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Abstract

Cleavage decohesion and shear dislocation nucleation are two basic modes of localized
deformation in crystal lattices, which normally result from instability of the atomic
configuration driven by mechanical forces. The critical state of instability and its
thermal activation mechanisms can be quantitatively determined by analyzing the
energetics of the lattice system.

In this thesis, the unit processes of configurational instability of crystal lattices un-
der various non-uniform structural and/or chemical environments are characterized
by systematically probing the atomistic potential energy landscape of each system
using the state of the art configurational space sampling schemes. The problems
studied are homogeneous dislocation nucleation in a perfect crystal by nanoindenta-
tion, dislocation emission and cleavage decohesion at atomically sharp crack tips, and
chemically-enhanced bond breaking in a wet silica nanorod. These processes are stud-
ied in a unified manner such that two important types of properties are determined:
one is the athermal load at which the instability takes place instantaneously with-
out the aid of thermal fluctuations, and the other is the stress-dependent activation
energy used for an estimate of the kinetic rate of transition.

Along the way, important aspects concerning the atomistic characterization of
configurational instability are revealed. Of particular note is extending the contin-
uum instability criterion to detect atomic defect nucleation. We demonstrate that
a local instability criterion can be applied to identify dislocation nucleation in the
case of indentation, considering that the relatively small strain gradient beneath the
indenter will lead to a mode of long wavelength phonon instability suitable for a study
by the local continuum approach. In addition, the chemical effect on stress-driven
lattice instability is revealed via the study on reactivity of a silica nanorod with water.
We identify distinct competing mechanisms of hydrolysis which are rate-controlling
at different load regimes. The ensuing stress-mediated switch of rate-limiting steps
of hydrolysis quantitatively demonstrates the impact of finding the detailed molec-
ular mechanisms on a realistic estimate of the activation rate when configurational
instability occurs within a chemically reactive environment. Implications regarding



the analysis of chemically-assisted brittle fracture are also discussed.
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Title: Professor of Nuclear Engineering
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Chapter 1

Introduction

1.1 Background and Motivation

One of the central properties of a crystalline solid is its strength: the maximum

load a crystal can sustain without failing. Failure can occur either by brittle frac-

ture or plastic yielding. Traditionally, people study the onset of material failure

as an instability phenomenon within the framework of continuum mechanics (e.g.,

Rice [75]; Lawn [55]). Though quite successful, this approach has left a number of

questions unanswered. For example, a typical problem out of the scope of the con-

tinuum analysis is to determine the critical condition governing the transition from

brittle to ductile responses of crystalline solids. While this problem is in all aspects

a macroscopic phenomenon, the key element that governs it involves the atomic-level

processes of dislocation nucleation and migration at crack tips (e.g., Argon [7]). An-

other example showing limitations of the continuum analysis is the problem of the

environmental effect on material strength. It is well known that the strength of silica

glass decreases with time when subjected to a static load in an aqueous environment

(e.g., Wiederhorn, [112]). This phenomenon, commonly referred to as delayed frac-

ture or static fatigue, results from the environment-assisted quasi-static growth of

pre-existing small cracks at the surface of silica glass. Ample experimental evidence

proves that the underlying mechanism governing this quasi-static crack growth is the

water-enhanced bond breaking at the crack tip. Clearly, in this case, the atomic-level
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chemical interactions between silica and water molecules influence the macroscopic

strength of silica glass. From these two examples, it is evident that considerations

of the atomic-level structural details are not only important but also essential for a

fundamental understanding of the strength of solids.

The past few decades have seen a dramatic increase in the use of atomistic simu-

lations in combination with experiments in addressing problems in material science.

The problem of material strength is no exception. Among various schemes of atom-

istic simulations that can be applied to study material strength, the most direct one

is the molecular dynamics (MD) method (e.g., Allen and Tildesley [4]; Voter et al.

[107]), in which an appropriate interatomic potential is chosen to describe the forces

between atoms and then the classical equation of motion is integrated with suitable

boundary conditions. An appealing feature of MD is that it follows the actual dy-

namic evolution of the system. However, a significant limitation of MD studies in

the accessible simulation time represents a substantial obstacle to making useful pre-

dictions with MD. Specifically, resolving individual atomic vibration requires a time

step of approximately femtoseconds in the integration of the equation of motion, so

that on today's fastest processors, reaching even one microsecond is very difficult for

a sufficiently large system.

In the past few years, some new methods, including the quasicontinuum method

(Tadmor et al. [98]; Shenoy et al. [85]); the nudged elastic band method (Jonsson et

al. [43]); the dimer method (Henkelman and Jonsson [37]), have been developed such

that the configurational space of the system can be efficiently sampled, but with the

price of losing information about the detailed dynamics. Nevertheless, these methods

can be conveniently tailored to study a whole class of material strength problems of

interest to us, i.e., the stress-driven, thermally activated, kinetic transitions leading to

the localized deformation in crystal lattices such as dislocation nucleation or cleavage

decohesion. As will be demonstrated in the following chapters, to quantitatively

characterize these processes, the central theme is to determine the critical condition

of instability, which requires an efficient sampling of the configurational space with

a large number of degrees of freedom. Recent progress in developing the effective
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sampling schemes, as listed above, makes possible the direct study of these problems

with a reasonable computational cost.

