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Abstract

Although a number of object recognition techniques have been developed to process
LADAR scanned terrain scenes, these techniques have had limited success in target
discrimination in part due to low-resolution data and limits in available computation
power. We present a pose-independent Automatic Target Detection and Recognition
System that uses data from an airborne 3D imaging Ladar sensor. The Automatic Target
Recognition system uses geometric shape and size signatures from target models to detect
and recognize targets under heavy canopy and camouflage cover in extended terrain
scenes.

A method for data integration was developed to register multiple scene views to obtain a
more complete 3D surface signature of a target. Automatic target detection was
performed using the general approach of "3D cueing," which determines and ranks
regions of interest within a large-scale scene based on the likelihood that they contain the
respective target. Each region of interest is then passed to an ATR algorithm to accurately
identify the target from among a library of target models. Automatic target recognition
was performed using spin-image surface matching, a pose-independent algorithm that
determines correspondences between a scene and a target of interest. Given a region of
interest within a large-scale scene, the ATR algorithm either identifies the target from
among a library of 10 target models or reports a "none of the above" outcome.

The system performance was demonstrated on five measured scenes with targets both out
in the open and under heavy canopy cover, where the target occupied between 1 to 10%
of the scene by volume. The ATR section of the system was successfully demonstrated
for twelve measured data scenes with targets both out in the open and under heavy
canopy and camouflage cover. Correct target identification was also demonstrated for
targets with multiple movable parts that are in arbitrary orientations. The system achieved
a high recognition rate (over 99%) along with a low false alarm rate (less than 0.01%)

The contributions of this thesis research are: 1) 1 implemented a novel technique for
reconstructing multiple-view 3D Ladar scenes. 2) I demonstrated that spin-image-based
detection and recognition is feasible for terrain data collected in the field with a sensor
that may be used in a tactical situation and 3) I demonstrated recognition of articulated
objects, with multiple movable parts.

Immediate benefits of the presented work will be to the area of Automatic Target
Recognition of military ground vehicles, where the vehicles of interest may include
articulated components with variable position relative to the body, and come in many
possible configurations. Other application areas include human detection and recognition
for Homeland Security, and registration of large or extended terrain scenes.

Key Words: ATR, registration, detection, recognition, surface matching, 3D Ladar
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Chapter 1 Introduction

Three-dimensional Laser radar (3-D Ladar) sensors produce range images that provide

explicit 3-D information about a scene. MIT Lincoln laboratory has actively developed

the laser and detector technologies that make it possible to build three-dimensional Ladar

that can capture an entire 3-D image on single pulse at a few centimeter range resolution

[4]. The Lasers and Sensors Group at Lincoln Lab has built a functional 3-D Ladar

system with a 32x32 array of APDs operating in Geiger mode. Recent field tests using

the sensor have produced high-quality 3-D imagery of targets behind obscurants for

extremely low signal levels [4].

The target detection and recognition algorithms implemented in this thesis use field data

collected by this high-range-resolution sensor. The primary goal was to accurately detect

and recognize targets present in large terrain scenes where the target may occupy less

than 1% of the scene and have more than 200 points on target. A secondary system goal

was to demonstrate correct target identification with foliage occlusion greater than 70%.

Another goal was to demonstrate correct identification of articulated targets, with

multiple movable parts that are in arbitrary orientations. The above goals have to be met

while achieving a high recognition rate (over 99%) along with a low false alarm rate (less

than 0.01%). Furthermore, in order to provide a system that might have a significant

practical value for automatic target recognition under battlefield conditions, the

recognition runtime performance on a standard personal computer was constrained to be

less than 10 minutes.

The problem of automatic target recognition in Ladar range imagery has been an active

topic of research for a number of years [5]. Automatic Target Recognition (ATR)

involves two main tasks: target detection and target recognition [6]. The purpose of target

detection is to find regions of interest (ROI's) where a target may be located. By locating

ROI's, one is able to filter out a large amount of background clutter from the terrain

scene, making object recognition feasible for large data sets. The ROI's are then passed

to a recognition algorithm that identifies the target [6].
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Target detection methods attempt to determine the presence of a target in a large data set

by quickly filtering large portions of the scene prior to submitting the data to the

recognition algorithm. In the ATR field, detection methods that reduce a large data set to

a few regions of interest are known as "cueing" algorithms [3]. The application of a

cueing algorithm as a data-preprocessing step allows for vastly reduced target recognition

time.

Target detection approaches can be classified as image-based and model-based [7]. The

traditional image-based approach is based on template matching: the target is separated

from its surrounding area by extracting a silhouette based on a target image template [8].

However, silhouette extraction algorithms did not reliably recover the true silhouette

from real imagery, thus seriously degrading the robustness of target detection [8]. In

general, the template approach suffered from the complexity in finding the silhouette in

the image, as well as the complexity of creating the template database [7].

With significant improvement in LADAR sensor accuracy and resolution, and increased

computational power, detailed 3D structural information may be obtained from the data

and used by model-based approaches. Traditional model-based approaches rely on

boundary segmentation and planar surface extraction to describe the scene. Target

detection is then performed through the use of trained neural networks or genetic

algorithms [8] [9] [10] [11] [12]. One recent cueing algorithm that is applicable to large

Ladar data sets is known as 3-D Cueing, developed by Owen Carmichael and Martial

Hebert [3].

Given a region of interest, the recognition algorithm attempts to classify the particular

target based on a library of target models. The target models are used to represent a

unique signature that is present in the target data set. There are numerous ways to encode

the target models. For Ladar data, where the scene data consists of an unstructured point

cloud, object representation schemes fall into two categories: surface-based 3D model

representations and shape-based 2D model representations.

Surface-based 3D model schemes perform geometrical surface matching between a

library of 3D surface models and a data scene. Traditional 3D geometrical feature-
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matching algorithms segment the target into simple geometric primitives, such as planes,

and cylinders and record the relative spatial relationship of each geometric primitive in

the target model [13] [14] [15]. The scene is then segmented in the same manner, and

searched for a group of primitive objects located in a similar spatial structure as in the

target model [16][17]. Recent methods have shown that planar patch segmentation is

robust to noisy range data [18]. In addition, current 3D feature grouping schemes have

been proven to work even when the target is partially occluded [19].

An alternate approach to 3D geometric feature matching is to reduce the three-

dimensional recognition problem to a set of two-dimensional recognition problems,

where the target signature is encoded by a shape-based 2D representation. The primary

advantage of the shape-based recognition approach over 3D geometrical matching is that

it can scale well to large data sets with high levels of clutter [3] [20]. In addition, the

recognition algorithms can benefit from the tremendous amount of work done in the

relatively mature field of 2D image analysis. A couple of recent algorithms that use

shape-based representations are Shantaram et al's contour-based algorithm, Dorai et al.'s

shape spectra algorithm, Yamany et al.'s surface signatures and Andrew Johnson's spin-

image algorithm [21] [22] [23] [24].

The remainder of Chapter 1 will discuss the current available detection and recognition

algorithms. The most promising approaches for processing Ladar terrain data were

chosen as the basis of the ATR implementation. Immediate benefits of this work will be

to the area of Automatic Target Recognition of military ground vehicles, where the

vehicles of interest possess articulated components with variable position relative to the

body, and come in many possible configurations [2]. Another area of application can be

in the context of interpreting and analyzing articulated human motion.
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1.1 Background

This section will provide a background on the recent algorithmic advances in the ATR

field. The advantages and disadvantages of each approach will be discussed and a

justification will be given for using the spin-image surface matching process.

We analyzed and evaluated several shape-based methods for target recognition, namely

Contour Matching, Shape Spectra, Surface Signatures and Spin Images [21] [22] [23]

[24]. Shantaram et al's contour algorithm matches the outer and inner edge contours of a

target model to contours found in the scene range data [21]. The method is heavily

dependent on accurately capturing edge information in the data scene. From their results,

the authors acknowledge that a recognition system based on edge detection is not very

robust and cannot distinguish between very similar objects [21]. Thus, this method is not

the best match for processing our particular data set for several reasons: 1) our Ladar data

contains large occlusions due to camouflage and canopy cover, resulting in broken,

partial boundaries and 2) edge detection on some of our LADAR data sets may perform

poorly due to measurement noise.

The second algorithm considered is Dorai et al.'s shape spectra technique. The shape

spectra algorithm can recognize 3D free form surfaces by matching view-based

representations of the scene and model targets. [22] For the limited class of scenes

considered, the algorithm has proven to be successful. However, this particular algorithm

does not scale well to large data scenes with high levels of clutter [3]. Since our LADAR

data sets can include heavy clutter such as canopy cover in proximity of the target of

interest, the shape spectra algorithm would not be an effective object recognition

solution.

The next algorithm considered is Sameh Yamany et al.'s surface signature technique. The

surface signatures algorithm creates a 2D signature image for each surface point. The

signature image encodes the surface curvature as seen from this point. The task of

surface-signature object recognition is to find target to model point correspondences

based on the similarity of a target surface signature to a model surface signature [23]. The
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surface curvature is encoded by two parameters: 1) the distance from the signature point

basis to another point in the data set and 2) the angle between the surface normal at the

signature point basis and the vector connecting the point basis to another point in the data

set. The 2D representation is thus heavily dependent on correct normal orientation and

also somewhat dependent on the relative location of neighboring points. For instance, if

there are any noisy points close to the point basis of the signature, the signature will have

a wide distribution of vertex to normal angles, which will be mapped to very different

locations in the given 2D space. The representation's sensitivity to noisy points and

normals may degrade the matching of target signatures to model signatures. In addition,

the author mentions that target scale issues have to be resolved at the recognition stage of

the algorithm [23].

The fourth algorithm considered was Andrew Johnson et al.'s spin-image method.

Similar to surface signatures, spin-images capture a 2D representation of the object from

an individual point basis. The task of spin-image object recognition is to find good point

correspondences between the scene data set and the model data set by finding similar

target and model spin-images. Given an oriented point (a 3D point with a surface normal)

the data set is reduced to the following 2D parameter space: 1) the perpendicular distance

to the line through the surface normal and 2) the signed perpendicular distance to the

tangent plane defined by the oriented point normal and position [24]. Similar to the

surface signature approach, the spin-image representation is somewhat dependent on the

point surface normal. However, an important advantage of the spin-image over the

surface-signature approach is that small changes in the relative point location do not have

a significant effect on the spin-image, since a noisy surface point measurement will be

mapped close to the 2D spin-image coordinates of an ideal point that contains no noise.

Therefore, the spin-image representation should be much more robust to measurement

noise [24]. Furthermore, spin-images can easily address clutter problems. Since the 2D

parameters of a spin-image are distance-based, spin-images can be analyzed on a local to

global scale. [24] For highly cluttered data scenes, spin-images can be compared within a

smaller distance to the point basis, reducing the spin-image to a local representation of

the object [25]. Aside from the better 2D representation of spin-images as compared to

surface signatures, a significant amount of work has been done in spin-image recognition
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that demonstrates the overall robustness of the spin-image representation over the

previous methods [24] [25] [26] [27].

Two model-based algorithms were considered for target detection, namely a traditional

geometric feature-based algorithm and Owen Carmichael et al's 3-D Cueing algorithm.

The geometric feature based method uses planar extraction to separate possible targets

from the background terrain. However, as mentioned in [20], the geometric feature-

based method is not very robust to occlusion or clutter. Thus, the algorithm is not well

suited for recognition of targets that are surrounded by a relatively high amount ground

clutter and are underneath heavy canopy and camouflage cover.

The alternate approach is 3-D Cueing, which compares model signatures to scene

signatures through a classifier that assigns weights to points, based on their likelihood

that they are part of the target model. Points with a probability lower than a certain

threshold are then filtered out. Results show that this method is reliable for terrain scenes

where the object of interest covers between 5% and 50% of the scene [3]. In addition, for

extremely cluttered scenes, the algorithm increases point-on-target selection by a factor

of 2 to 7 relative to the remaining clutter points. The primary advantage of implementing

the 3-D Cueing algorithm over alternative algorithms is that it is based on the same

model representation scheme as Andrew Johnson's spin-image recognition method. The

model representation overlap makes 3-D Cueing very attractive and economical to

implement for our purposes.

1.2 Thesis Overview

From among the presented detection and recognition techniques, we believe that the spin-

image based detection and recognition algorithms are the most promising for processing

3D Ladar terrain data. So far, the spin-image recognition method has been applied to a

limited class of objects with simple geometries, such as rubber ducks, bunnies, toy robots

and various pipe fixtures [25]. In addition, the processed scene data had high range

resolution, and low sensor noise. The purpose of this thesis is to improve on the spin-

image method for the detection and recognition of complex articulated objects in large
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terrain scenes, described by data with relatively low range resolution. The goal was to

build an ATR system with a higher recognition rate (over 99%) along with a lower false

alarm rate (less than 0.01%) as compared to current ATR systems [28] [29]. The rest of

this paper is divided into three main areas: data preprocessing, target recognition and

target detection.

Before proceeding into a description of the preprocessing, recognition and detection

algorithms, an overview of spin-image surface matching is presented in Chapter 2. The

overview is meant to provide a context for understanding the development of algorithms

to follow.

