
Multiple Region Finite-Difference Time-Domain

Modeling of Duct Cavities

by

Beijia Zhang

Submitted to the Department of Electrical Engineering and Computer
Science

in partial fulfillment of the requirements for the degree of

Master of Engineering in Computer Science and Engineering

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

February 2004

@ Massachusetts Institute of Technology 2004. All rights reserved.

A uthor ................ .. . ..... ..
Department of Electrical Engin6Iring and'Computer Science

December 12, 2004

Certified by...
Robert T. Atkins

Lincoln Lab, Associate Group Leader

Certified by......,

Accepted b)

De artment Committee on
MASSACHUSETTS INT E.OF TECHNOLOGY

J UL 2 0 2004

LIBRARIF.R

Thesis Supervisor

. . . . . . . . . . . . . . . . . . .-
Jin Au Kong

Professor
Thesis jpervisor

L ... . .... ....
Arthur C. Smith

Graduate Students

"i





Multiple Region Finite-Difference Time-Domain Modeling of

Duct Cavities

by

Beijia Zhang

Submitted to the Department of Electrical Engineering and Computer Science
on January 30, 2004, in partial fulfillment of the

requirements for the degree of
Master of Engineering in Computer Science and Engineering

Abstract

Although many radar cross section prediction techniques exist, none have proven
to be completely satisfactory when applied to large cavities. Exact numerical tech-
niques can accurately predict RCS, but are too computationally expensive to be used
for many cavity geometries. High frequency techniques are computationally efficient
but often are inaccurate in predicting the RCS of cavities. This inaccuracy becomes
particularly apparent when the wideband range resolved signature is desired. To over-
come these limitations, this thesis investigates the possibility of modeling large duct
cavities in a piecewise manner using a finite-difference time-domain approach, modi-
fied to successively model individual subsections of the cavity. This change improves
the computational efficiency of FD-TD while maintaining a high level of accuracy.
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Chapter 1

Introduction

1.1 Target Radar Cross Section

Approached for the detection and identification of airborne, space-borne, or land-

moving targets often employ the use of radar sensing. In these cases, prior knowledge

of the targets' electromagnetic characteristics is essential in analyzing system perfor-

mance and in designing signal processing and identification algorithms. Radar cross

section (RCS) quantifies the behavior of the radar energy incident on and scattered

from a given target. Specifically, Radar cross section, -, is defined as,

a-(#, 0) = lim 47 R 2 1Es (R,01)(1.1)
R-oo I Ej(R, 0,10)12

where E is the incident electric field, and Es is the scattered electric field.

Because of the importance of target signature in radar sensing problems, RCS esti-

mation for complex targets remains an area of significant research interest. A target's

RCS can be obtained by using either direct measurement or computer simulation. Di-

rect measurement requires a radar measurement facility as well as the availability of

the desired target. Thus, this method can be expensive and impractical. Computer

simulation, however, allows for RCS estimation using only information about the

physical characteristics of the target. Because of this advantage, various numerical

techniques to predict RCS have been developed. The combination of this diverse set
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of techniques, and continually improving computational resources has allowed RCS

prediction to mature in many areas.

One area where prediction techniques remain limited, however, is the modeling

of large cavities. Cavity structures can be an important contributor to the overall

RCS of targets. For example, the inlet and or engine structure on aircraft can trap

radar energy and scatter it strongly. The RCS of cavity structures, such as the one

in this example, is often difficult to predict through current computer simulation

techniques. The behavior of electromagnetic waves within a cavity can be complex,

and the existing analytical and numerical techniques are either inaccurate or too

computationally expensive to apply. This cavity problem is the focus of this thesis.

Section 1.2.3 describes this problem at greater depth, and Section 1.4.1 presents a

possible solution. Before these discussions, however, the next section describes the

available prediction methods, and their limitations, in more detail.

1.2 RCS Prediction Methods

1.2.1 High Frequency Approximation Techniques

High frequency techniques involve physical optics (PO), geometrical optics (GO),the

physical theory of diffraction (PTD), and the geometrical theory of diffraction (GTD).

When the target and its features are large compared to the wavelength of incident

radar source, a combination of these methods can be used to approximate the inter-

action between the target and the electromagnetic waves. Geometrical optics uses

ray-tracing to model the target scattering, in particular the reflection off of the tar-

get and into the direction of the receiver [28]. GO alone treats specular scattering

from targets, but not diffraction effects. Physical optics similarly calculates the re-

flection from the target surface but does that by approximating the surface currents.

A smooth target surface is assumed, and the tangential magnetic field on the sur-

face is approximated as twice the tangential component of the incident magnetic field

in the illuminated region. From this approximation, the surface currents and the
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scattering can be derived [32]. Diffraction effects are calculated in PTD and GTD

approaches by approximating the features of the target as combinations of wedges,

straight edges, and corners and using asymptotic solutions for these geometries to

predict the scattering from increment lengths of the edges [14].

1.2.2 Exact Numerical Techniques

Exact numerical techniques involve brute force numerical solutions to Maxwell's

Equations. Method-of-Moments (MoM) solves Maxwell's equations in integral form.

An integral equation is first developed for the unknown surface current. These surface

currents are represented as a weighted series of basis functions. The integral equation

is then tested with a series of testing functions to produce a matrix equation which can

be solved for the unknown weights of the basis functions [32, 34]. Finite-Difference

Time-Domain (FD-TD) in contrast solves Maxwell's Equations in differential form

by discretizing both time and space, and solving the resulting difference equations

using a marching in time technique [45]. FD-TD, both in three dimensions, and for

the specific case of body-of-revolution geometries body-of-revolution, will be explored

more in-depth in the following chapters.

1.2.3 Computational and Accuracy Concerns for Prediction

Methods

High frequency methods are computationally efficient but often do not accurately

predict cavity RCS. This inaccuracy is due to several factors. The high frequency

approach produces an appoximate solution based on the idea that target elements

scatter largely independently of each other. However, many portions of the target

that are shadowed from the incident wave might be illuminated by specular reflection

from other parts of the target. This is a problem unless ray-tracing is used. But even

that is only an approximation of the possible multiple interactions between different

parts of the cavity. Furthermore, surface waves are created when a component of the

incident wave is tangential to a long surface on the target. These waves contribute
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to RCS when that surface is bounded by a discontinuity on the far end, causing a

reflection.

Numerically exact methods provide high accuracy, but these techniques require

too much computing power when modeling cavities of large electrical size. Method

of Moments requires the surface current be sampled approximately every one-fifth

of a wavelength or less. The resulting matrix problem becomes intractable for large

objects since the required matrix inversion grows Q(N 3 ), where N is the number of

unknowns, which itself grows proportional to the square of the radar frequency of

interest. Similarly, FD-TD requires that the entire computational domain be gridded

with a lattice having a spatial increment A of approximately A/20 to A/10 for the

highest frequency of interest. Since time is discretized, the FD-TD simulation must

be run for enough time steps to allow electromagnetic energy to propagate across the

target and for all interactions to finish.

Since space is also discretized, FD-TD must update every point in the grid for

every time step. Therefore, FD-TD can be very computationally expensive. Tradi-

tional FD-TD approaches require large 3D arrays to store the lattice information and

use considerable computer memory.

Even for particular Body of Revolution (BOR) geometries where the computer

memory savings of a BOR FD-TD can be gained by using an essentially 2D FD-TD

scheme-which will be briefly explained in the following chapter-memory limitations

can still be an issue, and both traditional 3D and BOR FD-TD algorithms still require

roughly the same amount of computational time. At present, computing power is such

that FD-TD can only be applied to objects of moderate electrical size.

These accuracy and computational issues are prominent when applied to struc-

tures that contain cavities. For FD-TD, accuract becomes a concern. The interior

of cavities creates multiple interactions between the the side walls. Each internal

reflection causes the incident wave to become more spread out and less like a ray,

making ray tracing inaccurate. Furthermore, the backwall of the cavity will reflect

all surface waves that travel along the interior. The high frequency technique cannot

model that behavior.
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FD-TD also has problems. But these are computational rather than accuracy

issues. Electromagnetic activity can be "retained" inside the cavity and still be

present for a considerable amount of time after the initial excitation. Thus the FD-TD

simulation must be extended for even more time steps to accurately model scattering

from the interior of the cavity. For electrically small cavities, such as one of resonant

size, FD-TD can provide a solution within a reasonable time frame. But for large

cavities, the extended computational domain, and the additional time steps, make the

FD-TD approach impractical. It is for this reason that developing better methods to

predict the RCS of cavities is a current area of research.

1.3 Past Work

A number of past efforts have attempted to develop a cavity modeling technique

that is computationally efficient, yet reasonably accurate. Most of these attempts

have focused on creating hybrid techniques, which combine high frequency methods

with exact numeric methods [5, 26, 4]. For example, a complex termination at the

end of the cavity may be modeled by an exact technique but the rest of the cavity

is modeled using a high frequency approach. Other methods combine integral and

modal techniques [27, 35, 44]. But these hybrid techniques are often specialized for

cavities with certain types of interior features and are still limited by CPU time

requirements [31].

There also has been some development into using a specialized Finite Element

Method (FEM) method that makes the memory requirements independent of the

depth of the cavity by dividing the interior cavity into many thin layers. However, as-

sembling the finite element equations require the use of Gaussian elimination, making

the technique potentially computationally expensive for cavities with large apertures

[30, 18, 4].

Some work has been done involving the idea of breaking up large cavities into

segments. One proposed method works with electromagnetic fields in the spectral

domain and converts the cavity into a stepped-waveguide model. The field spectra
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are propagated forward and backward along each waveguide section [37]. Another

development borrows techniques from Microwave Network Theory: the cavity is di-

vided into sections which are independently analyzed. Each division is represented by

a generalized admittance matrix, and the aperture admittance is derived by cascading

those matrices [43].

Some research has been conducted into exploiting spatial sparseness in FD-TD

simulations: Johnson and Rahmat-Samii modeled the behavior of two scatterers sep-

arated by some distance by enclosing each scatterer with an FD-TD lattice such that

each subregion is independent. The FD-TD problem domain is thus broken into the

interior problem which uses FD-TD to solve for each sub-domain and an exterior

problem which uses the Schelkunoff surface equivalence theorem to replace each scat-

terer by current sources [19]. The authors of that study found significant savings in

computational time and memory. This division of the FD-TD computational domain

into independent parts is related to the multiple region FD-TD method proposed in

this paper. But the application to duct cavities does not require the formation of

current sources since the subregions are not separated by space.

1.4 Background

1.4.1 Exploiting the Behavior within Duct Cavities

Current and past modeling techniques for large cavities do not, however, include

breaking large cavities into segments within FD-TD and taking advantage of the

behavior of electromagnetic waves within duct-like cavities. The scattering from the

cavity can be thought of as consisting of two components. These components are:

Scattering from Cavity Termination Part of the energy of the pulse will move
into the cavity from the opening to terminated end, and then back to the
opening.

Scattering from Interior Features As the pulse propagates towards the termina-
tion of the cavity, part of the energy will be reflected by any features on the
interior wall and scatter back directly towards the opening.
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If the coupling between the cavity's interior features, and between these features and

the cavity termination is weak, then it is possible the signature will be dominated by

the direct scattering by each, and that the multiple interactions may be neglected.

Under this assumption, if the cavity length is partitioned into segments, the activity

that propagates into a segment is simply the activity that exited out of the neighboring

segment, and the interaction between segments is local and first order in nature. Thus,

one can model the entire cavity in a piecewise manner: one simulates the behavior of

the electromagnetic waves in each segment and records the fields at both ends of the

segment. Then this recorded data is used as an incident source for the neighboring

segments.

1.4.2 Advantages of Partitioned Space

Application to FD-TD

Since FD-TD works in the time domain, it is suitable to implement the par-

titioned cavity technique within the FD-TD framework. FD-TD is also an exact

method, which is capable of capturing the complex behavior of the electromagnetic

energy within cavities. Normally this precision would make FD-TD computationally

impractical for large cavities. A modified multiple region FD-TD potentially reduces

these computational requirements significantly.

Savings in Memory

An important advantage of a multiple region FD-TD approach is that less memory

is needed at any one time: the lattice information for only one segment needs to be

kept in core memory. Though virtual memory is available in modern computers,

this mechanism can cause the FD-TD program to become extremely slow. Thus, a

computer with limited memory, which was previously incapable of running FD-TD

for large objects without resorting to virtual memory, can run this partitioned form

of FD-TD in the most efficient manner possible. This savings in memory is the same

for both the smooth duct cavities and the cavities with features.
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Savings in Time

Multiple region FD-TD provides savings in time through several methods. First,

the elimination of the need for virtual memory prevents the slow downs associated

with paging to disk. Secondly, the partitioned nature of the cavity allows for parallel

computing. As soon as some data for the electromagnetic waves leaving through one

cavity segment is recorded, a second computer can be used to start modeling the next

cavity in parallel. Thirdly, for a large cavity with limited coupling between segments,

the FD-TD simulation need only be performed for times for which energy remains in

the segment. All segments of the cavity are not time stepped for the entire period

energy remains in the cavity and a further savings in time is realized.

1.5 Thesis Work

This thesis describes a multiple region FD-TD algorithm, which more efficiently

yet accurately models electromagnetic scattering from large duct cavities.

Chapter 2 provides an introduction to both 3D FD-TD and the Body of Revolution

(BOR) variant of FD-TD, along with other pertinent supporting methods such as the

Perfectly Matched Layer Boundary Condition (PML ABC).

Chapter 3 introduces the proposed modifications to realize a multiple region BOR

FD-TD algorithm, which takes advantage of the behavior of the electromagnetic fields

for the particular case of large, duct-like cavities.

Chapter 4 demonstrates the multiple region FD-TD approach. Results are cal-

culated from simulations using a standard FD-TD algorithm, the multiple region

FD-TD approach, and in a high frequency ray tracing technique. The results are

shown to support the conclusion that multiple region FD-TD is able to produce

results comparable to that of a standard FD-TD simulation while using less compu-

tational memory and computer time. Furthermore, the ability of these three different

modeling methods to successfully produce accurate results depends on cavity size,

cavity side-way shaping, and incident angle. These areas of validity are mapped out

for each technique.
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Chapter 5 will summarize this work, and provide suggestions for future develop-

ment and applications of the multiple-region FD-TD approach.
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Chapter 2

Finite-Difference Time-Domain

Background

Understanding the multiple-region FD-TD method first requires a basic under-

standing of the standard FD-TD modeling technique. This section will introduce

both the 3D FD-TD and the BOR FD-TD formulations along with the associated

techniques to accurately predict RCS from specified targets.

2.1 3D FD-TD Algorithm

FD-TD is an exact numerical technique to solve Maxwell's Equations in differential

form by discretizing them and expressing them as difference equations [45]. The FD-

TD difference equations can also be derived from Maxwell's Equations in their integral

form by discretizing space into cells and assuming the electric and magnetic fields are

constant over each cell. However, only the derivation from the differential form will

be demonstrated in this discussion.

Development of an FD-TD algorithm requires three elements: discretization of

Maxwell's Equations, arranging electric and magnetic fields in a grid structure that

discretizes space, and solving the discretized Maxwell's Equations using a time step

solution that discretizes time.
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2.1.1 Derivation of 3D FD-TD difference equations

Ampere and Faraday's law in their differential form for free space are given by,

aE
O at V x H (2.1)

aH
POt = -V x F. (2.2)

These equations can be rewritten into six scalar equations which are,

aHz _aHy

ay az

aHy
ax

aHz
ax

aHx
Oy

Ey _Hz

az ay
aEz aEx
ax az

aEx
ay ax

These equations in turn can be discretized by using the central difference approxima-

tion which is given by Equation 2.9.

af() f( + ) - f- (
xa 3 cn be w (2.9)

Thus, for example, Equation 2.3 can be written as,

En+1/ 2 (i, j, k) - En- 1/ 2 (i, j, k)
At

H"n(i, j + 1/2, k) -z H(i, j - 1/2, k)

Hy(i, j, k + 1/2) - Hy(i, j, k - 1/2)
A.(2.10)

Where A refers to a step in space such that A = Ax = Ay = Az. The superscript of
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n refers to a step in time such that,

f (iAx, jAy, kAz, nAt) = ff"(i, j, k). (2.11)

Note the use of 1/2 in the super and subscripts. This is a natural and desirable

by-product of using the central difference approximation for first order derivatives.

However, the arbitrary choice of deriving Equation 2.10 first sets up a situation where

all magnetic fields will be given integer indices in time while all electric fields will

have "half" indices. Furthermore, it also sets into place the integer indices and "half"

indices for the fields in space. The selection of which fields will have integer indices and

which will have "half" indices on the mesh is arbitrary but, as will become apparent in

the following sections, one convention must be enforced for all the difference equations

to be in agreement.

Equations similar to 2.10 can be generated for E., Ez, H,, Hy, Hz. Furthermore,

equation 2.10 can be rewritten as,

En+1(i + 1/2, j, k) =
E~AT ±+/ 1/,, ) A

Exn (Z + 1/2, j, k) n [Hn+1/2(+ 1/2, + 1/2, k) -

-Hn+1/2(i + 1/2, j - 1/2, k) - Hn+1/2 (i + 1/2, j, k + 1/2) +

+Hn+1/2(i + 1/2, j, k - 1/2)] (2.12)

where T is defined as

A = cAt. (2.13)

The other five equations are formed in a similar manner:

En+(i,j+1/2,k) = E(i, j + 1/2, k) + no AT[Hn+1/2 (i, j + 1/2, k + 1/2) -

-Hn+ 1/ 2 (i, j - 1/2, k - 1/2) - Hz+1 /2 (i + 1/2, j + 1/2, k) +

+Hn+1/2(- 1/2, j + 1/2, k)] (2.14)
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En+1 (ij, k + 1/2) = E"(i,j, k + 1/2) + o j[Hyn1/2(i + 1/2, j, k + 1/2) -

-Hyn+1/2(z- 1/2, j, k + 1/2) - Hn+1/ 2 (ij + 1/2, k + 1/2) +

+Hn+1/2(i - 1/2, k + 1/2)] (2.15)

H+ (i, + 1/2, k + 1/2) = H~n 1/2 (ij + 1/2, k + 1/2) + o A [EY(i, j + 1/2, k + 1) -

-E,"(ij + 1/2,k) - Ezn(i, j + 1, k + 1/2) +

+E"(i, j, k - 1/2)] (2.16)

HYn+1/ 2(i + 1/2, j, k + 1/2) Hyn+1/2(i + 1/2, j, k + 1/2) + qo [Ez(i + 1, j, k + 1/2) -

AT

-E", zJ, k + 1/2) - Ex( +z /,j k +1) +

+Exn_(i + 1/2, J, k)] (2.17)

Hn+1/2(t + 1/2, ] + 1/2, k) = Hn+1/2 (i + 1/2, j + 1/2, k) + 77o A[Ex(i + 1/2, i + 1, k) -

-Ex"(i + 1/2, j, k) - Ey"(i + 1,] + 1/2, k) +

+E.,(i, j + 1/2, k)]. (2.18)

The form of equation 2.12 suggests that each new value of E for the next time step

can be generated from the previous value of E and the values of four neighboring H

vectors which surround the E vector in space. Thus the temporal behavior of E and H

in a region of interest can be calculated. FD-TD does precisely this operation: since

E and H fields are offset from each other by 1/2 in both time and space, FD-TD can

update all the values by alternating the calculation of electric and magnetic fields.

This leapfrog action is commonly known as a "marching in time" approach [40].
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2.2 FD-TD Lattice Structure

The region of interest in 3D FD-TD is usually discretized with an orthogonal grid,

known as a Yee Lattice, which defines the locations of the six fields. One cube of the

Yee lattice is show in Figure 2-1. As mentioned previously, E and H fields are offset

from each other by A/2 in space to produce an interleaved arrangement.

Z

Figure 2-1: Field Quantities Represented Using Yee's Lattice.

2.3 BOR FD-TD

Body of Revolution (BOR) FD-TD allows for modeling of certain 3D targets using

a 2D-like FD-TD approach. BOR FD-TD exploits rotational symmetry of the target

by using a Fourier series to express the azimuthal (#) dependence of the fields,

00

E = (emu cos m# + m,, sin m#)
m=O

00

H = 5 (hm,u cos m# + hm,v sin m#)
m=O

(2.19)

(2.20)
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such that em,u, em,v, hm,u, and hm,v are independent of #. Each m is referred to as a

"mode." The summation of modes cannot be carried out to indefinitely, but is often

truncated by m > kpmax + 1, where k is the wavenumber of the highest frequency of

the excitation, and pmax is the maximum radius of the modeled object.

The Fourier expansions can be substituted into Ampere's and Faraday's law to

form the modal Maxwell's equations in cylindrical coordinates,

i e 20, + V X e,,, = -paBt hu,v + a-* h,,,

±-# x hvu + V x huv = -y euV + O-hu,v+-P h,~Fx~ at , 5u

(2.21)

(2.22)

Expanding the cross products and curls, yields two sets of decoupled scalar equations,

at
C a e( + u7eo

atC-ez + o-et
at

a
+ ue

A~ hP + o-eh

at
a.V+ U*hp

at
aP- z+ ou*hz

a

e-e + o-eO
at

c + Cez

at
aP-he + o-*hP
at

ap-hO + u*hp,
at

a
P-e + u*hz

at U

-hz - kh
- v az u

- hP-ahz

paz ap 
m ia= hP + (phO)
p pap

= e + -e
p azV

az
m

p

m

p

ae

hi

a

a a= hP - ahz

=-h m (pa )
p papM I a
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-evpV az u

_ e a a u
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These equations govern the twelve field components, but the two sets are interchange-

able by replacing m by -m and swapping v and u. Furthermore, only one set is being

considered so the v and a subscripts will be dropped for the rest of the discussion,

resulting in six field equations. In addition, the modeled object will be assumed to

be in free space, so E = co, /t po, and a-= o-* = 0.

2.3.1 BOR FD-TD Mesh Structure

As in 3D FD-TD, the E and H fields for BOR FD-TD are staggered in time and

space, allowing for "marching in time" calculations. Figure 2-2 gives a schematic

of the mesh structure for the BOR FD-TD fields where updates to each field are

calculated from surrounding fields. Figure 2-3 illustrates the mesh structure of the

BOR FD-TD fields as it would mathematically look in 3D.

p

0 0

0 0

h,

I ez , z

Figure 2-2: BOR 2D mesh showing interlocking cells and field vectors

To discretize the field components on this mesh in space and in time, the following

notation will be used for any function of time and space:

f (iAp, kAz, nAt) = f 1' (2.35)

As discussed earlier, staggering the field components in time and space allows for

a desirable "marching in time" algorithm. This can be shown in equation form by

assigning either whole numbers or "half" numbers (1.5, 2.5, etc) to the indices for
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Figure 2-3: BOR 3D mesh showing interlocking cells and field vectors

space and time, and is a natural result of applying the central difference approximation

for a first derivative as was done for 3D FD-TD. As shown in Figure 2-2, hP and e,

lie directly on the mesh grid lines parallel to the z axis, and between mesh grid lines

parallel to the p axis. This arrangement will be considered to have integer indices of

i and k. So due to the staggering of the fields, hz and ep have "half" indices for i and

z. Also, et has a "half" index for z, and hp has a "half" index for i. Furthermore, all

magnetic fields will be given integer indices in time while all electric fields will have

"half" indices. As in the 3D FD-TD case, the choice of which fields will have integers

for which indices is set in place by personal choice when deriving the first difference

equation.

2.3.2 BOR Off-Axis Difference Equations

The central difference approximation is applied to the six field equations to yield

FD-TD field update equations of a similar form to those found in traditional 3D

FD-TD. For example,
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ep +2,k+1/2 + ro A (hol+1/2,k - h +1/ 2,k+l)

mAT
+70 zi+1/2,k+1/2

+

(2.36)

gives the update equation for the radial electric field. This equation is analogous to

equation 2.12 for 3D FD-TD. The corresponding BOR equations for the remaining

five 3D FD-TD equations (equations 2.14 to 2.18) are,

n+1/2
eo i,k+1/2

n+1/2
ez i,k

n-1/2 AT n n
= ei,k+1/2 + T0 (hz i-1/ 2 ,k+1/ 2 -z i+1/ 2 ,k+1/ 2 ) +

AT
+70 AT (hP| k+1 - hP P)

= en-1/2 + T0(i + 1/2)AT In (i - 1/2)AT In
= zi,k + AP ho i+1/2,k -/ TI $p h i-1/2,k

mAT p
-770 .p hP|i,

(2.37)

(2.38)

h h A T e.In+1/2
= il,k + - (z i,k+1/2 - eoln+1/20i,k-1/2) +

1 maT n+1/2
eta0 iAp ezli,k

= h i+1/2 ,k -- ez +1/k2 - ez 1 /2 ) +

1 AT n+1/2

+eta0 Az (e i+1/2,k-1/2 - e In+1/2ei+1/2,k+1/2)

h In+1i±1/2,k+1/2 h I"AT ln+1/2
- hz i+1/ 2,k+1/ 2 + ( + 1/2)Ap e i,k+1/2

1 mAT n+1/2

7l0 (i + 1/ 2)Ap I+1/2,k+1/2-

- 1 (i + 1)AT j n+1/2

7 (i + 1/ 2 )APee i+1,k+1/2

(2.41)

2.3.3 BOR On-Axis Difference Equations

One cannot use the previously presented difference equations to update the cells

that lie directly on the axis of rotation (ie, on the z-axis) [10, 36]. As shown in Figure

2-2, ez, e4, and hP lie on the z-axis. Along the z axis, the and b components are
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not defined. They may be approximated for any value of z = zo by using a value at

z = zo and p = 6 where 6 is a small positive number. This approximation will also

make the field component independent of q.

Difference Equation for the On-Axis e, Field

Solving for ez(p, q, z, t) on the z axis means solving for ez(p = 0, z, t) since it

is independent of 0. We consider the value of ez(0, z, t) to be constant in the area

bounded by a small loop of radius po = Ap/2 where /p is the length of the grid cell

in the p direction. This loop will be centered at p = 0 and perpendicular to the z

axis. Ampere's Law 2.1 in integral form can be applied across this loop to produce,

C jP f [ez,(0, z, t) cos m# + ez,(0, z, t) sin mo]pdodp
ot 0 0

27r

= [ho,(po, z, t) cosmo + hp,,(Oo, z, t) sin m#]podo. (2.42)

From the equations it can be observed that ez(p, #, z, t) is zero for non-zero values of

m. For m = 0, the equation can be evaluated to produce,

Cip 20 ez ,(0, z, t) = 27rpoho,,(po, z, t). (2.43)

The above equation can be discretized using the central difference approximation.

n+1/2 ezuIn-1/2 + 4At h In (2.44)
, lo,k = zuO,k +~ 0p,U 1/2,k,)-

The derivation for ez,, on the z axis produces an identical equation, so the final

update equation for ez is,

ln+12 n1/2 4At I
ez, 1 /2 =ezlO,2 + ho 1/2 ,k, (2.45)

Difference Equation for the On-Axis eo Field

The integral form of Ampere's Law is again used to find eo field along the z-axis.

Ampere's law is calculated for a rectangular loop lying in the p - z plane. This loop

is shown in Figure 2-4.
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Figure 2-4: The contour used to calculate eo.

For mode m = 1, application of Ampere's law to the contour of Figure 2-4 pro-

duces,

at
Z2 P0

[e'(0, z', t) cos # + e4,
z1 0

(0, z', t) sin #]dodz

jZ 2 [hz, (0, z', t) cos q + h z', t) sin #]dz

+ [h,(0,z2, t) cos + hp,,(0, z 2 , t) sin ]dp

+ jZ 2 [hz, (po, z', t) cos + + hz,,(po, z', t) sin #]dz

+ f [hp,,(0, zi, t) cos q + hPV(0, zi, t) sin #]dp

where po = Ap/2, and z' = z1 + Az/2, which is really the zo of interest. When p = 0,

hz will also equal 0. The previous equation can be integrated and sine and cosine

terms can be grouped to produce two equations,

EAz 2 09 eo,(0 z' 12

= { m hz,U(POI

t)] cos 0

z 't) + 2 [hp,u(0, z2 , t) - hPU(0, zi, t)] cos 

EAZ Ap t ',z',t) sino

z', t) + [h,(0, z2 , t) - hpU(0, z1, t)]I sin #.

Solving for eou and e4,, from the above will produce two identical equations save for
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the u and v subscripts. Therefore, the on-axis ep at zo can be determined by,

e(0, z', t) = - hz(po, z', t) + [h(0, Z2, t) + h(0, zi, t). (2.49)

The central difference approximation for first order derivatives can again be applied

to produce the desired difference equation for the on-axis eo,

n+1/2 n-1/2 2At n
e01bk+1/ 2 = 0,k+1/2 - hzI1/ 2 ,k+1/ 2 +Az ( h ,k+1 - ,O,k) (2.50)

Difference Equation for the On-Axis hp Field

hp is non-zero only when m = 1. Discrete forms of equations 2.26 and 2.32 can be

used to find the on-axis value of hp by using the the value of ez from the cell above

as an approximation. This produces a set of difference equations,

hvn+1 n ~ +A +1/2 + t(Pvn+1/2 ln+1/2
, ,,o,k A=hpI -0- + ez,uar1,k +O,k+1/2 - ov,k-1/2) (2.51)

n+1 n 'At In+1/
2 +n+1/2 -PuIn+1/2 (2.52)

P7, O'k = 0,sl - A e)~ 1,k + pAz uO,k+1/2 -C, O,k-1/2) . (.2

2.4 Computational Domain

Another aspect of FD-TD programs is the division of the computational domain

into total field and scattered field regions. The method of creating this division will be

given in Section 2.6. Figure 2-5 summarizes the different regions within the lattice of

a BOR FD-TD approach. The figure also serves as a two dimensional visualization of

the 3D FD-TD for a "cut" along one axis of the 3D Yee lattice. This division lessens

the burden on the absorbing boundary conditions at the ends of the computational

domain. The absorbing boundary condition will be introduced in the next section.
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Z

Figure 2-5: The different regions of a BOR FD-TD calculation domain. Note that
the object will be rotationally symmetric along the z-axis.

2.5 Modeling Objects in the Computational Do-

main

2.5.1 Material Modeling

The perfect electric conductor (PEC) can be modeled with FD-TD. Since the

boundary conditions for PEC require zero tangential electric fields, grid cells that

correspond to PEC surfaces will have their electric fields set to zero during each

update. For materials that are not PEC, the update equations must be altered to

reflect the composition of the material. Most FD-TD programs do material modeling

by tagging each cell in the Yee lattice and using alternative update equations-which

take into account the behavior of the material-that correspond to the tag during the

update. For example, modeling a PEC means resetting the tangential electric fields to

zero during each update. The values of e and Ia can be altered to reflect any non-PEC

materials on the target.

2.5.2 Geometry Modeling

In 3D FD-TD, an orthogonal Yee lattice is a natural fit for objects that have

straight edges and sides. For objects that have curved surfaces which do not fit neatly
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within an orthogonal grid, the most simple FD-TD algorithms will approximate these

by using a "staircase" to try to match the surface. More recently, conformal grids

have been developed where the shape of the cells is adjusted to provide a better

approximation to curved surfaces.

In BOR FD-TD, the geometry of the targets are assumed to be independent of q.

The object's surface in the 2D z - p plane can be fitted by the staircase method or

conformal grids as needed. The partitioned FD-TD method described by this paper

uses the staircase method, although the partitioned approach is equally applicable

with a conformal grid.

2.5.3 Berenger's Perfectly Matched Layer for Absorbing Bound-

ary Conditions

The computational domain must be finite in extent. However, by considering

the fields beyond the computational domain to be zero, one would have essentially

created a PEC box surrounding the whole domain. To prevent unwanted reflections

at the boundary, FD-TD must be run with an Absorbing Boundary Condition (ABC)

to absorb incident waves and simulate free space beyond the computational domain.

Engquist and Majda [15] proposed one type of ABC using a second order boundary

condition,

a2 a2 1 192 a2
+ + =0(2.53)anar aT2 2 5T1_2 T2) W

where w is a field quantity which is tangential to the absorbing boundary, ft is the

normal direction of that boundary, ti and t 2 are the tangential directions, and T is

ct. This second-order absorbing boundary condition works well for waves which are

incident at or close to normal to the boundary. But it works poorly for waves which

are incident at grazing angles. Furthermore, it is impossible to implement the second

order boundary condition at corners where the normal and tangential directions are

not well defined. The corners would require a first order boundary condition.

Berenger's Perfectly Matched Layer (PML) is type of ABC that matches the
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impedance of free space and attenuates waves incident at any angle [6]. For this

method, the outer boundary of the free space region is extended with several more

lattice cells, as shown in Figure 2-5, which absorb the incident wave as it propagates

into the region. But the PML region is matched to waves impinging at all angles to

create a reflection-less boundary. This matching is accomplished through splitting the

fields in the PML into two components to create an artificial non-Maxwellian space.

This split will add the additional degrees of freedom necessary to absorb waves at

any arbitrary angle of incidence.

PML for 3D FD-TD

In media with electric conductivity and magnetic loss, the Maxwell curl equations

can be written as,

aEx
CO- + o-E,

at+
8E

EO at + J-Eyat
co a~-+ -Ezat

A0 alx + o.,HXaH

po at + a*H,at
po aHza*Hzat

OHz alH

ay Oz
alHx OHz
az ax

aHly aHlx
ax ay

_ aE_ aHz

az ay
= aE _ aE-

ax az
aEx aEy
ay ax

(2.54)

(2.55)

(2.56)

(2.57)

(2.58)

(2.59)

where - is the electric conductivity and u* is the magnetic conductivity. When,

~* 9

a~ /0 (2.60)

the impedance of the medium is equal to that of free space. A wave that is normally

incident on the boundary between this medium and free space will create no reflection.

However a reflection will occur for non-normally incident waves, and thus this sort of

medium provides little improvement over the second order ABC.
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Berenger's improvement lay in splitting each field component into two quantities,

each derived from only one spatial derivative term. For example, E- fields calculated

from differences of H, in the y direction are denoted as Ey, and E. fields calculated

from differences of Hy in the s direction are denoted as E,,. Ey and E,. are updated

independently of each other. The full set of 12 PML equations for 3D FD-TD are,

Co Exy +1-EX

Co a~z+ oezExzat

Eo az+ UzEyz

at

Co at + uEy

at
aEzy + Ex Ey
at

to xZ+ o*H
at

[o ax + cH Ezy
at +

Po ayz+ u*Hat

o +t +* H

at Y

_ (Hzx + Hzy)

ay
a(Hyx + Hyz)

az
a(Hxy + Hxz)

az
O(Hzx + Hzy)

ax
= (Hyx + Hyz)

ax
O(Hxz + Hxy)

ay
D(Ezx + Ezy)

ay
= &(Eyx + Eyz)

az
O(Exy + Exz)

az
a(Ezx + Ezy)

ax
a(Eyx + Eyz)

ax
= a(Exz + Exy)

ay

where, for example, a-x denotes the electrical conductivity associated with - directed

gradients in the magnetic field, and a* denotes the magnetic conductivity associated

with the z directed gradients of the electric field. These equations will reduce to

Maxwell's free space equations if x = ay = = a = a* = a* = 0. Furthermore,

if o-X = a = oz and o = Y*= Z these equations will reduce to the equations for

ordinary lossy media.

However, if U = =0 and o- = a* = 0, then field quantities arising from 2
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(2.66)
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directed gradients are attenuated. Also, when

Uz 60
, (2.73)

the impedance of the medium is matched to free space independent of the direction

of propagation of the incident wave. Therefore, the artificial medium allows all waves

to be absorbed without reflection. However, since the PML is is truncated, it is

essentially backed by PEC. This PEC creates a wave that will reflect and propagate

back into the computational domain. PML will attenuate this wave. The amount of

attenuation is determined by the thickness of the PML and by its conductivities.

The loss factor of this medium is lower near the interface with free space to avoid

possible minor spurious reflection from numerical errors and the effects of discretiza-

tion. But as the wave propagates further into the PML, the loss can be increased.

Different loss functions have been proposed, but good performance has been obtained

from Berenger's proposed conductivity profile,

oU() = omax H (2.74)

where 5 is the total thickness of the PML and n is the order of the PML. Generally

a second order PML has been found to work well.

PML for BOR FD-TD

PML equations can be applied to BOR FD-TD by using equations formulated

through a stretched coordinates approach. This idea was formulated by Chew and

Weedon ([11, 12]). First Maxwell's Equations are modified via a complex coordinate

transform. This modification introduces additional degrees of freedom to allow for the

lossy medium serving as PML to be reflection-less for all frequencies, polarizations,

and angles of incidence. In the time harmonic e-iwt notation, Maxwell's Equations

are,
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V, x E iw H

V, x E = iwlulil

V, -E = 0

V, pZ= 0

s8 x sYay sz az

where

(2.79)

In the previous equation, sx, sy, and s, are the complex coordinate stretching vari-

ables. Using a change of variables,

- j s ')d' (2.80)

where ( represents x, y, or z, Maxwell's Equations for the PML can be given for a

complex variable spatial domain. Using the same change of variables, V, becomes,

+ = ~+ ~+s z. (2.81)

and using the following equalities:

a 1 a

Maxwell's Equations can now be written as,

ax E = iwpNH

Vx E = iwpuH

CE e

(2.82)

(2.83)

(2.84)

(2.85)

(2.86)

(2.87)= 0
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V, -ME 0 (2.88)

If s, = Sy = s, = 1, the transformed Maxwell's equations regress back into their

original form. However, if

sC (W) = 1 + WE (2.89)

the medium becomes lossy and non-Maxwellian. If sc satisfy conditions similar to

those that constrain og of the PML equations for 3D FD-TD, then the interface

between the PML and free space is reflection-less for all angles of incidence.

Obtaining the correct PML equations for BOR FD-TD is possible by generalizing

this change of variable formulation for a cylindrical coordinate system. It will be

necessary for the PML to absorb waves traveling in the p and z directions. Therefore,

the following change of coordinates are used:

J f 1 z(z') , i (z)
z = s( z )dz = J 1z + + E (2.90)

P ,, P io-P(p'/) , iAP(p)
p= so SPV)dpl = I1+ WEdp' = p+ .E (2.91)

JO 0 WE WE

For cylindrical coordinates the del operator becomes,

,1a 8 1 a a
=p - + .. (2.92)

Expressions of the magnetic and electric fields as Fourier series (Equations 2.19 and

2.20) can be substituted into the new Maxwell's Equations (Equations 2.85 to 2.88)

while applying the V operator in cylindrical coordinates. This procedure will result

in the equations for the fields inside of BOR PML in modal form,

i-e x eV,, + V x -- ,U, = wI/h (2.93)
p

±-0 x hvu + V x uv= -iwce%, (2.94)
p

Expansion of the curls and cross products will produce two sets of equations,
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-= h, - h (2.95)

a a
-iwee = h - -h (2.96)

az apV
m 1-iwee =+ (2.97)

m Z-
V-iph = -e (2.98)

u-iph = ep + e (2.99)

m a a
-iwph,= -- Ce - -- (et) (2.100)p paop

-iwee m - - hO (2.101)
= -h aiV

a az
-iweh - h (2.102)

m 1
-iwCez = hP + (ph?) (2.103)p paop

-z Vh U=m a
-iwph = -- ~-e + -e (2.104)

-iwphO = ep + e (2.105)

m 1
-iwph' = -eg (e) (2.106)

As described earlier when the equations for the BOR FD-TD fields were derived,

these two sets are independent and redundant. Thus they can be condensed into one

set and have their v and u subscripts dropped:

m a
-iwe = -hz ho (2.107)

-iweo = hP - hz (2.108)=a a
m 1

-iwEez = ~ hp + (fih4) (2.109)

m a
-iwUph = -ez - -e4 (2.110)

pi a
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-iwph4,

-iwphz

a a= - epF + -ez

m ia
p p p

(2.111)

(2.112)

The above equations need to be discretized and put into a form that allows for time-

stepping. This conversion is accomplished by splitting each field into two components,

very much analogous to the splitting that was performed for the PML of 3D FD-TD.

