
A Cooperative Communication Protocol for

Wireless Ad-hoc Networks

by

Jeremy I. Silber

Submitted to the Department of Electrical Engineering and Computer
Science

in partial fulfillment of the requirements for the degrees of

Bachelor of Science in Computer Science and Engineering

and

Master of Engineering in Electrical Engineering and Computer Science

at the Massachusetts Institute of Technology MASSAC
OF

June 2002 JU

© Jeremy I. Silber, MMII. All rights reserved. L

The author hereby grants to MIT permission to reproduce and
distribute publicly paper and electronic copies of this thesis document

in whole or in part.

A

Author .

/f

. . . . . . . . . . . . . .t . . . .. . . ..- .....

Department flectr4 l Engir ering and Computer Science
May 10, 2002

Certified by.....
Andrew Lippman

Senior Research Scientist, MIT Mgdia Laboratory
The,*, KSupervisor

Accepted by ......................
Arthur. Smith

Chairman, Department Committee on Graduate Theses

ARCHIVEP

iUSETTS INSTITUTE
TECHNOLOGY

L 2 0 2004

3RARIES





A Cooperative Communication Protocol for Wireless Ad-hoc

Networks

by

Jeremy I. Silber

Submitted to the Department of Electrical Engineering and Computer Science
on May 23, 2002, in partial fulfillment of the

requirements for the degrees of
Bachelor of Science in Computer Science and Engineering

and
Master of Engineering in Electrical Engineering and Computer Science

Abstract

This thesis presents the design and implementation of a communication protocol that
utilizes local cooperation among nodes to efficiently transfer data. Multi-hop routing
in ad-hoc wireless networks realizes some scalability benefits over direct transmis-
sion by utilizing cooperation in the network layer, where all nodes act as routers
to relay messages. Cooperative transmission takes this idea a step further, moving
cooperation to the link layer, where nodes actually broadcast signals simultaneously
to increase signal strength. Using network topology information derived from prop-
agation delay measurement, nodes dynamically establish and update membership
in rebroadcasting cells. Rebroadcast cells use constructively interfering modulation
schemes to broadcast radio signals together, directing an amplified signal toward the
intended recipient. This results in a link-layer routing system well suited to real-time
data streaming in mobile, ad-hoc, wireless networks.
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Chapter 1

Introduction

The value of a communication network derives from the connectivity it provides

between nodes. The cost of supporting networked connectivity is also a function

of the number of nodes, with availability of communication bandwidth constraining

the total communication capacity achievable. Modern communication networks have

sub-linear scalability: the capacity of the network may rise with the number of nodes,

but the average communication capacity per node decreases. Thus network capacity

must be viewed as a scarce resource; one node's communication decreases the capacity

available for the others. However, no concrete evidence exists to prove that this

must be the case - it may be possible to construct networks which scale linearly,

where adding an additional node creates as much (or more) capacity than that node

consumes.

If such a network is possible, it will likely require that we rethink the simplifying

assumptions on which modern networks are based. For example, we should question

the notion that different signals must be separated and sent from one transmitter

to one receiver (via link-layer non-interference protocols). Some evidence seems to

indicate that utilizing local interactions between nearby nodes may be the key to

realizing higher-order scalability. This beneficial local interaction is the cooperation

upon which the presented networking concepts are based.

A second questionable assumption of modern networking systems is that func-
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tionality should be separated into layers (i.e. the OSI seven-layer model for net-

working). These layers are separated by abstraction barriers designed to simplify the

overall system design by minimizing interactions, allowing individual layers to act

as independent components. Unfortunately, modular layers with standard interfaces

often force assumptions on the high-level layers, precluding innovative protocols cus-

tomized to the nature of the underlying physical network. Reliance on link-level non-

interference protocols is one example; information hiding between layers is another.

Signal strength or timing information from the link layer may be usefully employed

in the network layer, but abstraction barriers typically hide this information from

outside access.

1.1 Communication Network Scalability

Similar scaling problems arise in various types of communication networks. This

section presents several examples, and how cooperative interactions between nearby

nodes can improve network scalability.

In the case of Internet multicast, scaling problems arise as a result of error cor-

rection dialog. The more recipients of a multicasted data stream, the greater the

likelihood of a reception error. Reception errors force the receiver to request a repeat

of the missing data, and error correction traffic can quickly consume all available

bandwidth, forcing actual data traffic to a halt. There have been a number of at-

tempts to ameliorate this situation, creating scalable, reliable multicast (SRM)[9].

Floyd et al. showed that local error repair - information sharing among receivers to

identify and correct errors - alleviates the scaling problem. By removing error correc-

tion responsibility from the single sender and moving it to the large set of receivers,

they assure that adding nodes to the network (which increases the probable number

of reception errors) simultaneously adds error correction capacity.

Radio networks also utilize one-to-many broadcast techniques, and have similar

scalability problems. In this case the bottleneck is available radio bandwidth. Shan-

non's early work on information theory [10] established a limit on the data capacity

12



of the wireless channel between two radios as a function of bandwidth and signal-

to-noise ratio. In networks built on these point-to-point links, this bound becomes

a bottleneck. Gupta and Kumar [11] show that network capacity scales with the

square root of the number of nodes if all communications are simple point-to-point

connections under a non-interference protocol. Thus the throughput per node de-

creases as the network scales. Again, cooperative interactions may offer a solution:

no tight bound has been found for the communication capacity of a group of n radios

communicating among each other (with multiple senders and/or multiple receivers)

in a geographic region. Efforts to use multipath channels to multiplex signals suggest

that the square root scaling may not be optimal. If a receiver can correctly receive

signals from more than one node at a time, networks may be able to exceed a square

root scaling rule[19].

The cooperative approach to the scaling problem is gaining ground in the guise of

peer-to-peer overlay networks such as Napster[5], Gnutella[1], Morpheus[3], Kazaa[2],

and MFTP[4]. The key to the scalability of these networks is that every node provides

bandwidth and storage resources, and local interactions (file transfer directly from

one peer to another) replace the conventional client-server architecture.

In the case of wireless ad-hoc networks, a similar scaling problem arises due to

the scarcity of bandwidth. Radio transmissions are (generally) omnidirectional, so

a signal will often be received by many nodes other than the intended receiver. All

nodes receiving this signal are effectively unable to receive other signals (in the same

bandwidth), and this limits the communication capacity of the network. The more

nodes added to the network, the further the average message must travel, using more

bandwidth resources. Additionally, each node needs to know more about the network

to correctly route messages destined for an increasingly large set of intended receivers.

When ad-hoc wireless networks grow large, both the scalability of the routing scheme

(e.g. size of routing tables) and the scalability of bandwidth use become problematic.
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1.2 Contribution of this Work

This work attempts to bring the concept of cooperation to bear on the problem of

scaling in wireless ad-hoc networks. Presented is a method for cooperative routing of

data without decoding signals in transit. The goal of this approach is to produce a

scalable network which implements routing based solely on signal propagation infor-

mation measured in the link layer. The result is a network which dynamically routes

individual bits without excessive overhead and with minimal latency. Secondary

goals include reduction of transmission power and efficient utilization of bandwidth

resources.

This work is motivated by the technological and economic gains possible when

network nodes serve to increase network capacity. Replacing existing networks that

rely on fixed wired stations (e.g. cellular telephony) with cooperative networks could

allow systems where connectivity and capacity are created by the mobile nodes of

the network. Rather than approximating future peak capacity and constructing fixed

based stations to provide it, the infrastructure for capacity would be resident in the

mobile nodes themselves, providing capacity exactly when and where it is needed.

1.3 Thesis Overview

Chapter 2 presents the current state of wireless networks, ad-hoc networking, and

theoretical scalability bounds. The references presented provide context for this work.

