3.4 TSIG Overflow CA-2001-02

This vulnerability was published along with the nslookupComplain vulnerability
on January 29, 2001. This vulnerability involves a buffer overflow in the section of code
responsible for handling invalid transaction signatures. The TSIG vulnerability has been
exploited by the LiOn worm. The vulnerability allows a remote attacker to gain root
access to the server running BIND. Versions of BIND 8.2-8.2.2p7 are vulnerable.
Depending on which protocol is used to send the bad transaction signature, TCP or UDP,
different buffers may be overflowed.

UDP:
Classification of buffer overflow: 0060436520004

TCP:
Classification of buffer overflow: 0061526520004

72



Trying to extract code to create model programs for these vulnerabilities proved to be
very difficult due to the highly inter-procedural nature of the bug. This idea was
therefore abandoned for these two vulnerabilities. For this reason, unfortunately, these
two vulnerabilities were not included in the evaluation of the tools. Nevertheless,
classifying and discussing these vulnerabilities can prove to be instructive.

When a DNS server receives a request, the request gets stored either on the stack or on
the heap, depending on which transport protocol is used. If TCP is used to send the
request, the request gets stored in a buffer allocated on the heap. If UDP is used, the
request gets stored in a buffer allocated on the stack.

If TCP is the mode of transport, the request is read by stream-getlen() and is stored in a
heap buffer of size 64K, called "sp->s-buf". If UDP is used, a function by the name
datagram~read() reads the request and puts it into a 513-byte stack buffer called "u.buf".
In both transport modes, BIND reads the request stored in the buffer and stores the reply
in the same buffer. Two variables, msglen and buflen, are used for tracking the amount
of space that's used in the buffer. Msglen contains the length of the message that is
written in the buffer, and buflen contains the number of bytes remaining free in the
buffer. Initially, in the TCP case, msglen is equal to the length of the request message,
as provided by the client, and buflen is initialized to the total capacity of the buffer, or
64K. In the UDP case, msglen is the number of bytes read from the network through the
recvfromO call and buflen is set to 513.

Under normal circumstances, BIND appends the answer, the "authoritative records", and
any other records, right after the stored request. The DNS header then gets modified and
the response is delivered. While this is taking place, msglen is used to keep track of the
total length of the data in the buffer, and buflen is used to keep track of how much space
is left in the buffer. Thus, while BIND is processing the request and creating the
response, it assumes that msglen plus buflen equals the total capacity of the buffer. This
is usually true, except for an anomalous case when the request contains a transaction
signature, but no valid key. In the case that a signature is found without a valid key,
BIND issues an error and bypasses the normal request processing. As a result, msglen
and buflen remain very close to their initial values, rather than being set to their
"working" values.

After an error has been issued signaling that a signature has been found without a valid
key, BIND appends a "generic" TSIG right after the DNS question. During this process,
BIND incorrectly assumes that the total capacity of the buffer is msglen + buflen. This
is true under normal circumstances, but in this case msglen plus buflen equals almost
twice the capacity of the buffer! Thus, BIND will willingly append bytes even past the
end of the buffer. The generic signature will consist of only a few bytes with limited
values, but it turns out that this is enough to be able to construct an overflow attack.

73



5.4 Vulnerabilities in Sendmail (See Appendix C)

Sendmail is what is known as a Mail Transfer Agent (MTA). Independent of
what e-mail client is being used, be it Eudora, Pine, Microsoft Outlook, etc., once the e-
mail is ready to be sent, it gets passed on to the MTA. An MTA is responsible for
transferring mail between machines and making sure that the mail reaches its destination.
Sendmail is currently the most widely used MTA, although other MTAs are becoming
popular as well, such as QMAIL and Postfix, which are arguably more secure than
Sendmail. In the past five years or so, Sendmail has gone through many versions and
patches. During this time, close to ten serious buffer overflow vulnerabilities have been
published in security advisories. We will look at seven high severity buffer overflow
vulnerabilities.

5.4.0 Remote Sendmail Header Processing Vulnerability CA-2003-07

This is the most recent Sendmail buffer overflow vulnerability, and it affects
versions 5.79 to 8.12.7. It was published on March 02, 2003.

Classification of buffer overflow: 0003306111304

This buffer overflow vulnerability allows remote attackers to execute arbitrary
commands by sending e-mails with cleverly formatted address fields related to the sender
and the recipient header comments. These email headers are processed inside headers.c
by a function called crackaddrO.

The email header comments can be in the "From", "To" and "CC" lines, and it is
the job of crackaddr to evaluate whether or not the supplied address in each of these
header fields are valid. A static buffer, i.e., located in the BSS segment of process
memory, is used to store the processed data. When the buffer gets full, Sendmail stops
adding characters to it, but it continues to process the data.

The buffer declaration looks like:
static char buf[MAXNAME + 1];

A pointer called buflim is used to keep track of the maximum address in the buffer to
which processed characters may be written. Buflim is initialized to point seven bytes left
of the end of the buffer.

buflim = &buf[sizeof buf - 7];

The problem lies in the incorrect handling of the <> bracket chars in the "From"
address field. Inside crackaddrO, whenever a closing bracket is encountered, the value of
the buflim pointer gets incremented by one. Unfortunately, due to an oversight, in the
corresponding situation, whenever an opening bracket is encountered, buflim is not
decremented. As a result, for each closing bracket that is read in from the address field,
the buflim pointer gets incremented, and subsequently the program thinks that the buffer

74



is able to store more characters than it really can. The code inside crackaddro does have
a check to ensure that every closing bracket is matched by an opening bracket, and so, in
order to increment buflim by one, at least two characters, < and >, must be received.
This leads us to an equation for calculating the maximum value, x, by which buflim can
be incremented above the size of the buffer buf:

(2*x) <= (MAXNAME + 1 - 7) + x,
which implies,

x <= (MAXNAME + 1 - 7)

Thus, we conclude that the maximum value by which buflim can be incremented is
MAXNAME-6, or 250. This means that it is possible to write 250+250 = 500 characters
into a buffer of size 257!

5.4.1 Gecos Overflow CVE-1999-0131

This vulnerability was published on September 11 h, 1996. The vulnerability
involves a buffer overflow in the code that handles the user's gecos field (a.k.a. real name
field) which is found in the password file. Sendmail version 8.7.5 is vulnerable to this
overflow.

Classification of buffer overflow: 0000406321103

Let us take a look at the relevant code:

Inside recipient.c, a fixed-size stack buffer nbuf is defined:
char nbuf[MAXNAME + 1];

Later on, a call to buildfname is made:
buildfname(pw->pwgecos, pw->pwname, nbuf);

The overflow occurs because buildfname does not correctly check the size of nbuf:

buildfname(3) is defined inside util.c:

void buildfname(gecos, login, buf)
register char *gecos;
char *login;
char *buf;

{
register char *p;
register char *bp = buf;
int 1;

if (*gecos == *')

gecos++;

/* find length of final string */

75



I = 0;
for (p = gecos; *p != '\0' && *p !','&& *p != ';' && *p != '%'; p++)

{
if (*p ==

I += strlen(login);
else

1++;

/* now fill in buf */
for (p = gecos; *p != '\0' && *p && *p !=';' && *p != '%'; p++)
{

if (*p ==
{

(void) strcpy(bp, login); /* POSSIBLE BUFFER OVERFLOW */
*bp = toupper(*bp);
while (*bp !='\O')

bp++;
}
else

*bp++ = *p; /* POSSIBLE BUFFER OVERFLOW */

}
*bp = '\0'

We have indicated two places in the code where an out-of-bounds error can occur.
As a result of this overflow vulnerability any local user can elevate their effective UID to
0 (root).

Many operating systems allow the user to change the gecos field to an arbitrary
string using the chfnO command. Systems that allow this include NetBSD, FreeBSD,
BSDI, OpenBSD, and Linux. Therefore, a local user can cleverly craft the gecos field to
carry out a stack-smashing attack, resulting in root compromise. A quick fix to this
problem would be to disallow users on a local system to change their gecos field.
However, version 8.7.6 fixes this problem by adding relevant bounds checks to the code.

5.4.2 Sendmail 8.8.0/8.8.1 MIME Overflow CVE-1999-0206

This vulnerability was published on October 1", 1996. There exists a buffer
overflow in versions 8.8.0 and 8.8.1 inside a function that deals with MIME encoding
conversions. A remote attacker can send a cleverly crafted e-mail message and trigger
the buffer overflow, gaining root access on the server running Sendmail.

Classification of buffer overflow: 0060506421304

76



This vulnerability exists only if a certain undocumented flag, "9", is set inside the
sendmail.cf file. Fortunately for the attackers, this flag used to be set by default in the
cf/mailer/local.m4 file that shipped with Sendmail 8.8.0.

If the "9" flag is set, a certain function by the name of mime7to8() gets called. The
buffer that gets overflowed is uchar obuf[MAXLINE], which gets declared inside
mime7to8() and gets passed as a pointer, obp, to mimejfromqpo. The actual buffer
overflow occurs inside mimefromqpo. The relevant code is shown below.

Inside mime7to8() the code looks like:

u_char *obp;
u_char obuf[MAXLINE];
u_char fbuf[MAXLINE];

/* quoted-printable */
obp = obuf;
while (fgets(buf, sizeof buf, e->e-dfp) != NULL)

if (mimefromqp((u_char *) buf, &obp, 0, MAXLINE) == 0)
continue;

putline((char *) obuf, mci);
obp = obuf;

}

The relevant code inside mime-fromqp looks like:

int
mimejfromqp(infile, outfile, state, maxlen)

u_char *infile;
u_char **outfile;
int state; /* Decoding body (0) or header (1) */
int maxlen; /* Max # of chars allowed in outfile */

{
int cI, c2;
int nchar = 0;

while ((cI = *infile++) != '\O')
{

if (c =='')

if ((c l = *infile++) == 0)
break;

if (cI == '\n') /* ignore it */
I

if (state == 0)

77



return 0;

}
else

if ((c2 = *infile++) == '\O')
break;

cI = HEXCHAR(c1);
c2 = HEXCHAR(c2);

if (++nchar > maxlen)
break;

*(*outfile)++= cl << 4jc2; /* POSSIBLE BUFFER OVERFLOW */

else
{

if (state == I &&c =='_')
ci = ''

if (++nchar > maxlen)
break;

*(*outfile)++= ci; /* POSSIBLE BUFFER OVERFLOW */

if (cl =='\n')
break;

*(*outfile)++= '\0'; /* POSSIBLE BUFFER OVERFLOW */
return 1;

}

The buffer obuf[] is used as a temporary storage area to store individual lines of data that
get read in from bufl. Normally, once a full line has been read into obuf, the data gets
expunged from it, and the obp pointer gets reset to the beginning of obuf.

If mimefromqp sees a '=' followed by '\n', it chops off those two characters and returns 0
to indicate a continuation line. In this case, the while loop continues and reads the next
input line and appends its contents to obuf, without resetting the obp pointer to the
beginning of obuf. If the while loop is forced to continue enough times, without resetting
obp to obuf, then eventually obp will point past the upper boundary of obuf. This means
that if an attacker creates a large message where each line ends with "=\n", eventually the
buffer obuf will get overflowed. The attacker is thus able to write arbitrary data to the
stack (except for '\0' characters).

5.4.3 Sendmail 8.8.3/8.8.4 MIME Overflow CVE-1999-0047

This vulnerability was published on January 2 0 th, 1997. Like the previously
discussed vulnerability, this vulnerability involves an overflow inside the MIME
handling routine. A remote attacker can send a cleverly crafted message that would

78



trigger a buffer overflow and allow execution of arbitrary commands on the Sendmail
server with root privileges.

Classification of buffer overflow: 0060306111304

The problem occurs inside the function mime7to8(). We show some of the
relevant code below:

Inside mime7to8():

u_char *fbufp;
u_char fbuf[MAXLINE + 1];
u_char obuf[MAXLINE + 1];
u_char *obp;

do [
if (strcasecmp(cte, "base64") == 0)

{
1. int cl, c2, c3, c4;
2. fbufp = fbuf;

3. while ((cI = fgetc(e->e-dfp)) != EOF){

/*Read in four non-whitespace characters cI, c2, c3, c4*/

/* Write data to fbuf */
4. *fbufp = (cI << 2)1 ((c2 & 0x30) >> 4); /* possible out-of-bounds write */

5. if (*fbufp++ == '\n' | fbuf >= &fbuf[MAXLINE]){
6. if (*--fbufp !='\n' *--fbufp !='\r') /* possible out-of-bounds read */
7. fbufp++;
8. *fbufp = '\0'; /* possible out-of-bounds write */
9. putline((char *) fbuf, mci);
10. fbufp = fbuf;

}}

In the code above, fbuf is used as a temporary buffer for storing the character that are
read in from e->e-dfp. A pointer called fbufp is used to alias the buffer fbuf. If a
newline character is read in, the data is expunged from fbuf and the pointer fbufp is reset
to the beginning of fbuf. Line 5 is meant to check if either a newline character has been
read in or if the pointer fbufp has reached the end of the buffer fbuf. Unfortunately, there
is a typo in this latter check; instead of checking to see if "fbufp >= &fbuf[MAXLINE]",
the check says "fbuf >= &fbuf[MAXLINE]", which is never true.

79



Thus, the only time that fbufp can be reset to the beginning of fbuf is if a newline
character is read in; the bounds check is non-existent. So, all an attacker needs to do to
prevent fbufp from being reset is to create a string that does not contain any newline
characters. So, if the string in e->e-dfp is longer than MAXLINE + 1 and doesn't contain
any '\n' characters, then fbuf will get overflowed.

In addition to the overflow possibility described above, there is a possible illegal read and
illegal write on lines 6 and 8 respectively. If *fbufp happens to be '\n' during the check
on line 5, then on line 6, fbufp gets decremented twice. If it were the case that coming
into line 5, fbufp pointed to fbuf[O] and *fbufp was equal to '\n', then on line 6, the
comparison *-fbufp != \r' would be referencing fbuf[- 1]! If it also happened that the
location corresponding to fbuf[-1] contained a '\r', then on line 8, a null byte would get
written to fbuf[- 1], resulting in an illegal write!

5.4.4 prescan( ) overflow CA-2003-12

This is a recent buffer overflow vulnerability affecting all versions of Sendmail
before 8.12.9. This vulnerability was published on Mar 29, 2003. The overflow occurs
inside parseaddr.c, in a function called prescano that processes email addresses and splits
them up into tokens. A remote attacker can send a fake email with a cleverly crafted
address that triggers a buffer overflow and allows the attacker to gain root access to the
Sendmail server.

Classification of buffer overflow: 0000506111404

This vulnerability is quite subtle; it results from an unintended type cast from a signed
character to a signed integer. Let's see what happens inside prescano.

