
Algorithms for Verifying the Integrity of
Untrusted Storage

by

Ajay Sudan

Submitted to the Department of Electrical Engineering and Computer Science in
partial fulfillment of the requirements for the degrees of

Bachelor of Science in Computer Science and Engineering

and

Master of Engineering in Electrical Engineering and Computer Science

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

February 2004

() Massachusetts Institute of Technology 2004. All rights reserved.

Author
Department of Electrica1l/Vgineering and Computer Science

January 29, 2004

Certified by
Srinivas Devadas

Professor of Electrical Engineering and Computer Science
Thesis Supervisor

Accepted by -...........
Arthur C. Smith

Professor of Electrical Engineering and Computer Science
Chairman, Department Committee on Graduate Students

-MASSACHUSETTS INSTNE
OF TECHNOLOGY

JUL 2 0 2004

LIBRARIES ARCHIVES

2

-�1__1·11_11_1� 1

Algorithms for Verifying the Integrity of Untrusted Storage

by

Ajay Sudan

Submitted to the Department of Electrical Engineering and Computer Science
on January 29, 2004, in partial fulfillment of the

requirements for the degrees of
Bachelor of Science in Computer Science and Engineering

and
Master of Engineering in Electrical Engineering and Computer Science

Abstract
This work addresses the problem of verifying that untrusted storage behaves like
valid storage.. The problem is important in a system such as a network file system or
database where a client accesses data stored remotely on an untrusted server. Past
systems have used a hash tree-based checker to check the integrity of data stored on
untrusted storage. This method has high overhead as the tree must be traversed on
each load or store operation. In the offline approach, developed by Clarke et al. in
[6], multiset hashes are used to verify a sequence of load and store operations. The
overhead of this scheme is very low if checks are infrequent, but can be quite high if
checks are performed frequently. The hybrid scheme combines the advantages of the
two schemes and is efficient in most real world situations.

The various schemes were implemented on top of Berkeley DB, an embedded
database. Real world performance measurements were taken using OpenLDAP, a
lightweight directory service, which relies heavily on Berkeley DB. All read and writes
to the database were replaced with secure read and secure write operations. Using the
DirectoryMark LDAP test suite, the online scheme had an overhead of 113% when
compared to the an unmodified server, while the offline scheme with infrequent checks
(T=50000) resulted in 39% fewer DOPS. The offline scheme, however, outperformed
the online scheme by 31%, while the hybrid scheme outperformed the online scheme by
only 19%. In the worst case, when checks were frequent (T=500), the hybrid scheme
was 185% slower (65% fewer DOPS) than the online scheme. With frequent checks,
the offline scheme was 101% slower (50% fewer DOPS) than the online scheme.

Thesis Supervisor: Srinivas Devadas
Title: Professor of Electrical Engineering and Computer Science

3

4

_ _

Acknowledgments

This work was funded by Acer Inc., Delta Electronics Inc., HP Corp., NTT Inc., Nokia

Research Center, and Philips Research under the MIT Project Oxygen partnership,

and by DARPA through the Office of Naval Research under contract number N66001-

99-2-891702.

I would like to thank my thesis advisor, Srinivas Devadas, for his guidance, advice,

and support. His energy and enthusiasm were a catalyst for the many great ideas

which came out of our weekly "meetings," from which I was graciously excused after

the first 3.5 hours.

I am indebted to Dwaine Clarke and Edward Suh, my office mates, without whom

this thesis would not have been possible. Thank you both for being patient with

me, explaining your ideas clearly, answering my countless questions, and helping me

overcome any problems that I had.

I also greatly appreciate the support that I have received from all my friends and

family. Thank you to all those who kept checking in to make sure things were going

well. I am grateful to my roommate, Stuart Blitz, for driving me to and from my

office every morning at 9 AM during the subzero temperatures in January.

And finally, I would like to thank my parents and Emily Fuchs, my biggest fan,

for all their love and support and without whom I would not be where I am today.

5

6

_ _ __ _ �

Contents

Contents 7

List of Figures 11

1 Introduction 13

1.1 Overview 13

1.2 Related Work 14

1.3 Organization 15

2 Integrity Verification Schemes 17

3 Online Scheme 21

4 Offline Scheme 25

4.1 Introduction 25

4.2 Model 26

4.3 Bag Integrity Checking 27

4.3.1 Checker with Multiset Hashes and Time stamps 28

4.4 Integrity Checking of Random Access Storage 29

4.4.1 Dynamically-changing address space 32

4.5 Improved Offline Checker 35

5 Hybrid Scheme 39

5.1 Motivation for the hybrid checker 40

5.2 Partial-Hash Tree 42

7

5.3 Hybrid Checker

5.3.1 Hybrid Add and Remove operations

5.3.2 Space Considerations.

6 Implementation

6.1 Models and Assumptions

6.2 Design Goals and Metrics

6.3 Data Structures.

6.4 2-3 Trees .

6.4.1 Searching.

6.4.2 Insertion.

6.5 HashTree class

6.5.1 Qupules

6.5.2 Client-Server Synchronization

6.5.3 Hybrid Strategy .

6.6 Implementation Notes.

7 Performance

7.1 What is LDAP?

7.1.1 How LDAP directories work

7.1.2 OpenLDAP and BerkeleyDB

7.2 DirectoryMark Test Framework.

7.2.1 Platform.

7.2.2 Test Method .

7.2.3 Test Scenarios

7.2.4 DirectoryMark configuration.

7.3 DirectoryMark Results.

7.3.1 Checking frequency vs. performance . .

7.3.2 Effects of large data sets on performance

7.3.3 Search, add, modify, and compare operations .

8

42

44

45

49

50

51

52

52

53

54

54

55

55

56

57

59

59

60

60

61

61

61

62

62

63

64

66

67

....................................

..................

..................

..................

..................

..................

..................

..................

..................

........................

............

............

............

............

............

............

............

............

7.3.4 Loading over Protocol

8 Conclusion

8.1 Future Work

Bibliography

A Appendix

9

68

69

70

71

73

10

I _ _

List of Figures

2-1 A hybrid checker. There is an extra bit, called a STATUSBIT, associated

with each leaf node. STATUSBITs are always protected by the tree. If

a leaf node's STATUSBIT is 1, the data value is protected by the online

scheme; if a leaf node's STATUSBIT is 0, the data value is protected by

the offline scheme. 18

3-1 A binary (m = 2) hash tree. Each internal node is a hash of the

concatenation of the data in the node's children 22

4-1 Bag Offline Integrity Checking 28

4-2 Offline integrity checking of random access storage using a checked bag 31

4-3 Offline integrity checking of random access storage on a dynamically-

changing, sparsely-populated, address space 33

4-4 put and get operations 36

4-5 Offline integrity checking of random access memory 37

5-1 A hybrid checker. There is an extra bit, called a STATUSBIT, associated

with each leaf node. STATUSBITs are always protected by the tree. If

a leaf node's STATUSBIT is 1, the data value is protected by the online

scheme; if a leaf node's STATUSBIT is 0, the data value is protected by

the offline scheme. 40

5-2 Partial-hash tree 43

5-3 Hybrid Offline-Online RAS Checker (Hybrid Checker) 47

11

6-1 SecureDB Models 50

6-2 A 2-3 search tree. Data elements appear in the leaves while meta-data

is stored in interior nodes [5]. 53

7-1 Comparison of Offline and Hybrid Schemes for Various Checking Peri-

ods (T = 50000, 10000, 1000, 500, 100) 1000 entries. (longer bars are

better) 65

7-2 Comparison of Offline, Online, and Hybrid Schemes for 1000, 5000,

and 1000 Entries (T=10000). (longer bars are better) 66

7-3 Avg. Time for Add, Modify, and Compare Operations for 5000 and

10000 Entries (T=10000). 67

7-4 Avg. Time for Search Operations for 5000 and 10000 Entries (T=10000). 67

7-5 Time required to load 10000 entries over protocol (T=100000) 68

12

Chapter 1

Introduction

1.1 Overview

In today's networked world, users are increasingly trying to protect against attacks

from malicious adversaries. Large, remote, untrusted storage devices may be used

to house vast quantities of information. Ensuring that the data retrieved has been

stored correctly and has not been tampered with is a real-world problem. Previous

schemes of protecting the integrity of untrusted storage have relied on computationally

intensive algorithms relying on collision-resistant cryptographically secure hash trees.

These schemes are expensive and can have a debilitating effect on performance. More

efficient algorithms are needed if widespread adoption of such techniques is expected.

Corporations frequently outsource their data storage needs to third-party vendors

without any guarantee that the data is in fact being stored securely. The remote

storage servers may be placed in locations such that they are vulnerable to physi-

cal attacks, hardware malfunctions, or software attacks by a malicious third party.

Databases containing corporate information, social security and credit card numbers,

medical records, and credit histories may all be stored remotely. It is imperative that

the integrity of such data be verified prior to its use.

Integrity verification schemes are not only applicable to databases, but also to file

systems and even a computer's memory. A computer's RAM may be untrusted and

13

susceptible to attack. In applications such as certified execution, it is necessary to

ensure that the requested computation was executed correctly on the processor and

that the RAM behaved correctly. Tampering with memory can cause incorrect results

to be produced and may allow an adversary to circumvent protection mechanisms,

such as in DRM applications.

The goal of this thesis is to implement three different integrity verification schemes

to measure the amount of overhead incurred and gauge the relative performance

advantages of each scheme in a real-world application with real workloads.

1.2 Related Work

A number of systems have addressed the problem of verifying data stored on untrusted

storage. The Byzantine fault-tolerant system, BFS [4], relies on replication in order

to ensure the integrity of a network file system. BFS allows up to 1/3 of the servers

to be compromised, while still ensuring that any data read from the file system is

legitimate.

Other systems, such as SUNDR, do not require any replication, placing trust

requirements on the client side [14]. SUNDR and BFS also differ in their freshness

guarantees. SUNDR relies on large client-side caches and utilizes hash trees, which

are used to protect disk blocks at the file system level.

The OceanStore file system [1] assigns a unique "GUID" handle to each file. For

immutable files, the GUID is a collision-resistant cryptographic hash of the file's

contents. A client can verify the contents of the file using the GUID. For mutable

files, the GUID is the hash of a public key and username. The file's contents are

digitally signed with a private key corresponding to the GUID, which are mapped to

the file's name using SDSI. Unlike SUNDR which signs entire file systems, OceanStore

signs individual files and therefore may be susceptible to replay attacks.

