
RFIDSim - A Discrete Event

Frequency Identification Systems

by

Kenneth Kwan-Wai Yu

Submitted to the Department of Electrical Engineering and Computer
Science

in partial fulfillment of the requirements for the degree of

Master of Engineering in Electrical Engineering and Computer Science

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

September 2003

@ Massachusetts Institute of Technology 2003. All rights reserved.

Author .............................. ..................
Department of Electrical Engineering and Computer Science

August 22, 2003

Certified by........... ....................... .. .. V .. . ........

Sanjay E. Sarma
Associate Professor of Mechanical Engineering

Thesis Supervisor

Accepted by..........(.. ....... ... ... A....r .. .. S........

Arthur C. Smith
Chairman, Department Committee on Graduate Theses

MdASSACHUSETTS INS71RWE'
OF TECHNOLOGY

JUL 2 0 2004

LIBRARIES
BARKER

Simulator for Radio



2



RFIDSim - A Discrete Event Simulator for Radio Frequency

Identification Systems

by

Kenneth Kwan-Wai Yu

Submitted to the Department of Electrical Engineering and Computer Science
on August 22, 2003, in partial fulfillment of the

requirements for the degree of
Master of Engineering in Electrical Engineering and Computer Science

Abstract

This thesis presents RFIDSim, a discrete event process-oriented simulator designed to
model Radio Frequency Identification (RFID) communication. The simulator focuses
on the discovery and identification process of passive powerless RFID tags - a category
of low cost tags that harvest all of their energy from the radio frequency signals sent
by the reader. RFIDSim currently supports the Auto-ID Class 0 and Class 1 UHF
RFID protocols, and is designed to be an extensible framework for additional protocol
implementations, as well as a modular structure that partitions the reader / tag logic
separately from the signal modeling.
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Chapter 1

Introduction

This thesis presents RFIDSim, a discrete event process-oriented simulator designed

to model communication between RFID readers and tags in a simulated environment.

RFIDSim currently supports the Auto-ID Class 0 and Class 1 UHF protocols, and is

designed to be an extensible framework for additional protocol implementations, as

well as a modular structure that partitions the reader / tag logic separately from the

signal modeling. The simulator focuses on the discovery and identification process

of passive powerless RFID tags - a category of low cost tags that harvest all of their

energy from the radio frequency signals sent by the reader.

1.1 Radio Frequency Identification

Radio Frequency Identification (RFID) is a special class of wireless communication

that allows identification of objects through information embedded in an attached

microchip without requiring line-of-sight. This allows computer systems to identify

and recognize physical objects through a tag attachment. An RFID system consists

of tags, microchips that contain unique identifying information about a physical ob-

ject, and readers, transmitters that initiates the discovery and identification process

of tags in a surrounding environment [1]. A more thorough introduction to RFID

systems exist in Scharfeld's Masters Thesis on RFID [2] and Finkenzeller's RFID

Handbook: Radio-Frequency Identification Fundamentals and Applications [3].
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Figure 1-1: Components of a complete RFID system.

Figure 1-1 shows the essential components of a complete RFID system. The

readers are controlled and linked to the backend component (a server linked to a

database inventory system), while the tags are dispersed in the environment.

The backend component drives and initiates the discovery process of tags in the

environment. The readers return their results to the server when the discovery process

is completed. While the backend components that controls the readers serves a vital

role in mapping the discovered information from RFID tags to respective products,

the scope of this paper focuses primarily on the discovery process between RFID

readers and RFID tags.

Although RFID has been introduced and deployed commercially since World War

II for identifying aircraft, RFID technology has only recently been gaining adoption

of a much larger scale within the non-aviation sectors. The facilitation of this pro-

liferation has been mostly driven by technological advances that contributed to the

shrinking size of microchip, as well as the pervasive use of inter-networked communi-

cations among businesses and consumer homes.

Many companies have identified the emerging potentials of RFID technology, and

are exploring the potential RFID applications in their environment. For example,

some corporations with large amounts of inventories are beginning to deploy RFID

18



technologies within their supply chain, hoping to benefit from the increased efficiency

in managing and tracking inventory. Package delivery companies are also exploring

the possibility of using RFID tags to track the locations of packages. Other companies

that produce small and high priced products, such as Gillette, are using of RFID

technologies at retail stores to lower theft [4].

1.2 Acceptance Roadblocks

The current leading factor inhibiting the ubiquitous use of RFID technology is the

price of RFID tags. Although the use of passive powerless tags - a category of tags that

are powered by radio frequency signals only - are less expensive than powered tags,

the cost of passive tags is still a deterrent for most potential customers. In a supply

chain environment, the potential customers that benefit the most from RFID are the

customers that need to track and identify a large number of physical objects, which

would bring the total investment to a significant amount. Therefore, the current use

of tags in commercial applications has been relatively small-scaled and constrained

in enclosed environments, where tags are detached and reused. While this form of

application still brings an increased level of efficiency in tracking physical objects,

there is much larger economical benefit to realize if the physical objects are bound to

uniquely identifiable tags for their lifetime.

The following factors would contribute to lowering the overall costs of RFID tags:

Large company sponsors who show a dedicated commitment to deploy

RFID tags in their environment. A strong commitment will convince RFID

equipment manufacturers to invest in sufficient manufacturing capabilities to meet

the anticipated strong demand, therefore lowering the price of RFID tags through

economies of scale.

Manufacturers that adhere to standardized RFID communication pro-

tocols. Manufacturers that agree to adopt an open and published protocol will ease

a purchaser's concern of a proprietary lock-in. The interoperability between readers

and tags of different manufacturers will also drive down the price of a tag through
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competition and commoditization of the physical tags.

1.3 Auto-ID Center

The Auto-ID Center was founded with the vision to revolutionize the way products

are made, bought and sold, by labeling and connecting physical objects together

with computers. The main goal of the Auto-ID Center is to define mature and

reliable communication protocol standards for manufacturers to adhere to, driving

the acceptance of RFID in the world.

Auto-ID Center is an industry-funded research program. The Auto-ID Center's

sponsors and partners include market-leading companies from a diverse group of in-

dustries, such as Wal-Mark, Gillette, Department of Defence (DoD), US Postal Service

(USPS), Phillip Morris, Procter & Gamble, Home Depot, UPS, Intel, PriceWater-

houseCoopers, Sun Microsystems, and Pepsi Co.

1.4 Problems

The Auto-ID initiative is still relatively young, and official protocol standards have

only been recently published. In order to drive the acceptance of RFID technology, it

is important to perform rigorous testing on the published protocol standards, as well

as continually improving them based on the needs of the customers.

There are many development directions the protocols can take, especially in the

areas of security, robustness under noise, and speed. However, there are two key

factors slowing down the algorithm development process.

1.4.1 Algorithm evaluation methods

There are currently four methods to evaluate new discovery algorithms: theory, em-

ulation, simulation and implementation.

The performance of discovery algorithms can be evaluated based on the

theoretical runtimes. While theoretically we can approximate the performance
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of a discovery algorithm, the approximation is not rigorous enough to prove the

actual performance gain. The theoretical analysis must make several simplifying

assumptions to become tractable to solve. These simplifying assumptions yield a

theoretical model that can be far from reality.

The performance of discovery algorithms can be evaluated using a soft-

ware simulator. The software simulator can be made very detailed and accurate for

the tag-reader communication protocol, the signaling, and the environment. However,

for a detailed simulator, long execution times are required to obtain a single point of

data. A highly accurate simulator can realistically model reality; however, the num-

ber of simulated data points possible in a given period of time decreases, typically

exponentially, as the accuracy of the simulator increases. Fewer data points provide

limited analysis potential of the protocol.

The performance of discovery algorithms can be evaluated using pro-

grammable prototype tags in a lab environment. The use of programmable

tags to change the reader and tag logic can provide more realistic evaluations of the

discovery algorithms in a given environment. However, programmable prototype tags

are often too inflexible to allow for drastic changes to the communication protocol,

and it's only suitable for minor algorithm changes. These tags also provide unrealis-

tic performance as compared to pure passive tags. This performance boost can mask

potential problems with a silicon implementation.

The performance of discovery algorithms can be evaluated using man-

ufactured prototype tags in a lab environment. By communicating with the

manufacturer and requesting small batch quantities of prototype tags, it is possible

to evaluate the major design changes that programmable tags do not allow. However,

the manufacturing of such prototype tags in small quantities expensive and time con-

suming. Also, the long delay incurred from the manufacturing process of new tags

lengthens the development cycle significantly. Furthermore, results obtained from

the testing of tags in a lab environment can be unreliable and inaccurate, as even in

lab environments there are many uncontrolled variables from noise interference that

might skew the evaluation.
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While each method has respective drawbacks, a well designed software simulator

that strikes a fine balance between accuracy and performance will still provide more

accurate, timely and controlled testing results than the other three available methods.

1.4.2 Current simulation solutions do not fit the needs

The RFID simulators currently available are supplied by the RFID manufacturers

themselves. However, the simulators do not have the level of signal modeling we

require. Some of the simulators do not factor in the distance between the readers and

tags, and do not even simulate on the signal level. Both of these characteristics can

have a significant impact on the performance of a protocol and must be evaluated.

The general network simulators currently available, such as ns-2, do not take into

account the unique asymmetric nature of RFID communication. As a result, using

such network simulators would require a large overhaul in the core assumptions of

the system.

1.5 Motivations behind creating RFIDSim

The development of a new RFID simulator aims to overcome the deficiencies and sim-

plistic nature of existing RFID simulators. Small tweaks or even entire new protocols

can be developed on the simulator, and a recompile of the simulator can allow for

elementary indications of performance.

The simulator eliminates the need for the use of prototype tags to test minor

modifications to the algorithm, and allows the use of prototype tags only when the

new logic of the algorithm is fully matured through testing on the RFID simulator.

Such a simulator will also allow testing of tags in large quantities and controlled

environments, so uncontrolled noise variables wont distort evaluation results.

A simulator designed to solve these problems will be algorithm-oriented, with

detail paid to the level of simulation for signal modeling.
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1.6 Thesis Overview

The rest of the thesis is outlined as follows.

Chapter 2 defines and explains the terminology that will be used throughout the

thesis. The chapter will also explain the nature and characteristics of RFID commu-

nications, the technologies and techniques that readers and tags use to communicate

back and forth.

Chapter 3 defines the design goals outlined in the early development of RFIDSim,

taking into account the problems and motivations described in section 1.4 and 1.5.

Chapter 4 presents the final design of RFIDSim, which includes a design overview,

a description of all the significant actors in a simulation, an explanation on how signal

modeling is handled in simulations, and a complete walkthrough on how communica-

tions between RFID readers and tags are simulated.

Chapter 5 discusses the implementation of RFIDSim's design, with the focus on

specific implementation details that were not relevant to the overall design.

Chapter 6 explains the requirements a user needs to compile and execute RFIDSim

successfully, the features of the RFIDSim user interface, and the proper steps a user

should take in order to run simulations on RFIDSim.

Chapter 7 summarizes the work done thus far on RFIDSim, and cites areas where

RFIDSim can be extended or improved as potential future work.

Appendix A outlines the design of the Auto-ID Class 0 protocol. For the detailed

specification of the protocol, please refer to the published specification [5].

Appendix B outlines the design of the Auto-ID Class 1 protocol. For the detailed

specification of the protocol, please refer to the published specification [6].
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Chapter 2

Terminology

2.1 Discovery Process

In a given RFID environment, the key objective is to accurately discover the iden-

tification of all tags in the environment, using interrogation processes initiated by

the reader. The very nature of an RFID system places many constraints of how the

readers and tags can effectively communicate with each other.