For example ep = epz + epo where epz and epo are defined by the equations,

m a
-iwcs 7 ep = -hz - iwcszep, = hos

p az
(2.113)

For ephi, e0 = e- + e4O where co, and eop are defined by the equations,

a
-iWesze, = -ha - iwcspe, = hz.

a
(2.114)

For ez, the first derivative of Equation 2.109 must be expanded in order to properly

split the field. Taking the derivative with respect to p,

arho

m 1
+ -hp + -ho

p p

allows for ez to be split into,

-UwCS~esp = -hp +
p

-iwespeCzp

The split h field terms are derived in a similar manner and are described by,

(2.115)

m 1
-h,
p

a ho.

(2.116)

(2.117)

m
-ez
p

-ipshp4 =

iwyuszhpz =

iwpszh4z =
a

-e,
az

(2.118)

(2.119)

(2.120)
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a
-ezap
m 1

-- er + -e4
p p

equations is changed back from time harmonic form to the time

a
Eyepz + azepz

at
aE te po + Oo-eo

Se4z + Uzepz
at

±
Eeo up~o-p
a

+
E-tezp + opezp
at

+
aE-ezo + a-pezeat

a hpz + *h

a hpo + o-* hp

at

ptahp+ ou~hop

at

p h + aphzp
at z

p- ahzo + cohzoat

a
- a (hoz + hop)

- -(hzp + hz )
P

= (hpz + hp)

= (hzp +hzp)

= (h z + hp)

p

a

m 1
= -(pz + hp4) + -(ht + h4)

p p

=z (eoz + eop)

= (ezp +ezo)
P

= (epz + eo)

=p (ezp +ezo)

= (eoz + ep)

= (e pz + e po) - - (eoz + eo p).
P p

To discretize the PML equations, the central difference approximation can not be

used to accurately represent rapidly decaying fields [40]. Instead, exponential time-

stepping is used. The PML equations are treated as ordinary differential equations

and are solved explicitly by finding a homogeneous and particular solution for each

unknown. Using epz, as an example, the homogeneous solution is of the form,
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iwysohzo =

aiwtsphz, = eo.

The set of PML

domain to yield,

(2.121)

(2.122)

(2.123)

(2.124)

(2.125)

(2.126)

(2.127)

(2.128)

(2.129)

(2.130)
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e "'(t) = Ce((Z/.t

with an unknown constant C. One can argue that the homogeneous solution arises

from combined excitations over many previous time steps. At the previous time step,

t = (n - 1/2)At, epz is assumed to be known. There C can be expressed as,

eho. (t - (n - 1/2)At)epz

C

= Ce-(az/)(n-1/2)= n12-1/2

= (oz/E)(n~1/2)Ate n-1/2.

So at the next time step,

ehz""'(t = (n + 1/2) At) - e(UZ/)(n-1/
2 )At epzI n1/2e-(0'Z/E)(n+1/2)At

= e n-1/2-(oz/E)At

The particular solution is of the form,

e rt(t') = - 1(hoz + hop) + Ke-sigmaz/t'. (2.140)

It has already been established that the homogeneous solution accounts for contribu-

tions due to previous time steps. So the particular solution must arise form the ho

field at the current time step. But all initial e fields are zero so K can be found using

the following expression:

epart. (t' = 0) = 0 = 1 o9(h42 + hop) + K
pz c.Tz

K = 1 &(hoz + hop)2
o-z az

At the end of the time step, t' = At, the particular solution becomes,

epart (t' - At) =epz
- 1 O(hoz + hop)
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Combining the particular and homogeneous solutions and discretizing the spatial

derivative will give the desired discrete form,

n+1/2 AAt/cepZ+ n-1/2 + e (/E)At- 1
ZI i+ 1 /2, k+ 1/2 =ei+1/2,k+1/2 + O-ZAz

(hoz i+1/2,k+1 + hO,, i+1/2,k+1 -

-hOz|?+1/2,k - h i, +1/ 2 ,k). (2.143)

The rest of the PML equations can be derived in a similar fashion.

2.6 Source Implementation

All initial fields within the FD-TD computational domain are zero. Excitation is

created by adding quantities to these fields. Current sources can be introduced by

adding a current density term, J, to the discretized Maxwell's Equations. A voltage

source can be modeled by setting the electric field to V/A.

Usually for RCS calculations, a plane wave source is desired. The creation of this

plane wave is what characterizes the difference between total field and scattered field

in the calculation domain. Scattered field is defined as,

Escat = Etotal - Einc (2.144)

where Etotal is the total field and Einc is the incident field. This definition is enforced

at the boundary between total and scattered field by adding in or subtracting out a

correction term for the update equations on and next to this boundary.

This method is logical when one considers how the fields are calculated from

adjacent field values: next to the boundary there are field values which lie in the

total field region but are calculated from fields that lie in the scattered field region.

Thus a correction term is added to the scattered field values when used to calculate

the new value of the total field vectors. Similarly, next to the scattered/total field

boundary there are scattered field values that are computed from vectors that lie
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within the total field. Thus a correction term is subtracted from the total field values

when used to update scattered field vectors. Figures 2-6 and 2-7 depict the locations

of the fields where the correction terms must be used to create a scattered-total field

boundary in BOR FD-TD.

Scattered
Field

Add a correction term
to surrounding E fields lyin I ered Fie ld
when updating

Subtract a correction term
from surrounding H fields lying in Total Fieid,
when updating

Total Field

h
PC

e z

hk
e z

e-V
+hC

Scattered
Field

Subtract a correction term

h from surrounding E fields lying In Total Fleid
when updating

e e
ep

ez
P

h Add a correction term

p to surrounding H fields lying In Scattered Field

- _ owhen updating

ez

Figure 2-6: The BOR FD-TD fields for which a correction term must be added or
subtracted during each update. These fields lie near the left and right boundaries
between total and scattered field.

The correction terms are usually generated through some analytical expression to

produce a wave at the desired incident angle and frequency. Since FD-TD is calculated

in the time domain, a Gaussian pulse excitation is used to allow for multiple incident

frequencies to be analyzed per trial. Most often the Gaussian pulse is modulated

near the center frequency. This arrangement will concentrate the wave's power at

the frequencies of interest. Afterwards, the calculated field quanties can be Fourier

transformed to obtain the fields for a particular frequency.

For a body of revolution geometry in FD-TD, the incident fields can be given in
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Scattered
Field

Subtract a correction term h z
from surrounding H fields lying in Total Field
when updating

e P
P,

hz

'FO
p

he

h z
19 A

)ho

hP hZ

ez

Add a correction term
to surrounding E fields

h z lying in Scattered Field

L p

IP U - i-

Total Field

A

Figure 2-7: The BOR FD-TD fields for which a correction term must be added or
subtracted during each update. These fields lie near the top boundary between total
and scattered fields.

terms of horizontal and vertical polarization components,

ji = (Eh + E) P t - )

i= -i x E=- (-E'b + Evh) P
r7 17

ki

r = y +

i = -sin Oi - 2 cos 6i

Ii = -x sin Oi - z cos 9i = -p cos sin i - z cos 9i

h = 2cos64 - sin1

= rho cos Oi cos # - cos Oi sinq$- sin 6i

f = = #cosq# + psin #.

(2.145)

(2.146)

(2.147)

(2.148)

(2.149)

(2.150)

(2.151)

The modulated Gaussian pulse P, with a pulse width of -and a modulation frequency

of f, is defined as,

P(T) = e 2 /2a sin(27rfT). (2.152)
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For a BOR arrangement, the # dependence must be represented with Fourier

modes. Thus the expressions for the incident fields are decomposed into Fourier

components. This produces,

1 2 7r 7 i .
e2 = (EhcosO cosq$+ E sinq#)P tj- dO (2.153)

Ou 27r fo C)

e -= 1 (EhcosO cos+±Evsinq#)P t- ki- cos modo. (2.154)M, 7 o C

Usually a Gaussian quadrature technique is used to numerically compute these inte-

grals.

Though an analytical form of the incident wave is available and the correction

terms are usually generated on the fly in normal FD-TD programs, this is not the

only method. For example, the correction terms could have been calculated far in

advance and stored on disk. The correction terms corresponding to each time index

are independent of the correction terms of other time indices. Furthermore, they are

also independent of any activity within the computational domain. This degree of

independence will permit the development of the multiple region FD-TD method as

described in the next chapter.

2.7 Near to Far Field Transformation

Calculation of RCS requires information about the scattered fields in the far field.

Huygens' principle is used to calculate the far field from the near field. The electric

and magnetic fields outside a closed region containing the excitation sources can

be determined from the tangential fields on the surface, S', of that region. The

formulation of Huygens' principle in three dimensional free space, assuming time

harmonic electromagnetic waves is,

E(r-) =s dS'{ z-p G('I f').ft x H(r>)+v x X (r, h> x E(r> (2.155>

H(r-) =s dS'{iwp G (', f') h x E(f')+ Vx G(' ) -h x H(ff)} (2.156)
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where G (f, f') is the dyadic Green's function,

= 1 V ] eikjf,'jl
G (, -4) =I +- (2.157)

k2 47rjr,) P1

In the far field, V is approximately ikk and [I -VV) is [60 + qS). Thus, equation

2.155 in the far field becomes,

Z() dS{iws [/d] - .x H(i ) +

+ik[50 - $] -f x e(f) _.e (2.158)
147rjr, fyj

In 3D FD-TD, the Huygens' surface S' is normally a box that surrounds the entire

total field domain and includes the boundary between the total field and scattered

field. In BOR FD-TD, S' is usually a cylinder, implemented as the three sided partial

outline of a rectangle within the computational domain.

2.8 Numerical Concerns for FD-TD

FD-TD requires the discretization of space into A of approximately A/20 to A/10

for the highest frequency of interest. Time is also discretized into At. For 3D FD-TD,

the Courant-Friedrichs-Lewy stability criterion states that,

At 2 D (2159)
V (AX) 2  (AY), (Az)2  219

where Ax, Ay, and Az are the spatial increments. For BOR FD-TD to meet stability

requirements, the time increment is dependent on both the spatial increment and

mode number,

AtBOR < - (2.160)
Sc

where s ~ max(v'F, m + 1) and is known as the "Courant stability factor." Though

BOR FD-TD reduces the number of total update equations that need to be modified

at any time, the stability requirement will create progressively smaller time steps for

54



higher modes. This causes BOR FD-TD to update the equations for more points in

time for higher modes.

Furthermore, the discretization of Maxwell's Equations using the central difference

method is only an approximation. This imperfection will alter the phase velocity of

the wave as it travels through the lattice. A free space wave should have its phase

velocity, vp equal to its group velocity, c. In the FD-TD mesh the phase velocity

will be slightly smaller than the group velocity. And vp will depend on both the

frequency and direction of propagation. This aberration in phase velocity due to the

mesh is known as numerical dispersion. This dispersion can be reduced by making

AT = cAt larger However, cAt has an upper limit to meet the stability requirement.

Another way to minimize numerical dispersion is to reduce the spatial step size A.

It is desirable for the step size to be small enough that the wavelength A > IA but

in most applications A is chosen so that A > 20A.

2.9 Computational Expense of FD-TD

The stability requirements and the need to minimize numerical dispersion causes

FD-TD programs to require both a large amount of memory and a long duration of

time for simulations. Shown in Figure 2-8 is a chart that gives the approximate time

and memory needed for a Sun Blade 1000 machine running BOR FD-TD to model a

3 meter deep and 1.5 meter wide cavity for a range of frequencies commonly used in

radar analysis. As shown in the chart, at X-band the simulation would require several

million years to complete. Also note that the calculation of the time requirements

assumes that core memory is available. Given that several gigabytes of memory is

needed at X-band, most computers would need to use virtual memory. This fact

becomes more strongly evident when 3-D FD-TD instead of BOR FD-TD is used.

As shown in Figure 2-9, 3-D FD-TD has a similiar computational time requirement

but has a much greater memory requirement. As shown by both charts, both BOR

FD-TD and FD-TD cannot be used to solve for electrically large cavities.

The multiple-region FD-TD method that will be introduced in the next section
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will help reduce some of the memory requirements. This method will also provide a

possibility of reducing computational time by eliminating the need for virtual memory

and creating a situation where parallel computing can be applied.

10

1020

101- 1 PB

1 M1il0oI Years

E 1TB3F 0

1010-
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10
5

100
10 10 10 10 10 101

Frequency

Figure 2-8: Computational demands of BOR FD-TD as estimated
1000 Computer.

for a Sun Blade

2.10 Summary

Both the BOR FD-TD and 3D FD-TD algorithms were presented. The FD-TD

method provides a means to model electromagnetic behavior in the time domain

through the use of discretized Maxwell's Equations. The computational domain is

truncated using a PML absorbing boundary condition. The distinction between scat-

tered field and total field within that computational domain allows for plane wave

sources to be implemented. Also presented were the stability requirements and nu-

merical dispersion minimization requirement that place restrictions on the granularity

at which time and space may be discretized within FD-TD. These requirements cause

FD-TD to be computationally expensive, causing very long simulation times and very

large computer memory needs.
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Chapter 3

RCS Prediction Using Partitioned

Finite-Difference Time-Domain

Method

Cavity geometries suitable for partitioning into multiple regions must meet certain

requirements. The creation of cavity segments that can be modeled in a piece-wise

manner requires the formulation of the inputs into each segment and of knowledge

about the outputs of each section. This chapter discusses these issues and develops a

partitioned FD-TD approach for duct cavities.

3.1 Theory and Justification for Partitioning

As stated earlier, the partitioned model should be valid for cavities where the

energy travels mostly in an in and out fashion, and where coupling between interior

features and the back wall is minimal. Examples of this type of cavity are shown

in Figure 3-1. In that figure, 2-D cuts of two different body of revolution cavities

embedded in a low RCS targets are shown along with the hypothesized paths that the

incident waves will take. For future reference, the axis of rotation will be considered to

be the z axis while the initial incident wave will approach the cavity in a -i direction.

Waves propagating in the -i direction will be referred to as traveling in the "inward"
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direction, while the +z direction will be considered the "outward" direction.

Figure 3-1: Directions of scattering that can be modeled using multiple region FD-
TD.

Furthermore, each cavity in Figure 3-1 is divided into three segments with dotted

lines. For the top cavity, the path of energy travels through each segment twice: once

when it propagates inward in the -- direction, and once more when it propagates

outward in the +z direction. Thus, each segment needs to be modeled twice to

capture both the inward and outward activity. Also, as the wave travels inward, the

energy that propagate out through the left hand end of each segment must be known

in order to find the correct excitation for the next neighboring segment that the wave

travels to. Similarly, as the wave travels outward, the energy that propagates out

through the right hand end of each segment must be known in order to find the

correct excitation for the next neighboring segment that the wave travels to.

For the bottom cavity, again each segment needs to be modeled twice. However,
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note that the center segment has energy traveling in three paths: the inward incident

energy, the outward propagating energy caused by the back wall reflection, and also

outward propagating energy caused by reflection by features within that segment.

Thus, for the center segment, two sets of data need to be known to correctly excite

the neighboring segments to the right and left. This is the broader, more general

characterization of the activity within the interior of duct cavities.

It is this assumption about the behavior of the incident wave as it enters and

leaves each segment that allows for partitioning and piecewise modeling of duct cav-

ities. Thus the concept of the multiple-region FD-TD method lies in recording the

electromagnetic activity as energy leaves each segment, and then exciting neighboring

segments with those recorded fields.

3.2 Partitioning and Classification of Cavity Seg-

ments

The implementation of multiple region FD-TD relies on categorizing each segment

of the partitioned cavity as one of five cases.

Case 1 The first segment which includes the incident fields.

Case 2 Segments where the waves generally propagate from the opening toward the
bottom of the cavity in the -F direction.

Case 3 Segment that includes the bottom of the cavity. Waves bounce and start
traveling toward the mouth of the cavity in the +Z direction.

Case 4 Segments where the waves generally propagate from the bottom of the cavity
toward the opening of the cavity in the +2 direction.

Case 5 A segment similar to Case 1 but where the waves now travel out of the cavity
opening.

Figure 3-2 gives a visual summary of the cases. As shown in the figure, Case 1 and

5 share the same physical part of the cavity. Case 2 and 4 likewise share the same

structure. Though the physical structure of modeled segments may be the same, these
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cases differ in how and where fields are recorded and artificially recreated within each

segment. The cavity in Figure 3-2 is divided into three segments, thus creating only

one instance of Case 2 and one instance of Case 4. Cavities that are divided into

more than three segments will have multiple instances of Case 2 and Case 4. Cavities

that are divided into two segments will not have any instances of Case 2 or Case 4.

p

Total Field

tPEC

Case 3 Case 2 and 4 Case I and 5

Figure 3-2: Partitioning the cavity into three segments with corresponding case num-
bers.

3.2.1 Case 1

Case 1 models the front portion of the cavity as a complete problem. Figure 3-3

contains a schematic for the computational domain of Case 1. That is, both the

interior and exterior of the front portion of the cavity are modeled simultaneously.

This arrangement will allow the MR FD-TD method to calculate the diffraction from

the front edges of the cavity. The exterior of the cavity is surrounded by a scattered

field layer and a PML layer, as in the normal unpartitioned FD-TD algorithm. The

interior of the cavity is terminated with a layer of PML that is disconnected from

the other PML that surrounds the exterior of the cavity. The reasoning for this

arrangement will be made clear in the discusson below when the recording of the field

activity for later retrieval and use is described.
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Record outgoing H rho and H phi fields

Record outgoing E rho and E phi fields

Figure 3-3: Schematic for the computational domain of Case 1.

Modeling of the Incident Wave

The incident wave for Case 1 is created in nearly the same manner as in the

normal, unpartitioned FD-TD method. The proper electric and magnetic fields are

subtracted at the scattered/total field boundaries as discussed in Figures 2-6 and 2-7.

A small detail that deserves attention is that the incident field calculations need to

be identical to those produced when the entire cavity is modeled in normal FD-TD.

Usually the delay term and incident angle depend on the dimensions and orientation of

the cavity. Thus, when modeling Case 1, prior knowledge about the exact dimensions

of the whole cavity is needed to create the correct excitation. However, as shown in

Figure 3-3, the exterior layer of scattered field does not extend completely around the

entire cavity. No region of scattered field is created in the interior of the cavity at

the end where total fields interacts with the PML. This end of the cavity should only

see the electromagnetic activity that enters through the mouth of the cavity on the

right hand side. This same activity will propagate further into the cavity and needs

to be recorded in an unaltered form to create that effect. The lack of a scattered field

region puts more stress on the PML, but the special PML used to absorb the interior

activity is much thicker than the normal PML used for the rest of the problem.
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Recording Fields

As shown in Figure 3-3, the fields near the boundary with the PML in the interior

of the cavity will be recorded. By recording the fields at this location, one can

capture the profile of the electromagnetic activity that will enter into the neighboring

segment lying to the left of Case 1. The PML on the interior of the cavity will

absorb the incident fields and allow the recorded fields to be free from artifacts of the

artificial geometry created by the partitioning. Any scattering from segments further

in the interior of the cavity will be handled by subsequent cases and can be modeled

independently.

Note that the electric and magnetic fields are not recorded at the same z index.

Rather, they are recorded at 16 apart. Also, the PEC of the interior of the cavity

is artificially extended by one delta to accommodate this recording scheme. This

extension is shown in Figure 3-3, and in subsequent figures with a heavy dotted

line. The reasoning behind this setup will be made clear in Section 3.2.2 when the

discussion will focus on replaying the recorded field activity into Case 2.

3.2.2 Case 2

Case 2 models the second segment of the cavity using only the interior surface.

Figure 3-4 contains a schematic for the computational domain of Case 2. Unlike Case

1, or conventional FD-TD, Case 2 does not have an exterior layer of scattered field

and PML. Since only the interior of the cavity needs to be modeled, and the interior

surface is PEC, it is appropriate to ignore the exterior of the cavity and simply

truncate the computational domain. The added advantages are a conservation of

computer memory, and shorter simulation time when this technique is used. Note

that for the sake of simplicity in the figure, the interior surface in the figure is made

parallel to the z axis, so the PEC becomes a straight slab when the exterior surface is

ignored. Cavities with various features on the interior can also be modeled using the

multiple region FD-TD method. PML is placed at both ends of the cavity to allow

for consistency when the fields must be recorded to be rebroadcast into neighbor
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segments of the cavity.

Record outgoing E rho and E phi fields

PEC
PML Boundary PML

+ H V
Create Artificial Sourc{ E Z

Record outgoing H rho and H phi fields

Figure 3-4: Schematic for the computational domain of Case 2.

Modeling of the Incident Wave

The data that was recorded from Case 1 is used to create an artificial source within

Case 2 as shown in Figure 3-4. The creation of this source involves both adding in H

fields when calculating E fields directly to the left of the boundary, and subtracting

E fields when calculating H fields directly to the right of the boundary. This method

arises naturally from the structure of the FD-TD lattice, as shown in Figure 3-5.

Furthermore, this technique also ensures that the plane wave will propagate in only

one direction. This approach is similar to the total and scattered fields arrangement

to create plane waves in a conventional, unpartitioned FD-TD.

Recall the discussion in Section 2.6 regarding the creation of the plane wave source

in the normal, unpartioned FD-TD algorithm. Though analytical expressions were

developed to calculate the desired excitation, on-the-fly as needed, there is nothing

to prevent obtaining those same fields through other means, and recording them in

advance. Creating a plane wave source would simply mean loading the recorded fields

into the lattice during the simulation. The creation of the artificial plane wave within

Case 2 exactly follows this line of reasoning, using the output of Case 1 as input.

Figure 3-5 shows that creating the artificial source in Case 2 requires that the E
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and H fields from the previous segment of the cavity be recording from two neighboring

lattice cells along the z axis rather than from the cells with the same z index. Thus,

Case 1 was artificially extended in the -i direction to create a perfect match with

the locations at which E and H must be altered in Case 2. Without this extension,

there would be a half delta mismatch in the z direction. Although the difference of a

half delta may not significantly affect the overall calculation of scattering and RCS,

the creation of the extensions allow for a more correct, complete solution.

The altered update equations that correspond to Figure 3-5 are,

n+1/2 n-1/2 AT n
ePi+1/2,k+1/2 ePi+1/ 2 ,k+1/ 2 + rloA(h± i+1/ 2 ,k

-( t|+1/2,+1+ hecorded)) +
mAT

+0 MT hz In (3.1)
(i + 1/2)Ap i+1/2,k+1/2

ln+1/2 In-1/2 AT n n
g i,k+1/2 i,k+1/2 +70 i_-1/2,k+1/2 ~ zi+1/2,k+1/2+

+m (hp In k+1 + h recorded) - hp I) (3.2)

PInk± n IAT n+1/2 nI 1 /2  recorded
T, A i,k+1 (el-1/2 -eO

1 MAT (3.3)
etao hp '

hI+1/2,k = +1/2,k + IA n+-1-2 1 2 +

1 AT n+1/2 -recorded eIn+1/2
+ a zeP i+1/2,k-1/ 2  p P i+1/2,k+1/2) )

eta0 Az
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Figure 3-5: Schematic for the creation of artificial source in Case 2 and Case 3. Plane

wave will propagate in the -i direction.

Recording Fields

Scattering from Case 2 can propagate in both the -F and +i directions. Therefore,

the electromagnetic activity is recorded at both ends of the segment as indicated in

Figure 3-4. However, the +i data must be recorded to the right of the boundary

at which the artificial source is created. Recall that the excitation introduced in

Case 2 does not propagate in the +i direction. Therefore, this arrangement will

allow the recorded data to only contain the scattering information, and prevent any

contamination from the incident pulse. As in Case 1, the E and H fields are recorded

at one half delta apart to facilitate the creation of artificial sources in neighboring

segments. Likewise, the rationale for the artificial extensions on both ends of Case 2

is the same as that given in the previous section for Case 1.

3.2.3 Case 3

Case 3 models the terminated end of the cavity using only the interior surface.

Figure 3-4 contains a schematic for the computational domain of Case 3. As was
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done for Case 2, the exterior of the cavity is ignored and the computational domain

is simply truncated. Since the bottom of the cavity is PEC, PML is only placed at

one end to facilitate recording the scattered energy.

Record outgoing E rho and E phi fields

.-- PMLPECI Bounda

+H h7
Create Artificial Sourc Z

{- E V

Record outgoing i rho and H phi fields

Figure 3-6: Schematic for the computational domain of Case 3.

Modeling Incident Wave

The creation of the artificial source in Case 3 follows the same technique as in

Case 2. Figure 3-5, detailing the fields involved in creating source that travels in a

-i direction, is applicable to Case 3 as well. Furthermore, the Case 2 equations for

creating the incident wave (Equations 3.1 to 3.4) are applicable to Case 3 as well.

Recording Fields

Data is recorded in the same manner as Cases 1 and 2. However, the data must

be recorded to the right of the boundary at which the artificial source is created. The

artificial source propagates only in the -- direction in Case 3. Thus the recorded

data will only contain the scattering resulting from reflection off of the terminated

end and from the interior of the cavity, and not from the incident wave. The layer of

PML to the right of the cells at which the fields are recorded, preventd any spurious

reflections.
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3.2.4 Case 4

Case 4 is complementary to Case 2 and shares the same geometry. Case 4 occurs

after the main pulse has traveled into and out of Case 3. Thus the main pulse will now

propagate in the +2 direction. Figure 3-7 gives the schematic for the computational

domain of Case 4.

Record outgoing E r io and E phi fields

Boundary -PML

Create Artificial Source Z
~-HJ

Record outgoing H rho and H phi fields

Figure 3-7: Schematic for the computational domain of Case 4.

Modeling Incident Wave

Whereas the artificial source was on the right hand end of the cavity segment for

Case 2, the source is now placed on the left hand end for Case 4. Furthermore, due to

the lattice structure, the creation of the artificial source is not the same as in Cases 2

or 3. Compare Figure 3-8, which is valid for Case 4 and Case 5, to Figure 3-5 which

is valid for Case 2 and 3. Specifically, the equations that must be altered are,

n+1/2 epIn-1/2 + FAT (h.f n
i+1/2,k+1/2 i+1/2,k+1/2 + 770- i+1/2,k

- (ho - hrecorded)+
-( i|+1/2,k+l - h0 ))'ed +

MAT hIn
+0 (i + 1/2)Ap i+1/2,k+1/2 (3.5)

n+1/2 +n-1/2 AT In - n
i,k+1/2 i,k+1/2 (70 z -1/2,k+1/2 hzi+1/2,k+1/2

+90 Ink+ recorded) Pk O
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Figure 3-8: Schematic for the creation of artificial source in Case 4 and Case 5. Plane
wave will propagate in the +Z direction.

Recording Fields

The scattering information is recorded at the right hand end of Case 4. By creating

the source on the left hand end and recording on the right hand end, one can model the

main pulse as it propagates in the +i direction. However, another major component

of the scattering that also propagates in the +i direction was created when the
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corresponding instance of Case 2 was modeled. Recall that fields were recorded at

both ends of Case 2. Thus the fields that were recorded on the left hand end of

Case 2 must be added to the fields that are recorded at the left hand end of Case 4.

Otherwise, the source that will be used in subsequent instances of Case 4 or Case 5

will be incomplete. Figure 3-9 gives a visual interpretation of this approach. Also

note that the artificial extensions placed in Case 2, and the locations where the E and

H field were recorded, allow for an exact alignment with where the fields are recorded

in Case 4.

P1 Direction of Main
Pulse Propagation

jPEC
3 '1 2 2 1

z

P1
Add Add
Recorded Recorded
Data Data

PEC 1

3 4 4 5
zi No1

Z

Direction of Main
Pulse Propagation

Figure 3-9: Schematic for creation of artificial source in Case 4 that includes scattering
from instances of Case 2.

3.2.5 Case 5

Case 5 is complementary to Case 1, and shares the same geometry. Figure 3-10

gives the schematic for the computational domain of Case 5. Unlike Case 2, Case 3,

and Case 4, the exterior of the cavity is of interest because the scattering from the lip

of the cavity is of interest. Note that the major difference between the computational
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domains of Case 1 and Case 5 is the lack of a scattered/total field division. This

arrangement is correct because the fields in Case 3 were recorded to the right of the

boundary that created the artificial plane wave. The data that was recorded from

Case 3 only captured the scattering phenomenon and not the original pulse. Thus,

in a sense, the entire domain of Case 4 and the entire domain of Case 5, excluding

PML, are all scattered field.

Scattered Field

PML

PEC P

Boundary

Create Artificial Source
-H

Record outgoing H rho and H phi fields

Record outgoing E rho and E phi fields

Figure 3-10: Schematic for the computational domain of Case 5.

Modeling Incident Wave

The excitation in Case 5 is created using the same technique as in Case 4. Equa-

tions 3.5 to 3.8 that characterize creating the incident wave into Case 4 are applicable

to Case 5. Figure 3-8 detailing the fields involved in making this plane wave source

is applicable to Case 5 as well.

Recording Fields

In Case 5, there is an option to record fields that lie between the PML and the

location of the plane wave source. The use of this option will capture all scattered
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waves that propagate back in the -F direction. The use of the recorded fields will be

discussed in Section 3.3.

3.3 Multiple Iterations

The artificial source that is introduced into Case 5 may interact with features

within that segment of the cavity, or the opening of the cavity, to create scattering in

the -2 direction. Thus, it would be appropriate to record the fields at the left hand

end of Case 5 to capture this scattering. Then the recorded data may be rebroadcast

into Case 2 to Case 3 to Case 4 and back to Case 5 to model how it travels into

and out of the cavity. This repeat will create what will be referred to as the second

"iteration." The idea of iterations can be extended for third, fourth, or even more

iterations by simply recording the fields at the left hand end of Case 5 and replaying

that data into the rest of the segments each time. This is a form of back and forth

scattering which multiple region FD-TD can deal to a limited degree.

Furthermore, the use of multiple iterations forces one to reconsider electromagnetic

phenomenology within Case 4. In Case 4, fields are recorded at the right hand end

of the cavity while the artificial plane wave source is placed on the left hand end,

thus capturing the scattering that travel in the +i direction. However, there may be

features within Case 4 that will cause some scattering in the -F direction. Thus, it

would be appropriate to also record the fields on the left hand end of Case 4. Then

this recorded data may be used in subsequent iterations: the data that is recorded at

the left hand end of an instance of Case 2 will be combined with the data recorded

on the left hand end of the corresponding instance of Case 4 during the previous

iteration. The true computational domain of Case 4 has not been introduced until

now for the sake of clarity. Figure 3-11 reflects the updated version of Case 4.
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Figure 3-11: Schematic for the computational domain of Case 4.

3.4 Calculation of RCS

RCS is calculated from the fields on a Huygens Surface in Case 1 and Case 5

following the mathematics that were given in the previous chapter. The data on

this surface is collected separately for Case 1 and Case 5, and, if multiple iterations

are used, other instances of those cases. Then, due to the linearity of Maxwell's

Equations, all this data is added to create the final field values. The Huygen's surface

only includes the front end of the cavity and cuts into the PEC as shown in Figure

3-12 which uses Case 5 as an example. Note that the Huygens surface does not run

through the PEC and into the interior of the cavity. Rather, the fields on the left

hand side of the Huygens Surface for points with smaller z indices than the surface

of the PEC will be assumed to be zero.

This type of abbreviated Huygen's surface is only appropriate when the exterior of

the cavity has very low RCS. For all the cavity geometries tested, this is true. There

is some minor noise associated with the discontinuity by cutting into the PEC, but

as will be shown in Chapter 4, that contributes very little to the overall RCS.

Another aspect of implementing multiple region FD-TD that becomes important

is conservation of hard disk space. Though multiple region FD-TD supplants the lack

of memory by recording data onto a hard disk with-in an ideal world-an unlimited

capacity, in practice some thought must be given to a thrifty use of disk space when-

ever possible. The RCS data which is collected separately for Case 1 and Case 5 may

be especially large, and running out of disk space can be a real possibility. However,
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Figure 3-12: Schematic for the Huygens Surface in Case 5.

since the calculation of RCS eventually involves applying a Fourier Transform to the

Huygen's surface data, the Fourier Transform can also be applied to Case 1 and Case

5 data separately before storage onto disk. This condenses the data considerably.

3.5 Extension to 3D FD-TD

So far the formulation for the multiple region FD-TD method has only been given

in terms of BOR FD-TD. However, implementing the multiple region method in 3D

FD-TD would follow a very similar development: the same five cases and the PML

geometries can be used in a 3D arrangement. Furthermore, if the duct cavity lay on

the z-axis, the fields that must be modified to create the input into each cavity are

completely analogous to the BOR FD-TD fields: E., E., Hu, H are altered instead

of ep, ep, hp, ho. The fields that are scattered from each segment will be recorded as

a set of four two dimensional matrices instead of as a vectors at each time step.

3.6 Summary

The method to create a partitioned FD-TD program was presented. The creation

of pseudo-incident waves and the recording of outgoing scattered fields from each

segment of the cavity allow those segments to be modeled in a piecewise manner.
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Furthermore, the use of multiple iterations help to account for any minor back and

forth scattering between cavity partitions. Though the partitioning technique was

given in terms of BOR FD-TD, the method is equally suitable to implement within

3D FD-TD.
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Chapter 4

Results

4.1 Introduction

Though MR FD-TD is the focus of this thesis, it is only one of many possible

approaches in a toolkit of all RCS modeling techniques. It is in the best interest of

the researcher to choose the most optimal modeling technique for a given situation,

while taking into consideration the available computational resources. Therefore,

guidelines for selecting the best possible method would be very useful. To illustrate

the need for such guidelines, we can compare the RCS of a cavity as predicted by three

different modeling methods: conventional FD-TD, MR FD-TD, and a high frequency

technique. Shown in Figures 4-1, 4-2, and 4-3 are the Inverse Synthetic Radar (ISAR)

images of the RCS predicted by these three modeling methods.

ISAR images will be presented many times in this chapter. Therefore, a brief

introduction to ISAR is needed. Like the better known Synthetic Aperture Radar

(SAR) technique, ISAR produces a high resolution two dimensional image of the

signature of a target. One dimension is "range" which is the measure of line-of-sight

distance from the radar to target. The other dimension is cross range, perpendicular

to the range. Resolution along this direction can be achieved by moving the radar

to create a large antenna aperture, as done by the SAR method, or by assuming

a fixed radar system and moving the target as done by ISAR. In this study, the

body of revolution cavities are rotated on their center, half way down their axis of
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revolution. The rotation, discretized "look angles," maps to cross range while the

range of frequencies map to down range. The result is a two dimensional image

showing the areas of reflectivity in the target.

Figure 4-1 was generated by conventional FD-TD. Since it is an exact approach,

this method should be reliably accurate. Of particular interest in this ISAR image

is the amount of extended return. Extended return is what appears as areas of

reflectivity far down range from the actual target. No physical part of the target

exists at this location, As explained previously, it is due to the cavity interior emitting

the energy that been delayed by multiple reflections from the side walls.

Nomal HH 55 dg, rt 2, z . 5

-115

-25

-17
-35

-2

-0.1 0 01 02 0.3

Figure 4-1: ISAR image for conventional FD-TD. For this image and all subsequent
images, line-of-sight is upwards towards the cavity opening

Figure 4-2 was generated by Multiple Region FD-TD. This result is very similar

to the one generated by conventional FD-TD. However, with just one example, there

is not much of a guarantee that MR FD-TD will always generate results comparable

to the conventional FD-TD prediction.

Figure 4-3 was generated by a High Frequency Technique. This result differs from

the one generated by conventional FD-TD. Much of the extended return is missing

from this image, appearing as one isolated spot instead of a long "tail." This isolated

spot can be interpreted as a single pulse of reflected activity emanating from the

cavity opening.

But with only one example it is premature to discredit high frequency techniques
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Figure 4-2: ISAR image for Multiple Region FD-TD.

F1 0R 1 m g 2 0.3

Figure 4-3: ISAR image for a High Frequency Technique.

altogether. For example, Figure 4-4 shows the ISAR image of the conventional FD-

TD results for a differently shaped cavity. This cavity does not create much extended

return.

Compare the Figure 4-4 with Figure 4-5 which is the ISAR image of the same

cavity as modeled in a High Frequency Technique. Here the images are much less

dissimilar.

These examples demonstrate that the high frequency technique is not always ac-

curate in cavity modeling although it cannot be completely discredited. MR FD-TD

may give more accurate predictions, but that accuracy may possibly be affected by

cavity size, incident angle, polarization of the incident wave, and other factors. Prior
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Figure 4-4: ISAR image for conventional FD-TD.
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Figure 4-5: ISAR irmage for the high
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frequency method.

discussions have shown that conventional FD-TD is not always feasible. But the

range of cavity sizes that are feasible has not been investigated.

The development of Multiple-Region FD-TD was undertaken with the idea that

there exist classes of cavity geometries that cannot be accurately modeled with either

conventional FD-TD or with the high frequency approach. MR FD-TD is meant to

bridge the gap between exact approaches and high frequency approaches. Therefore,

understanding where and how this gap occurs is key to showing the value of MR

FD-TD and understanding its place in the tool-box of RCS modeling techniques.
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4.1.1 Overview of the Study

Understanding where and how the gap between conventional FD-TD and the

high frequency technique occurs requires a thorough investigation of each of those

techniques when applied to cavities of different sizes and shapes. Furthermore, this

same investigation must also be carried out for Multiple Region FD-TD to gain insight

into its performance relative to the other modeling approaches.

First, straight-duct cavities of a range of sizes were systematically modeled for

both polarizations and for different incident angles. This modeling was carried out

in conventional FD-TD, multiple region FD-TD, and a high frequency technique.

The second portion of the investigation focused on duct cavities that did not have

perfectly straight sideways. This half of the study determined the affect on RCS by

changes in the cavity interior walls and the ability of the three prediction approaches

to model the activity due to those changes.

4.2 Limits of Computation Feasibility and Validity

4.2.1 Conventional BOR FD-TD

Range of Validity

Given a lack of physical data, the results produced by the conventional unpar-

titioned FD-TD method will always be considered accurate. As stated earlier, the

range of applicability is limited by the computational intractability of modeling large

cavities. Therefore, it is necessary to investigate the range of computational feasibility

of the conventional BOR FD-TD method.