A pointer called pvpbuf is passed to prescan and is used to store the characters read in
from the email address. Calls to prescan() are fairly common in Sendmail, and pvpbuf is
usually a pointer to a stack buffer. Prescan () uses a constant named NOCHAR, defined
as -1, to signal abnormal cases when no character has been read. An int variable c, i.e.
signed integer, is used to store the individual characters read in from the email address.
Since on many platforms the character type is signed by default, reading in (char) Oxff
and assigning it to the variable c would set c to -1, i.e., NOCHAR.

Inside prescano, a pointer, q, is created as an alias for pvpbuf. Characters, c, are read one
at a time from the email address and are written to pvpbuf through q. If c ever gets set to
NOCHAR, Sendmail does not bother performing a bounds check (Line 4) to see if
pointer q points past the upper limit of pvpbuf.

Excerpt from prescano:

I.q = pvpbuf;

80



do {
2. if (c NOCHAR && !bslashmode)
3.

/* see if there is room */

4. if (q >= &pvpbuf[pvpbsize - 5]) /* This size check gets bypassed if c=NOCHAR */

usrerr("553 5.1.1 Address too long");
if (strlen(addr) > (SIZET) MAXNAME)

addr[MAXNAME] = '\O';

returnnull:
if (delimptr != NULL)

*delimptr = p;

CurEnv->eto = saveto;
return NULL;

/* squirrel it away */
*q++= c;

}

C = *p++;

/*BAD*/16. *q ='\0';

(bslashmode)

bslashmode = FALSE;
if (cmntcnt > 0)

c = NOCHAR;
continue;

}
23. else if (c != '!' state == QST)

{

/*BAD*/
*q++ ='\\' /* write the backslash to pvpbuf */

continue; /* continue while loop */

}
}

26. if (c ==

{
27. bslashmode = TRUE;

}

28. if (c == NOCHAR){
continue;

}

81

5.
6.
7.
8.

9.
10.
11.

12.
13.

14.

15.

if
{

17.
18.
19.
20.

21.
22.

24.
25.

{

}



29. } while(c != '\O' && (c != delim 11 anglecnt > 0));

If the address consists of a very long string of the form \\\377\\\377\\\377...., i.e.,
alternating backslash and Oxff characters, pvpbuf gets overflowed. What happens is the
following:

1. On line 15, c gets set to '\\'. backslashmode gets set to TRUE (Line 27).
2. Check on Line 2 is false. Line 15, c = \377 = OxFF ~ NOCHAR.
3. Since backslashmode = TRUE, a '\\' gets written to pvpbuf (Line 24) and we

continue to beginning of do-while loop.
4. Since c = NOCHAR, the check on Line 2 is false.
5. Step 1-4 get repeated until final slash is written to pvpbuf.

6. c = '\0'. '\0' gets written to pvpbuf on line 16 and do-while loop exits.

In this case, pvpbuf[] would get flooded with backslashes (Ox5c) and a final null
byte(0x00). By overwriting the two least significant bytes of the saved frame pointer
(EBP) in prescano's stack frame, it is possible to change the execution flow of the
program. An attacker could construct a fake stack frame and overwrite the saved EBP to
cause the new frame pointer to point to the fake stack frame. The fake stack frame would
look like the stack frame of the caller of prescano, but its return address would be the
address of some arbitrary code (on the stack, heap, libc routine etc.), and the local
variables in the fake stack frame could have arbitrary values. Thus, even without
executing arbitrary code, it is possible to cause the caller of prescano to behave
abnormally by using the fake values of the local variables.

Interestingly, even though the attacker can overflow the buffer with only backslash
characters and one null byte, this is enough to change the execution flow of the program
and gain root access to the system running the Sendmail server.

5.4.5 tTflag Buffer Underrun CVE-2001-0653

This vulnerability was published on Aug 17, 2001. The vulnerability involves a
buffer overflow inside a debugging function. Versions 8.11.0 - 8.11.5 are affected. A
local user has the ability to trigger a buffer overflow inside the tTflago function and as a
result gain root access to the machine running Sendmail.

Classification of buffer overflow: 0163402020301

The tTflago function is responsible for parsing the -d (debug) command-line
switch value and writing the results to the internal trace vector. tTflago checks that the
index into the trace vector does not exceed the size of the trace vector, unfortunately
because of a type casting side effect, it is possible to bypass this check and write data to a
negative index of the trace vector. Excerpted code for tTflag( ) is shown below:

82



void
tTflag(s)
register char *s;

{
int first, last;
register unsigned int i;

if (*s == '\')
s = DefFlags;

for(;;)
{

* find first flag to set*/
i = 0;
while (isascii(*s) && isdigit(*s))

i = i * 10 + (*s++ - '0');
first = i;

* find last flag to set*/
if (*s==')
{

i=0;
while (isascii(*++s) && isdigit(*s))

i = i * 10 + (*s - '0');

}
last = i;

/* find the level to set it to */
/* Set i to the desired level */

9.
10.
11.
12.
13.
14.
15.

16.
17.
18.
19.
20.
21.
22.
23.

24.
25.
26.

27.
28.
29.
30.
31.

32. /* set the flags */
33. while (first <= last)
34. tTvect[first++]= i;
35. ...

/* assigning unsigned int to signed int */

/* if first is negative, this check will fail */

/* UNDERFLOW CAN OCCUR HERE.*/

The value for the -d flag looks like "x-y", were x and y are integers. Lines 9-14
compute the numerical value of x and store it in an unsigned integer i. On line 15, the
variablefirst, which holds signed integers, gets assigned i. If i contains a very large
positive value, it will get cast to a negative value during the assignment tofirst.
Similarly, a value for last is computed. Then, on lines 28 and 30, a check is performed to
make sure thatfirst and last do not exceed the size of the global array tTvect[], i.e.,
tTsize. Unfortunately, iffirst is negative, the check on line 28 will pass with flying
colors. Then, inside of the while loop on line 34, tTvect will be accessed repeatedly via a
negative index, resulting in a buffer underrun.

83

1.
2.
3.
4.
5.
6.

7.
8.

/* clean up args */
if (first >= tTsize)

first = tTsize - 1;
if (last >= tTsize)

last = tTsize - 1;



5.4.6 TXT Record Overflow CVE-2002-0906

This vulnerability was publicly disclosed on June 28, 2002. A remotely exploitable
buffer overflow exists in Sendmail 8.12.0 to 8.12.4. This vulnerability poses the risk of
a denial of service attack or possibly execution of arbitrary code via a malicious DNS
server.

Classification of buffer overflow: 0001345202004

The buffer overflow can be triggered if Sendmail uses an uncommon option for mapping
addresses, namely that of querying a DNS server for TXT records. The code for parsing
the received TXT records does not properly check the size of the data received. As a
result of this oversight, a malicious name server could send a string of arbitrary length to
the mail server, resulting in a buffer overflow, and potential code execution. According
to the Sendmail Consortium, the possibility of a system being susceptible to this
vulnerability is relatively low, because there are no known configurations that use this
uncommon address mapping option.

The bug occurs in the code that processes responses from the DNS server.

smresolve.c:parsedns_replyo:

The following excerpt from a switch statement is relevant:

case TTXT:
1. (*rr)->rru.rrtxt = (char *) xalloc(size + 1);
2. if ((*rr)->rr_u.rrtxt == NULL)
3. {
4. dnsfreedata(r);
5. return NULL;
6. }
7. (void) strncpy((*rr)->rr u.rr txt, (char*) p + 1, *p); /* OVERFLOW*/
8. (*rr)->rru.rr txt[*p] = 0;

The TXT record looks like txtlen (1 byte) I text-data..., where the first byte, txtlen,
specifies the length of the actual text data that follows.

The variable 'size' specifies the length of the whole data record, including the first length
byte. Thus, txtlen should be less than size. On line 2, the buffer (*rr)->rr _u.rrtxt gets
allocated size + 1 bytes on the heap, using a routine called xallocO. The pointer p points
to the first byte of the data record, so *p = txtlen. On line 7, textlen bytes are copied from
the data record into the buffer (*rr)->rriu.rrtxt. Unfortunately, if size < *p, the buffer
(*rr)->rr-u.fftxt gets overflowed. Thus, if the data record is crafted to contain a false
length byte, a buffer overflow can occur.

84



5.5 Vulnerabilities in WU-FTPD (See Appendix C)

WU-FTPD is a very popular FTP daemon. It is installed and enabled by default
on most Linux variants such as RedHat and Slackware Linux. Thousands of people use
FTP servers to download and upload files. The three buffer overflow vulnerabilities that
we are about to discuss all pose a high risk to the servers running the vulnerable versions
of WU-FTPD. In all three cases, a local and/or remote attacker may be able to gain root
access to the machine running the FTP server.

5.5.0 Off-by-one overflow in fb-realpath () CAN-2003-0466

This vulnerability was published on July 31st, 2003. The vulnerability is an off-
by-one overflow inside the fbrealpatho function that expands a condensed pathname
into a fully qualified pathname. A local user or an anonymous FTP user with write-
access may be able to exploit this overflow to execute arbitrary code on the machine
running the FTP server, with the privileges of the daemon (usually root). Versions of
WU-FTPD prior to and including 2.6.2 are vulnerable to this attack.

Classification of buffer overflow: 0000406210005

Here is the code containing the off-by-one error:

/*
* Join the two strings together, ensuring that the right thing
* happens if the last component is empty, or the dirname is root.
*/
1. if (resolved[0] == '/' && resolved[ 1] == '\O')
2. rootd = 1;
3. else
4. rootd = 0;

5. if (*wbuf) {
6. if (strlen(resolved) + strlen(wbuf) + rootd + 1 > MAXPATHLEN) {
7. errno = ENAMETOOLONG;
8. goto err1;
9. 1
10. if (rootd == 0)
11. (void) strcat(resolved, "/");
12. /* POSSIBLE OVERFLOW HERE */
13. (void) strcat(resolved, wbuf);

fbrealpatho gets passed a condensed pathname and a pointer to a buffer, resolved, for
storing the resolved pathname. The buffer resolved[] is of size MAXPATHLEN. An
overflow occurs when the length of a constructed path is equal to MAXPATHLEN+1.

85



To illustrate how the buffer overflow would occur, suppose that the condensed pathname
is "-/Thesis.txt", where "-" expands to the home directory of the current user, for
instance "/home/john." In the code above, coming into line 6, resolved would contain
something like "/home/john" and wbuf would contain the string "Thesis.txt". Rootd in
this case would equal 0. Suppose that strlen(resolved) + strlen(wbuf) + 1 =
MAXPATHLEN, then the check on line 6 would pass. On line 11, a slash would get
concatenated to resolved, yielding "/home/john/", and that would be OK. However, on
line 13, wbuf would get concatenated to resolved, yielding "/home/john/Thesis.txt".
Unfortunately, this would not be OK, since a null terminator would get also concatenated
to the end of resolved, resulting in an off-by-one overflow. The quick and dirty fix to this
vulnerability is to simply change the ">" in line 6 to a =

In order to exploit this vulnerability, an attacker would first have to create a deep
directory structure. Several FTP commands, including the following STOR, RETR,
APPE, DELE, MKD, RMD, STOU, RNTO, take a filename as an argument and use the
current directory to construct a pathname. During the process of constructing the
pathname, fb realpatho gets called. Thus, by invoking any of the mentioned FTP
commands an attacker would have a good chance of triggering a buffer overflow in
fbrealpath (). If the attacker constructs the directory names cleverly, embedding
hexadecimal opcodes into the names, then the buffer overflow may be used to execute
arbitrary code with the privileges of the FTP server.

5.5.1 Mapped CHDIR Overflow CA-1999-13, CVE-1999-0878

This vulnerability was published on August 2 2 "d 1999. The vulnerability
involves unchecked strcpyo and strcat( calls that copy tainted pathnames into a buffer.
This vulnerability has similar consequences to the previously discussed vulnerability;
either a local user or an anonymous FTP user with write-access permissions may be able
to gain root-level access to the machine running the FTP server. Versions of WU-FTPD
<= 2.5 (and its derivatives) are all vulnerable to this attack.

Actually, three separate buffer may be overflowed as a result of unchecked strcpyo and
strcat( calls: path[], mappedpath[], and pathspace[]. The classifications for each of
these overflows are shown below:

path[] overflow
Classification of buffer overflow: 0000506200005

mapped-path[] overflow
Classification of buffer overflow: 0002106200005

pathspace[]
Classification of buffer overflow: 0003106210005

86



The code in question defines the function 'getcwd' to be 'mapping-getwd'. When an FTP
client sends a CWD command, the 'pwd' function is called which in turn calls 'getcwd'
and passes it a pointer to a stack buffer, path[], of length MAXPATHLEN + 1.

An unchecked strcpyo call lies inside mapping-getwdo:

strcpy( path, mappedpath);

mapped-path is a global buffer (in data region of memory) and has size MAXPATHLEN.
It is possible to overflow mapped-path and as a result overflow path[MAXPATHLEN +
1] as well. It is also possible to overflow another global buffer, pathspace[], which is
located in the BSS region of the process memory.

5.5.2 Realpatho Overflow CERT Advisory: CA-1999-03/CVE-1999-0368

This vulnerability was published on February 9th, 1999. This bug involves
unchecked strcpyo and strcato calls inside the realpatho function. Either a local or a
remote anonymous user can gain root access to the FTP server by exploiting this
vulnerability. Versions of WU-FTPD 2.4.2-academ[BETA-18] or earlier are vulnerable
to this attack, as are versions of ProFTPD, 1.2.Oprel and earlier.

Classification of buffer overflow: 0000406211305

The problem arises inside the realpatho function. Similar to fb realpatho, which was
described earlier, realpatho takes a pathname and canonicalizes it, getting rid of things
such as ".", "..","~" etc. Several FTP commands, including MKD (make directory), call
the realpatho function.

The function responsible for creating a directory, makedirO, calls realpatho several
times. Inside makedirO, a stack buffer, path[MAXPATHLEN + 1], gets allocated. A
pointer to path gets passed to realpatho, and the realpatho uses the pointer to store the
result of the canonicalization. By cleverly overflowing path[] an attacker may be able to
execute arbitrary code.

If a remote attacker has write permissions on the FTP server, he/she he can create a deep
directory structure (MKD a, CWD a, MKD aa, CWD aa ...). Eventually, during the
execution of the MKD command, a buffer overflow will occur inside realpatho. The
attacker can cleverly name the directories, i.e., make the names be hex instructions and
address bytes to which the control flow should get transferred during the buffer overflow.

A temporary fix for this vulnerability is to disallow world-writable directories on the FTP
server. By granting users only the read permission on the FTP server, an attacker would
be hindered from building an unusually large path, which is required in order to execute
this particular attack.

87



5.6 Summary of Vulnerabilities

Vulnerability

Sendmail prescano bug
Sendmail crackaddro bug
Sendmail TXT record
Sendmail tTflag bug
Sendmail 8.8.3/8.8.4 mime
Sendmail 8.8.0/8.8.1 mime
Sendmail gecos bug

BIND TSIG bug*

BIND
BIND
BIND
BIND

nslookupComplain
NXT record bug
SIG record bug
iquery bug

WU-FTPD off-by-one
WU-FTPD mapped chdir

WU-FTPD realpath
Table 12.