2.2 Readers

Readers are devices used to identify RFID tags in a given environment. They are

powered devices that can transmit signals over a selected channel, and can also listen

to selected channels for responses from tags. When a reader sends a signal, every tag

in the vicinity will pick up the command and attempt to execute the command.

2.3 Tags

Tags are powerless and passive chips with antennas, and each tag has a Identifier

Tag Memory (ITM). The unique identification code (Electronic Product Code, also

known as EPC) is embedded in the ITM.

Tags are powerless, and they do not have any form of batteries attached to the tags,
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and are powered by the wireless signal emitted by the readers during the discovery

process.

Tags are also passive, so they have no transmitting capabilities. The only way for

tags to communicate with a reader is by backscattering its response during a carrier

wave signal from a reader. As a result, the communication channel they reply on will

be relative to the channel the reader is communicating on. The reader listens to those

channels for the backscatter replies.

2.4 Asymmetric communication

The communication between RFID readers and tags is asymmetric, with readers ini-

tiating interrogation commands and tags responding passively. The following factors

contribute to RFID communication's asymmetric nature:

2.4.1 Restrictions imposed on wireless communications

Existing regulations limit the reader-to-tag communication bandwidth, but not the

tag-to-reader communication bandwidth. Therefore, while the reader is restricted to

communicating over a narrow pipe for communication, the tag has no such restric-

tions, and has the potential to communicate more information in the same period of

time when compared to the reader. Conversely, the tag only has access to a weak

energy source harvested from readers, while the reader communication strength is

significantly more powerful than the tag communication strength.

2.4.2 Tags are powerless / stateless

Tags do not have an energy source without an interrogation by the reader. The lack of

an internal energy source places a constraint on the ability for tags to maintain their

state. A temporary state can be maintained if the tag's energy source is continually

renewed by reader signals, but without power, the state will only for hold for a limited

amount of time.
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2.4.3 Tags are passive

The tag cannot initiate commands because it is powerless, therefore it only commu-

nicates when powered by readers. As a result, all communications are initiated and

driven by the reader, and a tag can only reply to the reader during an allotted time

period by the reader itself.

2.4.4 Reader signals are broadcasted to all tags

Although the strength of a reader's antenna and the direction of the antenna can be

used to allow the reader to broadcast a command to only a group of tags in a certain

direction, it still does not allow the reader to accurately communicate with one single

tag at a time.

Because of the broadcasting nature of the reader's signals, any reliable attempts to

selectively communicate with a single tag or a selected group of tags will be performed

at the protocol level. (For example, the tag can be logically programmed to behave

differently based upon tag's unique identity)

2.4.5 Tags communicate with the reader through a channel

relative to the reader

Because all tags will be replying through the same channels, the replies could poten-

tially generate collision problems. Therefore, in order to extract information from the

backscatter channels, the design of the protocol will have to take into account of the

possible collisions with backscatter replies.

2.4.6 Reader has complete control of the communication

Because tags are passive, powerless, stateless, and unable to initiate communication

with the reader, the tag is often required to respond with specified timing bounds.

Therefore, the reader is only listening during predefined time periods. Also, because
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Figure 2-1: The generalized communication between reader and tags.

readers are not limited by energy, memory or computation power, the discovery al-

gorithm is driven by the reader.

The following communication shown in figure 2-1 is how readers and tags com-

municate for all RFID protocols:

1. The reader broadcasts a signal.

2. Reader waits for a reply for a timed period (if it is expecting a response)

3. Tags are powered from receiving the signals, and logically processes the com-

mand.

4. Tags backscatters a reply or stays silent depending on the command.

5. Reader analyzes any backscattered responses receives at the end of timed

period.
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Figure 2-2: Signal diagram of zero data symbol in the Auto-ID Class 0 protocol.

2.5 Signaling methods

The encoding of symbols in RFID communication is different for reader communica-

tion and tag communication, due to the computing capability differences of readers

and tags.

2.5.1 Reader Modulation

Because tags have simple functionality, they are not capable of receiving complex

communication signaling from a reader. The readers in RFID protocols primarily

uses Amplitude Shift Keying (ASK) to modulate the commands to the tags, because

ASK modulation is detectable with very simple circuitry.

In ASK modulation, amplitude shifts in the signals are used to indicate a high

or a low signal, and the rising edge and the falling edge is used to modulate and

demodulate the signals.

In addition to modulating commands using ASK, the amplitude rise and falls are

also used to synchronize the clocks of the tags.

Figure 2-2 shows a signal diagram of a zero symbol in the Auto-ID Class 0 protocol.

After the modulation of the signal, if the reader was expecting a backscatter reply

from the command, the reader allots a time period where it sends at carrier-wave

frequency, allowing the tags to backscatter.
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2.5.2 Tag Demodulation

After the tag's clock has already been synchronized from an earlier signal, the tag

evaluates the signals based on the timings of the amplitude rise and falls of the signal.

The tag then logically process the command presented by the reader, and if necessary,

generates the necessary backscatter response to the reader in the allotted time period.

2.5.3 Tag Modulation

Because the tag backscatter rests upon the carrier-wave of the reader, the response

is usually fairly weak and low in energy. As a result, different protocols have imple-

mented different tag modulation methods. The details of the tag modulation methods

will be discussed in the appendices A and B, and can also be referenced in the pub-

lished specifications [5] [6].

2.5.4 Reader Demodulation

During the allotted time period, the readers listen on certain channels for any backscat-

ter responses (the channels vary depending on the protocol design). The resulting

backscatter is then demodulated and evaluated.

2.6 Constraints

The nature of how readers and tags communicate in each other (described in section

2.4) has placed several constraints on designing a systematic method to identify tags

during the discovery process. This section will outline the constraints, as well as

describe a generic discovery algorithm designed to take these constraints into consid-

eration.

Constraint: Reader signals are broadcasted to all tags - all tags are logically

programmed to behave in the same behavior, and there is no effectively way to target

the communication at one single tag or a selective group of tags. Therefore, every

tag will respond in the same behavior with every reader command sent.
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Solution: While the logical behavior of every tag is identical, they are uniquely

identified by their identification code. The identification code can be used to logically

instruct the tag to behave differently. For example, a reader signal can be broadcasted

with the instruction "Only reply if your identification code is 0111010011101101111".

The identification code can also be used as a seed for introducing random numbers

into the algorithm, which will also create uniqueness among the tags.

Constraint: Backscatter response from tags can be subject to collision - tags are

designed to backscatter in a channel that's relative to the reader's signal. Therefore

backscatter responses from tags are subject to collision, and any information encoded

in the backscatter response will be lost. With an unknown number of tags in the field

and limited frequency allocation, it is not realistic to instruct tags to all reply in their

own individual channel.

Solution: Using the solution described above, tags can be instructed to reply

only if their identification code matches or does not match a certain pattern. Also, as

we will see with the protocol design of Class 0, the encoding of the information does

not necessarily have to be modulated in the backscatter response. In the design of

Class 0, tags can backscatter in one of the two available channels, and the information

is encoded in the decision of which channel the tag chooses to reply on. Therefore, for

each reader command, there is two bits of information encoded in the reply, regardless

of collision.

Constraint: Tags are powerless / stateless - The powerless nature of tags places

a constraint on the ability for tags to track state effectively. Any states held by the

tag will be lost shortly without a signal from a reader.

Solution: The reader should bear the responsibility of tracking as much state

as possible. The discovery algorithm used by the reader should also ensure that

there is enough power to continuously power the tag for the duration of the discovery

algorithm, in order to preserve the few internal states the tags might keep track of.
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Figure 2-3: Binary string "1101" represented as a binary tree path.

2.7 Discovery Algorithm using Tree-Walking

This section describes a fairly elementary tree-walking algorithm that discovers and

identifies all listening tags in the environment. The algorithm performs tree-walking

on a binary-tree based on the uniqueness of the tags' identification codes.

2.7.1 Using identification codes for tree construction

Each RFID tag's identification code is encoded in binary and has a fixed length 1. If

we construct a binary tree of depth 1, using the MSB of the identification code as the

root, and define the left branch as bit "0", and the right branch as bit "1", each tag's

identification code is a tree-walk from the root of the tree to a leaf. Furthermore,

the uniqueness of the identification codes guarantees that at most only one tag will

reach any leaf. Figure 2-3 shows a binary tree of depth 4, and the path tag with the

identification code "1101" have been taken.

2.7.2 Tree-walking algorithm

The following reader algorithm allows a reader to walk from the root of binary tree to

a leaf node, effectively identifying a single tag. The process of successfully identifying
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a single tag is known as singulation.

discovered-id = "";

d = lengthOf(discovered id);

while (discovered-id is not complete) {
Reader announces: "I am now at level d. those tags that begin with discovered-id

please respond with your next bit.";

if (bitO == yes) // there is a tag that matches the path, and the tag's next bit is

0

discovered-id = discovered-id + "0"; /7 move down the "0" branch

else if (biti == yes) // there is a tag that matches the path, and the tag's next

bit is 1

discovered-id = discovered id + "1"; // move down the "1" branch

else

terminate; // no tags replied

}

// we are here, and we did not terminate, so discovered-id is complete

Reader announces: "I have discovered a tag with id discovered-id";

Analysis - the reader attempts to walks down the path of an identification code of

tag. As the reader walks down, it repeatedly interrogates all the tags to provide him

with the next bit of the constructed string, which is the next branch of the path the

reader has taken so far. Tags that do not match the path that the reader has taken do

not respond. If the reader only gets a response from one branch, that means there is

at least one tag with an identification code that walks down that specific branch. The

algorithm chooses branch "0" first if available, and terminates at the discovery of one

completed identification code. A completed algorithm would silence the discovered

tag, and repeat the above algorithm until all tags are silenced (discovered).

The discovery algorithms used in Class 0 and Class 1 uses more advanced versions

of the tree-walking algorithm, but the fundamental idea is similar.
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Chapter 3

Design Goals

The ultimate design goal is to encourage the use of the simulator to facilitate the

testing of new protocol modifications or protocol designs. In order to enforce this

goal, it is important to design the simulator to be easily modifiable, maintainable,

and extensible.

3.1 Level of abstraction between logic and signal

modeling

One of the goals derived from the key objective is to create a high level of abstraction

between the logical components and the signal modeling components of the simulator.

3.1.1 Developers should not have to understand everything

One of the observations made early on in the design of the simulator is the dif-

ferent domains of knowledge required for the logical implementation and the signal

modeling implementation. If the two components were heavily intertwined in the im-

plementation of the simulator, the learning curve to understanding how the simulator

works would be fairly steep. It would also be difficult for a developer to improve the

simulator, if modifications to one component of the simulator breaks several other

unrelated components. Creating a level of abstraction between logic and signal mod-
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eling components the simulator allows different components of the simulator to be

independently modified and extended.

3.1.2 Modifying protocol logic without knowledge of signal-

ing assumptions

The logic implementation of the reader / tag (algorithms) belongs to a different do-

main of knowledge compared to the signal modeling portion of the simulator (signals

processing). As one of the primary uses of the simulator is to facilitate the testing of

new protocol modifications, it should be assumed that the logical algorithms will be

modified the most. Therefore, it is important that a person extending or modifying

the logic portion of the reader / tag does not have to bother with the details of how

the signals are modeled deep inside the simulator.

3.1.3 Changes in signal modeling assumptions should not

break the protocol logic

The signal modeling component design and implementation should not be influenced

by assumptions of any particular protocol design, as such assumptions might possibly

break the protocol when signal modeling assumptions are modified. It might also

create the possibility of generating skewed simulator performance results for that

particular protocol.

Therefore, the signal implementation should remain as generalized as possible,

allowing the logical components of the simulator to function properly, and not rely

too heavily on underlying assumptions.