Range of Computational Feasibility

The size of the target defines the amount of time and memory an FD-TD simu-

lation would require. Time and memory requirements, in turn, demarcate the range

of computational feasibility. Simple straight duct cavities of various sizes were used

as benchmarks to define the limits of this range. These cavities were embedded in
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low RCS ogive shells since the electromagnetic activity of the cavity interior was of

main interest. The ogive is defined by rotating an arc of a circle on its chord. For

all cavities, the frequency of excitation was between 9 and 13 GHz. The FD-TD

simulation was allowed to run for enough time steps to be equivalent to the amount

of time needed for an electromagnetic wave to traverse a distance equal to 12 times

the interior diagonal length of the cavity. This will ensure that the reflected energy,

delayed by multiple interactions with the cavity side walls, will have enough time to

exit the cavity.

Rnge of Computational FasibdIfy of BOR FD-TD

5 --

4 --

0 2 4t 6 a 10 12 14

Figure 4-6: Range of feasibility for conventional FD-TD.

Figure 4-6 is a chart showing the range of computational feasibility. Any simula-

tion that would not compile or took longer than two weeks to complete was regarded

as not computationally feasible. The dimensions of the cavity opening and the depth

are given in terms of the largest A which was at roughly 3.3 centimeters for 9 GHz.

A lack of memory prevented the modeling of a cavity with an opening diameter of

5 or more A because the FD-TD program would not compile. Even with a 3 or 4 A

wide opening, the cavities were still limited in depth due to a combination of memory

requirements and simulation time.
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4.2.2 Multiple Region FD-TD

Range of Validity

The investigation of MR FD-TD started with finding the range of cavities sizes for

which the approach gave accurate predictions. As was done for conventional FD-TD,

simple straight duct cavities of various sizes were used as benchmarks to define this

range of validity.

Accuracy is quantitatively determined by comparing the MR FD-TD results with

the corresponding results generated by conventional FD-TD. This comparison is done

by first converting RCS as a function of frequency into RCS as function of range.

Then the correlation coefficient between the two sets of RCS data is calculated. A

perfect match would generate a correlation coefficient of 1 while random noise would

produce a coefficient close to 0. This method of determining accuracy will be used

for all subsequent examples.

For each specific cavity geometry, four different simulations were conducted to

cover both polarizations and two different incident angles at 55 and and 20 degrees.

For all test cases, a representative setup of 3 segments (2 partitions or "cuts") was

used. Tables 4.1, 4.2, 4.3, and 4.4 summarize the correlation scores between multiple

region FD-TD and conventional FD-TD for all permutations of cavity size, polariza-

tion, and incident angle that were tested.

Depth
Width 0.5 A 2 A 5 A 8 A T11 f_-A

3 A 0.80112 0.87452 0.94522
2 A 0.75106 0.85549 0.77526 0.83379
1 A 0.70579 0.79701 0.84810 0.89839 0.86178
0.5 A 0.71106 0.55229 0.50241 0.58239 0.56893

Table 4.1: Summary of the performance of multiple region FD-TD versus conventional
FD-TD for straight duct cavity, HH polarization, 20 degrees incident angle.

It was found that MR FD-TD is not suitably accurate for cavities with openings

smaller than 1 A. Otherwise for cavities with openings of 1 A or greater, multiple

region FD-TD is always reasonably accurate. This accuracy is largely independent of
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Depth
Width 0.5 A 2 A 5 A 8 A 11 A

3 A 0.87433 0.94333 0.95522
2 A 0.84437 0.79439 0.74993 0.89576
1 A 0.85327 0.88805 0.88757 0.87787 0.88399
0.5 A 0.77500 0.59425 0.23812 0.41655 0.47046

Table 4.2: Summary of the performance of multiple region FD-TD versus conventional
FD-TD for straight duct cavity, VV polarization, 20 degrees incident angle.

Depth
Width 0.5 A 2 A 5 A 8 A 11 A

3 A 0.81226 0.84042 0.85663
2 A 0.72011 0.7573 0.88116 0.92488
1 A 0.75000 0.87508 0.83839 0.86002 0.84300
0.5 A 0.65875 0.65895 0.66809 0.65026 0.67616

Table 4.3: Summary of the performance of multiple region FD-TD versus conventional
FD-TD for straight duct cavity, HH polarization, 55 degrees incident angle.

the polarization and angle of the incident wave.

Secondly, as shown earlier, the computed RCS can be used to generate ISAR

images. ISAR images can provide a qualitative understanding of the accuracy of

the RCS prediction. Figures 4-9 and 4-10 are a pair of ISAR images, showing the

conventional FD-TD and MR FD-TD predictions for the same cavity structure. Being

only 0.5A long and 2A wide, this cavity is not very deep and does not generate much

extended return.

-1.4

-1.5.

-12
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Figure 4-7: ISAR image for conventional FD-TD using a 55 degree incident angle and
HH polarization.
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Depth
Width 0.5 A 2 A 5 A 8 A 11 A

3 A 0.91618 0.92751 0.85340
2 A 0.84420 0.91670 0.89311 0.93615
1 A 0.75483 0.97009 0.86880 0.82515 0.83379
0.5 A 0.61375 0.65885 0.66809 0.65850 0.67646

Table 4.4: Summary of the performance of multiple region FD-TD versus conventional
FD-TD for straight duct cavity, VV polarization, 55 degrees incident angle.

Figure 4-8: ISAR image for MR FD-TD using a 55 degree incident angle and HH
polarization.

Figures 4-9 and 4-10 show the ISAR images for a much deeper cavity with a

length of 2A and a width fixed at the same 2A seen in the previous example. The

extra depth creates much more extended return, and MR FD-TD successfully models

that activity.

MR FD-TD's ability to model extended return is further demonstrated by apply-

ing it to an even deeper cavity. Again the width is fixed at 2A, but the length is

increased to 5A. The cavity in Figure 4-11 and 4-12 has an extended return that is

much longer than the actual depth of the cavity. The length of the extended return

is the same in both ISAR images although the part of the extended return farthest

down range in the MR FD-TD image is very faint.

From the previous examples, it is tempting to conclude that the length of extended

return is mostly determined by the depth of the cavity. However, that is not the case

as shown in Figure 4-13. The cavity featured in this ISAR image has the same depth

as the cavity in the previous two images at 5A. However, the width of the cavity
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Figure 4-9: ISAR image for conventional FD-TD using a 55 degree incident angle and

HH polarization.
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Figure 4-10: ISAR image for MR FD-TD using a 55 degree incident angle and HH

polarization.

has been reduced to IA. Now, instead of a long extended return, there is only one

isolated region of reflectivity that corresponds to the reflection from the interior of

the cavity. Nevertheless, MR FD-TD still is able to accurately model this cavity as

shown in Figure 4-14.

Furthermore, as will be shown in the discussion on the accuracy of the high fre-

quency technique, a cavity with a large depth will also not necessarily have a long

extended return if it also has a very large opening width.
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Figure 4-11: ISAR image for conventional FD-TD using a 55 degree incident angle
and HH polarization.

-150

Figure 4-12: ISAR image for MR FD-TD using a 55 degree incident angle and HH
polarization.

Range of Computational Feasibility

Figure 4-15 shows the range of cavity sizes where MR FD-TD is computationally

feasible, using the same guidelines that were applied to conventional FD-TD. For a

given cavity radius, the amount of memory needed is now independent of the depth

of the cavity.

However computational time limits how deep the cavities can be. A narrow deep

cavity can be partitioned and may not need much memory but the total number of

time steps will be very high. Though a wider cavity uses more memory than a narrow

one, this is not what limits cavity width. The limitation is due to the fact that wider

cavities require more modes and smaller times steps. Therefore cavities modeled by

MR FD-TD are only limited by computational time-not memory.
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Figure 4-13: ISAR image for
and VV polarization.

conventional FD-TD using a 55 degree incident angle

2 -50

-2.45

Figure 4-14: ISAR image for MR FD-TD using a 55 degree incident angle and VV
polarization.

Effects of Using Fewer or More Partitions

Each partition in the cavity introduces an approximation into an otherwise exact

method. This bit of inaccuracy is reflected in the fact that the use of more partitions

creates a less accurate solution. The trend is shown in Table 4.2.2 of the correlation

scores for one cavity modeled using different numbers of partitions. This cavity was

2 A wide and 2 A deep.

Number of Segments
1 segment 2 segments 4 Segments 6 Segments 8 Segments

Correlation 0.8747 0.8555 0.8012 0.7311 0.6034

Table 4.5: Summary of the performance of multiple region FD-TD for various number
of segments for the straight cavity.
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Figure 4-15:
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Range of feasibility for conventional FD-TD.

Effects of Incident Angle and Polarization

As shown by the tables of correlation scores, There is no significant difference

between the correlation scores of 55 degrees and 20 degrees. It would seem likely

that incident angle does not affect the accuracy of MR FD-TD so long as that the

diffraction from the cavity opening and return from the cavity interior are the most

dominant components of RCS. This is not the case for very large angles of incidence.

Since the MR FD-TD approach ignores most of the exterior of the cavity, using an

incident angle of 90 degrees would not produce accurate results. To confirm this

conclusion, a 1A wide and 5A deep cavity was modeled for a range of angles using VV

polarization. The correlation scores are shown in Table 4.2.2

Incident Angle in Degrees
90 70 55 35 20 0

Correlation 0.4992 0.8238 0.8688 0.8621 0.8876 0.9023

Table 4.6: Summary of the performance of multiple region FD-TD for various angles
of incidence

Furthermore, the correlation scores seem independent of the polarization of the

incident wave. Therefore, polarization does not affect the accuracy of MR FD-TD.
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Effects of Using Fewer or More Back and Forth Iterations

The RCS of a straight duct cavity as generated by the multiple region FD-TD

method does not differ significantly when multiple back and forth iterations are used

versus when no such iterations are used. This is true regardless of the size of the cavity,

incident angle, and polarization of the incident pulse. This knowledge is significant

because the additional calculations for extra iterations should be avoided whenever

possible. Furthermore, this also shows that significant back and forth scattering-

which would make extra iterations necessary-does not occur to an appreciable degree

in straight duct cavities.

4.2.3 High Frequency Technique

Range of Validity

Tables 4.7, 4.8, 4.9, and 4.10 show the correlation of high frequency results with

conventional BOR FD-TD. As was done for MR FD-TD, both polarizations and two

angles of incidence were studied.

Depth
Width 0.5 A 2 A 5 A 8 A 11 A

3 A 0.83546 0.63422 0.38910
2 A 0.74994 0.69003 0.49838 0.39801
1 A 0.68903 0.59039 0.38901 0.38972 0.32490
0.5 A 0.45322 0.37825 0.23345 0.29839 0.22921

Table 4.7: Summary of the performance of multiple region FD-TD versus conventional
FD-TD for straight duct cavity, HH polarization, 20 degrees incident angle.

It is important to note that results generated by conventional FD-TD are available

only for a limited range of cavity sizes. Therefore the scope of correlation scores is

bounded as well. However, the available correlation scores show a strong trend: the

high frequency technique seems to be reasonably accurate for cavities with an opening

of 2 A or greater and with a depth smaller than the opening. This observation can

be translated into Figure 4-16, showing the projected range of validity of the high
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Depth
Width 0.5 A 2 A 5 A 8 A 11 A

3 A 0.77344 0.55774 0.34678
2 A 0.69320 0.43677 0.35731 0.39054
1 A 0.58345 0.45466 0.36467 0.32565 0.23246
0.5 A 0.39925 0.36667 0.34266 0.23467 0.19235

Table 4.8: Summary of the performance
tional FD-TD for straight duct cavities,

of a High Frequency Method versus conven-
VV polarization, 20 degrees incident angle.

I_ Depth
Width 10.5 A 2 A 5 A 8 A 11 A

3 A 0.71003 0.46778 0.33456
2 A 0.64578 0.35783 0.24567 0.17357
1 A 0.33456 0.34501 0.26446 0.20341 0.16548
0.5 A 0.23050 0.15400 0.14663 0.25634 0.16643

Table 4.9: Summary of the performance of a High Frequency Method versus conven-
tional FD-TD for straight duct cavity, HH polarization, 55 degrees incident angle.

frequency technique.

Range of Accuracy of High Frequency Memhd

Figure 4-16: Range of validity for the high frequency technique.

In an effort to understand the phenomenology behind this trend, it is useful to

study ISAR images of the high frequency method. Figures 4-17 and 4-18 show ISAR

images of the RCS as predicted by conventional FD-TD and a high frequency tech-

nique. This cavity is 2A wide and 0.5A deep, having a depth that is much smaller than

the width of the cavity. For the remainder of this thesis, cavities that have widths

larger than their depths will be described as "shallow," regardless of the actual di-
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Depth
Width 0.5 A 2 A 5 A 8 A 11 A

3 A 0.70351 0.45678 0.40246
2 A 0.63721 0.46421 0.26443 0.24312
1 A 0.34852 0.30562 0.13567 0.23416 0.20122
0.5 A 0.29700 0.23563 0.20456 0.23356 0.12435

Table 4.10: Summary of the
ventional FD-TD for straight

performance of a High Frequency Method versus con-
duct cavity, VV polarization, 55 degrees incident angle.

mension of their depth. As shown by the conventional FD-TD results, not much

extended return is generated by this shallow cavity, and the high frequency technique

does a reasonably good job of matching the exact technique.
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Figure 4-17: ISAR image for conventional FD-TD using a 55 degree incident angle
and HH polarization.

However, when the depth of the cavity is equal in length to the width, significant

extended return is generated. The high frequency technique does not accurately model

this phenomenon because it predicts two isolated areas of reflectivity as mapped in

Figures 4-20. A logical explanation of these two distinct areas would be first a direct

reflection from the rim of the cavity, and then a second delayed return from the

interior of the cavity. This prediction differs from the conventional FD-TD prediction

shown in Figure 4-19. This ISAR image shows that the cavity is continuously emitting

energy and has an extended return that is more than 0.1 meters further down range

than predicted by the high frequency technique. Also, compare the high frequency

ISAR image with Figure 4-10 which had been introduced earlier in the discussion on
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Figure 4-18: ISAR image for the high frequency technique using a 55 degree incident
angle and HH polarization.

MR FD-TD which managed to correctly predict the length of the extended return of

this particular cavity geometry.

-2|

Figure 4-19: ISAR image for conventional FD-TD using a 55 degree incident angle
and HH polarization.

When the cavity depth is much greater than the cavity opening, it becomes more

obvious that the high frequency method is not accurately modeling extended return.

Figures 4-22 shows the ISAR image from the high frequency prediction. Again, it

predicts the return coming from two groups: first from the rim of the cavity and

then a single delayed return from the cavity interior. But, as shown in Figure 4-21,

conventional FD-TD predicts a good deal of extended return, indicating a continuous

and lengthy stream of energy emanating from the cavity opening. Also, compare the

high frequency ISAR image with Figure 4-12 which had been introduced earlier in
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Figure 4-20: ISAR image for the high frequency method using a 55 degree incident
angle and HH polarization.

the discussion on MR FD-TD which managed to correctly predict the length of the

extended return.

Figure 4-2-1: ISAR image for conventional EDTD using a 55 degree incident angle
and HH polarization.

The high frequency technique tends to predict the reflected energy from the cav-

ity interior as arriving in a single pulse even though it may be spread out in time.

However, when cavities are wider than they are deep, the return from the interior of

the cavity does arrive like a single short pulse. These shallow cavities do not create

the long "tail" of extended return. Furthermore, these cavities are also precisely the

ones that created higher correlation scores for the high frequency technique. Thus, it

can be concluded that the high frequency approach becomes a viable cavity modeling

technique for shallow straight cavities because the expected extended return is mini-
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Figure 4-22: ISAR image for the high frequency method using a 55 degree incident
angle and HH polarization.

mal. Note that these cavities must be shallow. Cavities with small openings may have

minimal extended return yet the high frequency method will not provide an accurate

prediction. Shown in Figure 4-23 is an ISAR image of the RCS of a 1A wide by 5A

deep cavity as predicted by conventional FD-TD. There is not much extended return,

having only a single isolated reflected pulse emanating from the cavity interior. The

high frequency technique had previously been shown to be adequate in predicting

this type of return. But as shown in Figure 4-24, the high frequency method does

not predict any return from the cavity interior. Shallowness is a necessary feature

of cavities that can be accurately modeled by the high frequency approach. There-

fore, the range of validity of the high frequency method as derived from the tables of

correlation scores is confirmed.

Figure 4-23: ISAR image for conventional FD-TD using a VV degree incident angle
and HH polarization.
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Figure 4-24: ISAR image for the high frequency technique using a 55 degree incident
angle and VV polarization.

Effects of Incident Angle and Polarization

When an incident angle of 20 degrees is used, the high frequency method produces

consistently higher correlation scores than when a 55 degree incident angle is used.

The most important distinction between the results for 55 degrees and for 20 degrees

is that much less extended return is seen at 20 degrees. At this angle, the radar

mostly sees the bottom back wall of the cavity and there is minimal interaction with

the side walls. As mentioned earlier, each interaction with the side walls of the

cavity interior makes the incident wave less ray-like and more spread out. The ray-

tracing component of the high frequency technique becomes less accurate. Reducing

the number of reflections off of the side walls will increase the accuracy of the high

frequency technique. This fact explains the improved predictions for simulations

where the incident angle was 20 degrees. The impact incident angle has on accuracy

is shown in Table 4.2.3 which gives the scores of a 2A wide and 0.5A deep cavity with

a VV polarized incident wave.

Incident Angle in Degrees
90 70 55 35 20 0

Correlation 0.8231 0.6438 0.63721 0.6589 0.69320 0.7239

Table 4.11: Summary of the performance of the high frequency method for various
incident angles for the straight cavity.

Polarization did not affect the accuracy. There were no significant differences

96



between the scores for the two different polarizations, and no general trends were

found.

4.3 Electromagnetic Behavior in Outward Flared

Cavities

The outward flared cavity has sloping sides so that the radius of the back wall is

smaller than the radius of the opening. For all simulations, the same cavity geometry

was used: 5A deep, 2A wide at the opening, and 1A wide at the bottom back wall.

4.3.1 Extended Return

Figure 4-25 shows the prediction of conventional FD-TD for the outward flared

cavity. Note that the amount of extended return is minimal: a compact area of reflec-

tivity instead of a long tail. This is in marked contrast with Figure 4-11, introduced

earlier, which was generated by a straight cavity with an equally wide opening and

same depth.
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Figure 4-25: ISAR image for conventional FD-TD using a 55 degree incident angle
and VV polarization.

Figure 4-26 shows the ISAR image for the RCS of the outward flared cavity

as generated by the high frequency technique. This prediction lacks some of the

extended return shown in the conventional FD-TD prediction. However, this cavity
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is still rather deep. One might note that this prediction is more accurate than it was

for the 2A wide and 5A deep straight cavity presented earlier.

Figure 4-26: ISAR image for a high frequency technique using a 55 degree incident
angle and VV polarization.

The outward flared cavity was also modeled by MR FD-TD. The ISAR image

of the results are shown in Figure 4-27. MR FD-TD met expectations by giving a

suitably accurate prediction.

Figure 4-27: ISAR image for the MR FD-TD technique using a 55 degree incident
angle and VV polarization.

The extended return of the outward flared cavity is much less than the straight

cavity with the same size and depth. This effect occurs since the sloping allows

energy to escape more readily as shown in part (b) of Figure 4-28. The sloping

creates fewer interactions with the cavity side walls. From the previous conclusions

about the relationship between the accuracy of the high frequency technique and
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extended return, one would expect the high frequency technique to be more accurate

for cavities with more flaring. In the examples previous presented, the side walls were

angled at about 5.7 degrees from horizontal. If the size of the back wall is reduced

to a point-making the cavity interior into a cone-the angle is about 11.6 degrees.

As shown in Table 4.12, the high frequency technique becomes more accurate. To

make the angle of the flaring any larger would require shortening the cavity. Thus

the increased accuracy of the high frequency technique must be attributed to both

the flaring and the shallowness of the cavity.

Angle of Flaring
0 degrees 5.7 degrees 11.6 degrees 20.0 degrees 31.3 degrees

Correlation 0.2430 0.4083 0.5620 0.6771 0.7731

Table 4.12: Summary of the performance of the high frequency method for various
angles of flaring of interior cavity walls.

(a)

(b)

Figure 4-28: Diagram of ray-tracing for inward (a) and outward (b) flared cavities.
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4.4 Electromagnetic Behavior in Inward Flared Cav-

ities

The inward flared cavity has sloping sides so that the radius of the back wall at

the bottom of the cavity is larger than the radius of the opening. For all simulations,

the same cavity geometry was used: 5A deep, 3A wide at the bottom, and 2A wide at

the opening.

4.4.1 Extended Return

Figure 4-29 shows the prediction of conventional FD-TD for the inward flared

cavity. Note that the amount of extended return is considerable. This extended

return is longer than the extended return created by the straight cavity with the

same cavity depth and width at the opening.

Figure 4-29: ISAR image for conventional FD-TD using a 55 degree incident angle
and VV polarization.

Figure 4-30 shows the ISAR image for the inward flared cavity as generated by

the high frequency technique. This method incorrectly predicts the return from the

interior of the cavity as a single pulse. Furthermore, the correlation score is 0.2139,

making the high frequency technique even less accurate than it was for the straight

cavity of the same depth and opening width. Given the previous discussion on the

inability of the high frequency technique to correctly predict long "tails" of extended

return, this finding was expected.
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Figure 4-30: ISAR image for a high frequency technique using a 55 degree incident
angle and VV polarization.

The inward flared cavity was also modeled by MR FD-TD. The ISAR image of

the results are shown in Figure 4-31. Although the MR FD-TD results are somewhat

comparable to the conventional FD-TD results, MR FD-TD was not able to capture

a bit of extra extended return at the very end. This held true despite the use of extra

iterations.
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Figure 4-31: ISAR image for the MR FD-TD technique using a 55 degree incident
angle and VV polarization.

The increased level of extended return in the inward flared makes sense since the

sloping does not allows energy to escape readily as shown in part (a) of Figure 4-28.

Energy has a tendency to remain trapped inside for a longer duration of time, thus

creating more extended return. From the previous conclusions about the relation-

ship between the accuracy of the high frequency technique and extended return, it

should be expected that the high frequency approach would not provide an adequate

prediction.
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4.5 Electromagnetic Behavior in Cavities with In-

terior Features

The interior features of this cavity consist of a "bump" that protrudes out from

the side wall at the half-way point between the opening and the cavity bottom. Since

this cavity is a body of revolution, the bump translates into a ridge. The cavity

interior in 2A deep and 2A wide at the opening.

4.5.1 Extended Return

Figure 4-32 shows the prediction of conventional FD-TD for the cavity with an

interior feature. Note that the extended return appears as a bright spot much further

down range from the other activity. The return from the straight cavity with the

same sized depth and width did not have this extra pulse.

Figure 4-32: ISAR image for conventional EDTD using a 55 degree incident angle
and VV polarization.

Figure 4-33 shows the ISAR image for the cavity with an interior feature as gen-

erated by the high frequency technique. This method incorrectly predicts the return

from the interior of the cavity. For this type of cavity, the high frequency technique

is unable to predict the extra single pulse that emerges from the cavity after a delay.

Though the high frequency method had previously been able to be fairly accurate for

shallow cavities, all those cavities has featureless interior walls.
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Figure 4-33: ISAR image for a high frequency technique using a 55 degree incident
angle and VV polarization.

The cavity with an interior feature was also modeled by MR FD-TD. The ISAR

image of the results are shown in Figure 4-34.

Figure 4-34: ISAR image for the MR FD-TD technique using a 55 degree incident
angle and VV polarization.

MR FD-TD seems capable of correctly predicting the extended return, showing a

single short pulse down range from all the other activity.
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Chapter 5

Conclusion and Future Work

5.1 Conclusion

This thesis investigated the possibility of applying a multiple region FD-TD ap-

proach to predict RCS for large, duct-like cavities. Furthermore, it sought to establish

some understanding of the situations when this method is valid, and how it compares

to other modeling approaches.

To gain that insight, it was necessary to understand how cavity signature in general

was affected by the target geometry and relative angle and polarization of the radar

antenna.

5.1.1 Range Validity of the Multiple Region Method

Multiple region FD-TD has been shown to be a comparable alternative for con-

ventional FD-TD, provided that the cavity is 1A or wider. In particular, the extended

return predicted by conventional FD-TD is modeled accurately by the MR FD-TD

given that this criterion is met. The range of validity is still limited by computational

time. However, the overall range of cavity sizes where MR FD-TD is a tractable

approach is larger than the range of conventional FD-TD. The angle of incidence, if

smaller than about 70 degrees, does not affect the validity of MR FD-TD. Polarization

has no impact.

105



5.1.2 Computational Savings

Multiple region FD-TD provides considerable computational savings over conven-

tional unpartitioned FD-TD. These savings are summarized in Table 5.1. Mainly,

partitioned FD-TD uses much less memory than conventional FD-TD. Where con-

ventional FD-TD would require M amount of memory, partitioned FD-TD requires

M/N, where N is the number of segments into which the cavity is divided. Using a

larger number of segments allows for additional memory savings. But as shown in the

last chapter, the level of accuracy generally decreased with an increase in the number

of partitions.

This memory savings is advantageous because of many benefits. First, it allows

the program to be run on machines that otherwise would not be able to support

such a program. As mentioned in the prior chapter, programs using the conventional

FD-TD approach often would not compile for larger cavities due a lack of memory.

Furthermore, as indicated in Table 5.1, the multiple region FD-TD approach al-

lows for faster simulation times. Invoking virtual memory can be prevented because

the memory demands of partitioned FD-TD can be reduced in most situations. This

will avoid the slowness associated with continuously paging to virtual memory.

Another way multiple region FD-TD can decrease simulation time is through the

use of parallel processing by calculating each segment on different machines. Lastly,

if the cavity is very long, the FD-TD calculations only need to be carried out for the

segments where there is activity. This reduces the overall number of calculations, thus

reducing computational time. Therefore, the estimated time is < T for MR FD-TD,

when compared to T for conventional FD-TD. These savings may not hold true for

smaller cavities that have a good deal of back and forth scattering in their interiors.

Such cavities require the use of multiple iterations, causing extra calculations to

be carried out. The time needed to do the extra calculations may outweigh any

advantages of partitioning unless the cavity is very large and would otherwise require

the use of virtual memory when modeled in conventional FD-TD.
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Conventional FD-TD I Partitioned FD-TD
Memory M M/N
Time T < T

Table 5.1: Summary of the savings of multiple region FD-TD over conventional un-
partitioned FD-TD.

5.1.3 Range Validity of the High Frequency Technique

The high frequency method can produce reasonably accurate results for shallow

straight or outward flared cavities that lack interior features. Cavities are considered

shallow if the width of the opening is greater than the depth. Cavities that are deeper

than they are wide create too much extended return. The high frequency technique

has difficulty modeling this extended return. The high frequency technique is ill-

suited for modeling cavities with interior features, despite the fact that they may not

create long "tails" of extended return. And lastly, the high frequency method is not

accurate for cavities with small openings at 1A or less.

5.1.4 Range Feasibility of Conventional FD-TD

It has been shown that conventional FD-TD is a viable option for only a very

limited range of cavity sizes. However, it may be the only option for cavities with

extremely narrow (< 1A) openings and for small cavities with lots of interior features.

None of the other modeling approaches investigated in this thesis could produce

comparable results for those classes of cavity geometries.

5.2 Future Work

5.2.1 Application to Different Cavity Profiles

There are an infinite number of different cavity geometries with which multiple

region FD-TD can be tested, and this thesis could not explore all of them. Of great

interest are cavities which can retain energy or create back and forth scattering since

there are fewer approaches that correctly predict the RCS, and which are computa-
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tionally feasible. Also of interest are cavities with interior features that create back

and forth scattering. Back and forth scattering in particular is still somewhat difficult

for MR FD-TD and the high frequency approach to model. Conventional FD-TD, in

constrast, is computationally limited by cavity size.

5.2.2 Extension to Other Forms of FD-TD

The work for this thesis used the body of revolution version of FD-TD to imple-

ment the multiple region approach. However, as mentioned before, all the arguments

and equations given in terms of BOR FD-TD are easily and readily adaptable to a

3D FD-TD environment.

The multiple region FD-TD program uses a staircase case approximation for tar-

gets. It may be possible to adapt the technique to FD-TD programs that use a

conformal grid to better model targets. Modeling materials other than PEC and free

space would only require small changes in the current update equations.

5.2.3 Comparison to Other Modeling Techniques

Though the multiple region FD-TD method has been shown to be accurate for

cavity geometries where high frequency techniques fail, it may be enlightening to

compare the results with other results obtained through some of the hybridized tech-

niques to solve larger targets. It would also be interesting to compare the efficiency of

MR FD-TD versus those approaches. As mentioned earlier, MR FD-TD is meant to

be an addition to the tool-box of possible RCS modeling methods. But conventional

FD-TD and the high frequency technique are not the only other methods in that

box so these comparisons would be useful. Further information on of how all the

prediction methods relate to one another would allow an analyst to choose the best

possible modeling technique for a given situation.

108



5.2.4 Incorporation Parallel Computing

Since the cavity is modeled in a piecewise manner, multiple region FD-TD becomes

a suitable candidate for distributed computing: each segment can be modeled on

separate machines. These simulations can be done in tandem because as the fields

at the first time step are calculated for one segment, the fields from the edge of that

segment can be used to start the simulation for the neighboring segment and so forth.

It is expected that parallel computing could appreciably expand the range of cavity

sizes that are feasible to model with the MR FD-TD technique.

5.2.5 Supporting Other Computational Methods

Multiple region FD-TD can also be incorporated into other codes to predict RCS

for cavities that have duct-like segments along their length. Efficient high frequency

techniques can be used to model portions of the target while multiple region FD-TD

can be applied to more problematic areas within the structure. For example, a very

wide shallow cavity may lead into a narrow duct that has some very complicated

termination at the end. The very wide shallow portion can be modeled with the

high-frequency method. The duct portion can be modeled with MR FD-TD, and the

termination can be modeled with conventional FD-TD or any other exact technique.
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Appendix A

MR FD-TD FORTRAN Source

Code

The MR FD-TD program models electromagnetic propagation through cavity

segments and calculates the radar cross section when appropriate. The user must

specify the "case" of each cavity segment and must provide the geometry of the

segment. For Case 1 segments, the user must specify the desired incident wave.

A.1 Main FD-TD Algorithm

The main FD-TD algorithm contains the update equations. Furthermore, as ap-

propriate for Cases 2, 3, and 4, it will read in data recorded from previous cavity

segments to form the source. It will record data at the ends of the cavity segment for

all cases.

* BOR-FDTD CODE:

* This programs calculates the scattering pattern of a *

* incident plane wave on a body of revolution. The user *

* input the two dimensional shape of the BOR and incident *

* wave parameters. *

program bor-fdtd 10

implicit none

include 'common.f
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c 1/4/03 Made into a global variable since other outputs

c depend on the menu choice

c integer menu-choice

dbase = 'data'

10 write(6,*) 20
write(6,*) 'BOR FDTD Options'

write(6,*) '1 = FDTD,WRITE FIELDS'

write(6,*) '2 = RCS calculation'

write(6,*) '3 = SEGMENTER'

write(6,*) '4 = this space for rent'

write(6, '(''*Enter option: '', $)

read(5,*) menu-choice

write(6,*) 'Segment to the direct right of Case 3? Y=1 N=0'

read(5,*) before3 30

if (menu.choice.lt.1.OR.menu-choice.gt.4) goto 10

if (menu.choice.eq.1) then

call get-rcs-out-ranges (.FALSE.)

call get-primary-input

call init...fields

c call init-freq

call fdtdiloop(.FALSE.)

if (case-id.eq.1) then 40
call write-values

end if

else if (menu-choice.eq.2) then

call getLrcs-out-ranges(.FALSE.)

call get.primary.input

call read..parms

call read-values

call write-out-all.parms

c next line is new

call init-freq 50
call read-phasors

call calc-rcs

else if (menu-choice.eq.3) then

call get-rcs-out-ranges(. FALSE.)

call get.primary-input

call write-geometry

else if (menu-choice.eq.4) then

end if

end 60

ce* * ** * ******************** *+* * * * * * ** * * ** **********

c GET.PRIMARYINPUT gets info from user about geomfile name, incident

c wave, duration of simulation, out file names, etc

c************************************

SUBROUTINE get.primary.input

implicit none

include 'common.f' 70

integer conf-stair, totsteps, movie-test, mode-index, round,

1 xl,x2,yl,y2, polarization

real*8 dt-out, width, TIME.TO.DELAY, cost, sint
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real*8 theta- ,theta-2,theta_3,theta-4

C**** get Geometry and data filename

write(6,'(' 'Enter geometry file name: '',)')

read(5,*) fnamein

80

write(6,'(''Interior of the cavity contain features?: '',$)')

write(6,*) '1. Cavity WITHOUT features'

write(6,*) '2. Cavity WITH features'

write(6,'(' '*Enter your choice: '',$)')

read(5,*) features

cBZ 8/01/02 get case-id

write(6, '("*Enter case-id number:",$)')

read(5,*) case-id 90

CBZ 10/22/02 FORCE IT TO BE AN ARTIFICIAL TIME/SPACE STEP if not

c the first step!!

c start-time = 1 if case-id = 1

read(5,*) start-time

c Needs z offset for gquad

c default value should be zero!

read(5,*) absolute-start 100

read(5,*) absolute-end

z-offset = absolute-start - 1

cBZ 9/23/02 get ma-height

write(6, '("*Enter the maximum rho (height) value:",$)')

read(5,*) max-height

cBZ 8/6/03

write(6, '("+Enter the maximum z (length) value:",$)') 110
read(5,*) max-length

write(6,'' '*Store for movie? (1=Y,2-N): '',$)')

read(5,*) movie-test

store-movie = movie.test.eq.1

if (store-movie) then

write(6,'(''+Movie header name: '',$))

read(5,*) mhname 120

write(6,'(' '*Movie file name: '',8)')

read(5,*) mfname

write(6,'(''*Number of time steps between each frame: '',$)')

read(5,*) movie-step

write(6,*) 'Field ids: er=1,ez=2,ephi-3,hr=4,hz=,hphi-6'

write(6,'(' '*Enter id of field to store: '',)')

read(5,*) movieonum

movie-type = 1

end if

130
c##################

c#####################

call setup-staircase

call setup-scat

c############################
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cs*** Calculate sigma-max so that reflections are 40 dB down

sigma-max = 70*3/eta/40./0.434294481903/(PMLDEPTH*dz)

c write(6,*) 'sigma-max = ',sigma.-max 140
c write(6,*) 'Enter sigma max'

c read(5,*) sigma-max

if (calc.bist) then

write(6, (''C*Enter incident angle theta in degrees: '',$)')

read(5,*) inc-ang

end if

33 write(6,'(''*Select polarization (1=HORZ,2=VERT): '',$)')

read(5,*) polarization 150
if (polarization.eq.1) then

Ehg = 1.0

Evg = 0.0

else if (polarization.eq.2) then

Ehg = 0.0

Evg = 1.0

else

goto 33

end if

160
32 write(6,'(''*Enter duration of simulation (ns): '

read(5,*) sim-duration

if (sim-duration.lt.0.5) then

print *,'Simulation must last longer than 0.5 ns.'
goto 32

end if

C*c** Modulation of Gaussian Pulse (1-on 0-off)

c 50 write(6,'("* Modulate incident wave? (1=Y,0=N): ",$)')

c read(5,*) modulate 170
c if (modulate.gt.1.OR.modulate.lt.0) goto 50

c if (modulate.eq.1) then

c write(6,'("* Enter modulation frequency: ",$)')

c read(5,+) modfreq

c else

c modfreq = -1

c end if

C**** Convert incident angle to radians

inc-ang=(inc-ang/180)*pi 180

if (abs(inc-ang-pi).lt.tole.OR.abs(inc-ang).lt.tole) then

mode-start = 1

mode-end = 1

else

c modes = int(obj-height*2apia high-freq/c+1)

c Need to keep # modes constant for all segments

modes = int(max-height*2*pi*high-freq/c+l)

write(6,*) 'Estimated modes required: ',modes

write(6,'(' '*Enter start mode: '', $)') 190
read(5,*) mode-start

write(6,'(''*Enter end mode: ''$)

read(5,*) mode-end

end if

c*********Always go with estimated number of modes
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mode-start = 0

c mode..end = modes debugging

mode.end = modes

200

if (abs(Ehg-1).lt.tole) then

eqset-start = 2

eqset-.end = 2

else if (abs(Evg-1).It.tole) then

eqset-start = 1

eqset-end =1

else 210
eqsetstart = 1

eqset-end = 2

end if

C*** Standard Dev and Wave Delay Calculations

c if (modulate.eq.0) then

c sdev=5.0*dt-out(1)

c else

c sdev=(1.0/modfreq/4. 0)

c end if 220

c width = sdev*sqrt(10.0)

c**** calculate pulse width to cover desired bandwidth

c**** amplitude function is exp(-2.3 (t/width)*2 )

c**+* so that the amplitude function is "nonzero" for a duration of

c**+* approximately 2*width seconds.

c**** width defined so that the function value is 10% of the maximum

c**** at the edge of the width, i.e. exp(-2.3) = 0.1 230

c**** Magnitude of Fourier transform of amplitude function is:

c**** exp(-(1/2.3) * (freq*pi*width)*+2) which corresponds to a

c**** bandwidth of approximately 4.6 / (pi*width)

c**** It is therefore ideal to choose modulation frequency to be

c**s* the center frequency.

write(6,*) 'starting here' 240

modulate = 1

modfreq = (high..freq+low.freq)/2.0

write(6,*) modfreq,modfreq

c width = min (4.6/ (pi* (max(high.freq-low.freq, 0. 5e))),25* dt)
width = 4.6/(pi*(max(high-freq-low-.freq,0.5e9)))

write(6,*) 'width-',width

sdev = width / sqrt(2.3d0) 250

c write(6,*)

c write(6,*) 'width/dt = ', width/dt

c**** if width is not larger than 7edt, you may want to define a smaller

c**** time step, which implies a smaller step size in order to avoid

ce*** numerical dispersion effects.
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cs** calculate time delay 260

10 if (inc.ang.ge.(2*pi)) then

inc-ang = inc-ang-2*pi

goto 10

end if

20 if (inc-ang.lt.0) then

inc-ang = inc-ang+2*pi

goto 20

end if 270
cost = cos(inc.ang)

sint = sin(inc..ang)

print *, rcszl, rcsz2, mheight

c x1 = rcszl

c x2 = rcsz2

c x1 = rcsz + z-offset

xl = rcszl - 1 280

x2 = rcsz2 + zoffset - 1

y1 = 1

y2 = mheight

c***** determine the time delay so that wave arrives at the target at

c***** around time step 100-150.