Chapter 3 presents a design for a cooperative communication protocol, built ex-

plicitly for scalable real-time data transfer in mobile ad-hoc wireless networks. The

protocol emphasizes cooperation at the lowest level, using a collection of nearby nodes

(a rebroadcast cell) to broadcast a signal simultaneously. To determine membership

of the rebroadcast cell, the protocol uses link-layer measures of signal propagation

delay as estimates of network topology.

Chapter 4 validates the components of the presented cooperative communica-

tion protocol (multiple-node broadcast and propagation delay estimations of network

14



topology) with a network implemented in hardware using infrared as a communica-

tion medium. The design of this network's modulation scheme, channel access, time

synchronization, and topology measurement are presented.

After showing the feasibility of a network built around the concept of cooperation,

Chapter 5 presents analysis of such a networks' performance. Qualitative findings on

the infrared simulation network are presented, along with derivations of latency and

bandwidth efficiency of cooperative networks (as compared to packet-switched multi-

hop networks). Finally, a software simulation package is presented for the calculation

of transmission power. The quantitative simulation results form an estimate of the

power use of various networking schemes and how this power use scales with network

size.

Finally, Chapter 6 reviews the findings of this work and suggests future avenues

of research.
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Chapter 2

Background

This thesis draws from past research in radio, network routing algorithms, and the-

oretical work in scalability. This chapter presents relevant work in radio (cellular

phone networks, wireless data, television), ad-hoc network routing, and the scalabil-

ity of networks.

2.1 Wireless Networks

Cellular phone networks are a good canonical example of the single-hop network upon

which this system hopes to improve. Single-hop networks transfer data direction from

a sender to a receiver, without utilizing any other nodes of the network for routing

purposes. Most cellular calls today use second generation ("2G") cellular technol-

ogy, employing digital circuit-switched routing. Bandwidth is shared among phones

in an area using one of several access protocols: typically Time Division Multiple

Access (TDMA), Frequency Division Multiple Access(FDMA), and Code Division

Multiple Access (CDMA)[14]. A common assumption between these protocols is that

individual nodes are adversaries, competing for an allocation of bandwidth.

Wireless local area data networking is currently dominated by the 802.11 fam-

ily of standards (802.11a, 802.11b, 802.11g)[13]. In the developing field of Personal

Area Networking, Bluetooth[12] has achieved the greatest amount of attention. Nei-
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ther currently provides any multi-hop routing capabilities: they do not utilize other

network nodes to assist in the transmission of data from sender to receiver. 802.11

network configurations are typified by a number of mobile devices and a set of fixed

base stations. Unlike cellular phone networks, a mobile node does not keep a static

identifier as it moves within range of different base stations. While 802.11 does specify

an "ad-hoc mode" in which two mobile nodes can communicate directly, it does not

provide any support for larger ad-hoc networks (which would necessitate multi-hop

routing and non-hierarchical addressing). Bluetooth specializes in creating a small

local network ("piconet") of devices with one master and up to seven slave devices.

Piconets can theoretically be hierarchically connected into a larger "scatternet" which

would use multi-hop routing, but many technical details of scatternets remain unre-

solved and scatternets have not yet been implemented.

Television broadcasting requires careful attention to multipath delayed signal

propagation. Analog television broadcasts are subject to 'ghosting', a visible arti-

fact of multipath signal distortion. When a television signal reaches a receiver via

several different paths (e.g. reflections off city buildings or reception from two differ-

ent transmitters), the two signals can arrive at different times and interfere with each

other. Coded Orthogonal Frequency Domain Multiplexing (COFDM)[22] mitigates

this problem by multiplexing a signal over many independent frequencies, with the

symbol time (the duration of an individual signal) in each frequency long enough to

assure that multipath effects reinforce the current symbol rather than interfere with

subsequent ones.

BLAST[23], a research project at Bell Labs, utilizes the nonlinear properties of

radio propagation and multiple transmitting and receiving antennas to increase the

amount of information that can be broadcast in a given frequency bandwidth. It

utilizes the multipath effect - the result of a radio signal arriving both directly from

the transmitter and after reflecting off distant surfaces - to send multiple channels of

information at the same carrier frequency.

18



2.2 Ad-hoc Mobile Routing

Drastic decreases in price of wireless networking hardware has prompted consider-

able research into ad-hoc mobile routing (directing network traffic through a non-

hierarchical network of mobile and potentially unreliable nodes). Targeted uses range

from eliminating wires between electronic devices to large-scale sensor networks. The

various proposed algorithms differ in their weighting of bandwidth, reliability, node

mobility, and scalability as design goals.

The routing algorithms most commonly used on the wired Internet are based

on the periodic propagation of local link-state or distance-vector information. Such

schemes do not translate well to the wireless world, where nodes enter and exit the

network without warning, and move constantly, making and breaking connections

too frequently for global information to be updated. Mobile ad-hoc networks often

use on-demand route discovery [15, 61 to avoid the overhead of maintaining unused

routes.

Hyphos[18] is an ad-hoc routing protocol that employs "contour routing" to move

messages successively closer to the recipient (where distance is measured in number of

hops). Each Hyphos node maintains a table of distance estimates to other nodes and

relays a message only if its distance to the intended recipient is less than the sender's.

Every relayed message carries a hop counter that is used to update relaying nodes'

distance estimate to the sender. The Hyphos system is designed to inexpensively

connect tens or hundreds of nodes with very simple hardware. However, the protocols

are inefficient when nodes are in rapid motion or the membership of the network

changes rapidly. Like all packet-switched network protocols, each hop over which a

message is relayed introduces latency (delay between data transmission and reception)

that is undesirable in real-time communications.

Some other ad-hoc routing systems have used information from the link layer to

inform network-layer routing decisions. The Signal Stability based Adaptive Routing

(SSA)[6] system uses signal strength and consistency information from the link layer

to choose routes which will likely require less maintenance as nodes move, enter, or
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exit the network. SSA does not attempt to derive any physical or topological distance

information from the link layer. [7] uses end-to-end propagation delay calculated in

the network layer to derive the topology of a multicast network.

2.3 Scalability of Wireless Networks

The question of the total communication capacity of a wireless network is currently

open. Cellularization using wired base stations linearizes the communication capacity

of a network, but only by setting up an expensive, static network of base stations

connected to each other via an external wired network. Gupta [11] and Shepard [21]

show that mobile wireless networks with variable-power transceivers operating under

a non-interference link-layer protocol can achieve a total capacity that scales with

the square root of the number of network nodes. Space-time coding techniques like

BLAST [23] may be capable of achieving total network capacity scaling linear with

the number of nodes [19].

Recent work [21] also suggests that the mobility of the network nodes can be

utilized to improve the network's scalability, but this effect only comes into play

when acceptable delivery latencies are large in comparison to the relative velocities

of network nodes.
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Chapter 3

Cooperative RF

This chapter presents a framework for utilizing cooperation among radio transceiver

nodes to propagate data across a wireless ad-hoc network. Simple cooperation rules

create emergent network properties that are used to design a full-featured dynamic

routing algorithm entirely in the radio frequency domain.

3.1 Goals

The proposed protocol is designed to operate in a dynamic network of mobile wireless

nodes, replacing point-to-point protocols and multi-hop networking protocols built on

point-to-point link layers. The protocol described is designed to support real-time,

bandwidth-intensive applications (such as telephony). Several properties are desirable

for such applications:

1. Latency - Telephony, video-conferencing, and other highly interactive applica-

tions require minimal latency (the delay between the sending of a bit and its

reception at the other end of the channel). The Internet's use of packet-queueing

has created problems for this class of application.