SFSRO [8] provides secure read-only access to file systems without the use of

public key infrastructure. SFSRO replicates data on a number of untrusted servers,

and guarantees data integrity even if an adversary compromises any one of the read-

14

only servers.

Maheshwari's TDB uses hash trees and a limited amount of trusted storage to

create a trusted database on untrusted storage [13]. TDB employs hash trees and

validates the database against a collision-resistant root hash kept in trusted storage.

1.3 Organization

This thesis is structured as follows. Chapter 2 gives an overview of three different

algorithms for verifying the integrity of untrusted storage. Chapters 3-5 examine the

three algorithms in greater detail. First, online and offline schemes are explored in

Chapters 3 and 4, followed by an examination of a hybrid scheme in Chapter 5.

Once we have familiarized ourselves with the three schemes, in Chapter 6, we take

a look at the implementation details and issues that arise when putting theory into

practice.

Chapter 7 analyzes the three schemes using real-world performance benchmarks.

Finally, we wrap things up in Chapter 8 with some concluding remarks and sugges-

tions for future research.

15

16

Chapter 2

Integrity Verification Schemes

This thesis addresses the problem of verifying that untrusted storage behaves like

valid storage. Storage behaves like valid storage if the data value that a program

loads from a particular address is the same data that the program most recently

stored to that address. The problem is important in a system, such as a network file

system [14] or a database [13], where a client computer accesses data stored remotely

on an untrusted server.

Typically, systems use a hash tree-based checker to check the integrity of data

stored on the untrusted storage. A tree of hashes is maintained over the data, and

the root of the tree is kept in the client's protected store. On each store operation,

the path from the data leaf to the root is updated. On each load operation, the path

from the data leaf to the root is verified before the data is treated as valid. The

hash tree is used to check, after each load operation, whether the untrusted storage

performed correctly. Because of this, a checker which uses a hash tree is referred to

as an online checker.

In the offline approach, developed by Clarke et al. [6, 7, 18], the client uses

multiset hash functions [6] to efficiently log the minimum information necessary to

check its operations on the untrusted storage. Since only the minimum information

is collected at program runtime, the performance overhead of the scheme can be very

small and the offline scheme can be very efficient when integrity checks are performed

17

online

As o0 * 1,9 1,. 1,O 1, o0 1,

offline
time stamp time stamp time stamp

Figure 2-1: A hybrid checker. There is an extra bit, called a STATUSBIT, associated
with each leaf node. STATUSBITs are always protected by the tree. If a leaf node's
STATUSBIT is 1, the data value is protected by the online scheme; if a leaf node's
STATUSBIT is 0, the data value is protected by the offline scheme.

infrequently. However, because the checker needs to read all the pages it used to

perform the check, the scheme can perform poorly if checks are frequent.

The online checker can be combined with the offline checker to create a hybrid

online-offline checker. This approach is illustrated in Figure 2-1.

In the hybrid approach, the checker maintains both a hash tree and the offline

multiset hashes and timer. Data is initially stored in the hash tree. When the client

wants to perform a particular computation on a subset of the data in the storage, it

can either work on the data in an online fashion using the tree, or it can take the

data out of the tree and work on it in an offline fashion. When the client performs

an intermediate offline check, the client only needs to read addresses that were used

since the last intermediate check, rather than having to read all of the addresses it

used since the beginning of execution. If the intermediate offline integrity check is

successful, data can then be returned to the tree. Per-address STATUSBITS are used

to identify whether a particular data value is protected by the online or offline scheme.

When the client works on data in an offline fashion, the hash tree acts as a

repository for the data values, while the offline scheme gives the client some work

space for it to perform its computation. To work on a subset of the data in the

18

storage, the client checks the data out of the repository and operates on it in the work

space. When the client has completed the computation, it checks the computation's

operations, and then exports the result of the computation. The client can then

deposit the data back into the repository.

The client can dynamically employ several strategies during its execution that

would maximize its performance. For example, the client may protect data it uses

regularly with the offline scheme and protect data it uses rarely using the hash tree,

thereby reducing the number of addresses that are read to perform an offline integrity

check. Alternatively, if the client will regularly be exporting results during some part

of its execution, the client can protect the data using the online scheme, which has

less overhead when integrity checks are frequent. If the client performs a computation

for which it will not export a result for some time, the data that is being used can

be moved to the offline scheme, which performs better when integrity checks are less

frequent.

The security of the offline and hybrid approaches have been proven by Clarke et

al. in [6]. A client using the hybrid checker is guaranteed to detect the attack if the

data value it; loads from an address is not the most recent value it stored to that

address.

In the following chapters, we take a closer look at each of the three schemes.

19

20

Chapter 3

Online Scheme

The online scheme is referred to as such since the integrity of the untrusted storage

is verified after each load or store operation. The underlying data structure for the

online scheme is a hash tree, or Merkle tree [15]. In a hash tree, data is located at

the leaves of a tree. Each node contains a collision resistant hash of the data in the

child nodes. The root hash is stored in secure, tamper-resistant memory on the client

and is the only item which must be protected.

To check that a node or leaf in a hash tree has not been tampered with, on each

load operation, the path from the data leaf to the root is verified before the data is

treated as valid. On each store operation, the path from the data leaf to the root is

updated. Hash trees have been used for integrity checking in many systems such as

Duchamp, BFS, SFSRO, and TDB.

Clarke et al. describe the online algorithm in [6] as follows:

To check the integrity of a node in the tree, the checker:

1. reads the node and its siblings

2. concatenates their data together (a. P is the concatenation of strings a and /.)

3. hashes the concatenated data

4. checks that the resultant hash matches the hash in the parent.

21

The steps are repeated on the parent node, and on its parent node, all the way to the

root of the tree.

To update a node in the tree, the checker:

1. authenticates the node's siblings via steps 1-4 described previously.

2. changes the data in the node, hashes the concatenation of this new data with

the siblings' data, and updates the parent to be the resultant hash. This step

must be performed in a manner which makes changes to the node and its parent

visible simultaneously (using the cache in the checker, say).

Again, the steps are repeated until the root is updated.

root = h(hl.h2)

hl =h

V¼ V2 V3 V4

Figure 3-1: A binary (m = 2) hash tree. Each internal node is a hash of the concate-
nation of the data in the node's children.

Hash trees allow individual data values in an arbitrarily large amount of data to be

checked and updated securely using a small, fixed-sized, trusted hash in the checker.

On each FSM load, the checker checks the path from the leaf, corresponding to the

address containing the data, to the trusted root. On each FSM store, the checker

updates the path from the leaf to the trusted root. The number of accesses to the

untrusted storage on each FSM load or store is logarithmic in the size of the storage.

If the trusted hash were calculated directly over the data set, the overhead on each

FSM load would be linear, because the entire storage would have to be read on each

load.

22

With a balanced m-ary tree, the number of nodes to check on a FSM load is

logm(N), where N is the number of leaves of data to be protected. If the checker

frequently adds and deletes data values from the tree, steps may have to be taken to

ensure that the tree remains balanced to maintain this logarithmic overhead.

If the size of a leaf is the size of a hash, an m-ary hash tree allows integrity

verification with a per-bit space overhead of about ml 1 bits. For example, in [9], a

4-ary hash tree is used, with the lowest level hashes computed over 64-byte data value

blocks. Each hash is 128 bits (MD5 [17] is used for the hashes).

23

24

_ _

Chapter 4

Offline Scheme

The offline scheme was developed by Clarke et al. in [6] as an alternative to the

online tree-based scheme described above. This scheme is an extension of Blum's

offline memory correctness checking scheme [2] and is able to detect attacks by active

adversaries. Clarke et al. introduce the incremental multiset hash as the underlying

cryptographic tool for all offline operations. Building on the notion of bag integrity

checking, Clarke et al. use this primitive to build cryptographically secure integrity

checking schemes for random access memories and disks. In addition, Clarke et al.

also introduce a hybrid checker which combines the advantages of both the online

and offline schemes. The hybrid checker will be discussed further in Chapter 5.

The remainder of this chapter and the next contain an abbreviated explanation of

the offline and hybrid schemes, excerpted from [6, 7] by Clarke et al. A more detailed

treatment, including proofs and additional information on multiset hashes, can be

found in [6, 7].

4.1 Introduction

The offline approach is used to check whether untrusted storage performed correctly

after a sequence of operations is performed. The benefit of this approach is that there

is a constant overhead on the number of storage accesses on each program load or

25

store.

Offline integrity checking can be particularly efficient in an application like cer-

tified execution. In certified execution, a program is run on a processor, and the

processor produces a certificate proving that the computation was carried out in an

authentic manner on the processor and that the program produced a particular set of

results. In the application, the processor needs to know, at the end of the program's

execution, whether the RAM performed correctly. However, in the case the check

fails, it is not necessary to know which particular operation malfunctioned, or which

stored value was tampered with. Certifying executions can be important in applica-

tions like distributed computation, where an expensive computation is carried out by

several networked computers in a highly distributed manner. The person requesting

the computation must have some assurances that, when he receives results, the results

are of authentic program executions.

Offline integrity checking can also be useful in memory-constrained devices, since

a hash tree is not required and the memory checking code and its resources (stack

and heap) can be smaller. There is some space overhead to store time stamps, but it

is typically smaller than the overhead of storing a tree of hashes.

4.2 Model

In our model, there is a checker that keeps and maintains some small, fixed-sized,

trusted state. The untrusted storage is arbitrarily large. The finite state machine (FSM)

generates loads and stores and the checker updates its trusted state on each FSM load

or store to the untrusted storage. The checker uses its trusted state to verify the in-

tegrity of the untrusted storage. The trusted computing base (TCB) consists of the

FSM, and the checker with its trusted state. For example, the FSM could be a proces-

sor. The checker would be special hardware that is added to the processor to detect

tampering in the external memory.

The checker checks if the untrusted storage behaves correctly, i.e., like valid stor-

age. Storage behaves like valid storage if the data value that the checker reads from a

26

particular address is the same data value that the checker had most recently written

to that address. In our model, the untrusted storage is assumed to be actively con-

trolled by an adversary. The untrusted storage may not behave like valid storage if

the storage has malfunctioned because of errors, or if it has been somehow altered by

the adversary.

For this problem, a simple solution such as calculating a message authentication

code (MAC) of the data value and address, writing the (data value, MAC) pair

to the address, and using the MAC to check the data value on each read, does

not work. The approach does not prevent replay attacks: an adversary can replace

the (data value, MAC) pair currently at an address with a different pair that was

previously written to the address. The essence of an offline checker is that a "log"

of the sequence of FSM operations is maintained in fixed-sized trusted state in the

checker.