3.1.4 Complete models or objects can be replaced

It is possible to envision that for testing purposes, some components might be replaced

with more light weight components to allow for simulations of a larger amount of tags,

or some components might be replaced with a more accurate representation of the
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signal waveform. By designing the components to be as modular as possible, and

creating a level of abstraction around the components, different components can be

replaced or extended to without breaking too many assumptions.

3.1.5 Code clarity

Core logic components, such as the discovery algorithm of a reader, or the state

transition algorithm of a tag, should be abstracted as much as possible, in order

to improve readability at the expense of verbosity and redundancy. The simulator

implementation should allow a developer to modify the reader or tag logic without

implicit knowledge of the signal's internal data structure, or the general framework of

the simulator. Commands sent by reader and backscattered responses by tags should

be abstracted into simple methods in the reader and tag logic.

3.2 Support for future protocols

Another goal that follows the key objective is to create an extensible framework that

allows future protocols to be easily implemented. Code that can be shared or has a

common foundation (mostly residing in the signal modeling components) should be

grouped together and exposed to all protocols.

3.2.1 Consistent simulation results

The accuracy of the simulation is important for testing different protocols. Therefore,

a large foundation of shared methods and objects would help improve the consistency

of the behavior, as well as allow the user to evaluate different protocols fairly in the

context of the simulator.

3.2.2 Shorter implementation periods for new protocols.

Because most RFID discovery protocols share a lot of fundamental characteristics

and behaviors, a growing library of generic components would also contribute to
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increasingly shorter development times to implement other protocols.

Developing new protocols should involve identifying what generic components can

be reused, and implementing the unique features offered only by the new protocol.

3.3 Comprehensive analysis tools for simulation

results

The final design consideration is to provide comprehensive analysis tools to analyze

simulation results, as rare unexpected behavior in the protocol design or the simulator

itself sometimes appear in only very unique conditions.

3.3.1 Controlled environments for testing

The simulator design should be deterministic, allowing simulation runs to be repli-

cated given identical input variables.

3.3.2 Extensive logging and debugging features

Extensive logs of communications and debugging tools should be provided by the

simulator to assist the user in tracking down the cause of such behavior.
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Chapter 4

Design

This chapter presents the design of RFIDSim.

4.1 Process-oriented Discrete Simulator

RFIDSim is a process-oriented discrete simulator. A discrete simulation is a form of

simulation where all actions within the simulation can be modeled in discrete points

in time. For example, a signal is broadcasted from the reader at time t, and is received

at time t+k by a tag. Discrete simulations are different from continuous simulations,

which are more suited for simulations such as fluid dynamics, where changes happen

continuously and can only be modeled by equations.

RFIDSim is process-oriented, as opposed to being event-oriented. The change

of state in an event-oriented discrete simulations are driven by events that occur in

discrete points of time. Changes in a process-oriented discrete simulation are driven by

actions of the individual processes towards one another. While the difference between

the two types of simulation almost seems nominal (it is true that any process-oriented

simulation can be modeled as a event-oriented simulation and vice versa), the focus

of the simulation is the most important factor to consider. Because the main actors

of an RFID simulation are the readers and tags, and the discovery process focuses on

how readers and tags change the state of each other, RFIDSim is process-oriented.

Every action in the design of RFIDSim is a process, and has its own life cycle
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that begins at a certain time, and ends at a certain time. Even the simulation of a

signal arriving at a reader or a tag is a process, as the life cycle begins when the tag

begins to receive, and terminates when the tag has received the entire signal.

4.2 Design Overview

The components of RFIDSim can be categorized in three different dimensions - by

function, level of generality, and level of participation.

4.2.1 By function

The following are the major groups when categorized by function:

Logical

Components that belong to this category simulates at the logical level, such as the

reader object and tag object. The logical level is defined by the logical commands

used by the readers and tags, as well as the algorithms that contribute to the discovery

process of tags in an environment.

Signal

Components that belong to this category simulates at the signal level, such as the

signal library. The signal level is defined by the low-level modeling of radio-frequency

waves (generated by readers and tags), as well as the edge detection, noise and dis-

tance functions.

System

Components that belong to this category are part of the backend of the simulation

framework, such as the simulation logging component and the model component.
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4.2.2 By level of generality

The following are the major groups when categorized by level of generality:

General

Components that belong to this category are objects that are protocol-agnostic, or

abstract objects that provide the core functionalities, but lack the specific algorithms

to execute those functionalities. Components in this category include the edge detec-

tion function, the signal object, and the abstract reader object that implements the

broadcast function.

Protocol

Components that belong to this category are specific to the protocol implementation,

that are either components that inherited functionality from a component in the

general category, or components that are too unique and specific to the protocol to

belong in the general category. Components in this category include the Class 0

reader object, and the Class 1 logic library.

4.2.3 By level of participation

The following are the major groups when categorized by level of participation:

Actors

Components that belong to this category are processes in the simulation. Such com-

ponents begin their life cycle at some discrete time in the simulation, and terminate at

some discrete time. Components in this category include the reader and tag objects,

and the tag receiver object.

Non-Actors

Components that belong to this category are objects that serve some role in the

simulation, but they are not processes that changes state or directly causes state
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Figure 4-1: The interaction among the five main actors.

changes in other processes. Components in this category include the signal and ITM

objects.

Supporting backend

Components that belong to this category are merely libraries of functions and vari-

ables that other actors and non-actors call, or they perform roles such as initializing

the simulation. They are not objects that serve any role in the simulation. Compo-

nents in this category include the signal library, or the Class 1 logic library.

4.3 Significant actors in the simulation

The significant actors in the simulation are either the representation of a reader or

tag, the representation of some component of a reader or tag, or the representation

of an action in progress initiated by a reader or tag.

Figure 4-1 shows an overview of the communication loop formed among the five

actors - reader, reader transmitter, tag, tag transmitter, and tag receiver.

4.3.1 Reader

The reader simulates the logical algorithm of the discovery process, and is spawned

at the beginning of the simulation. When the life cycle of a reader begins, the reader
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immediately begins the discovery process. The life cycle of a reader terminates when

the discovery algorithm terminates.

The reader interacts with the reader transmitter when the reader is ready to

broadcast a signal to the surrounding tags, and with the tag transmitter when the

tag transmitter adds the signal to the buffer of the reader.

4.3.2 Reader Transmitter

The reader transmitter simulates the process of a signal being received, sent from one

reader to one tag. Because of the delays of radio-frequency signals due to distance,

and different distortions of the signals due to noise, for each command a reader sends

out, there are n reader transmitters spawned, where n is the number of tags in the

field. The life cycle of the reader transmitter begins when the signal from one reader

is scheduled to reach the targeted tag, and ends when the reader transmitter adds

the signal to the buffer of the tag receive and notifies the tag receiver of a new signal

in the buffer.

The reader transmitter interacts with the reader when the reader is ready to

broadcast a signal to the surrounding tags, and with the tag receiver when the reader

transmitter adds the signal to the buffer of the tag receiver.

4.3.3 Tag

The tag simulations the logical algorithm of the state machine during the discovery

process, and is spawned at the beginning of the simulation. When the life cycle begins,

the tag goes to sleep, which is completely different, definition-wise, from the RFID

protocol definitions of "dormant" or "quiet". The life cycle of a tag never terminates

(unless a permanent "kill" or similar command is sent, of which it is sent on a passive

infinite loop that ignores all logic commands received).

The tag interacts with the tag receiver when the tag spawns the tag receiver at

the tag's initialization, and interacts with the tag transmitter when the tag is ready

to broadcast a backscatter response.
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4.3.4 Tag Transmitter

The tag transmitter simulates the process of a signal being received, sent from one

tag to one reader. Because of the delays of radio-frequency signals due to distance,

and different distortions of the signals due to noise, for each backscatter response

a tag sends out, there are n tag transmitters spawned, where n is the number of

readers in the field. The life cycle of the tag transmitter begins when the backscatter

response from a tag is scheduled to reach the targeted reader, and ends when the tag

transmitter has added the signal to the buffer of the reader.

The tag transmitter interacts with the tag when the tag is ready to broadcast a

backscatter response, and interacts with the reader when the tag transmitter adds

the signal to the buffer of the reader.

4.3.5 Tag Receiver

The tag receiver simulates the receiver component of a tag, and the tag receiver re-

ceives all incoming signals. Therefore, there is only one corresponding tag transmitter

process for each tag in a simulation. The life cycle begins when the tag initializes

itself and spawns the tag receiver at the beginning of the simulation. The life cycle

of a tag receiver never terminates.

The tag receiver interacts with the tag when the tag spawns the tag receiver at

the tag's initialization, and interacts with the reader transmitter when the reader

transmitter adds the signal to the buffer of the tag receiver.

4.3.6 Reader Receiver

There exists no reader receiver actor, process, object or component in RFIDSim. The

reason is because of the asymmetric nature of the communication (refer to section

2.4.6). When a tag receiver receives a signal in its buffer, the process immediately

preempts and attempts to evaluate the signal. However, a reader generally waits a

period of time for all tag backscatter responses to collect in the buffer before evaluating

the signals. Therefore it's sufficient to let the reader process handle the signal buffer
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after waiting a predefined period of time.

Tags have receivers for several reasons. The tag's clock speed is calibrated by

the reader commands, so the demodulation depends on timings decided by the reader

during calibration. As a result, moving the signal handling code of the tag process into

a separate tag receiver process not only improves code clarity, but also maintains the

level of abstraction between a logical component (tag process) and a signal component

(tag receiver process).

Furthermore, the separation is necessary because of the way different protocols

handle invalid signals. For Class 0, an invalid reader command influences the internal

state of the tag and the evaluation of future reader commands. Therefore, when a

Class 0 tag receiver process interprets an invalid signal, it passes the invalid response

back to the tag process to perform a state transition. For Class 1, an invalid reader

command does not affect the internal state of the tag. Hence, when a Class 1 tag

receiver process interprets an invalid signal, it simply ignores the signal and awaits

the next reader command.

4.4 Significant non-actors and supporting functions

The following components in RFIDSim are not processes that exists on the simulator

timeline, but they serve critical roles during the discovery process.

4.4.1 Signal

A signal object is a representation of a radio-frequency wave sent from a reader or

tag to another. As a result, a signal object includes information such as:

- The energy / amplitude level of a signal at a given time

- The time when the signal is sent by an actor

- The time when the signal is received by an actor

- The length of the signal

- The owner that created the signal

- An internal message ID
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- The channel the signal was sent in

The signal object also includes several functions that manipulate signal objects:

- Noise function

- Amplitude scaling function (used for factoring energy decay in distance function)

- Signal merging function (combines two signals into one - the function accurately

concatenates continuous signals that were broken up into one continuous signal)

4.4.2 ITM

An ITM object is a representation of the Identifier Tag Memory. It contains the com-

plete binary strings of the EPC and CRC, and also provide several functions related

to ITMs (CRC computation / verification, parity bit computation / verification)

4.4.3 Signal Library

The signal library object is one of the most significant objects in the RFID simu-

lator. The signal library provides abstracted functions for modulating signals, and

abstracted functions for demodulating signals. The library also supplies to readers

and tags the variable parameters defined in protocol specifications.

The signal library also contains signal manipulation functions (which indirectly

calls the signal manipulation functions in the signal object), such as noise and distance

functions, as well as edge detection functions.

The consolidation of all the signal modulation / demodulation / detection / ma-

nipulation functions into one object helps improve code clarity, as well as provide an

additional layer of abstraction.