2. Availability - The system should be capable of routing data around any nodes

that have moved or failed, and should ideally be capable of routing data through
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multiple paths simultaneously to ensure reliable delivery or to increase signal

strength.

3. Duplex Connectivity - Telephony data flows in both directions between the two

endpoints, and requires high bandwidth in both directions.

4. Scalability - The system should be designed to handle increased network traffic

as the number of nodes in an area increases. Routing should distribute load

when possible to avoid bottlenecks constraining network capacity.

5. Power Efficiency - The system should attempt to route data in such a way as

to minimize necessary aggregate and per-node broadcast power.

6. Bandwidth Efficiency - The system should use as little bandwidth as possible

for as little time as possible in as small an area as possible under normal use

cases.

Conventional multi-hop systems work reasonably well in achieving availability,

scalability, and power efficiency with duplex connections. Latency and bandwidth

efficiency, however, are problematic. Moreover, existing multi-hop systems require

additional (transmission and computation) overhead for packet address headers, and

many routing schemes require prohibitively large tables of network state information

that must be updated whenever nodes move.

3.2 Design Overview

The proposed protocol attempts to meet the stated design goals through cooperation

between network nodes, merging the availability, scalability, and power efficiency of a

multi-hop network with the low latency and computation overhead of a direct point-

to-point link. The protocol moves cooperation from the network-layer (where nodes

relay data packets for other nodes) to the link layer, so that nodes repeat amplified

signals for other nodes. The protocol selects a minimal set of nodes between a sender

and a receiver as members of a "repeater cell," forming a pathway for data transfer.

22



To do repeater cell membership selection without any externally provided network

state information, the protocol extrapolates network topology from observed signal

propagation delays.

The proposed protocol also demonstrates a reason to break the conventional ab-

straction barrier between the network's physical propagation (link) layer and its net-

work routing system. Removing the abstraction barrier allows us to tailor the routing

system to the physical medium, and to use physical propagation measurements (e.g.

timed delays) in the routing algorithms. The many-to-many aspect of radio trans-

mission is utilized by the protocol's multi-path routing instead of being hidden under

a one-to-one non-interference access layer. The simultaneous reception of two signals

should not create a "collision" that destroys the data in transit (as in the one-to-

one abstraction). Simultaneous reception should instead be used to increase signal

strength. In addition to customizing the routing for the physical medium, the proto-

col should share information across the conventional abstraction barrier between link

and network layers. This allows the network layer to select rebroadcast cells using

topology derived from link layer propagation delay measurements.

3.2.1 Communication Channel Properties

The system is designed to use radio as the transmission medium, but is readily adapt-

able to any medium that can be efficiently multiplexed in a dimension other than time

(like space or frequency). This includes light, radio, ultrasound, sonar, and capacitive

coupling. Each node is assumed to be capable of localized omnidirectional broadcast-

ing and omnidirectional reception.

3.2.2 Modulation

Rebroadcasting of radio symbols by a set of repeater nodes introduces many copies of

the original signal, which may arrive at a receiver at different times. These signals also

may travel through different transmission channels with different fading, multipath,

noise, and distortion properties. The modulation technique must be robust to these
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effects, which cause recombination of potentially distorted copies of a signal with an

arbitrary (but bounded) phase offset. Section 3.3 presents one suitable modulation

scheme and explains how it achieves these properties.

3.2.3 Control Channel

Most on-demand wireless communication protocols feature one or more control chan-

nels for the allocation of bandwidth to network nodes. The proposed system should

feature such a control channel for bandwidth allocation, but proposes no special ad-

vances in control channel protocol. The control channel is assumed to assign two

unoccupied communication channels (e.g. frequency bands or time slots) to two net-

work nodes seeking to exchange data. One of these channels will be used for data

traveling in each direction. The algorithms presented specify the communications

which occur in these channels after allocation.

3.2.4 Network Time Synchronization

The presented cooperative communication protocol utilizes a synchronized clock at

each node to extrapolate network topology from received signals. Achieving a common

synchronized clock, though difficult on the Internet due to packet queueing at each

stop on the routing path, is much simpler given nodes communicating directly with

each other over radio. [17, 8] discuss possible time synchronization methods and

their accuracy. Clock synchronization must be maintained with an error less than the

length of the guard period (see Section 3.3), and synchronization accuracy affects the

efficiency of repeater cell membership selection.

3.3 Constructive Interference

The cooperative communication protocol relies on the reliable reception of a radio

symbol when copies arrive from multiple transmitters at slightly different times. The

signal-to-noise ratio measured at a receiver should increase with the number of nearby
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transmitting nodes. This property of constructive interference is one of the key un-

derpinnings of the protocol, allowing nodes to cooperate in the transmission of radio

signals.

Constructive interference can be achieved with signals designed such that several

copies combine into a single, more easily demodulated signal. While the simplest of

modulation techniques might seem to exhibit this property (e.g. an amplitude modu-

lated sinusoidal carrier wave), the possibility of fading and compositional phase delay

complicate matters. Fading occurs when a transmission channel (the environment

between transmitter and receiver) attenuates some signals more than others. Differ-

ential propagation delay occurs when a signal travels over multiple paths of different

lengths from transmitter to receiver, such that each copy arrives at a slightly different

time. Most types of signal modulation are not robust to recombination with fading

and delay: if two simple AM signals are combined with a relative delay (i.e. phase

difference) of half their frequency, the carriers cancel each other out and the signal is

lost.

Coded Orthogonal Frequency Domain Multiplexing (COFDM) is an example mod-

ulation technique that exhibits constructive interference. COFDM multiplexes a data

stream over many modulated carriers at different (orthogonal) frequencies. This fre-

quency diversity and the use of diversity coding makes COFDM resistant to phase

cancellation and fading: signal losses due to these effects occur only on some of the

carrier frequencies, and diversity coding allows the data stream to be correctly re-

ceived despite several missing components.

COFDM is able to correctly decode a symbol even when many copies of it arrive

at slightly different times. Each symbol is broadcast for tsymbot seconds, and sym-

bols are separated by a quiescent guard period of tguard seconds. The guard period

provides a buffer, preventing late-arriving copies of a symbol from interfering with

the next symbol in the stream. As long as all copies of a symbol arrive within tguard

seconds of the symbol start time, they will finish before the next symbol period be-

gins. (tsymbol) is relatively long, so that delayed copies of the symbol will reinforce
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the copies that arrive earlier, increasing the signal to noise ratio. In television broad-

casting, this constructive interference property causes multipath delays from signal

reflection to improve reception rather than causing interference (spatially displaced

"ghost" images). In this cooperative communication protocol, the multi-path delays

are caused by rebroadcasts, and long signal times allows rebroadcasted copies of a

signal to strengthen the signal rather than destructively interfere.

The bandwidth necessary for each carrier in a COFDM system is inversely pro-

portional to the choice of tsymbol, so the theoretical capacity of a frequency band is

constant whether it be used by a single carrier modulated by a signal of d symbols

per second, or by n different orthogonal carriers modulated by multiplexed signals

of d/n symbols per second. Introducing a guard period prevents interference from

delayed copies of earlier symbols, but reduces the data rate of each carrier. Since

the cooperative system propagates signals over a much larger distance than most

COFDM implementations, and suffers some retransmission delay at repeater nodes,

guard periods between signals should be increased. Using large numbers of orthogonal

frequency carriers (and correspondingly long symbol times) will minimize the band-

width lost to extending guard delays. Section 5.4.1 analyzes the bandwidth efficiency

of the cooperative protocol.

3.4 Routing

3.4.1 Extrapolating Network Topology

Efficient routing in a network requires detailed knowledge of the network's topology.