4.3 Bag Integrity Checking

We introduce bag integrity checking as our primitive for thinking about offline in-

tegrity checking. The scenario consists of the checker and a bag. The bag is the

untrusted storage and the checker performs two operations on the bag:

* put: the checker puts an item into the bag

* take: the checker takes an item out of the bag.

The checker is interested in whether the bag behaves correctly. A bag behaves

correctly if it behaves as a valid bag, a bag in which the sequence of puts and takes

performed by the checker is a valid history for the bag (i.e., only the checker has

manipulated the bag with put and take operations).

27

The checker's fixed-sized state is:

Figure 4-1: Bag Offline Integrity Checking

4.3.1 Checker with Multiset Hashes and Time stamps

This solution is described in Figure 4-11. The checker maintains multiset hashes and

has a counter. The checker increments the counter each time it puts a set of items2

into the bag, and appends the new value of the counter (a time stamp) to each item

'We assume that take(P) is a deterministic function that removes all of the items in the bag
that match predicate P and returns them to the caller; take(true) removes all of the items currently
in the bag and returns them to the caller.

2 Recall that, in a set, each element is distinct.

28

* 2 multiset hashes: PUTHASH and TAKEHASH. Initially both multiset hashes
are 0:

* 1 counter: TIMER. Initially TIMER is 0.

* 1 flag: ERROR. Initially ERROR is false.

put(7,) puts a set of items Is into the bag:

1. Increment TIMER.

2. For each item CE I, put the pair, (item, TIMER), into the bag.

3. For each item E IS, update PUTHASH: PUTHASH

+,= hash((item, TIMER)).

take(P) takes the multiset of items that match the predicate P from the bag:

1. Take all pairs that match P from the bag.

2. If, for any pair, (item, T), we have T>TIMER, then set ERROR to true.

3. update TAKEHASH: TAKEHASH +,= hash((item, T)).

check() returns true if, (i) the bag has behaved correctly (as a valid bag) and,
(ii) the bag is empty, according to the bag's history of accesses:

1. If PUTHASH -, TAKEHASH is false or ERROR is true then return
false.

2. Reset TIMER to zero (this is an optimization).

3. Return true.

as it puts it into the bag. When the checker takes a multiset of items from the bag,

for each item, it checks that the time stamp on the item is less than or equal to the

current value} of the counter.

The time stamp is included with the item when the multiset hashes are updated.

The checker uses time stamps to help check that items it takes from the bag have

been put into the bag by the checker at an earlier time.

Note that the put pairs that are added to PUTHASH are added by the checker and

thus, we are guaranteed that they will form a set. The adversary can control the take

pairs, and thus, take pairs can be duplicated. The set-collision resistance property

implies that it is computationally infeasible to find a multiset of take pairs different

from the set of put pairs that will result in PUTHASH being equal to TAKEHASH at

the end of an integrity check.

The FSM uses the checker as an interface to the bag. The checker performs the put

and take operations for the FSM as described in Figure 4-1. When the FSM wants to

check the integrity of the bag, it tells the checker to take all of the items out of the bag

(take(true)). At this point, the FSM performs a checker check operation. The check

operation returns true if all of the time stamp checks have passed and PUTHASH is

equal to TAKEHASH. If the check operation returns true, the FSM knows that the

bag has behaved correctly and is empty (according to the bag's history of accesses).

So, by asking the checker to compare the put hash and the take hash, the FSM

determines whether the bag's history is valid.

With the checker's put and take operational primitives, we can build more complex

operations for more complex data structures. Section 4.4 demonstrates how this can

be done for random access storages, such as RAM and disks.

4.4 Integrity Checking of Random Access Storage

In Section 4.3, we developed a bag checker. It makes a checkable bag from an untrusted

bag. Its interface is made of three functions: put(S), which places all the elements in

the set S into the untrusted bag; take(P), which takes all the elements that match

29

predicate P from the untrusted bag; check() which returns true if and only if the

untrusted bag has behaved correctly and is empty according to its history of accesses

(i.e., if PUTHASH - TAKEHASH and all the time stamp checks passed).

We now show how a checked bag can be used to create checked random access stor-

age (RAS). We call this algorithm the offline algorithm because checks are performed

after a sequence of storage accesses, rather than on each storage access.

Definition 1. Checked Random Access Storage is a primitive that provides the fol-

lowing interface: store(a,v) stores data value v at address a. load(a) returns the

data value that is stored at address a. checkRAS() returns true if and only if for each

address a and each load from a, the load returned the data value that was most

recently placed by store at address a.

Figure 4-2 shows how to produce checked random access storage from a checked

bag. Essentially, the random access storage is simulated by placing (address, data value)

pairs in a checked bag. Therefore we must maintain the invariant, which we term

the RAS invariant, that there is always exactly one pair in the bag for each address,

according to the bag checker's operations on the bag. During initialization, a pair is

placed in the bag for each address. To perform a load, the pair for the desired address

is taken from the bag, inspected, and then put back into the bag (to maintain the

RAS invariant). To perform a store, the pair previously in the bag for that address

is taken from the bag, and replaced by the new pair. To check the bag, we empty it

into a fresh bag, and once the old bag is empty, we check it before throwing it out.

In real life, the untrusted bag that the checked bag is based on is actually im-

plemented with some untrusted random access storage (RAM or block storage for

example). This untrusted bag is being accessed by the bag checker when we access

the checked bag. Takes and puts of (address, data value) pairs to the checked bag

result in takes and puts of (address, data value, time stamp) triples to the untrusted

bag. If the untrusted bag behaves correctly, the invariant that there is exactly one

(address, data value) pair per address carries over to (address, data value, time stamp)

triples in the untrusted bag. Therefore, it is possible to implement the untrusted bag

30

Let Pa be a predicate that returns true on a pair (a', v) for which a = a'. To pro-
duce checked random access storage, we use a checked bag, in which we will place (ad-
dress, data value) pairs. We will arrange to always have exactly one pair per address in
the bag, according to the bag checker's operations on the bag. Therefore, we will assume
that take(Pa) always returns exactly one pair (we can add an explicit check for this and
set an ERROR flag if this does not happen).

Initialization the bag must be filled at startup.

1. put(S) into the checked bag, where S is a set of (address, data value) pairs
that represents the initial state of the checked random access storage.

store(a, v) stores v at address a in the checked random access storage.

1. take(Pa) on the checked bag.

2. put(a, v) into the checked bag.

load(a) loads the data value at address a from the checked random access storage.

1. (., v) =take(Pa) on the checked bag.

2. put(a, v) into the checked bag.

3. Return v to the caller.

checkRAS() returns true if and only if the storage has behaved correctly up until now.

1. Create a temporary checked bag T (call the current checked bag B).

2. S =take(true) from B.

3. If check() on B is false, then return false (the check failed).

4. put(S) into T.

5. B = T.

6. Return true.

Note that steps 2 and 4 involve a set S that is huge. In an actual implementation,
we would merge both steps, putting items into T as soon as they were removed
from B.

Figure 4-2: Offline integrity checking of random access storage using a checked bag

using untrusted random access storage by storing (address, data value, time stamp)

triples as (data value, time stamp) pairs stored at an address that is proportional to

the address from the triple.

31

Unfortunately, when we implement the untrusted bag using untrusted random

access storage, we implicitly limit the range that the time stamp can take. Conse-

quently, it will be necessary to call checkRAS on the checked random access storage

each time the time stamp reaches its maximum value. When checkRAS replaces the

checked bag that is in use by a fresh one, we replace the high time stamp from the

old bag by a low one in the new bag.

The advantage of this offline RAS checker over an integrity checker using a hash

tree is that there is a constant overhead per FSM load and store, as compared with the

logarithmic overhead of using a hash tree. However, the offline approach does require

that all of the addresses that the FSM used be read whenever an integrity check

is desired. (In Section 5, we optimize this requirement with a hybrid online-offline

approach.)

In the following subsections, we explore the implementation issues involved in

checking dynamically-changing, sparsely-populated address spaces.

4.4.1 Dynamically-changing address space

Thus far, we have looked at the problem of checking the integrity of fixed-sized RAS.

However, in practice, it is often desirable to check a RAS with a dynamically-changing,

sparsely-populated, address space.

To enable a dynamically-changing address space, we augment the RAS interface

with two methods: add(S), and remove(a). add(S) calls put(S) to put, S, a set

of (address, data value) pairs, into the bag; remove(a) calls take(Pa) on the bag.

Moreover, we arrange to set an ERROR flag if take(Pa) does not return a singleton

set, as was assumed in Figure 4-2; if the ERROR flag is set, checkRAS returns false3 .

The augmented interface is shown in Figure 4-3.

If, during the FSM's execution, the FSM wishes to increase its address space (for

example, when the program increases its heap size), the FSM calls add on the new

3In an actual implementation, if the FSM performs an operation that causes take to be performed
on an address that is not in the bag, an entry that is not currently in the bag is read from the
RAS. Therefore check will return false, and thus, checkRAS will return false. Also, in an actual
implementation, take(Pa) will not return a set or multiset with two or more elements.

32

add(S) adds S, a set of (address, data value) pairs, to the address space.

1. put(S) into the checked bag.

remove(a) removes address a from the address space.

1. take(Pa) on the checked bag.

store(a, v) stores v at address a in the checked random access storage.

1. take(Pa) on the checked bag.

2. put(a, v) into the checked bag.

load(a) loads the data value at address a from the checked random access storage.

1. (, v) =take(Pa) on the checked bag.

2. put(a, v) into the checked bag.

3. REteturn v to the caller.

checkRAS() returns true if and only if the storage has behaved correctly up until now.

1. Create a temporary checked bag T (call the current checked bag B).

2. M =take(true) from B.

3. If check() on B is false, then return false (the check failed).

4. If check returned true, it means a set, as opposed to a multiset, of (a, v)
pairs was read in step 2. Thus, we refer to this set as S. add(S) into T.

5. 13 = T.

6. Rleturn true.

Note that steps 2 and 4 involve a set S that is huge. In an actual implementation,
we would merge both steps, putting items into T as soon as they were removed
from B3.

Also, if take(P) does not return a singleton set, an ERROR flag is set; if the
ERROR flag is set, checkRAS returns false.