TIMETO.DELAY = 100*dt.out(mode-start)

theta-1 = atan2(y2*1.0,(x2-x1)*1.0) 290

theta-2 = atan2(y2*4.0,(x2-xl)*1.0)

theta-3 = atan2(y2*4.0,(xl-x2)*1.0)

theta_4 = atan2(y2*1.0,(xl-x2)*1.0)

if (inc-ang.ge.0.AND.inc..ang.It.theta-1) then

gd = (x2*dz*cost+0*dz*sint)/c + TIME..TO.DELAY + 2*sdev

elseif (inc.ang.ge.theta-1.AND.inc.ang.It.theta.2) then

gd = (x2*dz*cost+y2*dz*sint)/c + TIMETODELAY + 2*sdev

elseif (inc.ang.ge.theta_2.AND.inc-ang.lt.theta.3) then

gd = ((xl+x2)/2*dz*cost+y2*dz*sint)/c + TIMETODELAY + 2*sdev 300

elseif (inc.ang.ge.theta..3.AND.incang.lt.theta.4) then

gd = (xl*dz*cost+y2*dz*sint)/c + TIMETO.DELAY + 2*sdev

else

gd = (xl*dz*cost+0*dz*sint)/c + TIMETODELAY + 2*sdev

end if

ccMake gd the same as the whole case

c gd = 1.3297587838153371*le-9

310
totsteps = 0

do 80 mode-index = modestartmode-end

dt = dt-out(mode-index)

totsteps = totsteps + round(sim.duration* ie- 9/dt)

80 continue

if (store.movie) call setup-movie(totsteps)
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RETURN

END 320

c GETRCSOUT.RANGES gets info from user about what angles and freqs

c to calc the RCS for.

0*** ****************+************* **********

SUBROUTINE get- rcs-out-ranges(skip-fd)

implicit none

include 'common.f' 330

integer nang, fi, fi2, mono-bi

real*8 mono-ang, ma, tempfreqlist(1:MAXFREQS)

logical skip-fd

if (.NOT.skip-fd) then

write(6,'(' 'CEnter lowest frequency of interest: '',$)')

read(5,*) low-freq

write(6,'('-'*Enter highest frequency of interest:

read(5,*) high-freq 340

if (abs(low-freq-high-freq).gt. tole) then

10 write(6,'(' '*Enter the number of frequencies: '',$)')

read(5,*) num-freqs

if (numfreqs.gt.MAX.FREQS) then

write(6,*) 'Error. Number of freqs must be

1 'less than ', MAX-FREQS, ' or raise

2 'MAXFREQS parmaeter' 350

write(6,*)

goto 10

end if

minf = 1

maxf = num-freqs

dfreq = (high-freq-low.freq)/(num-freqs-1.0)

do 20 fi = minf, maxf

freqlist(fi,1) = low-freq + dfreq*(fi-1.0) 360
c*c***+ ** Define type as normal RCS freq

freqlist(fi,2) = 0

tempfreqlist(fi) = freqlist(fi,1)

20 continue

stepf = 1

else

freqlist(1,1) = low-freq

c***** **** Define type as normal RCS freq

freqlist(1,2) = 0 370
tempfreqlist(1) = freqlist(1,1)

num..freqs = 1

minf = 1

maxf = 1

stepf = 1

end if

end if

100 write(6,*)
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write(6,*) '1. Calculate bistatic RCS vs angle for given freqs' 380
write(6,*) '2. Estimate monostatic RCS vs angle for given freqs'

write(6,'(' '*Enter your choice:

read(5,*) mono-bi

if (mono-bi.ne.l.AND.mono-bi.ne.2) then

goto 100

else

calc-bist = mono-bi.eq.1

end if

if (calc-bist) then 390
write(6,*) 'Bistatic RCS angles (in degrees)

write(6,'(''*Enter initial and final phi: '

read(5,*) low-phi,high-phi

if (abs(low-phi-high..phi). It.tole) then

dphi = high-phi-low-phi+1.0

else

write(6,I('"*Enter number of angles: ',$)')

read(5,*) nang

dphi = (high-phi-low-phi)/ dble(nang-1.0) 400
end if

write(6,'(''*Enter initial and final theta: ',$,$))

read(5,*) low.theta,high-theta

if (abs(low-theta-high-theta).lt.tole) then

dtheta = high-theta-low-theta+1.0

else

write(6,(''*Enter number of angles:

read(5,*) nang 410
dtheta = (high-theta- low-theta) / dble(nang-1.0)

end if

else

write(6,'( '*Enter incident angle theta in degrees: ',$)

read(5,*) inc-ang

write(6,*) 'Monostatic RCS angles (in degrees)'

write(6,(' '*Enter fixed phi angle: ',$)')

read(5,*) low-phi

high-phi = low.phi 420
dphi = 1.0

write(6,*) 'Note, monostatic angle range = inc-ang (+/-)

'max-ang'

write(6,'(' '*Enter max angle: '',$,$)')

read(5,*) mono.ang

mono-ang = abs(mono-ang)

low-theta = inc-ang-mono-ang

high-theta = inc..ang+mono-ang

430
if (abs(low-theta-high-theta).lt.tole) then

dtheta = high..theta-low-theta+1.0

else

write(6,'( '*Enter number of angles (must be odd): ',$))

read(5,*) nang

if (dble(nang/2).eq.dble(nang)/2.0) then

write(6,*) 'Increasing nang to ', nang+l

nang = nang+l

end if

dtheta = (high-theta-low-theta)/ dble(nang-1.0) 440
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end if

mono-nang = nang

c******* Determine freqs that need to be calculated.

c***** Total frequencies needed num-freqs+(nang+1)/ 2

if (num-freqs*(nang+1)/2.gt.MAX-FREQS) then

write(6,*) 'MAX-FREQS error'

pause

end if
450

fi2 = 1
do 30 fi=1,num-freqs

*********** Update freqlist components so that they are considered

*for use in monostatic calculations

mono-freq-ind(fi) = fi2

do 40 ma = 0,mono-ang,dtheta
freqlist(fi2,1) = tempfreqlist(fi)*cos(ma/180*pi)

freqlist(fi2,2) = 1

fi2 = fi2+1

40 continue 460

30 continue

mint = 1
maxf = num-freqs*(nang+1)/2

end if

RETURN

END

470

0************ * ** **************************** * * ***

c MEMORY-CHECK checks if enough memory has been allocated and reports

c all errors stored in error buffer.

c* * *** ********************** *********** ******** ***** ** ***** *

SUBROUTINE memory-check

implicit none

include 'common.f'
480

integer i, id

if ((2*mheight+rcsz2-rcszl-1).gt.mxdp) then

print *,'error not enough memory for RCS components'

print *,'set the parameter mxdp higher than',

1 2*mheight+rcsz2-rcszl-1

enough-memory = FALSE.

end if

if (nm.gt.mode-start) then 490

write(6,*)

print *,'nm =' ,nm,' is greater than the starting mode

print *,'number', mode-start, '. Adjust the nm parameter'

enough-memory = .FALSE.

end if

if (mm.lt.mode-end) then

write(6,*)

print *,'mm =',mm,' is less than the ending mode'

print *,'number', mode-end, '. Adjust the mm parameter' 500

enough-memory = FALSE.
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end if

if (errorcount.gt.0) then

write(6,*) '********* * * * *

write(6,*) 'Insufficient memory to begin simulation. The'

write(6,*) 'following parameter(s) in the common.f file'

write(6,*) 'need to be adjusted:'

do 10 i=1,errorcount 510
id = errors(i)

write(6,*)

if (id.eq.NODE.ERROR) then

write(6,*) 'Set MAX-NODES to at least',total-nodes

else if (id.eq.MAX-Z-ERROR) then

write(6,*) 'Set MAXLZCELLS to at least',maxz

else if (id.eq.MAX-R-ERROR) then

write(6,*) 'Set MAXRCELLS to at least',maxr

else if (id.eq.MAXSTAIR.ERROR) then

write(6,*) 'Set MAXSTAIRNODES to at least', 520
1 stair-node-count

else if (id.eq.MAX-RCS-ERROR) then

write(6,e) 'Set MAX-RCSNODES to at least',

1 2*mheight+(rcszl-rcsz2)

end if

10 continue

write(6,*) '+++e* s m e ++se+ss'

stop

530
end if

RETURN

END

0**********************************************************

" WRITE.OUT-ALL-PARMS outputs to a file all important parameters used

a in running the simulation

c*************************************************

540
SUBROUTINE write-out-all-parms

implicit none

include 'common.f'

integer totsteps, mode-index, round, i, j

real*8 dt-out

open(unit=9,file= ' bor. out',status= 'unknown', form='formatted')

550
89 format('Scat. field end points (',14,',',14,'),(',14',',I4,')')

write(9,89) xscat-sp,l,maxz-xscat-sp,int (obj-height/dz) +ytot-sp

cBZ 9/30/02 #################

99 format('mxr - ',F8.4,' obj-height = ',F8.4)

write(9,99) mxrobj.height

100 format('max-height - ',F8.4,' dz = ',F8.4)

write(9,100) max-height, dz

560

C *** WRITE TO fnameout **
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write(9,11)

write(9,17) (high-freq/1E9), (low-freq/1E9)

write(9,11)

if (modulate.eq.1) then

write(9,31) modfreq/l.0E9

else

write(9,31) -1

end if 570
write(9,11)

write(9,26) len,obj-height
write(9,18) maxz,maxr,dz

write(9,11)

write(9,19) sigma-max

write(9,21) movie-num

write(9,22) movie-type

write(9,23) mheight,rcszl

write(9,24) rcsz2, 2*mheight+rcsz2-rcszl-1

580
write(9,*)

write(9,*) sdev = ,sdev

write(9,*) inc-ang = ',inc-ang/pi*180,' (deg)'

write(9,*) gd = ,gd,' (sec)'

write(9,*)

write(9,*) Simulation Duration (ns) = ',sim-duration

totsteps = 0
do 80 mode-index = mode-start,mode-end 590

dt = dt-out(mode-index)

N = round(sim.duration* le-9/dt)

totsteps = totsteps + N

write(9,36) mode.index,dt,N

80 continue

36 format(2X,'Mode = ',12,2X'dt = ',E12.7,2X,'N time steps =',16)

write(9,*) ' Total Steps to run = ',totsteps

write(9,11)

write(9,34) eqset-start, eqset-end 600
34 format(2X, 'Running eqset ',Il,' through 1,M)

write(9,*)

if (abs(Ehg-1.0).It.tole) then

write(9,*) 'HH RCS calculated'

else

write(9,*) 'VV RCS calculated'

end if

if (calc.bist) then

write(9,*) 'Bistatic RCS calculated' 610
else

write(9,*) 'Estimated Monostatic RCS calculated'

end if

write(9,11)

if (.NOT.use-conformal) then

write(9,*) ' Staircase gridding used for ',fnamein,' geomfile'

else

write(9,*) ' Conformal gridding used for ', fnamein, 'geomfile'

end if 620
write(9,25)

write(9,27) xtot-sp, ytot-sp
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write(9,28) xscat-sp, yscatsp

write(9,29) xhuy-sp, yhuy-sp

write(9,30) xall-sp, yall-sp

27 format(' xtot-sp = ',18,' ytot-sp = I8)

28 format(' xscat-sp = ',I8,' yscat-sp = ,18)

29 format(' xhuy-sp = 'I8,' yhuy-sp = ',I8) 630
30 format(' xall-sp = ',18,' yall-sp = 'I8)

write(9,*) 'case-id = ', case-id

write(9,*) 'features = ', features

write(9,*) 'mode-no = ', mode-no

write(9,*) 'end-playback = ', end-playback

write(9,*) 'flag = ', flag

write(9,*) 'quit-flag = ', quit-flag

write(9,*) 'before3 = ', before3

write(9,*) 'start-time ', start.time 640
write(9,*) 'end-time = ', end-time

write(9,*) 'start-mem-rec - ', start-mem-rec

write(9,*) 'er-max = ', er-max
write(9,*) 'ersmem = ', er-mem

write(9,*) 'max-height = ', max-height

write(9,*) 'mxr = ', mxr

write(9,*) 'z-offset =', z-offset

write(9,*) 'absolute-start = ', absolute-start

write(9,*) 'absolute-end = , absolute-end

write(9,*) 'rcsz-start = ', rcsz-start 650
write(9,*) 'rcsz-end = ', rcsz-end

write(9,*) 'rcsz = ', rcsz

write(9,*) 'rcsr = ', rcsr

write(9,*) 'x-start-tot ', x-start.tot

write(9,*) 'xend-tot - ', x-end-tot

write(9,*) 'uppersedgetot = ', upper-edgetot

write(9,*) 'uppersedgescat = ', upper-edgescat

write(9,*) 'upper-edgehuy = ', upper-edgehuy

write(9,*) 'lower-edgetot = ', lower-edgetot

write(9,*) 'lower-edgescat = ', lower-edgescat 660
write(9,*) 'lower-edgeleft = ', lower-edgeleft

write(9,*) 'lower-edgeright = ', lower-edgeright
write(9,*) 'x-opening = ', x-opening

write(9,*) 'y-opening = ', y-opening

write(9,*) 'right-x = ', right.x

write(9,*) 'right-y = ', right-y

write(9,*) 'left-x ', left-x

write(9,*) 'left-y - ', left.y

write(9,*) 'high-y ', high-y

write(9,*) 'highx ', high-x 670
write(9,*) 'chuck = ', chuck

write(9,*) 'max-length = ', max-length

write(9,*) 'maxztrue = ', maxztrue

write(9,*) 'zoffset - ', zoffset

call plotb(ZB,RB,NP,51,41)

do 82 i = 1, staircount

c do 83 j = 1,3

write(9,*) stair-zero(i,l),stair-zero(i,2),stair.zero(i,3) 680
c 83 continue

82 continue
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close(unit=9)

C *** FORMAT LINES ***

09 format(I3)

11 format('') 690
17 format('High Freq (GHz) =',F6.2,3X,'Low Freq (GHz) -',F6.2)

31 format('Modulation Freq (GHz) (-1 = unmodulated)',F6.2)

26 format(5X, 'Length (m) = ',F4.2,4X, 'Height (m) = ',F4.2)

18 format(11X,'maxz = ',I5, 9X,'maxr = ',4,9X,'dz ',F8.7,' (m)')

19 format(' sigma-max = ',F12.8)

21 format(' movie-num = ',112,' (er=l, ez=2, ephi=3, hr=4,

1 ,'hz=5, hphi=6)')

22 format(' movie-type = ',112,' (movie=1, wrtraw=2)')
23 format(' mheight = ',Il2,' rcszl = ',I8)

24 format(' rcsz2 = ',Il2,' NPInRCS = ',18) 700

25 format(/,'ADJUSTED DATA POINTS TO FIT FDTD GRID')

RETURN

END

710

ce+++++++ *++ ***+*+ ********** * * **++++++++++*+*+

c WRITE-GEOMETRY: outputs to a file the important z-values per segment

c*******+*+*********+******+*+++++*+*********** ***++++++

SUBROUTINE write.geometry

implicit none

include 'common.f'

open(unit=9,file= 'geom.info',status='unknown',orm='formatted') 720
write(9,*) rcsz...start

write(9,*) rcsz-end

write(9,*) maxz

write(9,*) mheight

close(unit=9)

RETURN

END

730

**********************************+************************+**
c DT..OUT returns the required dt for stability based on mode number

c and dz. Function used so that all dts in the program are calculated

c in the same way.

*****+******************************************++*****+

REAL*8 FUNCTION dt..out(mode)

740
implicit none

include 'common.f'

integer mode
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c**** Taflove's stability criterion.

dt-out=dz/ ((max(mode+1.0,1.45))*c)

dt-out = 0.95*dt-out

c dt.out = 0.90* dtout 750

c**+** Davidson stability criterion that only works for low order modes.

c dt-out = 0.90*(dz/c)*(((mode+1.0)**2.0 + 2.8)14 + 1.0)**(-0.5)

RETURN

END

********************* ******************

c the initialize routine

760

SUBROUTINE init-fields

implicit none

include 'common.f'

integer ki

do 10 k=1,maxz

do 20 i=1,maxr

er(k,i)=0.0 770
ez(k,i)=0.0

ephi(k,i)=0.0

hr(k,i)=0.0

hz(k,i)=0.0

hphi(k,i)=0.0

20 continue

10 continue

do 30 k=1,pmldepth+1

do 40 i=0,pmldepth+maxr+1 780
erphil(k,i)=0.0

erzl(k,i)=0.0

ezphil(k,i)=0.0

ezrl(k,i)=0.0

ephirl(k,i)=0.0

ephizl(ki)=0.0

hrphil(k,i)=0.0 790
hrzl(k,i)=0.0

hphirl(k,i)=0.0

hphizl(k,i)=0.0

hzphil(k,i)=0.0

hzrl(k,i)=0.0

40 continue

30 continue

800

do 31 k=1,pmldepth+1

do 41 i=0,maxr+1

erphilx(ki)=0.0

erzlx(ki)=0.0
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ezphilx(k,i)=0.0

ezrlx(k,i)=0.0

ephirlx(k,i)=0.0 
810

ephizlx(k,i)=0.0

hrphilx(k,i)=0.0

hrzlx(k,i)=0.0

hphirlx(k,i)=0.0

hphizlx(k,i)=0.0

hzphilx(k,i)=0.0

hzrlx(k,i)=0.0 
820

41 continue

31 continue

do 50 k=1,pmldepth+1

do 60 i=0,pmldepth+maxr+1

erphir(k,i)=0.0

erzr(k,i)=0.0

ezrr(k,i)=0.0 
830

ezphir(k,i)=0.0

ephizr(k,i)=0.0

ephirr(k,i)=0.0

hrphir(k,i)=0.0

hrzr(k,i)=0.0

hphizr(k,i)=0.0

hphirr(k,i)=0.0 
840

hzphir(k,i)=0.0

hzrr(k,i)=0.0

60 continue

50 continue

do 90 k=1,maxz

do 100 i=1,pmldepth+1

erzt(k,i)=0.0

erphit(k,i)=0.0 
850

ezphit(k,i)=0.0

ezrt(k,i)=0.0

ephizt(k,i)=0.0

ephirt(k,i)=O.0

hrphit(k,i)=0.0

hrzt(k,i)=0.0
860

hphirt(k,i)=0.0

hphizt(k,i)=0.0

hzphit(k,i)=0.0

hzrt(k,i)=0.0

100 continue

90 continue

125



return

end 870

*** **** * * * * * **** *++*** * *+++**+*+*** * **c

c FDTD Loop: loops through all time steps updating electric and

c magnetic fields and call boundary condition routines to enforce

c PEC BCs

SUBROUTINE fdtd-loop(store-freqs)

implicit none 880
include 'common.f'

integer k,i,m,eqset,ms,round,movie-frame

logical store-freqs

real*8 dt.out

c print *, 'debug 0'

c#########################

c####################### 890
call memory-check

call write.out-all-parms

c##########################

c##########################
movie-frame = 0

time = 0

print a, "Starting simulation...

900

cBZ* * **Recording membrane

open(unit=9, file='er.out', status='unknown',

1 access= 'sequential', form= 'formatted')
open(unit=10, file= 'ephi.out', status= 'unknown',

1 access= 'sequential', form='formatted')

open(unit=11, file='br.out', status='unknown',

1 access= 'sequential', form= 'formatted')

open(unit=12, file='hphi.out', status= 'unknown',
1 access='sequential', form='formatted') 910

cBZs***Playback membrane (will be at total field locations

c where calculations require READ-NOT at the locations

c where the read value is added into the vector: k+1 or k-i!)

open(unit=13, file='er.in', status= 'unknown',

1 access='sequential', form='formatted')

open(unit=14, file='ephi.in', status= 'unknown',

1 access='sequential', form='formatted')

open(unit=15, file='hr.in', status= 'unknown',

1 access= 'sequential', form= 'formatted') 920
open(unit=16, file='hphi.in', status='unknown',

1 access= 'sequential', form='formatted')

cBZ**** Writes timing information

open(unit=20, file= 'time.info', status= 'unknown',

1 access= 'sequential', form= 'formatted')

cBZs***backscatter recording membrane for case2
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if ((case-id.eq.2).or.(case-id.eq.5).or.(caseid.eq.4)) then

open(unit=21, file='erx.out', status='unknown', 930
1 access= 'sequential', form= 'formatted')

open(unit=22, fill='ephix.out', status='unknown',

1 access='sequential', form= 'formatted')

open(unit=23, file='hrx.out', status='unknown',

1 access= 'sequential', form= 'formatted')

open(unit=24, fillc='hphix.out', status='unknown',

1 access= 'sequential', form= 'formatted')

end if

940

cBZ*** Quit flags

end-playback = 0

quit-flag = 0

flag = 0

start-mem-rec = 0

end-time = 0

er-max = 0
ermem = 0

950

c######### Set RCS TOP breakpoint

if ((case.id.eq.5).or.(case.id.eq.1)) then

if ((rcszl+17).ge.rcsz2) then

pookie = 0

else

pookic = rcszl + 12

end if

end if

960

do 5 m = mode-start, mode-end

dt = dt-out(m)

N = round(sim-duration*le-9/dt)

do 10 eqset=eqset-start,eqset-end

ms=(-1)**(eqset+1)

print *,"Mode=",m," Equation Set #",eqset

do 20 time = start...time, N+start-time - 1

print *,time,' of ', N+start-time-1 970
do 30 k=1,maxz

do 40 i=1,maxr

call free-space-E(k,i,m,ms,use.conformal)

cBZ

c I changed it so that start-time is the "absolute" time

c we are working with. start-mem-rec records the time step at

c which we start writing to the membrane which controls the

c NEXT start-time

40 continue

30 continue 980

call pmlEeqn(m*ms,ms)

if (use-conformal) then

c call boundary-conditions(m,ms)

else

call stair.boundary-conditions

end if
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cCBZ After free-spaceE returns, we check flags 990
ccBZ Saving time-1 since on current iteration (time)

cc we did not write.

c if (quit-flag.eq.1) THEN

c end-time = time - 1
ccBZ***save the ending time to the time.info file

c write(20,*) end-time

ccBZ***Exit the loop (no need to do the H fields)
c GO TO 21

c END IF

1000
cBZ####But if this is the last time step,

cBZ and quit-flag hasn't been set, we must write

cBZ***the CURRENT time step since we did and will

c write the field values on the membrane.

c Then we allow the H fields to finish

c and let the loop end by itself.

if (time.EQ.N) THEN

end-time = time

cBZ***save the ending time to the time.info file

write(20,*) end-time 1010

cBZ***DO NOT exit the loop

END IF

do 50 k=1,maxz

do 60 i=1,maxr

call free-spaceH(k,i,m,ms,use-conformal)

60 continue

50 continue

call pmlHeqn(m*ms,ms) 1020

if (store-movie) then

if (movie-frame.eq.movie-step) then

call movie(m,ms)

movie-frame = 0

else

movie-frame = movie-frame + 1

end if

end if

1030
if ((case.id.eq.1).or.(case-id.eq.5)) then

call updateadft(m, eqset)

end if

20 continue

cBZ Outside the time loop

C and clears the data for next equation set and mode

21 call init-fields

10 continue

5 continue

1040
if (case-id.eq.1) then

call write-phasors

else if (case.id.eq.5) then

call read-phasorsx

call write-phasors

end if

cBZ closing ....

cBZ-close recording membrane

endfile(9) 1050
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endfile(10)

endfile(11)

endfile(12)

close(unit=9)

close(unit=10)

close(unit=11)

close(unit=12)

cBZ-close playback membrane

endfile(13) 1060

endfile(14)

endfile(15)

endfile(16)

close(unit=13)

close(unit=14)

close(unit=15)

close(unit=16)

cBZ-close timing output files

endfile(20) 1070

close(unit=20)

cBZ-close backscatter backscatter recording membrane for case2

if (case-id.eq.2) then

endfile(21)

endfile(22)

endfile(23)

endfile(24)

close(unit=21)

close(unit=22) 1080

close(unit=23)

close(unit=24)

end if

return

end

1090

c determines whether the grid cell (k,i) is a total or scattered

c field.

logical function inside(k,i)

implicit none

include 'common.f' 1100

integer k,i,t

t=scattot(k,i)

C *** total fields are 2-9,14-24 ***

inside = (t.ge.2.AND.t.te.9)

inside = (inside.OR.((t.ge.14).AND.(t.le.24)))

return 1110

end
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* **** * ** ** **************** * * * ** * ** *** *** * **C

c free-space-E contains the core update equations for calculating

c the free space E fields.

0*****************************************c

SUBROUTINE free-space.E(k,i,m,ms,conformal)

implicit none 
1120

include 'common.f

integer k,i,m,st,ms

real*8 er-in,aphi-in,hr-in,hphi-in

real*8 ephix, erx

real*8 cl,c2,c3,c4,c5,cx

real*8 gquad

logical conformal

st = scattot(k,i) 
1130

if (i.ne.1) THEN

C **********Calculate E fields at time n+0.5

C************** *** ** Ez

cl=(i+0.5-1.0)*dt/(eps*(i+0.0-1.0)*dz)

c2=(i-0.5-1.0)*dt/(eps*(i+0.0-1.0)*dz)

c3=(m+0.0)*dt/(eps*(i+0.0-1.0)*dz)

c4=hphi(k,i-1) 
1140

cBZ****** Top side in scattered field

if ((st.eq.11).and.(case...id.eq.1)) then

c4=c4-gquad(0.0,2*pi,ms*11,m,time*dt,(i-1)*dz,

1 k*dz,inc..ang)

end if

ez(k,i)=ez(k,i)+(cl*hphi(k,i) -c2*c4+ms*c3*hr(k,i))/eta

C ***************************Ephi

cl=dt/(eps*dz) 
1150

c4=hz(k,i-1)

if (k+1.gt.maxz) THEN

c5=(hrzr(1,i)+hrphir(1,i))

ELSE

c5=hr(k+1,i)

END IF

cBZ#####Right hand side in total field

if (st.eq.6.OR.st.eq.7.OR.st.eq.8) then 1160
if (case-id.eq.1) then

cBZ****Incoming wave: FIRST

c5 = c5+gquad(0.0,2*pi,

1 ms*7,m,time*dt,i*dz,(k+1)*dz,

1 inc-ang)

else if (case.id.eq.2.OR.case-id.eq.3) then
cBZ****Incoming wave: second and third segments

read (15,*, END=10) hr-in

c5 = c5 + hr-in

end if 1170
10 end if
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cBZ#####Left hand side in scattered field

c Incoming wave

if ((st.eq.1).and.(case-id.eq.1)) then

c5 = c5 - gquad(O.0,2*pi,ms*7,m,time*dt,i*dz,

1 (k+1)*dz,inc..ang)

end if

1180
if ((st.eq.1).AND.((case-id.eq.5).or.(case-id.eq.4))) THEN

read(15,*) hr-in

c5 = c5 - hr-in

END IF

cBZ#####Top side in scattered field

if ((st.eq.11).and.(case-id.eq.1)) then

c4=c4-gquad(O.0,2*pi,ms*9,m,time*dt,(i-1)*

1 dz, k*dz,inc-ang) 1190
end if

ephi(k,i)= ephi(k,i)+(cel(c4-hz(k,i)+c5-hr(k,i)))/eta

cBZ... .3/26/03.. Shouldn't be necessarj but let's do this as a test

if ((case-id.eq.3).and.(k.eq.1)) then

ephi(k,i) = 0

end if

C ***************************Er 1200

*

if (k.eq.maxz) THEN

c5=hphizr(1,i)+hphirr(1,i)
ELSE

c5=hphi(k+1,i)

END IF

cBZ***** Right hand side in total field

c Incoming wave 1210
if (st.eq.6.OR.st.eq.7.OR.st.eq.8) THEN

if (case-id.eq.1) c5 = c5 + gquad(0.0,2*pi,mns*11,m,

1 time*dt,i*dz,(k+1)*dz, inc-ang)

if ((case-id.eq.2).OR.(case-id.eq.3)) THEN

read(16,*,END=11) hphi-in

c5 = c5 + hphi-in

end if

11 END IF

1220

cBZ**** Left hand side scattered field

c*** Incoming wave

if ((st.eq.1).AND.(case-id.eq.1)) THEN

c5=c5-gquad(0.0,2*pi,ms*11,m,time*dt,i*dz,

1 (k+1)*dz,inc-ang)

END IF

cBZ***** Left hand side scattered field

c*** Incoming wave 1230
if ((st.eq.1). AND. ((case-id.eq.5).or. (caseaid.eq.4))) THEN

read(16,*) hphi-in

c5=c5 - hphi-in
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END IF

cl=dt/(eps*dz)

c2=(m*dt/cps)/((i+0.5-1.0)*dz)

er(k,i)=er(k,i)+(c1*(hphi(k,i) -c5)-ns*c2*hz(k,i))/eta

1240

cBZ...3/26/03.. Shouldn't be necessary but let's do this as a test

if ((case.id.eq.3). and. (k.eq. 1)) then

er(k,i) = 0

end if

ELSE

c####################################################################
C ** ******************************* C
C ********On Axis Equations*********************** C 1250
C *************************C

C**********************

cl=4*dt/(eps*dz)

ez(k,i)=ez(k,i)+(cl*hphi(k,i))/eta

C*****************If the Fourier mode is not 0 cz(k,1) is zero.

cBZ*****Hmmm... .don't seem to worry about adding in incidents???

if (m.ne.0) ez(k,i)=0.0

C*****Ephi 1260

cl=2*dt/(eps*dz)

c2=dt/(eps*dz)

if (k.eq.maxz) THEN

c5=hrzr(1,i)+hrphir(1,i)

ELSE

c5=hr(k+1,i)

END IF

cBZ########Right side total field, incoming FIRST CASE 1270
if ((st.eq.8). and. (case-id.eq. 1)) THEN

c5=c5+gquad(0.0,2*pi,ins*7,mn,time* dt,i*edz,

1 (k+1)*dz,inc-ang)

end if

cBZ#######Right side total field, incoming

if ((st.eq.8). and. ((case.id.eq.2). OR. (case-id.eq.3))) THEN

read(15,*, END=12) hr-in

c5 = c5 + hr-in

12 end if 1280

cBZ########Left side scattered field, incoming

if ((st.eq.1).and.(caseaid.eq.1)) THEN

c5=c5-gquad(0.0,2*pi,ms*7,m,time*dt,i*dz,

1 (k+1)*dz,inc.ang)

end if

if ((st.eq.1).AND.((case-id.eq.5).or.(case-id.eq.4))) THEN

read(15,*) hr.in

c5 = c5 - hr-in 1290
END IF

ephi(k,i) = ephi(k,i)+(-c1*hz(k,i)+c2*(c5-hr(k,i)))/eta

132



C * *+* **If the fourier mode !=1 then ephi(k,1) and hr(k,1) = zero

if (m.ne.1) THEN

ephi(k,i)=0.O

END IF

1300

cBZ ... 3/26/03.. Shouldn't be necessary but let's do this as a test

if ((case-id.eq.3).and.(k.eq.1)) then

ephi(k,i) = 0

end if

C *** +* ++* +* Er

if (k.eq.maxz) THEN

c5=hphizr(1,i)+hphirr(1,i) 1310
ELSE

c5=hphi(k+1,i)

END IF

cBZ########Right side total field, incoming FIRST CASE

cBZ changed

if ((st.eq.8).and.(case-id.eq.1)) THEN

c5=c5+gquad(0.0,2*pi,ms*11,m,time*dt,i*dz,

1 (k+1)*dz,inc-ang)

end if 1320

cBZ#######Right side total field, incoming

cBZ changed

if ((st.eq.8).and.((case-id.eq.2).OR.

1 (case-id.eq.3))) THEN

read(16,*, END=13) hphi.in

c5 = c5 + hphi-in

13 end if

1330
cBZ########Left side scattered field, incoming

if ((st.eq.1).and.(case-id.eq.1)) THEN

c5=c5-gquad(0.0,2*pims*11,m,time*dti*dz,

1 (k+1)*dzinc-ang)

end if

if ((st.eq.1).AND. ((case-id.eq.5).or. (case..id.eq.4))) THEN

read(16,*) hphi.in

c5=c5 - hphi-in

END IF 1340

cl=cl/2.0

c2=(m*dt/eps)/((i+0.5-1.0)*dz)

er(k,i)=er(k,i)+(cl*(hphi(k,i)-c5)-ms*c2*hz(k,i))/eta

cBZ.. .3/26/03.. Shouldn't be necessary but let's do this as a test

if ((case.id.eq.3).and. (k.eq.1)) then

er(k,i) = 0
end if 1350

END IF

c end test of axis eq
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ccDEBUG write out fields in case 3 where fields are added in!!!!

c if ((case-.id. eq.3).and. ((st. eq. 7).or. (st. eq.8))) then

c write(25,*) er(k,i)

c end if 1360
cc

cBZ* ++writing to and closing output files

c IF AT A RECORDING CELL!!!!....

c Hmmm .... case 5 should not have a recording cell...

if ((((caseid.eq.1).and.((st.eq.22).or.(st.eq.16)))

1 .or.((case..id.eq.1).and.((st.eq.23).or.(st.eq.24)))

1 .or.((case-id.eq.2).and.((st.eq.22).or.(st.eq.16)))

1 .or.((case-id.eq.2).and.((st.eq.23).or.(st.eq.24)))

1 .or.((case.id.eq.2).and.(st.eq.12)) 1370

1 .or.((case-id.eq.2).and.(st.eq.25))

1 .or.((case...id.eq.3).and.(st.eq.12))

1 .or.((case-id.eq.3).and.(st.eq.25))

1 .or.((case-id.eq.4).and.((st.eq.17).or.(st.eq.18)))

1 .or.((case..id.eq.4).and.((st.eq.26).or.(st.eq.27)))

1 .or.((case-id.eq.4).and.(st.eq.23))

1 or. ((case..id.eq.5). and. (st.eq.23)))

1 .AND.(quit..flag.eq.0))

1 THEN

1380
c###########Controls the Start and Stop of Recording##########

c#############################################################

ccBZ Set flag if non-zero field

c IF ((flag.EQ.0). AND.

c 1 (((abs(er(k,i))+abs(ephi(k,i)) + abs(ez(k,i))

c 1 + abs(hr(k,i))+ abs(hphi(k,i))+ abs(hz(k,i))).GT.0.0).OR.

c 1 (time. GE. (start.time+0)))) THEN

c flag = 1
c start-mem.rec = time 1390
cc So we note the starting time in the time.info file

c write(20,*) start.mem-rec

c END IF

c IF (flag.EQ.1) THEN

ccBZ If we have started recording,

ccBZ we check for maximum value

c If (er-max.LT.ABS(er(k,i))) THEN

c er-max = ABS(er(k,i))

c END IF 1400
ccBZ And takes time average of the field

c er-mem = ABS((er-mem* (time - start-mem-rec) +

c 1 ABS(er(k,i)))/ ((time - start-mem-rec)+1))

c END IF

ccBZ This will stop the recording and simulation for this mode

cc once the fields get low. CURRENT values will not be

cc recorded!

c If ((flag.EQ. 1).A ND. (er-mem.LT. (er-max *0)).AND.

c 1 ((start-mem-rec + 58).LT.time)) THEN 1410

c quit-fag = 1

c END IF

CCCCFor now we start at 1 and end at N

cBZ Set flag if non-zero field
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IF ((flag.EQ.0).AND.

1 (time.EQ.1)) THEN

flag = 1

start-mem-rec = time 1420
c So we note the starting time in the time.info file

write(20,*) start-mem-rec

END IF

c#########################################################
c#########################################################

cBZ*** We have begun recording .....

if ((flag.eq.1).AND.(quit-flag.eq.0)) THEN 1430

if ((case-id.eq.2).and.(st.eq.12)) then

c Backscatter for case 2

write(21,*) er(k,i)

write(22,*) ephi(k,i)

else if (((case-id.eq.1).or.(case-id.eq.2))

1 .and.((st.eq.23).or.(st.eq.24))) THEN

c Forward scatter for case 1,2,

write(10,*) ephi(k,i) 1440
write(9,*) er(k,i)

else if ((case...id.eq.3). and. (st.eq.12)) then

c "Forward scatter" for case 3
write(10,*) ephi(k,i)

write(9,*) er(k,i)

else if ((case-id.eq.4).and.

1 ((st.eq.17).or.(st.eq.18))) THEN

c "Forward scatter" for case 4 1450
write(10,*) ephi(k,i)

write(9,*) er(k,i)

else if ((case.id.eq.4).and.

1 (st.eq.23)) THEN

c Backscatter for case 4
write(21,*) er(k,i)

write(22,*) ephi(k,i)

else if ((case.id.eq.5).and. 1460

1 (st.eq.23)) THEN

c Backscatter for case 5
write(21,*) er(k,i)

write(22,*) ephi(k,i)

end if

END IF

END IF

1470
return

end

*** * ** * ** * ** ******* ************************** *c

c free.spaceH contains the core update equations for calculating

c the free space H fields.
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SUBROUTINE free-space-H(k,i,m,ms,conformal)

1480
implicit none

include 'common.f

integer k,i,m,st,ms

real*8 er-in,ephi-in,hr-in,hphi-in

real*8 erx, ephix

real*8 cl,c2,c3,c4,c5,gquad

logical conformal

st=scattot(k,i) 1490

if (i.ne.1) THEN

C*****************************Hr

cl=dt/(mu*dz)

c2=(m*dt)/(mu*(i+0.0-1.0)*dz)

IF (k.eq.1) THEN 1500
if (case-id.ne.3) then

if (((case.id.eq.1).or.(case-id.eq.5))

1 .and.(i.lt.left-y)) then

c5=ephizlx(1,i)+ephirlx(1,i)

else

c5=ephizl(1,i)+ephirl(1,i)

end if

else

c5=0

end if 1510
ELSE

c5=ephi(k-1,i)

END IF

cBZ-use these eq only!!!

cBZ--left total field

if ((st.eq.2.OR.st.eq.3).and.

1 ((case-id.eq.4).or.(case-id.eq.5))) THEN

read(14,*,END=14) ephi-in 1520
c5 = c5 + ephi-in

14 END IF

c BZ added below 3/24/03

if ((st.eq.3.OR.st.eq.4).and.

1 (case-id.eq.1)) THEN

c5=c5+gquad(.0,2*pi,
1 ms*2,m,time*dt,i*dz,

1 (k-1)*dz,inc-ang)

END IF

1530

cBZ--right scattered field

if ((st.eq.12).and.(case.id.eq.1))

1 c5=c5-gquad(O.0,2*pi,ms*2,m,time*dt,isdz,

1 (k-1)*dz,inc-ang)

cBZ--pseudo-right scattered field for case 2,3

if ((st.eq.12).and.((case-id.eq.3)
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1 .or.(case-id.eq.2))) then

read(14,*) ephix 1540
c5 = c5 - ephix

end if

hr(k,i)=hr(k,i)+eta*(c1* (cphi(k,i)--c5)-msc2*ez(k,i))

C************************+****Hphi

C**s**+ only calculate if not a boundary cell as defined by

C the conform-gridl array

1550
cl=dt/(mu*dz)

IF (k.eq.1) THEN

if (case-id.ne.3) then

if (((case-id.eq.1).or.(case-id.eq.5))

1 .and.(i.lt.left-y)) then

c5=erzlx(1,i)+erphilx(1,i)

else

c5=erzl(1,i)+erphil(1,i)

end if 1560
else

c5=0

end if

ELSE

c5=er(k-1,i)

END IF

if (i.eq.maxr) THEN

if ((case-id.eq.1).or.(case.id.eq.5)) then

c4= ezrt(k,1) + ezphit(k,1) 1570
else

c Create PEC in PML for all cases except for 1,5

c4 = 0

end if

ELSE

c4=ez(k,i+1)

END IF

cBZ****top total field: Do NOT add anything

c since we have nothing recorded to add in 1580
c except for initial case

if ((st.eq.4.or.st.eq.5.or.st.eq.6).AND.