With the wired Internet, this information is typically held in hierarchical routing

tables that are updated regularly. Internet node addresses. can encode information

useful for routing (e.g. all 18.*.*.* addresses should be routed toward MIT) because

nodes are stationary and their addresses reflect their positions in the network topology.

Routing table updates occur relatively rarely, and changes in these tables may be

slow to propagate through the entire network. Mobile ad-hoc networks present a
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different class of problem, since nodes are rearranged frequently (if not constantly),

making static hierarchical addressing impossible. Whatever information is necessary

for routing must propagate quickly to all nodes responsible for forwarding data, but

routing table updates should use as little network capacity as possible.

The cooperative protocol does not explicitly propagate information on network

topology through any type of routing or distance table. Instead, the nodes measure

the time of arrival of incoming symbols, and compare this to the globally-synchronized

clock. There are specific legal start times for symbols, and the receiving node can

calculate the delay between the last legal start time and the arrival of a symbol.

This delay is taken as the network propagation time of the symbol from its source

to the receiving node. The network propagation time is the combination of the time

taken for propagation of the signal across the physical medium and the accumulated

rebroadcast delay incurred in receiving and retransmitting the signal at any interme-

diate nodes. The protocol uses different logical channels (e.g. different frequencies or

time slots) for data originating at the different endpoints, so any intermediate node

can distinguish the symbols sent from one endpoint from symbols sent by the other.

Given the network propagation delays measured from each endpoint, the node can

dynamically determine whether it should be a member of a rebroadcasting cell.

3.4.2 Dynamic Rebroadcast Cells

In wired packet networking, a specific node in the network receives an incoming

packet, inspects the header to discover the packet's intended destination, then passes

the packet along to a network node closer to the destination. For example, a switch

on an Ethernet LAN often has an uplink connection to the Internet and several wired

downlink connections to local computers. It analyzes incoming packets from the

Internet to discover the destination address, then forwards that packet only along the

downlink wire connecting to the appropriate computer.

Wireless communication changes the nature of the routing decision. A wireless

node typically uses an omnidirectional local broadcast transmitter, and so the wireless
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routing decision is not which neighbor to pass the signal to, but simply whether to

retransmit the signal or not. Conventional wireless networking builds a point-to-

point layer over the broadcast radio medium by transmitting a "to:" header with the

data packet. All nearby nodes receive and analyze the packet header, discarding the

packet if the "to:" address does not match the node's address. Unlike the case of

the Ethernet switch, all neighboring nodes receive the packet; even if they choose to

ignore the incoming signal, they are unable to transmit or receive other signals on that

channel due to interference. This has repercussions for the efficiency and scalability of

the network: nearby nodes could be used to amplify and rebroadcast the signals they

overhear, or could at least learn about network topology from measuring propagation

delay.

In the cooperative system, there are no packets, and thus no "to:" addresses.

Each transmission is a many-to-one broadcast of information, and the sender does

not actually know which of its neighbors may be on a routing path toward the final

destination. Instead, the system relies on dynamically selected "rebroadcast cells" of

nodes which will amplify and rebroadcast signals on a specific channel (i.e. between

two specific endpoints). Using network propagation delay measurement, nodes con-

stantly update their distance estimates from the endpoints, joining and leaving the

rebroadcast cell as appropriate.

3.4.3 Rebroadcast Cell Membership Selection

The rebroadcast cell membership selection algorithm is distributed among the inter-

mediate nodes, and attempts to select a rebroadcast cell of nodes which are on or

near a shortest path route between the two endpoints. The algorithm relies only

on delay measurement (as a distance estimate), with each node using its apparent

distance from the two endpoints to determine its own membership in the cell. No

explicit transfer of routing tables, distance vectors, or any other network topology

information is necessary.

Figure 3.4.3 lists pseudocode for the cell membership selection algorithm that
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while (!clock-synced) {
sync_ clock()

}
delayA = 0; // network propagation delay from A
delayB = 0; // network propagation delay from B
while ( channelactive ) {

if ( receiveA() )
delayA = currenttime() - laststart-timeO;

else if ( receiveB() )
delayB = currenttimeO - laststart-timeo;

if ( delayA + delayB < t-guard - epsilon )
rebroadcast();

}

Figure 3-1: Rebroadcast Cell Membership Selection Algorithm (pseudocode)

runs at each intermediate node. The effect of this code is to rebroadcast signals

when the sum of the apparent network propagation delay from both endpoints is less

than tguard, the (fixed) length of the guard period. This ensures that, if the node

rebroadcasts the symbol, there is enough time remaining for the signal to reach its

destination with an accumulated delay less than tguard. The constant epsilon allows

a small buffer to protect against clock skew and other sources of error.

This cell membership code uses only apparent propagation delay from the end-

points, and has no explicit provision for changing broadcast cell membership accord-

ing to the shortest-path distance between the two endpoints. This distance can be

measured by either endpoint, and could be communicated explicitly to intermediate

nodes. Such an approach would, however, require both decoding of signals at inter-

mediate nodes and the overhead of transferring network topology information to a

large set of intermediate nodes. Instead, the endpoints (which can directly measure

the total propagation delay) manipulate their outgoing signals to "fake" accumulated

propagation delay, achieving the desired result.

The node initiating communication acquires an empty channel, then transmits

data symbols at the beginning of each symbol period (see Figure 3.4.3). The other

endpoint (referred to as the "receiving" node, though it is also sending data back to
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while (!clocksynced) {
sync_ clock()

}
acquirechannel();
while ( datatosend ) {

while ( !legal-start._time( current_time() ) );

broadcast();

}
releasechannel();

Figure 3-2: Initiating Node Transmission Algorithm

the initiating node) uses a more complex algorithm to time its responses, manipulating

the intermediate nodes into creating a rebroadcast cell of appropriate size and shape.

The receiving node measures the propagation delay from the initiating node, and

sends the symbols in its reply with an added delay, such that intermediate nodes

not near the shortest path will decline to rebroadcast the signal. This added delay

serves as a time-to-live limit on symbol propagation, since intermediate nodes compare

summed delays to a fixed threshold. The delay is the fixed delay threshold tguard -

c minus the measured propagation delay from the initiating node, minus a spread

constant. Subtracting the measured propagation delay gives the reply enough time

to travel back to the initiating node over the reverse path (here the protocol assumes

symmetric connectivity). Subtracting a spread constant allows nodes near, but not

quite on, the shortest path to join the rebroadcast cell, providing multi-path routing

for increased stability and signal strength.

Immediately after channel allocation, when no nodes have any information about

their distance from any other nodes, this version of the algorithm will flood the

local network with the first symbol, giving all nodes a delay measurement from the

initiating node. The reply from the receiving node, and all subsequent symbols from

either node, will be repeated only by the nodes in the rebroadcast cell. A slight

modification of the initiating node's transmission algorithm could limit the flooding

effect by initially inserting a delay in symbol transmission (setting a small time-to-
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delayA = 0;
while ( channelactive && delayA != 0 ) {

if ( receiveA( )
delayA = currenttime() - laststarttimeO;

while ( !legal-start.time( currenttimeO ) );

delay( t-guard - delayA - epsilon - spread-constant );

broadcast();

}

Figure 3-3: "Receiving" Node Transmission Algorithm

0
S O

d

Figure 3-4: Rebroadcast Cell Shape. The shaded nodes form the rebroadcast cell for

communication between nodes a and b.

live limit), then progressively reducing this delay until the signal reaches the receiving

node. More efficient behavior would require an external source of network topology

information, which could be implemented via side-band communication.

3.4.4 Cell Characteristics

Once data has been successfully sent from the initiating node to the receiver and vice

versa, membership in the repeater cell is established. Depending on the choice of the

spread constant, the repeater cell can resemble any shape from a single-path route

straight between the two endpoints to a wide ellipse with the endpoints as foci.