Classification

000
000
000
016
006
006
000

006
006
-000
006
006
000

000
000
000
000
000

050
330
134
340
030
050
040

043
152
030
030
030
030

040
050
210
310
040

611
611
520
202
611
642
632

652
652
-620
121
121
120

621
620
620
621
621

1404
1304
2004
0301
1304
1304
1103

0004
0004
1004
2004
2004
0004

0005
0005
0005
0005
1305

Date Published

Mar 29,2003
Mar 02,2003
Jun 28,2002
Aug 17,2001
Jan 20,1997
Oct 08,1996
Sep 11,1996

Jan 29,2001

Jan 29,2001
Nov 10,1999
Nov 10,1999
Apr 8, 1998

July 31, 2003
Aug 22,1999

Feb 09, 1999

Impact

RRC
RRC
RRC
LRC
RRC
RRC
LRC

RRC

RRC
RRC
RDoS
RRC

RRC
RRC

RRC

Versions Affected

< 8.12.9
5.79 - 8.12.7
8.12.0 - 8.12.4
8.11.0 - 8.11.5
8.8.3, 8.8.4
8.8.1, 8.8.0
8.7.5

< 4.9.8
>= 8.2 & < 8.2.2
4.9.5 - 8.x
4.x < 4.9.7, 8.x < 8.1.2

<= 2.6.2
<= 2.5

<= 2.4.2-academ[betal8]

RRC = Remote Root Compromise, LRC = Local Root Compromise, RDoS = Remote Denial of Service
* No model program for the TSIG bug was constructed due to the complexity of the code.

5.7 Distribution of Buffer Overflows

Even though the above eighteen "species" of overflows represent a fairly small
sample of real buffer overflow vulnerabilities, one may still be able to gain some insights
about the distribution of different kinds of buffer overflows in real programs. Some
statistics are summarized below.

Bound:
Type:
Location:
Scope:
Container:
Index:
Access:
Alias:
Contr. Flow:
Loops:
Taint:

94 % upper, 6% lower
61% char, 39% u_char
67% stack, 17% bss, 11% heap, 5% data
50% inter-procedural, 39% same function, 11% global buffer
83% none, 5.6% array of buffers, 5.6% struct, 5.6% union
72% none, 17% variable, 5.5% linear exp, 5.5% contents of buffer
56% C function, 17% pointer, 11% standard macro, 12% other, 6% index,
44% alias, 28% no alias, 28% alias of an alias
44% none, 39% if-statement, 17% switch
61% none, 28% while, 11% other
61% packet, 28% dir functions (getcwd, pwd etc), 5.5% cmd line, 5.5% file

88



Chapter 6 Results

6.0 Overall Results

We ran five semantic analysis tools on the fourteen model programs,
corresponding to the fourteen real vulnerabilities. The five tools were ARCHER,
PolySpace C Verifier, BOON, Splint and UNO. For each of the fourteen vulnerabilities,
each tool was run on an "OK" version of the model program and a "BAD" version.
Ideally, a tool should be able to detect each bug in the bad model program and not raise a
false alarm for the corresponding section of code in the fixed model program. Such an
outcome is represented by a "d", or a clear detection. If the tool detected a bug in the
"BAD" program, but also raised a false alarm for the corresponding location in the "OK"
program, this was denoted as a "df', a detection and a false alarm. Finally, if the tool
missed the bug in the "BAD" program, but raised a false alarm for the corresponding
location in the "OK" program, this was denoted as an "f', or a clear false alarm. Each
"BAD" model program had one or more lines in the code that were labeled "BAD", at
each place in the code where an out-of-bounds pointer/buffer access could occur. All of
these bugs were fixed in the "OK" version of the model program and were labeled "OK".

The results for the five tools for each of the fourteen model programs are shown
in Table 13 on the following page. The table has three columns which are labeled "D",
"FA" and "d, f, df', for each of the five tools. Column "D" shows the number of
detections, x, out of the total number of bugs, y, in each of the fourteen "BAD" programs.
This is shown in the form "x/y". The "Totals" row simply shows the sum of the fourteen
fractions. Column "FA" shows the number of false alarms out of the total number of
lines labeled "OK" in each of the fourteen "OK" programs. Finally, the column labeled
"d, f, df' shows the number of clear detections, clear false alarms, and detections and
false alarms. The total number of d's, f's and df's is shown in the "Totals" row.

As can be seen from the table, only PolySpace C Verifier and Splint were able to
detect a reasonable fraction of the bugs. PolySpace had an average detection rate of
12.17/14 or 87%, and Splint had an average detection rate of 8/14 or 57%. The average
false alarm rates were 50% for PolySpace and 43% for Splint, both very high. Archer
detected one bug in the "mime2" program which contained ten bugs, and fortunately, did
not false alarm on the patched program. BOON detected two bugs, one in the "TXT
record" program and one in the "mapped chdir" program, however, both times it also
raised a corresponding false alarm in the patched programs. UNO did not detect any of
the bugs and did not raise any false alarms.

89



PolySpace Archer Splint BOON UNO

D FA d, f, df D FA d,fdf D FA d, f, D FA d, f, D FA d, f,
df I df df

Crackaddr 28/28 30/30 0,2,28
Gecos 3/3 2/4 1,0,2 1 1/3 1/4 1,1,0
mimel 3/3 1/3 2,0,1 1/3 1/3 0,0,1

. mime2 10/10 13/13 0,3,10 1/10 0/13 1,0,0
Prescan 2/3 2/3 0,0,2 1/3 1/3 0,0,1
tTflag 1/I 0/1 1,0,0

TXTrec. 1/2 1/2 0,0,1 1/2 1/2 0,0,1 1/2 1/2 0,0,1

NXT-bug 1/1 0/1 1,0,0 1/1 1/1 0,0,1
A SIG-bug 1/1 1/1 0,0,1 1/1 1/1 0,0,1

Iquery 1/1 0/1 1,0,0 1/1 1/1 0,0,1
Nslookup 1/1 0/1 1,0,0 2/2 0/2 2,0,0

mapped chdir 2/4 2/4 0,0,2 4/4 1/4 3,0,1 1/4 1/4 0,0,1

off-by-one 1/1 1/1 0,0,1 1/1 1/1 0,0,1
Realpath 14/28 14/29 3,3,11 14/28 10/29 7,3,7

12.17 6.98 10,8, 0.1 0 1,0,0 8 5.99 13,4 0.75 0.75 0,0,2 0 0 0,0,
59 15 0

Table 13. D = # detections/(# "BAD" places), FA = #false alarms/(# "OK" places), d,fdf = pure detections/false alarms/detects & false alarms
Mime I = Sendmail 8.8.0/8.8.1 mime vulnerability, Mime2 = Sendmail 8.8.3/8.8.4 mime vulnerability

Using the above results, three metrics were used to try to score the performance of
the five tools. First, for each tool the probability of it detecting a buffer overflow was
calculated. Second, for each tool the probability of it raising a false alarm regarding an
out-of-bounds error was calculated. These two statistics give some sense of how
effective a tool is at detecting bugs, however, the two statistics taken alone can be a bit
misleading. Consider the following hypothetical dataset based on experiments identical
to the ones carried out in this evaluation.

Tool A: Tool B:

Vulnerability 1

OK: f ---
BAD: -dddd

Vulnerability 2
OK: --- f-
BAD: ddd - d

Vulnerability I

OK: -f -- -
BAD: -dddd

OK: f----
BAD: ddd- d

90



In this scenario we have two tools, both with an 80% probability of detecting a
bug, and a 20% probability of raising a false alarm. Given these two statistics alone, one
might think that the two tools perform equally well. However, this is not the case in this
particular scenario; Tool A is clearly a better tool than Tool B. For Tool B, one out of
four detections was accompanied with a corresponding false alarm in the "OK" program,
i.e., it was not able to discriminate between a bad version of the code and a fixed version.
On the other hand, Tool A, for each of its detections in a bad program, never gave a false
alarm in the corresponding fixed program. A metric that would be able to differentiate
between these tools is the conditional probability of not raising a false alarm in the "OK"
version of the program, given that the bug was detected in the "BAD" version, i.e.,
P (no false alarm when bug is fixed detects bug in bad program). We will call this
probability the "probability of discrimination." In our hypothetical scenario, Tool A has
a probability of discrimination equal to 1, and Tool B has a probability of discrimination
equal to 0.75.

To measure the probability of detection for a given tool, we calculated the mean
of the ratios indicated in column "D". To measure the probability of raising a false
alarm, we calculated the mean of the ratios indicated in column "FA". Then the
probability, P (no false alarm I detects bug), was calculated for each of the fourteen
programs as follows:

P (no false alarm I detects bug) = I- P (raises false alarm I detects bug) =
1 - df /(d + df).

In the above formula, "d" is the number of clear detections, and "df' is the number of
ambiguous results, i.e. a detection in the "BAD" program and a false alarm in the "OK"
program. The fourteen probabilities, P (no false alarm I detects bug), were averaged to
compute the overall probability of discrimination.

See Figure 5 on the next page for a Receive Operating Characteristic (ROC) curve of the
performance of the five tools.

91



ROC Curve

0.9
0 0.5, 0.87

PolySpace
0.8 -

0.7

0
00.6

00.43, 0.57
Splint

00.5
CL

004

0.3-

0.2

Arche

0 0 0.05, 0.05

UNO 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Probability of False Alarm

Figure 5.
Archer is at point (0, 0.01) and Uno is at point (0,0).

In the above ROC curve, the vertical axis represents the probability of detecting a
given bug, whereas the horizontal axis represents the probability of raising a false alarm
when the bug is fixed. The diagonal line represents the "random guessing line," where
the probability of a true positive equals the probability of a false alarm. Three of the
tools fall above the random guessing line: PolySpace, Splint and ARCHER. However,
only PolySpace seems to be statistically different from random guessing. Seeing that
PolySpace false alarmed about 50% of the time, one might be curious to see if
PolySpace's performance is any better than flipping a fair coin for each bug and raising
an alert if the coin lands on a head. If PolySpace were a 50-50 random guesser, then the
fraction of detections could be described as a Binomial random variable, N = (I (xi) / 14),
where the summation is over fourteen Bernoulli random variables with parameter p = 0.5.
The standard deviation of N equals 1[p(l-p)/14] = 0.13. Thus, to be statistically different
from a 50-50 random guesser, the detection rate of PolySpace should ideally lie more
than two standard deviations away from the mean rate of detection for the random
guesser, or 0.5. This is indeed the case for PolySpace; its probability of detection lies 2.3
standard deviations away from 0.5.

92



The above analysis is based on the fact that each vulnerable program is treated as
a single sample point when computing the probability of detection. Each of the fourteen
vulnerable programs yields a fraction representing a ratio of detections to the number of
bugs in the program. To compute the overall probability of detection, the fourteen
detection ratios are summed and the result is divided by fourteen.

It is possible to carry out the above analysis differently if one assumes that the
bugs in a given "BAD" program are independent from one another and from other bugs
in other programs. For example, the 28 bugs inside the bad "crackaddr" program could
be treated as independent. Using this analysis, the standard deviation for random
guessing would be 4[p(1 -p)/87] - 0.05, where 87 is the total number of bugs in all
fourteen programs. Under the independence assumption, the calculated probability of
detection for PolySpace equals 69/87 ~ 79%, and the probability of detection for Splint
equals 28/87 ~ 32%. The probability of raising a false alarm is 67/94 ~ 71% for
PolySpace and 19/94 ~ 20% for Splint. In this scenario, the detection rates for Splint and
PolySpace lie clearly outside the two standard deviation mark and thus are statistically
different from random guessing. However, this analysis is probably not as accurate as
the latter, since the bugs inside each of the "BAD" programs do seem to be correlated to
some extent. The results of this alternative analysis should therefore not be given too
much weight.

Table 14 shows the calculated probabilities of discrimination for the five tools.

TOOL Probability of #detections/bugs
Discrimination (normalized)

PolySpace 0.37 12.7/14
Splint 0.23 8/14
ARCHER 1 0.1/14
BOON 0 0.75/14
UNO --- 0

Table 14. Probabilities of discrimination

Note that the above results are a little skewed due to the small number of
vulnerable programs used in the experiments. ARCHER has a probability of one of
being able to discern a bug from its corrected counterpart, but this value is based on a
single detection out of a small sample size. BOON has a zero probability of
discrimination, which is clearly an underestimate. The probability of discrimination for
UNO could not be determined, since it failed to detect any of the bugs. Both Splint and
PolySpace have fairly low probabilities of discrimination. Given a detection of a bug,
both Splint and PolySpace are more than 50% likely to raise a false alarm in the fixed
version of the program.

93



6.1 Idiosyncrasies of the tools

6.1.0 PolySpace C Verifier

PolySpace unlike the other tools chooses to color-code its output; portions of the
program that is being analyzed are colored using four different colors - red, green, orange
and gray- and the user is able to navigate the source code through hyperlinks by clicking
on each of the colored warnings. Any portion of the code that is colored red usually
indicates a serious error that should be fixed. These are the errors that should be
attended to first. However, sometimes a red warning might not indicate a bug per se.
This is true in the case of such things as exitO statements that are meant to explicitly
terminate the program. The next level of warnings issued by PolySpace is orange. These
warnings indicate potential problems such as out-of-bounds pointer dereferencing or out-
of-bounds array indexing. PolySpace colors such warnings as orange to indicate that an
error is sometimes possible. A common example of an orange warning can be found
inside a for-loop where a pointer is being accessed; here, the pointer may be within
bounds for some of the iterations of the loop, and outside of bounds for others. The final
two warning colors are green and gray. Green alerts indicate code that was determined to
be safe. PolySpace colors as green only those sections of the code which are common
sources of errors, e.g., buffer accesses. If a section of the code is colored gray, it
indicates that the code is unreachable by any valid code path, i.e., it is "dead code."

In order to run PolySpace, a correct analysis environment needs to be created; a
specific directory structure needs to be created and the correct flags need to be used. The
programs could be analyzed by running a generic-looking script, making sure only to
modify the source directory and the results directory. An example of one such instance
of the script is shown below:

#!/usr/bin/perl -w

use strict;

my $polyDir = "/usr/polyspace/PolySpace_2_2_1_7";

my $polyC = "$polyDirlbin/polyspace-c";

my $home = "/home/zeemish";

my $srcDir = "$home/zeem/programs/sendmail/se ndmail -prescan/OK";
my $analDir = "$home/tmp/sendmail/sendmail-prescan/OK/polyspace/results";
my $obj = "obj.Linux.2.4.18-27.7.x.i686";

my $gcclnc = "/usr/lib/gcc-lib/i386-redhat-linux/2.96/include";

my $verifComm = "/bin/rm -rf $analDir; \\
/bin/mkdir $analDir; \\
cd $analDir; \\
date > $analDir/run-time; \\

94



$polyC -prog test \\
-sources \"$srcDir/*.c\" \\
-target i386 \\
-OS-target linux \\
-continue-with-existing-host \\
-permissive \\
-I \"usr/include\" \\
-I \"$polyDir/include/include-linux\"; \\
date >> $analDir/run-time

print "$verifComm \n";

#'$verifComm >&';

A few of the programs required a modified script which looked like the one shown
below. This script runs PolySpace with a special include file, polyspace.h, whose
contents are shown in Appendix E. A few new flag options were used in this script,
including "-OS-target no-predefined-OS", -continue-with-red-error, "-D POLYSPACE"
and "-D NEWDB".