1.2.1 Data Preprocessing

The raw data produced by the MIT Lincoln Laboratory Ladar sensor are several tri-

dimensional angle-angle-range images. The target detection and recognition methods are

not tuned to process this raw angle-angle-range data, but rather need a surface

representation of the data. [24]. One convenient surface representation of the scene data

is a 3D oriented data set, composed of 3D points along with their associated surface

normal direction. The following processing steps were taken to obtain a 3D oriented data

set from the raw angle-angle-range data:

1. Coordinate transformation from angle-angle-range to xyz

2. Data Filtering (Range Coincidence Processing)

3. Data Registration of the multiple-view xyz data frames

4. Surface Reconstruction of the registered xyz data

The scene pre-processing algorithms and results are discussed in Chapter 3 of this thesis.

In addition to converting the scene data to the spin-image representation, we also need a

process to convert target CAD models into oriented 3D point data sets. We implemented

a modeling procedure to generate high-resolution oriented 3D point-data sets from CAD

models. To reduce online recognition time, spin-image libraries were generated offline

from the 3D oriented data sets of the target models. Based on a visual analysis of clutter

and occlusion in our particular measurement scenes, an optimal set of spin-image
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generation parameters is selected in order to maximize recognition performance while

meeting our recognition run-time goals. Chapter 4 describes the implemented object

modeling procedure, presents the resulting spin-image model libraries and discusses the

selection of the optimal spin-image generation parameters for target detection and

recognition.

1.2.2 Target Recognition

Chapter 5 describes the automatic target recognition algorithm that we implemented. The

implementation relies on an augmented version of the spin-image surface matching

process described in Chapter 2. Target recognition is demonstrated for twelve measured

data scenes with targets both out in the open and under heavy canopy and camouflage

cover. Correct target identification is demonstrated for targets with multiple movable

parts that are in arbitrary orientations. Recognition quality and time performance results

are presented and discussed.

1.2.3 Target Detection

Chapter 6 describes the implemented 3D Cueing target detection process combined with

the target recognition process described in Chapter 5. The entire Automatic Target

Detection and Recognition system is demonstrated on five measured scenes with targets

both out in the open and under heavy canopy cover, where the target occupied between 1

to 10% of the scene by volume. Target detection and recognition results are presented

and discussed.

A summary of the significance of the results obtained and directions for future work is

presented in the Chapter 7 (Conclusion).
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Chapter 2: Overview of Spin-Image Surface Matching

2.1 A Pose-Independent Representation of Surface Shape

In the spin-image based representation, surface shape is described by a collection of

oriented points, 3-D points with associated surface normals. In addition, each 3D

oriented point has an associated image that captures the global properties of the surface in

an object-centered local coordinate system [24, pg.3]. By matching images,

correspondences between surface points can be determined, which results in surface

matching. Figure 2-1 depicts the surface-matching concept.

Scene Similar Model
SISp-Images?

J

Yes

Figure 2-1: Spin-image Surface-Matching Concept
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The image associated with each 3D oriented point is known as a spin-image. A spin-

image is created by constructing a local basis at an oriented point. Using this local

coordinate system, the position of all the other points on the surface can be encoded by

two parameters. By mapping many of the surface points to this 2D parameter space, a

spin-image is created at each oriented point. Since a spin-image encodes the coordinates

of the surface points with respect to a local coordinate basis, it is invariant to rigid 3D

transformations. Given that a 3D point can now be described by a corresponding image,

we can apply robust 2D template matching and pattern classification to solve the problem

of surface matching and 3D object recognition. [24]

2.2 Spin-Image Generation

The fundamental component for creating a spin-image is the associated 3D oriented

point. As shown in Figure 2-1, an oriented point defines a 5-degree of freedom basis,

using the tangent plane P though point p, oriented perpendicularly to normal N.

x

N

'N~P@

PP

Figure 2-2: An oriented point basis created for a 3D point p.

Two coordinates can be calculated given an oriented point: a the perpendicular distance

to the surface normal N and p, the signed perpendicular distance to the plane P. [24]

Given an oriented point basis 0, we can define a Spin-Map function that projects 3D

points x to the 2D coordinates of a particular basis (p,n) as following:

So: R3 -> R 2

So(x) -> (a,l) = V1x-p|12 _( . ( _ P)2 n.(_-p)-

Applying the function So(x) to all the oriented points in the 3D point cloud will result in

a set of 2D points in c--p space. To reduce the effect of local variations in 3D point
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positions, the set of 2D points is gridded to a 2D array representation. The procedure to

create a 2D array representation of a spin-image is described visually in Figure 2-3. To

account for noise in the data, the contribution of a point is bilinearly interpolated to the

four surrounding bins in the 2D array. By spreading the contribution of a point in the 2D

array, bilinear interpolation helps to further reduce the effect of variations in 3D point

position on the 2D array. This 2D array is considered to be the fully processed spin-

image.

2D Points Binned 2D points Spin Image
10-

2 -5
0

3

22
2 - 10

0 410-.3 -2 20
-6 -20_

0 5 0 10 20 5 10 15 20 25

a) b) c) d)
Figure 2-3: 2D Array representation of a spin-image using bilinear interpolation. a)
Measurements of an M60 tank. Red dot indicates the location of the 3D point used to create
the example spin-image. b) Resulting mapping of the scene points in the a-0 Spin-Map of
the chosen point, c) Spin-Image showing the non-zero bins after applying bilinear
interpolation, d) Spin-Image showing the bin-values on a gray color scale. The darker bins
indicate that a larger number of points were accumulated to those particular bins.

There are three parameters that control spin-image generation, namely bin size, image

width and support angle. The bin size parameter determines the averaging in spin images

that occurs during the process of binning the 2D spin-mapped points to the 2D array

representation. According to A. Johnson, the bin size is set to a multiple of the data

resolution; the acceptable range is between one to two times the data resolution. In this

bin size range, the 2D bilinearly interpolated array adequately blurs the position of

individual points while still maintaining a good description of the global surface shape.

Figure 2-4 shows spin-images generated for a BMP Armored Personnel Carrier (APC)

model using different bin sizes.
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BMP- 1 CAD model lx Data Resolution 2x Data Resolution 4x Data Resolution

a) b) c) d)

Figure 2-4: The effect of bin-size on spin-images. a) Height color-coded BMIP CAD model.
The black line corresponds to the normal of a 3D point. b) Three spin images created from

that particular oriented point basis, with increasing bin-size.

The second parameter is the image width. When binning the 2D a- points to the 2D

array representation, the resulting spin-image can have any number of row or columns.

For simplicity, a spin image is reduced to an equal number of rows and columns. This

results in a square spin-image whose size is defined by one parameter, image width.

Image width times the bin-size is defined as the spin-image support distance Ds. The

support distance defines the dimensions of the space that can contribute points to a spin-

image. By controlling the support distance, the amount of global surface information can

be controlled [24, pg 25]. For the results presented in this thesis, the image width is set

between 5 and 10, resulting in spin-images with 25 to 100 bins.

40 pixel Image wIdth

20 pixel Image WIdth

10 pixel Image width

Figure 2-5: The effect of image width on spin-images. An increase in image width results in

a proportional increase in support distance. Varying the image width allows spin-images to

vary smoothly from local to global representations.

The third spin-image generation parameter is the support angle (As). The support angle is

defined by A. Johnson as "the maximum angle between the direction of the oriented point

basis of a spin image and the surface normal of points that are allowed to contribute to

the spin-image." [24, pg 27] Let's say we have an oriented point A with position and
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normal (PA, nA) and an second oriented point B with position and normal (PB, PB). Then,

B will be included in the spin-image of A if

a cos(na nb )< As (2.2)

This parameter is useful in limiting the effect of object self-occlusion and nearby clutter

during spin-image matching. Figure 2-6 shows the spin-images generated for three

support angles for an oriented-point on a BMZP- 1 model.

BMP- 1 CAD model 1800 support angle 900 support angle 60' support angle

a) b)
Figure 2-6: The effect of support angle on spin-images. a) Height color-coded BMIP CAD
model. The black line corresponds to the normal of a 3D point. b) Three spin images
created from that particular oriented point basis, with decreasing angle of support.

2.3 3D Surface Matching

The implemented surface-matching algorithm closely follows the procedure described in

Chapter 3 of A. Johnson PhD thesis. Given a scene and model data set, the sampling

density of both data sets is first reduced to the same resolution by 3D voxel sub-sampling.

The 3D voxel sub-sampling process has a similar effect as A Johnson's procedure for

adjusting mesh-resolution. Normals are calculated based on the sub-sampled data set

along with the rough 3D Ladar sensor position. (See Section 3.2.3.)

For each sub-sampled data set, a spin image stack is created. Each spin image in the

scene data set is correlated to all the model spin-images, resulting in a distribution of

similarity measure values. The correspondences obtained for each scene spin-image to

model spin-image stack comparison are filtered using a statistical data based similarity

measure threshold. The above process is repeated for the rest of the scene spin-images,

resulting in a wide distribution of similarity measures.
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Given the new distribution of similarity measures, a second similarity threshold is applied

to remove unlikely correspondences. The remaining correspondences are further filtered

and then grouped by geometric consistency in order to compute plausible transformations

that align the scene to the model data set. The initial scene to model alignment is refined

using a modified version of the Iterative Closest Point algorithm (ICP) in order to obtain

a more definite match. Figure 2-7 below shows a detailed block diagram of the surface

matching process.

Create Model Model
Model Da Spin Images spin-image

stack
I_____Match model

Select point / Scene spin-images
Data Create scene spin-image to scene

spin-image spin-Image

Correspondences

Verify + Reftnez
Transformations " TrnfmsFilter + Group Corr espondences

using ICP Compute Plausible Transformations

Correct Model-Scene object matches

Figure 2-7: Surface Matching Block Diagram

This particular surface-matching process is versatile since no assumptions are made about

the shape of the objects represented. Thus, arbitrarily shaped surfaces can be matched,

without the need for initial transformations. This is particularly critical for our target

recognition problem where the target's position and pose is unknown. Furthermore, by

matching multiple points between scene and model surfaces, the algorithm can eliminate

incorrect matches due to clutter and occlusion. In the following sub-sections, we will

explain in more detail the surface-matching process.
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2.3.1 Spin-Image Matching

Suppose that we have a scene containing an instance of an object for which we have a

complete object model. Furthermore, assume that the object in the scene has an unknown

pose orientation. Since spin-images are pose-independent, given spin-images from

surface of measured object in the scene, we expect to have model spin-images that are

similar. By directly comparing scene to model spin-images, we should be able to find

point correspondences between points on the surface of the scene object and points on

surface of the complete object model.

Since spin-images from an instance of a model object will not be the same as the spin-

images obtained from the measured object in the scene, we need to have a method to

compare two spin-images. We expect that two spin-images created from proximal points

on the surface of the model and scene instance of the object to be linearly related because

the distribution of points falling in a corresponding bins will be similar (given that the

model and scene data sets were sampled at the same resolution). A standard technique for

comparing linearly related images is normalized correlation. Given two spin images P

and Q with N bins each, the normalized correlation value R(P,Q) is

R(PQ) = N pi qi -Ip q 2 (2.3)
N( Ipi'- (I pi)2) )(N( q' - (Y q;2

R ranges between -l(anti-correlated) and +1 (completely correlated). The function R

provides a method to compare two spin-images: if R is high, then images are similar,

while when R is low, the images are not similar.

An optimization is added to the computation of the normalized correlation that attempts

to mitigate the effects of clutter and occlusion on a particular scene spin-image. The

optimization is that N is defined as the number of bins for which both spin-images have

data. Thus, only bins with data in both spin-images are considered in calculating the

correlation coefficient. Preventing non-zero spin-image bins in the scene spin-image from

matching zero-valued model spin-image bins mitigates the effects of clutter. That is,

considering the generation of a spin-image, scene bins where the model indicates no data
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should exist are likely to be due to clutter and should not be considered. Conversely,

preventing non-zero bins in the model spin-image from matching zero-valued scene spin-

image bins mitigates the effects of occlusion. Again, based on spin-image generation, we

can deduce that non-zero model bins that have corresponding scene bins with no data are

likely due to an occlusion of the object surface in the scene. A. Johnson et al. clutter

analysis results confirm the validity of this optimization.

As defined, the normalized correlation value does not take into account that a spin-image

comparison with high bin overlap should have a higher confidence in the correlation

result than a spin-image comparison with a low bin overlap. Since two spin-images with

more overlap should be given a higher correlation value, a confidence measure is

incorporated into the final spin-image similarity measure. One way to measure

confidence in the correlation coefficient is to determine its variance. Thus the similarity

measure incorporates the normalized correlation value along with its variance, and is

implemented as follows:

1
C(P, Q)= (a tan (R(P, Q))) 2 -( 1 (2.4)

N-3

The similarity measure will return a high value for two images that are highly correlated

and also have a large number of overlapping bins. The X is a constant that is derived from

the model spin-image stack bin occupancy. X represents the expected overlap between

spin-images. To determine X, the bin-occupancy for each model spin-image is first

computed. The bin-occupancy is the number of bins in a spin-image that have non-zero

weight values. The median bin-occupancy value is found and X is set to V of that

particular value.