If we assume that the propagation delay is dominated by the speed of the physical
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signal traveling from node to node (and not by the performance of node hardware),

the rebroadcast cell will consist of the set of nodes which belong to paths near the

shortest path length. For instance, if the shortest path from node A to node B is a

single hop with delay d and the spread constant is s, the set of nodes on paths of

delay less than d + s fall in the interior of the ellipse with A and B as foci, major axis

d, and eccentricity sfi (See Figure 3-4).

The ellipsoid rebroadcast cell shape provides multi-path diversity, but the wider

the ellipse the greater the total power use and the more nodes are in the reception area

and unable to reuse the frequency band. The selection of an ideal spread constant

will vary with the nature of the physical medium, transceiver hardware, and required

quality of service.
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Chapter 4

Simulation Network

This chapter introduces the simulation network developed in hardware to test the

theories behind cooperative communication. The simulation uses both constructive

interference and network topology measurements to form a cooperative communica-

tion network, using infrared as the communication medium. It demonstrates dynamic

rebroadcast cell formation, and serves as a simple testbed for experimentation and

modification.

4.1 Simulation Network Overview

The simulation network was designed to illustrate the concepts of constructive inter-

ference and network topology measurements, and to facilitate experimentation. While

real-world networks are most useful when they connect points miles away from each

other, the simulation network was built to facilitate easy visualization and manipula-

tion of the entire network by a single observer. This requires a physically embodied

simulation scaled down to table-top size. The small scale and need for a high degree

of control over the environment led to several design choices, documented below.

One goal of the simulation network was to test the behavior of a cooperative

communication protocol given high rates of movement of individual nodes. To allow

rapid node movement on a table-top scale, the simulated network nodes are situated
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on custom-designed air hockey pucks which levitate just above the surface of an air-

hockey table. This nearly eliminates friction, allowing the pucks to float across the

table at high speeds. An experimenter can set the pucks in motion and observe how

the network reacts to rapid and continuous reconfiguration.

Radio frequency (RF) communications are difficult to scale down. Radio waves

act differently on a sub-meter scale than on a kilometer scale, and it is difficult to

use radio at such low power. RF transceivers are bulky, complicated, and power-

hungry, making individual nodes complex, expensive, and large. RF waves penetrate

solid objects, making it difficult to exclude outside sources of RF interference or

control the propagation of signals. For these reasons, infrared (IR) light was chosen

as a communication medium rather than RF. IR transceiver hardware is simple,

inexpensive, and requires little power. IR signals do not penetrate opaque objects, so

outside noise can be easily excluded from the simulation environment, and barriers

can be used to constrain network connectivity. IR transceivers are made to work on

a scale of centimeters rather than kilometers, and prove quite adequate for table-top

networking demonstrations. The purpose of the simulation network is not to validate

RF-domain cooperative networking, but to demonstrate the viability of the basic

concepts of constructive interference and derived network topology. Implementation

of a full-featured cooperative network using radio is left as a future research topic.

4.2 Properties of Infrared Communication

Typical RF transmitters modulate data onto a carrier signal at a specific frequency,

allowing the available frequency bandwidth to be split into several different communi-

cation channels modulated at different frequencies (frequency division multiplexing).

The IR transmitters used, in contrast, do not use modulated carriers. They simply

use switched emission of uncorrelated infrared light to send signals. The infrared

receivers do not produce an analog signal strength measure; they are triggered by

incident infrared light, producing a brief voltage spike, and remain saturated until

the incident light ceases. These receivers serve only to detect the rising edge of an
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infrared pulse, providing no information on the pulse's intensity or length.

The digital nature of the IR transceivers prevents the simulation network from

using frequency multiplexing schemes like COFDM, as an RF implementation might.

The simulation network instead uses time division multiplexing to split the IR channel

into two logical channels (one for data traveling in each direction). The behavior of

these IR channels in the simulation network could be compared to that of individual

RF carrier channels in a COFDM implementation.

The infrared transceivers used also differ from RF transceivers in terms of the

directionality of signal propagation. While a full-scale RF system would likely use

omnidirectional RF antennas, the JR transceivers used by the simulation network

focus emitted infrared in a relatively narrow cone. To minimize this effect, each node

has a set of 4 transceivers oriented at right angles. Even so, there are intermediate

angles for which the signal propagation is significantly weaker, complicating the task

of routing. With a true omnidirectional signal, signal strength is (at least to a first

order approximation) simply a function of distance from the transmitter. With the

directional IR transmitters used, angular position with respect to the transmitter is

also a factor in the signal strength at any given point.

Additionally, the diminutive scale of the simulation network in relation to the

speed of light (the propagation velocity of both IR and RF signals) changes the nature

of distance measurement in the simulated network. In a full-scale system, physical

distance between nodes will result in measurable propagation latencies. At table-top

scale, these latencies are not easily measurable. As such, measurements of propagation

time in the simulation network are dominated by the retransmit delay of intermediate

nodes, not by the signal propagation time. This changes the results of the cooperative

cell membership algorithm somewhat, with propagation delay representing a measure

of hop count rather than physical distance.
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4.3 Node Hardware and Simulation Environment

Each node in the IR simulation network is a battery-powered microprocessor with

four infrared transceivers. The microprocessor is Cygnal's C8051F016 running at

22MHz, the transceivers are Agilent's HSDL-1001, and the PCB was designed by

Joshua Lifton[16]. The processor and transceiver boards are attached via a connector

and both are mounted on custom-designed air hockey pucks laser-cut from sheets of

acrylic. The pucks are designed to float above an an air-hockey table, which pumps

air through regularly spaced holes in its smooth surface. Levitated above the table,

the pucks experience very little friction, allowing high-mobility testing of the network.

Complementing the mobile nodes are a pair of gateway nodes which provide RS-

232 serial connections the cooperative network. Setting the gateway nodes as the

endpoints of a connection allows data routing from a PC through a serial cable to

the network, across the network of mobile wireless nodes, and then back through the

other gateway's serial connection to a target PC. This simplifies quality of service

analysis.

4.4 Bit Representation

The IR receivers used in the simulation network trigger (outputting a voltage pulse)

when incident infrared light intensity crosses a threshold, and remain triggered until

the intensity falls below a threshold level. As such, they can only be used to send

and receive pulses, and carrier-modulated communication (in the traditional sense)

is not possible.

Without carrier-modulation, the IR simulation cannot use COFDM (or any other

frequency multiplexing method). Instead, it simulates the behavior of just one of the

channels (others would operate at orthogonal, non-interfering frequencies, and there-

fore any one can be simulated independently). Nevertheless, the simulation models

the most important features of the cooperative protocol: constructive interference

and propagation delay as a measure of network topology.
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Figure 4-1: IR Bit Representations of (a) logical one, (b) logical zero.
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Figure 4-2: Constructive Interference of IR Bit Representations. Logical one symbols

(a) and (b) arrive together (with different delays) at a receiver (c) to form a stronger

logical one symbol.

The modulation scheme used, like IRDA, encodes a bit's digital value by a pulse

or the absence of a pulse. Unlike IRDA, the simulation network represents each bit

by more than one pulse. A logical zero is represented by no pulses, and a logical

one is represented with a series of pulses (see Figure 4-1). The pulses occur for a

period tsymbol, and are followed by a quiescent guard period lasting a duration tguard.

A receiving node counts incoming pulses, and considers it a logical one if the count is

great than a noise threshold value. This allows nodes in the network to differentiate

between a received bit and spurious IR noise, and allows delayed copies of bits to

strengthen the received signal.