Figure 4-3: Offline integrity checking of random access storage on a dynamically-
changing, sparsely-populated, address space

addresses. The FSM can then store and load from the larger address space. If, during

the FSM's execution, the FSM wants to decrease its address space, the FSM calls

33

remove on each of the addresses that will no longer be used. The FSM then stores

and loads from the smaller address space. Only the addresses in the FSM's current

address space are traversed during a checkRAS operation. This approach for checking

the integrity of a dynamically-changing address space is much simpler than checking

the integrity of the space using a hash tree, which could require re-balancing the tree.

As we are now considering sparsely-populated address spaces, we re-define the

RAS invariant to be that, according to the bag checker's operations on the bag, no

put operation is performed on an address that is already present in the bag, and no

take operation is performed on an address that is not present in the bag. It is possible

for the FSM to use the checked RAS in a way that is not well-defined (by adding

the same address twice, for example). Therefore, we will be particularly interested

in FSMs whose implementations always maintain the RAS invariant on correctly-

behaving RAS. We call this property the FSM requirement. The FSM maintains

whatever data structures it needs to meet the FSM requirement4 in either trusted or

checked storage. We note that if the FSM requirement is met and the bag behaves

like a valid bag, then the RAS invariant is maintained.

The addresses the FSM uses may be any arbitrary subset of the addresses in

the storage. When an untrusted bag is implemented using RAS, as described in the

beginning of Section 4.4, where (address, data value, time stamp) triples are stored

as (data value, time stamp) pairs, there is the issue of determining which addresses

to read in step 2 of a checkRAS function call. Implicitly, it is the untrusted bag's

job to keep track of these addresses. As an example, the bag could use a bitmap (an

extra bit per address) to keep track of the addresses the FSM uses5 . We note that

the bitmap does not have to be protected because it is an internal structure to the

untrusted bag: check() returns true if and only if the untrusted bag has behaved

correctly and is empty according to its history of accesses.

4For example, the pointer to the top of the heap.
5If the offline scheme is used to protect a process's virtual memory space, this bitmap could be

the valid bits in a page table; in this case, addresses would be added or removed from the address
space a page at a time.

34

4.5 Improved Offline Checker

We now take a look at a slightly modified version of the offline checker. In this

improved checker, the TIMER is not incremented on every load and store operation.

Rather, the 'TIMER is incremented only on each put operation, allowing time stamps

to be smaller without increasing the frequency of checks.

Figure 4-4 shows the basic put and get operations that are used internally in the

checker. Figure 4-5 shows the interface the FSM calls to use the offline checker to

check the integrity of the memory.

In Figure 4-4, the checker maintains two multiset hashes and a counter. In mem-

ory, each data value is accompanied by a time stamp. Each time the checker performs

a put operation, it appends the current value of the counter (a time stamp) to the data

value, and writes the (data value, time stamp) pair to memory. When the checker

performs a get operation, it reads the pair stored at an address, and, if necessary,

updates the counter so that it is strictly greater than the time stamp that was read.

The multiset hashes are updated (+,) with (a, v, t) triples corresponding to the pairs

written or read from memory.

Figure 4-5 shows how the checker implements the store-load interface. To ini-

tialize the RAM, the checker puts an initial value to each address. When the FSM

performs a store operation, the checker gets the original value at the address, then

puts the new value to the address. When the FSM performs a load operation, the

checker gets the original value at the address and returns this value to the FSM; it

then puts the same value back to the address. To check the integrity of the RAM at

the end of a sequence of FSM stores and loads, the checker gets the value at each

address, then compares WRITEHASH and READHASH. If WRITEHASH is equal to

READHASH, the checker concludes that the RAM has been behaving correctly.

Because the checker checks that WRITEHASH is equal to READHASH, substitution

(the RAM returns a value that is never written to it) and replay (the RAM returns a

stale value instead of the one that is most recently written) attacks on the RAM are

prevented. The purpose of the time stamps is to prevent reordering attacks in which

35

Figure 4-4: put and get operations

RAM returns a value that has not yet been written so that it can subsequently return

stale data. Suppose we consider the put and get operations that occur on a particular

address as occurring on a timeline. Line 3 in the get operation ensures that, for each

store and load operation, each write has a time stamp that is strictly greater than

all of the time stamps previously read from memory. Therefore, the first time an

adversary tampers with a particular (data value, time stamp) pair that is read from

memory, there will not be an entry in the WRITEHASH matching the adversary's

entry in the READHASH, and that entry will not be added to the WRITEHASH at a

later time.

The TIMER is not solely under the control of the checker, and is a function of what

is read from memory, which is untrusted. Therefore, the WRITEHASH cannot be

guaranteed to be over a set. For example, for a sequence of store and load operations

occurring on the same address, an adversary can decrease the time stamp that is

stored in memory and have triples be added to the WRITEHASH multiple times. The

READHASH can also not be guaranteed to be over a set because the adversary controls

the pairs that are read from memory. Thus, set-collision resistance is not sufficient,

36

The checker's fixed-sized state is:

* 2 multiset hashes: WRITEHASH and READHASH. Initially both hashes are 0.

* 1 counter: TIMER. Initially TIMER is 0.

put(a, v) writes a value v to address a in memory:

1. Let t be the current value of TIMER. Write (v, t) to a in memory.

2. Update WRITEHASH: WRITEHASH +7-= hash(a, v, t).

get(a) reads the value at address a in memory:

1. Read (v, t) from a in memory.

2. Update READHASH: READHASH +,= hash(a, v, t).

3. TIMER = max(TIMER, t + 1).

_ _

Figure 4-5: Offline integrity checking of random access memory

and we require multiset-collision resistant hash functions.

The original offline checker differs from the improved checker in that the TIMER is

incremented on each put operation and is not a function of what is read from memory.

The TIMER is solely under the control of the checker. This means that the pairs that

are used to update WRITEHASH form a set. Therefore set-collision resistance is

sufficient. Our offline checker improves on the original checker because TIMER is not

incremented on every load and store operation. Thus, time stamps can be smaller

without increasing the frequency of checks, which improves the performance of the

checker.

37

initialize() initializes RAM.

1. put(a, 0) for each address a.

store(a,v) stores v at address a.

1. get(a).

2. put(a,v).

load(a) loads the data value at address a.

1. v = get(a). Return v to the caller.

2. put(a,v).

check() checks if the RAM has behaved correctly (at the end of operation).

1. get(a) for each address a.

2. If WRITEHASH is equal to READHASH, return true.

$

38

---- 1

Chapter 5

Hybrid Scheme

In Section 4.3, we constructed a checked bag, with the interface put(IZ), take(P),

and check()1 , from an underlying untrusted bag, whose interface was standard bag

put(Im) and take(P) operations2 . In Section 4.4, we used the checked bag to con-

struct a checked random access storage (RAS), with the interface add(S), remove(a),

store(a, v), load(a), and checkRAS()3 . We refer to the interface to the checked bag

as a bag checker and the interface to the checked RAS as an offline RAS checker

(offline checker).

In this section, we will introduce a hybrid RAS checker (hybrid checker), with the

operations:

hybrid-moveToOffline(a), hybrid-store(a, v), hybrid-load(a), and hybrid-checkRAS (Y).

Figure 2-1 illustrates a hybrid checker. To construct the hybrid checker, we use the

checked RAS, and a variant of the hash tree described in Chapter 3, which we call a

partial-hash tree. Partial-hash trees are described in Section 5.2.

1In this section, we will refer to these operations as cbag-put(I 5), cbag-take(P) and
cbag-check().

2In this section, we will refer to these operations as ubag-put(Im) and ubag-take(P); Im denotes
a multiset of itsems.

3In this section, we will refer to these operations as offline-add(S), offline-remove(a),
offline-store(a, v),
offline-load(a), and offline-checkRAS().

39

online

0 , 1, 1 , 0 1, 0*

offline I
time stamp time stamp time stamp

Figure 5-1: A hybrid checker. There is an extra bit, called a STATUSBIT, associated
with each leaf node. STATUSBITs are always protected by the tree. If a leaf node's
STATUSBIT is 1, the data value is protected by the online scheme; if a leaf node's
STATUSBIT is 0, the data value is protected by the offline scheme.

5.1 Motivation for the hybrid checker

One of the disadvantages of the offline checker in Section 4.4 is that all of the ad-

dresses that the FSM used since the beginning of its execution must be read during

each offline-checkRAS operation; otherwise, even if the RAS were behaving like

valid RAS, the underlying untrusted bag would not be empty and the cbag-check

operation would fail. This approach is feasible for RAM or small disks, but imprac-

tical for large-scale storage in file systems or databases. For large scale storage, it

is desirable to use a scheme in which the FSM would only need to read addresses it

used since the last integrity check when it is performing its current integrity check.

The second disadvantage of the offline checker is that, if integrity checks are fre-

quent, the offline checker can perform worse than the online checker, because of the

overhead it incurs reading the addresses it used since the beginning of its execution

to perform the integrity check. It is desirable to construct a checker which could take

advantage of the benefits of both the online and offline checkers; the FSM could use

this checker to maximize its performance during its execution.

40

We propose using a hybrid RAS checker to address these issues. In the hybrid

approach, the checker maintains both a hash tree and the offline multiset hashes and

timer. Data is initially stored in the tree. The idea is that, when the FSM wants to

perform a particular computation on a subset of the data in the storage, it can either

work on the data in an online fashion using the tree, or it can take the data out of the

tree, and work on it in an offline fashion. When the FSM performs an intermediate

offline integrity check, the FSM only needs to read addresses that were used since the

last intermediate check, instead of having to read all of the addresses it used since

the beginning of its execution. If the intermediate offline integrity check is successful,

data can then be returned to the tree.

With respect to when the FSM works on data in an offline fashion, the hash tree

can be seen as acting as a repository for the data values, and the offline scheme gives

the FSM some work space for it to perform some computation. To work on a subset

of the data in. the storage, the FSM checks the data out of the repository and operates

on it in the work space. When the FSM has completed the computation, it checks

the computat;ion's operations, and then exports the result of the computation. The

FSM can then deposit the data back into the repository.

The FSM can dynamically employ several strategies during its execution that

would maximize its performance. As an example of a strategy the FSM might employ,

if there is data the FSM regularly uses and data it uses rarely, it can protect the data

it uses regularly with the offline scheme, and protect the data it uses rarely using the

hash tree; this can reduce the number of addresses that are read to perform an offline

integrity check. As a second example of an FSM strategy, if, during some part of its

execution, the FSM will be regularly exporting results, the FSM can protect the data

using the online scheme, which has a smaller overhead when integrity checks are very

frequent; if, during some other part of its execution, the FSM performs a computation

for which it will not export a result for some time, the data that is being used can

be moved to the offline scheme, which performs better when integrity checks are less

frequent.