2.3.2 Correspondence Filtering

For each selected scene point, a spin-image is created. The scene spin-image is then

correlated to all the model spin-images, resulting in a distribution of correlation values

that has a single mode corresponding to incorrect spin-image matches [24]. The highest

outliers in the distribution represent correct spin-image matches. For single-mode
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distributions, a standard way to determine statistical outliers is to compute the fourth

spread of the histogram (fs = upper fourth - lower fourth = median of largest N/2

measurements - median of smallest N/2 measurements). Statistical extreme outliers are

defined as 3 fs units above the upper fourth. These statically extreme outliers are picked

out of the correlation-value distribution and marked as valid correspondences.

The above correlation process is repeated for a sampling of all scene data points. The

sampling ranges from 20% to 50% of all scene data points. Scene data points are not

judiciously selected: the sample points are uniformly distributed across the given scene.

Therefore, no feature extraction was performed to pick certain points. Given all the found

correspondences, several filtering methods were performed to remove unlikely

correspondences.

The first filtering step uses similarity measure to remove unlikely correspondences. A

similarity measure threshold is applied to the new distribution of correspondence

similarity measures. The similarity threshold is defined as a fraction from the maximum

similarity measure value. The fraction was set to 0.4. In addition, in order to prevent

combinatorial explosion for large scene data sets, a maximum of 4000 correspondences

were kept after the fraction-of-max threshold was applied. Thus, if more than 4000

correspondences are above the fraction-of-max threshold, the similarity measure values

would be used to select the highest 4000 correspondences. By setting the threshold to a

fraction-of-max, we are certain to threshold out any similarity measures that are smaller

than 0, which represents an uncorrelated result. This threshold is reasonable since we are

not interested in correspondences that range from anti-correlated to uncorrelated. Thus,

this filtering step has the potential to filter out all the correspondences. Given such an

event, the surface matching process is terminated with an indication that no match was

found.

The second filtering step uses geometric consistency to remove unlikely

correspondences. Geometric consistency estimates the probability that a set of two

correspondences can used to calculate a good transformation in order to align the model

to the scene [24]. The geometric consistency of a set of two correspondences is measured
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in the spin-image space of the corresponding points. The geometric consistency for

correspondence Ci=[si,mi] to C2=[s 2 ,m2] is

d'CC~ Sm2 (m)- (Ss2 (si)|
dg (Cl , C2) = m M (, S

'I(IS2 i) + (Ss2 (s) )/2 (2.5)

Dc = max(dgc (Ci, C 2 ), dgc (C 2 , C1))

Dgc measures the distance between correspondences in spin-image coordinates,

normalized by the average vector length of the spin-image coordinates, in order to

prevent a preference towards correspondences that are near each other. Because dgc is not

symmetric, the maximum of dgc (C1 , C2 ) and dgc(C 2 , C1) is used to define Dgc, the

geometric consistency distance: as a result, if points are geometrically consistent, Dgc will

be small.

Given as set of correspondences that has been filtered by similarity measure to a list L of

correspondences, we follow A. Johnson's procedure to determine if a correspondence C1

is geometrically consistent. First, a threshold Tgc is set such that if Dgc(Ci, C2) < Tgc, then

C1 is geometrically consistent to C2. According to A. Johnson, for high geometric

consistency, the optimal Tgc is set to 0.25. For each C1 in L, Dgc(Ci, C2) is computed for

all the other C2 in L. If more than a quarter of the number of correspondences in L are

geometrically consistent to C1, then C1 is considered geometrically consistent. The above

steps are applied to the rest of the correspondences in L. Only geometrically consistent

points are kept. In our tests, the number of correspondences left is between 20 to 800

correspondences. Similar to the similarity measure threshold, the geometric consistency

threshold has the ability to filter out all the correspondences, resulting in the return of a

no-match. Next, the filtered correspondences are grouped into sets that can be used to

compute model to scene transformations.
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2.3.3 Pose Estimation and Verification

The remaining correspondences are grouped based on the criterion Wgc, which is similar

to Dgc, with an added weight that encourages grouping of correspondences that are far

apart.

S CC2 dgc (Ci, C 2)
Wge 1 -1 -_ i(Is,2(m1)l+ (S 2 (si)j)/(2r)]

(2.6)

Wc =max(wgc (C1, C2), Wgc (C 2 ,C 1))

The value of Wgc will be small when two correspondences are geometrically consistent

and also far apart. The grouping equation is based on geometrical consistency because

geometrically inconsistent points will produce highly erroneous transformations. In

addition, the grouping equation picks points that are spread further apart from each other

since points that are close together generate transformations that are vulnerable to noise

in point position [30]. The constant y is a scale-independent normalization weight that

promotes the grouping of points that are far apart. The value of y is set to four times the

data resolution in order to prevent correspondences that are closer than 4 times the data

resolution from being grouped together.

Given the previous list L, grouping for each correspondence in the list is performed as

follows:

1. Select a seed correspondence Ci in L and create a group Gi={Ci}

2. Find a correspondence Cj that has the minimum Wgc(Cj,Gi) value.

3. If the Wgc(Cj, Gi) < Tgc, then add Cj to the the group. Tgc is set to 0.25.

4. Repeat steps 2 and 3 for all the remaining correspondences.

After applying the grouping algorithm, we will have groups that have anywhere from one

to about twenty correspondences. Groups with less than three correspondences are

considered weak groups and are thrown out. From each remaining group, a rigid

transformation T from model to scene is calculated by minimizing the least-squares error

[31]:
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ET =1 1 si-T(m) 2 (2.7)

Given these groups and associated pose transformations, we can now verify the pose

transformations in order to eliminate any inconsistent matches between the scene and the

model data. In practice, the number of groups ranges from 50 to 250. Since it would take

a long time to fully verify each correspondence group, we do an initial verification for

each group in order to find the most plausible pose transformations. If any plausible pose

verifications are found, a certain number of transforms that are the most promising are

then fully verified.

The verification algorithm is based on a modified version of the Iterative Closest Point

(ICP) algorithm, which can handle partially overlapping surfaces. [32, 33, 34]. The ICP

algorithm iteratively determines a transformation between a scene and a model by

creating point-pair correspondences, applying the newly found transform to all the model

points and then repeating the process. Figure 2-8 shows a block diagram of a generic

version of ICP.

Two data sets & Find closest points

< Initial transformation Create pair correspondence

Calculate transformation

Apply Transformation

DONE YChange in mean squared
distance < threshold

Figure 2-8: Block Diagram of Generic ICP

One of the drawbacks of ICP is that it converges to a local minimum in pose-distance

space. Therefore, the initial position of the two data sets is crucial: while the algorithm

works well for small transformations, the performance can degrade for arbitrarily large

transformations. Another problem with the generic form of ICP is that it assumes that one
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data set is a subset of the other, with complete overlap to the larger data set. In practice,

our scene is not a subset of the model, since it might include clutter and noise that is not

present in the model. Our verification algorithm is based on a modified ICP that can

handle partially overlapping surfaces. In addition, the modified ICP algorithm also takes

as input an arbitrary transformation based on the initial spin-generated pose

transformation that roughly aligns the scene and model. By applying the spin-image

generated transformation, only a small transformation error remains that needs to be

corrected by ICP.

Since the two data sets partially overlap, a method is needed to limit the creation of point

correspondences only to those areas in the two data sets that overlap. Our verification

algorithm does this by creating 3D search voxels centered at each model point. The

Voxel size is set to 2 times the data resolution. The resulting voxel is searched for scene

points. If no scene points are found, then that particular model point is considered not to

overlap with the scene. If one or more scene points are found, the closest scene point to

the respective model point is picked to create a point correspondence.

The closest point distance between a scene and a model point is defined by the 3D

position and surface normal. Given two oriented points (sp, sn) and (mp, mn), the closest

point distance is defined as

D=V| s, -m, |+w | Isn -m | (2.8)

,where wn is the weight of normals as compared to surface position. Wn is set to one

times the scene resolution. To improve the speed for the closest point search, a six-

dimensional k-D tree is created for the model data set. Using the model data set k-D tree,

scene points from overlapping surfaces can be found efficiently. [34]

Each spin-image generated pose transformation is initially verified by running one

iteration of ICP. If the spin-image pose transformation correctly aligns the model to the

scene, then ICP should report a high overlap and low mean-squared error (MSE) after

one iteration. A pose transformation is considered plausible if the transformed model has

more than 10% overlap with the given scene. Given a plausible pose transformation, the
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quality of the pose transformation is determined based on a goodness of fit value defined

as follows:

GOF 02 (2.9)
MSE

6 is the fraction of overlap between the scene and the model. 0 is defined as:

O=s (2.10)
M

where S is the number of scene to model correspondences found and M is the number of

model points. A higher GOF indicates a higher fraction of overlap and/or smaller MSE,

thus an increased likelihood that the pose transformation correctly aligns the model to the

scene. The above verification process is applied to all the spin-image pose

transformations. Based on the GOF value, the best 25 pose transformations are picked

for full verification.

Similar to the initial verification, the full verification process takes a plausible pose

transformation and runs the ICP algorithm in order to refine the pose transformation. For

full verification, ICP is run for a maximum of 50 iterations. Based on observations, this

number of iterations should be sufficient to correctly align plausible pose transformations

to within less than 10, given a pose error of at most 30-450 in roll/yaw/pitch. A GOF

verification value is computed for each pose transformation. The Verification GOF

(VGOF) is defined as:

(0 2*-N ,)
GOF = MSE (2.11)

where N, is the number of plausible pose transformations found. The number of pose

transformations is included in the VGOF value because a higher number of pose

transformations indicates a higher level of confidence that the model matches the scene.
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2.4 Discussion and Summary

The spin-image representation is useful for several reasons:

1. Pose Invariance allows one to uniquely describe an instance of that object

regardless of its pose. This feature of spin-images allows the creation of a

compact representation that breaks the problem of 3D recognition into a set of

2D recognition problems.

2. Has minimal requirements on surface shape.

3. Can smoothly scale from a local to a global representation through the

adjustment of image width.

4. Is robust to clutter and occlusion through the use of support angle and the 2D

normalized correlation on only non-zero spin-image bins.

The spin-image representation is well tailored to our particular target recognition

problem. The task of our particular sensor is to identify targets under heavy camouflage

and canopy cover. Therefore, the resulting data sets will have a lot of scene clutter around

the target and relatively large levels of target occlusion. The spin-image representation

can readily handle both target occlusion and clutter by controlling the respective spin-

image parameters, namely support angle and image width.

Aside from the benefits of the spin-image representation, the spin-image matching

process attempts to discriminate and correctly address most, if not all of the typical

matching scenarios, namely:

1. The scene does not contain a target object

2. The scene contains an unknown target object

3. The scene contains a known target object

4. The scene contains multiple known/unknown target objects

One important scenario is Case 1, where the correct answer is "none of the above." Case

1 from above is addressed in several ways by the surface-matching process (see Figure 2-

7 for an overview of the process of surface matching):
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1. One possibility for correctly returning a "no-match" result is that the

similarity measure filter will find completely uncorrelated results. As a result,

no correspondences will be left and a "no match" will declared.

2. If some correspondences do pass the similarity measure filter, the geometric

consistency filter is very likely to return a "no-match" result because, as a

group, the scene clutter correspondences are extremely unlikely to have the

same relative geometric positions as the points on the currently-tested model

object.

3. If by chance some of correspondences pass the geometric consistency filter,

the need to create a self-consistent correspondence group will place further

constraint on the remaining correspondences. If groups of less than 3

correspondences are created, then a "no-match" is again returned.

4. A further constraint is placed by the selection of plausible transformations. If

no plausible transformations are found, a "no match" is again returned.

5. If the above constraints are passed, we will get a match. However, the match

is bound to have a low GOF value, indicating a low likelihood of a correct

match. At this stage, we might still be able to rectify an otherwise incorrect

result by setting an arbitrary threshold on the GOF value to prevent false

matches.

A Case 2 scenario, where the scene contains an unknown target object, is handled

similarly to Case 1. However, depending on the similarity of the object to a known target

object, it is possible that the unknown target might be considered a match based on its

higher-level features; thus, if the unknown object is the BMP-1 Armored Personnel

Carrier (APC), it might match the similarly shaped APC, the BMP-2 (see Figure 4-1 for

images of the two targets). While some purists might argue that a BMP-2 model

matching a BMP-1 scene target should be considered a incorrect match, it is actually very

useful to classify objects based on their general features because we can greatly reduce

both the recognition time and the size the object model library. Furthermore, if the

surface matching process relies on the general surface features of a target, then the

matching algorithm will probably be more resistant to measurement noise and any

relatively small changes in the configuration of the target. (i.e. the mounting of a machine
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gun on top of the target's roof, the placement of extra fuel barrels on a tank). Being able

to correctly classify targets based on the general target shape is especially important for

the recognition of military ground vehicles, where the vehicles of interest come in many

possible configurations.

For Case 3, where a known target object is in the scene, we expect to obtain a match that

correctly brings into alignment the scene target with the model object. Given ideal targets

with no noise, clutter or occlusion, the surface-matching algorithm is almost certain to

recognize the target and find the correct pose. However, correct recognition gets

progressively harder with an increase in the amount of scene noise, scene clutter and

target occlusion. Since we expect that most of our recognition scenes will have some

measurement noise along with relatively high levels of nearby clutter (i.e. clutter within 1

meter proximity to the target representing up to 50% of the data set) and occlusion of up

to 70%, we need a recognition algorithm that can handle these particular issues. The

effects of scene noise, clutter and occlusion are addressed in several ways at each step of

the spin-image surface matching process:

1. In its essence, scene noise affects the relative 3D position of a point relative to

the position of the rest of the scene points. In our spin-image representation,

the uncertainty in the 3D position of a point translates to uncertainty in the

cc-@ spin-map projection. The uncertainty in cc-p position is addressed by

bilinearly interpolating the cc-p 2D points to a 2D array. The 2D bilinearly

interpolated array adequately blurs the position of individual points while still

maintaining a good description of the global surface shape. Thus, the resulting

spin-image will not be sensitive to small changes in the 3D position of a point.