4.4.4 Logic Library (Class 1 only)

The logic library object is exclusive to Class 1, because the format of the Class 1 reader

commands and tag backscatter responses are highly structured and bit-oriented. As

a result, there is a relatively large number of construction and deconstruction binary-

string manipulation functions for Class 1. Because it makes no sense from a design or
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semantic point of view to include these binary-string functions into the signal library

object, a logic library object is created to house these functions.

4.5 Signal Handling for Tag processes

In any given RFID discovery process where reader commands are modulated in ASK,

a tag demodulates and identifies the reader command by the time intervals between

the falling edges of the signal and the subsequent rising edges. The edge detection is

handled by a sudden fall or sudden rise in the energy level of the signal being received

by the tag. However, in a discrete event simulator, it is computationally unrealistic

to model each tag process to detect the rising and falling edges by monitoring the

energy level in real-time.

4.5.1 Looking ahead

Because a tag receiver actually receives the entire signal in full when the signal object

arrives in the tag receiver's buffer, a computationally less-expensive edge detection

algorithm would involve looking ahead at the entire signal for the next rising edge or

falling edge, and reporting back to the tag the amount of time left before the next

amplitude shift would arrive. This solution would allow the tag receiver to start an

internal timer when the algorithm reports a falling edge, and allow the tag receiver

to stop the internal timer at the time the signal is supposed to rise again.

However, such a solution is still unreliable and unrealistic for two main reasons:

1. In simulations where there are multiple readers in the environment, a signal

broadcast by one reader might be sent to the tag receiver, while the tag receiver is

already holding the timer for a previous signal sent by another reader. In a real

tag, the tag receiver will instantly detect the extra amplitude increase gained from

receiving another signal, and evaluate the resulting signal appropriately (even though

there is a high probability that the reader command is now invalid). In our current

solution, the tag receiver has no accurate way of simulating this behavior, since the

edge detection algorithm only reports to the tag the time before the next amplitude
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shift, and does not report the energy level received so far.

Even if we modify the algorithm to somehow the tag receiver whether it should

start / stop a timer because a new signal has created a spontaneous rise in this instant,

it is very difficult to verify the correctness of such an algorithm. With more than two

readers, it is hard to guarantee that the algorithm won't get confused and lose track

of when the next amplitude shift will happen.

2. Assuming that the edge detection can be implemented and proved correctly,

the burden of identifying and demodulating an incoming signal would lie on the tag

receiver algorithm, including signals such as the Class 0 calibration signal, which

includes dozens of rising and falling edges. The resulting tag receiver implementation

would be extremely long (because in-between every rising and falling edge, there could

be incoming signals from other readers), extremely confusing, and almost impossible

to debug.

4.5.2 Preemptive Signal Handling

RFIDSim attempts to solve the problem of reliable edge detection by preemptively

processing the entire signal (looking ahead in time), and reprocessing the signals

received in the past (looking back in time) when needed. Figure 4-2 presents an

illustrated example of Preemptive Signal Handling works.

Looking Ahead

When the tag receiver first receives a signal in its buffer, it runs the edge detection

algorithm on the entire signal. The edge detection algorithm returns to the tag

receiver an array containing the absolute time values of all the rising and falling

edges in the entire signal.

Given all the rising and falling edges of the signal, the tag receiver runs various

demodulation / verification functions from the signal library object. If the signal

can be properly identified as a reader command, the tag receiver will preemptively

assume that there will be no more incoming signals, stores the current timestamp
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Figure 4-2: Illustrated walkthrough of Preemptive Signal Handling
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into memory, and proceeds to wait until the end of the current signal.

If there are no new signals during the duration of the current signal, the tag

receiver successfully alerts the tag process at the end of the current signal.

Looking Back

However, if the tag receiver is alerted to a new signal in the buffer before the end of the

current signal is reached, the tag receiver will merge the two signals, and compute the

rising and falling edges of the merged signal starting from the beginning of the first

signal. By doing so, the tag receiver is able to analyze the new signal as part of the

original signal, therefore successfully simulating the ability to continually monitoring

the energy levels.

Also, there is no longer any need to worry about special cases to handle new

signals while the internal timer is running. The rise and fall information is passed

onto the demodulation / verification functions, which would objectively tell RFIDSim

what the current evaluation of the signal is now. If the identification of the reader

command is the same as the previous, the tag receiver can go back to waiting for

the original signal to end. If the signal is invalid, the tag receiver can handle the

invalid command appropriately, depending on the protocol implementation. Finally,

this also allows the tag receiver algorithm to remain relatively clean and uncluttered.

4.6 Unreachable Tags

Radio-frequency waves are omni-directional, and sometimes a tag will sometimes

receive weaker duplicates of the same reader signal that reached the tag from bouncing

off a wall. However, in certain situations, the converging copies of the signal will cancel

each other out when it reaches the tag, even if the tag is in close proximity of the

reader. This general phenomenon is referred to as a multi-path null.

In order to simulate this behavior, a reader randomly computes a select percentage

(defined by the user) of tags that will be considered unreachable. The selection of

unreachable tags is recomputed after a frequency hop.
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4.7 Asymmetric communication in RFIDSim

This section describes how the asymmetric communication between RFID readers

and tags discussed in section 2.4 is modeled in RFIDSim. The following walkthrough

of the simulation focuses on the repeating loop defined at the end of section 2.4.6.

The reader broadcasts a signal.

The reader calls its internal broadcast function, which takes in a signal generated

by a modulation function in the signal library object.

For each tag in the environment, if the reachable lookup table indicates that the

tag is reachable in this channel, the broadcast function creates a reader transmitter.

Each reader transmitter (which corresponds to one tag) takes the signal generated

earlier, applies the noise and distance function (given the distance between the reader

and the tag), and instructs the reader transmitter to sleep for a time period of d, where

d is the time delay it takes for the signal to arrive to the tag receiver.

Reader waits for a reply for a timed period if it expects a reply.

The reader sleeps for a timed period if it expects a reply in the buffer.

Tags are powered from receiving the signals, and logically processes the

command.

Each reader transmitter wakes up, adds the signal to the buffer of the correspond-

ing tag receiver, alerts the tag receiver of a new signal, and exits.

Tag receiver preemptively handles the signal, and correctly identifies the reader

command. Tag receiver waits for a time period of d, where d is the length of the

signal.

Tag receiver passes the logical reader command to the tag, alerts the tag of a new

command, and returns to waiting for incoming signals.

Tag logically processes the command, and determines whether it should create a

backscatter response or stay silent.

Tags backscatters a reply or stays silent depending on the command.

For each that that chooses to backscatter a reply, the tag calls its internal broad-

cast function, which takes in the signal generated by a backscatter modulation func-
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tion in the signal library object. The backscatter modulation function also takes in

the channel to respond and the energy level as parameters, which were retrieved from

the tag receiver.

For each reader in the environment, the broadcast function creates a tag trans-

mitter.

Each tag transmitter (which corresponds to one reader) takes the signal generated

earlier, applies the noise and distance function (given the distance between the reader

and the tag), and instructs the reader transmitter to sleep for a time period of d, where

d is the time delay it takes for the signal to arrive to the reader.

Each tag transmitter wakes up, adds the signal to the buffer of the corresponding

reader, and exits.

Reader looks at any backscattered responses at the end of timed period.

The reader wakes up, and selects all backscattered responses that were sent the

channel(s) it's listening to, and evaluates the signals.
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Chapter 5

Implementation

5.1 Language and Tools used

Java was chosen as the language for implementation, for various reasons:

5.1.1 Portability

Implementing RFIDSim in Java grants the simulator implicit portability to many

different platforms, including Linux, Windows, and Mac OS X.

5.1.2 Object-Oriented Nature

The object-oriented nature of the Java language allows the componentized design of

RFIDSim to be implemented with relative ease.

5.1.3 Mature support for graphical user interfaces

A graphical user interface would significantly enhance the usability of the application,

because a visual presentation of the simulated environment would allow the user to

place reader and tag objects with a mouse. Also, signal objects, as well as objects

that embed the rising and falling times of a signal, can be visually displayed.

The Java Swing package has been in development for over 5 years, and has matured

into a robust and flexible graphical package that works on all platforms that support
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Java.

5.1.4 The chosen simulator framework is implemented in Java

The DESMO-J discrete simulation framework for Java was chosen as a foundation

for RFIDSim. The framework consists of an entire package of tools and objects that

model a time-line based simulation, with many fundamental simulation principles

modeled directly into the framework. Objects that inherit the abstract simulation

processes automatically inherit all the features provided by DESMO-J.

The decision to use a third-party framework was made early on in the development

process, because adopting a mature simulator framework is considerably less risky

than implementing one from ground up.

5.2 Classes Overview

All classes implemented for RFIDSim can be categorized in the three dimensions

mentioned in section 4.2.

Figures 5-1, 5-2, and 5-3 illustrates the categorization of the Java classes by func-

tion, level of generality, and level of participation respectively.

5.3 Common Java classes

This section describes the functionality presented by the Java classes that are shared

or inherited by all protocols.

5.3.1 Signal class

The Signal class represents a complete radio-frequency signal in the simulation.

The amplitude levels of a signal is represented by an array of double, together

with a double scale variable that defines the granularity of the signal (The variable

scale has units of (time units / array entry). Therefore the smaller the scale, the
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Figure 5-1: RFIDSim classes categorized by function
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Figure 5-2: RFIDSim classes categorized by level of generality
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Figure 5-3: RFIDSim classes categorized by level of participation
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more refined the signal representation will be, but the amount of allocated memory

will also increase)

The Signal class provides signal manipulation methods to create noise, amplify

(or decay) a signal, and merge with another Signal.

5.3.2 ITM class

The ITM class represents the Identifier Tag Memory of an RFID tag. The abstract

class is inherited by another class for a specific protocol implementation.

The ITM class provides several methods related that allow CRC computation /
verification and parity bit computation / verification.

It also contains the complete binary strings of the EPC and CRC, and an integer

value epcType that indicates the format of the ITM. The static epcType values differ

for each protocol, and they are defined in the inheriting classes.

5.3.3 RFIDObject class

The RFIDObject class extends the SimProcess class, which is part of the DESMO-

J simulation framework package. The SimProcess class represents an actor in a

process-oriented DESMO-J simulation, any actors in the simulation is required to

extend the SimProcess class and override the abstract lifecycle method. The

abstract RFIDObject class is extended by a Reader class or Tag class.

The RFIDObj ect class contains the x, y, z locations in the simulation environment.

The positions are mainly used to calculate the distance between two RFIDObject

instances.

The RFIDObject class also holds an instance of the SimLog class during a simula-

tion run, and provides protected methods for the inheriting Reader and Tag instances

to log a message in SimLog. The protected methods automatically logs the identity

of the RFIDbject (Reader or Tag), as well as the instance's internal ID.
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5.3.4 Reader class

The Reader class extends the RFIDObject class. The abstract class is inherited by

another class for a specific protocol implementation.

The Reader class contains the buffer that collects the backscatter responses from

Tag instances, as well as a Boolean array that determines whether a given Tag instance

is reachable. The Reader class also provides protected methods to frequency hopping,

clearing the buffer, and public methods to allow TagSend instances to add backscatter

responses to the buffer. The protected broadcast method in the Reader class is used

by the inheriting classes to deliver a noise-processed, amplitude-decayed, and delayed

signal to every tag.

5.3.5 ReaderSend class

The ReaderSend class begins its life cycle when the Signal instance it contains is sim-

ulated to reach a Tag instance, and terminates after the Signal instance is sent to the

buffer of the Tag instance's corresponding TagReceive instance, and the TagReceive

instance is waken up.

5.3.6 Tag class

The Tag class extends the RFIDObject class. The abstract class is inherited by another

class for a specific protocol implemention.