This bit representation parallels the symbol extension used by COFDM to enable

constructive interference. The infrared receivers register only the rising edge of in-
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frared intensity, however, so the simulation network uses a series of rapid IR pulses

(extending the symbol by repetition) where COFDM simply extends the period of

transmission of each carrier-modulated symbol. This bit representation results in a

kind of constructive interference, since two logical one signals received concurrently

(with phase delay) form a set of twice as many pulses (see Figure 4-2. Even if the

number of pulses successfully received from each of the two transmitters is below the

reception threshold, the number of pulses received from both transmitters together

can be above the threshold. This bit representation does not exhibit constructive

interference between logical zero symbols, however: two zero symbols are indistin-

guishable (at the receiver) from one zero symbol. This modulation technique is far

from optimal, but is reasonably resistant to noise and is simple to implement and

demonstrate.

The sum tsymbol + tguard determines the data rate possible over this single channel.

The achieved data rate is 1, . Longer tguard settings allow longer routing
tsymboltguard

paths, and longer tsymboI and higher noise threshold increases resistance to environ-

mental noise. The frequency of IR pulses can be modified for a rough simulation of

transmission power control.

4.5 Time Synchronization

A production cooperative communication network should use a special channel to

achieve and maintain synchronous clocks. Since the IR hardware precludes the use

of non-interfering sideband channels, the simulation network uses a simpler method.

The first endpoint node to access the channel (of the two assigned endpoints)

operates as a master clock. Other nodes synchronize to any nearby node with a syn-

chronized clock, propagating the clock synchronization across the network. Rather

than any explicit synchronization signal or packet, nodes synchronize to a modified

logical one symbol. All synchronized nodes are programmed to cease pulses at the

beginning of the guard period (so relaying nodes transmit pulses for less than tsymbol

seconds). Unsynchronized nodes listen for the passage of a logical one symbol and
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Figure 4-4: Time division of the IR channel. Symbols traveling from endpoint A to

endpoint B are interleaved with symbols traveling in the opposite direction.

4.6 Time Division of Communication Channel

The dynamic cell membership algorithm requires that intermediate nodes be able

to measure and differentiate the (apparent) propagation delay of signals originating

from each of the two endpoints. Since the simulation uses unmodulated IR, signals

traveling in opposite directions cannot use different frequencies. Instead, the IR

simulation uses time division multiplexing to interleave signals traveling in opposite

directions.

Intermediate nodes need not identify which of the two time slots represents end-

point A sending and which represents B sending, they need only know that any two

consecutive time slots contain symbols traveling from alternate endpoints. All nodes

in the network are synchronized to the start of a symbol period, which is also the

start of a time slot, so the origin of an incoming symbol is apparent from its arrival

time.

4.7 Network Layer and Applications

The simulation network has a simple network layer implemented entirely at the end-

points of a communication. Data is sent in frames of fixed size, beginning with
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a number of start bits which serve only to synchronize all clocks with that of the

sender. Frames can include an arbitrary number of flags or headers. One such flag

is currently used to identify frames that are sent without any data simply to main-

tain clock synchronization. A trivial modification would add a frame length header,

enabling variable-length frames.

Two applications were designed for demonstration of the cooperative network.

Both exist entirely in the endpoint nodes; intermediate relaying nodes have no knowl-

edge of the nature of the data they are routing, and can route data for either appli-

cation with impunity.

The first application features reliable delivery of small packets, with the sender pe-

riodically repeating packets until a correct confirmation is received from the recipient.

Each packet has an error-correction code to facilitate recovery of partially-received

packets.

The second application tunnels a simple serial connection through the coopera-

tive network. The application code runs on the serial-to-IR gateway nodes. Both

nodes receive characters from the RS-232 serial ports using their processor's UART

hardware. The characters received at each gateway's serial port are transmitted bit-

by-bit to the other gateway over the simulation network. At the receiving gateway,

the bits are reassembled and sent out the serial interface, again using the hardware

UART. This application is an example use of a real-time duplex data stream with-

out delivery guarantees. The achieved data rate across the cooperative network was

approximately 1200bps in each direction, for 2400bps total.
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Chapter 5

Results and Analysis

The IR simulation network demonstrates the viability of routing data entirely in the

physical link layer, and validates some of the techniques underlying the proposed

cooperative communication protocol design. This chapter addresses the protocol's

characteristics, its performance, and its efficiency.

5.1 Hardware-level Routing Protocol

The cooperative protocol was successfully implemented as a multi-hop transport pro-

tocol operating entirely in the network link layer of each node, without requiring any

explicit network state information. A link-layer routing protocol is an accomplish-

ment in and of itself, showing a possible alternative to complicated software layer

routing implemented over a simple point to point link layer. More importantly, im-

plementing routing in the link layer allows use of signal propagation information that

normally would not cross the abstraction layer between link and network layers.

The implemented simulation succeeds in measuring signal propagation times and

using these measurements as the sole input to a routing algorithm. In effect, the rout-

ing information is extracted from the data stream, allowing dynamic (per-bit) routing

without excessive overhead. Where most link layers simply categorize a bit as a zero

or one and throw away any other property of the received signal as unwanted noise,
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nodes in this cooperative network looks for both the data and hints as to the signal's

propagation. This technique could be extended to make routing or application-level

decisions based on received signal properties like delay or signal strength.

5.2 Constructive Interference

Modulation schemes which enable constructive interference are presented in Chapter

3, and a specific (simple) example is developed in Chapter 4. Constructive interference

has great potential for power savings and even for improving the scalability of wireless

networks, and also proved to be very effective in the IR simulation network.

The IR modulation scheme shows some of the promise of constructively interfer-

ing modulation, though it was less than ideal. It features constructive interference

on "one" data bits, but "zero" bits did not constructively interfere (nor did they de-

structively interfere). Given the restrictions of the available IR transceiver hardware,

this was an acceptable compromise. The modulation scheme did capably accomplish

a synchronized time base and prevented collisions between nearby stations sending si-

multaneously (without any standard non-interference protocols). Unfortunately, this

non-interference came at the cost of low data rate, which (without carrier-modulated

IR) could not be offset by the use of many orthogonally multiplexed communication

channels.

5.3 Latency

This section compares latency properties of the cooperative network with that of a

packet-based multi-hop network. The latency figures given are lower bounds; when

bandwidth is scarce, one or more transmitting nodes may need to wait for the channel

to become free. Also ignored is any time required to buffer a suitably large amount

of data to create a packet (in the packet-based multi-hop case) or to create a set of

coded symbols (in the cooperative network case using COFDM).
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5.3.1 Latency in the Cooperative Network

Packet-based multi-hop routing requires that an entire packet be received, decoded,

and retransmitted in sequence (if the packet is relayed on a different channel, only

the packet header need be received before decoding begins). Using intrinsic network

topology and constructive interference, the process is much faster: the node begins

receiving, and as soon as the signal can be clearly discerned, the node stops receiving,

uses the propagation delay to decide whether it is in the routing path (see Section

3.4.2), and begins transmitting if so. The total time from signal reception to rebroad-

cast at node , (t,,i below) is only the time necessary to receive a clear signal (tx) and

compute the routing decision (tcomp). If the hardware has a large switching time from

reception to transmission (trx-tx) this may dominate the computation time tcomp-

tT,i = trx + max(teomp, trx- tx) (5.1)

It should be noted that this delay, incurred at each node along the routing path,

does not depend on the data rate or on the number of bits in a code unit (i.e. the

number of orthogonal carriers). If each node has similar hardware, we can replace

each tr,i with that of an average node. If the signal is routed over a path of 1 hops, and

travels a total distance d, the total propagation latency is the sum of the delays at each

node and the time of propagation through the communication medium (tpropagation):

tdelay = 3 tr,i + tpropagation
k=1

= * [trx + max (tcomp, trx tx)] + tpropagation (5.2)

This delay depends only on the transceiver hardware (specifically the time nec-

essary to recognize an incoming data symbol and the time necessary to switch from

receive to transmit modes), the time to compute the routing decision, and the total

propagation distance of the signal. The routing decision is computationally simple

(a few fixed point subtraction, addition, and comparison operations are sufficient),
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so tcomp should be easily minimized. The physical propagation distance is not the

straight-line distance between the two communicating nodes, but the total distance

the signal travels along the shortest path it takes from relay to relay. If the channel

allocation by the control channel leaves sufficient space between different connections

using the same frequency space (i.e. no crosstalk), the average latency should be very

close to the minimum (Equation 5.2).