2. The problems of clutter and occlusion are mitigated when computing the

similarity measure by allowing only bins with data in both the model spin

image and the scene spin-image to be considered in calculating the correlation

coefficient. Furthermore, the similarity measure threshold uses a data-based

threshold, which will allow correct correspondences to pass regardless of the

number of correspondence found, a figure that might depend on the amount of
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occlusion or lack of it in the scene. Thus the similarity measure filter should

not be greatly affected by the presence of clutter or occlusion.

3. The geometric consistency filter again is based on a threshold that is relative

to the current data set (i.e. 25% of found correspondences must be

geometrically consistent with the current correspondence in order for the

particular correspondence to pass the filter). By using a relative threshold,

geometric consistency will not be affected by occlusion, which directly affects

the number of points on the target surface, and therefore the number of

possible correspondences to be found on the target surface.

4. The computation of plausible transformations places constraints that are

minimally affected by occlusion and clutter. The constraints imposed to

determine a plausible transform are that we have at least three

correspondences and at least 10% coverage of the target. In order to solve a

3D absolute orientation problem, we need at least three correspondences,

hence the first requirement on the number of correspondences. The second

requirement on target coverage is a relatively weak constraint needed to

prevent false alarms. Given that the scene object is no more than 90%

occluded, it is theoretically possible to find a plausible transformation that

correctly aligns the surface of the scene target measurement to the surface of

the model object.

The last case is a scene that contains multiple known/unknown target objects. This case

can be trivially handled by the spin-image representation, which can smoothly scale from

a local to a global representation through the adjustment of image width. By adjusting the

image width parameter, the spin-images from one particular target will be unaffected by

the presence of nearby targets or clutter. The end-result is that each target in the scene

will be just as likely to match a known object, regardless of presence of nearby targets or

clutter. Thus, the problem can be broken down into several independent "Case 2" and

"Case 3" scenarios and handled appropriately as described above.

In summary, the spin-image representation and spin-image matching algorithm has the

potential to be widely applicable to problems in 3D computer vision. In the next chapter,
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we discuss data acquisition and pre-processing methods needed to reconstruct a scene

given measurements from multiple viewing directions. The reconstructed scene can then

be converted into the spin-image representation in order to perform surface matching.

Further algorithmic augmentations to the current spin-image matching process lead to the

development of an Automatic Detection and Recognition system described in Chapter 5

and Chapter 6.
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Chapter 3: Acquisition and Preprocessing of Pulsed 3D

Ladar Imagery

3.1 Data Acquisition

The data was acquired with the JIGSAW sensor, which is an airborne platform designed

to augment an UAV with 3D Ladar capabilities. Given a target cue from a large area

ground search, the JIGSAW sensor flies over the designated location while constantly

adjusting its pointing optics to track the respective ground region. Multiple perspectives

of the region are taken in order to better reconstruct the scene and alleviate obscuration

due to canopy and camouflage cover. Figure 3-1 graphically shows the JIGSAW concept

along with the JIGSAW system goals.

Figure 3-1: JIGSAW data acquisition concept and system goals.

3.1.1 JIGSAW 3D-Lidar Sensor

Figure 3-2 shows the ladar sensor concept. Light from a pulse laser is diverged to

illuminate the scene of interest. The light reflected from the scene is detected onto a two-
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dimensional array of detectors. The detectors measure the relative time of arrival of the

reflected light, rather then measuring intensity. The time of arrival is linearly dependent

on the range from the detector array to the measured scene. Thus, the time of arrival data

from each detector pixel can be used to produce an angle-angle-range, or tri-dimensional

image from each laser pulse. This kind of ladar sensor can be used to penetrate foliage

and identify obscured targets [35].

Short-pulse, high rep rate
pulsed laser illuminates target Pulsed

Target ~Laser

\ Clock set by outgoing
laser pulse

-) Array of avalanche photodiodes
provides time of arrival information

Receiver on 32 x 32 array matrix
Optics Pixels coded with range

(not brightness)
3-D Image

Figure 3-2: Basic Concept of tri-dimensional (angle-angle-range) laser radar.

3.1.2 Data Collection

To demonstrate the utility and concept of this type of 3D Ladar, Lincoln Laboratory has

constructed the JIGSAW ladar system using a 16khz micro-chip laser with 300ps pulse width

operating at 532 nm, a 32x32 array of Geiger-mode APDs integrated with CMOS timing circuitry

providing a 2GHz effective sampling rate, and the optics and mounting to allow the entire scene

to be scanned, building up high-resolution images with several hundred pixels in each angular

direction. The current JIGSAW system can be mounted in a helicopter to collect data from a 150-

450 meter altitude above a target of interest.
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3.2 Data Processing

The raw angle-angle-range data obtained from our ladar sensor is subjected to several

processing steps. The following processing steps were implemented to obtain a

measurement of the target that can be visualized in the spin-image representation and

identified using spin-image matching:

" Coordinate transformation from angle-angle-range to xyz

" Data Filtering (Range Coincidence Processing)

" Data Registration

" Surface Reconstruction

Coordinate transformation from sensor angle-angle-range space to world xyz space is

performed using an APPLANIX 3.0 GPS/INS system. The INS sub-system records yaw,

roll and pitch in order to determine the platform orientation and orientation rate of

change. The GPS sub-system records the current platform position, in order to account

for the translation of the sensor.

-l=I14 W= Earth-Fixed (xyz) coordinates
Z *= INS translation from reference point 0

_, M -I'= Measurement vector from sensor

x

Figure 3-3: Coordinate transformation from sensor-angle-angle coordinates to Earth-Fixed
coordinates. M represents the raw range coordinates, L represents the INS translation
vector and D represents the resulting Earth-Fixed xyz coordinates.

3.2.1 MPRCP Algorithm

The raw sensor data are now in the Earth-Fixed coordinates. Typically, these raw data

have a large amount of noise, most of which is present in the original range direction.
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This range noise is more commonly known as a range tail. In order to filter out the range

tail, we need to apply a filter in the range direction. The particular filter should remove all

the data except the most significant ranges. The MPRCP (Multi-Peak Range Coincidence

Processing) algorithm was implemented to filter out range tails. The MPRCP concept is

pictorially shown below:

* Estimate local mean, sum and
variance

350

* A range bin is considered a
bump if it is n standard
deviations above the local 2 .

noise level
* (sum of bins in window ... - . - -

- sum of bins in local noise
region) ! (number of pulses in
histogram)

20 285 270 275 280 285 2M0
Rang (in)

Figure 3-4: A typical range histogram showing multiple range peaks corresponding to hard
target surfaces, such as trees and the ground.

The MPRCP algorithm takes as input a frame of data in xyz space and temporarily

transforms it to sensor-view angle-angle-range space. Based on the sensor's particular

angle-angle resolution setting, the data set is binned into a 2D array of range histograms.

Each range histogram contains all the range hits in that particular range angle-angle bin.

The range hits are binned using a range resolution of 7.5 cm, resulting in a histogram as

shown in Figure 3-4. The range histogram is analyzed using a moving window, depicted

in Figure 3-4 as a red box. For each window position, the local mean, sum and variance

are calculated. A range window is considered to have significant range values if it is n

standard deviations above the local noise level. The moving window is applied across the

entire histogram, and only the significant range peak locations are kept. In addition, a

probability of detection Pdet is calculated for each data point as follows:

P RangeHits in window - 1 Range Hits of local noise
P det = (3.1)

( Range Hitsin Histogram
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3.2.2 Registration Algorithm

Based on the performance of our particular GPS sensor and platform air speed, we were

able to accumulate data in %-second acquisition intervals without any significant intra-

alignment errors. Over a sequence of -second MPRCP processed frames, the

coordinate system of the processed data slowly drifts due to errors in GPS information.

For targets measured from multiple views, the GPS translation errors result in a large

misalignment of the measured target surface. For our particular GPS sensor, the largest

drift error occurs in the height(z) direction. For a typical data collection of 50-100 '/4-

second frames, the observed drift in the z-direction can be as much as 10 meters. The

GPS error in the xy direction is smaller, ranging from 2 to 5 meters. Registration is used

to align the measurements of the target surface in order to reconstruct a more complete

3D signature of the target of interest.

We developed a registration algorithm that corrects for this drift in a two-step process:

First, the error in the z direction is corrected by detecting the location of the measured

ground. The procedure for ground detection and registration is based on the spin-image

matching technique discussed in Chapter 2. After the drift in the z direction is removed,

the xy drift is corrected using the ICP algorithm previously described in Section 2.3.3.

3.2.2.1 Ground Detection and Registration

For a typical /4-second measurement of a target under heavy tree cover, measured ground

values account for only 5-10% of the total data set. We decided to use the spin-image

matching algorithm because it is robust to such high levels of clutter within a scene.

Typically, the measured ground in our data collections is mostly flat and can be

accurately modeled as 10xi0 meter flat ground patches. Thus, a 10xi0m flat plane

defines the model that we are searching for in each processed frame. Using the spin-

image matching procedure described in 2.3.1, correspondences are found between the

model plane and the measured scene. In order to remove unlikely correspondences, the

similarity measure filter is applied (See 2.3.2). For robust ground detection, the similarity
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measure threshold is set to /4 of the maximum similarity measure. To prevent

combinatorial explosion, only the top 1000 correspondences are kept after the similarity

measure threshold is applied.

After filtering by similarity measure, most of the correspondences left should be on the

measured ground. These remaining correspondences are used to detect the ground plane.

A histogram is generated using the z-component of each of the 3D scene points that

matched the ground plane. Typically, over 90% of correspondences fall on the measured

ground, resulting in a histogram with a large peak indicating the elevation of the ground.

A z-direction histogram is created using a moving window that scans the available height

range. The window size is fixed at 2 meters and the bin spacing is set at 0.2 meters. The

presence of a potential peak is detected when more than 25% of all scene points fall in

the window. Since the peak should follow shortly, the bin spacing is reduced to 0.1

meters in order to refine the location of the peak window. Given that the peak window

found contains more than 70% of all the correspondences, ground detection is considered

to be successful.
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a) b)
Figure 3-5: Example of spin-image ground detection. a) Height color-coded %-second frame

of a ground target under canopy cover shown along the z-direction. The green to red pixels

represent the measured data, while the larger white pixels represent the point

correspondences found after spin-image matching the scene data to the plane model.

b) The resulting correspondence z-histogram of the -second frame shows a single peak,

which corresponds to the ground elevation; no peak exists for the tree cover since the spin-

image matching algorithm correctly filtered out those measurements.
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Figure 3-5 shows an example of spin-image based ground detection for a '/4-second

frame, along with the resulting correspondence z-histogram. From the z-histogram, one

can see that most of the correspondences fell on the measured ground; very few

correspondences fell on the trees, even though they account for up to 90% of the data in

the scene. Thus, the spin-image algorithm was able to successfully filter out most of the

clutter due to the canopy cover and correctly detect the ground.

Given a set of ground-detected data frames, an average ground level is found and all the

frames are aligned to that particular ground level; with the z-drift error corrected, only the

xy drift error remains.

3.2.2.2 Variable-Overlap ICP Registration

The ICP algorithm described in 2.3.3 can be used to correct xy-drift errors. A registration

algorithm was developed based on our method for data collection (See Section 3.1.2) As

described in 3.1.2, the airborne platform passes over a target and constantly adjusts the

gimble position to keep the target within the center of a Risley scanning pattern. Thus, an

ideal data collection would take measurements of the same ground region from several

different perspectives. Given that the measurements cover the same ground region, and

that the perspective change between consecutive frames is relatively small (5-10

degrees), we expect to have a significant percentage of ground overlap between

consecutive measurement views. ICP can take advantage of the high ground overlap to

correct the xy-drift errors present in between the data frames. The procedure to align two

data frames is described below in pseudo-code:

Align (data-frame N, dataframe M)

1. Crop N and M in height at a range of I<z<5m above the computed ground level.

2. Compute the number of points left in N and M. Set the number of possible point
matches to the maximum of the number of points left in N and M.

3. Run ICP with a Search Voxel Size of 2.0 meters (this allows a point in N to match to a
point in M if the points are at most 1.0 meter apart in any of the 3 Cartesian directions.)

4. Compute the overlap percentage between data set N and data set M as the final number
of ICP point-matches found divided by the maximum number of possible point-matches.

For measurements of targets out in the open, the relative ground overlap between

consecutives frames should be very high, close to 100%. For targets underneath heavy
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canopy and/or camouflage cover, the consecutive frame ground overlap can vary from

approximately 50% to 100%. (see Figure 3-6, dashed line).