The Tag class contains an ITM instance and a TagReceive instance. The class

also contains one integer array and one double array, which holds the channel and

energy responses respectively. The protected broadcast method in the Tag class is

used by the inheriting classes to deliver a noise-processed, amplitude-decayed, and

delayed signal to every reader.

5.3.7 TagSend class

The TagSend class begins its life cycle when the Signal instance it contains is simu-

lated to reach a Reader instance, and terminates after the Signal instance is sent to
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the buffer of the Reader instance.

5.3.8 TagReceive class

The TagReceive class simulates the receiver of a Tag instance. The abstract class is

inherited by another class for a specific protocol implementation.

The TagReceive class contains the buffer that collects the reader commands sent

from Reader instances, one integer array and one double array, which holds the

channel and energy responses respectively. The TagReceive class also provides public

methods to return the channel and energy responses, and a public method to allow

ReaderSend instances to add reader commands to the buffer. The class also provides

a protected method that purges expired Signal instances in the buffer (a Signal

instance is considered expired when the time received plus the length of the signal is

less than the current time).

5.3.9 RFIDModel class

The RFIDModel class extends the Model class, which is part of the DESMO-J sim-

ulation framework package. The Model class is used to initialize the actors in a

DESMO-J simulation, and any simulator built on top of DESMO-J is required to

extend the Model class and override the abstract initialization method. The abstract

class is inherited by another class for a specific protocol implementation.

Because there is only one instance of the Model class for every simulation, and the

object is referenced in private in all DESMO-J SimProcess instances, the RFIDModel

class includes several global variables that are shared by all instances in the simulation:

A Random instance - every instance during the simulation run that wishes to

generate a random variable uses the Random instance provided by RFIDModel. The

Random instance is instantiated with seed provided by the user. This ensures that an

RFID simulation with the same seed, same reader and tag positions, same protocol,

and same protocol parameters will run deterministically.

A SimLog instance - every SimProcess actor that wishes to log a message uses the

60



SimLog instance provided by RFIDModel. The SimLog is handed over to the graphical

user interface classes at the end of a simulation run.

Array of Reader and array of Tag - All Reader instances and Tag instances par-

ticipating in the simulation is referenced in these two arrays.

5.3.10 SimLog class

The SimLog class provides methods to log either a plain text message, a plain text

message with a Signal instance, or a plain text message with a RiseAndFall instance.

The command sequence, a string that is manually enforced by the implementation

to track the order of method invocation, is also entered into SimLog (The command

sequence shows where the logMessage appeared from, and is mostly used for debug-

ging).

When a Reader instance or a Tag instance calls one of the logging methods of the

SimLog instance, the method also adds the log message and command sequence into

respective Vectors, unless the strings already exists. These two Vectors are later used

in the graphical user interface to filter out messages selectively, in order to improve

readability. However, because typical log messages include a unique number at the

end of the message, and command sequences usually carries a long chain of method

calls, the methods strips out anything after the first ":" from the log messages, and

command sequences are tokenized by the string character ":" and added individually

to the Vector.

5.3.11 SigLib class

The SigLib class provides signal modeling methods that adds noise to a Signal

instance, decreases the energy level of a Signal instance, merges several Signal

instances together, computes the delay it takes for a Signal instance to travel, and

performs edge detection and flat signal detection. The abstract class is inherited by

another class for a specific protocol implementation.

The class also stores variable parameters that affect the behavior of the signal
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modeling methods.

5.3.12 RiseAndFall class

An instance of the RiseAndFall class is returned by the edge detection method in a

SigLib instance. The RiseAndFall class provides public methods to return number

of amplitude shifts there are in the corresponding Signal instance, as well as the

absolute times of falling and rising edges.

5.4 Signal Modeling

This section describes the implementation details of the signal modeling algorithms

used in RFIDSim.

5.4.1 Distance and Noise function

The distance portion of the function computes the distance between the Tag instance

and the Reader instance, and calculates the amount of amplitude decay the Signal

instance should encounter. The amplitude decay factor is then uniformly applied to

the internal double array of the Signal instance.

The noise portion of the function then proceeds to add noise to the Signal instance

before the instance is delivered to its intended recipient. The variable noiseRange

is used to determine the amount of noise added, which is the maximum percentage

that the amplitude will fluctuate. For example, a noise range of 0.2 will cause the

new amplitude to randomly vary between 80% and 120% of the original amplitude.

5.4.2 Delay function

The delay function returns a propagation delay that is calculated proportionally to

the distance between a Tag instance and a Reader instance.
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5.4.3 Edge Detection Algorithm

The edge detection algorithm runs in a while loop as it traverses the internal energy

array. Each iteration of while loop runs one of the two smaller mutually exclusive

while loops, one when the method is looking for a fall and one when the method is

looking for a rise.

In order to handle jitters in a signal, the method stores a running average of the

average energy level present in a signal as it traverses through the internal array.

Whenever the internal level drops or rises above a certain percentage set forth by the

SigLib, the edge detection flags the array index relative to the internal array, and

flips the Boolean necessary to quit the small internal while loop, so it exits the larger

while loop iteration and begins looking for the next amplitude shift.

The edge detection algorithm terminates when the entire array is traversed, and

returns a RiseAndFall instance.

Protocol implementations such as Class 0 sends out continuous signals, and the

falling edge that signifies the beginning of a data symbol is actually dependent on

the energy level from the previous signal. Therefore the edge detection takes in a

parameter that specifies the previous power level detected right before the current

signal begins.

5.4.4 Flat Signal Detection Algorithm

The flat signal detection method is used primarily in Class 0, but the method is

integrated in the generic signal library.

The flat signal detection method returns the length of time before there is a

amplitude shift. This is useful for identify the master reset signal of the Class 0

protocol, where the tag would automatically reset if a high flat signal of more than

400 microseconds is detected.
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5.5 Class 0

This section describes the functionality presented by the Java classes implemented to

simulate the Class 0 discovery process.

5.5.1 ClassZeroITM class

The ClassZeroITM class extends the ITM class. The class defines the EPC types

available for Class 0, and also provides a method that verifies the EPC, taking into

account the epcType defined by the instance.

5.5.2 ClassZeroReader class

The ClassZeroReader class extends the Reader class, and implements the Class 0

discovery algorithm in the lifeCycle method.

The class provides an abstracted method send that performs message logging

method calls and the broadcasting of the modulated reader command. As a result,

the five reader commands can be sent from invoking send ( ), where i is 0 to 4

inclusive.

The class also provides an abstracted method analyzeBackScatter that performs

message logging method calls, and the identification of backscatter responses in the

buffer. The method returns one of the four possible combinations of responses - only

tone zero, only tone one, both tones, and no responses.

5.5.3 ClassZeroTag class

The ClassZeroTag class extends the Tag class, and implements the Class 0 tag state

machine in the lifeCycle method.

The class provides a public method getState, which returns the state the instance

currently belongs in. The class also provides two abstracted methods backScatterOne

and backscatterZero, which performs the broadcasting of the backscatter response.
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5.5.4 ClassZeroTagReceive class

The ClassZeroTagReceive class extends the TagReceive class, and implements a

loop in the lif eCycle method that performs preemptive signal handling to identify

the reader command. The ClassZeroTagReceive instance wakes up the ClassZeroTag

instance even if the received signal is invalid.

The class provides a public method getResponse, which returns the demodulated

identify of the reader command, as well as a public method getBackScatterLength,

which replies the proper length of the back scatter, dependent on the received data

symbol.

5.5.5 ClassZeroModel class

The ClassZeroModel class extends the RFIDModel class, and implements the abstract

methods that instantiate and initialize the ClassZeroTag and ClassZeroReader in-

stances.

5.5.6 ClassZeroSigLib class

The ClassZeroSigLib class extends the SigLib class, and provides modulation and

demodulation methods for Class 0 reader commands and tag backscatter responses.

The class also stores variable parameters that affect the modulation and demodulate

of the Class 0 signals.

5.6 Class 1

This section describes the functionality presented by the Java classes implemented to

simulate the Class 1 discovery process.

5.6.1 ClassOneITM class

The ClassOneITM class extends the ITM class. The class defines the EPC types

available for Class 1, and also provides a method that verifies the EPC, taking into
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account the epcType defined by the instance.

5.6.2 ClassOneReader class

The ClassOneReader class extends the Reader class, and implements the Class 1

discovery algorithm in the lifeCycle method.

The class provides a collection of abstracted methods send*, which only takes the

pointer and value as parameters. The send* methods calls the abstracted method

send, which performs the broadcasting of the signal.

The class also provides abstracted methods lookAtBin and lookAtBackScatter,

which returns a binary string from analyzing PingID backscatters and ScrollID

backscatters respectively, "nothing" if there are no responses, or "invalid" if the

backscatter response cannot be properly demodulated.

5.6.3 ClassOneTag class

The ClassOneTag class extends the Tag class, and implements the Class 1 tag state

machine in the lif eCycle method. The class provides an abstracted method called

backScatterReply, which performs the broadcasting of the backscatter response.

5.6.4 ClassOneTagReceive class

The ClassOneTagReceive class extends the TagReceive class, and implements a

loop in the lifeCycle method that performs preemptive signal handling to iden-

tify the reader command. The ClassOneTagReceive instance does not wake up the

ClassOneTag instance even if the received signal is invalid.

The class provides a public method getResponse, which returns the demodulated

binary string of the reader command, as well as a public method getTO, which is the

signal length of one modulated bit "0".
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5.6.5 ClassOneModel class

The ClassfneModel class extends the RFIDModel class, and implements the abstract

methods that instantiate and initialize ClassOneTag and ClassOneReader instances.

5.6.6 ClassOneSigLib class

The ClassfneSigLib class extends the SigLib class, and provides modulation and

demodulation methods for Class 1 reader commands and tag backscatter responses.

The class also stores variable parameters that affect the modulation and demodulate

of the Class 1 signals.

5.6.7 ClassOneLogLib class

The ClassfneLogLib class provides genetic bit manipulation and number / bit con-

version methods that facilitate the construction of complete commands. The class

also provides abstracted methods that construct the binary string commands for Class

1 readers and tags. The class also stores 8-bit binary string constants that defines

the identity of different reader commands.

5.7 Other objects used by RFIDSim

This section describes the functionality presented by the Java classes not part of the

simulation, but contribute to the setup of each simulation.

5.7.1 Experiment class

The Experiment class is part of the DESMO-J simulation framework package. The

class must be instantiated in order to set up a DESMO-J simulation. The class

terminates the simulation when the method check of the StopCondition instance

returns true.
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5.7.2 Environment class

The Environment class stores the dimensions of the simulation environment, as well

as the coordinates of the readers and tags in the environment. The resulting instance

is one of the inputs for the constructor method of the RFIDModel class, and used to

instantiate readers and tags with the specified coordinates.

5.7.3 StopCondition class

The StopCondition class extends

J simulation framework package.

returns true only if all readers in

discovery phase.

the Condition class, which is part of the DESMO-

The class implements the method check, which

the environment have terminated their respective

5.8 User Interface

This section describes the functionality presented by the Java classes that construct

the user interface of RFIDSim.

5.8.1 EnvironmentPanel class

The EnvironmentPanel class is used to construct the environment settings panel of

the RFIDWindow instance. The class displays four button / commands - New, Load,

Save, and Modify. An Environment instance is created after a successful construction

of a new environment, or a successful parse of a environment settings file.

5.8.2 ClassZeroPanel

The ClassZeroPanel class is used to display text fields for parameters that can be

modified for a Class 0 simulation.
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5.8.3 ClassOnePanel

The ClassOnePanel class is used to display text fields for parameters that can be

modified for a Class 1 simulation.

5.8.4 RFIDWindow class

The RFIDWindow class is used to construct the main window of RFIDSim, which

contains a EnvironmentPanel instance, as well as instances of the ClassZeroPanel

and ClassOnePanel.