1 (case.id.eq.1))

1 c4 = c4 + gquad(0.0,2*pi,

1 ms*6,m,time*dt,(i+1)*dz,k*dz,

1 inc-ang)

cBZ** left total field

if ((st.eq.2.or.st.eq.3).AND.

1 ((case-id.eq.4).OR.(case-id.eq.5))) THEN 1590
read(13,*, END=15) er.in

c5 = c5 + er-in

15 END IF

if ((st.eq.3.or.st.eq.4).AND.

1 (case-id.eq.1)) THEN

c5=c5+gquad(0.0,2*pi,ms*4,m,time*dt,i*dz,

1 (k-1)*dz,inc-ang)

END IF
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1600

cBZ****right scattered field

if ((st.eq.12).and.(case-id.eq.1))

1 c5=c5 - gquad(O.0,2*pi,ms*4,m,time*dt,i*dz,

1 (k-1)*dz,inc-ang)

cBZ--pseudo-right scattered field for case 3
if ((st.eq.12).and.((case-id.eq.3)

1 .or.(case-id.eq.2))) then

read(13,*) erx 1610
c5 = c5 - erx

end if

hphi(k,i) = hphi(k,i)+eta*(cl*(c4-ez(k,i)+c5-er(k,i)))

C *****s ******* *****Hz

cl=((i+0.0-1.0)*dt/mu)/((i+0.5-1.0)*dz)

c2=((i+1.0-1.0)*dt/mu)/((i+0.5-1.0)*dz)

c3=(m*dt/mu)/((i+0.5-1.0)*dz) 1620
if (i.eq.maxr) THEN

if ((case-id.eq.1).or.(case-id.eq.5)) then

c4=ephirt(k,1)+ephizt(k,1)

else

c4 = 0

end if

ELSE

c4=ephi(k,i+1)

END IF

1630
cBZ****NO ADDING IN unless first segment

if ((st.eq.4.or.st.eq.5.or.st.eq.6).AND.

1 (case.id.eq.1))

1 c4=c4+gquad(0.0,2*pi,

1 ms*2,m,time*dt,(i+1)*dz,k*dz,

1 inc-ang)

hz(k,i)=hz(k,i)+eta*(cl*ephi(k,i)-c2*c4+ms*c3*er(k,i))

ELSE 1640
CAxisEqua* *************** ************** C

C ****************************On Axis Equatianss*************** * C

C ** s******* s es *********** *************************************** C

C*** ** ** ** * **** * * * **** ** * ** Hr

c if (k.eq.9) print *,k,i,ephi(k,i),ephi(k,i+1)

cl=dt/(mu*dz)

IF (k.eq.1) THEN

if (case.id.ne.3) then 1650
if (((case-id.eq.1).or.(case-id.eq.5))

1 .and.(i.lt.left-y)) then

c5=ephizlx(1,i)+ephirlx(1,i)

else

c5=ephizl(1,i)+ephirl(1,i)

end if

else

c5=0

end if

ELSE 1660
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c5=ephi(k-1,i)
END IF

cBZ*+*Bottom left total field

if ((st.eq.2).and.((case-id.eq.4).OR.

(case-id.eq.5))) THEN

read(14,*, END=16) ephi.in

c5 = c5 + ephi-in 1670

16 END IF

cBZ***Bottom right scattered field

if ((st.eq.12).and.(case-id.eq.1))

I c5= c5 - gquad(0.0,2pi,ms*2,m,time*dt,i*dz,

1 (k-1)*dz,inc-ang)

cBZ--pseudo-right scattered field for case 3
if ((st.eq.12).and.((case-id.eq.3)

1 .or.(case-id.eq.2))) then 1680

read(14,*) ephix

c5 = c5 - ephix

end if

hr(k,i)=hr(k,i)+eta*(-ms*cl*ez(k,i+1)+c1* (ephi(k,i)-c5))

c******If the fourier mode !=1 then ephi(k,1) and hr(k,1) zero

if (m.ne.1) THEN

hr(k,i)=O.O

END IF 1690

C ***********************Hphi

cl=dt/(mu*dz)

IF (k.eq.1) THEN

if (case.id.ne.3) then

if (((case-id.eq.1).or.(case-id.eq.5))

1 .and.(i.lt.left-y)) then

c5=erzlx(1,i)+erphilx(1,i) 1700

else

c5=erzl(1,i)+erphil(1,i)

end if

else

c5=0

end if

ELSE

c5=er(k-1,i)

END IF

1710

if (i.eq.maxr) THEN

if ((case.id.eq.1).or.(case-id.eq.5)) then

c4=ezrt(k,1)+ezphit(k,1)

else

c4=0

end if

ELSE

c4=ez(k,i+1)

END IF 1720
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c* Top scattered

if ((st.eq.4.or.st.eq.5.or.st.eq.6).AND.

1 (case-id.eq.1))

1 c4=c4+gquad(O.0,2*pi,

1 ms*6,m,time*dt,(i+1)*dz,k*dz,

1 inc-ang)

c****Lower left hand corner total field

if ((st.eq.2).AND.((case-id.eq.4).OR. 1730
1 (case-id.eq.5))) THEN

read(13,*, END=17) er-in

c5= c5 + er-in

17 END IF

c* Lower right hand corner scattered field

if ((st.eq.12).and.(case-id.eq.1))

1 c5=c5 - gquad(O.0,2*pi,ms*4,m,time*dt,i*dz,

1 (k-1)*dz,inc-ang)

1740
cBZ--pseudo-right scattered field for case 2,3

if ((st.eq.12).and.((case-id.eq.3)

1 .or.(case-id.eq.2))) then

read(13,*) erx

c5 = c5 - erx

end if

hphi(k,i)=hphi(k,i)+eta*(c1*(c4-ez(k,i)+c5-er(k,i)))

C* ************Hz 1750

c print *,k,i

cl=((i+0.0-1.0)*dt/mu)/((i+0.5-1.0)*dz)

c2=((i+1.0-1.0)*dt/mu)/((i+0.5-1.0)*dz)

c3=(m*dt/mu)/((i+0.5-1.0)*dz)

if (i.eq.maxr) THEN

if ((case-id.eq.1).or.(case-id.eq.5)) then

c4=ephirt(k,1)+ephizt(k,1)

else 1760
c4 = 0

end if

ELSE

c4=ephi(k,i+1)

END IF

cBZ****top total field: only add in during first segment

if ((st.eq.4.or.st.eq.5.or.st.eq.6).AND.

1 (case-id.eq.1))

1 c4=c4+gquad(0.0,2* 1770
1 pi,ms*2,m,time*dt,(i+1)*dz,k*dz,

1 inc-ang)

hz(k,i)=hz(k,i)+eta*(cl*ephi(k,i) -c2*c4+ms*c3*er(k,i))

END IF

if ((((case-id.eq.1). and. ((st.eq.22).or.(st.eq. 16)))

1 or.((case-id.eq.1).and.((st.eq.23).or.(st.eq.24)))

1 or.((case-id.eq.2).and.((st.eq.22).or.(st.eq.16))) 1780
1 .or.((case-id.eq.2).and.((st.eq.23).or. (st.eq.24)))

1 .or.((case-id.eq.2).and.(st.eq.12))
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1 .or.((case.id.eq.2).and.(st.eq.25))

1 .or.((case-id.eq.3).and.(st.eq.12))

1 .or.((case.id.eq.3).and.(st.eq.25))

1 .or.((case-id.eq.4).and.((st.eq.17).or.(st.eq.18)))

1 .or.((case.id.eq.4).and.((st.eq.26).or.(st.eq.27)))

1 .or.((case-id.eq.4).and.(st.eq.1))

1 .or.((case.id.eq.5).and.(st.eq.1)))

1 .AND.(quit-flag.eq.0)) 1790
1 THEN

cBZ flag must be on to write

if ((flag.eq. 1). AND. (quit.-flag.eq.0)) THEN

if ((case.id.eq.2).and.(st.eq.25)) then

c case2 backscatter

write(23,*) hr(k,i)

write(24,*) hphi(k,i)

else if (((case..id.eq.2).or.(case-id.eq.1)) 1800
1 .and.((st.eq.22).or.(st.eq.16))) then

c case 1, 2 forward scatter

write(11,*) hr(k,i)

write(12,*) hphi(k,i)

else if ((case-id.eq.3). and. (st.eq.25)) then

c case 3 forward scatter

write(11,*) hr(k,i)

write(12,*) hphi(k,i)

1810
else if ((case.id.eq.4)

1 .and.((st.eq.26).or.(st.eq.27))) then

c case 4 forward scatter

write(11,*) hr(k,i)

write(12,*) hphi(k,i)

else if ((case-id.eq.4)

1 .and.(st.eq.1)) then

c case 4 back scatter

write(23,*) hr(k,i) 1820

write(24,*) hphi(k,i)

else if ((case-id.eq.5)
1 .and.(st.eq.1)) then

c case 5 back scatter
write(23,*) hr(k,i)

write(24,*) hphi(k,i)

end if

END IF 1830
END IF

return

end

C******* *** *** * * *** ** * *** ***** * ** * ** *** * ** ***** ** ** **** *** * **C

C Write out numerical values for each point in the bitmap C

C***************** ** *** * ** *** * * *** ** ** * ** ** *** ** ** ** ** * *** *** * *** * *****C

1840
SUBROUTINE matlab

include 'common.f'

integer i,k

141



open(unit=81,file='matlab.dat ,status='unknown',form='formatted')

do 10 i=pmldepth,1,-1
do 20 k=pmldepth,1,-1

write(81,*) hphirl(k,i+maxr)+hphizl(k,i+maxr)

20 continue

do 30 k=1,maxz

write(81,*) hphirt(k,i)+hphizt(k,i)

30 continue

do 40 k=1,pmldepth

write(81,*) hphirr(k,i+maxr)+hphizr(k,i+maxr)

40 continue

10 continue

do 50 i=maxr,1,-1

do 60 k=pmldepth,1,-1

write(81,*) hphirl(k,i)+hphizl(k,i)

60 continue

do 70 k=1,maxz

write(81,*) hphi(k,i)

70 continue

do 80 k=1,pmldepth

write(81,*) hphirr(k,i)+hphizr(k,i)

80 continue

50 continue

1850

1860

1870
return

end

1880

A.2 Geometry

This portion of the program defines the BOR mesh and flags the mesh as appro-

priate for each cavity segment. It also resets the electric and magnetic field values on

this mesh to enforce the PEC of the geometry.

integer function round(x)
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real*8 x, dec

dec = int(x)-x

if (abs(dec).gt.(0.5d0)) then

round = int(x)+1

else

round = int(x)

end if

return

end

c SETUP-STAIRCASE setups all the parameters needed to run the simulation

c including a staircasing algorithm for representing the target.

SUBROUTINE setup-staircase

implicit none

include 'common.f

real*8 xstair(1:MAX-STAIR-NODES),

1 ystair(1:MAXSTAIRWNODES), xcomp, ycomp,

1 dx,dy

real*8 zstep, radius

integer xdir, ydir, x1, x2, yl, y2, round,

1 defaults, index

real*8 max-x-nodeint, max-y..nodeint,

1 min-x-nodeint, min-y-nodeint

real*8 max-x-node, max-y-node, min-x-node, min-yynode,

1 slope, offset, dist.to-line, xnodes(1:MAXNODES),

2 ynodes(1:MAX.NODES), delta, current.x, current-y

write(6,*) 'Setting up geometry. . .

write(6,'( '*Accept spacing defaults [Y=1,N=2]: '',$)')

read(5,*) defaults

if (defaults.eq.1) then

xtot-sp=10

ytot-sp=10

xscat-sp=15

yscat-sp=15

xscatplay-sp=1

xextend-sp=1

xhuy-sp=2

yhuy-sp=2

cBZ 12/13/02-Don't use this, makes code less

c readable!

c xall-sp = xtot-sp+xscat-sp
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c yall-sp = ytot-sp+yscat-sp

else

write(6,' (''*Enter xtot-sp (10]: '',$)')

read(5,*) xtot-sp 70
write(6,' ('C*Enter ytot-sp [10]: '',$)')

read(5,*) ytot...sp

write(6, C' '*Enter xscat.sp (15]: '',$)')
read(5,*) xscat-sp

write(6,' (''*Enter yscat.sp [15]: '',$)')

read(5,*) yscat-sp

write(6,'(''*Enter xhuy-sp [2]: '',$)')

read(5,*) xhuy-sp 80
write(6,'(' '*Enter yhuy-sp [2): '',$)')

read(5,*) yhuy-sp

xall-sp = xtot-sp+xscat-sp

yall-sp = ytot-sp+yscat-sp

end if

errorcount = 0

c*** Read geometry file in. 90
open(unit=10,file=fnamein,status='unknown',form='f ormatted')
read(10,*) dz

delta = dz

read(10,*) total-nodes

NP = total-nodes

if (total-nodes.gt.MAXNODES) then

errorcount = errorcount+1

errors(errorcount) = NODE-ERROR

call memory.check

end if 100

do 10 index=1,total-nodes

read(10,*) xnodes(index), ynodes(index)

10 continue

close(unit=10)

C**** Scale, position, and round object

110
max-x..node = xnodes(total-nodes) /delta

max-y-node = ynodes(total-nodes) /delta

min..x-node = xnodes(1)/delta

min-y-node = ynodes(1)/delta

do 20 index=1,total-nodes

xnodes(index) = xnodes(index)/delta

if (xnodes(index).gt.maxxnode) then 120
maxx...node = xnodes(index)

end if

if (xnodes(index).lt.minx-node) then

min-x-node = xnodes(index)

end if
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ynodes(index) = ynodes(index)/delta

if (ynodcs(index).gt.max.y-node) then

max-y-node = ynodes(index)

end if 130
if (ynodes(index).it.min-y-node) then

min-y-node = ynodes(index)

end if

20 continue

cBZ CONCERNS PLACEMENT OF STRUCTURE! NOT PLACEMENT OF PML!

c LEFT ALIGNMENT

140
if (case-id.eq.1) then

c Beginning segment at opening:

c PEC left justified, touches left PEC

c Scat fields exist only on exterior of cavity

do 30 index=1,total-nodes

c Structure starts at z = 2, touching PML on LHS

c with artificial extension of one delta on LHS

xnodes(index) = round(xnodes(index) - min-x-node)

1 + 2 150
c Indices into lattice cannot start at zero

ynodes(index) = round(ynodes(index)) + .dO

RB(index) = ynodes(index)

ZB(index) = xnodes(index)

30 continue

else if (case-id.eq.2) then

c Propagating down the cavity: general case

c "Incident fields" placed on RHS

c at Scattered/ Total field boundary 160
c PEC touches PML on LHS

do 31 index=1,total-nodes

c Structure starts at z=2, touching PML on LHS

c with artificial extension of one delta on LHS

xnodes(index) = round(xnodes(index) - min-x-node)

1 + 2

ynodes(index) = round(ynodes(index)) + idO

RB(index) = ynodes(index)

ZB(index) = xnodes(index) 170
31 continue

else if (case-id.eq.3) then

c Bottom of the cavity

c "Incident fields" at the Scat/ Tot boundary on right hand side.

c NO artificial extension on LHS

do 32 index=1,total-nodes

xnodes(index) = round(xnodes(index) - min-x-node)

1 + 1 180
ynodes(index) = round(ynodes(index)) + .dO

RB(index) = ynodes(index)

ZB(index) = xnodes(index)

32 continue
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else if (case-id.eq.4) then

c Propagating out of the cavity: general case

c "Incident fields" placed on the LHS.

c NO artificial extension on LHS 190
do 33 index=1,total-nodes

c Structure starts at z=2 with artificial extension of 1 delta lhs
xnodes(index) = round(xnodes(index) - min-x-node)

1 + 2

ynodes(index) = round(ynodes(index)) + idO

RB(index) = ynodes(index)

ZB(index) = xnodes(index)

33 continue

200
else if (case.id.eq.5) then

c Ending segment at opening:

c Regular surrounding fields

c "Incident fields" on the left boundary.

c PEC touches scattered field on left side

do 34 index=1,total-nodes

c Structure starts at z = 2 with artificial extension of 1 delta

xnodes(index) = round(xnodes(index) - min.x-node)

1 + 2

cBZ changed from xscat-sp to xscatplay.sp 12/31/02 210
ynodes(index) = round(ynodes(index)) + 1.d0

RB(index) = ynodes(index)

ZB(index) = xnodes(index)

34 continue

else

print *, 'Error in segment ID number.'

pause

end if

220
c**** Estimate total number of staircase nodes needed.

dx = 0

dy = 0

do 500 index=1,total-nodes-1

dx = dx + int(abs(xnodes(index)-xnodes(index+1)))

dy = dy + int(abs(ynodes(index)-ynodes(index+1)))

500 continue

c**** extra point needed for first point

dy=dy+1

230
if (2*(dx+dy)-1.gt.MAX.STAIR-NODES) then

stair-node-count = 2*(dx+dy)-1

errorcount = errorcount+1

errors(errorcount) = MAX.STAIR-ERROR

end if

c**** Generate a staircase model by digitizing each line segment.

stair-node-count = 1

xstair(stair-node-count) = xnodes(1) 240
ystair(stair-node-count) = ynodes(1)

do 40 index=1,total-nodes-1

current-x = xnodes(index)

current.y = ynodes(index)

100 stair-node-count = stair-node-count
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if (abs(current-x -xnodes(index+1)).gt.tole.OR.

abs(current-y-ynodes(index+ 1)).gt. tole) then 250

xcomp = xnodes(index+1)-current-x

ycomp = ynodes(index+1)-current-y

if (xcomp.ne.0) then

xdir = int(abs(xcomp)/xcomp)

else

xdir = 0

end if

if (ycomp.ne.0) then 
260

ydir = int(abs(ycomp)/ycomp)

else

ydir = 0

end if

stair-node-count = stair-nodecount + 1

if (xdir.ne..AND.ydir.ne.0) then

slope = (ynodcs(index+1)-ynodes(index)) / 270

& (xnodes(index+1)-xnodes(index))

offset = ynodes(index) -slope* (xnodes(index))

if (dist-to-line(-slope,1.0d0,offset,

& dble(current-x+xdir),dble(current-y)).it.

& dist-to-Iine(-slope,1.OdO,offset,

2 dble(currentx) ,dble(currenty+ydir))) then

xstair(stair-node-count) = current-x+xdir

ystair(stair-node-count) = current-y 280

current-x = current.x+xdir

else

xstair(stair-node-count) = current-x

ystair(stair-node-count) = current-y+ydir

current.y = current-y+ydir

end if

else

xstair(stair-node-count) = current-x+xdir

ystair(stair.node-count) = current-y+ydir

current.x = current.x+xdir 290

current-y = current-y+ydir

end if

goto 100

end if

40 continue

if ((dx+dy).ne.stair-nodecount) then

write(6,*) estimate =, dx+dy

write(6,*) 'actual = , stair-node-count 300

end if

c**** now figure out which fields to set to zero.

cBZ 12/13/02 For cases /2,4], we only need the interior

c cavity surface. These datapoints run in the -z

c direction. So to extend the cavity by a lattice cube delta z,
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c we merely need to repeat the data for

c either the first or last point 310

if ((case-id.eq.2).OR.(case-id.eq.3).OR.(case-id.eq.4)) then

c case 2,3,4 artificially extend to Tight by two so leave

c . first four indices of stair-zero free

staircount = 5

c case 1,5 is extended by one to the LEFT but

c the points start on the outer surface.

" So we still have to also leave the

" first two indices free

c Also, we need to manually set "first" ez 320
c so we need the first THREE indices free

else if ((case-id.eq.1).or.(case-id.eq.5)) then

staircount = 4

else

staircount = 1

end if

do 90 index = 1,stair-node-count-1

xcomp = xstair(index+1)-xstair(index) 330
ycomp = ystair(index+1)-ystair(index)

if (ycomp.gt.tole.AND.abs(xcomp). It.tole) then

c VERT up

stair-zero(staircount,1) = int(xstair(index))

stair-zero(staircount,2) = int(ystair(index))

stair.zero(staircount,3) = ephif

staircount = staircount+1

stair-zero(staircount,1) = int(xstair(index))

stair.zero(staircount,2) = int(ystair(index))

stair-zero(staircount,3) = erf 340
staircount = staircount+1

else if (ycomp.lt.tole.AND.abs(xcomp).lt.tole) then

c VERT down

stair-zero(staircount,1) = int(xstair(index))

stair.zero(staircount,2) = int(ystair(index))

stair-zero(staircount,3) = ephif

staircount = staircount+1

stair.zero(staircount,1) = int(xstair(index))

stair-zero(staircount,2) = int(ystair(index))--1

stair-zero(staircount,3) = erf 350
staircount = staircount+1

else if (xcomp.gt.0.AND.abs(ycomp).lt.tole) then

c HORZ to right

stair-zero(staircount,1) = int(xstair(index))

stair-zero(staircount,2) = int(ystair(index))

stair...zero(staircount,3) = ephif

staircount = staircount+1

stair-zero(staircount,1) = int(xstair(index))+1

stairzero(staircount,2) = int(ystair(index))
stair-zero(staircount,3) = ezf 360
staircount = staircount+1

else if (xcomp.lt.0.AND.abs(ycomp).lt.tole) then

c HORZ to left

stair...zero(staircount,1) = int(xstair(index))

stair.zero(staircount,2) = int(ystair(index))

stair-zero(staircount,3) = ephif

staircount = staircount+1

stair...zero(staircount,1) = int(xstair(index))

stairzero(staircount,2) = int(ystair(index))
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stair-zero(staircount,3) = ezf 370
staircount = staircount+1

else

print *,'error in determing staircase type.

print *,' (z,x) = ', stair-zero(index,1),

2 stair-zero(index,2), index, xcomp, ycomp

stair.zero(index,3) = ephif

pause

end if

90 continue

380
c**+* Complete the last zero field

stair.zero(staircount,1) = int(xstair(stairnode.count))

stair-zero(staircount,2) = int(ystair(stair.nodecount))

stair-zero(staircount,3) = ephif

cc INTERIOR RIGHT by TWO

if ((case-id.eq.3).or.(case-id.eq.2).or.(case-id.eq.4)) then

c extend to right by two, staircount = 1
c the first point is the rightmost

c (Of course, assuming the points run from 390
c opening to the shorted end).

c So we set the first four indices

stair...zero(1,1) = stair.zero(5,1) + 2

stair.zero(1,2) = stair.zero(5,2)

stair-zero(1,3) = ephif

stair-zero(2,1) = stairzero(5,1) + 2

stair.zero(2,2) = stair-zero(5,2)

stair-zero(2,3) = ezf

stair-zero(3,1) = stair.zero(5,1) + 1

stair.zero(3,2) = stairzero(5,2) 400
stair-zero(3,3) = ephif

stair.zero(4,1) = stair...zero(5,1) + 1

stair-zero(4,2) = stair-zero(5,2)

stair-zero(4,3) = ezf

end if

c EXTERIOR LEFT by ONE

if ((case.id.eq.1).or.(case-id.eq.5)) then

c extend to LEFT (exterior points)

c the first point when it is case 1 410
stair-zero(1,1) = stair.zero(4,1) - 1

stair.zero(1,2) = stair-zero(4,2)

stair-zero(1,3) = ephif

stair...zero(2,1) = stair-zero(4,1) - 1
stair-zero(2,2) = stair-zero(4,2)

stair..zero(2,3) = ezf

c manually set "first" ez

stair.zero(3,1) = stair..zero(4,1)

stair-zero(3,2) = stair.zero(4,2)

stair-zero(3,3) = ezf 420
end if

cINTERIOR LEFT by ONE

if ((case-id.eq.1).or.(case-id.eq.5).or.

$ (case..id.eq.2).or.(case..id.eq.4)) then

c but first must manually set "last" ez

stair-zero(staircount+1,1) = stair-zero(staircount,1)

stair.-zero(staircount+1,2) = stair.zero(staircount,2)

stair-zero(staircount+1,3) = ezf

c extend to LEFT by one delta (interior) 430
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stair-zero(staircount+2,1) = stair-zero(staircount,1) - 1

stair-zero(staircount+2,2) = stair-zero(staircount,2)

stair-zero(staircount+2,3) = ephif

stair-zero(staircount+3,1) = stair-zero(staircount,1) - 1

stair-zero(staircount+3,2) = stair-zero(staircount,2)

stair-zero(staircount+3,3) = ezf

staircount = staircount + 3

end if

440
chuck = stair-zero(1,2)

stair-node-count = staircount

c**** Find the highest y of stair-zero

high-y = stair-zero(1,2)

do 999 index = 2,staircount

if (stair-zero(index,2).gt.high.y) then

high-y = stair-zero(index,2)

end if 450

999 continue

c**** Find the highest x of stair-zero

high-x = stair-zero(1,1)

right-y = stair-zero(1,2)

do 888 index = 2,staircount

if (stair-zero(index,1).gt.high-x) then

high-x = stair-zero(index,1)

cBZ 1/6/03 set here!

right-y = stair-zero(index,2) 460

c Also serves to find the opening coords for cases 5,1

x-opening = stair-zero(index,1)

y.opening = stair...zero(index,2) - 1

end if

888 continue

c#############
c SET MAXZ 470

c#############
if (case-id.eq.1) then

maxz = xscat-sp + xtot-sp + high-x

else if (case-id.eq.2) then

maxz = high-x

else if (case-id.eq.3) then

maxz = high-x

else if (case-id.eq.4) then

maxz = high-x

c keep case 5 exactly the same as case 1 480

else if (case-id.eq.5) then

maxz = xscat-sp + xtot-sp + high-x

end if

c*** To calculate correct incident angle, must calculate

c maxz as if modeling entire cavity and get the offset

if (case-id.eq.1) then

max-length = max.length/delta 490

maxztrue = round (max-length)
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maxztrue = maxztrue + 2.0*(xtot-sp+xscat-sp)

zoffset = maxztrue - maxz

end if

c#############

c SET MAXR

c#############

if (case-id.eq.1) then

maxr = (ytot-sp + yscat-sp + max-height/delta) 500

else if (case-id.eq.2) then

maxr = high-y

else if (case-id.eq.3) then

maxr = high-y

else if (case-id.eq.4) then

maxr = high-y

else if (case-id.eq.5) then

maxr = (ytot-sp + yscat.sp + max-height/delta)

end if
510

len = delta*(maxx...node - min-x-node)

obj-height = delta*(max-y-node)

if (maxz.gt.MAXZ..CELLS) then

errorcount = errorcount + 1

errors(errorcount) = MAXZ...ERROR

end if

if (maxr.gt.MAX.R-CELLS) then

errorcount = errorcount+1 
520

errors(errorcount) = MAXR-ERROR

end if

if (case-id.eq.1) then

c*** For case 1, find y-value of lower edge of

c cavity where it touches PML.

c This should be the last point where x=1, if not we've

c got problems...

lower-edgetot = stair-zero(staircount,2) 
530

if (stair...zero(staircount,1).ne.1) then

print *, "last x = ",stairzero(staircount,1)

pause

end if

upper-edgetot = stair-zero(2,2)

upper-edgescat = stair-zero(1,2)

do 998 index = 1,staircount-1

c Now find the upper edge of the cavity where it 
540

c crosses the tot/scat boundary

if ((stair.zero(index,1).eq.xscat-sp).and.

1 (stair-zero(index+1,1).eq.xscat-sp+l)) then

upper-edgescat = stair-zero(index,2)

upper-edgetot = stair-zero(index+1,2)

GO TO 998

end if

998 continue

do 889 index = 1,staircount,1 
550

c Now find the upper edge of the cavity where it

c crosses the Huygens surface
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c rcszl = xscat-sp - xhuy+sp + 1

c and then

c rcszl = rcszl+ 1 to account for the extension

if ((stair-zero(index,1).eq.15).and.

$ (stair-zero(index+1,1).eq.16)) then

c $ (xscat-sp - xhuy.sp + 1 + 1)) then

upper-edgehuy = stair-zero(index,2) 560
GO TO 889

end if

889 continue

end if

if ((case-id.eq.2).or.(case-id.eq.3)) then

c**** For cases 2 and 3, find y-value of lower edges of

c cavity on both sides.

lower-edgeright = stair-zero(1,2) 570
lower-edgeleft = stair-zero(staircount,2)

if ((stairzero(1,1).ne.maxz).or.

1 (stair..zero(staircount,1).ne.1)) then

print *, "first x = ",stair.zero(1,1)

print *, "maxz = ",maxz

print *, "last x = ",stair.zero(staircount,1)

pause

end if

end if

580
if (case-id.eq.4) then

c**** For case 4, find y-value of lower edge of

c cavity where it crosses total/scat field on LHS.
c This should be the last point where x = 1, if not we've
c got problems...

lower..edgeright = stair.zero(1,2)

lower-edgeleft = stair-zero(staircount,2)

if ((stair-zero(staircount,1).ne.1).or.

1 (stairzero(1,1).ne.maxz)) then

print *, "last x = ",stair-zero(staircount,1) 590
pause

end if

end if

if (case-id.eq.5) then

c**** For case 5, find y-value of lower edge of

c cavity where it crosses scat/tot
lower-edgetot = stair-zero(2,2)

lower.edgescat = stair-zero(1,2) 600
c We are moving in a "backwards" direction

c to look at the interior of the cavity
do 997 index = staircount,1,-1

if ((stair-zero(index,1).eq.xscatplay.sp+1).and.

1 (stair-zero(index-1,1).eq.xscatplay-sp+2)) then

lower-edgescat = stair-zero(index,2)

lower-edgetot = stair.zero(index-1,2)

GO TO 997

end if
997 continue 610

do 887 index = 1,staircount,1

c Now find the upper edge of the cavity where it
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c crosses the Huygens surface

c rcsz1 = xscatLsp - xhuy+sp + 1

c if (stair-zero(index,1).eq.(xscat-sp - xhuy-sp + 1)) then

if ((stair-zcro(index,1).eq.14).and.

$ (stair-zero(index+1,1).eq.15)) then

upper-edgehuy = stair-zero(index,2)

GO TO 887 620
end if

887 continue

end if

cBZ 1/5/03 set the coordinates for the rightmost

c and leftmost coordinates

c <-<-

right-x = high-x 630
c right-y was set when we found highzx

left-x = stair-zero(staircount,1)

lefty = stair-zero(staircount,2)

open(unit=10,file= 'stairnew.dat',status='I unknown',

1 form='formatted')

do 1000 index=1,stair-node-count

write(10,*) stair-zero(index,1), stair-zero(index,2), 640
1 stair-zero(index,3)

1000 continue

close(unit=10)

RETURN

END

c*************************************************

c STAIR.BOUNDARY.CONDITIONS sets all the appropriate fields in the 650

c staircase model to zero.

c* ** * ********************************* ************

SUBROUTINE stair-boundary-conditions

implicit none

include 'common.f'

integer index

660
do 10 index = 1,stair-node-count

if (stair-zero(index,3).eq.ezf) then

ez(stair-zero(index, 1),stair-zero(index,2)) 0.0

else if (stair-zero(index,3).eq.ephif) then

ephi(stair-zero(index,1),stair.zero(index,2)) = 0.0

else if (stair-zero(index,3).eq.erf) then

er(stair-zero(index, 1),stair-zero(index,2)) = 0.0

else

print *,'unknown stair-zero type'

print *,stair-zero(index,1),stair-zero(index,2), 670
1 stair-zero(index,3)

pause

end if

10 continue
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RETURN

END

** ***************************************************** **************** 680
c REAL FUNCTION DISTTO.LINE returns the perpendicular distance from a

c point in space (x,y) to a line that is of the form Ax+By=C

REAL*8 FUNCTION dist-to-line(A,B,C,x,y)

implicit none

real*8 A,B,C,x,y

dist-to-line = abs((A*x+B*y-C)/sqrt(A**2.0d0 + B**2.OdO)) 690

RETURN

END

c************ *************+***********************************++c

c setups cells for scattered/total field calculations. c

c see picture in notes for numbering scheme. c
0**************************************** 0

700
subroutine setup-scat

implicit none

include 'common.f'

cBZ added xO and y0

integer k,i,xl,yl,x2,y2, xO, yO

integer downleftx, downlefty, downrightx, downrighty

integer upleftx, uplefty, uprightx, uprighty

710
cBZ 9/30/02 This SHOULD be okay!!!???!!!

mnxr=int(obj-height/dz)

do 10 k=1,maxz

do 20 i=1,maxr

scattot(k,i)=15

20 continue

10 continue

720
if (case-id.eq.1) then

c***** We define rcsz Huygen's surface

c rcszl = 1 Can not =1 since

c running the Huygen's surface into

c PEC

rcszl = xscat-sp - xhuy.sp + 1

c rcszl =high.x - 40 + 1
c But since case 1 is extended by one

c to the left, we add + 1 730
c to match case 5

c maxr = ytot-sp + yscatsp + high-y

rcsz2 = maxz - xscatksp + xhuy-sp

rcsz2 = rcsz2 + 1
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mheight = maxr - yscat-sp + yhuy.sp

c**+++scat/tot rcs box region definers

cBZ xO and yO refer to the most lower left hand corner

c* Where scat/tot fields are depends on case 740
x-start.tot = 1

cBZ yes

xoend-tot = maxz - xscat-sp

do 101 k = xscat-sp + 1 + xextend-sp, maxz - xscatsp - 1

do 111 i = upper-edgescat+1, maxr-yscatLsp-1

scattot(k,i) = 14

111 continue

101 continue 750

do 100 k = 1, maxz - xscat.sp - 1

do 110 i = 1, upper-edgescat

scattot(k,i) = 14

110 continue

100 continue

scattot(1,1) = 24

760
scattot(xextend-sp+1,1) = 16

scattot(maxz-xscat-sp,1) = 8

scattot(xscat-sp + xextend-sp + 1, maxr - yscat-sp) = 4

scattot(maxz - xscat-sp, maxr - yscat-sp) = 6

i = 1

do 30 k = xextend..sp+2, maxz - xscat-sp - 1

scattot(k,i) = 9 770
30 continue

i = maxr - yscat-sp

do 40 k = xscatLsp + xextend-sp + 2, maxz-xscat.sp - 1

scattot(k,i) = 5

40 continue

k = xscat-sp + xextend-sp + 1

do 50 i = upper.edgetot + 1, maxr - yscat-sp - 1 780
scattot(k,i) = 3

50 continue

k = xextend-sp + 1

do 51 i = 2, lower-edgetot - 1

scattot(k,i) = 22

51 continue

790

k= 1

do 511 i = 2, lower-edgetot - 1

scattot(k,i) = 23

511 continue
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k = maxz - xscat-sp

do 60 i = 2, maxr - yscat-sp - 1 800
scattot(k,i) = 7

60 continue

k = xscat-sp + xextend-sp

do 70 i = upper-edgescat + 1, maxr - yscatLsp

scattot(k,i) = 1

70 continue

k = maxz - xscat-sp + 1

do 80 i = 1, maxr - yscat-sp 810
scattot(k,i) = 12

80 continue

i = maxr - yscatLsp + 1

do 90 k = xscat-sp + xextend-sp + 1, maxz-xscatLsp

scattot(k,i) = 11

90 continue

else if (caseid.eq.2) then

x-start-tot = 1 820
x-end-tot = maxz - xscatplay-sp

do 102 k = 1, maxz

do 112 i = 1, maxr

scattot(k,i) = 14

112 continue

102 continue

830
scattot(1,1) = 24

scattot(1+xextend-sp,1) = 16

scattot(maxz - 2, 1) = 8

i= 1 840

do 32 k = xextend-sp+2, maxz - 3

scattot(k,i) = 9

32 continue

k = xextend-sp + 1

do 52 i = 2, lower-edgeleft - 1 850
scattot(k,i) = 22

52 continue

k= 1

do 512 i = 2, lower-edgeleft - 1

scattot(k,i) = 23

512 continue

156



k = maxz - 2 860

do 62 i = 2, lower-edgeright - 1

scattot(k,i) = 7

62 continue

k = maxz - 1

do 82 i = 1, lower.edgeright - 1

scattot(k,i) = 12

82 continue

k = maxz 
870

do 182 i = 1, lower-edgeright - 1

scattot(k,i) = 25

182 continue

else if (case-id.eq.3) then

x-start-tot = 1

x-end.tot = maxz - xscatplay-sp - 1
880

do 103 k = 1, maxz

do 113 i = 1, maxr

scattot(k,i) = 14

113 continue

103 continue

scattot(maxz - xscatplay-sp - 1, 1) = 8

i = 1 890

do 33 k = 1, maxz - xscatplay-sp - 2

scattot(k,i) = 9

33 continue

k = maxz - xscatplay-sp - 1

do 63 i = 2, lower.edgeright - 1

scattot(k,i) = 7

63 continue

c RECORD at 12, add in at 7 & 8 900

k = maxz - xscatplay-sp + 1 - 1

do 83 i = 1, lower-edgeright - 1

scattot(k,i) = 12

83 continue

k = maxz - xscatplay-sp + 1

do 93 i = 1, lower.edgeright - 1
scattot(k,i) = 25

93 continue
910

else if (case-id.eq.4) then

x-start-tot = 3

x...end.tot = maxz

do 104 k = 1, maxz

do 114 i = 1, maxr
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scattot(k,i) = 14

114 continue 920
104 continue

scattot(3,1) = 2

scattot(maxz-1, 1) = 18

scattot(maxz, 1) = 27

i=1

do 34 k = 4, maxz - 2

scattot(k,i) = 9

34 continue 930

k=3

do 44 i = 2, lower-edgeleft - 1

scattot(k,i) = 3

44 continue

k = maxz - 1

do 64 i = 2, lower-edgeright - 1

scattot(k,i) = 17

64 continue 940

k = maxz

do 164 i = 2, lower-edgeright - 1

scattot(k,i) = 26

164 continue

k=2

do 84 i = 1, lower-edgeleft - 1

scattot(k,i) = 1

84 continue 950

k= 1

do 184 i = 1, lower-edgeleft - 1

scattot(k,i) = 23

184 continue

else if (case-id.eq.5) then

c*s** We define rcsz Huygen's surface

c This will be same as in case 1 960
rcszl = xscat.sp - xhuy-sp + 1

rcsz2 = maxz - xscat.sp + xhuy-sp

rcsz2 = rcsz2 + 1

mheight = maxr - yscat-sp + yhuy-sp

x..start-tot = xscatplay-sp + 1

x-end.tot = maxz

970
do 105 k = 1, maxz

do 115 i = 1, maxr

scattot(k,i) = 14

115 continue

105 continue

scattot(3,1) = 2

scattot(maxz,1) = 18

scattot(1,maxr) = 20
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scattot(maxz,maxr) = 19 980

i = 1

do 35 k = 4, maxz - 1

scattot(k,i) = 9

35 continue

k = maxz

do 45 i = 2, maxr-1

scattot(k,i) = 17

45 continue 990

i = maxr

do 55 k = 2, maxz - 1

scattot(k,i) = 21

55 continue

k=3

do 65 i = 2, lower-edgetot - 1
scattot(k,i) = 3

65 continue 1000

c NEEDs to be fixed-use the last point next to pml

k = 1

do 66 i = lower.edgetot, maxr - 1

scattot(k,i) = 22

66 continue

k=2

do 85 i = 1, lower..edgetot - 1
scattot(k,i) = 1 1010

85 continue

k= 1

do 86 i = 1, lower.edgetot - 1

scattot(k,i) = 23

86 continue

1020
end if

if ((case-id.EQ.1).OR.(case-id.EQ.5)) then

rcsz-start = rcszl

rcsz-end = rcsz2

else if ((case-id.EQ.2).OR.(case-id.EQ.4)) then

rcsz-start = x...start-tot

rcsz...end = x..end-tot

else if (case-id.EQ.3) then

rcsz-start = 1 1030
rcsz-end = x-end..tot

end if

C WRITE OUT THE CONNECTION GEOMETRIES

open(unit=9,file= 'connect. info',status='unknown',form= 'formatted')

write(9,*) lower-edgetot

write(9,*) lower-edgescat

write(9,*) upper-edgetot

write(9,*) upper-edgescat 1040
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write(9,*) lower-edgeright

write(9,*) lower-edgeleft

close(unit=9)

************* * *****

c$$$c Write out the scattot setup

c$$$ open(unit=9,file='scattot.info',status='unknown',form='formatted')

c$$$ do 301 k=1,maxz

c$$$ do 201 i=1,maxr 1050
c$$$ write(9,*) scattot(k,i)

c$$$ 201 continue

c$$$ 301 continue

c$s$ close(unit=9)

*$$*** * * * * * * ******* ** * *

return

end

A.3 RCS Calculations

This portion of the program performs a discrete Fourier transform to calculate

RCS.