#!/bin/bash

HERE='pwd'
RTEBASE=/usr/polyspace/PolySpace_2_2_1_7

RESULTSDIR=/home/zeemish/tmp/wu-ftpd/off-by-one/BAD/polyspace/results

/bin/rm -f $RESULTSDIR/*.log

BUILDDIR=/home/zeemish/zeem/programs/wu-ftpd/off-by-one/BAD

cd $BUILDDIR

time $RTEBASE/bin/polyspace-c \
-results-dir $RESULTSDIR \
-continue-with-red-error \
- . \
-D NEWDB \
-OS-target no-predefined-OS \
-include $HERE/polyspace.h \
-I $HERE/include-linux \
-I /usrlocal/include \
-I /usr/lib/gcc-lib/i386-redhat-linux/2.96/include \
-I /usr/include \
-continue-with-existing-host \
-D POLYSPACE \
-permissive \
-sources "realpath-bad.c callfbjrealpath.c"

One drawback of PolySpace, which can be worked around, is its inability to keep
separate tallies of warnings for multiple calls to the same standard C function.

95



For most of the standard C functions, PolySpace creates its own stubbed version of the
code. The following example illustrates the problem. Suppose that a program contains a
hundred calls to strcpyo and one of them could potentially result in a buffer overflow. If
PolySpace finds this vulnerability, it will color certain lines of code inside its strcpyo
stub as orange. Any other problems in strcpyo calls will be reflected with orange code
warnings inside the same stub routine. Upon inspecting the warnings, a user would know
that there exists a potential problem inside a strcpyo routine, but the user would have no
idea which of the hundred strcpyo calls are the cause of the orange alerts. To overcome
this deficiency, a user could insert a hundred identical copies of strcpyo into the program,
each one with a different name. This way, the specific strcpyo call that triggers the
orange alerts will be uniquely identified, instead of being subsumed into a single stub
routine. This kludge was used during the evaluation of the WU-FTPD model programs,
which contained multiple str[n]cat and str[n]cpy calls with potential problems.

6.1.1 BOON

Although BOON is designed to specifically handle string functions such as
str[n]cpy, it has trouble with str[n]cat calls. This stems from the fact that BOON is flow-
insensitive. Str[n]cat calls are more difficult to handle since they have an accumulating
effect on the size of the destination buffer during the course of the program. If calls to
str[n]cat take place several times inside a program and the destination buffer is the same,
one needs to keep track of the size of the buffer as it grows. This scenario occurs when
str[n]cat calls take place inside loops; BOON assumes that a str[n]cat call inside a loop
can be executed any number of times, and for that reason it gives up on trying to do a
safety analysis and reports a message of the type "str[n]cat calls were not checked." This
leaves the work of verifying the safety of these calls to the programmer.

6.1.2 Splint

Splint had a few quirks of its own too. As was mentioned earlier, sometimes
Splint issued long lists of parse errors. Most of these errors were related to type
definitions such uidt, u char, u_.ong, ushort, etc. Since the model programs were
relatively short, these parse errors could be eliminated by supplying a sufficient number
of "-D" flag options (e.g., "-Duchar = unsigned char"). It was sometimes not obvious
from the Splint documentation what certain flags were meant to do; perhaps if an expert
Splint user were to have conducted these same experiments, the number of warnings
could have been diminished to some degree by supplying certain flags.

To analyze the model programs for Sendmail and WU-FTPD, Splint was run with
the following command:

splint +bounds +posixlib -I/usr/include -I/usr/include/arpa -I/usr/include/sys -1. -
Duschar="unsigned char" -Dujint="unsigned int" -Dushort="unsigned short" -Dulong="unsigned long"
-DuintI6_t="unsigned short int" -Duint32_t="unsigned long int" *.c

To analyze the model programs for BIND, Splint was run with the following
command:

96



splint +posixlib +bounds -I. -DARBPTR_T=int* -Duint8_t=unsigned char -Dintl6_t=short
-Duintl6_t=unsigned short -Dint32_t=int -Duint32_t=unsigned int -Du_int=unsigned int
-Dgnuc-valist=void* -Duchar=unsigned char -Dlint -Dulong=unsigned long
-Dinaddrt=unsigned int -Dushort=unsigned short -deepbreak *.c

6.1.3 UNO

Although UNO did not detect any of the bugs in the model programs, it gave no
false alarms either. UNO gave some useful warnings about side effects, such as having
assignments inside conditions, e.g., "while ((c = fgetc(f)) != EOF)", or other side effects
such as decrementing a pointer inside an if-statement, e.g., "if (*buf-- == 'a')". UNO
also gave some warnings about fallthroughs in switch statements, which like the latter
side effects can sometimes be difficult to spot and can be a cause for an error.

6.1.4 ARCHER

ARCHER was not too difficult to run, however there were a few problems. When
trying to analyze an entire version of Sendmail, ARCHER terminated with a cryptic
"divide by zero" bug. In a few other cases, ARCHER ran into problems during its
analysis by exhausting its own stack space. On the plus side, ARCHER did not give too
many false positives. ARCHER is still a research tool under development, and it has
some bugs to be fixed.

6.2 False alarms per lines of code

Several observations were made about the number of false alarms that PolySpace
and Splint generated for each of the "OK" programs, specifically the total number of
array indexing and out-of-bounds warnings. Table 15 shows the number of lines of C
code (not counting include files) for each of the "OK" programs and the number of array
indexing errors and out-of-bounds warnings issued by PolySpace and Splint. Sometimes
the program sizes differed slightly for PolySpace and Splint. This is because in a few
cases it was necessary to make slight modifications to the code in order to get the tools to
perform analysis. In three of the cases, namely the WU-FTPD vulnerabilities, the
programs analyzed by PolySpace were considerably larger than the ones analyzed by
Splint. As was explained earlier, this is because a separate function for each of the
str[n]cpy and str[n]cat calls was inserted into the code to be able to distinguish between
the different calls.

97



PolySpace 
Splint

#warnings/L.O.C

62/473

#warnings/L.O.C

2/473
gecos 31/374 14/376
Mimel 16/256 3/253
Mime2 30/269 2/271
prescan 18/567 3/559
tTflag 19/176 1/170

72/509 20/510

NXT bug 36/477 9/476
Q SIG bug 58/567 10/544

iquery 17/134 8/134
nslooku 20/284 6/284

Mapped 27/324 9/199
9 chdir
( Off-by-one 17/635 9/485

realpath 77/1141 19/575

Average 1/11 1/50

Table 15.

As can be seen from the table above, both PolySpace and Splint generated many false
alarms for the "OK" programs. The warnings for PolySpace that were tallied in the
above table were orange warnings belonging to two classes: 1) OBAI (Array out-of-
bounds warnings) or 2) IDP (Dereferenced pointer errors). The warnings that were
tallied for Splint were "possible out-of-bounds store" and "possible out-of-bounds read."
Most of the warnings generated can be assumed to be false alarms, however, it is possible
that a few "out-of-bounds bugs" were introduced during the construction of the model
programs. For each of the programs, the ratio of the number of warnings issued to the
number of lines of code is shown. The bottom row shows the average over all fourteen
programs. Using these averages as estimates of the frequency of false alarms per lines of
code, we see that Splint gives about 1 false alarm for every fifty lines of code, and
PolySpace gives about 1 one orange "out-of-bounds" warning per every 11 lines of code.
Running PolySpace on an application like Sendmail, which is on the order of 50K lines
of code, can potentially yield on the order of 10,000 out-of-bounds warnings, most of
which would be false alarms! Similarly, Splint would generate about a 1000 false out-of-
bounds warnings!

98

crackaddr

E

TXT rec.

PolySpace Splint



Chapter 7 Conclusion

Of five tools tested, only PolySpace and Splint were able to detect a significant
fraction of the buffer overflows in the fourteen model programs. PolySpace had an
average detection rate close to 90%, whereas Splint had an average detection rate around
60%. Both tools, however, reported a large number of false alarms. When analyzing the
patched versions of the programs, PolySpace raised an average of one orange, out-of-
bounds warning per 10 lines of code, whereas Splint raised an average of one out-of-
bounds warning per roughly 50 lines of code.

One thing to realize is that PolySpace is really intended for usage during the
development process, rather than for analyzing finished products. Ideally, a programmer
would write a hundred or so lines of code and then run them through PolySpace and fix
any reported bugs. If PolySpace is used in this manner, the number of false alarms would
be manageable. Another thing to keep in mind when looking at our results is that the
number of test programs used was relatively small. Had the number of test programs
been higher, the results would have been more accurate. Despite the small number of
programs analyzed, our results strongly suggest that more work needs to be done in
creating tools that are able to analyze large legacy software without overwhelming the
user with too many false alarms.

Static code analysis is a complex problem, and we are far from having conquered
it. However, as more research is done in the area of static code analysis, the tools will get
better and become more "intelligent". Hopefully, as the tools will improve, so will the
quality of programs, and the number of buffer overflow related security advisories will
diminish.

99



References

1) Advanced Buffer Overflows.
http://hysteria.sk/arxiv/hack/papers/advancedoverflows/

2) S.J. Ahmed, Securely Programming in C, SANS Information Security Reading Room, Sept. 24,
2002.
http://www.sans.org/rr/code/sec c.php

3) Aleph One. Smashing The Stack for Fun and Profit. Phrack Magazine. Issue #49, November
1996.
http://destroy.net/machines/security/P49-14-Aleph-One

4) P.Anderson, T. Teitelbaum. Software Inspection Using CodeSurfer, Proceeding of the First
Workshop on Inspection in Software Engineering, Paris, July, 2001.
http://www.grammatech.com/research/papers/AndersonTeitelbaum.pdf

5) K. Ashcraft, and D. Engler, Using Programmer-Written Compiler Extensions to Catch Security
Holes. In Proceedings of IEEE Security and Privacy. 2002.
http://www.stanford.edu/-engler/sp-ieee-02.ps

6) Avaya Labs Research. Libsafe Project.
http://www.research.avayalabs.com/project/libsafe/

7) Ballista Tool
http://www-2.cs.cmu.edu/afs/cs.cmu.edu/project/edrc-ballista/www/

8) A. Baratloo, T. Tsai, and N. Singh. "Transparent Run-Time Defense Against Stack Smashing
Attacks." Proceedings of the USENIX Annual Technical Conference, June 2000.

9) A. Baratloo, T. Tsai, and N. Singh. Libsafe: Protecting Critical Elements of Stacks. Bell Labs,
Lucent Technologies, 600 Mountain Ave, Murray Hill, NJ 07974 USA
http://community.core-sdi.com/~julianolibsafe.pdf

10) M. Bishop, and M.Dilger. Checking for Race Conditions in File Accesses. University of
California at Davis. Davis, CA. 1996.
http://seclab.cs.ucdavis.edu/projects/vulnerabilities/scriv/ucd-ecs-95-09.pdf

11) BoundsChecker
http://www.compuware.comL/products/devpartner/bounds.htm

12) H. t. Brugge. Bounds checking patch for gcc.
http://web.inter.nl.net/hcc/Haj.Ten.Brugge/

13) BugScan Inc.
http://www.bugscaninc.com/product.html

14) Bulba and Kil3r. Bypassing StackGuard and StackShield. Phrack Magazine 56, May 2000.
http://www.phrack.org/phrack/56/p56-0x05

15) W.R. Bush, J.D. Pincus, and D.J. Sielaff. A static analyzer for finding dynamic programming
errors. Software: Practice and Experience, 30(7):775-802, 2000.
http://osq.cs.berkeley.edu/public/Pincus-StaticAnalyzer.pdf

100



16) CERT Coordination Center
http://www.cert.org/advisories/

17) H. Chen, D. Wagner. MOPS: an Infrastructure for Examining Security Properties of Software.
2002.
http://www.cs.berkeley.edu/-daw/mops/

18) Cigital Security. ITS4: Software Security Tool.
http://www.cigital.com/its4/

19) Code Red Worm. Virus Bulletin. Sept. 2001.
http://www.peterszor.com/codered.pdf

20) Computer Security Institute
http://www.gocsi.com/awareness/fbi.html

21) M. Conover, wOOwOO on Heap Overflows, Jan. 1999.
http://www.w00w00.org/articles.html.

22) P. Cousot, R. Cousot. Static Determination of Dynamic Properties of Programs. Universite
Scientifique ed Medicale de Grenoble. Proceedings of the 2nd international symposium of
Programming. Paris, April 13-15 1976.
http://www.di.ens.fr/-cousot/COUSOTpapers/ISOP76.shtml

23) C. Cowan, P. Wagle, C. Pu, S. Beattie, and J. Walpole. Buffer Overflows: Attacks and Defenses
for the Vulnerability of the Decade. DARPA Information Survivability Conference and Expo
(DISCEX), Hilton Head Island SC, January 2000.
http://www.cse.ogi.edu/-crispin/

24) C. Cowan. Solar Designer's non-executable stack patch discussion. Dec. 9. 1997.
http://www.cse.ogi.edu/DISC/projects/immunix/StackGuard/usenixsc98 html/node2I.html

25) C. Cowan, et al., StackGuard: Automatic Adaptive Detection and Prevention of Buffer-Overflow
Attacks. 7th USENIX Security Conf., Usenix Assoc., 1998, pp. 63-77.
http://www.immunix.org/StackGuard/usenixsc98.pdf

26) C. Cowan. Software Security for Open-Source Systems. In IEEE Security and Privacy. Jan/Feb.
2003. Requires subscription:
http://www.computer.org/securitV/

27) C++ Reference Page
http://www.cppreference.com/

28) Cyberattacks News Story
http://story.news.yahoo.com/news?tmpl=story&u=/cmp/20030716/tc cmp/12800622

29) M. E. Donaldson, Inside the Buffer Overflow Attack: Mechanism, Method, & Prevention, SANS
Institute Information Security Reading Room, April 3, 2002.
http://www.sans.org/rr/code/inside buffer.php

30) Emsi vulnerability
http://www.immunix.org/StackGuard/emsi vuln.html

31) Entercept
http://www.entercept.com/ricochet/bufferoverflows.ast

101



32) Heap overflow in Microsoft IIS
http://www.kb.cert.org/vuls/id/363715

33) H. Etoh. GCC extension for protecting applications from stack-smashing attacks.
http://www.trl.ibm.com/projects/security/ssp/, June 2000

34) D. Evans, D. Larochelle. Improving Security Using Extensible Lightweight Static Analysis. In
IEEE SOFTWARE, Jan/Feb 2002, pages 42-51.
http://www.cs.virginia.edu/-evans/pubs/ieeesoftware.pdf
http://www.splint.org/pubs.html

35) D. Evans, D. Larochelle. Statically Detecting Likely Buffer Overflow Vulnerabilities. In 2001
USENIX Security Symposium, Washington, D.C., Aug 13-17, 2001.
http://lclint.cs.virginia.edu/usenix0l.pdf

36) P-A. Fayolle, V. Glaume. A Buffer Overflow Study: Attacks and Defenses. ENSEIRB, Networks
and Distributed Systems, 2002.
http://www.linux-tech.com/buff over.html

37) FIST - Fault Injection Tool
A. Ghosh, T. O'Connor and G. McGraw. An automated approach for identifying potential
vulnerabilities in software. In Proceedings of the IEEE Symposium on Security and Privacy,
pages 104-114, Oakland, CA, May 1998.
http://www.cigitallabs.com/resources/papers/download/ieees p98 2col.ps

38) N. Frykholm. Countermeasures Against Buffer Overflow Attacks. Nov. 30, 2000.
http://www.rsasecurity.comlrsalabs/technotes/buffer/buffer overflow.html

39) Bill Gates E-mail on Trustworthy Computing
http://paulboutin.weblogger.com/stories/storyReader$155

40) GDB - The GNU Project Debugger
http://sources.redhat.com/db/

41) R. Hastings, B. Joyce. Purify: Fast detection of memory leaks and access errors. In Proceedings
of the Winter USENIX Conference, December 1992.
http://www.rational.com/products/purify nt/index.jsp

42) Heap overflow in Microsoft IIS
http://www.kb.cert.org/vuls/id/363715

43) G. J. Holzmann. Uno: Static Source Code Checking for User-Defined Properties. Bell
Laboratories. Murray Hill, New Jersey 07974
http://cm.bell-labs.com/cm/cs/what/uno/

44) M.Howard, D. LeBlanc. Writing Secure Code. Second Edition, Microsoft Press, 2003.