41

5.2 Partial-Hash Tree

Besides the checked RAS developed in Section 4.4, we also use a partial-hash tree to

develop the hybrid checker. A partial-hash tree is similar to a hash tree, except that

there is an extra bit associated with each leaf node (recall that the leaf nodes contain

data in a hash tree). The extra bit, which we refer to as a STATUSBIT, is always

protected by the tree.

If a leaf node's STATUSBIT is set (equal to '1'), the leaf node is protected by the

tree, and said to be 'present' in the tree. If a leaf node's STATUSBIT is not set (equal

to '0'), the leaf node is not protected by the tree, and is said to be 'not present' in

the tree.

The partial-hash tree interface has the following operations: pht-isAddressPresent(a),

pht-moveToTree(a, v), pht-moveFromTree(a), pht-store(a, v), and pht-load(a); the

interface is described in Figure 5-2. The operations pht-store(a, v), and pht-load(a)

simply call online-store(a, v), and online-load(a) respectively; online-store(a, v),

and online-load(a) are the hash tree store and load operations described in Chap-

ter 3.

Considering the layout of the tree, an address and its STATUSBIT can be protected

by the same hash when the address is present in the tree. When the address is not

present in the tree, the hash protects the STATUSBIT.

5.3 Hybrid Checker

The interface for the hybrid checker is shown in Figure 5-3. At first, we consider a

fixed-sized RAS. The operations are: hybrid-moveToOffline(a), hybrid-store(a, v),

hybrid-load(a), and hybrid-checkRAS(Y).

hybrid-moveToOffline(a) checks the integrity of the data value in address a

in the tree, and moves the data from the protection of the tree to the protection

of the offline scheme. hybrid-store(a, v) first reads (but does not check) a's STA-

TUSBIT in the partial-hash tree. If it is 1, it checks the STATUSBIT and performs

42

pht-isAddressPresentInTree(a) returns true if and only if address a is present in the
tree.

1. check the integrity of the STATUSBIT pertaining to address a in the manner
described in Chapter 3.

2. if the STATUSBIT is 1, return true. If it is 0, return false.

pht-moveToTree(a, v) move address a to the partial-hash tree, and set its value to be v.

1. update the STATUSBIT pertaining to address a, in the manner described in
Chapter 3, to be 1.

2. update the appropriate nodes so that the leaf node for address a is protected
by the tree and has the value v. The nodes are updated in the manner
described in Chapter 3. (This step can be performed at the same time as the
previous step, so that the logarithmic cost of using the hash tree is incurred
once.)

pht-moveFromTree(a) remove address a from the partial-hash tree.

1. update the STATUSBIT pertaining to address a, in the manner described in
Chapter 3, to be 0.

2. update the appropriate nodes so that the internal nodes of the tree no longer
protect the leaf node for address a. The nodes are updated in the manner
described in Chapter 3. (This step can be performed at the same time as the
previous step, so that the logarithmic cost of using the hash tree is incurred
once.)

pht-store(a, v) stores v at address a.

1. online-store(a, v)

pht-load(a) loads the data value at address a.

1. v = online-load(a)

2. Return v to the caller.

Figure 5-2: Partial-hash tree

an online store; if it is 0, it performs an offline store. hybrid-load performs sim-

ilarly. hybrid-checkRAS(Y) checks the data protected by the offline scheme. Ad-

dresses specified in Y are moved back to the protection of the online scheme. If the

43

offline-checkRAS call in hybrid-checkRAS returns true, hybrid-checkRAS returns

true; otherwise, hybrid-checkRAS returns false.

Compared with the checked RAS described in Section 4.4, the new adversarial

attack we must consider is that an adversary can change the STATUSBIT of an address

from 1 to 0 and alter the data value corresponding to the address in the offline scheme.

Because the STATUSBIT is not checked if it is 0, the FSM could do an offline load (or

offline store) on this value, when it should have done an online load (or online store).

However, it can be proven that this attack, and other attacks on the storage, will be

detected by the hybrid checker.

As described in Section 4.4.1, there is the issue of determining which addresses to

read in step 2 of the offline-checkRAS call in hybrid-checkRAS. Again, we argue

that it is the underlying untrusted bag's job to keep track of these addresses, and thus,

the data structures used to maintain this information do not have to be protected.

One possibility is to maintain an extra bit per hash tree node. These bits are all ini-

tially one. When an address is moved to the offline scheme in hybrid-moveToOffline,

the bits from the address's leaf node to the root are set to 0. In hybrid-checkRAS,

the tree is traversed in either a depth-first or breadth-first manner to determine which

addresses are in the offline scheme. The appropriate bits are reset to 1 when addresses

are moved back into the online scheme.

5.3.1 Hybrid Add and Remove operations

The operations hybrid-add(a, v, f) and hybrid-remove(a) could be added to the

interface in Figure 5-3. hybrid-add adds an address to the online scheme if f (flag)

is 1, and to the offline scheme if f is 0. hybrid-remove checks to determine if the

address to be removed is in the online or offline scheme; the address is then removed

from the appropriate scheme.

* For hybrid-add,

- If the address is being added to the protection of the online scheme, the

appropriate nodes for the address and its STATUSBIT are added to the

44

partial-hash tree, with the STATUSBIT being set to 1. The address can be

operated on with hybrid-store and hybrid-load. The address's value

can be moved to the offline scheme using hybrid-moveToOffline.

- If the address is being added to the protection of the offline scheme, it

is added as described in Section 4.4.1. The appropriate nodes for the

STATUSBIT and leaf node for the address are added to the tree, with the

STATUSBIT being protected by the tree and set to 0. The address can be

operated on with hybrid-store and hybrid-load. hybrid-checkRAS can

be used to move the address's value to the online scheme.

* For hybrid-remove,

- If the address to be removed is currently being protected by the online

scheme, the appropriate nodes for the address and its STATUSBIT are re-

moved from the partial-hash tree.

- If the address to be removed is currently being protected by the offline

scheme, it is removed with respect to one of the manners described in

Section 4.4.1. The appropriate nodes for the address and its STATUSBIT

are removed from the partial-hash tree.

5.3.2 Space Considerations

We provide some discussion on the space layout of the hybrid scheme. To implement

the hybrid scheme the layout of data values, STATUSBITS, hashes and time stamps

should be determined. Data values should be stored at the addresses, as usual.

Given an address, it should be easy for the checker to compute the location of its

STATUSBIT. When the checker reads either the data value at an address or the

address's STATUSBIT, it is likely to be more efficient if the checker reads both from

the storage together.

Given an address it should be easy for the checker to compute the location of its

time stamp. Also, given a node in the hash tree, it should be easy for the checker to

45

compute the location of its parent.

For memory, one possible space layout would be for the part of the storage that

is addressable by the FSM (i.e., the part which would store data values) to be at

the top of the storage. The non-FSM-addressable part of the storage would contain

STATUSBITs, internal hash tree nodes, and time stamps. For storage in a file system

or database, the STATUSBITs and time stamps could be part of a data object's meta

data. The internal hash tree nodes could be in the non-FSM-addressable part of the

storage.

Compared with the hash tree described in Chapter 3, the extra space overhead

is the STATUSBITS and time stamps. As described in [6], the size of a time stamp

can be small, relative to the size of a hash. Thus, the space overhead of the hybrid

scheme should not be much larger than that of the online scheme.

46

hybrid-moveToOffline(a) move address a to the offline scheme.

1. Call pht-isAddressPresentInTree(a).

(a) If false, a is already present in offline scheme. Thus, simply return to the caller.

(b) If true, a is present in online scheme. a must be moved to the offline scheme.

i. Call v = pht-load(a) to check integrity of the data value stored at a.

ii. Call v = pht-moveFromTree(a). (Steps can be performed at the same time,
using a cache, so logarithmic cost of using the hash tree is incurred once.)

iii. Call offline-add(a,v).

hybrid-store(a, v) stores v at address a.

1. Read STATUSBIT pertaining to address a. If STATUSBIT is 1, a is in the online scheme.

(a) Call pht-isAddressPresentInTree(a). If it returns true, continue; otherwise,
return an error to the caller.

(b) pht-store(a, v). (Step can be performed at the same time as the previous step
so logarithmic cost of using the hash tree is incurred once.)

2. if the STATUSBIT is 0, a is in the offline scheme.

(a) Call off line-store(a,v).

hybrid-load(a) loads the data value at address a.

1. Read STATUSBIT pertaining to address a. If STATUSBIT is 1, a is in the online scheme.

(a) Call pht-isAddressPresentInTree(a). If it returns true, continue; otherwise,
return an error to the caller.

(b) v = pht-load(a). (Step can be performed at the same time as the previous step
so logarithmic cost of using the hash tree is incurred once.)

(c) Return v to the caller.

2. if the STATUSBIT is 0, a is in the offline scheme.

(a) Call v = offline-load(a, v).
(b) Return v to the caller.

hybrid-checkRAS(Y) returns true if and only if the storage (currently being used by the offline
scheme) has behaved correctly; each of the addresses in Y is moved back into the tree.

1. Call offline-checkRAS(). In Step 4 of offline-checkRAS, if a E Y, do not put it
into bag T. Instead,

(a) Call pht-moveToTree(a, v), where v is the data value at a.

2. If Step 1 returned true, return true; otherwise return false.

Figure 5-3: Hybrid Offline-Online RAS Checker (Hybrid Checker)

47

48

__ _

Chapter 6

Implementation

Now that we are familiar with the various schemes for integrity verification, we will de-

scribe an implementation of all three schemes and measure their relative performance

advantages. Integrity verification is relevant in several different contexts including

untrusted memory, network file systems, and databases. Previous experiments [10]

have presented hardware mechanisms to verify the integrity of memory in a secure

processor.

We will now examine the software architecture of SecureDB, an implementation of

the three integrity verification schemes as they are applied to databases. SecureDB is a

C++ library which can be quickly and easily incorporated into any application which

currently makes use of the Berkeley DB embedded database. SecureDB provides

secure get() and put() operations which will verify the integrity of all data stored

in a database. It can be configured to use the online, offline, or hybrid schemes

for integrity verification. SecureDB is compatible with the Berkeley DB API 4.1.25

and simply requires that all Berkeley DB get() and put() calls be replaced with calls

to SecureDB's sget() and sput() calls, respectively. Like Berkeley DB, SecureDB

supports the storage and retrieval of key/value pairs of arbitrary length.