5.8.5 ResultsWindow class

The ResultsWindow class is instantiated after the termination of the simulation ex-

periment, and constructs a window that displays all the logged messages in a table

format.

5.8.6 MapDialog class

The MapDialog class is used to create the window that allows users to add new readers

and tags with a mouse. The class also displays a map that shows the location of all

readers and tags in the environment so far.

5.8.7 SimLogTableModel class

The SimLogTableModel class extends the AbstractTableModel class, and wraps a

SimLog instance into a format that can be used to create a JTable instance.

5.8.8 SignalPanel class

The SignalPanel class takes a Signal instance for instantiation, and creates a canvas

that displays the amplitude levels of a signal graphically.
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5.8.9 RAndFPanel class

The RAndFPanel class takes a RiseAndFall instance for instantiation, and creates a

canvas that displays the rising and falling edges of a signal graphically.
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Chapter 6

Usage

6.1 Building with source code

RFIDSim is released under the GNU General Public License - the source code of

the simulator is available when requested, and any user is free to modify RFIDSim,

provided that the user releases any changes and improvements made.

To compile RFIDSim from source, the user should have the following applications

installed on the build machine:

Java 2 Platform - The Java 2 Platform can be obtained for free from Sun Mi-

crosystem's Java website at:

http://java.sun.com

DESMO-J simulation framework - The DESMO-J simulation framework can be

obtained for free from DESMO-J's homepage at:

http://asi-www.informatik.uni-hamburg.de/themen/..

.. sim/forschung/Simulation/Desmo-J/

The DESMO-J simulation framework should either be placed in the same directory

as RFIDSim source files, or the path of the DESMO-J framework .jar file should be

part of the Java classpath.

To ensure a clean compile of RFIDSim, the .class files for RFIDSim should be

deleted from the directory first.

The user should execute the following command to properly compile RFIDSim:
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javac RFIDSim. java

6.2 Execution requirements

If RFIDSim has compiled successfully, the user can type the following command to

execute RFIDSim:

java RFIDSim

Because of the large amount of memory resources RFIDSim uses, the user might

encounter an "out of memory error" during the execution of the simulation when

there are a large number of tags or readers in the simulated environment. The user

can type the following to allocate more memory for the java virtual machine:

java -Xmsl28m -Xmx1024m RFIDSim

The -Xms parameter specifies the initial heap size of the Java virtual machine, and

the texttt-Xmx parameter specifies the maximum heap size of the Java virtual ma-

chine. In the above example, the Java virtual machine would allocate 128 megabytes

for its initial heap size, and the heap size will grow to a maximum of 1 gigabytes.

6.3 Using RFIDSim

This section explains each component of RFIDSim's user interface, as well as any

features offered by RFIDSim that would facilitate the analysis of the simulation log.

Figure 6-1 is the main window of the RFIDSim, and what the user first sees when

RFIDSim executes. The dropbox displaying "Class Zero Simulation" can be clicked,

and the user can choose to run the Class One Simulation instead (figure 6-2). However,

in order to run any simulation, the environment settings must be configured correctly.

(The environment settings are independent of simulation profile. The environment

settings are preserved even if the user switches to a different simulation profile.)

The top panel provides several options specific to configuring the environment

settings. New environment settings can be created by clicking "New..", or it can be

loaded from a previously saved environment settings file by clicking "Load..".
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Figure 6-1: The main window of RFIDSim (screenshot)
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Figure 6-2: Choosing a different profile in RFIDSim (screenshot)

Figure 6-3: Dimensions dialog (screenshot)
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Figure 6-4: Map dialog with new environment (screenshot)

The dimensions dialog appears after the user clicks "New.." (shown in figure 6-3.

The dialog prompts for the specific dimensions of the simulation environment.

After the user defines the dimensions and clicks "Ok", the Map window (shown in

Figure 6-4 is opened with an empty environment. The user can choose to add readers

and tags in the environment by clicking on the environment itself, or the user can

choose to enter the coordinates manually in the upper right text fields, and clicking

the "Add New Reader" or "Add New Tag" button. Finally the user can also click

"Add Random Reader" or "Add Random Tag", and RFIDSim will add the respective

reader or tag with random coordinates.

If the user adds a reader or tag by clicking on the environment, a dialog (figure

6-5) pops up to prompt the user to enter the coordinate for the Z dimension.

Readers and tags can also be removed from the environment. To remove a tag or

reader from the environment, the user should choose the row of the tag or reader to

be removed, and click "Remove Reader" or "Remove Tag". In order to allow the user
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Figure 6-5: Dialog after clicking on Environment (screenshot)

to easily identify the reader or tag the row refers to, the reader or tag is highlighted

in the environment when a row is clicked.

The environment settings for a simulation is defined when the user click "Commit

Changes", and the user returns to the main window. If the environment is valid (the

only requirement being that there is at least one reader and one tag), the user is

then allowed to begin the simulation or to save the environment settings to a file.

Clicking "Modify.." returns the user to the Map window, where the user can modify

the environment by adding or removing tags.

The bottom pane lists specific settings for the protocol. The settings are catego-

rized into General Settings (which is simply the seed used to drive the simulation),

Reader Settings, Tag Settings and Signal Settings. Once the settings are approved

by the user, the user can click "Run Simulation" and wait for the results window to

open.

Depending on the complexity of the environment and the processing speed of the

machine, it might take RFIDSim a few minutes to complete the simulation and open

the Results in a new window. Clicking the "Run Simulation" repeatedly will only

initiate concurrent simulations that will deterministically present the same result, as

well as slowing down the simulation even more.

The results window (figure 6-6) is composed of a table that displays the simulation

log, as well as several smaller tables that allow the user to reduce the verbosity of the

simulation log by filtering out message types, or all messages from a selected reader

or tag. The user should first check and uncheck what log entries would like to be seen

or hidden, and can either refresh the table by clicking the button "Update current
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Figure 6-8: Graphical representation of a Signal instance (screenshot)

window", or open up the filtered results in a new window (figure 6-7).

The columns for the table showing the simulation log entries are ID (indicating

which reader or tag logged the message), Time (which indicates the time during the

simulation when the message was logged), Message (which displays the actual message

logged), Command Sequence (which displays the instance and method the message

was logged from), and the signal / rise and fall column (where the presence of text

indicates that a graphical representation of a Signal instance or RiseAndFall instance

is viewable from clicking that cell)

Clicking on a "[View Signal]" cell would open a new window that plots the Signal

instance in its signal form (figure 6-8). Clicking on a "[View Rise&Fall]" would plot

the RiseAndFall instance using the rising and falling times (figure 6-9). The signal

window shows a graphical representation of the amplitude levels of the logged Signal
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Figure 6-9: Graphical representation of a RiseAndFall instance (screenshot)
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instance. Both types of windows can be resized dynamically to see more details.

80



Chapter 7

Conclusion

7.1 Summary

RFIDSim is currently implemented to provide a high level of abstraction between

logic and signal modeling components, which allow developers to focus on improving

the logical algorithms of the RFID protocols without having to worry about the details

of the signal modeling components, or focus on improving the signal modeling com-

ponents without breaking the communication logic of the supported protocols. The

multiple levels of abstracted method calls in the logical components of the protocol

improves code clarity in the reader's discovery algorithm and tag's state machine.

RFIDSim is also designed to be a solid and extensible framework that allows future

protocols to be easily implemented. The unique asymmetric nature of communication

between RFID readers and tags are modeled in the core components of the simulator,

and common RFID functions, such as edge detection, are shared and inherited by

all protocols. The collection of common RFID functions is expected to grow as

different protocols are implemented in the simulator, which would further minimize

the amount of work needed to add support for other protocols. The large amount of

shared functionality between different protocols also allows protocol comparisons to

be more consistent.

Finally, the analysis and debugging tools implemented in the simulator allows the

user to analyze the communications between readers and tags on any level of detail,
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from the logical communication level, down to the waveform of a modulated signal.

7.2 Future work

RFIDSim can be improved and extended in several areas - simulation performance,

signal modeling assumptions, support for powered tags, and coordination between

readers during the discovery process.

7.2.1 Simulator performance

The data structures of some core components, such as the Signal class, can be further

optimized, as the current design is less than ideal. Inefficient data structures can be

expensive in terms of processor cycles, as there might be a lot of unnecessary and

costly casting between data types. The inefficiency can also be expensive in terms

of memory management, as bloated data structures will limit the number of readers

and tags that can be simulated in a given environment.

7.2.2 Refinement in the signal modeling assumptions

The current noise, distance and energy models are currently quite high level and

simple, and the accuracy of the simulation results can be increased if they are replaced

with more sophisticated models.

7.2.3 Support for powered tags

Currently the simulator only supports powerless passive tags, and while these low-cost

tags will be the preferred choice for customers wishing to deploy RFID solutions on

a large-scale, there should be minimal work involved in getting the RFID simulator

to support powered tags as well.
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7.2.4 Coordination between readers

In most applications of RFID scenarios, the size of the environment will require

using more than one single reader. In the current implementation of the simulator,

there is no coordination, or even communication allowed between readers in the same

environment. Implementing support for communication between readers would allow

for more interesting and efficient discovery algorithms.
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Appendix A

Class 0

A.1 ITM

The ITM of a Class 0 tag contains a 64-bit or 96-bit EPC (Electronic Product Code)

that identifies a physical object, and a 16-bit CRC checksum of the EPC at the end.

The CRC is used for verification purposes when a reader discovers a tag, in order to

conclude with high probability that the EPC discovered is without errors.

For the discovery algorithm, the class

tification codes to be used for discovery.

format.

0 protocol has defined three modes of iden-

Our discovery process focuses on the ID2

A.1.1 IDO

IDO uses a complete random identification code for the discovery process. Instead of

employing CRC methods for verification, the format embeds an odd parity bit after

every 4 bits. Because the identification code is completely random for every discovery

process, the IDO interrogated from the tag will be different for every discovery process,

and the actual EPC must be read by the reader at the end of a successful singulation.

The identification code structure of IDO is shown in figure A-1.
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Total Length = 80 bits max

Minimum Length = 10 bits

ID PI ID P]I i ID P

ID IPI ID P

4 ID Bits

1 Parity Bit

Figure A-1: Identification code of the IDO format for the Class 0 protocol.

Total Length = 80 bits max

Minimum Length = 10 bits

ID I P ID PI ID PI

ID IPI ID 1P

4 ID Bits
1 Parity Bit

Figure A-2: Identification code of the IDI format for the Class 0 protocol.
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Total Length = 80, 112 bits

EPC CRC

EPC Length = 64, 96 bits CRC = 16 bits

Figure A-3: Identification code of the ID2 format for the Class 0 protocol.

A.1.2 IDI

IDI uses a pseudo-random identification code for the discovery process. Instead of

employing CRC methods for verification, the format embeds an odd parity bit after

every 4 bits. Because the identification code is not completely random, the EPC

can be discovered by looking up a one-to-one mapping of ID1-to-EPC database. The

identification code structure of IDI is shown in figure A-2.

A.1.3 ID2

ID2 uses the EPC code and CRC as the identification code for the discovery process.

At the end of a successful singulation, the CRC is verified and compared in order

to conclude with high probability that the EPC discovered is without errors. The

identification code structure of ID2 is show in figure A-3.

A.2 Reader Commands

Class 0 reader commands are modulated using ASK and sent continuously in one

stream. These are the following commands a Class 0 reader can issue:

A.2.1 Master reset

A master reset signal is characterized by a 800 microsecond carrier-wave signal.

Figure A-4 shows the signal form of a master reset command.
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800ps

High

Low

Figure A-4: Signal of a master reset command for the Class 0 protocol.