45) ICAT Security Vulnerability Database
http://icat.nist.gov/icat.cfm

46) IDA and gprof
http://www.ida.liu.se/-vaden/cgdi/

47) T. Jim, G. Morrisett, D. Grossman, M. Hicks, J. Cheney, Y.Wang. Cyclone: A safe dialect of C.
http://www.research.att.com/projects/cyclone/papers/cyclone-safety.pdf

102



48) R. Jones, P. H. J. Kelly. Backwards-compatible bounds checking for arrays and pointers in c
programs. In Automated and Algorithmic Debugging, pages 13-26, 1997.
http://www.doc.ic.ac.uk/-phik/Publications/BoundsCheckingForC.ps.gz

49) M. Kaempf (MaXX). Vudo malloc tricks. Phrack magazine. Volume OxOb, Issue 0x39, 2001.
http://www.phrack.org

50) Kaksonen, Rauli. A Functional Method for Assessing Protocol Implementation Security
(Licentiate thesis). Espoo. Technical Research Centre of Finland, VTT Publications 447, 2001.
http://www.inf.vtt.fi/pdf/publications/2001/P448.pdf
PROTOS Project: http://www.ee.oulu.fi/research/ouspg/protos/

51) klog. The Frame Pointer Overwrite.
http://www.phrack.org/show.php?p=55&a=8

52) Ballista Paper
N.P. Kropp, P. J. Koopman, and D. P. Siewiorek. Automated Robustness Testing of Off-the-Shelf
Software Components. In the 28th International Symposium on Fault-Tolerant Computing, pages
464-468, 1998.

53) T. La, Secure Software Development and Code Analysis Tools, SANS Information Security
Reading Room, Sept. 30, 2002.
http://www.sans.org/rr/code/tools.php

54) D. LeBlanc. Avoiding Buffer Overruns with String Safety.
http://community.core-sdi.com/-juliano/leblanc-nt-avoidbof.html

55) R. Lemos. Open-source team fights buffer overflows. CNET News.com Apr 11, 2003.
http://news.com.com/2100-1002-996584.html

56) D. Litchfield. Non-stack Based Exploitation of Buffer Overrun Vulnerabilities on Windows
NT/2000/XP, March 2002.
http://www.0x36.org/PAPERS/BUFFER/non-stack-bo-windows.pdf

57) LOpht Heavy Industries. SLINT - source code security analyzer.
http://www.10pht.com/slint.html

58) G. McGary. Bounds checking projects
http://gcc.gnu.org/projects/bp/main.html

59) G. McGraw and J. Viega. Making your software behave: Preventing buffer overflows. Protect
your code through defensive programming. Reliable Software Technologies. March 7, 2000
http://community.core-sdi.com/-juliano/gmiv-prevent.pdf

60) G. McGraw and J. Viega. Making your software behave: Learning the basics of buffer overflows.
Get reacquainted with the single biggest threat to software security.
http://www- 106.ibm.com/developerworks/securityllibrary/s-overflows/

61) Mib Software. Libmib allocated string functions.
http://www.mibsoftware.com/libmib/astring/

62) Microsoft's C/C++ \GS compiler option + exploit to bypass it
http://www.cigital.com/news/index.php?pg=art&artid=70

103



63) Microsoft's Reliability Group
http://research.microsoft.com/reliability/

64) B. Miller, L. Fredriksen, and B. So. An Empirical Study of the Reliability of UNIX Utilities.
Communications of the ACM, 33(12):32-44, 1990.

65) G.C. Necula, S. McPeak, and W.Weimer. CCured: type-safe retrofitting of legacy code. In
Symposium of Principles of Programming Languages, pages 128-139, 2002.
http://raw.cs.berkeley.edu/Papers/ccured popl02.pdf

66) Off-by-one Buffer Overflow. Sept. 9. 1999.
http://www.phrack.com/phrack/55/P55-08

67) PC-Lint/Flexe-Lint (by Gimpel Software)
http://www.gimpel.com/html/lintinfo.htm

68) OpenWall Project
Linux kernel patch from the Openwall project - http://www.openwall.comlinux/

69) PaX Project
http://pageexec.virtualave.net/

70) PolySpace
http://www.polyspace.com

71) PREfast Whitepaper
http://www.microsoft.com/whdc/hwdev/driver/PREfast.mspx

72) ProPolice
http://www.trl.ibm.com/projects/security/ssp/

73) G. Richarte, Four different tricks to bypass StackShield and StackGuard protection, Core Security
Technologies, April 9, 2002 - April 24, 2002
http://ducer.w00nf.org/trash/security/advanced/gerastackguard.pdf

74) Secure Software, RATS scanning tool.
http://www.securesoftware.com/download form rats.htm

75) D.Seeley. A Tour of the Worm. Department of Computer Science, University of Utah.
http://world.std.com/~franl/worm.html
http://www.goldinc.com/html/maloy/SECURITY/morris worm.html

76) U. Shankar, K. Talwar, J. S. Foster, and D. Wagner. Detecting Format String Vulnerabilities with
Type Qualifiers. In Proceedings of the 10th USENIX Security Symposium, 2001.
http://citeseer.ni.nec.com/shankarOldetecting.htm

77) Solar Designer. /usr/bin/lpr buffer overflow exploit for Linux with non-executable stack. 1997.
http://hysteria.sk/arxiv/hack/papers/advancedoverflows/ret-libc.txt

78) StackShield
http://www.angelfire.com/sk/stackshield/index.html

79) StrSafe
http://msdn.microsoft.com/library/default.asp?url=library/en-
us/winui/winui/windowsuserinterface/resources/strings/usingstrsafefunctions. asp

104



80) A. Takanen, M. Laakso, J. Eronen, J. Roening. Running Malicious Code by Exploiting Buffer
Overflows: A Survey of Publicly Available Exploits. University of Oulu, Department of
Electrical Engineering, Finland. 2000.
http://www.ee.oulu.fi/research/ouspg/protos/sota/EICAR2000-overflow-survey/paper.pdf

81) J. Viega, J.T. Bloch, Y. Kohno, and G. McGraw. ITS4: A Static Vulnerability Scanner for C and
C++ Code. In Annual Computer Security Applications Conference, 2000.
http://www.rstcorp.com

82) J. Viega, G. McGraw. Building Secure Software: How to Avoid Security Problems the Right Way.
http://www.buildingsecuresoftware.com/

83) D.Wagner, J.Foster, E.Brewer, and A.Aiken. A first step towards automated detection of buffer
overrun vulnerabilities. In Proceedings of the Year 2000 Network and Distributed System
Security Symposium (NDSS), pages 3-17, San Diego, CA, February 2000.
http://citeseer.nj.nec.com/wagner00first.html

84) D. Wheeler, FlawFinder Tool.
http://www.dwheeler.com/flawfinder/

85) J. Wilander and M. Kamkar. A Comparison of Publicly Available Tools for Dynamic Buffer
Overflow Prevention. Department of Computer and Information Science, Linkoepings universitet.

http://www.ida.liu.se/~johwi

86) J. Wilander and M.Kamkar. A Comparison of Publicly Available Tools for Static Intrusion
Prevention. Department of Computer and Information Science, Linkoepings universitet.
http://www.ida.liu.se/~johwi

87) R. Wojtczuk (a.k.a Nergal). The advanced return-into-lib(c) exploits. Phrack Magazine, Vol 11,
Issue 58. Dec. 2001.
http://www.phrack.org

88) R. Wojtczuk. Defeating Solar Designer non-executable stack patch. Jan 30. 1998.
http://www.insecure.org/sploits/non-executable.stack.problems.html

89) Y. Xie, A. Chou, and D. Engler. ARCHER: Using Symbolic, Path-sensitive Analysis to Detect
Memory Access Errors. Computer Systems Laboratory. Stanford University. 2002
http://www.stanford.edu/-engler/p150-xie.pdf

90) Xsun Heap overflow
http://www.securityfocus.com/archive/1/265370

91) Y2K Bug
http://www.pbs.org/newshour/bb/cyberspace/ian-iune98/y2000 6-11 .html

105



APPENDIX A - Common Security Vulnerabilities

A.1 Array Indexing Errors

Indexing an array with an index that exceeds the maximum array index or with a negative
index, can lead to serious problems. Whenever one accesses an array through an
untrusted index, the bounds should be checked. Accessing a memory location outside the
process' memory space will cause the system to crash.

A.2 Buffer Overflows

This is the main class of vulnerabilities that we would like our tools to detect. This
vulnerability is discussed in detail in the thesis.

A.3 Dereferencing of Null Pointers or Corrupted Pointers

Often a program can be caused to crash as a result of dereferencing null pointers. Ideally,
a tool should detect potential dereferencing of null pointers and should issue an
appropriate warning. Also, it is possible to create corrupted pointers by adding offsets to
null pointers. Having pointers refer to objects that have been freed using freeO or
reallocO can also cause serious problems.

A.4 Format String Vulnerabilities [76]

This is one of the more recently discovered types of bugs. These bugs involve
idiosyncrasies of printf-type functions, which are common in calls like printf("Hello %s",
username). Error logging calls are another common source of format string bugs(e.g.,
syslogo). If the number of arguments does not correspond to the number of format string
parameters (e.g., %s, %d etc), it is possible to overwrite arbitrary locations in memory
with supplied values. The underlying mechanism for format string exploits relies on the
not-so-common %n option, that allows one to write the number of printed characters into
a location specified by an argument.

A.5 Integer Overflows

In C, adding one to the maximum allowed integer, MAX_INT, results in an integer
overflow and yields 0.

Consider the following kernel code below [5]

err = copyjfrom-user(&input, arg, sizeof(input));

input.path = kmalloc(input.pathjlen + 1, GFP_KERNEL);

if(! input.path)
return -ENOMEM;

106



error = copy-from-user(input.path, user-path, input.path_len);

If pathlen = MAXINT in the above code, then kmalloc(O, GFPKERNEL) will return a
non-nil pointer to a small amount of kernel memory. The subsequent copyjfrom-user
call would copy MAXINT (usually around 4 gigabytes) bytes into a small space,
corrupting large amounts of kernel memory.

A.6 Integer Underflows

Just like it is possible to overflow an unsigned integer by exceeding MAXINT, it is
possible to cause a wrap-around by subtracting one from an unsigned integer equal to 0.

Consider the following code segment [44, p.624]:

void AllocMemory(sizet cbAllocSize)
I

//We don't accomodate for trailing '\O'
cbAllocSize--;

char *szData = malloc(cbAllocSize);

I

If cbAllocSize is passed in as 0, cbAllocSize-- will cause an underflow, and
be equal to malloc(MAXINT), or a pointer to a chunk of approx., 4 billion

szData will
bytes!

A.7 Privilege Vulnerabilities

Many security vulnerabilities result if a process runs with root privileges, but fails to drop
privileges when necessary. Consider the following chunk of code [17].

int main(int argc, char *argv[])
{ // start with root privilege

mO: dosomething-with_privilegeo;
ml: drop-privilegeo;
m2: execl("/bin/sh", "Ibin/sh", NULL);
m3: }

/risky syscall

void dropprivilege()
{

struct passwd *passwd;

dO: if ((passwd = getpwuid(getuido)) == NULL)
dl: return; // but forget to drop privilege!
d2: fprintf(log, "drop priv for %s", passwd->pw-name);
d3: seteuid(getuido); /drop privilege
d4: }

107



The example code above illustrates the problem of forgetting to drop privileges. In the
above code, the path [mldOd2d3d4m2m3] correctly drops privileges, however, the path
[mldOdlm2m3] fails do drop privileges.

To detect this kind of vulnerability, a tool with good interprocedural, path-sensitive
analysis would be required.

Another dangerous vulnerability involves a process running with non-root privileges and
illegally acquiring root privileges. See the description of truncation errors for an example
of such a vulnerability [Appendix B.5].

A.8 Race Conditions

There exists a whole class of security flaws known as Time-Of-Check-To-Time-Of-Use
(TOCTTOU) flaws, as described originally by Bishop and Dilger [10]. Basically, a
TOCTTOU flaw occurs when a program checks for a particular property of an object,
and then takes some action later on that assumes that the property still holds when in fact
it does not.

Consider the following code: [10]

if (access(filename, WOK) == 0) {
if ((fd = open(filename, OWRONLY)) == NULL) {

perror(filename);
retum(0);

}
/* now write to file */

This code segment first checks to see if the file is accessible by the user, then opens it for
writing, and then writes to it.

Suppose initially the filename = "/tmp/X", a temporary file accessible by anyone. So, the
first access check is passed successfully. Now, imagine that in between the time that the
first access check is made and the time that the file descriptor fd is created, an attacker
deletes the file "/tmp/X" and creates a hard link named "/tmp/X" that refers to the file
"etc/passwd". Now, when the file "/tmp/X" is opened for writing, the password file will
be opened for writing, and the attacker will be able to write arbitrary data to the protected
password file.

These types of flaws are also commonly known as race conditions, referring to the
attacker's race with the program to try to invalidate the program's assumptions about a
particular object before the program takes the next action on the object.