C************************************ ************* * * *** ********** * *C

C Performs the dft on the fly. There are 12 field values per grid per C

C mode cell that will be stored (i.e. eru, erv, ephiu, ephiv, etc.) C

C They are stored in the complex arrays feru, ferv, fephiu, fphiv, C

C etc. Since there are only six arrays at any given time holding C

C field values (i.e. er, ephi, ez, hr, hphi, hz) the subroutine C

C updates the appropiate complex arrays based on the input variables C

C mode (what Fourier is being calculated) and eqset (which equation C

C set is being used). C

C C 10

C Equation set 1 contains erv, ephiu, ezv, hru, hzu, hphiv C

C Equation set 2 contains eru, ephiv, ezu, hra, hzv, hphiu C

C C

C Adjacent field values are averaged in order to approximate their C

C values along the lattice points (k,i) (Note: hr and ez are never C

C averaged since they lie on the lattice points) C

C C

C* ** ** * ** * * ******* * ** **** * ** **** **** **** * * ***** *** * *** * ** ** * *** C

SUBROUTINE update..dft(mode,eqset) 20

implicit none

include 'common.f'

integer k, i, j, mode, eqset

real*8 temp, tempfreq

complex*16, parameter :: zim = (0.0d,1.d0O)

if (eqset.eq.1) THEN

k=rcszl 30
C ***loop cycles through first mheight-1 points, left side of box

do 10 i=1,mheight-1
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C ******loop cycles through all frequencies of interest.

do 11 j=minf,maxf,stepf

c tempfreq = low-freq+dfreq*(j+0.0)
tempfreq = freqlist(j,1)

ferv(mode,i,j)= 0

fhzu(mode,i,j)= 0 40

fephiu(mode,ij)= 0

fhru(mode,ij)= 0

fezv(mode,i,j)= 0

fhphiv(mode,i,j)= 0

11 continue

10 continue 50

i=mheight

C ***loop cycles through mheight,mheight+z2-zl points, top of box

do 20 k=rcszl,rcsz2

C ******loop cycles through all frequencies of interest.

do 21 j=minf,maxf,stepf

c tempfreq = low-.freq+dfreq*(j+0.0)

temptreq = freqlist(j,1)

temp=(er(k,i)+er(k,i-1))/2.0 60

if (k.le.pookie) then

temp = 0

end if

ferv(mode,mheight+k- rcsz ,j)=ferv(mode,mheight+k-rcsz1,

1 j)+temp*exp(2*pi*zim*tempfreq*dt*time)*dt

temp=(hz(k,i)+hz(k-1,i))/2.0

if (k.le.pookie) then

temp = 0 70
end if

fhzu(mode,mheight+k-rcsz ,j)=fhzu(mode,mheight+k-rcsz1,

1 j)+temp*exp(2*pi*zim*tempfreq*dt*time)*dt

temp=(hphi(k,i)+hphi(k,i-1))/2.0

if (k.le.pookie) then

temp = 0

end if

fhphiv(mode,mheight+k-rcsz ,j)=fhphiv(mode,mheight+k- 80

1 rcsz1,j)+temp*exp(2*pi*zim*tempfreq*dt*time)*dt

temp=hr(k,i)

if (k.le.pookie) then

temp = 0

end if

fhru(mode,mheight+k-rcsz ,j) =fhru(mode,mheight+k-rcsz1,

I j)+temp*exp(2*pi*zim*tempfreq*dt*time)*dt

90

temp=ez(k,i)

if (k.le.pookie) then
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temp = 0

end if

fezv(mode,mheight+k-rcsz ,j) =fezv(mode,mheight+k-rcsz1,

1 j)+temp*exp(2*pi*zim*tempfreq*dt*time)*dt

temp=(ephi(k,i)+ephi(k-1,i))/2.0 100

if (k.le.pookie) then

temp = 0

end if

fephiu(mode,mheight+k-rcsz ,j)=fephiu(mode,mheight+k-

1 rcszl,j)+temp*exp(2*pi*zim*tempfreq*dt*time)*dt

21 continue

20 continue

k=rcsz2

C ***loop cycles through last mheight-1 points, right side of box 110

do 30 i=1,mheight-1

C ******loop cycles through all frequencies of interest.

do 31 j=minf,maxf,stepf

c tempfreq = low-freq+dfreq*(j+0.0)

tempfreq = freqlist(j,1)

if (i.eq.1) then

temp = er(k,i)

else

temp = (er(k,i)+er(k,i-1))/2.0 120

end if

ferv(mode,2*mheight-i+rcsz2-rcsz ,j)=ferv(mode,2*

1 mheight-i+rcsz2-rcszl,j)+temp*exp(2pi*zim*

2 tempfreq*dt*time)*dt

temp=(hz(k,i)+hz(k-1,i))/2.0

fhzu(mode,2*mheight-i+rcsz2-rcszl,j)=fhzu(mode,2*

1 mheight-i+rcsz2-rcszl,j)+temp*exp(2*pi*zim*

2 tempfreq*dt*time)*dt

130
temp=(ephi(k,i)+ephi(k-1,i))/2.0

fephiu(mode,2*mheight-i+rcsz2-rcszl,j)=fephiu(mode

1 ,2*mheight-i+rcsz2-rcszl,j)+temp*exp(2*pi*

2 zim*tempfreq*dt*time)*dt

temp=hr(k,i)

fhru(mode,2*mheight- i+rcsz2-rcsz ,j)=fhru(mode

1 ,2*mheight-i+rcsz2-rcszl,j)+temp*exp(2*pi*

2 zim*tempfreq*dt*time)*dt

140
temp=ez(k,i)

fezv(mode,2*mheight - i+rcsz2-rcsz ,j)=fezv(mode

1 ,2*mheight-i+rcsz2-rcszl,j)+temp*exp(2*pi*

2 zim*tempfreq*dt*time)*dt

if (i.eq.1) then

temp = hphi(k,i)

else

temp=(hphi(k,i)+hphi(k,i-1))/2.0

end if 150
fhphiv(mode,2*mheight -i+rcsz2-rcsz ,j)=fhphiv(mode

1 ,2*mheight-i+rcsz2-rcszl,j)+temp*exp(2*pi*

2 zim*tempfreq*dt*time)*dt
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31 continue

30 continue

ELSE

C* Eqset number 2

160
k=rcszl

C **+loop cycles through first mheight-1 points, left side of box

do 110 i=1,mheight-1

C * * *+loop cycles through all frequencies of interest.

do 111 j=minf,maxf,stepf

c tempfreq = low-freq+dfreq*(j+0.0)

tempfreq = freqlist(j,1)

feru(mode,ij)= 0

fhzv(mode,i,j)= 0 170
fephiv(mode,ij)= 0

fhrv(mode,i,j)= 0

fezu(mode,ij)= 0

fhphiu(mode,i,j) =0

111 continue

110 continue

i=mheight

C ***loop cycles through mheight,mheight+z2-z1 points, top of box 180
do 120 k=rcszl,rcsz2

C * *** loop cycles through all frequencies of interest.

do 121 j=minf,maxf,stepf

c tempfreq = low-freq+dfreq*(j+0.0)

tempfreq = freqlist(j,1)

temp=(er(k,i)+er(k,i-1))/2.0

c if (k.eq.rcszl) write(81,*) temp

if (k.le.pookie) then

temp = 0 190
end if

feru(mode,mheight+k-rcsz ,j)=feru(mode,mheight

1 +k-rcszl,j)+temp*exp(2*pi*zim*tempfreq*

2 dt*time)*dt

temp=(hz(k,i)+hz(k-1,i))/2.0

if (k.le.pookie) then

temp = 0

end if

fhzv(mode,mheight+k-rcsz ,j)=fhzv(mode,mheight 200
1 +k-rcszl,j)+temp*exp(2*pi*zim*tempfreq*

2 dt*time)*dt

temp=(hphi(k,i)+hphi(k,i-1))/2.0

if (k.le.pookie) then

temp = 0

end if

fhphiu(mode,mheight+k-rcsz ,j)=fhphiu(mode,mheight

1 +k-rcszl,j)+temp*exp(2*pi*zim*tempfreq*

2 dt*time)*dt 210

temp=hr(k,i)

if (k.le.pookie) then

temp = 0

end if
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fhrv(mode,mheight+k- rcsz1,j) =fhrv(mode,mheight

1 +k-rcsz ,j)-+temp*exp(2*pi*zim*tempfreq*

2 dt*time)*dt

temp=ez(k,i) 220
if (k.le.pookie) then

temp = 0

end if

fezu(mode,mheight+k- rcsz ,j) =fezu(mode,mheight

1 +k-rcszl,j)+temp*exp(2*pi*zim*tempfreq*

2 dt*time)*dt

temp=(ephi(k,i)+ephi(k-1,i))/2.0

if (k.le.pookie) then

temp = 0 230
end if

fephiv(mode,mheight+k- rcsz ,j)=fephiv(inode,mheight

1 +k-rcszl,j)+temp*exp(2*pi*zim*tempfreq*

2 dt*time)*dt

121 continue

120 continue

k=rcsz2

C ***loop cycles through last mheight-1 points, right side of box

do 130 i=1,mheight-1 240
C ******loop cycles through all frequencies of interest.

do 131 j=min,maxf,stepf

c tempfreq = low-freq+dfreq* (j+0.0)

tempfreq = freqlist(j,1)

if (i.eq.1) then

temp = er(k,i)

else

temp = (er(k,i)+er(k,i-1))/2.0

end if 250
feru(mode,2*mheight-i+rcsz2-rcszl,j)=feru(mode,2*

1 mheight-i+rcsz2-rszl,j)+temp*exp(2*pi*zim*
2 tempfreq*dt*time)*dt

temp=(hz(k,i)+hz(k-1,i))/2.0

fhzv(mode,2*mheight-i+rcsz2-rcszl,j)=fhzv(mode,2*

1 mheight-i+rcsz2-rcszl,j)+temp*exp(2*pi*zim*

2 tempfreq*dt*time)*dt

temp=(ephi(k,i)+ephi(k-1,i))/2.0 260
fephiv(mode,2*mheight-i+rcsz2-rcsz ,j)=fephiv(mode

1 ,2*mheight-i+rcsz2-rcszl,j)+temp*exp(2*pi*

2 zim*tempfreq*dt*time)*dt

temp=hr(k,i)

fhrv(mode,2*mheight-i+rcsz2-rcszl,j)=fhrv(mode
1 ,2*mheight-i+rcsz2-rcszl,j)+temp*exp(2*pi*

2 zim*tempfreq*dt*time)*dt

temp=ez(k,i) 270
fezu(mode,2*mheight-i+rcsz2-rcsz ,j)=fezu(mode

1 ,2*mheight-i+rcsz2-rcszl,j)+temp*exp(2*pi*

2 zim*temptreq*dt*time)*dt

if (i.eq.1) then

temp = hphi(k,i)
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else

temp=(hphi(k,i)+hphi(k,i-1))/2.0

end if

fhphiu(mode,2*rmheight-i+rcsz2-rcsz ,j)=fhphiu(mode 280
1 ,2*mheight-i+rcsz2-rcszl,j)+tempexp(2*pi*

2 zim*tempfrcq*dt*time)*dt

131 continue

130 continue

END IF

return

end 290

C write out phasor values to a file. C

SUBROUTINE write-phasors

implicit none

include 'common.f' 300

C***pm: the current mode being written out.

integer pm,i,k,fi

complex+16 temp

complex*16, parameter :: zim = (0.0d0,.d0)

write(6,*) 'Writing out frequency data...

if (case-id.eq.1) then

open(unit=9,file= 'fdata/infol .dat',status= 'unknown', 310
1 form= 'formatted')

else if (case.id.eq.5) then

open(unit=9,file= 'fdata/info5.dat' ,status= 'unknown',

1 form= 'formatted')

end if

write(9,*) dt

write(9,*) dz

write(9,*) N

write(9,*) inc..ang 320
write(9,+) gd

write(9,e) sdev

write(9,*) rcszl

write(9,*) rcsz2

write(9,*) mheight

write(9,*) mode.start

write(9,*) mode.end

write(9,*) modulate

write(9,*) modfreq

write(9,*) num.freqs 330
do 130 fi=minf,maxf

write(9,*) freqlist(fi,1), freqlist(fi,2)

130 continue

close(unit=9)

100 format(F12.8, ' ', F12.8)
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open(unit=9,file= 'fdata/feru.dat ',status= 'unknown',

1m = I formatted') 340

do 10 pm = mode.start,mode..end

do 20 i = 1,2*mheight+rcsz2-rcszl-1

do 30 k = minf,maxf,stepf

temp = feru(pm,i,k)

write(9, *) dble(temp), aimag(temp)

30 continue

20 continue

10 continue

close(unit=9) 350

open(unit=9,file='fdata/ferv.dat',status= unknown',

1 form='formatted')

do 101 pm = mode-start,mode-end

do 201 i = 1,2*mheight + rcsz2 - rcszl - 1

do 301 k = minfmaxf,stepf

temp = ferv(pm,i,k)

write(9, *) dble(temp), aimag(temp)

301 continue 360
201 continue

101 continue

close(unit=9)

open(unit=9,file= 'fdata/fezu.dat',status= unknown',

1 form='formatted')

do 102 pm = mode-start,mode-end 370
do 202 i = 1,2*mheight + rcsz2 - rcszI - 1

do 302 k = minf,maxf,stepf

temp = fezu(pm,i,k)

write(9, *) dble(temp), aimag(temp)

302 continue

202 continue

102 continue

close(unit=9)

380
open(unit=9,file= fdata/fezv.dat',status= 'unknown',

1 form= 'formatted')

do 103 pm = mode.start,mode-end

do 203 i = 1,2*mheight + rcsz2 - rcszl - 1

do 303 k = minf,maxf,stepf

temp = fezv(pm,i,k)

write(9, *) dble(temp), aimag(temp)

303 continue

203 continue 390
103 continue

close(unit=9)

open(unit=9,file= 'fdata/fephiu.dat',status= 'unknown',

1 form= 'formatted')

do 104 pm = mode.start,mode-end
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do 204 i = 1,2*mheight + rcsz2 - rcszl - 1

do 304 k = minf,maxf,stepf 400
temp = fephiu(pm,i,k)

write(9, *) dble(temp), aimag(temp)

304 continue

204 continue

104 continue

close(unit=9)

open(unit=9,file= fdata/fephiv.dat',status='unknown', 410
1 form='formatted')

do 105 pm = modestartmode.end

do 205 i = 1,2*mheight + rcsz2 - rcszl - 1

do 305 k = minf,maxf,stepf

temp = fephiv(pm,i,k)

write(9, *) dble(temp), aimag(temp)

305 continue

205 continue

105 continue 420
close(unit=9)

open(unit=9,file='fdata/fhru.dat',status='unknown',

1 form='formatted')

do 106 pm = mode.start,mode-end

do 206 i = 1,2*mheight + rcsz2 - rcszl - 1

do 306 k = minf,maxf,stepf 430
temp = fhru(pm,i,k)

write(9, *) dble(temp), aimag(temp)

306 continue

206 continue

106 continue

close(unit=9)

open(unit=9,file= 'fdata/fbrv.dat ',status='unknown',

1 form= formatted') 440

do 107 pm = mode..start,mode..end

do 207 i = 1,2*mheight + rcsz2 - rcszl - 1

do 307 k = minf,maxf,stepf

temp = fhrv(pm,i,k)

write(9, *) dble(temp), aimag(temp)

307 continue

207 continue

107 continue

close(unit=9) 450

open(unit=9,file= 'fdata/fhzu.dat',status= unknown',

1 form= 'formatted')

do 108 pm = mode-start,mode-end

do 208 i = 1,2*mheight + rcsz2 - rcszl - 1

do 308 k = minf,maxf,stepf
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temp = fhzu(pm,i,k) 460
write(9, *) dble(temp), aimag(temp)

308 continue

208 continue

108 continue

close(unit=9)

open(unit=9,file= 'Ifdata/fhzv.dat',status= unknown',

1 form='formatted')

470

do 109 pm = mode-start,mode..end

do 209 i = 1,2*mheight + rcsz2 - rcszl - 1

do 309 k = minf,maxf,stepf

temp = fhzv(pm,i,k)

write(9, *) dble(temp), aimag(temp)

309 continue

209 continue

109 continue

close(unit=9) 480

open(unit=9,file='f data/flhphiu.dat',status='unknown,

1 form= formatted')

do 110 pm = modestart,mode-end

do 210 i = 1,2*mheight + rcsz2 - rcszl - 1

do 310 k = minf,maxf,stepf

temp = fhphiu(pm,i,k) 490
write(9, *) dble(temp), aimag(temp)

310 continue

210 continue

110 continue

close(unit=9)

open(unit=9,fil= 'Ifdata/fhphiv.dat',status= 'unknown',

1 form='formatted')

500

do 111 pm = mode-start,mode-end

do 211 i = 1,2*mheight + rcsz2 - rcszl - 1

do 311 k = minfmaxf,stepf

temp = fhphiv(pmi,k)

write(9, *) dble(temp), aimag(temp)

311 continue

211 continue

111 continue

close(unit=9) 510

print *, 'Finished writing out phasors'

return

end

C++** ** ** * ** *** * ** **** ** * ** ************* * *++ * *++++* * ** ** *** * ** * C

C read out phasor values from a file to keep running sum C

C** * ******************* *** * * ** * * ** ** *** * ***** a** cC

SUBROUTINE read.phasorsx

520
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implicit none

include 'common.f'

C0*+++pm: the current mode being written out.

integer pm,i,k,fi

real*8 tempr, tempi, temprx, tempix

complex*16, parameter :: zim = (0.odO,1.do)

530
write(6,*) 'Reading in frequency data...

minf = 0
maxf = int((high-freq-low-freq)/dfreq)

stepf = 1

print *,low.freq,high.freq,dfreq

print *,minf,maxf,stepf

540
print *, 'reading in freq data'

open(unit=9,file='fdata/feru.dat',status='old',

1 form='formatted')

do 10 pm = mode-start,mode-end

do 20 i = 1,2*mheight+rcsz2-rcszl-1

do 30 k = minf,maxf,stepf

read(9, *) tempr, tempi

feru(pm,i,k) = feru(pm,i,k) + tempr + zim*tempi 550
30 continue

20 continue

10 continue

close(unit=9)

open(unit=9,file= 'fdata/ferv.dat',status= 'old',

1 form='formatted')

do 101 pm = mode.start,mode-end

do 201 i = 1,2*mheight + rcsz2 - rcszl - 1 560
do 301 k = minf,maxf,stepf

read(9, *) tempr, tempi

ferv(pm,i,k) = ferv(pm,i,k)+ tempr + zim*tempi

301 continue

201 continue

101 continue

close(unit=9)

open(unit=9,file='fdata/fezu.dat',status='old', 570
1 form= 'formatted')

do 102 pm = mode-start,mode-end

do 202 i = 1,2*mheight + rcsz2 - rcszl - 1

do 302 k = minfmaxf,stepf

read(9, *) tempr, tempi

fezu(pm,i,k) = fezu(pm,ik)+ tempr + zim*tempi

302 continue

202 continue

102 continue

close(unit=9) 580
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open(unit=9,file= 'fdata/fezv.dat',status='old',

1 form='formatted')

do 103 pm = mode-start,mode.end

do 203 i = 1,2*mheight + rcsz2 - rcszl - 1

do 303 k = minf,maxf,stepf

read(9, *) tempr, tempi

fezv(pm,i,k) = fezv(pm,i,k)+ tempr + zim*tempi

303 continue 590
203 continue

103 continue

close(unit=9)

open(unit=9,file='fdata/fephiu.dat',status='old,

1 form='formatted')

do 104 pm = mode-start,mode.end

do 204 i = 1,2*mheight + rcsz2 - rcszl - 1

do 304 k = minf,maxf,stepf 600
read(9, *) tempr, tempi

fephiu(pm,i,k) = fephiu(pm,i,k) + tempr + zim*tempi

304 continue

204 continue

104 continue

close(unit=9)

open(unit=9,file='fdata/fephiv.dat',status='old',

1 form='formatted') 610
do 105 pm = mode-start,mode-end

do 205 i = 1,2*mheight + rcsz2 - rcszl - 1

do 305 k = minf,maxf,stepf

read(9, *) tempr, tempi

fephiv(pm,i,k) = fephiv(pm,i,k) + tempr + zim*tempi

305 continue

205 continue

105 continue

close(unit=9)

620

open(unit=9,file= 'fdata/fbru.dat',status= 'old',

1 form='formatted')

do 106 pm = mode-start,mode-end

do 206 i = 1,2*mheight + rcsz2 - rcszl - 1

do 306 k = minf,maxf,stepf

read(9, *) tempr, tempi

fhru(pm,i,k) = fhru(pm,i,k) + tempr + zim*tempi

306 continue

206 continue 630
106 continue

close(unit=9)

open(unit=9,file='fdata/fhrv.dat',status= 'old',

1 form= 'formatted')

do 107 pm = mode-start,mode-end

do 207 i = 1,2*mheight + rcsz2 - rcszl - 1

do 307 k = minf,maxf,stepf

read(9, *) tempr, tempi 640
fhrv(pm,i,k) = fhrv(pm,i,k) + tempr + zim*tempi

307 continue -
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207 continue

107 continue

close(unit=9)

open(unit=9,file= fdata/fhzu.dat',status='old',

1 form='formatted')

do 108 pm = mode-start,mode-end 650
do 208 i = 1,2*mheight + rcsz2 - rcszl - 1

do 308 k = minf,maxf,stepf

read(9, *) tempr, tempi

fhzu(pm,i,k) = fhzu(pm,i,k) + tempr + zim*tempi

308 continue

208 continue

108 continue

close(unit=9)

660
open(unit=9,file= fdata/fhzv.dat',status=' old',

1 form='formatted')

do 109 pm = mode-start,mode-end

do 209 i = 1,2*mheight + rcsz2 - rcszl - 1

do 309 k = minfmaxfstepf

read(9, *) tempr, tempi

fhzv(pm,i,k) = fhzv(pm,i,k) + tempr + zim*tempi

309 continue

209 continue

109 continue 670
close(unit=9)

open(unit=9,file='fdata/fhphiu.dat',status='old',

1 form='formatted')

do 110 pm = mode-start,modeend

do 210 i = 1,2*mheight + rcsz2 - rcszl - 1

do 310 k = minf,maxf,stepf

read(9, *) tempr, tempi

fhphiu(pm,i,k) = fhphiu(pm,i,k) + tempr + zim*tempi 680
310 continue

210 continue

110 continue

close(unit=9)

open(unit=9,file= 'fdata/fhphiv.dat',status='old',

1 form='formatted')

do 111 pm = mode...start,mode-end

do 211 i = 1,2*mheight + rcsz2 - rcszl - 1 690
do 311 k = minf,maxf,stepf

read(9, *) tempr, tempi

fhphiv(pm,i,k) = fhphiv(pm,i,k) + tempr + zim*tempi

311 continue

211 continue

111 continue

close(unit=9)

print *, 'Finished reading in old phasors for running sum' 700
stepf = 1

return

171



end

C*** ******* *** * ************* ******* *** C

C read out phasor values from a file. C

0* * ** ** ****** * * ** ** * ** **************** * C

SUBROUTINE read-phasors 710

implicit none

include 'common.f '

C*****pm: the current mode being written out.

integer pm,i,k,fi

real*8 tempr, tempi, temprx, tempix

complex*16, parameter :: zim = (0.0d0,1.d0)

720

write(6,*) 'Reading in frequency data...

minf = 0
maxf = int((high-freq-low-freq)/dfreq)

stepf = 1

print *,low-freq,high-freq,dfreq

print *,minf,maxf,stepf

730

print *, 'reading in freq data'

open(unit=9,file= 'fdata/feru.dat',status='old',

1 form= 'formatted')

do 10 pm = mode.start,mode-end

do 20 i = 1,2*mheight+rcsz2-rcszl-1

do 30 k = minf,maxf,stepf

read(9, *) tempr, tempi 740
feru(pm,i,k) = tempr + zim*tempi

30 continue

20 continue

10 continue

close(unit=9)

open(unit=9,file= 'fdata/ferv.dat',status= 'old',

1 form= 'formatted')

do 101 pm = mode.start,mode.end 750
do 201 i = 1,2*mheight + rcsz2 - rcszl - 1

do 301 k = minf,maxf,stepf

read(9, *) tempr, tempi

ferv(pm,i,k) = tempr + zim*tempi

301 continue

201 continue

101 continue

close(unit=9)

760
open(unit=9,file='fdata/fezu.dat',status= 'old',

1 form='formatted')

do 102 pm = mode-start,mode.end

do 202 i = 1,2*mheight + rcsz2 - rcszl - 1
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do 302 k = minf,maxf,stepf

read(9, *) tempr, tempi

fczu(pm,i,k) = tempr + zim*tempi

302 continue

202 continue

102 continue 770
close(unit=9)

open(unit=9,file= 'fdata/fezv.dat ',status= 'old',

1 form= 'formatted')

do 103 pm = mode-start,mode-end

do 203 i = 1,2*mheight + rcsz2 - rcszl - 1

do 303 k = minf,maxf,stepf

read(9, *) tempr, tempi 780
fezv(pm,i,k) = tempr + zim*tempi

303 continue

203 continue

103 continue

close(unit=9)

open(unit=9,file= 'fdata/fephiu.dat',status= 'old',

1 form='formatted')

do 104 pm = mode-start,mode-end 790
do 204 i = 1,2*mheight + rcsz2 - reszi - 1

do 304 k = minf,maxf,stepf

read(9, *) tempr, tempi

fephiu(pm,i,k) = tempr + zim*tempi

304 continue

204 continue

104 continue

close(unit=9)

800
open(unit=9,file= 'fdata/fephiv.dat',status= 'old',

1 form='formatted')

do 105 pm = mode-start,mode-end

do 205 i = 1,2*mheight + rcsz2 - rcszl - 1
do 305 k = minf,maxf,stepf

read(9, *) tempr, tempi

fephiv(pm,i,k) = tempr + zim*tempi

305 continue

205 continue

105 continue 810
close(unit=9)

open(unit=9,file='fdata/fhru.dat',status='old',

1 form='formatted')

do 106 pm = mode-start,mode.end

do 206 i = 1,2*mheight + rcsz2 - reszi - 1

do 306 k = minf,maxf,stepf

read(9, *) tempr, tempi

fhru(pm,ik) = tempr + zim*tempi 820
306 continue

206 continue

106 continue

close(unit=9)
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open(unit=9,file='fdata/fhrv.dat',status= 'old',

1 form='formatted')

do 107 pm = mode-start,mode-end

do 207 i = 1,2*mheight + rcsz2 - rcszl - 1 830
do 307 k = minf,maxf,stepf

read(9, *) tempr, tempi

fhrv(pmi,k) = tempr + zim*tempi

307 continue

207 continue

107 continue

close(unit=9)

open(unit=9,file='fdata/fhzu.dat',status='old', 840
1 form= 'formatted')

do 108 pm = mode-start,mode-end

do 208 i = 1,2*mheight + rcsz2 - rcszl - 1

do 308 k = minf,maxf,stepf

read(9, *) tempr, tempi

fhzu(pm,i,k) = tempr + zim*tempi

308 continue

208 continue

108 continue

close(unit=9) 850
close(unit=10)

open(unit=9,file='fdata/fhzv.dat',status= 'old',

1 form= 'formatted')

do 109 pm = mode-start,mode-end

do 209 i = 1,2*mheight + rcsz2 - rcszl - 1

do 309 k = minf,maxf,stepf

read(9, *) tempr, tempi

fhzv(pm,i,k) = tempr + zim*tempi

309 continue 860
209 continue

109 continue

close(unit=9)

open(unit=9,file='fdata/fhphiu.dat',status='old',

1 form='formatted')

do 110 pm = mode-start,mode-end

do 210 i = 1,2*mheight + rcsz2 - rcszl - 1

do 310 k = minf,maxf,stepf 870
read(9, *) tempr, tempi

fhphiu(pm,i,k) = tempr + zim*tempi

310 continue

210 continue

110 continue

close(unit=9)

open(unit=9,file= 'fdata/fhphiv.dat',status= 'old',

1 form= 'formatted') 880
do 111 pm = mode-start,mode.end

do 211 i = 1,2*mheight + rcsz2 - rcszl - 1

do 311 k = minf,maxf,stepf

read(9, *) tempr, tempi

fhphiv(pm,i,k) = tempr + zim*tempi

311 continue
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211 continue

111 continue

close(unit=9)

890

print *, 'Currently you are calculating the RCS at',maxf-minf+1

stepf = 1

return

end

900

C***+** ********************************C

C initialize all frequency field values to zero C

C*******************************************************************C

SUBROUTINE init-freq

implicit none

include 'common.f'

integer mk,i 910

do 10 m=mode-start,mode-end

do 20 k=1,mxdp

do 30 i=1,MAX.FREQS

fephiu(m,k,i)=0.0

fephiv(mk,i)=0.0

feru(m,k,i)=0.0

ferv(mk,i)=0.0

fezu(m,k,i)=0.0

fezv(m,ki)=0.0 920

fhphiu(mk,i)=0.0

fhphiv(m,k,i)=O.0

fhru(m,k,i)=0.0

fhrv(m,k,i)=0.0

fhzu(m,k,i)=0.0

fhzv(m,k,i)=0.0

30 continue

20 continue

10 continue

930

return

end

CBZ 10/16/02 Severely modified

C***** ** ** * ** * *** *** ** * *** *** * ** *********** *** * ** * *** * * *** C

C write out necessary values to calculate RCS to a file. C

c DO THIS ONLY ONCE FOR THE FIRST MODE! c

** ****+***** ***************** ** ** ****** ***** ** *********C 940

SUBROUTINE write..values

implicit none

include 'common.f

C*****pm: the current mode being written out.
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integer pm,i,k,fi

complex*16 temp 950

write(6,*) 'Writing out necessary data.

open(unit=9,file='rcs.info' ,status='unknown,

1 form='formatted')

c variable

write(9,*) dt

write(9,*) dz

write(9,*) low-freq

write(9,*) high-freq

write(9,*) dfreq 960
write(9,*) inc..ang

c variable

write(9,*) gd

write(9,*) sdev

write(9,*) modulate

write(9,*) modfreq

write(9,*) num-freqs

do 130 fi=minf,maxf

write(9,*) freqlist(fi,1), freqlist(fi,2)

130 continue 970
close(unit=9)

return

end

CBZ 10/24/02 Modified

C** *** * * * ************************** **+****+++C

C reads in geom and time parameters from a BOR file. C

C*** * ** * * ** * ** *** ** ***************************** C

980
SUBROUTINE read.values

implicit none

include 'common.f'

C*****pm: the current mode being written out.

integer pmi,k,fi

real*8 tempr, tempi

write(6,*) 'Reading in frequency data.

990
open(unit=9,file= 'rcs.info',status= 'old',

1 form='formatted')

read(9,*) dt

read(9,*) dz

read(9,*) low-freq

read(9,*) high.freq

read(9,*) dfreq

read(9,*) inc-ang

read(9,*) gd

read(9,*) sdev 1000
read(9,*) modulate

read(9,*) modfreq

read(9,*) num-freqs

do 130 fi=1,num.freqs

read(9,*) freqlist(fi,1), freqlist(fi,2)

130 continue

close(unit=9)
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minf 0

maxf = int((high-freq-low-freq)/dfreq) 1010
stepf = 1

print *,low-freq,high-freq,dfreq

print *,minf,maxf,stepf

enough-memory = TRUE.

if (nm.gt.mode-start) then

write(6,*)

print *,'rm =',nm,' is greater than the starting mode' 1020
print *, 'number', mode-start, '. Adjust the nm parameter'

enough..memory = FALSE.

end if

if (mm.lt.mode..end) then

write(6,*)

print *,'mm =',mm,' is less than the ending mode'

print *,'number', mode-end, '. Adjust the mm parameter'

print *,'in the common.f file'

enough..memory = FALSE. 1030
end if

if ((maxf-minf+1).gt.MAX-FREQS) then

print a, 'too many frequencies, lower number of freq'

print a, 'from ', maxf-minf+1, ' to less than ',MAX-FREQS

print a, 'or increase MAXFREQS variable in the common.f file.'

enough-memory = .FALSE.

end if

if ((2*mheight+rcsz2-rcszl-1).gt.mxdp) then 1040
print *,'error not enough memory for RCS components'

print *,'set the parameter mxdp higher than',

1 2*mheight+rcsz2-rcszl-1

enough-memory = FALSE.

end if

if (.NOT.enough-memory) then

print *,'Not enough memory, must allocate more by altering'

print *,'parms in common.f file'

stop 1050
end if

return

end

CBZ 10/24/02 Modified

Ca* * a* * * * * *** ****** * * * en** * * * *n **** e* * * * * C

C read out matlab generated geometry parameters from a file. C

Ca****** ***n * * * ****** ******* ** C **01060

SUBROUTINE read-parms

implicit none

include 'common.f'

write(6,*) 'Reading in Matlab generated geometry data...'

open(unit=9,file= 'geom.data',status= 'old',

1 form= 'formatted')
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read(9,*) N 1070
read(9,*) rcszl

read(9,*) rcsz2

read(9,*) rcsz

read(9,*) mheight

c Use the default calculations-not this

c read(9,*) mode-start

c read(9,*) mode-end

close(unit=9)

write(6,*) 'DONE Reading in geom.data.

return 1080
end

Cs** * ** * ** ****************+*++++++++++++++++ ** C

C Calculate far-field E and H fields using Huygens' Principle C

Cs***************** * * ***********+++++++++++++++++++++C

subroutine calc-rcs

implicit none

include 'common.f' 1090

real*8 besselj, kwave, rho, kps, cz, RCS, RCSDB

real*8 obs.phi, obs-theta, eincsq, temp, targ

real*8 cosp, sinp, cost, sint, sinmp, cosmp, PDIV, tempfreq

integer pt-rB, pt-rBO, pt-zl, pt-z2, pt-rC, pt-rCO,t,phase-z

integer pt-index, freq-index, mode-index

real+8 dp-kwave, dutheta, tempang, dpobs-theta

real*8 out-freq, kps-tole

1100
complex+16 Escat-theta-A, Escat-theta.B, Escat-theta-C,

1 einc(1:MAX-FREQS),

1 At, Escat-phi-A, Escat-phiB, Escat-phiC, Ap, A, uniti, 11,
2 13, 15, ci, c2, c3, c4, c5, RCSc, RCScold, eincc

complex*16 ferup, fervp, fephiup, fephivp, fezup, fezvp,

1 fhrup, fhrvp, fhphiup, fhphivp, fhzup, fhzvp

character filnam+1024, frmt*30

integer ilen

1110
parameter(PDIV=1.0,uniti=(.OdO,1.OdO),kps-tole=1.Oe-7)

write(6,*) 'Calculating RCS...

ilen = index(dbase, ') - 1

write(frmt,'(a2,i4,a4)') '(a',ilen,',a8)'

write(filnam,frmt)dbase,'/rcs.dat'

open(unit=9,file='rcs.dat ',status= unknown',form='formatted')

c open (unit=10,file='rcsold.dat',status='unknown',form='formatted') 1120

c open(unit=12,file='scat.dat',status=unknown',form='formatted')

C****Some reference points to define

C*****pt-zl index of first point of integral A

C*sept-z2 index of last point of integral A

C*****pt-rB index of first point of integral B -left side

C*****ptrBO index of last point of integral B -left side

C*****pt-rC index of first point of integral C -right side

C*****pt-rCO index of last point of integral C -right side 1130
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pt-rB = 1

pt.rBO = mheight

pt-zl = mheight

pt-z2 = mheight + rcsz2 - rcszl

C**++*low point (i.e. right side botom corner)

pt-rC = 2*mheight + rcsz2 - rcszl - 1

C***high point (i.e. right side top corner)

pt-.rCO = mheight + rcsz2 - rcszl

1140

print *,pt-rB,pt-rBO,pt-zl,pt-z2,pt-rC,pt.rCO

do 1 freq.index = 1,MAX-FREQS

einc(freq.index) = 0.0

1 continue

C***+Calculate DFT of incident field for RCS calculation.

do 5 t = 1,N

targ = (t*dt-gd)+(rcsz1*dz*cos(inc-ang)+10*dz*sin(inc-ang))/c 1150
temp=((Ehg**2)+(Evg**2))*(1/(sqrt(2*pi)))*exp(-(targ**2.0)/