120

100

0 80

> 404
7!0

20

0
o IN R ( 00 0 IN I (0 00 0 (N 'ITT- ~ ~ ~ ~ ' (r- T T- T N eI

Frame #

m- Relative Frame Overlap compared to reference frame #17

- - -Relative Consecutive Frame Overlap

a)

120

100

ON80

MU 60

> 400

0
20

o co (D 04 )O O0
TI- T-- ( N N C )

Frame #
Relative Frame Overlap compared to reference frare #10

- - -Relative Consecutive Frame Overlap

b)

Figure 3-6: Comparison of Relative Frame Overlap. a) The figure shows the relative frame

overlap for a target in the clear. The dashed curve plots the consecutive frame overlap while

the solid curve plots the overlap of a frame to reference frame # 17. b) The figure shows the

relative frame overlap for a target underneath heavy canopy cover. The dashed curve plots

the consecutive frame overlap while the solid curve plots the overlap of a frame to reference

frame # 10.

As the change in perspective between two '%-second data frames increases, the two

respective frames are less likely to have areas of surface overlap due to varying canopy
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occlusion and change in viewing perspective. Over the optimal JIGSAW angular

diversity of ±30 degrees to nadir, the ground overlap between a particular reference frame

and the remaining frames drops sharply from close to 100% to less than 5% as the change

in perspective increases (see Figure 3-6, solid lines). Figure 3-6 above shows a

comparison between the relative overlap of consecutive frames versus the relative frame

overlap to a particular reference frame. The comparison is shown for a target in the clear

and a target underneath heavy canopy cover.

The general trend drawn from Figure 3-6 is as expected: the larger the change in viewing

angles between two frames, the smaller the relative overlap. Given the overlap versus

viewing angle statistics, there are two approaches to be considered for registration:

consecutive frame registration and reference-frame registration. The advantage of

consecutive frame registration is that the relatively high overlap between consecutive

data frames should allow ICP to easily align the data frames. However, one major

disadvantage of this registration approach is that each frame N is only well aligned

compared to the next frame, N+1; no guarantee exists that frame N is optimally aligned to

frame N+2, N+3, and so on. This disadvantage is particularly severe for our data sets

since the registration error is present almost exclusively along one direction, namely the

flight direction. Thus, even though ICP might remove a large portion of the drift between

consecutive frames, some drift will still remain. Since the drift is in a constant direction,

the error will tend to accumulate over several frames, leading to large registration errors.

However, the directional drift is not a problem for reference-frame registration: since the

frames are aligned against a single frame, the resulting registration should not be affected

by the drift direction. Thus, even though the "reference-frame to frame" overlap drops

sharply over an angular diversity of ±30 degrees as compared to the consecutive frame

overlap, the registration of the entire data should be considerably better. To test our

hypothesis that reference-frame registration is better suited to correct our characteristic

one-directional drift, we implemented preliminary versions of both registration

approaches. Our initial results, shown in Figure 3-7, support the above conclusions.
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Figure 3-7: Registration Performance Comparison. Remaining drift after registration for

data collection C20-FO1-PO1: the dotted curve represents the remaining drift after

consecutive frame registration relative to frame 0; the solid curve is the remaining drift

after reference frame registration relative to frame 0.

Thus, the implemented registration algorithm is based on reference-frame registration.

For this approach, a reference frame is automatically selected from the group of frames to

be registered. The reference frame is chosen based on an estimate of the target coverage

in each frame. The frame with the highest target coverage is selected as the reference

frame and the remaining frames are registered to that particular reference frame. Target

coverage is used to select the reference frame because high target coverage increases the

likelihood of surface overlap between the reference frame and the rest of the frames.

As mentioned previously, the primary purpose of registration is to reconstruct the ground

target. Thus, we are interested in registering data right above the ground level. Since the

ground in most of the measurements is flat and does not have a distinct spatial structure

that ICP can lock onto, it is removed from each data frame. Removing the ground plane

has several benefits for ICP registration, namely a performance speedup and a smoothing

effect in pose-distance space that reduces the number of local minima, thus increasing the

likelihood of ICP finding the optimal global minimum. Structures high above the ground

level, such as canopy cover are also removed before ICP registration: canopy
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measurements could be very noisy due to wind conditions and variations in viewing

perspectives. Based on the height of our target models, only measurements located in a

height range of 1 to 5 meters above the measured ground plane are considered for ICP

registration. The resulting height-cropped data frames are used to estimate target

coverage for the reference frame registration approach. The number of points remaining

in each frame after height-level cropping is used as an estimate of target coverage; the

frame with the most points is declared the reference frame.

The registration process flow diagram is shown in Figure 3-8. First, all the frames are

sub-sampled using 10-20cm cubic voxels in order to reduce the processing time. The

reference frame R is then automatically selected from among the given data frames as

specified above. Next, the frames closest in viewing angle to the reference frame are

registered (i.e. frame R-1 and frame R+1). The registration is spread outwards from the

reference frame, to frame R-2, R+2, and so on. As the registration spreads outwards, the

transformations of the previous registered frames are applied: thus, before ICP-

registering frame R-2 to frame R, the transformation found for R-1 to R is applied. By

applying the previous transformations, only the drift between R-2 and R-1 now needs to

be corrected by ICP.

Bring all the ground- Constrain Decreases
detected frames to a Volume processing time and

common ground releases memory for
higher resolutions

Counter Determine a Counter
NI-= R reference frameR

Set current frame to N, - Nh ++
register to N, -1

Write
Frame

Apply transform
found for N Check

Registration

EICP Register current Quality :
fm:re to reference MSE, Overlap

Figure 3-8: Reference-Frame Registration Process Flow Diagram
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A frame N is considered registered to the reference frame R if it meets certain overlap

and MSE criteria. The minimum overlap criterion for the registration to be considered

valid is that the current frame must have 15% overlap with the reference frame. The MSE

criterion is based on the Cartesian distance between matching points in frame N and

frame R. Since MSE is a function of the resolution of the data sets, the MSE threshold is

set to 1 times the data resolution.

3.2.3 Surface Reconstruction Algorithm

Given a registered data set of 3D points, we need a surface-based representation of the

data as input to the spin-image recognition algorithm. In our representation, surface shape

is described by a collection of oriented points, 3-D points with associated surface

normals.

The surface reconstruction algorithm is as follows:

1. The registered data set is sub-sampled using 10cm cubic voxels in order to have a

uniform spatial density as required by the spin-image algorithm. Points falling

into each voxel are averaged to create a single average 3D point.

2. Using the sub-sampled data set, compute an estimate of the surface resolution by

finding the distance to the closest 8 th neighbor of each point and taking the

median distance value of the data set. The surface resolution estimates the mesh

resolution variable used by A. Johnson.

3. A local surface normal is computed for each 3D point using the local point

neighborhood. The local point neighborhood includes points that are at most 2

times the resolution distance away from the respective 3D point. The local point

neighborhood distance is based on the data resolution in order to assure that most

of the points will have enough neighbors to compute a local surface. The local

surface normal is computed by applying the Singular Value Decomposition

algorithm to the local points.

The result of the surface reconstruction algorithm is an oriented 3D point data set that has

uniform spatial density. The 3D oriented data set can be input into the spin-image algorithm to

perform target detection and recognition.
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3.3 Data Preprocessing Results & Discussion

3.3.1 MPRCP Results

Typically, the raw sensor data, when transformed into Earth-fixed coordinates, forms a

solid data cube. Figure 3-9-a shows a height color-coded, -second frame of data

recorded at Huntsville in January 2003. The raw data set is a measurement of a M-60

underneath heavy canopy cover. Without any data filtering, a human viewer cannot

readily detect the structure of the trees, ground and more importantly, the M60 tank.

Figure 3-9-b shows the same data set after applying the MPRCP range-filtering

algorithm. Visual comparison of the two figures shows a large improvement in quality:

the canopy structure, tree branches and trunks as well as target structure becomes more

readily apparent.

a) b)
Figure 3-9: Example of MPRCP Results. a) Height color-coded raw data frame shown along
the z direction; the red line represents the ground level, while the red oval indicates the
target location, b) Height color-coded MPRCP processed frame shown along the z-
direction. Compared to the raw data, the MPRCP data has most of the range-noise
removed.

55



3.3.2 Registration Results

After MPRCP processing each -second data frame, the entire data pass is registered

according to the registration algorithm in Section 3.2.2. Figure 3-10 below shows 50

unregistered '/4-second data frames of an M2-A3 APC under canopy cover. The data is

height color coded and displayed along the z-direction to indicate ground drift. Over the

time of the data collection, the ground drifts by approximately 5 meters in the height

direction.

tz

Figure 3-10: Height-color coded unregistered MRPCP processed data consisting of 50 -
second frames. The data is displayed along the z-direction to emphasize the drift of the
ground plane. The two red lines indicate the range of ground plane elevations, which
corresponds to 5 meters of drift in the z-direction.

As described in Section 3.2.2, our registration algorithm first corrects errors in the z

direction and then in the xy direction. Figure 3-11 shows the data pass after z-registration.

In Figure 3-11-a, the ground level is very thin in the z-direction, as most of the z-drift has

been removed. However, the data, as shown from a bird's eye view in Figure 3-11-b, still

has large drifts in the xy direction resulting in severe streaking of the measured M2-A3

APC.
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a) b)
Figure 3-11: Height-color coded MPRCP processed data after z-registration. a) A view of
the data along the z direction to show the successful registration of the ground; the ground
level is indicated by the horizontal red line. b) An orthographic view of the data, with the
trees cropped out. The white arrow indicates the xy registration drift that remains to be
corrected.

Figure 3-12 shows the data pass after applying reference-frame ICP registration. The

figure shows the data pass from several viewing perspectives to assess the goodness of

the overall registration. From the collection of viewing perspectives, it becomes apparent

that the target has been correctly registered: the target's edges are very sharp and detailed

structure of the APC such as the turret, missile launcher, hatch, and front lights can easily

be discerned. An M2-A3 CAD model is shown in Figure 3-12-c to provide a visual

comparison to the measured target. The measured target's structure and relative

dimensions match the M2-A3 truth model, confirming that the registration was

successful.
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D)

c)
Figure 3-12: Height color-coded orthographic perspective of the fully registered data pass.

a) View of the entire data pass, with the trees cropped. The measurement of the M2-A3

APC is shown in shades of yellow to red. b) A close-up look of the M2-A3 APC

measurement. The APC's structure, such as the body, turret, missile launcher, hatch, and

front lights, can easily be discerned. c) An M2-A3 CAD model to provide a visual

comparison to the measured M2A3. The measured target's structure and relative

dimensions match the M2-A3 truth model, confirming correct registration.

In order to accurately convey the overall quality and time performance of the

implemented registration algorithm, we have provided a table that summarizes the results

for 53 registered data collections. The registration algorithm has several parameters that

can be adjusted. All other parameters are set according to Sections 2.3.1 and 3.2.2. The

adjustable parameters, along with their default values, are as follows:
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1. Spin-Image resolution - indicates the data sub-sampling resolution used to

perform ground detection / registration (Set at 1.0 meters).

2. Maximum number or ICP iterations. (Set to 50 iterations).

3. ICP resolution - indicates the data sub-sampling resolution used to perform ICP

registration (Set to 0.1 meters).

4. Maximum MSE - MSE threshold value for considering a particular frame to be

correctly registered to the reference frame (Set to 0.1 0m2).

5. Minimum Overlap - Minimum overlap percentage required between a particular

frame and the reference frame for the registration to be considered valid. (Set to

15%)

Table 3-1 summarizes the registration results. The registration algorithm was run on a

Intel Pentium IV Xeon 2.0 Ghz machine. The average time taken for each registration

stage is given as a multiple of real time, where real time is defined as the time to collect

the data set. Rt, the registration time versus real time, is defined as follows:

- Time to Register Data
Time to Collect Data (32

Quality performance is indicated by the fraction of data that ICP-registered along with

average ICP MSE found for the registration. The fraction of data collection registered is

defined as the number of registered /4-second frames divided by the total number of 1/4-

second frames.
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take about 340 seconds to complete. Based on the ICP registration constraints

(Maximum MSE of 0.1 0m 2 and Minimum Overlap of 15%), approximately 59% of the

data collection was successfully registered. The remaining 41% of the data collection that

did not register was typically composed of frames at the beginning and end of the data

set: these frames contain data measurements taken at angles larger than 30 degrees to

Nadir, resulting in heavy canopy coverage and sparse target coverage. Due to sparse

target coverage, these frames typically did not pass the minimum overlap requirement of

15%. Thus, even though the frames comprised 41% of the data collection, they typically

had very low target coverage compared to the rest of the registered frames. As a result,

their contribution to the registered target data is minimal. Another registration quality

parameter is the Mean Squared Error found by ICP between the registered frames and the

reference frames. The MSE value is indicative of the average drift that is left after

registration. An MSE value of 0.051m 2 indicates an average expected drift of about 23

cm. Considering that the native data resolution is about 10 to 20 cm, the remaining drift is

relatively small. The significant fraction of data registered coupled with a small MSE

value demonstrates that the registration process was successful.

3.3.3 Surface Reconstruction Results

Figure 3-13 below shows an example of surface reconstruction for a measured data set of

an M60 tank. From the figure, we can visually discern that the computed surface

orientation is a good estimate of the target's local surface.