5.3.2 Latency in Packet-based Multi-hop Networks

Packet-based networks must transfer data a packet at a time. The choice of packet

size is a tradeoff between latency and throughput: smaller packets move through the

network faster, but larger packets amortize the cost of packet headers over more bits,

and so achieve a greater throughput. If a network uses a fixed packet size of Sdata bits,

with a header of Sheader bits, and a communication data rate of D bits per second,

the time to receive a packet is:

=l 8 data + Sheader (5.3)packet D

The retransmission delay at each node is at least the packet reception time (assum-

ing the retransmission uses the same communication channel as the received packet,

we must wait for the channel to become free again). There is an additional compu-

tation delay as the node decides whether or not to retransmit, and how the header

should be changed (if at all). For the purpose of argument, we will assume that this

computation occurs in parallel with the reception of the packet data, and so adds no

latency. The total end-to-end latency (assuming a path length of ') is then at least:

1' ti

delay r i propagation
k=1

sdata + Sheader I (5.4)
U nlik thD ]+tp opagation (5.4)

Unlike the cooperative network latency, the packet multi-hop latency depends
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heavily on the data rate of the channel and on the packet size. Minimizing la-

tency requires either a high-bandwidth channel (even when less bandwidth would

be sufficient for the desired throughput) or a small packet size (decreasing efficiency

- see Section 5.4). If we assume, as seems reasonable, that the propagation dis-

tance for paclket-based multihop is similar to that for the cooperative network, then

t' opaation ~ tpropagation. However, the multi-hop latency depends linearly on the

size of the packet, making packet-based multi-hop typically result in much greater

end-to-end communication latency than the cooperative network.

Furthermore, the latency of packet-based multi-hop routing increases drastically

when the network approaches its capacity and packets begin to queue at intermediate

nodes. Queueing delays, in this case, depend on the non-interference protocol's opera-

tion, and are potentially unbounded. In contrast, the cooperative protocol has a hard

limit on latency, like most circuit-switched networks, and any successfully established

channel will perform within this latency bound.

5.4 Bandwidth Efficiency

This section compares the bandwidth efficiency of the cooperative system to a packet-

based multi-hop system. There are tradeoffs between the two approaches which make

them preferable for different applications.

5.4.1 Cooperative Network

The bandwidth efficiency of the cooperative network depends mainly on the maximum

allowed distance between the communicating parties. The guard period of quiescence

after the symbol time is a constant for the duration of a communication (though

it could be a variable set by the channel establishment algorithm), and should be

set high enough to prevent a delayed signal from interfering with the beginning of

the next symbol. The maximum delay on a signal depends on the distance (both

physically and in terms of hops) between sender and receiver, and so the length of
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the guard period determines the maximum possible distance that a signal can travel

over the cooperative network.

Setting the guard period (tguard) lower than the minimum propagation time be-

tween the endpoints will prevent data from reaching its destination (the routing algo-

rithm will deem the path too long). Setting the guard period too long will decrease

the bandwidth efficiency of the system. The ideal setting therefore will vary with

the size of the network, and could be different for different channels, or even dynam-

ically set (though this would require a broadcast message in the control channel to

all routers).

The bandwidth taken by each channel in an OFDM system (we ignore the coding

for the time being) depends on the switching frequency of any symbols in that chan-

nel, which is the inverse of the symbol period, tsymbol. We will consider 100% efficiency

to be the data rate achieved when symbols are sent for tsymbol and there is no delay

between symbols. This scheme would approach the Shannon limit of the communi-

cation channel. The guard period, necessary to prevent destructive interference from

delays, decreases the effective bandwidth by requiring a period of quiescence between

symbols. The bandwidth efficiency of the cooperative system, then is degraded in

proportion to the guard period:

Ebw = tsymbol (5.5)
tsymbol + tguard

This equation gives the bandwidth efficiency achieved in transporting the data across

the network, from sender to receiver. The bandwidth efficiency of the system is not

as simple as it may seem: decreasing the bandwidth of each orthogonal COFDM

channel increases symbol time, increasing the efficiency for a fixed guard period.

Radio hardware is likely to constrain the system to a minimum feasible bandwidth

per channel, placing an upper bound on the symbol time.
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5.4.2 Packet-based Multi-hop Efficiency

The maximum packetized data throughput on a channel approaches the Shannon limit

when the packet size, Sdata, is much larger than the header size, Sheader. However, this

leads to prohibitively high latencies. With smaller packet sizes, packet-based multi-

hop system throughput suffers an inefficiency at each hop:

Edata (5.6)
Sdata + Sheader

While the cooperative system transmits a bit all the way to the end receiver entirely

during a single symbol time, multi-hop routing systems retransmit each bit at each of

the hops on the routing path. Each such transmission need only have enough power

to reach the next node in the path, however, so the network capacity used relative

to cooperative routing is indeterminate. If we sum the bandwidth use over a routing

path of I hops, the bandwidth efficiency of a multi-hop routing protocol can be stated

as:

E'= * Sdata (5.7)
Sdata + Sheader

Detailed analysis of the time-bandwidth product (or the time-bandwidth-area

product), which would be a useful metric for comparison of the cooperative network

to a similar packet-based multi-hop network, is beyond the scope of this work.

5.5 Power Efficiency

A software simulator was developed to evaluate the transmission power usage of a

network with and without cooperative radio transmission. In theory, cooperative

transmission should allow some nodes to decrease their broadcast power (because the

signal will be strengthened by other nodes).

The simulator randomly populates a space with wireless nodes and randomly

chooses a sender and receiver for transmission of data. It assumes an inverse-squared

signal falloff rule and a constant Gaussian noise level across all space and across all
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Figure 5-1: Transmission power per node vs. network size for various network routing
schemes.

simulations. The simulator compares a single-hop path (direct from sender to re-

ceiver), a multi-hop path (a shortest path through the network where all edges are

weighted by the square of their length), and a cooperative rebroadcast cell. Power

expended during calculation of the shortest path or the rebroadcast cell is not in-

cluded in the simulation. An optimal multi-hop path is computed to minimize global

aggregate transmission power, and the cooperative rebroadcast cell is selected by the

algorithm given in Section 3.4.2 with a spread factor of 1.1. Figures 5-1 and 5-2 show

the resulting per-node and aggregate power scaling measured. Each data point is the

average of 100 trials.

Figure 5-1 presents the per-node power scaling of various network routing schemes.

Single-hop transmission directly from sender to receiver is the least scalable, far ex-

ceeding the other routing schemes. The most energy-efficient scheme is idealized

multi-hop relaying of packets from sender to receiver via intermediate routers, each

of which sets transmission power independently to a global optimum. Since the ide-
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schemes.

alized multi-hop power control requires global optimization, the "multi-hop, equal

power" curve is more realistic, featuring a set of relaying nodes that all operate at the

lowest transmission power necessary to achieve connectivity. The cooperative pro-

tocol, also using the same transmission power at every node, has a scaling function

looks very much like that of the multi-hop schemes, but outperforms the multi-hop

equal power scheme by a small margin. This graph demonstrates that a coopera-

tive network should feature per-node transmission power scaling similar to equivalent

multi-hop systems.