Thousands of applications utilize Berkeley DB to provide fast, scalable, and reli-

able data management. Berkeley DB is integrated into such programs as Sendmail

and MacOS X Server and is in use by companies such as Akamai, Alcatel, Ama-

49

zon.com, AOL, AT&T, Cisco, Google, HP, Motorola, and Sun.

6.1 Models and Assumptions

SecureDB was written with two models in mind, as shown in Figure 6-1. SecureDB

assumes that Berkeley DB is running in client-server mode on untrusted storage. In

this mode, the database server accepts requests via IPC/RPC, and issues calls to

the Berkeley DB interfaces based on those requests. The database server is the only

application linking the Berkeley DB library into its address space. The client-server

model trades performance for protection. Since the size of the hash tree created

by SecureDB is dependent on the number of items being protected, the hash tree is

stored on a remote NFS server. Traversal of the tree requires communication between

SecureDB and the NFS file server. The SecureDB server can handle requests from

multiple clients, such as a PDA, via a simple get/put interface.

3erver

ee) -- --

Single Trusted SecureDB Server SecureDB Client/Server model

Figure 6-1: SecureDB Models

The two models differ in that, in the first, SecureDB runs on a single trusted

server with a limited amount of memory. The trusted SecureDB server is responsible

for maintaining the hash tree and the root hash. In the second model, SecureDB

50

___ _

is split into a client and server application. The trusted SecureDB client maintains

the root hash, while the untrusted SecureDB server maintains the entire hash tree.

The advantage of the former scheme is that we can guarantee that the hash tree has

been constructed properly, eliminating the possibility of a denial of service attack

(data element does not exist). In the latter scheme, more complicated algorithms are

required to protect against denial of service since we are unable to guarantee that our

code is run properly on the untrusted server.

6.2 Design Goals and Metrics

SecureDB was created with the following design goals in mind:

* Strong security: system should be secure and should detect all

corruption or tampering of the untrusted store.

* High reliability: system should perform reliably and should

database operations on behalf of the user program.

instances of data

reliably perform

* Low client-side memory requirements: we assume clients have only a limited

amount of memory.

· Low communication overhead: communication between client and server should

be kept at a minimum.

We can formalize the above goals as the algorithmic goal of minimizing the fol-

lowing:

* space used by the data structures maintained by client and server

* time required to get/put elements from the database

* amount of data required to get/put elements from the database

51

6.3 Data Structures

The online and hybrid schemes both require the use of a hash tree. A hash tree

stores the elements of a set in the leaves of the tree. All internal nodes contain a

collision-resistant cryptographic hash (typically MD5 or SHA-1) of the child nodes.

In SecureDB, an open-source implementation of SHA-1 is used. The ordering of the

leaves and all connectivity information in the tree must be known by the client so

that the client can recompute and validate the hash value for the root.

As mentioned in Section 4.4.1, the offline scheme must maintain a data structure

to track which keys are under its protection. This data structure can be unprotected

and stored on untrusted storage. Tampering of the data structure will be detected by

the checkRAS() function. SecureDB maintains a timestamp database which serves

a dual purpose. First, as its name implies, the timestamp database maintains all

the timestamps for every key being protected by the offline scheme. Second, the

timestamp database is used to determine which keys are protected by the offline

scheme.

Hash trees have previously been created using a variety of data structures including

binary trees, 2-3 trees, and skip lists [12, 16]. Other variations on hash trees have

been proposed in [3, 11]. The SecureDB implementation makes use of a 2-3 tree as

its primary data structure.

6.4 2-3 Trees

In our implementation, we use 2-3 trees, despite warnings by Naor and Nissim that

dynamic 2-3 trees are non-trivial to program correctly [16]. Our 2-3 tree implementa-

tion supports dynamic addition but not dynamic deletion of elements. As described

above, each leaf stores an element while each internal node contains a hash of its

children's values. In a 2-3 tree, each node can have exactly two or three children,

which are classified as being a left child, a middle child, or a right child.

2-3 search trees are part of a larger classification of data structures called dictio-

52

� __

naries, which support insertion, deletion, and searching of key/value pairs. 2-3 search

trees were first introduced in 1970 as an improvement to balanced binary trees and

were later generalized to B-trees. They were later simplified to form red-black trees

[5].

2-3 trees maintain the following invariants:

* All data appears at the leaves

* Data elements are ordered from left to right

* Every path through the tree is the same length

* Interior nodes have two or three subtrees

Figure 6-2: A 2-3 search tree. Data elements appear in the leaves while meta-data is
stored in interior nodes [5].

6.4.1 Searching

A tree with N data items will always have a height between log3N and log102N. Search-

ing requires a single traversal along a path from the root to a leaf, and is thus bounded

by the height of the tree. Interior nodes do not contain data but rather contain meta-

data about the keys stored in the nodes' subtrees. Each interior node contains an

mlow and low field, indicating the smallest key in the middle and right subtrees,

respectively. These are used to efficiently traverse the tree and locate a desired key.

Searching requires only traversing those subtrees that contain the desired element.

The complete searching algorithm is given in [5].

53

6.4.2 Insertion

Insertion into a 2-3 tree can be a complex process and involves two different cases.

Insertion involves finding the correct location for insertion, splitting nodes if necessary,

and finally updating meta-data along a path from the newly inserted leaf to the root.

Every element can be inserted into one and only one correct location since elements

must remain ordered from left to right. Finding this location involves using the meta-

data to traverse the tree from the root until the appropriate leaf node is found. If

the parent has just two children, then insertion is relatively painless. We can simply

determine if the new element should become the left, middle, or right child, and adjust

the meta-data along a path from leaf to root accordingly.

If, however, the parent of the leaf already has three children, then additional work

is required. The three children and the new element to be inserted must be split into

two interior parent nodes, each having two children. The exact location of the split

depends on the key being inserted and must maintain the property that elements

should remain ordered from left to right. After all interior node values have been

updated, the newly created parent node with its two children can be attached.

If the preceding level in the tree also already has 3 children, then this process of

splitting nodes must continue until a node with just two children is found. If the

insertion propagates to the root of the tree, it is possible that a new root must be

created to accommodate the new node.

6.5 HashTree class

The 2-3 tree described above was implemented as a C++ class. The HashTree class

consists of a root node and supports the dictionary operations insert() and find ().

Each node element in the tree contains a key, the corresponding data value, the hash

of the node's children, a status bit, and pointers to the left, middle, and right children.

HashTree provides the following public API:

54

* get();

* getRoothash();

* getStatusBit();

* insert();

* moveToOffline();

* getNextQupule();

* printout();

6.5.1 Qupules

Qupules are the primary structure used to communicate information from the HashTree

on the server to the client. As client-server communication is typically via an RPC

mechanism, it is imperative that pointers in the server's memory space not be re-

turned to the client. Instead, actual data values must be returned to the client. This

is achieved through use of the Qupule. A Qupule sent from the server to the client

contains the data values for the left, middle, and right child, the hash of the three

children (parent hash), and positioning information indicating where the Qupule is

attached to the parent. The client can traverse the tree upwards, toward the root,

by calling getNextQupule(). The client must initiate a traversal by first calling

initiateInsert () and passing the key of a node from which traversal should begin.

6.5.2 Client-Server Synchronization

Insertion of a new key/value pair by a user program requires two things to occur.

First, the client must simulate the insertion and calculate a new root hash, making

sure to verify that all values it uses in the calculation have not been tampered with.

The client does this through the repeated use of Qupules from the point of insertion

to the root. The verification and insertion are done in parallel to minimize the cost

55

of traversing the tree. The client maintains an oldHash and newHash during the

traversal, using the old hashes for verification. After the client has calculated the

new root hash, the server must also perform the insertion and update its hash tree to

reflect the addition of the new element. After an insertion operation has completed,

the client and server root hashes should match.

Communication between the client and server is currently simulated. Every time

the client must communicate with the server, an NFS read is performed. The amount

of data read is intended to accurately approximate the data that must be transferred

from the server to the client. Network latency and available bandwidth can signifi-

cantly affect the performance of the three integrity verification schemes, whether or

not simulated RPC calls are used.

6.5.3 Hybrid Strategy

The client can dynamically employ one of several strategies for determining which

data should be moved to and from the offline scheme and when. A client with knowl-

edge of its data access patterns would typically protect frequently used information

with the offline scheme and less frequently used data by the online scheme. If the

client is performing a sequence of operations before returning a result, then the data

required for the computation can be protected by the offline scheme. When the data

access pattern is not known, a reasonable solution is to move data from the online

to the offline scheme each time it is used. This strategy works well where there is a

high degree of temporal locality. SecureDB leaves the choice of strategy up to the

client. Data can be moved to the offline scheme via calls to hybridMoveToOffline ().

Forcing an integrity check by calling checkRAS() results in all data being moved back

to the protection of the online scheme.

56

6.6 Implementation Notes

SecureDB consists of five source files and their corresponding header files: securedb.cpp,

online.cpp, offline.cpp, hybrid.cpp, tree.cpp, and util.cpp. The SecureDB source

files were integrated into OpenLDAP 2.1.23 in the /servers/slapd/back-bdb di-

rectory and compiled with gcc 2.96. Several modifications were required to the

OpenLDAP source code. Specifically, the file init.c contains the following line

which initializes SecureDB and specifies the integrity verification scheme to be used:

initsecuredb(ONLINE);

All instances of db->put and db->get were replaced in id2entry. c with calls to

sget and sput, passing all of the original parameters. Prior to inserting or retrieving

elements from the database, the check procedure is called (in the offline and hybrid

scheme only) to determine whether an integrity check is required.

OpenLDAP can be compiled and installed using the accompanying Makefiles.

After the slapd daemon has been installed, it can be configured by modifying the

slapd.conf file located at /usr/local/etc/openldap/.

A series of scripts to start, stop, populate, clean, and dump data from the OpenL-

DAP server are available.

57

58

__ __ __

Chapter 7

Performance

In an attempt to gauge the relative performance of the three integrity verification

schemes, a series of carefully controlled tests were performed. The goal of the exper-

iments was to determine the performance of each scheme under real workloads. As

discussed in Chapter 6, each scheme was implemented and then tightly integrated

into the Berkeley DB embedded database.

OpenLDAP 2.1.23 was selected to measure the performance of the three schemes

and was modified minimally to make use of SecureDB. OpenLDAP is a commercial-

grade, full featured, open source implementation of the Lightweight Directory Access

Protocol (LDAP). OpenLDAP was determined to be a suitable candidate for our tests

as it is widely used, its source code is freely available, and its performance is heavily

affected by the performance of Berkeley DB.