Figure 3-13: Surface Reconstruction for a measured M-60 tank. The scene data is height-

color coded in shades of deep blue through green and red. Each purple line represents the

surface normal found for a particular point. Only a small percentage of the surface normals

are shown so that the underlying M60 measurement can still be visible.
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Table 3-2 below summarizes the quality and timing performance of the surface

reconstruction algorithm. The estimated surface normals are within 15 degrees compared

to the true surface normals obtained from the target CAD models (see Chapter 4). As

discussed in Chapter 2, a spin-image is created based on a corresponding oriented point

basis. Thus, the accuracy of the surface normals affects spin-image creation and

subsequent spin-image correlation between the scene and the model points. Johnson's

study of the effects of scene noise and surface normal error on spin-image correlation has

shown that the errors in surface normal orientation should not have a great effect on spin-

image correlation [24]. Based on Johnson's results, summarized in Figure 9-17 of his

PhD thesis, an error in surface normal of approximately 15 degrees will result in the

normalized correlation value to decrease by no more than 2% as compared to the ideal

case where no surface normal error exists. Thus, our surface reconstruction provides a

good estimate of surface orientation that can be effectively used by the spin-image

recognition algorithm.
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Ta_ 32 Scene Description TA__ ZPrran.
BMP-1 scene 42605 11936 14.3 0.45 14.17 14.62 2.34
(c5-fl 10-p3)
BTR-70 (c5-fI1O-p4) 38551 13514 15.7 0.47 17.67 18.14 2.90
HMMW 24219 3966 13.9 0.39 2.23 2.62 N.A.

SMI-Al Eglin 13120 3645 16.4 0.11 1.17 1.28 N.A.
M2-A3 scene 14556 19858 15.8 1.41 37.26 38.67 3.09
(c8ta4-p2o) 8
M-35 (C5-FIO-P5 34699 10166 13.4 0.297 11.83 12.127 1.94

LLM60 field tank 1 5589 3932 15.7 0.09 1.08 1.17 N.A.
M60 field tank 2 4045 2982 17.4 0.09 0.78 0.87 N.A.
t-72 (05-F 19-P3) 36543 36543 14.1 0.56 36.52 37.08 4.01

Table 3-2: Surface Reconstruction Timing Performance.

In summary, we have successfully developed a processing algorithm to reconstruct

measured scenes from multiple viewing perspectives. In addition, we developed a surface

reconstruction procedure in order to generate a 3D oriented data set that can now be
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passed to the spin-image detection and recognition algorithms in order to identify the

scene target(s) from among a library of target models.

In the next chapter, we will discuss the modeling procedure used to generate 3D oriented

point data sets from CAD models of target objects. Based on a visual analysis of clutter

and occlusion in our particular measurement scenes, an optimal set of spin-image

generation parameters is selected in order to maximize recognition performance.
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Chapter 4: Object Modeling for Generation of Spin-

Image Libraries

The JIGSAW program has approximately 10 targets of interest, ranging from trucks and

APCs to tanks and missile launchers. The CAD models of the specific targets are shown

below in Figure 4-1. The model library contains two large target classes, namely APCs

and tanks. The APC target class is composed of the BMP-1, BMP-2, BTR-70 and M2

vehicles. The tank class includes the MIAL, M60 and T72.

BMPI BMP2 BTR-70 HMMV

MIAI M2

T72

M35 M60

SCUD-B

Figure 4-1: Target CAD models color-coded by height.

Based on the above CAD models, a target model library was constructed to simulate an

ideal 3D LIDAR signature of each target. The simulated targets are then represented in

the spin image representation as 3D oriented points with associated spin-images. The

resulting model spin-image library is used to compare the models to measured scenes in

order to recognize and identify the scene target.
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4.1 Modeling Procedure

We implemented an object modeling procedure to reconstruct the surface of a target as

seen from multiple views. We created an openGL application that recorded the surface

measurement of the target CAD model from multiple views by capturing the screen z-

buffer. For each view, the resulting z-buffer returned the absolute xyz position for each

rendered pixel on the CAD model surface. Each xyz position returned by the z-buffer

also has an associated normal, based on the surface normal of the respective triangular

CAD model element that generated that particular pixel. In order to associate a normal to

a particular pixel, the index of each of the triangular elements of CAD model was used to

generate a unique RBGA 32-bit color value. The RGBA color value of each pixel was

then read from the z-buffer in order to decode the index of the particular triangular

element and find its associated surface normal. Simulated measurements were taken from

9 positions, namely: from nadir, looking straight down on the target, and 8 views at yaw

angles spaced 45 degrees apart, at a pitch of 30 degrees. (see Figure 4-2)

Ix

Figure 4-2: Viewing directions used to simulate 3D Ladar data of an object from a CAD
model.

The result of the modeling procedure is a high-resolution 3D oriented point set that

captures most of the viewable surface of a target that could be seen by an airborne

LIDAR sensor. The 3D oriented data set is then sub-sampled using 10cm or 20cm cubic
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voxels in order to have a uniform spatial density as required by the spin-image algorithm.

Based on the sub-sampled data set, a spin-image stack is created.

The above procedure is applied to each JIGSAW target and a spin-image library is

created. The spin image stacks for each target are generated using the same parameters

for locality and resolution (i.e. spin-image width, support angle and bin size).

4.2 Results

Table 4-1 summarizes the resulting model data sets obtained from the 3D simulation.

The estimated surface resolution parameter is computed based on the method described in

Section 3.2.3 on scene surface reconstruction.

Number of Points in the Model Data Set

'E 5.

.6 M' 0 C

00 0

0.1 0.125 10366 9692 11444 5035 16394 14669 10146 18778 23916 13454
0.2 0.25 2239 2056 2453 1255 3761 3223 2368 4035 5213 2842

Table 4-1: Resulting 3D oriented point data sets for the given target models for two sub-
sampling voxel sizes.

Based on the above 3D oriented point data sets, several spin-image models libraries are

generated for a range of spin-image parameter values. Table 4-2 shows the resulting spin-

image libraries for a variety of spin-image parameter combinations. In the table, several

spin-image generation parameters are considered, namely data resolution, spin-image

width, bin-size, and support angle. Based on each set of spin-image parameters, a spin-

image model library is computed. The spin-image library statistics are described by the

Average Fraction of Model Surface Coverage captured by the spin-image, the Average

Lambda Spin-image Fill Factor and the Average Stack Creation Time. Based on these

resulting statistics, optimal sets of spin-image generation parameters are selected in order
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to maximize detection and recognition performance while meeting our recognition run-

time goals.

o- - - - .-0 4

. N 0 9t 0.7

139 .1 ~ C.25 1. 10 0.1 11.5 2.2

13390 .1 10 0.25 .5 13 .35 3.5 46

E 1 .2 2 0 .
M ~ 0~~ a

139 E . .2 3.7 CM :.3 70. 76.29E

00 U) -) ZCl 4) j40. L,0
_ _ _ U)4 0 4 ) 0 _ _ _ L._ L._c_

13390 0.1 15 0.25 1.25 130 0.09 11.05 20.77

13390 0.1 15 0.25 1.25 135 0.12 11.2 23.47

13390 0.1 5 0.25 5 10 0.13 11.25 2.26

13390 0.1 10 0.25 25 135 0.35 13.25 11.60

13390 0.1 10 0.25 5 180 0.8 39.5 5.58

1390 0.1 15 0.25 3.75 135 0.57 72.9 9.38

9 0.1 15 0.25 3.75 180 0.63 73.2 2.45

9 0.1210 0.25 5 90 0.45 32.35 2.36

130 0.1 20 0.2 5 3 .1 10.5 178

13390 0.1 20 0.25 1.5 1890 0.81 110. 11.29

2395 0.2 5 0.25 125 135 0.39 11.1 2.38

2395 0.2 5 0.25 125 180 0.43 11.15 21.24

2945 0.2 10 0.5 5 135 0.72 33.1 3.636
2945 0.2 10 0.5 5 180 0.83 33.25 4.076

Table 4-2: Spin-Image Generation Statistics and Timing for the JIGSAW model library for
data resolutions of 10cm and 20cm. The table rows shaded in gray represent some of the

optimal parameter combinations that are to be used for the detection and recognition model
libraries.

4.3 Discussion

Based on the results shown in Table 4-2 and a visual analysis of clutter and occlusion in

our particular measurement scenes, the default library used for target recognition had a

data resolution of 10cm, bin size of 25cm, support distance of 2.5 meters, and a support

angle of 90-degrees. For target detection, the optimal spin-image library had a data
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resolution of 20cm, bin size of 50 cm, support distance of 2.5 meters and a support angle

of 90-degrees.

The recognition data resolution was determined based on the native sensor resolution, the

required run-time performance and the overall target dimensions. Given a nominal

sensor range resolution of approximately 7.5 cm, a recognition time goal of 10 minutes

and target dimensions with footprints in between 2x4 meters to 3x12 meters, the data

resolution for recognition was set to 10cm. A 10cm resolution should provide enough

detail on the target models to allow correct target identification, while achieving the

required timing performance set out in the goals. For target detection, the scenes can be

up to 2 orders of magnitude larger than target recognition scenes. In order to achieve a

reasonable detection time, the detection data resolution must be lowered. Based on our

detection results, (presented in Chapter 6), a detection data resolution of 20cm provides

enough detail to correctly detect the target while achieving reasonable detection times on

the order of 1-2 minutes per model search.

According to A. Johnson, the bin size should be a factor of the estimated surface

resolution; a typical bin-size is 2 times the estimated surface resolution. Thus the bin-size

for target recognition was set to 25cm, while the bin-size for target detection was set to

50 cm.

The support distance is based on the physical size of the target models. Typically, the

support distance is set on the order of the model. Shorter support distances are

recommended for heavily cluttered scenes. Since targets in typical JIGSAW 3D scenes

are under dense canopy cover, surrounded by trees, shrubs and sometimes veiled in

camouflage nets, we expect to have a heavy amount of clutter. Based on A. Johnson's

spin-image matching clutter analysis model and our target dimensions, the support

distance was set to 2.5 meters. The resulting spin images capture the local point density

in a cylindrical volume with a 2.5-meter radius, and 2.5-meter height. Spin-images

obtained from this volume should provide a reliable local description of the model.

According to Table 4-2 the average percentage of model surface area captured by a spin-

image with a support distance of 2.5 meters is 38%. (the percentage corresponds to a
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support angle of 180 for which all the points in the cylindrical volume are used to create a

spin-image).

Thus, a significant amount of the spatial structure of the target models is captured in a

single spin-image. Concurrently, the chosen support distance avoids spin-image

matching degradation for heavily cluttered scenes. Given a heavily cluttered scene, only

clutter within at most 2.5 meters from the target surface will be included in the spin

image. Thus, the region of clutter that affects spin-image matching is well constrained

around the target and should have a limited effect on the recognition of the object.

The same support distance is used for target detection and recognition because we expect

to have the same amount of clutter around a target in a recognition scene as for a target in

a detection scene. This should always be the case since the target detection algorithm

processes large-scale scenes and finds regions of interest where a target is likely to be

located; the ROI is then passed to the recognition algorithm. Therefore, the same data in

the target region is utilized for both target detection and recognition.

The third spin-image parameter is support-angle. The support angle is used to lessen the

effects of object self-occlusion due to a limited number of viewing perspectives. A

nominal support angle can be determined based on the angular diversity of the target

measurements. Typically, the support angle should be set as high as possible, within the

range of 60 to 180 degrees. For JIGSAW measurements, the angular diversity ranges

from 20 degrees to approximately 60 degrees. For a 0-degree angular diversity (i.e.

single view), a nominal support angle is 60 degrees. For an angular diversity 0 AD', the

support angle is computed according to the equation below:

Support Angle (OAD) = Support Angle (00) +OAD

where Support Angle(0 0 ) = 60(

The average angular diversity for JIGSAW measurements is approximately 30 degrees,

leading to a nominal support angle of approximately 90 degrees. Thus, a support angle of

90 degrees is used for both target detection and target recognition spin-image model

libraries.
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In summary, we developed a Lidar simulation that creates a dense 3D oriented data set

given a particular CAD model. We utilized the high-resolution oriented data set to create

several spin-image model libraries for a range of spin-image generation parameters.

Based on the results obtained from those particular spin-image libraries, we selected the

optimal spin-image generation parameters to be used for the target detection and target

recognition procedures. In the next chapter, we describe the implemented target

recognition algorithm. We will then present and discuss the obtained target recognition

results.
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Chapter 5: Automatic Target Recognition

Given a region of interest within a large-scale scene, the ATR algorithm attempts to

identify the target from among the targets in a model library or report a "none of the

above" outcome.

5.1 Recognition Algorithm

The ATR system is based on the surface-matching algorithm described in Chapter 2. The

algorithm takes a scene data set along with a spin-image model library. A scene spin-

image stack is created using the same spin-image generation parameters as for the spin-

image model library. A sub-sampling of the points is used to create the spin-image stack.

The sampling ranges from 20% to 50% of all scene data points. The scene data points are

not judiciously picked: the points are uniformly distributed across the given scene.

Therefore, no feature extraction is performed to pick certain points. The scene spin-

image stack is correlated to each spin-image model stack within the model library. The

resulting correspondences are filtered and grouped according to Section 2.3.2. The

resulting pose transformations are verified using the ICP algorithm and assigned a VGOF

value according to equation 2-11. The pose transformation with the largest VGOF value is

considered to be the final result of the scene to model comparison.