Oscillator Calibration Signals Data Calibration Signals

116ps

High

Low

128ps

Figure A-5: Signal of a master reset command for the Class 0 protocol.

When a tag receives a master reset signal, the tag resets all internal states, and

initializes itself at the beginning of the discovery process.

A.2.2 Calibration

A calibration signal immediately follows a master reset signal. It's composed of the

oscillator calibration signals, followed by the data symbol calibration signals.

The oscillator calibration signals are used to synchronize the clock speed of the

tags. The data symbol calibration signals are used to define the timings and lengths

of the data symbols.

Figure A-5 shows the signal form of a calibration command.

When a tag receives a calibration signal, the tag synchronizes itself to the clock

given in the oscillator portion, and remembers the timings defined by the data symbol

calibration signals.
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Figure A-6: Signal of a zero data symbol for the Class 0 protocol.

Tag
6ps Reply

I Period I I

High

Low
HL >

12.5ps

Figure A-7: Signal of a one data symbol for the Class 0 protocol.

A.2.3 Zero / One / Null

Zero / one / null data symbols are sent to transition tags from state to state. The

falling edge from a pervious signal determines the beginning of the symbol, and length

of time the rising edge appears determines the identify of the data symbol.

Figure A-6 shows the signal form of a zero data symbol, figure A-7 shows the

signal form of a one data symbol, and figure A-8 shows the signal form of a null data

9.5ps

High

Low

12.5ps

Figure A-8: Signal of a null data symbol for the Class 0 protocol.
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symbol.

When a tag receives a data symbol, the tag identifies the data symbol with the

calibration signal sent during initialization. After the data symbol has been identified

correctly, the tag performs a state transition depending on the data symbol.

A.3 Tag States

Figure A-9 shows the state transition diagram of a Class 0 tag.

A.3.1 Dormant State

A Class 0 tag in this state is inactive, and waiting for a master reset signal from a

reader.

A.3.2 Calibration State

A Class 0 tag in this state has just received a master reset signal, and waiting for a

calibration signal from the reader.

A.3.3 Global Command Start State

A Class 0 tag in this state has just received a calibration signal, and waiting for

various data symbols to transition to other states.

A.3.4 Global Command State

A Class 0 tag in this state is awaiting various global commands that can be issued

by the reader. This state is not used in RFIDSim's implementation of the discovery

process.
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Initial Errors and
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Commands
Reset

Dormant Calibration

Invalid Valid Signals
Signals

Data 'null' Data 0,1

Data 0 A&
ID flag set Global Global

Command Command
Start Data 1

Data 'null'
Data 'null', Data 1 AND
increment null count = 2
null count

Data 0 AND Tree
ID flag cleared Start

Data 1 AND null
count <> 2

Data 0 Data 'null',
c ear nul count

Data 0,1
Data 0,1 not

Tree matching Traversal
Traversal Mute

Data 0,1
matching Data 'null' not

at ID length + 1

Data 'null' at ID Data 0,1 after last ID
length + I bit repeat

Data 'null' Singulated
Command

StartData 'null'

Data 0,1
Dat 'nll'Singulated Singulated

Command Command
Errors and Mute
Disabled

Commands Data 0,1

Figure A-9: State Machine defined for Class 0 tags
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A.3.5 Tree Start State

A Class 0 tag in this state is awaiting to begin the discovery process, and waiting for

a zero data symbol to begin the tree-walking algorithm.

A.3.6 Tree Traversal State

A Class 0 tag in this state is operating in the tree-walking algorithm, and waiting for

the next data symbol.

A.3.7 Traversal Mute State

A Class 0 tag in this state has received a data symbol that does not match its own

identification code, and has temporarily muted itself until it receives a null data

symbol to restart the tree-walking algorithm.

A.3.8 Singulated Command Start State

A Class 0 tag in this state has successfully been singulated, and only one tag should

be in this state at any given time. The tag is waiting for a data symbol to return to

the dormant state.

A.3.9 Singulated Command State

A Class 0 tag in this state has successfully been singulated, and awaiting various

commands that can be issued by the reader. This state is not used in RFIDSim's

implementation of the discovery process.

A.3.10 Singulated Command Mute State

A Class 0 tag in this state has successfully been singulated, and entered a tempo-

rary mute condition because of an error in the reader's command, or because of a

disabled command issued by the reader. The tag is waiting for a null data symbol to
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return to the singulated command start state. This state is not used in RFIDSim's

implementation of the discovery process.

A.4 Tag Backscatter Responses

The following are backscatter responses a Class 0 tag can issue. The varying frequen-

cies at which the backscatter response is modulated at puts the backscatter response

in a different channel.

A.4.1 Zero

A zero backscatter response is defined by a modulated and alternativing backscatter

at 2.2 Mhz. The backscatter begins on the rising edge of the receiving data symbol,

and ends at a point defined by the data symbol calibration symbol.

A.4.2 One

A one backscatter response is defined by a modulated and alternativing backscatter

at 3.3 Mhz. The backscatter begins on the rising edge of the receiving data symbol,

and ends at a point defined by the data symbol calibration symbol.

A.5 Discovery Process

The Class 0 discovery algorithm implemented in RFIDSim uses a variation of the

tree-walking algorithm that walks down one level at a time.

A.5.1 Algorithmic Overview

1. After initialization, the reader broadcasts a zero symbol to announce the beginning

of the tree-walk. All tags receiving the zero symbol would send out their MSB bit in

the identification code.
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2. If there is no backscatter response from both channels that the reader listens

to, the reader realizes that either there are no tags present, or any present tags have

fallen out of the synchronization. The reader will attempt to restart the discovery

process.

3. If there is a backscatter response from only the channel indicating bit "0", the

reader would broadcast a zero data symbol as the next signal. Tags that receive the

zero data symbol would understand that it is walking down the "0" branch, and the

tags with a matching bit in the identification code would backscatter their next bit.

Tags that do not match would stay mute until the restart of the discovery process.

4. Similarly, if there is a backscatter response from only the channel indicating

bit "1", the reader would broadcast a one data symbol as the next signal. Tags would

interpret the one data symbol as the reader moving down the "1" branch, and the

tags with a matching bit in the identification code would backscatter their next bit.

Tags that do not match would stay mute until the restart of the discovery process.

5. If there are backscatter responses coming from both channels, the reader pushes

the string for the "1" branch into a stack, as this indicates there are tags along the

"1" branch as well, and the reader will revisit that path afterwards.

6. The process repeats by proceeding to Step 2, and completes a successful sin-

gulation when a tag has responded all the way to the lth level of the tree, where 1 is

the length of the identification code.

7. The tag that has successfully backscattered all 1 bits of its identification code

would automatically stay dormant for the rest of the discovery process, until the

reader instructs the tag otherwise or when the tag's internal power depletes.

8. The reader, having identified and singulated one tag, pops the next string out

of the stack and restarts the discovery process, prompting all the muted tags that fell

out of the path to restart the tree-walking algorithm. If the stack is empty, depending

on the rigorousness of the discovery algorithm, the reader either assumes all tags are

discovered and terminates, or the reader repeats at Step 1, in order to discover any

tags that it might have missed.

94



Master Reset Calibration Signals 'O' Symbol 'O' Symbol '1' Symbol
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Figure A-10: Signal form of the commands sent by the reader at the beginning of the
discovery process for the Class 0 protocol.

A.5.2 Signal Overview

The reader begins the discovery process by sending out a master reset and calibration

signal, and the rest of the discovery process is a continuous string of data symbols.

Figure A-10 shows the signals sent by the reader at the beginning of the discovery

process.

The success of the algorithm is directly affected by tag's ability to receive every

single signal for the duration of the discovery process. Any tag that has received

an invalid state transition or an invalid data symbol would automatically exit into

dormant state, and awaits the next master reset signal to begin the discovery process

again.

A.5.3 Analysis

Because no information is modulated in the backscatter response, but rather in the

decision to backscatter in either the zero or the one channel, the reader has effectively

four bits of information after each data symbol sent in the tree-walking phase:

No response in zero channel + No response in one channel -> no tags, or tags are

out of synchronization.

No response in zero channel + Response in one channel -> there are tags following

the algorithm in the "1" branch.

Response in zero channel + No response in one channel -> there are tags following

the algorithm in the "0" branch.

Response in zero channel + Response in one channel -> there are tags following

the algorithm in both the "0" branch and the "1" branch.
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The tag's large state transition machine, together with the tag's ability to store a

pointer to the level of the binary tree the reader is walking on, requires tags to track

a large amount of internal state during the discovery process.

The relatively small amount of information disclosed in the tags' response for each

reader signal implies that a large number of reader signals would need to be sent in

order to collect enough information from the tag. Therefore, in order to maintain

acceptable performance levels, the length for each reader signal must be relatively

short.

However, because each reader signal is relatively short, there is less information

that can be encoded into each signal. Therefore, Class 0 tags are designed to track a

large amount of internal state during the discovery process, including the position of

the reader in the tree-walking algorithm.
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Appendix B

Class 1

B.1 ITM

The ITM of a Class 1 tag contains a 64-bit or 96-bit EPC (Electronic Product Code)

that identifies a physical object, and a 16-bit CRC checksum of the EPC at the

beginning of the ITM.

There is also an 8-bit password at the end of the ITM that is used for reprogram-

ming the tag. This feature is not used in RFIDSim's implementation of the discovery

process.

Figure B-1 shows the identification code structure of a Class 1 ITM.

Total Length = 88, 120 bits

CRC EPC I Password

CRC = 16 bits EPC = 64, 96 bits Password = 8 bits

Figure B-1: Identification code structure of a Class 1 ITM.
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Figure B-2: Modulated signal form of the binary string "11001010".

B.2 Reader Command Format

Class 1 reader commands are packet-based, and each command follows a strict bi-

nary packet format. The binary data is modulated using ASK. The signals are not

sent continuously in one single stream; as a result, each reader command contains a

calibration period to synchronize the clock speed. Figure B-2 shows the modulated

signal form of the binary string "11001010".

A reader command packet is defined with the following fields:

B.2.1 PREAMBL

The preamble is the prefix of a reader command. There is a period with no signals

sent, followed by a period of carrier-wave signal.

B.2.2 CLKSYNC

The clock synchronization field is composed of 20 binary bits of "0". This period is

used to allow the tags to synchronize their clocks to the command.

B.2.3 SOF

The Start of Frame field is composed of 1 binary bit of "1". This field indicates the

beginning of the actual command.

98



B.2.4 CMD

The command field is composed of 8 binary bits. This field specifies the command

being sent.

B.2.5 P1

The P1 field is composed of 1 binary bit. This field is the odd parity bit of the

command field.

B.2.6 PTR

The pointer field is composed of a multiple of 8 binary bits. This field specifies a

numeric pointer location that the command is referring to. If the value of the field is

255 or more, the 8 binary bits is represented by eight binary "1" bits (which equals

255), and the remaining value (subtracted by 255) is presented in the next 8 binary

bits. The process is repeated as long as the remaining value is 255 or more. Therefore

the last 8 bits of the pointer field always has a value of 254 or less.

B.2.7 P2

The P2 field is composed of 1 binary bit. This field is the odd parity bit of the pointer

field.

B.2.8 LEN

The length field is composed of a multiple of 8 binary bits. This field specifies the

numeric number of bits in the value field. If the value of the field is 255 or more,

the 8 binary bits is represented by eight binary "1" bits (which equals 255), and

the remaining value (subtracted by 255) is presented in the next 8 binary bits. The

process is repeated as long as the remaining value is 255 or more. Therefore the last

8 bits of the pointer field always has a value of 254 or less.
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B.2.9 P3

The P3 field is composed of 1 binary bit. This field is the odd parity bit of the length

field.