1 ((sdev) *2.0))+((sin(2+pi*modfrcq*targ))*modulatc+

2 abs(modulate-1))*5.0

do 8 frcq-index=minf,maxf,stepf

c do 8 freq.index=1,num-freqs
c tempfreq = low-freq + freq-index*dfreq

tempfreq = freqlist(freq-index,1)

c print *,tempfreq

einc(freq-index)=einc(freq-index)+temp*exp(2*pi*uniti* 1160
1 tempfreq*dt*t)*dt

8 continue

5 continue

do 10 freq-index=minf,maxf,stepf

c do 10 freq-index=1,num-freqs

c print *,minfmaxffreq-index

eincc = einc(freq-index)

eincsq = (abs(einc(freq-index)))**2.0

c kwave = ((low-freq+freqindex*dfreq)/ c)*(2*pi) 1170
kwave = (freqlist(freq-index,1)/c)*(2*pi)

if (calc.bist) then

dp-kwave = kwave

dutheta = dtheta

else

c print *,freq-indexmono-nang,int((freq-index-1)/

c 1 ((mono-nang+1)/2))+1

dp.kwave = (freqlist(mono.freq.ind(int ((freq.index-1)/

1 ((mono-nang+1)/2))+1),1)/c)*(2*pi)

tempang = dtheta*(freq-index-mono-freq-ind(int ((freq-index 1180
1 -1)/((mono.nang+1)/2))+1))

low-theta = dble(inc-ang/pi*180-tempang*2)

high.theta = dble(inc-ang/pi*180+tempang*2)

dutheta = high-theta-low-theta

if (abs(dutheta).It.eps) dutheta = 1.0

c print *,dtheta,tempang,low-theta,high-theta,

c I (inc-ang/pi180+low-theta)/2.,

c 2 (inc-ang/pi* 180+high-theta)/2.

end if

1190
do 20 obs-phi=low.phi,high-phi,dphi
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sinp = sin(obs-phi/180*pi)

cosp = cos(obs-phi/180*pi)

do 30 obs-theta=low-theta,high-theta,dutheta

if (calc.bist) then

dp-obs-theta = obs-theta

else

dp.obs-theta = (inc-ang/pi*180+obs-theta)/2.0

end if 1200

sint = sin(obs..theta/180*pi)

cost = cos(obs-theta/180*pi)

C**************Initialize integral values

Escat-thetaA = 0.0

Escat-phiA = 0.0

Escat-thetaB = 0.0

Escat-phi-B = 0.0

Escat-theta-C = 0.0 1210

Escat-phi-C = 0.0

do 40 mode-index = nm,mm

sinmp = sin(mode-index*obs-phi/ 180pi)

cosmp = cos(mode-index*obs-phi/180*pi)

C*****************Three different integrals to evaluate

c3 = 2*pi*exp(uniti*mode-index*1.5*pi)

c4 = 2*pi*exp(uniti*(mode-index+1)*1.5*pi)

1220
C*****************Integral A: zi -> z2 -center integral at rO

rho = (mheight - 1) * dz

kps = kwave * rho * sint

if (abs(kps).lt.kps-tole) then

if (mode-index.eq.1) then

I1=0.0

13=pi

15=pi

else 1230

11=0.0

13=0.0

15=0.0

end if

if (mode-index.eq.0) then

11=2*pi

end if

else

c2 = 2.0*pi*uniti*mode-index/kps

c5 = c2*exp(uniti*mode-index*1.5*pi) 1240

11 = c3*besselj(kps,mode..index)

13 = c4*besselj(kps,mode-index+1)+c5*

I besselj(kps,mode-index)

15 = c5*besselj(kps,mode.index)

end if

do 50 pt-index = pt-z1,pt-z2

ferup = feru(mode-index,pt-indexfreq-index)*cosmp

+ferv(mode.index,pt.index,freq-index)*sinmp

fervp = ferv(mode-index,pt.index,freq.index)*cosmp 1250

-feru(mode-index,pt-index,freq-index)*sinmp

fezup = fezu(mode-index,pt-index,freq-index)*cosmp
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1 +fezv(modeaindex,pt-index,freq-index) *sinmp

fezvp = fczv(mode-index,pt-index,freq-index)*cosmp

1 -fezu(mode-index,pt-index,freq-index)*sinmp

fephiup = fephiu(mode-index,pt-index,freq-index)*

1 cosmp+fephiv(modeaindex,pt-index,freq-index)*

1 sinmp

fephivp = fephiv(mode-index,pt-index,freq-index)*

1 cosmp-fephiu((mode-index,pt-index,freq-index)* 1260

1 sinmp

fhrup = fhru(mode-index,pt-index,freq-index) *cosmp

1 +fhrv(mode-index,pt-index,freq-index)*sinmp

fhrvp = fhrv(mode.index,pt-index,freq-index)*cosmp

1 -fhru(mode-index,pt-index,freq-index)*sinmp

fhzup = fhzu(mode-index,pt-index,freq-index)*cosmp

1 +fhzv(mode.index,pt-index,freq-index)*sinmp

fhzvp = fhzv(mode-index,pt-index,freq-index) *cosmp

1 -fhzu(mode-index,pt-index,freq-index)*sinmp

fhphiup = fhphiu(mode-index,pt-index,freq-index)* 1270

1 cosmp+fhphiv(mode-index,pt-index,freq-index)*

1 sinmp

fhphivp = fhphiv(mode-index,pt-index,freq.index)*

1 cosmp-fhphiu(modeindex,pt-indcx,frcq-indcx)*

1 sinmp

do 55 phase-z = 0,(int(PDIV)-1)

cz = (rcsz1+pt-index-pt-z1)*dz+phase-z*dz/PDIV

cl = exp(-uniti*kwave*cz*cost)

Escat-thetaA = (dz/PDIV)*rho*cl*(-sint*fhphiup 1280

1 *c3*besselj(kps, mode-index)+fezup*I3+

2 cost*fhzvp*15) +Escat-thetaA

Escat-phiA = (dz/PDIV)*rho*cl*(-fhzup*I3-sint*

1 fephiup*c3*besselj(kps,mode-index)+cost*

2 fezvp*I5)+Escat-phi-A

55 continue

50 continue

C ********* * ***** 1290

C*****************Integral B: 0 -> rO -left integral at z1

cz = rcszl*dz
ci = exp(-uniti*kwave*cz*cost)

do 60 pt-index = pt-rB, pt-rBO

ferup = feru(mode-index,pt.index,freq-index)*cosmp

1 +ferv(mode-index,pt-index,freq-index)*sinmp

fervp = ferv(mode-index,pt-index,freq-index)*cosmp 1300

1 - feru(mode-index,pt-index,freq.index)*sinmp
fezup = fezu(mode.index,pt.index,freq-index)*cosmp

1 +fezv(mode-index,pt-index,freq-index)*sinmp

fezvp = fezv(mode-index,pt-index,freq-index)*cosmp

1 -fezu(mode-index,pt-index,freq-index)*sinmp

fephiup = fephiu(mode-index,pt-index,freq-index)*

1 cosmp+fephiv(mode-index,pt-index,freq-index)*

1 sinmp

fephivp = fephiv(mode...index,pt-index,freq-index)*

1 cosmp-fephiu(mode.index,pt-index,freq-index)* 1310

1 sinmp

fhrup = fhru(mode-index,pt-index,freq-index)*cosmp

1 +fhrv(mode-index,pt-index,freq-index)*sinmp
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fhrvp = fhrv(mode-index,pt-index,freq-index)*cosmp

1 -fhru(mode..index,pt-index,freq-index)*sinmp

fhzup = fhzu(mode-index,pt-index,freq-index)*cosmp

1 +fhzv(mode-index,pt-index,freq-index)*sinmp

fhzvp = fhzv(mode.index,pt-index,freq-index)*cosmp

1 -fhzu(mode...index,pt-index,freq.index)*sinmp

fhphiup = fhphiu(mode-index,pt-index,freq-index)* 1320
1 cosmp+fhphiv(mode-index,pt-index,freq-index)*

1 sinmp

fhphivp = fhphiv(mode-index,pt-index,freq.index)*

1 cosmp-fhphiu(mode-index,pt.index,freq-index)*

1 sinmp

rho = (pt-index-1)*dz

kps = kwave * rho * sint

c print *,obs-theta,kps,sint

1330
if (abs(kps).lt.kps-tole) then

if (mode-index.eq.1) then

I1=0.0

13=pi

15=pi

else

11=0.0

13=0.0

15=0.0

end if 1340
if (mode.index.eq.0) then

I1=2*pi

end if

else

c2 = 2.0*pi*uniti*mode-index/kps

c5 = c2*exp(uniti*mode-index*1.5*pi)

Il = c3*besselj(kps,mode-index)

13 = c4*besselj(kps,mode-index+1)+c5*

1 besselj(kps,mode-index)

I5 = c5*besselj(kps,mode-index) 1350
end if

Escat-theta-B = -dz*rho*cl*(--cost*fhphiup*13-ferup

1 *13-cost* fhrvp*15+fephivp*15)+Escat-theta.B

Escat-phi-B = -dz*rho*cl*((fhrup-cost*fephiup)*13+

1 (-fhphivp-cost*fervp)*15)+Escat..phi-B

60 continue

C*************************************** ***** 1360

C*****************Integral C: 0 -> rO -right integral at z2

cz = rcsz2*dz

ci = exp(-uniti*kwave*cz*cost)

do 70 pt-index = pt-rCO, pt-rC

ferup = feru(mode-index,pt-index,freq.index)*cosmp

1 +ferv(mode-index,pt-index,freq-index)*sinmp

fervp = ferv(mode-index,pt-index,freq.index)*cosmp 1370
1 -feru(mode-index,pt-index,freq.index)*sinmp

fezup = fezu(mode-index,pt-index,freq-index)*cosmp

1 +fezv(mode-index,pt-index,freq-index)*sinmp

fezvp = fezv(mode-index,pt-index,freq-index)*cosmp
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1 -fezu(mode-index,pt.index,frcq-index)*sinmp

fephiup = fcphiu( mode-index,pt-index,freq-index)*

1 cosmp+fephiv(modeindx,pt-index,freq.index)*

1 sinmp

fephivp = fephiv(modeindex,pt-index,freq-index)*

1 cosmp-fephiu(mode.index,pt-index,freq-index)* 1380
1 sinmp

fhrup = fhru(mode-index,ptLindex,freq-index)*cosmp

1 +fhrv(mode-index,pt-index,freq-index)*sinmp

fhrvp = fhrv(mode-index,pt-index,freq-index)*cosmp

1 -fhru(mode-index,pt-index,freq-index)*sinmp

fhzup = fhzu(modeoindex,pt-index,freq.index)*cosmp

1 +fhzv(mode-index,pt-index,freq-index)*sinmp

fhzvp = fhzv(modecindex,pt-index,frcq-index)*cosmp

1 -fhzu(mode-index,pt-index,freq-index)*sinmp

fhphiup = fhphiu(mode-index,pt-index,freq-index)* 1390
1 cosmp+fhphiv(mode-index,ptindex,freq-index)*

1 sinmp

fhphivp = fhphiv(mode-index,pt-index,freq-index)*

1 cosmp-fhphiu(mode-index,pt-index,frq-index)*

1 sinmp

rho = (pt-rC-pt-index)*dz

kps = kwave * rho * sint

if (abs(kps).lt.kps-tole) then

if (modeoindex.eq.1) then 1400
I1=0.0

13=pi

I5=pi

else

I1=0.0

13=0.0

15=0.0

end if

if (mode-index.eq.0) then

Il=2*pi 1410
end if

else

c2 = 2.0*pi*uniti*mode-index/kps

c5 = c2*exp(uniti*mode-index*1.5*pi)

I = c3*besselj(kps,mode-index)

13 = c4*besselj(kps,mode.index+1)+c5*

1 besselj(kps,mode-index)

I5 = c5*besselj(kps,mode-index)

end if

1420
Escat-thetaC = dz*rho*cl*(-cost*fhphiup*13-ferup*

1 13-cost*fhrvp*15+fephivp*I5)+Escat.theta-C

Escat-phiC = dz*rho*cl*((fhrup-cost*fephiup)*13+

3 (-fhphivp-cost*fervp)*I5)+Escat-phiC

70 continue

Cs* ** * * ************* * ************* * ******* ** ** ***

40 continue 1430

At = Escat.theta-A + Escat-theta-B + Escat-theta-C

Ap = Escat.phi-A + EscatLphi-B + Escat.phi...C
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A = At* ((cost*cost*cosp+sint*sint) *Ehg+(cost*sinp) *Evg)

1 +Ap*((-cost*sinp)*Ehg+cosp*Evg)

RCScold = ((kwave**2)*(A**2))/(4.0*pi*eincc**2)

c RCSc = kwavesA/(4.0*pi*eincc) 1440
RCSc = (kwave*A)/(sqrt(4.0*pi)*eincc)

RCS = ((kwave**2)*((abs(A))**2))/(4.0*pi*eincsq)

if (abs(RCS).It.le-7) then

RCSDB = -200.0

else

RCSDB = 10*LOG10(RCS)

end if

c write(10,*) dp-kwave,obs-phi,dp-obs.theta,RCSDB, 1450
c 1 abs(RCScold),atan2(imag(RCScold),dble(RCScold))

c out-freq = (dpdkwave/ (2*pi))* c

out-freq = freqlist(freq-index,1)

write(9,*) outfreq, dble(RCSc), imag(RCSc)

30 continue

20 continue

10 continue 1460

99 format(F25.15,' ',F25.15)

close(unit=9)

c close(unit=10)

c close(unit=12)

return

end

A.4 PML Calculations

Berenger's Perfectly Matched Layer is implemented in this portion of the program.

***********************************************
c PML Equations: right, left, top c

c E fields c

subroutine pmlEeqn(m,ms)

implicit none

include 'common.f' 10

integer k,i,m,axis,ms

real*8 cl,c2,c3,c4,c5,c6

real*8 sigma-r,sigma-z

axis=1

C ************** Calculate Erz fieldssssss*s* ss**** so*

c real region interface
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cl=dt/(eps*dz) 20
do 10 i=1,pmldepth

do 20 k=1,maxz-1

C ****CENTER TOP REGION

erzt(k,i)=erzt(k,i)+(1/eta)* (c1* (hphizt(k,i)+hphirt(k,i)

1 -hphizt(k+1,i)-hphirt(k+1,i)))

20 continue

erzt(maxz,i)=erzt(maxz,i)+(1/eta)* (c1* (hphizt(maxz,i)+hphirt

1 (maxz,i)-hphizr(1,i+maxr)-hphirr(1,i+maxr))) 30
10 continue

do 30 i=1,pmldepth+maxr

do 40 k=1,pmldepth

sigma..z=sigma-max*((k+0.0)/pmldcpth)**2.0

c1=exp(-sigma-z*dt/eps)

c2=(cl-1.0)/(sigma-z*dz)

C **********Right Side*********

erzr(k,i)=c1*erzr(k,i)+(1/eta)*(-c2*(hphizr(k,i)+hphirr 40
1 (k,i)-hphizr(k+1,i)-hphirr(k+1,i)))

C **********Left Side**********remrinder:k=right.left=pmnldepth.1

if (k.eq.1) THEN

if (i.gt.maxr) THEN

c3=hphizt(1,i-maxr)+hphirt(1,i-maxr)

ELSE

c3=hphi(1,i)

END IF

erzl(k,i)=c1*erzl(k,i)+(1/eta)*(-c2*(hphizl(k,i)+hphirl

1 (k,i)-c3)) 50
ELSE

erzl(k,i)=c1*erzl(k,i)+(1/eta) (-c2* (hphizl(k,i)+hphirl

1 (k,i)-hphizl(k-1,i)-hphirl(k-1,i)))

END IF

C ****Left Side: interior of casel

if (((case-id.eq.1).or.(case.id.eq.5))

1 .and.(i.le.left-y)) then

c if ((case-id.eq.1).or.(case.id.eq.5)) then

if (k.eq.1) THEN 60
if (case-id.eq.1) then

c3=hphi(1,i)

else if (case-id.eq.5) then

c3=hphi(1,i)

end if

erzlx(k,i)=cl*erzlx(k,i)+(1/eta)

1 * (-c2*(hphizlx(k,i)+hphirlx(k,i)-c3))

ELSE

erzlx(k,i)=cl*erzlx(k,i)+(1/eta)

1 *(-c2*(hphizlx(k,i)+hphirlx(k,i) - 70
1 hphizlx(k-1,i)-hphirlx(k-1,i)))

END IF

end if

40 continue

30 continue

C ****+* ++******Calculate Erphi fieldc
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80
C ****CENTER BOTTOM & TOP REGIONS

do 41 k=1,maxz

do 42 i=1,pmldepth

c4=(m*dt/eps)/((i+0.5-1.0+maxr)*dz)

erphit(k,i)=erphit(k,i)-(1.0/eta)*(c4*(hzrt(k,i)+

1 hzphit(k,i)))

42 continue

41 continue

90
C ****RIGHT & LEFT SIDES

do 46 k=1,pmldepth

do 47 i=1,pmldepth+maxr

c4=(m*dt/eps)/((i+0.5-1.0)*dz)

erphil(k,i)=erphil(k,i) - (c4* (hzrl(k,i)+hzphil(k,i)))/eta

erphir(k,i)=erphir(k,i)- (c4*(hzrr(k,i)+hzphir(k,i)))/eta

if (((caseaid.eq.1).or.(case-id.eq.5))

1 .and.(i.le.left...y)) then 100

c if ((caseid.eq.1).or.(case-id.eq.5)) then

erphilx(k,i)=erphilx(k,i)-

1 (c4*(hzrlx(k,i)+hzphilx(k,i)))/eta

end if

47 continue

46 continue

110
C ************Calculate Ephiz fields***

C ****CENTER BOTTOM & TOP REGIONS

c1=dt/(eps*dz)

do 50 i=1,pmldepth

do 60 k=1,maxz-1

ephizt(k,i)=ephizt(k,i)+(cl*(hrzt(k+1,i)+hrphit(k+1,i)-
1 hrzt(k,i)-hrphit(k,i)))/eta

60 continue 120

ephizt(maxz,i)=ephizt(maxz,i)+(cl*(hrzr(1,i+maxr)+hrphir

1 (1,i+maxr)-hrzt(k,i)-hrphit(k,i)))/eta

50 continue

do 70 k=1,pmldepth

sigma.z=sigma-max*((k+0.0+0.5)/pmldepth)**2.0

c1=exp(-sigma.z*dt/eps)
c2=(c1-1.0)/(sigma.z*dz)

c print *, 'sigma..z',cl,c2 130
do 80 i=1,pmldepth+maxr

C **********Right Side********

if (abs(m).ne.1.AND.i.eq.axis) THEN

ephizr(k,i)=0.0

ELSE

ephizr(k,i)=cl*ephizr(k,i)-(c2*(hrzr(k+1,i)+hrphir

1 (k+1,i)-hrzr(k,i)-hrphir(k,i)))/eta

END IF

140
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if (((case-id.eq.2).or.(case-id.eq.4).or.(caseid.eq.3))

.and.(i.eq.right-y)) then

c create artificial PEC in the PML RIGHT

ephizr(k,i)=O.O

end if

C **********Left Side**********

if (k.eq.1) THEN 150

if (i.gt.maxr) THEN

c3=hrzt(1,i-maxr)+hrphit(1,i-maxr)

ELSE

c3=hr(1,i)

END IF

if (abs(m).ne.1.AND.i.eq.axis) THEN

ephizl(k,i)=O.O

ELSE

ephizl(k,i)=cl*ephizl(k,i)-(c2*(c3-hrzl(k,i)- 160

hrphil(k,i)))/eta

END IF

ELSE

if (abs(m).ne.1.AND.i.eq.axis) THEN

ephizl(k,i)=O.O

ELSE

ephizl(k,i)=c1*ephizl(k,i)-(c2*(hrzl(k-1,i)+

1 hrphil(k-1,i)-hrzl(k,i)-hrphil(k,i)))/eta

END IF 170

END IF

c Interior PML:

if (((case-id.eq.1).or.(case.id.eq.5))

1 .and.(i.le.left.y)) then

c if ((caseid.eq.1).or.(case.id.eq.5)) then

if (k.eq.1) THEN

if (case-id.eq.1) then 180

c3=hr(1,i)

else if (case-id.eq.5) then

c3=hr(1,i)

end if

if (abs(m).ne.1.AND.i.eq.axis) THEN

ephizlx(k,i)=O.O

ELSE

ephizlx(k,i)=c1*ephizlx(k,i)-(c2*(c3-hrzlx(k,i)-

1 hrphilx(k,i)))/eta 190

END IF

ELSE

if (abs(m).ne.1.AND.i.eq.axis) THEN

ephizlx(k,i)=0.O

ELSE

ephizlx(k,i)=cl*ephizlx(ki)-(c2*(hrzlx(k-1,i)+

1 hrphilx(k- 1,i) -hrzlx(k,i) -hrphilx(k,i)))/eta

END IF

END IF

end if 200
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if (((case-id.eq.1).or.(case-id.eq.5)).and.

1 (i.eq.left-y)) then

c create artificial PEC in the PML LEFT

ephizlx(k,i)=0.0

end if

if (((case.id.eq. 1).or. (case-id.eq.5)). and. 210

1 (i.eq.high-y)) then

c create artificial PEC in the PML LEFT

ephizl(k,i)=0.0

end if

if (((case-id.eq. 1).or.(case-id.eq.5)). and.

1 (i.eq.left.y)) then

c create artificial PEC in the PML LEFT

ephizl(k,i)=0.0

end if 220

if (((caseaid.eq.2).or. (case.id.eq.4)). and.

1 (i.eq.left.y)) then

c create artificial PEC in the PML LEFT

ephizl(k,i)=0.0

end if

80 continue

70 continue

230
C ************** Calculate Ephir feld************ c

C ****Sigma.r region

do 90 i=1,pmldepth

sigma-r=sigma-max*((i+0.0)/pmldepth)**2.0

c1=exp(-sigma-r*dt/eps)
c2=(c1-1.0)/(sigma.r*dz)

c top center region 240
do 100 k=1,maxz

if (i.eq.1) THEN

ephirt(k,i)=cl*ephirt(k,i)-(c2*(hz(k,maxr)-hzrt

1 (k,i)-hzphit(k,i)))/eta

ELSE

ephirt(k,i)=cl*ephirt(k,i)-(c2*(hzrt(k,i-1)+hzphit

1 (k,i-1)-hzrt(k,i)-hzphit(k,i)))/eta

END IF

100 continue

250
c right and left top regions

do 110 k=1,pmldepth

ephirr(k,i+maxr)=c1*ephirr(k,i+maxr)-(c2*(hzrr

1 (k,i-1+maxr)+hzphir(k,i-1+maxr)-hzrr(k,i+maxr)-

2 hzphir(k,i+maxr)))/eta

ephirl(k,i+maxr)=c1*ephirl(k,i+maxr)-(c2*(hzrl

1 (k,i-1+maxr)+hzphil(k,i-1+maxr)-hzrl(k,i+maxr)-

2 hzphil(k,i+maxr)))/eta

110 continue

90 continue 260

C ****Right and Left Center Regions (no sigmas!)
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c5=dt/(eps*dz)

do 120 k=1,pmldepth

do 130 i=1,maxr

if (i.eq.1) THEN

c4=0.0

c3=0.0

ELSE 270

c4=hzrr(k,i-1)+hzphir(k,i-1)

c3=hzrl(k,i-1)+hzphil(k,i-1)

END IF

if (i.eq.axis) THEN

if (abs(m).ne.1) THEN

ephirr(k,i)=0.0

ephirl(k,i)=0.0

ELSE

c6=2*dt/(eps*dz) 280

ephirr(k,i)=ephirr(k,i)-(c6*(hzphir(k,i)+

hzrr(k,i)))/eta

ephirl(k,i)=ephirl(k,i)-(c6*(hzphil(k,i)+

hzrl(k,i)))/eta

END IF

ELSE

ephirr(k,i)=ephirr(k,i)+(c5*(c4-hzrr(k,i)-

hzphir(k,i)))/eta

ephirl(k,i)=ephirl(k,i)+(c5*(c3-hzrl(k,i)-

1 hzphil(k,i)))/eta 290
END IF

if (((case-id.eq.1).or.(case-id.eq.5))

1 .and.(i.le.left-y)) then

c if ((case.id.eq.1).or.(case.id.eq.5)) then

if (i.eq.1) THEN

c3=0.0

ELSE 300
c3=hzrlx(k,i-1)+hzphilx(k,i-1)

END IF

if (i.eq.axis) THEN

if (abs(m).ne.1) THEN

ephirlx(k,i)=0.0

ELSE

c6=2*dt/(eps*dz)

ephirlx(k,i)=ephirlx(k,i)-(c6*(hzphilx(k,i)+

1 hzrlx(k,i)))/eta 310
END IF

ELSE

ephirlx(k,i)=ephirlx(k,i)+(c5*(c3-hzrlx(k,i)-

I hzphilx(k,i)))/eta

END IF

end if

if (((case-id.eq.1).or. (case-id.eq.5)). and.

1 (i.eq.left.y)) then 320
c create artificial PEC in the PML LEFT

ephirlx(k,i)=0.0

end if
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if (((case-id.eq.1).or.(case-id.eq.5)).and.

1 (i.eq.highby)) then

c create artificial PEC in the PML LEFT

ephirl(k,i)=0.O

end if

330
if (((case.id.eq. 1).or. (case.id.eq.5)). and.

1 (i.eq.left-y)) then

c create artificial PEC in the PML LEFT

ephirl(k,i)=0.0

end if

if (((case.id.eq.2).or.(case-id.eq.4)).and.

1 (i.eq.lefty)) then

c create artificial PEC in the PML LEFT

ephirl(k,i)=0.0 340

end if

if (((case-id.eq.2).or.(case-id.eq.4).or.(case-id.eq.3))

1 .and.(i.eq.right-y)) then

c create artificial PEC in the PML RIGHT

cphirr(k,i)=0.0

end if

130 continue

120 continue

350
C *************Calculate Ezr fields*********************

C *** Calculate TOP(right,left,center) REGIONS, ie sigma-r regions

do 140 i=1,pmldepth

sigma-r=sigmamax*((i+0.0)/pmldepth)**2.0

c1=exp(-sigma.r*dt/eps)
c2=(ci-1.0)/(sigma-r*dz)/(i+maxr-1.0)

c middle region 360

do 150 k=1,maxz

if (i.eq.1) THEN

ezrt(k,i)=cl*ezrt(k,i)-(c2/eta)*((i-0.5+maxr)*

1 (hphizt(k,i)+hphirt(k,i))-(i-1.5+maxr)*hphi(k,maxr))

ELSE

ezrt(k,i)=cl*ezrt(k,i)-(c2/eta)*((i-0.5+maxr)*

1 (hphizt(k,i)+hphirt(k,i))-(i+maxr-1.5)*

2 (hphizt(k,i-1)+hphirt(k,i-1)))

END IF 370

150 continue

do 160 k=1,pmldepth

ezrl(k,i+maxr)=ci*ezrl(k,i+maxr)-(c2/eta)*((i-0.5+maxr)*

1 (hphizl(k,i+maxr)+hphirl(k,i+maxr))-(i+maxr-1.5)*

2 (hphiz](k,i-1+maxr)+hphirl(k,i-1+maxr)))

ezrr(k,i+maxr)=cl*ezrr(k,i+maxr)-(c2/eta)s((i-0.5+maxr)*

1 (hphizr(k,i+maxr)+hphirr(k,i+maxr))-(i+maxr-1.5)* 380

2 (hphizr(k,i-1+maxr)+hphirr(k,i-1+maxr)))

160 continue

140 continue
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C ****Right and Left Center Regions (no sigmas!)

do 125 i=1,maxr

do 135 k=1,pmldepth

if (i.eq.axis) THEN 390
if (abs(m).eq.0) THEN

c4=4*dt/(eps*dz)

ezrl(k,i)=ezrl(k,i)+(c4/eta)*(hphirl(k,i)+hphizl(k,i))

ezrr(k,i)=ezrr(k,i)+(c4/eta)*(hphirr(k,i)+hphizr(k,i))

ELSE

ezrl(k,i)=0.0

ezrr(k,i)=0.0

END IF

ELSE

c5=dt*(i+0.5-1.0)/((i+0.0-1.0)*dz*eps) 400
c6=dt*(i-0.5-1.0)/((i+0.0-1.0)*dz*eps)

ezrl(k,i)=ezrl(k,i)+(c5/eta)*(hphirl(k,i)+hphizl(k,i))

1 -(c6/eta)*(hphirl(k,i-)+hphizl(k,i-1))

ezrr(k,i)=ezrr(k,i)+(c5/eta)*(hphirr(k,i)+hphizr(k,i))

1 -(c6/eta)*(hphirr(k,i-1)+hphizr(k,i-1))

END IF

if (((case-id.eq.1).or.(case-id.eq.5))

1 .and.(i.le.left.y)) then 410
c if ((case.id.eq.1).or.(case-id.eq.5)) then

if (i.eq.axis) THEN

if (abs(m).eq.0) THEN

c4=4*dt/(eps*dz)

ezrlx(k,i)=ezrlx(k,i)+(c4/eta)*

1 (hphirlx(k,i)+hphizlx(k,i))

ELSE

ezrlx(k,i)=0.0

END IF

420
ELSE

c5=dt*(i+0.5-1.0)/((i+0.0-1.0)*dz*eps)

c6=dt*(i-0.5-1.0)/((i+0.0-1.0)*dz*eps)
ezrlx(k,i)=ezrlx(k,i)+(c5/eta)*

1 (hphirlx(k,i)+hphizlx(k,i))

1 -(c6/eta)*(hphirlx(k,i-1)+hphizlx(k,i-1))

END IF

end if

430
if (((case.id.eq. 1).or. (case-id.eq.5)). and.

1 (i.eq.left-y)) then

c create artificial PEC in the PML LEFT

ezrlx(k,i)=0.0

end if

if (((case-id.eq. 1).or. (case-id.eq.5)). and.

1 (i.eq.high-y)) then

c create artificial PEC in the PML LEFT

ezrl(k,i)=0.0 440
end if

if (((case-id.eq. 1).or. (case-id.eq.5)). and.

1 (i.eq.left-y)) then

c create artificial PEC in the PML LEFT
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ezrl(k,i)=0.0
end if

if (((case-id.eq.2).or.(case.id.eq.4)).and.

1 (i.eq.left-y)) then 450
c create artificial PEC in the PML LEFT

ezrl(k,i)=0.0

end if

if (((case-id.eq.2).or.(case-id.eq.4).or.(case-id.eq.3))

1 .and.(i.eq.right-y)) then

c create artificial PEC in the PML RIGHT

ezrr(k,i)=0.0

end if

460

135 continue

125 continue

C ***********++Calculate Ezphi fields********************

C ***TOP PML

do 170 i=1,pmldepth

cl=m*dt/(eps*(i+0.0+maxr-1.0)*dz)

do 180 k=1,maxz 470
ezphit(k,i)=ezphit(k,i)+(cl/eta)*(hrphit(k,i)+hrzt(k,i))

180 continue

170 continue

C ***Right/Left PML

do 190 i=1,pmldepth+maxr

do 200 k=1,pmldepth

if (i.eq.axis) THEN

ezphir(k,i)=0.0 480
ezphil(k,i)=0.0

ELSE

c1=m*dt/(eps*(i+0.0-1.0)*dz)

ezphir(k,i)=ezphir(k,i)+(cl/eta)* (hrphir(k,i)+hrzr(k,i))

ezphil(k,i)=ezphil(k,i)+(cl/eta)* (hrphil(k,i)+hrzl(k,i))

END IF

if (((case.id.eq.1).or.(case.id.eq.5))

1 .and.(i.le.left-y)) then

c if ((caseid.eq.1).or.(case.id.eq.5)) then 490
if (i.eq.axis) THEN

ezphilx(k,i)=0.0

ELSE

c1=m*dt/(eps*(i+0.0-1.0)*dz)

ezphilx(k,i)=ezphilx(k,i)+(cl/eta)*

1 (hrphilx(k,i)+hrzlx(k,i))

END IF

end if

500

if (((case..id.eq.1).or. (case-id.eq.5)). and.

1 (i.eq.left-y)) then

c create artificial PEC in the PML

ezphilx(k,i)=0.0

end if
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if (((case...id.eq.1).or.(case-id.eq.5)).and.

1 (i.eq.high-y)) then

c create artificial PEC in the PML LEFT 510
czphil(k,i)=0.0

end if

if (((case-id.eq.1).or.(case-id.eq.5)).and.

1 (i.eq.left-y)) then

c create artificial PEC in the PML

ezphil(k,i)=0.0

end if

520
if (((case-id.eq.2).or.(case-id.eq.4)).and.

1 (i.eq.left.y)) then

c create artificial PEC in the PML LEFT

ezphil(k,i)=0.0

end if

if (((case.id.eq.2).or.(caseid.eq.4).or.(case.id.eq.3))

1 .and.(i.eq.righty)) then

c create artificial PEC in the PML RIGHT

ezphir(k,i)=0.0 530
end if

200 continue

190 continue

return

end

c* *************************************************************c 540
c H fields c

c* * ****************** ***********************c

subroutine pmlHeqn(m,ms)

implicit none

include ' common.f

integer k,i,m,axis,ms

real*8 cl,c2,c3,c4,c5,c6 550
real*8 sigma..r,sigma-rs,sigma-z,sigma.zs

axis=1

C **************Calculate Hrz felds***************s*c

C ****The Right & Left Reigions of PML

do 210 k=1,pmldepth

sigma-z=sigma.max*((k+0.0)/pmldepth)**2.0

sigma.zs=sigma-z* (mu/eps)

cl=exp(-sigma-zs*dt/mu) 560
c2=(cl-1.0)/(sigma-zs*dz)

c print *,'sigma-zs',c1,c2

do 220 i=1,pmldepth+maxr

if (k.eq.1) THEN

if (i.gt.maxr) THEN

hrzr(k,i)=c1 *hrzr(k,i)-eta*c2* (ephizr(k,i)+ephirr
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1 (k,i)- ephirt(maxz,i-maxr)-ephizt(maxz,i-maxr))

ELSE

if (i.eq.axis.AND.abs(m).ne.1) THEN 570
hrzr(k,i)=0.0

ELSE

hrzr(k,i)=c1 *hrzr(k,i) -eta*c2* (ephizr(k,i)+ephirr

1 (k,i)-ephi(maxz,i))

END IF

END IF

ELSE

if (i.eq.axis.AND.abs(m).ne.1) THEN

hrzr(k,i)=0.0

ELSE 580
hrzr(k,i)=c1*hrzr(k,i)-eta*c2* (ephizr(k,i)+ephirr

1 (ki)-ephizr(k-1,i)-ephirr(k-1,i))

END IF

END IF

if (i.eq.axis.AND.abs(m).ne.1) THEN

hrzl(k,i)=0.0

ELSE

hrzl(k,i)=cl *hrzl(k,i) -eta*c2* (ephizl(k,i)+ephirl(k,i) -

1 ephizl(k+1,i)-ephir(k+1,i)) 590
END IF

if (((case-id.eq.1).or.(case-id.eq.5))

1 .and.(i.le.left-y)) then

c if ((case-id.eq.1).or.(case-id.eq.5)) then

if (i.eq.axis.AND.abs(m).ne.1) THEN

hrzlx(k,i)=0.0

ELSE

hrzlx(k,i)=c1*hrzlx(k,i) -eta*c2* (ephizlx(k,i) 600
1 +ephirlx(k,i)-ephizlx(k+1,i)-ephirlx(k+1,i))

end if

END IF

220 continue

210 continue

C **** The Up/Down Center Region PML

c5=dt/(mu*dz) 610

do 230 k=1,maxz

do 240 i=1,pmldepth

if (k.eq.1) THEN

hrzt(k,i)=hrzt(k,i)+eta*c5*(ephizt(k,i)+ephirt(k,i) -

1 ephizl(1,i+maxr)-ephirl(1,i+maxr))

ELSE

hrzt(k,i)=hrzt(k,i)+eta*c5*(ephizt(k,i) +ephirt(k,i)-

1 ephizt(k-1,i)-ephirt(k-1,i))

END IF 620

240 continue

230 continue

C ************** Calculate Hrphi fields**********************C

C **** The Right/ Left Regions PML
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do 250 i=1,maxr+pmldepth

do 260 k=1,pmldepth 630
if (i.ne.axis) THEN

cl=m*dt/(mu*(i+0.0-1.0)*dz)

hrphir(k,i)=hrphir(k,i)-eta*cl*(ezphir(k,i)+ezrr(k,i))

hrphil(k,i)=hrphil(k,i)-eta*cl*(ezphil(k,i)+ezrl(k,i))

ELSE

if (abs(m).ne.1) THEN

hrphir(k,i)=0.0

hrphil(k,i)=0.0

ELSE

c6=dt/(mu*dz) 640
hrphir(k,i)=hrphir(k,i)+eta*ms*c6*(czphir(k,i+1)+

1 ezrr(k,i+1))

hrphil(k,i)=hrphil(k,i)+eta*ms*c6*(ezphil(k,i+1)+

1 ezrl(k,i+1))

END IF

END IF

if (((case-id.eq.1).or.(case-id.eq.5))

1 .and.(i.le.lefty)) then 650
c if ((case.id.eq.1).or.(case-id.eq.5)) then

if (i.ne.axis) THEN

cl=m*dt/(mu*(i+0.0-1.0)*dz)

hrphilx(k,i)=hrphilx(k,i)-eta*cl*

1 (ezphilx(k,i)+ezrlx(k,i))

ELSE

if (abs(m).ne.1) THEN

hrphilx(k,i)=0.0

ELSE

c6=dt/(mu*dz) 660
hrphilx(k,i)=hrphilx(k,i)+eta*ms*c6*

1 (ezphilx(k,i+1)+ezrlx(k,i+1))

END IF

END IF

END IF

260 continue

250 continue

C **** The Up/Down Regions PML 670

do 270 i=1,pmldepth

cl=m*dt/(mu*(i+maxr+0.0-1.0)*dz)

do 280 k=1,maxz

hrphit(k,i)=hrphit(k,i)-eta*cl* (ezphit(k,i)+ezrt(k,i))

280 continue

270 continue

C ************** Calculate Hphiz fields*** ************

680
C ****The Right/Left PML

do 290 k=1,pmldepth

sigma-z=sigma-max*((k+0.0)/pmldepth)**2.0

sigmazs=sigmaz*(mu/eps)

c=xp(-sigma-zs*dt/mu)
c2=eta*(c1-1.0)/(sigma-zs*dz)

do 300 i=1,pmldepth+maxr
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if (k.eq.1) THEN 690
if (i.gt.maxr) THEN

hphizr(k,i)=cl*hphizr(k,i)-c2*(erzt(maxz,i-maxr)+

1 erphit(maxz,i-maxr)-erzr(k,i)-erphir(k,i))

ELSE

hphizr(k,i)=cl*hphizr(k,i)-c2*(er(maxz,i)

1 -erzr(k,i)-erphir(k,i))

END IF

ELSE

hphizr(k,i)=cl*hphizr(k,i)-c2*(erzr(k-1,i)+erphir(k-1,i)

1 -erzr(k,i)-erphir(k,i)) 700
END IF

hphizl(k,i)=cl*hphizl(k,i)-c2*(erzl(k+1,i)+erphil(k+1,i)

1 -erzl(k,i)-erphil(k,i))

if (((case-id.eq.1).or.(case-id.eq.5))

1 .and.(i.1e.left-y)) then

c if ((case-id.eq.1).or.(case.id.eq.5)) then

hphizlx(k,i)=cl*hphizlx(k,i)-c2*(erzlx(k+,i) 710
1 +erphilx(k+1,i)-erzlx(k,i)-erphilx(k,i))

end if

300 continue

290 continue

C **** The Up/Down PML

c3=eta*dt/(mu*dz) 720

do 310 k=1,maxz

do 320 i=1,pmldepth

if (k.eq.1) THEN

hphizt(k,i)=hphizt(k,i)+c3*(erphil(1,i+maxr)+

1 erzl(1,i+maxr)-erphit(k,i)-erzt(k,i))

ELSE

hphizt(k,i)=hphizt(k,i)+c3*(erphit(k-1,i)+crzt(k-1,i)-

1 erphit(k,i)-erzt(k,i))

END IF 730
320 continue

310 continue

C ************** Calculate Hphir fields**********************c

C **** Bottom/ Top (sigma-r) Regions PML

do 330 i=1,pmldepth

sigma-r=sigma-max*((i+0.0+0.5)/pmldepth)**2.0

sigma-rs=sigmar* (mu/eps) 740
c1=exp(-sigma..rs*dt/mu)

c2=eta* (cl - 1.0)/ (sigma-rs*dz)

C *******Center Top Region

do 340 k=1,maxz

hphirt(k,i)=cl*hphirt(k,i)-c2*(ezrt(k,i+1)+ezphit(k,i+1)-

1 ezrt(k,i)-ezphit(k,i))

340 continue

c ****right/left corners 750
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do 350 k=1,pmldepth

hphirr(k,i+maxr)=c1*hphirr(k,i+maxr)-c2*(ezrr(k,i+1+maxr)+

1 ezphir(k,i+1+maxr)-ezrr(k,i+maxr)-ezphir(k,i+maxr))
hphirl(k,i+maxr)=ci*hphirl(k,i+maxr)-c2*(ezrl(k,i+1+maxr)+

1 ezphil(k,i+1+maxr)-ezrl(k,i+maxr)-ezphil(k,i+maxr))

350 continue

330 continue

C s***Right/Left Center Regions (no sigmas!!)