To quantify recognition performance, a probability of detection is defined for each model

to scene correlation based on the VGOF value of the best pose transformation. The

probability of detection (Pd) that the scene s correctly matches model i in the model

library mlib is defined as:

Pd~~s, mlb, (s, mlibi)
Pd(s, mlib ) = N GO (5.1)

1 VGOF(s, mlibj
j=0

For each scene to model library comparison, the probability of detection is split among

the models and ranges from 0 to 1. For a given scene, the sum of the Pd values over all

the models in the model library adds up to 1, unless a "none-of-the-above" outcome is
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reached. In the case of a "none-of-the-above" conclusion, the sum of the probability of

detection values will equal zero, and each Pd(s, mlib,) will be defined to equal zero.

The higher the probability of detection for a scene to a model, the more likely it is that

the model correctly matches the respective scene. Thus, the Pd value that falls on each

model represents a confidence measure that the model matches the scene. For the purpose

of quantifying recognition performance, we assign the model with the largest Pd value to

be the final recognized target. Thus the recognition result for each scene s to model

library mlib is defined as:

Re cognized Model(s, mlib) = max(Pd(s, mlib1 )) (5.2)

5.2 Results & Discussion

The ATR results are divided into two sections. The main section is devoted to the non-

articulated ATR results obtained from the comparison of twelve measured data scenes to

the target model library generated with the optimal spin-image parameters determined in

Chapter 4. A second, smaller section will focus on the results of a limited study of

articulated ATR.

5.2.1 Non-Articulated ATR Study

For the study of non-articulated ATR, we used the ten-object target model library

presented in Chapter 4. Based on the spin-image generation results discussed in Chapter

4, the default library used for target recognition had a data resolution of 10cm, 25cm bin

size, 2.5 meter support distance, and a 90-degree support angle.

In order to determine the recognition performance, multiples scenes were analyzed. A

probability of confusion matrix is utilized to show the recognition performance, wherein

the confidence measurement Pd is shown on the main diagonal and errors on the off

diagonals [36]. Twelve scenes were used to create the probability of detection confusion

matrix. Target truth was known prior to data collection. Measured data for the following

targets was used: BMP-1, BTR-70, HMMW, MIAl, M2A3, M-35, M60 and the T-72.

Figure 5-1 below shows an orthographic projection of each of the twelve measured data
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sets, along with the target ID, date and location of measurement and campaign-flight-pass

numbers.
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Figure 5-1: Orthographic view of the twelve measured scenes with height color-coding.

Table 5-1 shows the probability of detection confusion matrix obtained from the

comparison of the model library to each of the twelve scenes. Each row of the confusion

matrix represents a scene to model library comparison; for instance the first row contains

the comparison between a BMP- 1 scene measurement and the model library.
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Models
0 N >

C)

BMP-1 10* 16 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.02
C5- F10-P3 ___ __ __
BTR-70 100 23 0.0 0.0 0.0 0.19 0.0 0.0 0.0 0.0 0.0
K5- F10-P4

0.0 0.0 u.u

HMMV 300 10 0.0 0.01 0.0
C8-F-P10

0.0 0.0 0.0 j 0.0 10.01 0.0

0.0 0.0 0.0 0.07

0.0 0.0 0.0 0.17

nn nn 0 0 0o

0.0

0 00 0.0

0.0 0.0

0.0 0.0

0.01 10 .021

0.0 0.0

M1-Al QO 1 0.0 0.0 0.0 0.0 0.0
+ Eglin Dec 01

M2-A3 200 16 0.0 0.0 0.0 0.0 0.0
C5-F13-P07

M-35 150 12 0.0 0.0 0.0 0.0 0.0 0.0
) 5-F1O-PO5

LL M60 wlplow 00 1 0.0 0.0 0.09 0.0 0.0 0.0
Huntsville May02
M60 00 1 0.0 0.03 0.0 0.0 0.0 0.01 0.0
Huntsville May02 __ ____ ____ ____ ____

M60 100 12 0.0 0.0 0.0 0.0 0.0 0.0 0.0
C05-F16-P 10 1

TA-3 Dec 02
T72 150 29 0.0 0.0 0.0 0.0 0.13 0.0 0.0 0.0 0.0
C20-FO1-P3

Table 5-1: Probability of Detection Confusion Matrix. Each row of the confusion matrix
represents a scene to target model library comparison. Each cell in a row shows the
probability of detection that the target (with the ID shown in the top row) matches the scene
(described at the beginning of the row). For each scene, the angular diversity and angular
views is also shown in the first two columns to give a notional idea of the target
coverage/obscuration.

From Table 5-1, we can see that the probability of detection confusion matrix resembles

an identity matrix, which would be the ideal result. For all scene comparisons, the highest

Pd value always falls on the target that matches the scene target truth. Furthermore, most

of the remaining targets have a zero Pd because the recognition algorithm found no match

between the respective target models and the scene. The rejection of a large portion of

the candidate models in conjunction with most of the Pd falling on the correct target

indicates that the recognition algorithm can readily discriminate the correct target from

among the targets in the model library while achieving low false alarm rates.
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In 8 out of the 12 scenes, the Pd fell almost entirely on the correct target at Pd levels

exceeding 90%. For the remaining four data scenes, the correct target was still assigned

the highest Pd, but a significant portion of the probability fell on targets other then the

target truth. A closer examination of these four scenes reveals that while the Pd did not

entirely fall on the correct target, the distribution of Pd values fell almost entirely on a

single class of targets that included the target truth.

One such case is the BMP1 scene that matched the BMP1 model with a probability of

61% and the BMP2 model with a probability of 38%. Since the BMIP1 and BMP2 targets

have almost identical dimensions and spatial structure, the recognition algorithm was

unable to discern the two models from one another. Nonetheless, the scene was

recognized to contain a BMP-class vehicle with a probability of 98%. Thus, we can

conclude that recognition algorithm was able to correctly classify the scene as a BMP

with a probability of 98% and identify the target as a BMP- 1 with a 61% probability.

Another example is the MiAl scene, where Pd predominantly falls on two tanks: the

MIAl tank model at 83% and T72 tank model at 17%. A match of both tanks by the

spin-image recognition algorithm is reasonable since tank-like targets are likely to have

similar dimensions and spatial features, which in turn will result in a high correlation

between the spin-images stacks of the targets. Even though the probability of detection

did not all fall on the MlA1 model, we have 100% probability of detection that the scene

is a tank. Thus, the recognition algorithm was able to classify the scene as a tank with a

probability of 100% and identify the tank as an MIAl with an 83% probability.

Another scene that demonstrates correct target classification is the Huntsville T72 scene,

where the T72 tank model Pd is 87% while the MiAl tank model Pd is 13%. Again, the

recognition algorithm correctly classified the scene as a tank with 100% probability and

identified the tank as a T72 with an 87% probability.

Overall, the probability of detection matrix shows that the recognition algorithm

identified the correct target by assigning the largest Pd value for all twelve recognition

tests. Considering Equation 5.2, which formally states that, each scene search is assigned

the model with the maximum Pd value as the final identified target, we can conclude that
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we achieved a 100% recognition rate. Concurrently, the recognition algorithm rejected

most of the other targets, which indicates good target discrimination and the potential for

achieving very low false alarm rates. In addition, for all recognition tests, approximately

95% of the Pd fell on the correct class of targets, indicating a high level of discrimination

between targets of different classes.

R2 % 0 0750) .W E~ E 0=
C % .1 1 7 .

o ~
04. CM~ 4) 0.0

~o E Q..) X

a. E

Egi 1 503 50% .1 1> 5.3 12.9 4.) 10.3

_C,'

BMP-I
C5- F13-P3 12935 25% 0.13 100 15.6 178.74 16.9 197.2
BTR-70
C5- F10-P4 13474 25% 0.127 100 19.2 197.2 5.48 204.6
HMMV
RMF May 02 6753 50% 0.14 100 9.40 146.19 0.62 147.75
HMMV
H8-Fl-PlO 5637 50% 0.13 100 7.83 123.59 0.31 124.68
MI-Al
Eglin Dec01 5603 50% 0.18 100 5.36 128.91 0.87 130.32

(5 M2-A3
C5-F 3-P37 7209 50% 0.16 100 5.34 80.36 1.51 82.40
M-35
C05-FO-PO3 8753 50% 0.14 100 16.38 197.53 1.91 201.08

LD M60Ow/plow
LIA Huntsville May02 3740 100% 0.17 100 5.82 95.30 0.16 96.04

M60
Huntsville May 02 3676 100% 0.16 100 5.96 e93.63 0.21 94.44

M60 under camo
C05-F16-PaO 14402 25% 0.18 100 18.61 89.51 1.16 92.53
T-72

005 FO P3 18093 25% 0.14 100 29.40 203.90 4.37 211.21
T72
020-FOI-P3 1133381 25% ,0.13 ,100 30.60 115.16, 3.47 121.69

Average Total Time Per Model (seconds) =1 142.01
Table 5-2: ATR Time Performance. Each row shows the recognition parameters and
resulting timing statistics for a respective scene.

Table 5-2 above summarizes the recognition timing performance obtained for each of the

twelve data sets shown above. The ATR algorithm was run on an Intel Pentium-4 Xeon

running at 2GHz. In Table 5-2, the Stack Create Time column is the time taken to create

the spin-image stack of the scene, the Avg. Match Time column is the average time used

to match the scene spin-image stack to each model and generate pose transformations,
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and the Avg. Verify Time column is the average time taken to verify each scene to model

comparison. The sum of the Stack Create Time, Avg. Match Time and Avg. Verify Time

is shown in the Total Recognition Time Per Model column. Overall, we achieved a

recognition time of approximately 2 minutes per model, which is close to our initial

recognition goal of 1 minute per model.

5.2.2 Articulated ATR Study

The recognition tests so far have dealt with targets that are represented by solid objects

with no articulated components. We now want to extend the ATR algorithm to recognize

articulated targets, with multiple movable parts that are in arbitrary orientations. The

main benefit of articulated ATR is that we would have the ability to match an object

regardless of the relative position of each of its movable parts (Ex: Tank with its turret

rotated, Scud launcher with its missile at different angular pitches). Furthermore,

recognition by parts allows the possibility of recognizing vehicles that come in many

possible configurations, such as the multi-purpose HMMV platform and the myriad of

one-of-a-kind technicals encountered in our current military campaigns. Another inherent

benefit of articulated ATR is that we can also develop a higher level of tactical awareness

by determining the current aim direction of a target's weapon.

5.2.2.1 Preliminary Results

We ran a feasibility test to demonstrate articulated ATR on measured JIGSAW data. For

the test, we created a model library containing M60 parts, namely an M60 tank body and

an M60 tank turret. The spin-image library had a data resolution of 10cm, bin size of

12.5cm, support distance of 1.25 meters, and a support angle of 90-degrees. Figure 5-2

shows the parts model library.

The concept of articulated ATR was demonstrated on a scene containing a single-view

measurement of an M60 tank with its turret turned by 180 degrees (see Figure 5-3).

Figure 5-4 captures a qualitative summary of the results, showing that the correct pose

transformation was found for each target part.
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a) b)
Figure 5-2: Height color-coded M60 Tank parts. a) M60 body model. b) M60 turret model.

a) b)
Figure 5-3: Height color-coded single-view M60 tank with its turret rotated by 180 degrees.
a) Orthographic view of scene. b) Sensor perspective view of the scene.

For the recognition of each part in the scene, the measured data present on the other

target parts can be considered as clutter. For instance, in Figure 5-4-c and 5-4-d, when

we are attempting to recognize the M60 turret in the scene, the measurements on the M60

body act as clutter. Even though the clutter from the M60 body is spatially adjacent to the

M60 turret, the recognition algorithm is able to correctly identify the turret and compute a

correct pose transformation. This successful recognition by parts shows the robustness of

the spin-image algorithm to scene clutter, and its potential performance in the

development of a fully articulated ATR system.
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c)

b) d)
Figure 5-4: M60 Recognition by Parts. a) Orthographic view of M60 Body Recognition; the

scene is height color coded in a green-red-yellow color map, while that M60 model body is

height color coded as white points. b) Another perspective of the M60 body recognition to

show that the correct pose was found in all six degrees of freedom. c) Orthographic view of

the M60 turret recognition; the scene points are again height-color coded using a green-red-

yellow color map, while the M60 turret model is height-color coded using a purple-blue

color map. d) Another perspective of the M60 turret recognition to show that the correct

pose was found in all six degrees of freedom.

In summary, we have thoroughly demonstrated good ATR system performance and

shown the feasibility of pursuing articulated ATR. We have been able to achieve 100%

recognition rate with Pd confidence measures that typically were above 90%. The high

Pd levels indicates that the ATR algorithm can discriminate targets and has the potential

for achieving very low false alarm rates. Furthermore, the distribution of the Pd values

across the model library implies that the recognition algorithm can correctly classify

targets based on similarities in the general target structure. In our results, approximately

96.4% of the total Pd measurement fell on the general target class that encompassed the

target truth. In addition, the results of the study on Articulated ATR reiterated that spin-

image matching is highly robust to occlusion and scene clutter in close proximity to the

object of interest.
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In the next chapter, we will combine our ATR algorithm with an automatic target

detection algorithm and show the end-to-end performance of a fully automatic target

detection and recognition system.
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Chapter 6: Automatic Target Detection in Cluttered,

Noisy Scenes

Automatic target detection (ATD) was performed using the general approach of "3D

cueing," which determines and ranks regions of interest within a large-scale scene based

on the likelihood that they contain the respective target. Spin-image matching is used to

provide a statistical measure of the likelihood that a particular region within the scene

contains the target [3]. The detection algorithm is based on the previous work of Hebert

et al.