B.2.10 VALUE

The value field is composed of a variable number of binary bits, specified by the length

field. This field specifies the binary data that the tag will attempt to match against

its own identifying code. The field terminates after 1 bits, where 1 is the numeric value

of the length field.

B.2.11 P4

The P4 field is composed of 1 binary bit. This field is the odd parity bit of the length

field.

B.2.12 P5

The P4 field is composed of 1 binary bit. This field is the odd parity bit of all the

parity fields (P1, P2, P3, P4).

B.2.13 EOF

The End of Frame field is composed of 1 binary bit of "1". This field indicates the

end of the actual command.

B.3 Reader Commands

These are the following commands that a Class 1 reader can issue:
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B.3.1 ScrollAllID

A ScrollAllID command is characterized by the binary string "00110100" in the com-

mand field. All tags that receives the ScrollAllID command will backscatter a ScrollID

Reply of their CRC, followed by the EPC code.

B.3.2 ScrollID

A ScrollID command is characterized by the binary string "00000001" in the command

field. Tags matching the binary string in the value field beginning at the location

defined by the pointer field will backscatter a ScrollID Reply of their CRC, followed

by the EPC code.

B.3.3 PingID

A PingID command is characterized by the binary string "00001000" in the command

field. Tags matching the binary string in the value field beginning at the location

defined by the pointer field will backscatter a PingID Reply.

B.3.4 Quiet

A Quiet command is characterized by the binary string "00000010" in the command

field. Tags matching the binary string in the value field beginning at the location

defined by the pointer field will no longer respond to any future reader commands,

until a Talk command is received.

B.3.5 Talk

A Talk command is characterized by the binary string "00010000" in the command

field. Tags matching the binary string in the value field beginning at the location

defined by the pointer field will respond to any future reader commands, until a Quiet

command is received. This reader command is not used in RFIDSim's implementation

of the discovery process.
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B.3.6 Kill

A Kill command is characterized by the binary string "00000100" in the command

field. Tags matching the binary string (which contains the entire ITM - CRC, EPC

and password) in the value field beginning at the location 0 will be permanently

deactivated, and will no longer respond to any future reader commands. This reader

command is not used in RFIDSim's implementation of the discovery process.

B.3.7 ProgramID

A ProgramID command is characterized by the binary string "00110001" in the com-

mand field. Tags will reprogram the ITM of the tag, beginning at the location defined

by the pointer field, with the binary string in the value field. The binary string in

the value field must be exactly 16 bits, and the pointer must be a multiple of 16. A

pointer to the MSB of the password field require the last 8 binary bits of the value field

to be "0". This reader command is for reprogramming the ITM of a tag, and is not

a required for the discovery phase. This reader command is not used in RFIDSim's

implementation of the discovery process.

B.3.8 VerifyID

A VerifyID command is characterized by the binary string "00110000" in the com-

mand field. All tags that receives the VerifyID command will backscatter a ScrollID

Reply of their CRC, followed by the EPC code, and followed by the password. The

command is ignored by a tag that has previous received a LockID command. This

reader command is for reprogramming the ITM of a tag, and is not a required for the

discovery phase. This reader command is not used in RFIDSim's implementation of

the discovery process.

B.3.9 LockID

A LockID command is characterized by the binary string "00110001" in the command

field. LockID is a specific version of the ProgramID command that locks up the reader
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to not respond to the VerifyID command. The value of the pointer field must point to

the MSB of the password, the value of the length field must be 16, and the last eight

bits of the value field must be the binary string "10100101". This reader command

is for reprogramming the ITM of a tag, and is not a required for the discovery phase.

This reader command is not used in RFIDSim's implementation of the discovery

process.

B.3.10 EraseID

A EraselD command is characterized by the binary string "00110010" in the command

field. EraseID sets all bits of the CRC, EPC and password field to "0". The command

is ignored by a tag that has previous received a LockID command. This reader

command is for reprogramming the ITM of a tag, and is not a required for the

discovery phase. This reader command is not used in RFIDSim's implementation of

the discovery process.

B.4 Reader Command Response Period

For Class 1 reader commands that awaits a backscatter response from a reader, there

is a response period after the End of Frame field of the reader command, where tags

are given the opportunity to backscatter their responses. The modulation of the

response period differs depending on the command sent.

There are the following types of reply windows that a Class 1 reader might send

after a command:

B.4.1 ScrollID Response Period

A ScrollID response period is characterized by a tag setup window (the length of 8

modulated binary bits), followed by a carrier-wave signal. The carrier-wave signal

must not be longer than 20ms before the next reader command begins. This response

period is sent immediately after the End of Frame field of the reader commands
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Figure B-3: State Machine defined for Class 0 tags

ScrollAllID, ScrollID, or VerifyID.

B.4.2 PingID Response Period

A PingAllID response period is characterized by a tag setup window (the length of

8 modulated binary bits), followed by 8 bin response windows (each the length of 8

modulated binary bits). This response period is sent immediately after the End of

Frame field of the reader command PingID.

B.5 Tag States

Each Class 1 reader command sends all the required information for the tag to perform

a pattern matching on its identification code. As a result, a Class 1 tag state machine

only has three states, one of which is a permanent irreversible state transition. Figure

B-3 shows the state transition diagram of a Class 1 tag.
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B.5.1 Talk State

A Class 1 tag in this state evaluates all supported reader commands. The tag makes

a state transition to the quiet state when it successfully evaluates a Quiet command.

The tag makes a state transition to the killed state when it successfully evaluates a

Kill command.

B.5.2 Quiet State

A Class 1 tag in this state ignores all supported reader commands, except for the Talk

command. The tag only makes a state transition to the talk state when it successfully

evaluates a Talk command.

B.5.3 Killed State

A Class 1 tag in this state ignores all supported reader commands, and is permanently

deactivated. The tag does not make any more state transitions once it has entered

the killed state, even after powering down.

B.6 Tag Backscatter Responses

The backscatter response includes binary data modulated using ASK. The data rate

of a backscatter response is twice the data rate of the reader command data rate.

The following are backscatter responses a Class 1 tag can issue. The backscatter

response channel is the same channel as the reader command is received in.

B.6.1 ScrollID Reply

The format of a ScrollID backscatter response consists of an 8-bit preamble string

"11111110", followed by the CRC and the entire EPC code. The ScrollID backscatter

response is sent when the tag receives a ScrollAllID command, or when the tag receives

a ScrollID command, and the binary string in the value field beginning at the location

defined by the pointer field matches the ITM.
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The backscatter response begins in a predefined delay period after the tag setup

window ends.

B.6.2 PingID Reply

The format of a PingID backscatter response consists of an 8-bit binary string. The

PingID backscatter response is sent when the tag receives a PingID command, and

the binary string in the value field beginning at the location defined by the pointer

field matches the ITM. The tag backscatters the 8-bit string that follows the matching

string in the value field (the beginning position of the 8-bit response is <value in the

pointer field> + <length of the value field>).

The backscatter response begins in a predefined delay period after the tag setup

window ends, plus n delay periods (each period the length of 8 modulated binary

bits), where n is the numeric value of the first three bits of the 8-bit response.

For example, if the first three bits of the PingID Reply is "101" (which would

translate to bin number 5), after the tag setup window ends, the backscatter response

begins in:

<predefined delay period> + <5 * (length of 8 modulated binary bits)>

B.6.3 VerifyID Reply

The format of a VerifyID backscatter response is almost identical to the ScrollID

backscatter response. The format consists of an 8-bit preamble string, followed by

the CRC, the entire EPC code, and the password. The VerifyID backscatter response

is sent when the tag correctly evaluates a VerifyID command from the reader. This

backscatter response and its corresponding reader command is not used in RFIDSim's

implementation of the discovery process.
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Figure B-4: Tree representation of walkable paths using bin modulation

B.7 Discovery Process

The Class 1 discovery algorithm implemented in RFIDSim uses a variation of the

tree-walking algorithm that walks down three levels at a time.

B.7.1 Bin Modulation

The Class 1 discovery algorithm uses bin modulation of the PingID backscatter re-

sponse to walk down three levels at a time.

As defined under section B.6.2, the PingID backscatter response from the tag

begins after n bin response window periods, where n is the numeric value of the first

three bits of the 8-bit response. By partitioning the PingID response window into 8

separate bin response windows, the reader can infer 3 bits of information based on

which bin response window the PingID reply arrives in.

Figure B-4 shows the walkable paths in a binary tree form using the bin-modulated

PingID replies from binary strings " 10010101", "10100000", "01001010"," 10000111",

and "00001110". from the same PingID replies, based on only the first three bits of

the backscatter responses.
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B.7.2 Algorithmic Overview

1. The carrier-wave initialization and calibration phases are embedded in each reader

command, so the tree-walking algorithm begins when the discovery algorithm begins.

Because the reader command format requires at least one bit for the binary string of

the value field, the reader pushes the binary "1" into the stack, and sends a PingID

command with the pointer 0 and the binary string "0".

2. If there are no backscatter responses in any of the bin response windows, the

reader broadcasts a PingID command with the next string in the stack. If the stack

is empty, the reader goes to Step 8.

3. If there is k bin response windows with a backscatter response, where k is more

than 1, the reader pushes k-1 binary strings into the stack, with each string composed

of the identified string so far, together with the 3-bit binary value of the bin response

window.

4. If there is only one bin response window with a backscatter response, the

reader broadcasts a PingID command with the identified string, together with the

3-bit binary value of the bin response window.

5. After two consecutive PingID command on the same identified string, if the

reader detects only one bin response window has a backscatter response for both com-

mands, the reader concludes with a high confidence that there might be only one tag

walking down that path. The reader will then attempt to perform a ScrollID com-

mand with the identified string. If the ScrollID reply can be demodulated correctly,

and the CRC is verified, the reader proceeds to Step 8.

6. The process repeats at Step 2, and completes a successful singulation when a

tag has responded all the way to the lth level of the tree, where 1 is the length of the

identification code.

7. The reader broadcasts a Quiet command with the matching identification code,

and the singulated tag enters a quiet state.

8. The reader, having identified and singulated one tag, pops the next string out

of the stack and broadcasts the PingID command with the string. The process then
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repeats by proceeding to Step 2. If the stack is empty, the reader proceeds to Step 9.

9. To ensure with a reasonable probability that the stack did not miss any tags

that have not been singulated, the reader broadcasts a ScrollAllID command. If the

reader receives any ScrollID reply in ScrollID response window, the reader restarts the

algorithm by proceeding to Step 2. If the reader receives no backscatter responses

from any tag, the reader assumes that all discovered tags are in quiet mode, and

terminates.

B.7.3 Signal Overview

For the entire duration of the discovery process, the reader sends out commands

consecutively, with a short period of no wireless signal in between each command. The

success of the algorithm, unlike Class 0, does not require a tag to receive every single

signal for the duration of the discovery process, as each reader command encodes

sufficient information for a tag to locate the pointer and the identified string it is

trying to match. As a result, even if a tag is unable to demodulate a reader command,

the tag will still understand the next command sent by the reader.

B.7.4 Analysis

The length of each reader command is fairly long, because of the large amount of

information modulated in each command, as well as the large amount of information

modulated in backscatter responses. As a result, each reader command sent out is

rather costly in terms of speed. The algorithm attempts to increase the performance

of the discovery process, by using bin modulation to walk down three levels at a time

(therefore using sending out less reader commands), and also by using ScrollID to

singulate an entire tag when it has a high confidence of singulation.

However, because Class 1 tags are given all information needed to match identify-

ing strings for each reader command, the tags are only required to track the transitions

between Quiet state and Talk state, which leads to a simpler logic design.
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