108



APPENDIX B - Dangerous Programming Errors

B.1 ANSI <-> UNICODE BUGS

A serious problem can result when a programmer mixes up the number of elements of a
Unicode buffer with the size of the buffer in bytes. A commonly used function on
Windows platforms that is vulnerable to this type of a bug is MultiByteToWideChar.
This function maps a multi-byte character buffer to a wide character buffer. Here is a
chunk of code illustrating incorrect usage of MultiByteToWideChar [44, p. 153]:

BOOL GetName(char *szName)
{

WCHAR wszUserName[256];

MultiByteToWideChar(CPACP, 0, szName, -1, wszUserName,
sizeof(wszUserName));

... }

The problem lies in the last size argument. Since wszUserName is a wide character
buffer, each character actually takes up two bytes. The last argument of
MultiByteToWideChar should specify the number of elements of wszUserName, and
should thus be sizeof(wszUserName) /2, or more generally
sizeof(wszUserName)/sizeof(wszUserName[0]) (instead of sizeof(wszUserName)). Due
to the above mistake, the function MultiByteToWideChar believes wszUserName to be
capable of storing more elements than it is actually allocated to store. Since
wszUserName is stored on the stack, a buffer overflow is very likely to occur here.

B.2 Failure to check array bounds

A programmer may be read or write from/to a buffer, but forget to check the bounds.
The buffer may be accessed via an index, e.g., buf[i], where the index may exceed the

upper bound of the buffer, or it may even be a negative value. The indexing may involve
arithmetical expressions as well (e.g., buf[i+j]). The buffer may also be accessed via a
pointer expressions (i.e., *++buf, *(buf + i)).

This is a very common programmer error that can lead to serious vulnerabilities.
Reading from an illegal memory location usually causes the system to crash.
By writing to an illegal memory location an attacker may successfully overwrite program
parameters or function pointers. By overwriting a function pointer it
might be possible to execute arbitrary code.

109



B.3 Off-By-One bugs

These are often careless bugs where a programmer forgets to account for a null
terminator character. An example of an off-by-one bug is the pair of calls shown below:

strncpy(buf, in, sizeof(buf));
buf[sizeof(buf)] = '\O';

The correct calls should be:
stmcpy(buf, in, sizeof(buf) - 1);
buf[sizeof(buf) - 1] ='\O';

As a result of the off-by-one bug shown above (if the size of the buffer is divisible by 4),
it is possible to overwrite the lower order byte of the saved stack frame pointer with a
null byte. This can be used to transfer execution control to the attacker.

Another off-by-one bug occurs in the case of misusing strncat:

The safe way to use strncat is to say:

strncat(buffA, buffB, sizeof(buffA) - strlen(buffA) - 1),

where the -1 is absolutely necessary. The third argument of strncat specifies the
maximum number of characters to be concatenated onto buffA. strncat, unlike strncpy,
always null terminates the destination buffer. This must be accounted for in the size
argument.

If the strncat call had instead been:

strncat(buffA, buffB, sizeof(buffA) - strlen(buffA)),

a null terminator byte would get written into the location adjacent to the destination
buffer. Again, if this location is the saved frame pointer, an exploit can be constructed.

Two well known off-by-one bugs appeared in Apache's mod-ssl and wujftpd's glob [44,
p.138].

B.4 Signed to Unsigned Casts

A buffer overflow can occur as a result of incorrect casting of size fields from signed to
unsigned types. Consider the following snippet of code [44, p.620]:

int Exampe(char* str, int size)
{

char buf[80];

if(size < sizeof(buf))
{

110



strcpy(buf, str);
}

Here the size of str is supplied as an argument to the function. By default, C's int type
describes a signed integer. Suppose, the caller of the Example function managed to pass
in a negative size. Since sizeof(buf) always returns an integer of type sizejt, equivalent
to an unsigned integer, the above check would pass, and str would get copied into buf,
potentially causing a buffer overflow. Of course, an attacker could also pass in a fake
positive size field that satisfies (size < sizeof(buf)). Buffer sizes passed as function
arguments should thus be always closely scrutinized and should not be trusted.

B.5 Truncation Errors

On a 32-bit operating system, values exceeding 32 bits, such as Ox100000000, get
truncated to OxOOOOOOOO. These types of truncations can be a source of many security
problems.

A famous truncation related exploit involves gaining superuser privileges. On a Unix
system, the root user (superuser) has a user ID of 0. The network file system daemon
would accept a signed integer value as a user ID, check to see if it's non-zero, and then
truncate it to a four-byte unsigned integer. Now, suppose an attacker passed in Ox 10000
as their user ID. This value would get truncated to xOWOO, effectively granting the
attacker root privileges [44, p.147].

Also, because of truncation and as a result of an improper array index, it is possible for an
attacker to write to a memory location at an address lower than the base of the array [44,
p.146].

The formula for calculating the location of an array element is:
address of array element = base of array + index * sizeof(element).

Suppose base of array = 0x00510048. Suppose the array stores long integers, i.e
sizeof(element) = 4 bytes.

Then, array [Ox3FF07FCF] is located at Ox005 10048 + Ox3FF07FCF*4 = 0x10012FF84.

However, on a 32-bit system, Ox10012FF84 gets truncated to OxO012FF84. So, it is
actually possible to access an address below the base of the array by using an invalid
index. Thus, through invalid indexing combined with truncation, an attacker could write
to an arbitrary location in memory.

111



APPENDIX C - Websites for obtaining source code for retrospective analysis +
links to vulnerabilities

The following list contains websites where one can obtain source code for old versions
of BIND, WU-FTPD, and Sendmail.

C.1 BIND
Latest Version: 9.2.2, Released Mar 3, 2003 - http://www.isc.org/products/BIND/
Versions 4.8-4.9.8, 8.1-8.2.2-P7 can be found at the website below:
ftp://ftp.isc.org/isc/bind/src/DEPRECATED/

Vulnerabilities:

nslookupComplain overflow & TSIG overflow
http://www.cert.org/advisories/CA-2001-02.html

SIG Bug & NXT Bug
http://www.cert.org/advisories/CA- 1999-14.html

Iquery Bug
http://www.cert.org/advisories/CA-98.05.bind-problems.html
http://icat.nist.gov/icat.cfm?cvename=cve- 1999-0009

C.2 WUFTPD
Versions 2.0-2.7.0 can be found here:
ftp://ftp.wu-ftpd.org/pub/wu-ftpd-attic/

Vulnerabilities:

off-by-one overflow
http://www.kb.cert.org/vuls/id/743092

mapped chdir overflow
http://www.cert.org/advisories/CA- 1999-13.html
http://icat.nist.gov/icat.cfm?cvename=cve- 1999-0878

realpath overflow
http://www.cert.org/advisories/CA- 1999-03.html
http://icat.nist.gov/icat.cfm?cvename=cve- 1999-0368

C.3 Sendmail
Current Release 8.12.9
Many old versions can be found here:
http://www.sendmail.org/ftp/
http://www.sendmail.orE/ft/Dast-releases/

112



Version 8.7.5 can be obtained here:
http://www.mit.edu/afs/net/project/attic/sendmail8/

Vulnerabilities:

Remote Header Processing Vulnerability
http://www.cert.org/advisories/CA-2003-07.html

Gecos Overflow
http://icat.nist.gov/icat.cfm?cvename=cve- 1999-0131

MIME 8.8.0/8.8.1 overflow
http://icat.nist.gov/icat.cfm?cvename=cve- 1999-0206

MIME 8.8.3/8.8.4 overflow
http://icat.nist.gov/icat.cfm?cvename=cve- 1999-0047

prescan overflow
http://www.cert.org/advisories/CA-2003-12.html

tTflag overflow
http://icat.nist.gov/icat.cfm?cvename=cve-2001-0653

TXT record overflow
http://xforce.iss.net/xforce/xfdb/9443

113



APPENDIX D - Model Program (Sendmail remote header vulnerability)

PRESCAN-BAD.c

#include <stdio.h>
#include <sys/types.h>
#include <stdlib.h>
#include <string.h>
#include <ctype.h>

/* states and character types */
#define OPR
#define ATM
#define QST
#define SPC
#define ONE
#define ILL

0
1

2
3
4

5

/* operator */
/* atom */
/* in quoted string */
/* chewing up spaces */
/* pick up one character */

/* illegal character */

#define NSTATES 6 /* number of states */

#define MAXNAME
#define MAXATOM
#define PSBUFSIZE

#define MAXMACROID 0377

40 /* max length of a name */
10 /* max atoms per address */

(MAXNAME + MAXATOM)

/* max macro id number */

#define TYPE 017 /* mask to select state type */

/* meta bits for table */
#define M 020
#define B 040
#define MB MIB

/* meta character; don't pass through */
/* cause a break */

/* meta-break */

#define TRUE 1
#define FALSE 0

#define tTd(flag, level)
#define tTdlevel(flag)

(tTdvect[flag] >= (u-char)level)
(tTdvect[flag])

/* variables */
extem uchar tTdvect[100]; /* trace vector */

typedef int bool;

#ifndef SIZE_T
# define SIZET sizet
#endif /* ! SIZET */

typedef struct envelope ENVELOPE;

ENVELOPE *CurEnv; /* envelope currently being processed */

/* This is a very simplified representation of the envelope structure of Sendmai
1 */
struct envelope
I

char *eto; /* the target person */
ENVELOPE *eparent; /* the message this one encloses */
char *e-macro[MAXMACROID + 1]; /* macro definitions */

/* Simplified address struct */
struct address
I

char
char
char
char

*qpaddr;
*q-user;
*qruser;
*q_host;

/* the printname for the address */
/* user name */
/* real user name, or NULL if q-user */
/* host name */

114



char *qhome; /* home dir (local mailer only) */

char *q-fullname; /* full name if known */
struct address *q-next; /* chain */
struct address *q-alias; /* address this results from */
char *q-owner; /* owner of q-alias */
struct address *q-tchain; /* temporary use chain */

char *q-orcpt; /* ORCPT parameter from RCPT TO: line */
char *q-status; /* status code */

char *q-rstatus; /* remote status message for DSNs */
char *q-statmta; /* MTA generating q_rstatus */
short qstate; /* address state, see below */
short q-specificity; /* how "specific" this address is */

};

typedef struct address ADDRESS;

static short StateTab[NSTATESI[NSTATES]=
{

/* oldst chtype> OPR ATM QST SPC ONE ILL */
/*OPR*/ I OPRIB, ATMIB, QSTIB, SPCIMB, ONEIB, ILLIMB },
/*ATM*/ I OPRIB, ATM, QSTIB, SPCIMB, ONEIB, ILLIMB ,
/*QST*/ I QST, QST, OPR, QST, QST, QST ),
/*SPC*/ I OPR, ATM, QST, SPCIM, ONE, ILLIMB },
/*ONE*/ I OPR, OPR, OPR, OPR, OPR, ILLIMB },
/*ILL*/ I OPRIB, ATMIB, QSTIB, SPCIMB, ONEIB, ILLIM },

};

/* token type table -- it gets modified with $o characters */
static uchar TokTypeTab[256]=

/* nul soh stx etx eot enq ack bel bs ht nl vt np cr so si */
ATM,ATM,ATM,ATM,ATM,ATM,ATM,ATM, ATM,SPC,SPC,SPC,SPC,SPC,ATM,ATM,

/* dle dcl dc2 dc3 dc4 nak syn etb can em sub esc fs gs rs us */
ATM,ATM,ATM,ATM,ATM,ATM,ATM,ATM, ATM,ATMATM,ATM,ATM,ATM,ATM,ATM,

/* sp ! " # $ % & '( ) * + , - . / */
SPC,ATM,QST,ATM,ATM,ATM,ATM,ATM, SPC,SPC,ATM,ATM,ATM,ATM,ATM,ATM,

/* 0 1 2 3 4 5 6 7 8 9 : ; < = > ? */
ATM,ATM,ATM,ATM,ATM,ATM,ATM,ATM, ATM,ATM,ATM,ATM,ATM,ATM,ATM,ATM,

/* @ A B C D E F G H I J K L M N 0 */
ATM,ATM,ATM,ATM,ATM,ATM,ATM,ATM, ATM,ATM,ATM,ATM,ATM,ATM,ATM,ATM,

/* P Q R S T U V W X Y Z [ \ ] A _ */
ATM,ATM,ATM,ATM,ATM,ATM,ATM,ATM, ATM,ATM,ATM,ATM,ATM,ATM,ATM,ATM,

/ a b c d e f g h i j k I m n o */
ATM,ATM,ATM,ATM,ATM,ATM,ATM,ATM, ATM,ATM,ATM,ATM,ATM,ATM,ATM,ATM,

/* p q r s t u v w x y z { I del */
ATM,ATM,ATM,ATM,ATM,ATM,ATM,ATM, ATM,ATM,ATM,ATM,ATM,ATM,ATM,ATM,

/* nul soh stx etx eot enq ack bel bs ht nI vt np cr so si */
OPR,OPR,ONE,OPR,OPR,OPR,OPR,OPR, OPR,OPR,OPR,OPR,OPR,OPR,OPR,OPR,

/* dle dcl dc2 dc3 dc4 nak syn etb can em sub esc fs gs rs us */
OPR,OPR,OPR,ONE,ONE,ONE,OPR,OPR, OPR,OPR,OPR,OPR,OPR,OPR,OPR,OPR,

/* sp ! "# $ % & '( ) * + , - . / */
ATM,ATM,ATM,ATM,ATM,ATM,ATM,ATM, ATM,ATM,ATM,ATM,ATM,ATM,ATM,ATM,

/* 0 1 2 3 4 5 6 7 8 9 : ; < = > ? */
ATM,ATM,ATM,ATM,ATM,ATM,ATM,ATM, ATM,ATM,ATM,ATM,ATM,ATM,ATM,ATM,

/* @ A B C D E F G H I J K L M N 0 */
ATM,ATM,ATM,ATM,ATM,ATM,ATM,ATM, ATM,ATM,ATM,ATM,ATM,ATM,ATM,ATM,

/* P Q R S T U V W X Y Z [ \ j ^ _ */
ATM,ATM,ATM,ATM,ATM,ATM,ATM,ATM, ATM,ATM,ATM,ATM,ATM,ATM,ATM,ATM,

/ ' a b c d e f g h i j k I m n o */
ATM,ATM,ATM,ATM,ATM,ATM,ATM,ATM, ATM,ATM,ATM,ATM,ATM,ATM,ATM,ATM,

/* p q r s t u v w x y z { I - del */
ATM,ATM,ATM,ATM,ATM,ATM,ATM,ATM, ATM,ATM,ATM,ATM,ATM,ATM,ATM,ATM,

};

/* token type table: don't strip comments */
u_char TokTypeNoC[256]=
{

/* nul soh stx etx eot enq ack bel bs ht nl vt np cr so si *

115



ATM,ATM,ATM,ATMATM,ATM,ATM,ATM, ATM,SPC,SPC,SPCSPC,SPC,ATM,ATM,
/* dIe dcl dc2 dc3 dc4 nak syn etb can em sub esc fs gs rs us */