6.1 Detection Algorithm

The 3d-Cueing algorithm is tailored for target detection in large-scale terrain scenes. The

implemented algorithm can detect and recognize multiple known targets in the scene.
r....------------------------------------------------------------------------- 5
Automatic Target Detection

Create Model M*
Model Data ImagIIe

stack Match model spin
lmages to scene

Remove Create scene svepiimage
ground, spin-Iniages ipin-lmage Apply Similarity

trees for 10% Of Measure Filter
points Valid

Correspondence 7 Corresp oudences

Neighboring
Create scene paint Yes Determine

Scene Data spin-images Regions of Interest

Apply Geometric Conisteney Fliter to each ROI ROks

Compute ROI GoD

Automatic Target Recognition Ordered ROTs

Ver1Ify+ Reline
Tr ans+ormations ROI Tranforno Group Correspondences for each ROI

usin ICP Compute Plausible Transformations

ATR GOF Confidence Measwe
Best Refned Transform for each ROI - +

Pose of target vehlk

Figure 6-1: ATD-ATR Process Block Diagram
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Figure 6-1 above shows a detailed block diagram of the ATD-ATR system for a scene to

target model comparison. Similar to the spin-image matching algorithm described in

Chapter 2, the detection algorithm starts with an input scene data set of oriented points.

To reduce computation time, the search volume is constrained by removing the ground

and canopy cover. Ground removal is based on the results of the ground registration

algorithm described in Section 3.2.2. Given a known ground level from the registration

results, the scene is cropped in height based on the maximum height of the respective

target models. For our target model library, the height range is determined to be 0.5 to 4

meters above the detected ground.

A small fraction of points from the remaining oriented point data set is chosen to create

corresponding spin-images. The scene data points are not judiciously picked: the points

are uniformly distributed across the given scene. Therefore, no feature extraction was

performed to pick certain points. Following Hebert's et al procedure, this fraction of

points is set to 10% of the data set in order to reduce the computation time and allow the

algorithm to be scalable to large-scale scenes. The fraction is typically large enough to

have several points on the target of interest.

Corresponding spin-images are created for each chosen oriented point. The resulting

spin-image stack is compared against a target model according to the spin-image

matching correlation procedure described in Section 2.3.1. The correspondences found

are then filtered using the similarity measure filter described in Section 2.3.2.

The remaining correspondences are used to create regions of interest within the scene.

The process of creating regions of interest involves a recursive search for valid

correspondences based on the location of the scene correspondences found so far. For

each filtered correspondence, the closest neighboring points within the scene that have

not already been checked are selected. Since only 10% of the points were checked so far,

a large fraction of the points (i.e. 90%) remain untested by the spin-image correlation

process. Spin-images are created for each of the closest oriented 3D points, correlated to

the target model spin-image stack and filtered by the extreme outlier threshold. The

remaining correspondences are filtered based on the similarity measure filter. For each
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new correspondence that passes the above filtering steps, its closest neighbors are

analyzed. This recursive process stops when no more closest neighbors exist that pass the

filtering procedure described above.

Given that a target exists within the scene, we expect several points on the target to be

chosen in the initial fraction of 10%. When the spin-images of these particular points are

compared to the spin-images of the target model, the correspondences formed should be

able to pass the similarity measure filter. This will result in a recursion on the

neighboring scene points, which are likely to be measurements of the target. The spin-

image creation and correlation process will repeat itself, until all the closest neighbors

that pass the filtering thresholds are found. Visually, this process will result in the growth

of a group of correspondences that will define a target ROI. For our target detection

experiments, the closest neighbor distance was set to 2 meters.

The ROIs obtained using the above algorithm can vary drastically in the number of

correspondences, correspondence values and surface area coverage. To discriminate

between the various ROIs, geometric consistency is used to remove unlikely

correspondences. (see Section 2.3.2). Each ROI that passes the geometric consistency

filter is rated with a goodness value that corresponds to its likelihood of matching the

target of interest. The ROI goodness of detection value is defined as:

N N
ROI GoD(s, m) = - C (6.1)

M _
where
N = # of correspondences after geometric consistency filter
M = # of correspondences before the geometric consistency filter
Ci= Correlation coefficient value as defined by Eq 2.4

The ROIs are then queued based on their goodness of detection value. The ROI with the

best GOD value is analyzed first by the recognition algorithm before proceeding to the

second best ROI and so on. For each ROI, the correspondences are filtered and grouped

according to Section 2.3.2. The resulting pose transformations are verified using the ICP

algorithm and assigned a VGOF value according to equation 2-11. The pose

transformation with the best VGOF is considered to be the final result of the scene ROI to

model comparison.

85



The above ROI detection process is repeated for each target model. For each known

target, a unique set of ROIs are found and analyzed to determine if a match exists. The

end-result of the comparison of a scene to a library of models will be a list of ROIs, each

matching a target model in a certain pose along with an ATR GoF that specifies the level

of confidence that the match is correct. The ATR GoF confidence measure is equivalent

to Pd as defined in equation 5.1.

6.2 Results & Discussion

Five extended terrain scenes recorded under the JIGSAW Phase-II data campaign were

used to test the ATD-ATR system. Each data set contained one or more known targets

and covered an area between 25x25 meters to I00x100 meters. Target truth in the form of

GPS location and target ID was known prior to data collection. Targets in the data set

were both out in the open and also underneath heavy canopy cover. Here is an

orthographic view of the original data sets used for target detection:

a) b)
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d)

e)
Figure 6-2: Orthographic perspective of five large-scale scenes used to test automatic target
detection. For some of the data sets, the trees have been cropped out in order to show the
obscured target. In each image, the white oval is used to pin point the location of the target
of interest. a) 25x25 meter measured scene of an HMMW under canopy cover. b) 100x100
meter measured scene of T72 in a tank yard from a sensor altitude of 450 meters. c) 25x25
meter measured scene of a T72 in a tank yard from sensor altitude of 150 meters. d) 25x25
meter measured scene of two M60 tanks. e) 100x100 meter measured scene of a T72
underneath heavy canopy cover, from a sensor altitude of 450 meters.

Each scene was sub-sampled using 20cm voxels. The resolution down sampling was

performed in order to reduce the computational complexity. To reduce computational

complexity further, the spin-image resolution was also reduced from the 10xi0 pixel

spin-images used for recognition to spin-images with only 5x5 pixels. Support distance
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remained constant at 2.5 meters, while the bin-size increased accordingly from 25cm to

50 cm to account for the 2x reduction in spin-image resolution. The support angle

remained the same at 90 degrees.

Each scene was compared to the target model library. For each ROI found in a particular

scene, an ATG GoD value was computed using Eq 6.1. The ROI's ATD GoD value was

normalized to the highest GoD value found between the scene and the target library.

Figure 6-3 shows a distribution of the normalized ATD GoD values of ROIs found from

all five tested scenes. The ROI distribution of ATD GoD values is divided between ROIs

that were considered false alarms and the ones that were considered true positives. A

false alarm is defined as a ROI that matches a target to background clutter or an ROI that

incorrectly matches a known scene target to the wrong target model. A true positive is

defined as an ROI found for a particular target model that encompasses the measurements

of a scene target, whose target truth matches the respective target model.
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Figure 6-3: Normalized ATD GoD ROI Distribution

For all five scenes in Figure 6-3, a true positive ROI had the largest ATD GoD value,

leading to a normalized ATD GoD value of 1. Thus for all five scenes, we were able to

correctly detect and identify a target instance. The M60s scene presented an interesting

case, where two identical M60-type targets existed within the scene. For this single-view
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scene, the ROI with the highest ATD GoD fell on the M60 target in the sensor's

foreground; the second M60 was also detected, but with a much lower normalized ATD

GoD value of 0.185. (corresponds in Figure 6-3 to the true positive under the 0.15-0.20

normalized ATD GoD bin) The large difference in GoD value for the two tanks in the

scene is not surprising: the M60 tank in the sensor foreground had about 5318

measurements while the M60 tank further down in range from the sensor had about 3676

measurements. Since the surface-matching algorithm is dependent on the scene resolution

for the creation, correlation and filtering of spin-images, a scene with variable resolution

will result in a bias towards objects in the sensor's foreground, which are bound to have a

higher spatial measurement resolution. Furthermore, the ATD GoD value is a function of

the sum of point-correspondence values and is directly affected by the number of

measurements on target. The M60s scene presents the following challenge in the

detection of multiple instances of a target object within a scene: one of the detected

object instances is bound to have a higher signal level than the rest, lowering the

confidence that the rest of the objects are valid detections of the same target object. In our

case, due to a lower resolution on the M60 that is down-range, the GoD confidence value

is smaller than the GoD value of the foreground M60, thus lowering our confidence that

the M60 tank in the background is a valid detection.

Ignoring the low-GoD true-positive result from the M60s scene, Figure 6-3 shows a good

separation between the distributions of false alarms and true positives. The two

distributions have a separation of approximately 0.33 in normalized ATD GoD space.

This indicates that we can accurately detect and identify the correct target from

background clutter and also identify the correct target from the library of known targets.

With a separation of almost 1/3 of the GoD value space, a detection threshold can readily

be set between the highest false alarm (at 0.671) and the lowest of the remaining true

positives GoDs (at 1.0).

Thus, even as a stand-alone algorithm, the ATD works exceptionally well. We will now

show the results of ATD coupled with ATR. Figure 6-4 show the distribution of

normalized ATR GoF values obtained after we ran the ATR algorithm on the detected

ROIs. From the distributions, we can discern that the most of the true positives mapped to
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a normalized ATR GoF value of 1. Again, the multiple M60s targets presented a

challenge with the background M60 tank mapping to a normalized ATR GoF of 0.24,

slightly higher than the 0.18 ATD GoD value. There is also a significant improvement in

the distribution of false alarms and true positive in the ATR GoF space as compared to

the ATD GoD space. Most of the ATD false alarms have been remapped from an ATD

GoD range of 0 to 0.67 to an ATR GoF range of 0 to 0.24. The re-mapping of false

alarms to lower ATR GoF values further increases the separation between the distribution

of false alarms and true positives. The larger separation between false alarms and true

positives represents an improvement in our ability to discern the correct target from

background clutter and other known targets. Therefore, the ATR value space is an

improvement over the ATD value space.
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Table 6-1 shows the time performance of the entire ATD and ATR system. The ATD-

ATR system was run on an Intel Pentium-4 Xeon at 2GHz. In Table 6-1, Stack Create

Time is the time taken to create the spin-image stack of the scene. The Average

ATD+ATR Time Per Model is the time used to detect ROIs for a model, and recognize

whether the ROI is a valid target model instance. The Average ATD+ATR Time Per
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Model also includes the contribution of the time taken to create the scene spin-image

stack, weighted down by the number of models in the library, since the scene stack is

computed only once and used for all the following target model comparisons. The last

column in Table 6-1 is the Average Detection + Recognition Time per Model as a

function of real time, where real time is defined as the data collection time. Overall, we

achieved a recognition time of approximately 1.5 minutes per model, which translates

into 9X real time.
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Avg. ATD+ATR Time for 20 cm sub-sampled scenes (in seconds) = 104.00
Average ATD+ATR Time per Model versus Real-time = 9.01 X

Table 6-1: ATD & ATR System Time Performance

In summary, our new ATD+ATR algorithm has demonstrated close to real time

performance and good detection and identification accuracy. Given its timing and

accuracy performance, the ATD+ATR system may have significant practical value to a

human operator for aided target recognition under battlefield conditions.
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Chapter 7: Conclusion

In this thesis research, we developed and implemented a fully automated target detection

and recognition system that uses geometric shape and size signatures from target models

to detect and recognize targets under heavy canopy and camouflage cover in extended

terrain scenes. In support of this ATD-ATR system, we have also developed a novel

method for data integration to register multiple scene views and obtain a more complete

3D surface signature of a target.

The ATD-ATR system performance was demonstrated on five measured scenes with

targets both out in the open and under heavy canopy cover, where the target occupied

between 1 to 10% of the scene by volume. The ATR section of the system was

successfully demonstrated for twelve measured data scenes with targets both out in the

open and under heavy canopy and camouflage cover. Correct target identification was

also demonstrated for targets with multiple movable parts that are in arbitrary

orientations. We achieved a high recognition rate (over 99%) along with a low false

alarm rate (less than 0.0 1%).

The major contribution of this thesis is that we proved that spin-image-based detection

and recognition is feasible for terrain data collected in the field with a sensor that may be

used in a tactical situation. We also demonstrated recognition of articulated objects, with

multiple movable parts. Considering the timing and accuracy performance, the ATD-

ATR system may have significant practical value to a human operator for aided target

recognition under battlefield conditions.

Immediate benefits of the presented work will be to the area of Automatic Target

Recognition of military ground vehicles, where the vehicles of interest may include

articulated components with variable position relative to the body, and come in many

possible configurations. Other application areas include human detection and recognition

for Homeland Security, and registration of large or extended terrain scenes.
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