Figure 5-2 presents the aggregate transmission power use (summed over all trans-

mitting nodes) necessary to transmit data using the schemes. Again, single-hop direct

transmission is the least efficient, and ideal multi-hop (with transmission power set

independently at each node for globally minimal aggregate power use) scales the best.

Comparing the more feasible multi-hop with equal transmission power at each node

to the cooperative scheme again shows similar scaling, with the cooperative power
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consumption slightly lower.

5.6 Noise Coverage

Decreased transmission power, all else remaining the same, reduces the amount of

noise present at nodes that are not involved in the communication. Thus decreasing

transmission power at a node decreases the "noise coverage" - the area for which nodes

overhear too much noise to correctly receive another transmission. This gives a mea-

sure of the spatial efficiency of the protocol: smaller noise coverage area means fewer

nodes unable to engage in other communication, and thus greater communication

capacity of the network as a whole. The simulator results in Section 5.5 demonstrate

that transmission power of a cooperative network is similar to that of a multi-hop

network, so the noise coverage area should be similar in both cases. Detailed analysis

of this effect is left to future research.
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Chapter 6

Conclusions

This protocol demonstrates the possibility of a network with multi-hop routing im-

plemented entirely in the radio frequency domain, exploiting interference between

sending nodes instead of avoiding it. It further shows the potential benefits of break-

ing abstraction barriers that hide useful information or constrain the utilization of a

scarce resource. The proposed protocol uses propagation delay information from the

link layer to implement routing, and utilizes the broadcast nature of the radio medium

rather than relying on a simplifying, but constraining, non-interference abstraction.

6.1 Cooperative Radio

Shannon's work on information theory sets a theoretical upper bound on the informa-

tion capacity of a point-to-point communication channel, relating the communication

capacity to the channel bandwidth and noise level. The relationship between capac-

ity and the number of communicating nodes, on the other hand, is not yet known.

Cooperation among radio nodes may allow new advances in scalability of wireless

networks, with important technological, economic, and societal impact.

If linear or super-linear capacity scaling is possible, then new nodes may in fact

bring more resources to the network than they use. Currently, communication band-

width is seen as a scarce resource, and is closely guarded by governmental organi-
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zations (like the Federal Communications Commission in the US, which auctioned

off 3G cellular bandwidth for hundreds of millions of dollars). If, however, each new

node in a network does not consume net capacity, then capacity will not be a scarce

resource, and it will not need to be strictly regulated. The total cost of operating a

network will fall dramatically, allowing the growth of new uses like pervasive wireless

computing.

6.2 Breaking the Abstraction Barrier

In many ways, the division of network information transmission into a link layer

and a network layer is arbitrary, and puts artificial limits on the system. The link

layer describes how to put physical representations of bits into a transmission channel

and how to retrieve them from the signal received on the other end. The network

layer logically organizes a network such that data can be passed reliably from one

node to a specific destination, regardless of physical distance. Existing research is

overwhelmingly focused (and constrained) to fit into one of these two categories,

ignoring the potential for a systematic approach to solve both problems at once.

The concept of an abstraction barrier - a well-defined interface to a system that

prevents all other interaction with the outside world - is a standby in system engi-

neering. By reducing interactions between system components to a well-documented

and tightly-controlled interface, designers can drastically simplify analysis of the sys-

tem as a whole. Without abstraction barriers, designers must consider every possible

interaction between components, so system complexity grows in complexity as the

square of their size (if not faster). However, by constraining the interaction between

components, abstractions preclude interactions that may be beneficial to system de-

signs.

The following sections discuss two ways that breaking conventional abstraction

barriers can lead to better system design: information sharing between layers, and

avoiding abstraction constraints.
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6.2.1 Information Sharing

Abstraction barriers simplify systems by preventing components from reading or al-

tering the internal state of other components. In most cases, this is a sound principle.

However, sometimes the interfaces between components hide too much, unnecessarily

constraining the implementation of a system.

The cooperative protocol is able to implement a networking scheme very much

like Hyphos [18] but without the need for various packet header information. This is

possible primarily because the cooperative protocol allows what would conventionally

be called the physical link layer (the radio system) to share information with what

would be called the network layer.

Information hiding across abstraction barriers is a useful paradigm, but designers

should take care to ensure that the benefit of system simplification does not prevent

information sharing that would lead to a better system design. Perhaps other ad-

hoc networking schemes would benefit from the availability of physical propagation

measurements in their routing algorithms.

6.2.2 Avoiding Constraining Abstractions

In addition to hiding information, abstraction barriers can unnecessarily constrain

functionality. One oft-cited example is Internet multicast (one-to-many communica-

tion). The misguided approach is to build multicast functionality over existing unicast

protocols, sending one piece of data repeatedly to the list of many users. However,

since many of the duplicate data packets will likely traverse the same path, it is far less

expensive (in terms of network resources) to implement multicast as a special network

function. This is especially true when multicast operates on (non-switched) Ethernet

LAN, which is physically a one-to-many system. Since every station receives every

packet, unicast incurs cost to simulate a one-to-one structure (using a "to:" header

that all other nodes ignore). It is wasteful to implement a one-to-many transmission

on a one-to-many network incurring the overhead of a one-to-one abstraction.

The cooperative protocol, similarly, utilizes one-to-many communication on a one-
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to-many physical medium (an analog to Internet multicast). Most ad-hoc network

systems are built on top of non-interference protocols that incur significant cost to

prevent simultaneous reception of two signals, forming a one-to-one abstraction like

in Internet unicast. Given our concern with efficiently utilizing network resources, the

cost of such an abstraction must be considered before layering the organization of an

ad-hoc network above it. The "end-to-end argument" [20] states that "a function or

service should be carried out within a network layer only if it is needed by all clients

of that layer, and it can be completely implemented in that layer." Non-interference

medium access control may, in fact, not be needed by all ad-hoc network systems.

6.3 Future Work

This work presents evidence that local cooperation in communication networks can

lead to improvements in network scalability. Implementing more complex coopera-

tive networks and examining the limits of scalability in cooperative ad-hoc networks

remains a broad area for future research. This section suggests several potential

directions for continuing the investigation of cooperation and cooperative networks.

Perhaps the most apparent continuation of this work would be the implementa-

tion of full-featured cooperative networks and evaluation against currently existing

alternatives. For example, the implementation of a cooperative radio network using

COFDM, including the development of necessary hardware and a control channel

protocol. Ideally, a control channel would run distributed algorithms and result in an

efficient allocation of bandwidth to communicating nodes, enabling dense frequency

reuse.

Power control algorithms in a cooperative radio network is another worthy research

avenue. Such algorithms could be developed in simulation or tested on a physical

implementation of a cooperative network. Power control should include both the

regulation of transmission power (to optimize some combination of per-node power

usage and aggregate network power usage), and algorithms to control the power

consumed by a radio receiver awaiting a signal in idle mode.
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Further network services could also be implemented in a cooperative network.

Multicast routing could be developed either in an overlay network or by modifying

the rebroadcast cell membership algorithms, and may prove useful in media distribu-

tion or other information broadcasting. Differentiated quality of service may help a

cooperative network handle large volumes of traffic efficiently by prioritizing real-time

or high-bandwidth applications over less time-critical ones.

Finally, further work is necessary on the scalability limits of cooperative networks.

It is clear that they do not fall into the category of network analyzed by Gupta, and

so are not necessarily bound by the sqrtn capacity scaling rule he derives for networks

under non-interference protocols. Studies of cooperative networks should yield hints

to the limits of network scalability, and provide clues to the construction of networks

where every node creates more capacity than it consumes.
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