7.1 What is LDAP?

LDAP was developed as an efficient way for PCs to access complex directories based

on the X.500 global directory standards. The X.500 standard was overhead intensive

and led to the development of LDAP to greatly simplify access to global directories.

After the Internet Engineering Task Force's adoption of LDAP, it quickly became the

preferred solution for all types of directory services applications running over IP.

59

The complete LDAP specification for LDAP vl, v2, and v3 can be found in RFC

1487, 1777, and 2251, respectively. LDAP v3 adds increased security (SASL and

SSL), allows for multiple LDAP servers to handle requests, and adds support for

international characters.

LDAP directories are frequently used for global corporate directories, e-mail con-

tact lists, telephone directories, and user authentication, but its use is not restricted

to these applications.

7.1.1 How LDAP directories work

Directories are typically read more often than they are written. LDAP directories

are hierarchical, beginning at the root with a global name, working down to increas-

ing detail such as employee names, ID numbers, divisions, contact information, etc.

LDAP fields are called attributes and begin with a Distinguished Name (DN), an

Organizational Unit (OU), a Common Name (CN), and finally an attribute type and

attribute value.

Directory information may be accessed from a PC or other client device and

may be used to search email directories, network administration directories, customer

directories, product catalogs, etc. The LDAP API is widely used and supported and

can be accessed from C, C++, Java, JavaScript, Perl, and many other platforms.

Microsoft Active Directory is also LDAP compliant.

7.1.2 OpenLDAP and BerkeleyDB

OpenLDAP makes extensive use of BerkeleyDB in order to maintain its databases of

directory information. OpenLDAP maintains one database (dn2id. c) of key/value

pairs mapping DNs to IDs and a second database (id2entry. c) mapping IDs to

directory entries. In order to make use of the SecureDB API, only a few changes

to the OpenLDAP source were required. Upon database initialization, a call to

init_secure_db() was required to initialize SecureDB and specify the integrity ver-

ification scheme to be used. The calls to db->get () and db->put() were replaced

60

with calls to sget () and sput 0(), respectively, passing the same parameters as before.

In order to get the SecureDB C++ library to compile with OpenLDAP's C source,

minor tweaking was necessary and gcc 2.96 was required.

7.2 DirectoryMark Test Framework

7.2.1 Platform

The tests were run on a Dell Intel system with:

* 2 x 733 MHz Intel Pentium processors (256K L2 cache)

* 256 MB RAM

* 18 GB Maxtor ATA IDE disk

* RedHa-l; Linux 2.4.20-8smp kernel

7.2.2 Test Method

The primary testing was conducted using Mindcraft's DirectoryMark 1.3 test suite.

DirectoryMark provides a Solaris client and supports multiple multithreaded client

processes, allowing a single system to simulate many clients. For our tests, only a

single client with a single thread was used. The client executed a prepared script

of 1000 LDAP operations, generated by the DirectoryMark test suite. Queries were

executed continuously without any delay between operations, until the entire script

had completed once.

The DirectoryMark Perl scripts were modified so that:

* The inetOrgPerson schema is correctly used

* The correct attribute type is used for "unique identifier" matches

* The seeAlso field is inhibited as its syntax was incorrect (does not have DN

syntax)

61

7.2.3 Test Scenarios

A test script containing 1000 LDAP operations was used for all tests. The test

script contained a mixture of operations intending to simulate an e-mail / messaging

server using a directory server, individual clients looking up names in an address

book or expanding a group for e-mail, and an administrator making modifications to

the directory. Searches consisted of exact UID matches, CN wildcard searches, and

non-existent entries. The test scenario consisted of additions (17.5%), modifications

(15.6%), comparisons (11.7%), and searches (55.2%). Binds were performed after

every 5 operations.

Tests were performed with databases containing 1000, 5000, and 10,000 entries.

Prior to each test, the following steps were performed:

* The directory was started.

* The directory was populated "over protocol" using ldapadd.

* Each entry was read once to "warm" the entry cache.

* The specified test was run.

7.2.4 DirectoryMark configuration

The DirectoryMark test suite with detailed instructions is available from

http://www.mindcraft.com/directorymark/.

OpenLDAP must be populated with properly formatted entries from an LDIF

file. An LDIF file containing an arbitrary number of entries can be created using

the dbgen.pl script. A 5000 entry LDIF file can be created by executing perl

dbgen.pl -v -x o=example.com -o .. /Ldif/data5000 5000. The LDIF file must

be concatenated with the appropriate LDIF header as specified in the DirectoryMark

instructions.

Once the LDIF file has been created, the test script must be generated. It is

imperative that a new test script be created for each LDIF file, as the script is

62

I _ _ __ _ __ � _

dependent on the contents of the directory. Test scripts can be produced using the

scriptgen. pl tool:

Usage: scriptgen2.pl [options] outputname ldif-file num-transactions

The following command produces a script similar to the ones that were used for

testing: perl scriptgen2.pl -b -v -i -a 35 -m 30 -c 25 -w 25 -n 25 -u 20

-g 25 -s 7 -X 8 -B 5 ../Scripts/data5000 ../Ldif/data5000.ldif 1000

Once the appropriate server name and desired test script are specified in the

DirectoryMark config file, the test suite can be run. The general procedure followed

between tests was:

* Kill existing slapd daemon using killLDAP.sh.

* Clean residual files left by previous instance of slapd using cleanLDAP.sh.

* Start new instance of slapd daemon using startLDAP.sh.

* Populate LDAP server using populateLDAP.sh.

* Dump contents of directory using dumpLDAP.sh.

* Run DirectoryMark test suite from Solaris client.

7.3 DirectoryMark Results

The DirectoryMark test suite was run against an OpenLDAP server employing one of

the three integrity verification schemes. An unmodified OpenLDAP server was also

tested. Tests were conducted to determine the effects on performance of the number of

entries in the database, and for the offline and hybrid schemes, the checking frequency.

The period between integrity checks is indicated by the value of T, the number of

get/put operations prior to a check being forced. A longer T value indicates less

frequent checks. Performance was measured in terms of absolute time in seconds and

in DirectoryMark Operations Per Second (DOPS). The average time for each search,

63

add, modify, and compare operation in milliseconds was also recorded. All data can

be found in Appendix A.

Table 7.1 illustrates how the various schemes performed in decreasing number of

DOPS. The number of entries was held constant at 1000, while the scheme and check-

ing frequency were varied. As expected, the unmodified LDAP server performed the

best while the offline scheme with frequent checks performed the worst. Unexpectedly,

the hybrid scheme performed poorly when compared to the offline scheme. Possible

reasons for the poor performance of the hybrid scheme will be discussed below. When

checks were infrequent (T=50000), the offline scheme resulted in 39% fewer DOPS

when compared to an unmodified LDAP server. The offline scheme, however, outper-

formed the online scheme by 31%, while the hybrid scheme outperformed the online

scheme by 19%. In the worst case, when checks were frequent (T=500), the hybrid

scheme was 185% slower (65% fewer DOPS) than the online scheme. With frequent

checks, the offline scheme was 101% slower (50% fewer DOPS).

Scheme T RPC (k) Time (s) DOPS
Unmodified - - 30 33.3

Offline 50000 100 49 20.4
Offline 10000 150 52 19.2

Hybrid 50000 400 54 18.5
Online - 1500 64 15.6
Hybrid 10000 900 69 14.5
Offline 1000 500 82 12.2
Offline 500 900 129 7.8
Hybrid 1000 5700 178 5.6
Hybrid 500 5700 183 5.5
Hybrid 100 5700 257 3.9
Offline 100 4400 817 1.2

Table 7.1: DOPS for various checking periods (T) 1000 entries

7.3.1 Checking frequency vs. performance

The performance of the offline scheme is bound solely by the overhead required to

perform a check operation. The check operation requires updating the TAKEHASH

64

I

and the PUTHASH for all items in the database. This operation is computationally

and communications intensive as the entire database must be read. Therefore, the

frequency of checks can have a significant impact on the performance of the offline

scheme as illustrated in Figure 7-1.

Comparison of Offline and Hybrid Schemes for Various Checking Periods

Z.U

20.0

15.0
V)
a.
a

10.0

5.0

0.0

Figure 7-1: Comparison of Offline and Hybrid Schemes for Various Checking Periods
(T = 50000, 10000, 1000, 500, 100) 1000 entries. (longer bars are better)

Performance of the offline scheme degrades rapidly as the checking period is de-

creased, suggesting the use of long checking periods to maximize performance. Long

check periods, however, result in delayed tamper detection, which may or may not be

an issue depending on the situation.

Similarly, the performance of the hybrid scheme is also affected by the checking

period. The offline scheme outperforms the hybrid scheme which must traverse the

hash tree to locate the correct STATUSBIT and must also perform the same check

operation as the offline scheme. The hybrid scheme shines when an optimal strategy

for moving data to the protection of the offline scheme is selected. When database

accesses occur at random, however, no such optimal strategy is possible. The hybrid

scheme outperforms the offline scheme when temporal locality is high. Our tests

exhibited little to no temporal locality, resulting in poor performance of the hybrid

scheme.

65

7.3.2 Effects of large data sets on performance

In order to determine the scalability of each of the three integrity verification schemes,

each scheme was tested with an increasing number of database entries. Tests were

performed for 1000, 5000, and 10,000 entries. More than 10,000 entries could not be

tested due to the length of time involved to execute each test. A test with 100,000

entries would require 5 hours to initially populate the database over protocol. One

million entries would require a population time in excess of 80 hours, even on an

unmodified OpenLDAP server.

Scaling from 1000 entries to 10,000 entries resulted in an 8.3x slowdown for the

unmodified server. The online scheme scaled the best, with a 10.4x slowdown, as

its running time is logarithmic. The offline scheme with T=10,000 exhibited a 16x

slowdown, while the hybrid scheme resulted in a 36x slowdown.

Comparison of Three Schemes for 1 K, 5K, 10K Entries
R n

--ll
1 n11

zimi
I,0

10.0

5.0

0.0

·osoo

A

~~-p 0 0phPB ~ ONxI
1000 Entries "Cf 5000 Entries 10000 Entries

Figure 7-2: Comparison of Offline, Online, and Hybrid Schemes for 1000, 5000, and
1000 Entries (T=10000). (longer bars are better)

66

'41 II

J~ IJ

"{ (I L_

IJ

7.3.3 Search, add, modify, and compare operations

The DirectoryMark test suite consisted of four types of operations: Additions (17.5%),

Modifications (15.6%), Comparisons (11.7%), and Searches (55.2%). Searches re-

quired the most amount of time as they typically required accessing large portions

of the database. Figure 7-3 shows the relative time spent executing comparisons,

modifications, and additions. Search time is shown in Figure 7-4.