760
c4=eta*dt/(mu*dz)

do 360 k=1,pmldepth

do 370 i=1,maxr

hphirr(k,i)=hphirr(k,i)+c4*(ezrr(k,i+1)+ezphir(k,i+1)

1 -ezrr(k,i)-ezphir(k,i))

hphirl(k,i)=hphirl(k,i)+c4*(ezrl(k,i+1)+ezphil(k,i+1)

1 -ezrl(k,i)-ezphil(k,i))

if (((case-id.eq.1).or.(case-id.eq.5)) 770
1 .and.(i.le.left-y)) then

c if ((case.id.eq.1).or.(case.id.eq.5)) then

hphirlx(k,i)=hphirlx(k,i)+c4*(ezrlx(k,i+1)

1 +ezphilx(k,i+1)-ezrlx(k,i)-ezphilx(k,i))

end if

370 continue

360 continue

C ************** Calculate Hzr fields*********************c 780

do 380 i=1,pmldcpth

sigma-r=sigma.max*((i+0.0+0.5)/pmldepth)**2.0

sigma-rs=sigma-r* (mu/eps)

c1=exp(-sigma-rs*dt/mu)

c2=eta* (ci - 1.0)/(sigma-rs*dz)

c3=c2/ (i+maxr+0.5- 1.0)

C ******* Middle Top/ Bottom Region

do 390 k=1,maxz 790
hzrt(k,i)=c1*hzrt(k,i)+c3*((i+maxr+0.0)*(ephizt(k,i+1)+

1 ephirt(k,i+1))-(i+maxr-1.0)*(ephizt(k,i)+ephirt(k,i)))

390 continue

c *******right/left corners

do 400 k=1,pmIdepth

hzrr(k,i+maxr)=cl*hzrr(k,i+maxr)+c3*((i+maxr+0.0)*

1 (ephizr(k,i+maxr+1)+ephirr(k,i+maxr+1))-(i+maxr-1.0)*

1 (ephizr(k,i+maxr)+ephirr(k,i+maxr)))

800
hzrl(k,i+maxr)=c1*hzrl(k,i+maxr)+c3*((i+maxr+0.0)*

1 (ephizl(k,i+maxr+1)+ephirl(k,i+maxr+1))-(i+maxr-1.0)*

2 (ephizl(k,i+maxr)+ephirl(k,i+maxr)))

400 continue

380 continue

C ****Right/ Left Center Regions (no sigmas!!)

do 410 i=1,maxr 810
c5=eta*(i+0.0-1.0)*dt/(mu*(i+0.5-1.0)*dz)
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c6=eta* (i+1.0- 1.0)*dt/(mu* (i+0.5- 1.0)*dz)

do 420 k=1,pmldepth

hzrl(k,i)=hzrl(k,i)+c5*(ephizl(k,i)+ephirl(k,i))-c6*

1 (ephizl(k,i+1)+ephirl(k,i+1))

hzrr(k,i)=hzrr(k,i)+c5*(ephizr(k,i)+ephirr(k,i))-c6*

1 (ephizr(k,i+1)+ephirr(k,i+1))

if (((case-id.eq.1).or.(case-id.eq.5))

1 .and.(i.le.left..y)) then 820
c if ((case.id.eq.1).or.(case-id.eq.5)) then

hzrlx(k,i)=hzrlx(k,i)+c5*(ephizlx(k,i)+ephirlx(k,i))-c6*

1 (ephizlx(k,i+1)+ephirlx(k,i+1))

end if

420 continue

410 continue

C **************Calculate Hzphi field*******+**************+c 830

C *** Top/ Bottom PML Regions

do 430 i=1,pmldepth

cl=m*dt/(mu*dz)

c2=eta*cl/(i+maxr+0.5-1.0)

do 440 k=1,maxz

hzphit(k,i)=hzphit(k,i)+c2*(erphit(k,i)+erzt(k,i))

440 continue 840
430 continue

C * *Right/ Left PML Regions

do 450 i=1,pmldepth+maxr

c1=eta*m*dt/(mu*dz*(i+0.5-1.0))

do 460 k=1,pmldepth

hzphir(k,i)=hzphir(k,i)+cl*(erphir(k,i)+erzr(k,i))

hzphil(k,i)=hzphil(k,i)+cl*(erphil(k,i)+erzl(k,i))

if (((case.id.eq.1).or.(case-id.eq.5)) 850
1 .and.(i.le.left-y)) then

c if ((case-id.eq.1).or.(case..id.eq.5)) then

hzphilx(k,i)=hzphilx(k,i)+cl*

1 (erphilx(k,i)+erzlx(k,i))

end if

460 continue

450 continue

c if ((case-id.eq.1).or.(case..id.eq.5)) then 860
c do 470 i=1,maxr

c do 480 k=1,pmldepth

c if (i.eq.mheight) then

c write(41,*) erzl(k,i) + erphil(k,i)

c write(41,*) ephizi(k,i) + ephirl(k,i)

c write(41,*) ezrl(k,i) + ezphil(k,i)

c write(41,*) hrzl(k,i) + hrphil(k,i)

c write(41,*) hphizl(k,i) + hphirl(k,i)

c write(41,*) hzrl(k,i) + hzphil(k,i)

c write(41,*) erzl(k,i-1) + erphil(k,i-1) 870
c write(41,*) hphizl(k,i-1) + hphirl(k,i-1)

c end if

198



c 480 continue

c 470 continue

c end if

return

end

880

A.5 Gaussian Quadrature for Incident Wave

This portion of the program uses the Gaussian quadrature to calculate an integral.

From this calculation, the program obtains the coefficients for Fourier series to form

the incident plane wave.

******* *** **** *** *****************************
c Calculates an numerical integral using Gaussian Quadrature c

c in order to determines the coef of the Fourier series for c

c the incident plane wave. c

c Intno: -4-Ermu; 2-Ephimu; -6-Ezmu; 4-Ermv; -2-Ephimv; 6-Ezmv c

c 7-Hrmu; -11-Hphimu; 9-Hzmu; -7-Hrmv; 11-Hphimv; -9-Hzmv c

**** ********* ** ****** ********************c

real*8 function Gquad(a,b,IntNo,m,t,r,zg,theta)

10

implicit none

include 'common.f'

real*8 ab,t,r,zg,theta,Intgrl,value,y,z,weight

real*8 Ermu,Ephimu,Ezmu,Ermv,Ephimv,Ezmv,cossq,z20

real*8 Hrmu,Hphimu,Hzmu,Hrmv,Hphimv,Hzmv,sinsq

real*8 weight20, dx, el, e2, h, mid, steps

integer j,IntNo,m,AIN,i

dimension z(10), weight(10), z20(20), weight20(20) 20

DATA (z(j), j=1,10)/-.9739065285,-.8650633667,-.6794095683,

1 -. 4333953941, -. 1488743390,.1488743390,.4333953941,

2 .6794095683, .8650633667,.9739065285/

DATA (weight(j), j=1,10)

1 /.0666713443,.1494513492,.2190863625,.2692667193,

2 .2955242247,.295524247,.2692667193,.2190863625,

3 .1494513492,.0666713443/

DATA (z20(j), j=1,20) 30

1 /-0.99312859919241, -0.96397192726078,

2 -0.91223442826796, -0.83911697181213,

3 -0.74633190646476, -0.63605368072468,

4 -0.51086700195146, -0.37370608871528,

5 -0.22778585114165, -0.07652652113350,

6 0.07652652113350, 0.22778585114165,

7 0.37370608871528, 0.51086700195146,

8 0.63605368072468, 0.74633190646476,
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9 0.83911697181213, 0.91223442826796,

1 0.96397192726078, 0.99312859919241/ 40

DATA (weight20(j), j=1,20)

1 /0.01761400713536,

1 0.04060142981029, 0.06267204829089,

2 0.08327674159386, 0.10193011980641,

3 0.11819453199405, 0.13168863844930,

4 0.14209610916487, 0.14917298630417,

5 0.15275338717117, 0.15275338723120,

6 0.14917298659407, 0.14209610937519, 50
7 0.13168863843930, 0.11819453196154,

8 0.10193011980823, 0.08327674160932,

9 0.06267204829828, 0.04060142982019,

1 0.01761400714091/

cBZ offsets

if (case.id.eq.1) then

zg = zg + zoffset*dz

else if (case.id.eq.5) then 60
zg = zg + 0*dz

end if

C*****Expressions to account for "real*8" distance from orgin

C*****of field values. It calculates field distances for 1/2 lattice

C*****points, and since "grid" i=1,maxr <=> "real" i=0,(maxr-1)*dr

r=r-dz

AIN = abs(IntNo) 70
if (AIN.eq.4.OR.AIN.eq.9.OR.AIN.eq.11)

1 r=r+dz/(2.0)

if (AIN.eq.4.OR.AIN.eq.9.OR.AIN.eq.2)

1 zg=zg+dz/(2.0)

if (AIN.eq.7.OR.AIN.eq.9.OR.AIN.eq.11)

1 t = t-dt
c 1 t=t

if (AIN.eq.4.OR.AIN.eq.6.OR.AIN.eq.2)

1 t = t-dt/2.0

c 1 t = t+dt/2.0 80

C* Integration by 20-point Gauss-Legendre quadrature. A and B *

C* are the limits of integration, and FUNC is the user-supplied *

C* function to be integrated. The result is returned in INTGRL *

c* Incident waves of mode m are divided in m+1 regions which *

c* are each computed by 20-point gquad.

C* ** ** ** *** * ***** **** * * ** ** ********* *** **** * *** * * * ** **

90
INTGRL = 0.0

dx = (b-a)/(m+1)

do 5 steps = 1,(m+1)

el = a + (steps-1)*dx

e2 = a + steps*dx

h = (e2-el)/2
mid = (el+e2)/2

do 10 I = 1,20
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Y = z20(I)*h + mid 100

if (IntNo.eq.2) value = Ephimu(Y,m,tr,zg,theta)

if (IntNo.eq.4) value = Ermv(Y,m,t,r,zg,theta)

if (IntNo.eq.6) value = Ezmv(Y,m,t,r,zg,theta)

if (IntNo.eq.7) value = Hrmu(Y,m,t,r,zg,theta)

if (IntNo.eq.9) value = Hzmu(Y,m,t,r,zg,theta)

if (IntNo.eq.11) value = Hphimv(Y,m,t,r,zg,theta)

if (IntNo.eq.-2) value = Ephimv(Y,m,t,r,zg,theta)

if (IntNo.eq.-4) value = Ermu(Y,m,t,r,zg,theta)

if (IntNo.eq.-6) value = Ezmu(Y,m,t,r,zg,theta) 110

if (IntNo.eq.-7) value = Hrmv(Y,m,t,r,zg,theta)

if (IntNo.eq.-9) value = Hzmv(Y,mt,r,zg,theta)

if (IntNo.eq.-11) value = Hphimu(Y,m,t,r,zg,theta)

if (IntNo.eq.45) value = cossq(Y)

if (IntNo.eq.46) value = sinsq(Y)

INTGRL = INTGRL + h*weight20(I)*value

10 continue

5 continue 120

if (m.eq.0) THEN

gquad = INTGRL*5.0/2.0

ELSE

gquad = INTGRL*5.0

END IF

c if (abs(gquad).gt.1e-6) print *,gquad,IntNo,rn,t,r,zg,theta

c if (abs(gquad).gt.1) then 130
c print *, IntNo, t, r, zg, sdev, theta, mn

c end if

RETURN

END

c********************************** ************** c

c All the incident wave functions to be integrated by Gaussian

c Quadrature. 140
0******** *******************************

real*8 function cossq(phi)

implicit none

include 'common.f'

real*8 phi

cossq = cos(6*phi)*cos(phi)*exp(-(3+cos(phi)) *2.0)*100 150

return

end

C* * **++****************** ** ** ** * *** *** *** * * *

real*8 function sinsq(phi)

implicit none

include 'common.f'

160
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real*8 phi

sinsq = (1/pi)*(sin(phi))**2.0

return

end

C********************************************

real*8 function Ermu(phi,m,tr,zg,theta)

170
implicit none

include 'common.f

real*8 phi,t,r,zg,theta

integer m

Ermu=(1/(pi*sqrt(2*pi)))*cos(m*phi)*(Ehg*cos(phi)*cos

1 (theta)+Evg*sin(phi))*exp(-(((t-gd)+((zg*cos(theta)

2 +r*sin(theta)*cos(phi))/c))**2)/(sdev**2))*

3 ((sin(2*pi*modfreq* ((t-gd)+((zg*cos(theta) +r*sin(theta)* 180
4 cos(phi))/c))))*modulate+abs(modulate- 1))

return

end

real*8 function Ermv(phi,m,t,r,zg,theta)

implicit none 190
include 'common.f

real*8 phi,t,r,zg,theta

integer m

Ermv=(1/(pi*sqrt(2*pi)))*sin(m*phi)* (Ehg*cos(phi)*cos(theta)

1 +Evg*sin(phi))*exp(- (((t-gd)+((zg*cos(theta)+r*sin(theta)

2 *cos(phi))/c))**2)/(sdev**2))*

3 ((sin(2*pi*zmodfreq* ((t-gd)+((zg*cos(theta)+r*sin(theta)*

4 cos(phi))/c))))*modulate+abs(modulate-1)) 200

return

end

real*8 function Ephimu(phi,m,t,r,zg,theta)

implicit none

include 'common.f' 210

real*8 phi,t,r,zg,theta

integer m

Ephirmu= (1/ (pi*sqrt(2*pi)))*cos(m*phi)* (- Ehg*sin(phi)*cos(theta)

1 +Evg*cos(phi))*exp(- (((t-gd)+( (zg*cos(theta)+r*sin(theta)

2 *cos(phi))/c))**2)/(sdev**2))*

3 ((sin(2*pi*imodfreq* ((t-gd)+((zg*cos(theta)+r*sin(theta)*

4 cos(phi))/c))))*modulate+abs(modulate-1))

220
return
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end

real*8 function Ephimv(phi,m,t,r,zg,theta)

implicit none

include 'common.f

230
real*8 phi,t,r,zg,theta

integer m

Ephimv=(1/(pi*sqrt(2*pi)))*sin(m*phi)* (-Ehg*sin(phi)*cos(theta)

1 +Evg*cos(phi))*exp(-(((t-gd)+((zg*cos(theta)+r*sin(theta)

2 *cos(phi))/c))**2)/(sdev**2))*

3 ((sin(2*pi*modfreq*((t-gd)+((zg*cos(theta)+r*sin(theta)*

4 cos(phi))/c))))*modulate+abs(modulate-1))

return

end

0******* *************************************************c

real*8 function Ezmu(phi,m,t,r,zg,theta)

implicit none

include 'common.'

real*8 phi,t,r,zg,theta

integer m

Ezmu=(1/ (pi*sqrt(2*pi)))*cos(m*phi)*(-Ehg*sin(theta))*

1 exp((-((t-gd)+(zg*cos(theta)+r*sin(theta)*cos

2 (phi))/c)**2)/(sdev**2))*

3 ((sin(2*pi*modfreq* ((t -gd) + ((zg*cos(theta) +r*sin(theta)*

4 cos(phi))/c)))) *modulate+abs(modulate- 1))

return

end

******** ********************* **************

real*8 function Ezmv(phim,tr,zg,theta)

implicit none

include 'common.f

real*8 phi,t,r,zg,theta

integer m

Ezmv=(1/(pi*sqrt(2*pi)))*sin(m*phi)*(-Ehg*sin(theta))*

1 exp((-((t-gd)+(zg*cos(theta)+r*sin(theta)*cos(phi))

2 /c)**2)/(sdev**2))*

3 ((sin(2*pi*imodfreq* ((t-gd)+ ((zg*cos(theta) +r*sin(theta)*

4 cos(phi))/c))))*modulate+abs(modulate- 1))

return

end

0******** ************ *********************c
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real*8 function Hrmu(phi,m,t,r,zg,theta)

implicit none

include 'common.f

real*8 phi,t,r,zg,theta

integer m

Hrmu=(1/(pi*sqrt(2*pi)))*cos(m*phi)*(Evg*cos(theta)*

1 cos(phi)-Ehg*sin(phi))*exp((-((t -gd)+(zg*cos(theta)+r*

2 sin(theta)*cos(phi))/c)**2)/(sdev**2))*

3 ((sin(2*pi*modfreq* ((t-gd)+((zg*cos(theta) +r*sin(theta)*

4 cos(phi))/c))))*modulate+abs(modulate-1))

return

end

*************************************

real*8 function Hrmv(phi,m,t,r,zg,theta)

implicit none

include 'common.f

real*8 phi,t,r,zg,theta

integer m

290

300

310Hrmv=(1/(pi*sqrt(2*pi)))*sin(m*phi)*(Evg*cos(theta)*

1 cos(phi)-Ehg*sin(phi))*exp((-((t-gd)+(zg*cos(theta)+r*

2 sin(theta)*cos(phi))/c)**2)/(sdev**2))*

3 ((sin(2*pi*modfreq*((t -gd)+((zg*cos(theta)+r*sin(theta)*

4 cos(phi))/c))))*modulate+abs(modulate-1))

return

end

0*********************************************** c

320
real*8 function Hphimu(phi,m,t,r,zg,theta)

implicit none

include 'common.f'

real*8 phi,t,r,zg,theta

integer m

Hphimu= (1/(pi*sqrt(2*pi)))*cos(m*phi)*(-Evg*cos(theta)*

1 sin(phi) - Ehg*cos(phi))*exp((- ((t-gd)+ (zg*cos(theta) +r*

2 sin(theta)*cos(phi))/c)**2)/(sdev**2))i*

3 ((sin(2*pi*modfreq* ((t-gd)+((zg*cos(theta)+r*sin(theta)*

4 cos(phi))/c))))*modulate+abs(modulate-1))

return

end

0******************* *******************************c

real*8 function Hphimv(phi,m,t,r,zg,theta)

implicit none

include 'comon.f'
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real*8 phi,t,r,zg,theta

integer m

Hphimv=(1/ (pi*sqrt(2*pi)))*sin(m*phi)* (-Evg*cos(theta)*

1 sin(phi)-Ehg*cos(phi))*exp((-((t-gd)+(zg*cos(theta)+r*

2 sin(theta)*cos(phi))/c)**2)/(sdev**2))*

3 ((sin(2*pi*modfreq*((t-gd)+((zg*cos(theta)+r*sin(theta)*

4 cos(phi))/c))))*modulate+abs(modulate-1))

return

end

**************************************************c

real*8 function Hzmu(phi,m,t,r,zg,theta)

350

360
implicit none

include 'common.f

real*8 phi,t,r,zg,theta

integer m

Hzmu=(1/(pi*sqrt(2*pi)))*cos(m*phi)*(-Evg*sin(theta))*

1 exp((- ((t-gd)+(zg*cos(theta)+rsin(theta)*cos(phi))

2 /c)**2)/(sdev**2))*

3 ((sin(2*pi*modfreq*((t-gd)+((zg*cos(theta)+r*sin(theta)*

4 cos(phi))/c))))*modulate+abs(modulate-1))

return

end

real*8 function Hzmv(phi,m,t,r,zg,theta)

implicit none

include 'comon.f'

real*8 phi,t,r,zg,theta

integer m

Hzmv=(1/(pi*sqrt(2*pi)))*sin(m*phi)*(-Evg*sin(theta))*

1 exp((- ((t--gd) +(zg*cos(theta)+r*sin(theta)*cos(phi))

2 /c)**2)/(sdev**2))*

3 ((sin(2*pi*modfreq* ((t -gd)+((zg*cos(theta)+r*sin(theta)*

4 cos(phi))/c))))*modulate+abs(modulate-1))

return

end

A.6 Memory Allocation

The memory allocation along with global variables and constants are specified in

this portion of the program.
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c This is the common file for the BOR program. It contains c

c all the global variables and constants used in the program c

0***** **** ****************************c

integer mz, mr, maxpt, MAX.FREQS, mm, mxdp, nm, MAXCP,

1 MAX-STAIR.NODES, MAX-Z.CELLS, MAXR-CELLS, MAX.RCS.NODES,

2 MAX-NODES

C***** ADJUSTABLE PARAMETERS TO ALLOCATE MEMORY NEEDED 10

parameter(mz = 1050)

parameter(MAX..ZCELLS = mz)

parameter(mr = 426)

parameter(MAXR-CELLS = mr)

parameter(maxpt = 1800)

parameter(nm = 0)

parameter(mm = 30)

parameter(mxdp = 2000)

parameter(MAXFREQS = 140) 20
parameter(MAXCP = 4*maxpt)

parameter(MAXSTAIRNODES=2021)

parameter(MAXRCSNODES=mxdp)

parameter(MAXNODES=maxpt)

C***** DO NOT CHANGE BELOW ****************************

real*8 sigma-max,dz,freq,len,tole, dt, sdev

real*8 Ehg,Evg,gd,modfreq,maxf-v,inc-ang,obj-height

real*8 low-freq,high-freq,dfreq,sim-duration 30

real*8 eta, mu, eps, c, pi

logical enough-memory

cBZ 08/01/02 added below****

integer menu-choice

integer case-id

integer features

integer mode.no 40
integer end-playback

integer flag, quit-flag, before3

integer start-time, end-time, start.mem.rec

real*8 er.max, er-mem

real*8 max.height, max-length, mxr

integer z-offset, absolute-start, absolute-end

integer rcsz-start, rcsz-end

integer rcsz, rcsr

integer x-start-tot, x-end-tot

integer upper-edgetot,upper-edgescat, upper-edgehuy 50
integer lower-edgetot, lower-edgescat

integer loweraedgeleft, lower.edgeright

integer x-opening, y.opening

integer right-x, right.y

integer left-x, left-y, pookie

integer high-y, high-x, chuck, zoffset, maxztrue

cBZ 10/11/02 cells to store field data for RCS calculation

c$$$ real* 8 er..top(1:mz), ez-top(1:mz)

c$$$ real*8 ephi-top(1:mz), hr-top(1:mz) 60
c$$$ real*8 hz-top(1:mz), hphi-top(l:mz)
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real+8 er-topx(1:mrz), hphi-topx(1:mz)

c$$S reals8 er-left(1:mr), ez.left(1:mr)

c$$$ real* 8 ephi-left(1 :mr), hr-left(1:mr)

c$$$ real+8 hz-left(1:mr), hphi-left(1:mr)

c$$$ real* 8 ephi-leftx(1:mr), hz-leftx(1:mr)

c$$$ real+ 8 er-right(1:mr), ez-right(1:mr)

c$$$ real* 8 ephi-right(1:mr), hr-right(1:mr) 70
c$$ reals 8 hz-right(1:mr), hphi-right(1:mr)

c$$$ reals 8 ephi-rightx(1:mr), hz-rightx(1:mr)

cBZ*****++***************************** ** ** *+sss ** s+s *

integer N, time, pmldepth, NP, maxz, maxr,modes,ps

integer movie-num,movie-type,nframe,gquad-count,mheight

integer modulate,rcsz 1,rcsz2,minf,maxf,stepf
integer eqset-start, eqset-end, mode-start, mode-end

80
c*****++# cells in total field region

integer xtot-sp, ytot-sp

c**+*+*# cells in scattered field region

integer xscat-sp, yscat-sp

c+*+N***# cells between total fields and Huygens' surface

integer xhuy-sp, yhuy-sp

c*N*****# cells from object to PML region 90
integer xall-sp, yall-sp, xscatplay-sp, xextend.sp

c+++*+*+xall-sp = xtotLsp+xscat-sp

c***+*+*yall-sp = ytot-sp+yscat-sp

character base*80

character*72 fnamein, dnamefdata, mhname, mfname,

1 dbase

parameter(c=2.99792458d8, mu=1.25663706144D-6) 100
parameter(pi=3.1415926535d0, eps=8.8541874D-12,eta=376.73031d0)

parameter(pmldepth=15)

parameter(tole=ld-12)

C*ssss Geometry readin routine parameters and variables.

C***s* RB,ZB: translated points; RBa, ZBa: original data points

real*8 RBa(1:maxpt), ZBa(maxpt)

real*8 RBt(1:maxpt), ZBt(maxpt) 110
real*8 RB(maxpt), ZB(maxpt)

C*** Parameters giving starting position of the target.

integer start-z,end.z,end-r

parameter(start-z = 40, end...z=mz-40,end-r=mr-40)

integer accessk, accessi, accesst

parameter(accessk=1,accessi=2,accesst=3)

integer actype, ac1l, ac12, acA, acNPi, ack, aci 120
integer acz, acr, YES, NO, YES-RIGHT, YES-LEFT

parameter(actype=1,acll =2,acl2=3,acA=4,acNPi=5)
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parameter(ack=6, aci=7, acz=8, acr=9)

parameter(YES=1, NO=O, YESRIGHT=2, YESLEFT=3)

integer conform-grid1(1:mz,1:mr)

real*8 conform-list(1:9,MAXCP)

integer borrow-list(1:4,MAXCP), listcount

integer ezt, ezb, erl, err

parameter(ezt=,ezb=3,erl=4, err=2) 130

integer parallel, perp

parameter(parallel=2,perp= 1)

C***** Variables for conformal Hz field.

C***** using accessk, accessi, accesst

integer conform-hz(1:3,MAXCP), EQZEROHZ, STRETCH-HZ, SCHZ,

1 hzcount, conform-hzl(1:mz,1:mr)

140
real*8 conform-hz-length(MAXCP)

parameter(EQZERO-HZ=1, STRETCH.HZ=2, SCHZ=3)

C*** Variables and parameters for conformal Hr field.

integer conform-hr(1:3,MAXCP), EQZEROHR, SRIGHT-HR, SLEFT-HR,

1 hrcount, conform-hrl(1:mz,1:mr), SLEFTHRDC, SRIGHT.HRDC,

2 SRIGHT.HR-IC, SLEFT-HR.IC

real*8 conform-hrlength(MAXCP) 150
parameter(EQZERO.HR=1, SRIGHT.HR=2, SLEFT-HR=3, SRIGHT-HRDC=4,

1 SLEFT-HRDC=5, SRIGHT-HR-IC=6, SLEFTHRIC=7)

integer erf,ezf,ephif,hrf,hzf,hphif,hzfo,hrfo,ezsc,ersc

parameter(erf=1,ezf=2,ephif=3,hrf=4,hzf=5,hphif=6,hzfo=7)

parameter(hrfo=8, ezsc=9,ersc=10)

integer ephi-conform1(1:mz,1:mr), ephicount, conform-ephi(1:3,

1 MAXCP)

160
integer ez-conform1(1:mz,1:mr), er-conform1(1:mz,1:mr)

integer staircase(6:7,1: MAXCP),staircount

integer total-nodes, stair-node-count,

1 stair-zero(1:MAXSTAIR-NODES,1:3)

integer movie-step

logical store-movie, use-conformal, use.stair2

integer errorcount, errors(10), 170
1 NODE-ERROR, MAX.Z-ERROR, MAX-RERROR, MAXSTAIRERROR,

2 MAX-RCS.ERROR

parameter(NODEERROR=1, MAX-ZERROR=2, MAX-R.ERROR=3,

1 MAX.STAIR.ERROR=4, MAXRCS-ERROR=5)

C* *************************************************

C***** Cells in the free space region

180
real*8 er(1:mz,1:mr), ez(1:mz,1:mr)

real*8 ephi(1:mz,1:mr), hr(1:mz,1:mr)

real*8 hz(1:mz,1:mr), hphi(1:mz,1:mr)
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C **+**Note: the array scattot indicates whether the cell is in a

C +**++**scattering field points dictated by picture. see chart in

C ***** **README file. Tot Fields: 2-9, 14; Scat Fields: 1,11,12,15

integer scattot(1:mz, 1:mr)

190
C ***Cells in left Region of PML (includes top-bottom left corners)

real*8 erzl(1:pmldepth+1,0:pmldepth+mr+1)

real*8 ephizl(1:pmldepth+1,0:pmldepth+mr+1)

real*8 ezrl(1:pmldepth+1,0:pmldepth+mr+1)

real*8 hrzl(1:pmldepth+1,0:pmldepth+mr+1)

real*8 hphizl(1:pmldepth+1,O:pmldepth+mr+1)

real*8 hzrl(1:pmldepth+1,0:pmldepth+mr+1)

real*8 erphil(1:pmldepth+1,0:pmldepth+mr+1) 200
real*8 ephirl(1:pmldepth+1,0:pmldepth+mr+1)

real*8 ezphil(1:pmldepth+1,0:pmldepth+mr+1)

real*8 hrphil(1:pmldepth+1,0:pmldepth+mr+1)

real*8 hphirl(1:pmldepth+1,0:pmldepth+mr+1)

real*8 hzphil(1:pmldepth+1,0:pmldepth+mr+1)

* ******Case 1 Cells in left Region of PML (includes top-bottom left corners)

c to do outer problem simulation -> need interior PML

real*8 erzlx(1:pmldepth+1,0:pmldepth+mr+1) 210
real*8 ephizlx(1:pmldepth+1,0:pmldepth+mr+1)

real*8 ezrlx(1:pmldepth+1,0:pmldepth+mr+1)

real*8 hrzlx(1:pmldepth+1,0:pmldepth+mr+1)

real*8 hphizlx(1:pmldepth+1,0:pmldepth+mr+1)

real*8 hzrlx(1:pmldepth+1,0:pmldepth+mr+1)

real*8 erphilx(1:pmldepth+1,0:pmldepth+mr+1)

real*8 ephirlx(1:pmldepth+1,0:pmldepth+mr+1)

real*8 ezphilx(1:prnldepth+1,0:pmldepth+mr+1)

real*8 hrphilx(1:pmldepth+1,0:pmldepth+mr+1) 220
real*8 hphirlx(1:pmldepth+1,0:pmldepth+mr+1)

real*8 hzphilx(1:pmldepth+1,0:pmldepth+mr+1)

C ****Cells in the right Region of PML (incl. top-bot right corners)

real*8 erzr(1:pmldepth+1,0:pmldepth+mr+1)

real*8 ephizr(1:pmldepth+1,0:pmldepth+mr+1)

real*8 ezrr(1:pmldepth+1,0:pmldepth+mr+1) 230
real*8 hrzr(1:pmldepth+1,0:pmldepth+mr+1)

real*8 hphizr(1:pmldepth+1,0:pmldepth+mr+1)

real*8 hzrr(1:pmldepth+1,0:pmldepth+mr+1)

real*8 erphir(1:pmldepth+1,0:pmldepth+mr+1)

real*8 ephirr(1:pmldepth+1,0:pmldepth+mr+1)

real*8 ezphir(1:pmldepth+1,0:pmldepth+mr+1)

real*8 hrphir(1:pmldepth+1,0:pmldepth+mr+1)

real*8 hphirr(1:pmldepth+1,O:pmldepth+mr+1)

real*8 hzphir(1:pmldepth+1,0:pmldepth+mr+1) 240

C ******Cells in the top Region of PML (no corners)

real*8 erzt(1:mz,1:pmldepth+1)
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real*8 ephizt(1:mz,1:pmldepth+1)

real*8 ezrt(1:mz,1:pmldepth+1)

real*8 hrzt(1:mz,1:pmldepth+1)

real*8 hphizt(1:mz,1:pmldepth+1)

real*8 hzrt(1:mz,1:pmldepth+1)

250
real*8 erphit(1:mz,1:pmldepth+1)

real*8 ephirt(1:mz,1:pmldepth+1)

real*8 ezphit(1:mz,1:pmldepth+1)

real*8 hrphit(1:mz,1:pmldepth+1)

real*8 hphirt(1:mz,1:pmldepth+1)

real*8 hzphit(1:mz,1:pmldepth+1)

C ******Frequency components

C * mxf = maximum number of frequencies to store.

C ****** mm maximum number of modes to store. 260
C ******mxdp maximum number of points to calculate far-field with.

real*8 low-phi, high-phi, dphi, low-theta, high-theta, dtheta

integer num.freqs

complex*16 feru(nm:mm,1:mxdp,1:MAX-FREQS),

1 ferv(nm:mm,1:mxdp,1:MAXFREQS),

2 fephiu(nm:mm,1:mxdp,1:MAX-FREQS),

3 fephiv(nm:mm,1:mxdp,1:MAXFREQS),

4 fezu(nm:mm,1:mxdp,1:MAXFREQS), 270
5 fezv(nm:mm,1:mxdp,1:MAXFREQS),

6 fhru(nm:mm,1:mxdp,1:MAX-FREQS),

7 fhrv(nm:mm,1:mxdp,1:MAXFREQS),

8 fhphiu(nm:mm,1:mxdp,1:MAXFREQS),
9 fhphiv(nm:mm,1:mxdp,1:MAX-FREQS),

1 fhzu(nm:mm,1:mxdp,1:MAXFREQS),

2 fhzv(nm:mm,1:mxdp,1:MAXFREQS)
real*8 freqlist(1:MAX-FREQS,1:2)

c****** gives the starting index in freqlist of extra freqs for

c****** use in approximating the monostatic RCS 280
integer mono-freq-ind(1:MAXFREQS), mono-nang

logical calc-bist

C ****** Common Block

common/A/ sigma-max,dz,freq,len, dt, sdev,

1 Ehg,Evg,gd,modfreq,maxf-v,inc-ang,obj-height,

2 low-freq,high-freq,dfreq,sim-duration

common/B/ menu-choice, case-id, features, mode-no, end-playback, 290
1 flag, quit-flag, before3, start-time, startLmem-rec,

2 end-time, er-max, er-mem, max-height, max-length, mxr,

3 z-offset,absolute-start,absolute-end,rcsz-start, rcsz-end,

4 rcsz, rcsr, x-start-tot, xend-tot,

5 upper-edgetot,upper-edgescat, upper-edgehuy,

5 lower-edgetot,lower-edgescat,

5 lower-edgeleft, lower-edgeright,

6 x-opening, y-opening,

7 right.x, right-y, left-x, left-y, pookie,

8 high.y, high-x, chuck, zoffset, maxztrue 300

c$$$ common/ C/ er.top, ez-top, ephi-top,

c$$$ 1 hr-top, hz-top, hphi-top,

c$$$ 2 er.topx, hphi-topx
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common/ D/ er-left, ez-left, ephi.left,

1 hrfleft, hz-left, hphi-left,

2 ephi-leftx, hz-leftx

common/ E/ er-right, ez-right, ephi-right, 310
1 hr-right, hz-right, hphi-right,
2 ephi-rightx, hz-rightx

common/CA/ N, time, NP, maxz, maxr,modes,ps

common/CB/ movie-num,movie-type,nframe,gquad-count,mheight

common/CC/ modulate,rcsz 1,rcsz2,minf,maxf,stepf

common/CD/ eqset-start, eqset-end, mode-start, mode-end

common/CE/ xtot-sp, ytot-sp, xscat-sp, yscat-sp, 320
1 xhuy-sp, yhuy-sp, xall-sp, yall-sp, xscatplay-sp, xextend-sp

common/CD/ RBa, ZBa, RBt, ZBt, RB, ZB

common/DA/ conform-grid1

common/DB/ conform-list

common/DC/ borrow-list

common/DD/ listcount, hzcount, hrcount, ephicount

common/DE/ conform-hz, conform-hr, conform-ephi 330
common/DF/ conform-hzI, conform-hrl, ephi-conforml,

1 ez-conforml, er-conform1

common/DG/ conform-hz-length, conform hr-length

common/EA/ staircase

common/EB/ stair-zero

common/EC/ staircount, total-nodes, stair-node-count

common/FA/ errors, movie-step, errorcount

common/FB/ enough-memory, store-movie, use-conformal, 340
1 use-stair2

common/FC/ base

common/FD/ fnamein, dnamefdata, mhname, mfname, dbase

common/GA/ er, ez, ephi, hr, hz, hphi

common/GB/ scattot

common/HA/ erzl, ephizl, ezrl, hrzl, hphizl, hzrl

common/HB/ erphil, ephirl, ezphil, hrphil, hphirl, hzphil, 350
1 erzlx, ephizlx, ezrlx, hrzlx, hphizlx, hzrlx,

2 erphilx, ephirlx, ezphilx, hrphilx, hphirlx, hzphilx

common/HC/ erzr, ephizr, ezrr, hrzr, hphizr, hzrr

common/HD/ erphir, ephirr, ezphir, hrphir, hphirr, hzphir

common/HE/ erzt, ephizt, ezrt, hrzt, hphizt, hzrt

common/HF/ erphit, ephirt, ezphit, hrphit, hphirt, hzphit

common/IA/ low-phi, high-phi, dphi, low-theta,
1 high-theta, dtheta 360

common/JA/ num-freqs, mono-nang, calc-bist

common/JB/ feru, ferv, fephiu, fephiv, fezu, fezv, fhru,

1 fhrv, fhphiu, fhphiv, fhzu, fhzv

common/JC/ freqlist

common/JD/ mono-freq-ind
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