ATM,ATM,ATM,ATM,ATM,ATM,ATMATM, ATM,ATM,ATMATM,ATM,ATM,ATM,ATM,
/* sp ! " # $ % & '( ) * + , - . / */

SPCATM,QST,ATM,ATM,ATM,ATM,ATM, OPR,OPR,ATM,ATM,ATM,ATM,ATM,ATM,
/* 0 1 2 3 4 5 6 7 8 9 : ; < = > ? */

ATM,ATM,ATM,ATM,ATM,ATM,ATM,ATM, ATM,ATM,ATM,ATM,ATM,ATM,ATM,ATM,
/* @ A B C D E F G H I J K L M N 0 */

ATM,ATM,ATM,ATM,ATM,ATM,ATM,ATM, ATM,ATM,ATM,ATM,ATM,ATM,ATM,ATM,
/* P Q R S T U V W X Y Z [ \ ] A _ */

ATM,ATM,ATM,ATM,ATM,ATM,ATM,ATM, ATM,ATM,ATM,ATM,ATM,ATM,ATM,ATM,
/* ' a b c d e f g h i j k I m n o */

ATM,ATM,ATM,ATM,ATM,ATM,ATM,ATM, ATM,ATM,ATM,ATM,ATM,ATM,ATM,ATM,
/* p q r s t u v w x y z { I del */

ATM,ATM,ATM,ATM,ATM,ATM,ATM,ATM, ATM,ATM,ATM,ATM,ATM,ATM,ATM,ATM,

/* nul sob stx etx eot enq ack bel bs ht nl vt np cr so si */
OPR,OPR,ONE,OPR,OPR,OPR,OPR,OPR, OPR,OPR,OPR,OPR,OPR,OPR,OPR,OPR,

/* dle dc l dc2 dc3 dc4 nak syn etb can em sub esc fs gs rs us */
OPR,OPR,OPR,ONE,ONE,ONE,OPR,OPR, OPR,OPR,OPR,OPR,OPR,OPR,OPR,OPR,

/* sp ! " # $ % & ' ( ) * + , - . / */
ATM,ATM,ATM,ATM,ATM,ATM,ATM,ATM, ATM,ATM,ATM,ATM,ATM,ATM,ATM,ATM,

/* 0 1 2 3 4 5 6 7 8 9 : ; < = > ? */
ATM,ATM,ATM,ATM,ATM,ATM,ATM,ATM, ATM,ATM,ATM,ATM,ATM,ATM,ATM,ATM,

/* @ A B C D E F G H I J K L M N 0 */
ATM,ATM,ATM,ATM,ATM,ATM,ATM,ATM, ATM,ATM,ATM,ATM,ATM,ATM,ATM,ATM,

/* P Q R S T U V W X Y Z [ \ ] A _ */

\ATM,ATM,ATM,ATM,ATM,ATM,ATM,ATM, ATM,ATMATM,ATM,ATM,ATM,ATM,ATM,
/* ' a b c d e f g h i j k I m n o */

ATM,ATM,ATM,ATM,ATM,ATM,ATM,ATM, ATM,ATM,ATM,ATM,ATM,ATM,ATM,ATM,
/* p q r s t u v w x y z { } - del */

ATM,ATM,ATM,ATM,ATM,ATM,ATM,ATM, ATM,ATM,ATM,ATM,ATM,ATM,ATM.ATM,
I;

#define NOCHAR -1 /* signal nothing in lookahead token */

#define DELIMCHARS "()<>,;\r\n" /* default word delimiters */

char *OperatorChars; /* operators (old $o macro) */
int ConfigLevel; /* config file level */

/*

** PRESCAN -- Prescan name and make it canonical
**

** Scans a name and turns it into a set of tokens. This process
** deletes blanks and comments (in parentheses) (if the token type
** for left paren is SPC).
**

** This routine knows about quoted strings and angle brackets.

** There are certain subtleties to this routine. The one that
** comes to mind now is that backslashes on the ends of names
** are silently stripped off; this is intentional. The problem
** is that some versions of sndmsg (like at LBL) set the kill
** character to something other than @ when reading addresses;
** so people type "csvax.eric\@berkeley" -- which screws up the
** berknet mailer.
**

** Parameters:
** addr -- the name to chomp.
** delim -- the delimiter for the address, normally
** '\0' or ','; \0 is accepted in any case.
** If '\t' then we are reading the .cf file.
** pvpbuf -- place to put the saved text -- note that
** the pointers are static.
** pvpbsize -- size of pvpbuf.
** delimptr -- if non-NULL, set to the location of the
** terminating delimiter.
** toktab -- if set, a token table to use for parsing.

116



If NULL, use the default table.
**

** Returns:
** A pointer to a vector of tokens.
** NULL on error.
*/

char **

prescan(addr, delim, pvpbuf, pvpbsize, delimptr, toktab)
char *addr;
int delim;
char pvpbuf[];
int pvpbsize;
char **delimptr;
uschar *toktab;

register char *p;
register char *q;
register int c;

bool bslashmode;
bool route-syntax;
int cmntcnt;
int angleent;
char *tok;
int state;
int newstate;
char *saveto = CurEnv->e to;
/*static char *av[MAXATOM + 1]; */
/*static char firsttime = FALSE; */
int errno;

printf("Inside prescan!!\n");
printf("Max storage of pvpbuf= %d\n", PSBUFSIZE);

if (toktab == NULL)
toktab = TokTypeTab;

/* make sure error messages don't have garbage on them */
ermo = 0;

q = pvpbuf;
bslashmode = FALSE;
route-syntax = FALSE;
cmntcnt = 0;
angleent = 0;

/* avp = av; */

state = ATM;
c = NOCHAR;
p = addr;
CurEnv->eto = p;

do

/* read a token */
tok = q;
for (;;)

/* store away any old lookahead character */
if (c != NOCHAR && !bslashmode)

/ see if there is room */

if (q >= &pvpbuf[pvpbsize - 5])

printf("553 5.1.1 Address too long\n");

117

**



if (strlen(addr) > (SIZET) MAXNAME)

printf("strlen(addr)> %d\n", MAXNAME);
addr[MAXNAME] ='\O';

returnnull:
if (delimptr != NULL)

*delimptr = p;
CurEnv->eto = saveto;
return NULL;

/* squirrel it away */
printf("Writing %c to q!\n", c);

*q++ = c;

/* read a new input character */

C = *p++;
if (c == '\O')

/* diagnose and patch up bad syntax */
if (state == QST)

printf("653 Unbalanced '\"');

else if (cmntcnt > 0)

printf("653 Unbalanced '("');
c = ''

}

else if (anglecnt > 0)

c ='>';
printf("653 Unbalanced '<');

else
break;

p--;

else if (c == delim && cmntcnt <= 0 && state != QST)

if (anglecnt <= 0)
break;

/* special case for better error management */
if (delim == ',' && !route-syntax)

printf("653 Unbalanced'<');
c ='>'
p--;

/* chew up special characters */

/*BAD*/
*q = '\O';

if (bslashmode)
{

/*printf("bslashmode = TRUE!!!\n");*/

bslashmode = FALSE;

118



/* kludge \! for naive users */
if (cmntcnt > 0)

c = NOCHAR;
continue;

else if (c '!' II state == QST)

printf("Writing slash to q!!!!\n");

/*BAD*/
*q++ = '\\';
continue; /* continue while loop */

if (c "')

bslashmode = TRUE;

else if (state == QST)

/* EMPTY */
/* do nothing, just avoid next clauses */

else if (c =='(' && toktab['('] == SPC)

cmntcnt++;
c = NOCHAR;

else if (c ==')' && toktab['('] == SPC)

if (cmntcnt <= 0)

printf("653 Unbalanced ')"');
c = NOCHAR;

else
cmntcnt--;

else if (cmntcnt > 0)

c = NOCHAR;

else if (c

char *ptr = P;

anglecnt++;
while (isascii((int)*ptr) && isspace((int)*ptr))

ptr++;
if (*ptr =='@')

route-syntax = TRUE;

else if (c=='>')

if (anglecnt <= 0)

printf("653 Unbalanced'>");
c = NOCHAR;

else{
anglecnt--;

}
route-syntax = FALSE;

else if (delim ==' ' && isascii(c) && isspace(c))
C=-' ';

119



if (c == NOCHAR){
printf("c = NOCHAR.... continuing.... \n");

continue;

/* see if this is end of input */
if (c == delim && anglecnt <= 0 && state != QST)

{
printf("breaking from for loop!\n");

break;
}

newstate = StateTab[state][toktab[c & Oxff]];

state = newstate & TYPE;
if (state == ILL)

if (isascii(c) && isprint(c))
printf("653 Illegal character %c", c);

else
printf("653 Illegal character Ox%02x", c);

/* if (bitset(M, newstate)) */
if (newstate & M) /* replacement for bit set */ {
c = NOCHAR;

/* if (bitset(B, newstate)) */
if (newstate & B)

break;

if (tok !=q)

printf("writing null byte\n");

/*BAD*/
*q++ = '\O';

if (q - tok > MAXNAME)

printf("553 5.1.0 prescan: token too long");
goto retumnull;

} while (c != '\0' && (c != delim anglecnt > 0));

printf("Exiting while loop!\n");
p--;

if (delimptr != NULL)
*delimptr = p;

CurEnv->e-to = saveto;

return NULL;

char **
parseaddr(addr, delim, delimptr)

char *addr;
int delim;
char **delimptr;

register char **pvp;
char pvpbuf[PSBUFSIZE];
static char *delimptrbuf;

120



/*** Initialize and prescan address. */

if (delimptr == NULL)
delimptr = &delimptrbuf;

pvp = prescan(addr, delim, pvpbuf, sizeof pvpbuf, delimptr, NULL);

return pvp;

int main({

char *addr;
int delim;

static char **delimptr;
char special-char = '\377'; /* same char as Oxff.
inti =0;

this char will get interpreted as NOCHAR */

addr = (char *) malloc(sizeof(char) * 500);
/* This address is valid */
/* strcpy(addr, "Misha Zitser <misha@mit.edu>"); */

/* This address causes a buffer overflow and results in a seg fault */
/* create malicious address...

for(i=0; i<300; i=i+2){
addr[i] ='\\';
addr[i+1] = special-char;

delim = '\O';
delimptr = NULL;

OperatorChars = NULL;

ConfigLevel = 5;

CurEnv = (ENVELOPE *) malloc(sizeof(struct envelope));
addr = (char *) malloc(sizeof(char) * 500);
/* This address is valid */
/* strcpy(addr, "Misha Zitser <misha@mit.edu>"); */

for(i=0; i<300; i=i+2){
addr[i] = '\\';
addr[i+l] = special-char;

delim = '\O';
delimptr = NULL;

OperatorChars = NULL;

ConfigLevel = 5;

CurEnv = (ENVELOPE *) malloc(sizeof(struct envelope));
CurEnv->eto = (char *) malloc(strlen(addr) * sizeof(char) + 1);

strcpy(CurEnv->e_to, addr);

parseaddr(addr, delim, delimptr);

return 0;

121



PRESCAN-OK.c

#include <stdio.h>
#include <sys/types.h>
#include <stdlib.h>
#include <string.h>
#include <ctype.h>

/* states and character types */
#define OPR
#define ATM
#define QST
#define SPC
#define ONE
#define ILL

0 /* operator */
1 /* atom */

2 /* in quoted string */
3 /* chewing up spaces */
4 /* pick up one character */

5 /* illegal character */

#define NSTATES 6 /* number of states */

#define MAXNAME
#define MAXATOM
#define PSBUFSIZE

#define MAXMACROID 0377

40 /* max length of a name */
10 /* max atoms per address */

(MAXNAME + MAXATOM)

/* max macro id number */

#define TYPE 017 /* mask to select state type */
/* meta bits for table */
#define M 020 /* meta character; don't pass through */
#define B 040 /* cause a break */
#define MB MIB /* meta-break */

#define TRUE I
#define FALSE 0

#define tTd(flag, level)
#define tTdlevel(flag)

(tTdvect[flag] >= (u_char)level)
(tTdvect[flag])

/* variables */
extern uchar tTdvect[100]; /* trace vector */

typedef int bool;

#ifndef SIZET
# define SIZE T size-t
#endif /* I SIZET */

typedef struct envelope ENVELOPE;
ENVELOPE *CurEnv; /* envelope currently being processed */

/* This is a very simplified representation of the envelope structure of Sendmai
1 */
struct envelope
{

char *e_to; /* the target person */
ENVELOPE *e-parent; /* the message this one encloses */
char *emacro[MAXMACROID + 1]; /* macro definitions */

};

/* Simplified address struct */
struct address
I

char
char
char
char
char
char

*q-paddr; /* the printname for the address */
*q_user; /* user name */
*qruser; /* real user name, or NULL if quser */
*qhost; /* host name */
*qhome; /* home dir (local mailer only) */
*qfulname; /* full name if known */

122



struct address *q-next; /* chain */
struct address *q-alias; /* address this results from */
char *qowner; /* owner of q-alias */
struct address *q-tchain; /* temporary use chain */
char *q-orcpt; /* ORCPT parameter from RCPT TO: line */
char *q-status; /* status code for DSNs */
char *q_rstatus; /* remote status message for DSNs */
char *q-statmta; /* MTA generating qrstatus */
short q-state; /* address state, see below */
short q-specificity; /* how "specific" this address is */

};

typedef struct address ADDRESS;

static short StateTab[NSTATES][NSTATES]
{

/* oldst chtype> OPR ATM QST SPC ONE ILL */
/*OPR*/ { OPRIB, ATMIB, QSTIB, SPCIMB, ONEIB, ILLIMB },
/*ATM*/ I OPRIB, ATM, QSTIB, SPCIMB, ONEIB, ILLIMB },
/*QST*/ { QST, QST, OPR, QST, QST, QST },
/*SPC*/ t OPR, ATM, QST, SPCIM, ONE, ILLIMB },
/*ONE*/ I OPR, OPR, OPR, OPR, OPR, ILLIMB },
/*ILL*/ I OPRIB, ATMIB, QSTIB, SPCIMB, ONEIB, ILLIM },

};

/* token type table -- it gets modified with $o characters */
static uchar TokTypeTab[256]=
{

/* nul soh stx etx eot enq ack bel bs ht nt vt np cr so si */
ATM,ATM,ATM,ATM,ATM,ATM,ATM,ATM, ATM,SPC,SPC,SPC,SPC,SPC,ATM,ATM,

/* die dcl dc2 dc3 dc4 nak syn etb can em sub esc fs gs rs us */
ATM,ATM,ATM,ATM,ATM,ATM,ATM,ATM, ATM,ATM,ATM,ATM,ATM,ATM,ATM,ATM,