Avg. Time for Add, Modify, and Compare
Operations for 5000 and 10000 Entries

180I

E

EI-

4

160 - - --------- ------
140.......

120

100 O Compare (ms)
aModify (ms)

80 - Add (ms)

60

40 -i
20 r r r I

5000E i

5000 Entries 10000 Entries

Figure 7-3: Avg. Time for Add, Modify, and Compare Operations for 5000 and 10000
Entries (T=10000).

Avg. Time for Search Operations for 5000 and 10000 Entries

2500
4489 ms

2000

1500 -

I--

50

o0

5000 Entries 10000 Entries

Figure 7-4: Avg. Time for Search Operations for 5000 and 10000 Entries (T=10000).

67

C I

7.3.4 Loading over Protocol

Typically, direct tools are used for loading the OpenLDAP directories as this is signif-

icantly faster. Since SecureDB was not integrated into the direct tools (slapadd), the

database had to be populated "over protocol" using the ldapadd tool. Loading over

protocol requires that the OpenLDAP server be running, while direct loading makes

modifications to the databases backing the directory directly. Direct population of

a database is not always possible, so the performance of loading over protocol is a

relevant and interesting measure.

Load measurements were taken for populating a database with 1000, 5000, and

10000 entries. Populating an unmodified server with 100,000 entries would have

exceeded 5 hours and 1,000,000 entries would have exceeded 80 hours. As expected,

the unmodified server performed the best, while the offline scheme once again proved

to be the best of the three integrity verification schemes. The results for 10,000 entries

is shown in Figure 7-5, and the complete results can be found in Appendix A.

Loading 10000 Entries Over Protocol (T =100000)
o,\-._ _ ._ _ __..

380 -

,U oo l
E -

370

365

360
Unmodified Offline Online Hybrid

Figure 7-5: Time required to load 10000 entries over protocol (T=100000).

68

JzIV -

_--- , . .

Chapter 8

Conclusion

We have presented three schemes for integrity verification of untrusted storage. The

online scheme is in wide use today, while the offline and hybrid schemes are a new

approach designed to outperform the use of hash trees alone. The SecureDB system

was implemented in order to measure the performance of the three schemes when

subjected to a real-world workload.

The offline scheme resulted in 39% fewer DOPS when compared to an unmodified

LDAP server. The offline scheme, however, outperformed the online scheme by 31%,

while the hybrid scheme was only 19% faster than the online scheme in the best case.

In the worst case, when checks were frequent, the hybrid scheme was 400% slower

(75% fewer I)OPS).

Unfortunately, the hybrid scheme did not perform as well as expected due to

the inability to accurately predict data access patterns generated by random LDAP

queries. The overhead of the hybrid scheme can be reduced by selecting an optimal

strategy for moving items to the protection of the offline scheme. When the data

access pattern is known, selecting an optimal strategy is easy. However, when data

accesses occur at random, finding the optimal strategy is significantly more difficult

and can lead to poor performance of the hybrid scheme.

69

8.1 Future Work

The schemes presented focus on tamper detection while ignoring the issue of recovery.

Additional work is required to integrate a system such as SecureDB with new or

existing schemes for data recovery in the event of tampering or data corruption. In

the future, we plan to investigate recovery techniques for data stored on untrusted

storage in a database. One possible approach is to use backup disks and the client

cache to restore data affected by an adversarial attack.

While integrity verification focuses on tamper detection, SecureDB could also be

modified to provide encryption to prevent adversaries from reading data stored on

untrusted storage. Encrypting data is essential for widespread adoption of SecureDB.

Offline integrity checking is useful for applications such as certified execution and

memory protection on memory constrained devices. The hybrid scheme can be used

as an alternative to hash trees for file systems and databases. For the hybrid scheme

to truly be advantageous, an optimal strategy must be devised for moving data to the

protection of the offline scheme in the presence of random accesses. Alternatively, the

hybrid scheme may offer performance advantages if implemented at a higher level,

say, the block or file level. This would give order to accesses which appear to be

random at the key/value level.

The current implementation of SecureDB supports a single client and only sim-

ulates real client/server communication. For SecureDB to be truly useful it must

provide mechanisms for data recovery and encryption and must be reworked to pro-

vide true client-server support.

70

Bibliography

[1] D. Bindel, Y. Chen, P. Eaton, D. Geels, R. Gummadi, S. Rhea, H. Weatherspoon,
W. Weimer, C. Wells, B. Zhao, and J. Kubiatowicz. Oceanstore: An extremely
wide-area storage system, 2000.

[2] Manuel Blum, William S. Evans, Peter Gemmell, Sampath Kannan, and Moni
Naor. Checking the correctness of memories. In IEEE Symposium on Foundations
of Computer Science, pages 90-99, 1991.

[3] Ahto Buldas, Peeter Laud, and Helger Lipmaa. Accountable certificate man-
agementl using undeniable attestations. In ACM Conference on Computer and
Communications Security, pages 9-17, 2000.

[4] M. Castro and B. Liskov. Practical byzantine fault tolerance. In OSDI: Sympo-
sium on Operating Systems Design and Implementation. USENIX Association,
Co-sponsored by IEEE TCOS and ACM SIGOPS, 1999.

[5] Arthur W. Chou. 2-3 trees as search trees. http://cs.clarku.edu/ achou/csl60/2-
3Trees.htm.

[6] Dwaine Clarke, Blaise Gassend, G. Edward Suh, Marten van Dijk, and Srinivas
Devadas. Offline integrity checking of untrusted storage. Technical report, MIT
LCS TFt-871, November 2002.

[7] Dwaine Clarke, Blaise Gassend, G. Edward Suh, Marten van Dijk, and Srinivas
Devadas. Incremental multiset hash functions and their application to memory
integrity checking. Technical report, MIT LCS TR-899, May 2003.

[8] Kevin Fu, M. Frans Kaashoek, and David Mazieres. Fast and secure distributed
read-only file system. In Proceedings of the 4th USENIX Symposium on Operating
Systems Design and Implementation (OSDI 2000), pages 181-196, San Diego,
California, October 2000.

[9] Blaise Gassend, G. Edward Suh, Dwaine Clarke, Marten van Dijk, and Srini-
vas Devadas. Caches and merkle trees for efficient memory authentication. In
Proceedings of Ninth International Symposium on High Performance Computer
Architecture, February 2003.

71

[10] Blaise Gassend, G. Edward Suh, Dwaine Clarke, Marten van Dijk, and Srini-
vas Devadas. Caches and merkle trees for efficient memory authentication. In
Proceedings of Ninth International Symposium on High Performance Computer
Architecture, February 2003.

[11] Irene Gassko, Peter S. Gemmell, and Philip MacKenzie. Efficient and fresh
certification. pages 342-353.

[12] M. Goodrich, R. Tamassia, and A. Schwerin. Implementation of an authenticated
dictionary with skip lists and commutative hashing, 2001.

[13] Umesh Maheshwari, Radek Vingralek, and William Shapiro. How to Build a
Trusted Database System on Untrusted Storage. In Proceedings of OSDI 2000,
2000.

[14] D. Mazieres and D. Shasha. Don't trust your file server. In Proceedings of the
8th Workshop on Hot Topics in Operating Systems, May 2001.

[15] Ralph C. Merkle. Protocols for public key cryptography. In IEEE Symposium
on Security and Privacy, pages 122-134, 1980.

[16] Moni Naor and Kobbi Nissim. Certificate revocation and certificate update. In
Proceedings 7th USENIX Security Symposium (San Antonio, Texas), Jan 1998.

[17] R. Rivest. RFC 1321: The MD5 Message-Digest Algorithm, April 1992. Status:
INFORMATIONAL.

[18] G. Edward Suh, Dwaine Clarke, Blaise Gassend, Marten van Dijk, and Srinivas
Devadas. Hardware mechanisms for memory integrity checking. Technical report,
MIT LCS TR-872, November 2002.

72

Appendix A

Appendix

Scheme Entries RAS Populate(s) Dump(s) RPC (k) checkRAS Search (ms) Add (ms) Mod (ms) Cmp(ms) Total(s) DOPS
Unmodified 1)00 - 26.733 1.852 - 43 16 8 2 30 33.3
Unmodified 5000 151.668 2.1 - 186 18 7 2 119 8.4
Unmodified 1000 - 369.931 2.081 - 438 23 14 6 250 4.0

Offline 1000 50000 28.958 4.866 100 2 135 6 5 2 49 20.4
Hybrid 10)00 50000 27.438 4.841 400 2 89 15 7 2 54 18.5

Online 1(00 - 29.13 4.754 1500 - 105 16 9 3 64 15.6
Offline 1000 10000 29.567 4.716 150 16 85 16 7 2 52 19.2
Hybrid 1000 10000 28.914 4.637 900 14 116 17 7 2 69 14.5

Offline 1(00 1000 30.493 4.966 500 162 139 15 7 2 82 12.2
Hybrid 1(00 1000 28..835 5.015 5700 143 312 16 7 2 178 5.6

Offline 1(00 500 27.225 4.874 900 371 222 16 6 2 129 7.8
Hybrid 1000 500 27.157 5.086 5700 287 321 19 10 4 183 5.5

Offline 1)00 100 26.742 4.958 4400 2044 1439 16 117 1 817 1.2
Hybrid 1000 100 28.281 4.927 5700 1451 456 17 8 2 257 3.9

Online 10000 - 384.673 2.119 18600 - 1179 24 14 8 660 1.5
Offline 10000 100000 374.025 2.213 1600 14 845 36 26 12 479 2.1
Hybrid 10000 100000 336.02 2.149 9200 13 1227 25 13 5 686 1.5

Offline 10(00 10000 360.919 2.023 4000 134 1459 30 53 5 821 1.2
Hybrid 10(00 10000 338.311 1.93 64900 132 4489 72 51 40 2495 0.4

Offline 10000 1000 671.766 1.957 24300 1157 8026 26 11 7 4439 0.2

Online 5000- 142.744 2.284 8700 - 541 21 9 9 307 3.3
Offline 5000 10000 166.365 1.959 2000 136 687 25 8 2 386 2.6
Hybrid 50)00 10000 152.585 2.048 16300 66 1047 20 7 2 584 1.7

Offline 10000 Infinite 395.159 1.61 817 33 23 6 462 2.2

73