/* sp ! " # $ % & ' ( ) * + , - . / */
SPC,ATM,QST,ATM,ATM,ATM,ATM,ATM, SPC,SPC,ATM,ATM,ATM,ATM,ATM,ATM,

/* 0 1 2 3 4 5 6 7 8 9 : ; < = > ? */
ATM,ATM,ATM,ATM,ATM,ATM,ATM,ATM, ATM,ATM,ATM,ATM,ATM,ATM,ATM,ATM,

/* @ A B C D E F G H I J K L M N 0 */
ATM,ATM,ATM,ATM,ATM,ATM,ATM,ATM, ATM,ATM,ATM,ATM,ATM,ATM,ATM,ATM,

/* P Q R S T U V W X Y Z [ \ I A - */
ATM,ATM,ATM,ATM,ATM,ATM,ATM,ATM, ATM,ATM,ATM,ATM,ATM,ATM,ATM,ATM,

/*' a b c d e f g h i j k 1 m n o */
ATM,ATM,ATM,ATM,ATM,ATM,ATM,ATM, ATM,ATM,ATM,ATM,ATM,ATM,ATM,ATM,

/* p q r s t u v w x y z I I I ~del */
ATM,ATM,ATM,ATM,ATM,ATM,ATM,ATM, ATM,ATM,ATM,ATM,ATM,ATM,ATM,ATM,

/* nul soh stx etx eot enq ack bel bs ht nt vt np cr so si */
OPR,OPR,ONE,OPR,OPR,OPR,OPR,OPR, OPR,OPR,OPR,OPR,OPR,OPR,OPR,OPR,

/* dle dc l dc2 dc3 dc4 nak syn etb can em sub esc fs gs rs us */

OPR,OPR,OPR,ONE,ONE,ONE,OPR,OPR, OPR,OPR,OPR,OPR,OPR,OPR,OPR,OPR,
/* sp ! "# $ % & ' ( ) * + , - . / */

ATM,ATM,ATM,ATM,ATM,ATM,ATM,ATM, ATM,ATM,ATM,ATM,ATM,ATM,ATM,ATM,
/* 0 1 2 3 4 5 6 7 8 9 : ; < = > ? */

ATM,ATM,ATM,ATM,ATM,ATM,ATM,ATM, ATM,ATM,ATM,ATM,ATM,ATM,ATM,ATM,
/* @ A B C D E F G H I J K L M N 0 */

ATM,ATM,ATM,ATM,ATM,ATM,ATM,ATM, ATM,ATM,ATM,ATM,ATM,ATM,ATM,ATM,
/* P Q R S T U V W X Y Z [ \ ] ^ _ */

ATM,ATM,ATM,ATM,ATM,ATM,ATM,ATM, ATM,ATM,ATM,ATM,ATM,ATM,ATM,ATM,
/* a b c d e f g h i j k 1 m n o */

ATM,ATM,ATM,ATM,ATM,ATM,ATM,ATM, ATM,ATM,ATM,ATM,ATM,ATM,ATM,ATM,
/* p q r s t u v w x y z { I } - del */

ATM,ATM,ATM,ATM,ATM,ATM,ATM,ATM, ATM,ATM,ATM,ATM,ATM,ATM,ATM,ATM,
};

/* token type table: don't strip comments */
u-char TokTypeNoC[256]=
{

/* nul soh stx etx eot enq ack bel bs ht nI vt np cr so si */
ATM,ATM,ATM,ATM,ATM,ATM,ATM,ATM, ATM,SPC,SPC,SPC,SPC,SPC,ATM,ATM,

123



/* die dcl dc2 dc3 dc4 nak syn etb can em sub esc fs gs rs us */
ATM,ATM,ATM,ATM,ATMATM,ATM,ATM, ATM,ATMATM,ATM,ATM,ATM,ATM,ATM,

/* sp ! " # $ % & '( ) * + , - . / */
SPC,ATM,QST,ATM,ATM,ATM,ATM,ATM, OPR,OPR,ATM,ATM,ATM,ATM,ATM,ATM,

/* 0 1 2 3 4 5 6 7 8 9 : ; < = > ? */
ATM,ATM,ATM,ATM,ATM.ATM,ATM,ATM, ATM,ATM,ATM,ATM,ATM,ATM,ATM,ATM,

/* @ A B C D E F G H I J K L M N 0 */
ATM,ATM,ATM,ATM,ATM,ATM,ATM,ATM, ATM,ATM,ATM,ATM,ATM,ATM,ATM,ATM,

/* P Q R S T U V W X Y Z [ \ ] ^ _ */
ATM,ATM,ATM,ATM,ATM,ATM,ATM,ATM, ATM,ATM,ATM,ATM,ATM,ATM,ATM,ATM,

/* a b c d e f g h i j k I m n o */
ATM,ATM,ATM,ATM,ATM,ATM,ATM,ATM, ATM,ATM,ATM,ATM,ATM,ATM,ATM,ATM,

/* p q r s t u v w x y z { } del */
ATM,ATM,ATM,ATM,ATM,ATM,ATM,ATM, ATM,ATM,ATM,ATM,ATM,ATM,ATM,ATM,

/* nul soh stx etx eot enq ack bel bs ht nl vt np cr so si */
OPR,OPR,ONE,OPR,OPR,OPR,OPR,OPR, OPR,OPR,OPR,OPR,OPR,OPR,OPR,OPR,

/* die dc I dc2 dc3 dc4 nak syn etb can em sub esc fs gs rs us */
OPR,OPR,OPR,ONE,ONE,ONE,OPR,OPR, OPR,OPR,OPR,OPR,OPR,OPR,OPR,OPR,

/* sp ! " # $ % & ' ( ) * + , - . / */
ATM,ATM,ATM,ATM,ATM,ATM,ATM,ATM, ATM,ATM,ATM,ATM,ATM,ATM,ATM,ATM,

/* 0 1 2 3 4 5 6 7 8 9 : ; < = > ? */
ATM,ATM,ATM,ATM,ATM,ATM,ATM,ATM, ATM,ATM,ATM,ATM,ATM,ATM,ATM,ATM,

/* @ A B C D E F G H I J K L M N 0 */
ATM,ATM,ATM,ATM,ATM,ATM,ATM,ATM, ATM,ATM,ATM,ATM,ATM,ATM,ATM,ATM,

/* P Q R S T U V W X Y Z [ \ ] A _ */
ATM,ATM,ATM,ATM,ATM,ATM,ATM,ATM, ATM,ATM,ATM,ATM,ATM,ATM,ATM,ATM,
/* a b c d e f g h i j k 1 m n o */

ATM,ATM,ATM,ATM,ATM,ATM,ATM,ATM, ATM,ATM,ATM,ATM,ATM,ATM,ATM,ATM,
/* p q r s t u v w x y z I I } -del */

ATM,ATM,ATM,ATM,ATM,ATM,ATM,ATM, ATM,ATM,ATM,ATM,ATM,ATM,ATM,ATM,

#define NOCHAR -1 /* signal nothing in lookahead token */

#define DELIMCHARS "()<>,;\r\n" /* default word delimiters */

char *OperatorChars; /* operators (old $o macro) */
int ConfigLevel; /* config file level */

/*
** PRESCAN -- Prescan name and make it canonical
**

** Scans a name and turns it into a set of tokens. This process
** deletes blanks and comments (in parentheses) (if the token type
** for left paren is SPC).
**

** This routine knows about quoted strings and angle brackets.

** There are certain subtleties to this routine. The one that
** comes to mind now is that backslashes on the ends of names
** are silently stripped off; this is intentional. The problem
** is that some versions of sndmsg (like at LBL) set the kill
** character to something other than @ when reading addresses;
** so people type "csvax.eric\@berkeley" -- which screws up the
** berknet mailer.
**

** Parameters:
** addr -- the name to chomp.
** delim -- the delimiter for the address, normally
** '\O' or ','; \0 is accepted in any case.
** If '\t' then we are reading the .cf file.
** pvpbuf -- place to put the saved text -- note that
** the pointers are static.
** pvpbsize -size of pvpbuf.
** delimptr - if non-NULL, set to the location of the
** terminating delimiter.
** toktab -- if set, a token table to use for parsing.
** If NULL, use the default table.

124



**

** Returns:
** A pointer to a vector of tokens.
** NULL on error.

*/

char **

prescan(addr, delim, pvpbuf, pvpbsize, delimptr, toktab)
char *addr;
int delim;
char pvpbuf[];
int pvpbsize;
char **delimptr;
u_char *toktab;

register char *p;
register char *q;
register int c;

bool bslashmode;
bool route-syntax;
int cmntcnt;
int anglecnt;
char *tok;
int state;
int newstate;
char *saveto = CurEnv->eto;
/*static char *av[MAXATOM + 1]; */
/*static char firsttime = FALSE; */
int errno;

printf("Inside prescan!!\n");
printf("Max storage of pvpbuf = %d\n", PSBUFSIZE);

if (toktab == NULL)
toktab = TokTypeTab;

/* make sure error messages don't have garbage on them */
ermo = 0;

q = pvpbuf;
bslashmode = FALSE;
route-syntax = FALSE;
cmntent = 0;
anglecnt = 0;

/* avp = av; */

state = ATM;
c = NOCHAR;
p = addr;
CurEnv->eto = p;

do

/* read a token */
tok = q;
for (;;)

/* store away any old lookahead character */
if (c != NOCHAR && !bslashmode)

/* see if there is room */

if (q >= &pvpbuf[pvpbsize - 5])

printf("553 5.1.1 Address too long\n");

if (strlen(addr) > (SIZET) MAXNAME)

125



printf("strlen(addr) > %d\n", MAXNAME);
addr[MAXNAME] ='\O';

}
returnnull:

if (delimptr != NULL)
*delimptr = p;

CurEnv->eto = saveto;
return NULL;

I

/* squirrel it away */
printf("Writing %c to q!\n", c);
*q++ = c;

/* read a new input character */

C = (*p++) & Ox0Off; /* The bad program says c *p++, in which case if *p =Oxff,
then c = -l = NOCHAR. We would like c to equal Oxff if *p
Oxff. This is accomplished by anding *p with OxOOff. */

if (c =='\O')
{
/* diagnose and patch up bad syntax */
if (state == QST)

{
printf("653 Unbalanced \"'");

else if (cmntent > 0)
{

printf("653 Unbalanced '(.');
c =';}

else if (anglecnt > 0)
{

c = '>';

printf("653 Unbalanced <'");

}
else

break;

p-;

else if (c == delim && cmntcnt <= 0 && state ! QST)

if (anglecnt <= 0)
break;

/* special case for better error management */
if (delim == && !route-syntax)

printf("653 Unbalanced '<');
c ='>';
p--;

/* chew up special characters */

if (q >= &pvpbuf[pvpbsize - 5]){
return NULL;

else

/*OK*/
*q = '\O';

if (bsiashmode)
{

126



/*printf("bslashmode = TRUE!!!\n");*/

bslashmode = FALSE:

/* kludge \! for naive users */
if (cmntcnt > 0)

c = NOCHAR;
continue;

else if (c '!' state == QST)

printf("Writing slash to q!!!!\n");

if (q >= &pvpbuf[pvpbsize - 5]){
return NULL;

else

/*OK*/
*q++ = '\\';

continue; /* continue while loop */

if (c=='\)
{

bslashmode = TRUE;

else if (state == QST)

/* EMPTY */
/* do nothing, just avoid next clauses */

else if (c == '(' && toktab['(']== SPC)

cmntcnt++;
c = NOCHAR;

else if (c == ')' && toktab['('] == SPC)

if (cmntcnt <= 0)

printf("653 Unbalanced ')"');
c = NOCHAR;

else
cmntcnt--;

else if (cmntcnt > 0)

c = NOCHAR;

else if (c=='<')

char *ptr = p;

anglecnt++;
while (isascii((int)*ptr) && isspace((int)*ptr))

ptr++;
if (*ptr ='@')

route-syntax = TRUE;

else if (c =='>')

if (anglecnt <= 0)
I

127



printf("653 Unbalanced '>");
c = NOCHAR;

else(
anglecnt--;

route-syntax = FALSE;

else if (delim && isascii(c) && isspace(c))
C ='' ';

if (c == NOCHAR){
printf("c = NOCHAR.... continuing....!\n");

continue;

/* see if this is end of input */
if (c == delim && anglecnt <= 0 && state != QST)

{
printf("breaking from for loop!\n");

break;

newstate = StateTab[state][toktab[c & Oxff]];
state = newstate & TYPE;

if (state == ILL)

if (isascii(c) && isprint(c))
printf("653 Illegal character %c", c);

else
printf("653 Illegal character Ox%02x", c

/* if (bitset(M, newstate)) */
if (newstate & M) /* replacement for bit set */ {

c = NOCHAR;

/* if (bitset(B, newstate)) */
if (newstate & B)

break;

if (tok != q)

printf("writing null byte\n");
if (q >= &pvpbuf[pvpbsize - 51){
return NULL;

}
else

/*OK*/
*q++ ='\O';

if (q - tok > MAXNAME)

printf("553 5.1.0 prescan: token too long");
goto returnnull;

while (c !='\0' && (c != delim anglecnt > 0));

printf("Exiting while loop!\n");

if (delimptr != NULL)
*delimptr =p;

CurEn->e-to = saveto;

return NULL;

128



char **
parseaddr(addr, delim, delimptr)

char *addr;
int delim;
char **delimptr;

register char **pvp;
char pvpbuf[PSBUFSIZE];
static char *delimptrbuf;

/*
** Initialize and prescan address.

*/

if (delimptr == NULL)
delimptr = &delimptrbuf;

pvp = prescan(addr, delim, pvpbuf, sizeof pvpbuf, delimptr, NULL);

return pvp;

int maino

char *addr;
int delim;

static char **delimptr;
char special-char = \377'; /* same char as Oxff. This char will get interpreted as NOCHAR */
int i =0;
addr = (char *) malloc(sizeof(char) * 500);

for(i=0; i<300; i=i+2){
addr[i] ='\\';
addr[i+1] = special-char;

delim = '\O';
delimptr = NULL;

OperatorChars = NULL;
for(i=0; i<300; i=i+2){

addr[i] ='\\';
addr[i+1] = special-char;

}

delim=
delimptr = NULL;

OperatorChars = NULL;

ConfigLevel = 5;

CurEnv = (ENVELOPE *) malloc(sizeof(struct envelope));
CurEn->e-to = (char *) malloc(strlen(addr) * sizeof(char) + 1);

strcpy(CurEnv->ejto, addr);

parseaddr(addr, delim, delimptr);

return 0; }

129

I



APPENDIX E

The following is an include file for PolySpace C Verifier that was used during program
analysis in several instances.

polyspace.h:

#undef STRICTANSI

#define unix 1
#define i386 1
#define NOINLINE 1
#define linux 1
#define GNUC 2
#define linux 1
#define unix 1
#define ELF 1
#define i386 1
#define __linux 1

#define GNUCMINOR 96
#define __unix 1
define _i386 1
#define unix 1

#define __WINTTYPE unsigned int

/* Disable unsupported GNU extensions */
#define extension
#define __const const
#define __attribute (x)
#define __restrict

130