Discussed next is one important idea guiding the present thesis work. That is,

under a low temperature and quasi-static loading condition, the atomic-level study

of the critical condition of instability in crystalline solids, e.g., dislocation nucleation

or cleavage decohesion, can be carried out by directly probing the stress-mediated

potential energy surface and finding the critical saddle point. This principle was

developed within the framework of the transition state theory (e.g., Vineyard [103];

Weiner [110]). Specifically, since atoms in crystals are usually tightly packed and the

typical temperature of interest is low compared to the melting temperature, the mo-

tion of atoms can be assumed to be harmonic. This approximation greatly simplifies

the problem such that, instead of probing the free energy landscape, the study of

system's instability is reduced to the problem of effectively sampling the configura-

tional space and finding the saddle point on the potential energy surface. In other

words, the potential energy plays a critical role in affecting the system's instability

and, contributions from the configurational and vibrational entropies are not decisive.

Obviously, the potential energy surface is mediated by the applied stresses. At

zero stress, the equilibrated lattice is stable, being in a state of local minimum on

the potential energy surface. With an increase in stress, the elastically deformed

lattice remains stable. But the energy landscape evolves in such a way that the

saddle point gradually approaches the local minimum. As the load reaches the critical

value of the athermal load, the saddle point collapses onto the local minimum on

the energy surface. It follows that a small perturbation to the system will lead to

instantaneous configurational instability. Associated with the instability are finite

atomic displacements, leading to breaking of atomic bonds or nucleation of shear

dislocations. Below the athermal load, the instability could nevertheless take place

if thermal activation supplies enough energy to drive the system from a stable state

of local minimum to an unstable state of saddle point. However, in contrast to

an instantaneous instability at the athermal load, a waiting time is needed which,

within the framework of the transition state theory, exponentially depends on the
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energy difference between two states defined as the activation energy barrier. On the

edge of the energy well enclosing the local minimum, there may exist several saddle

points corresponding to different activation mechanisms. Thus it is important to

find the lowest saddle point in order to get a realistic estimate of the waiting time

which determines the kinetic rate of the transition. To accurately capture these fine

details on the potential energy surfaces, some effective configurational space sampling

schemes are desired. Of particular note is that, for the study of mechanical problems

in a solid, while structural transitions such as dislocation nucleation or cleavage bond

breaking may occur at some local spots, the system size still has to be sufficiently

large to allow for the long range elastic relaxation. Hence, to minimize the size effect,

sampling should be carried out within the configurational space with a large number

of degrees of freedom. The development of effective sampling schemes meets this

need.

In summary, the objective of this work is to advance the fundamental under-

standing of mechanical failures in crystalline solids. The onset of two basic modes of

macroscopic failures, i.e., brittle fracture and plastic yielding, will be studied as an

instability phenomenon at the atomic scale via systematically exploring the stress-

mediated potential energy surface. Recent progress in developing the effective config-

urational sampling schemes makes possible an accurate probe of the energy surface

for a reasonably large-sized solid system.

1.2 Problem Statement

In this thesis, several unit processes of stress-driven configurational instability of

crystal lattices are studied under various structural and/or chemical environments.

The specific problems studied include: (1) nanoindentation-induced homogeneous

dislocation nucleation; (2) dislocation emission and cleavage decohesion at atomically

sharp crack tips; (3) chemically-enhanced bond breaking in a wet silica nanorod. As

the background and motivation for each problem will be discussed at the beginning

of each chapter, it is of interest, here, to reveal some common features and compare
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the differences of these problems.

While the problems studied differ in terms of the specific atomic-level details, the

underlying physics governing each process, without exception, falls into the framework

of the stress-driven configurational instability as elaborated in the last paragraph of

section 1.1. It follows that these processes are studied in a unified manner such that

two important types of properties are quantitatively determined: one is the athermal

load at which the instability takes place instantaneously without the aid of thermal

fluctuations, and the other is the stress-dependent activation energy, determined by

the barrier height of the saddle point, which can be used to estimate the kinetic rate

of transition.

Another common feature of these problems is that each system studied has a cer-

tain degree of structural inhomogeneity. As a result, the instability occurs within

a non-uniform atomic environment. While this structural inhomogeneity does not

affect the atomic-level studies of the instability, which invariably rely on the analy-

sis of the system's energetics, it does influence the applicability of various types of

continuum-level instability criterion. This effect can be clearly seen by comparing

the dislocation nucleation criterion beneath the indenter with that at the crack tip.

For the nanoindentation problem, dislocation nucleation results from the instability

occurring within the bulk of a perfect crystal loaded by a foreign object at the surface,

i.e, the nanoindenter. Since the radius of the nanoindenter used in simulations, and

in real experiments as well, is on the order of 50nm, the strain gradient beneath the

indenter is relatively small on the scale of lattice spacing. Thus dislocation nucle-

ation is induced by the local instability within a nearly uniform atomic environment

(though with large deformation compared to the natural stress-free state). It follows

that the resulting long wavelength phonon instability can be effectively detected via

a local continuum-based instability criterion.

In contrast, for dislocation nucleation at an atomically sharp crack tip, rigorously

speaking, the continuum stress is not well defined near the crack tip because a highly

nonuniform atomic environment exists on the scale of atomic spacing. Clearly, the

local instability criterion, which relies on the continuum-based quantities such as
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stress and modulus, could not be applied to this situation. However, the nucleation

criterion proposed by Rice [80] bypasses the local details at the crack tip and examines

the global energy balance between the elastic energy release rate calculated from the

J-integral and the internal resistance given by the unstable stacking energy. This

global instability criterion can effectively detect dislocation nucleation near the crack

tip. Our direct atomistic calculations have confirmed the applicability of the above

two continuum-based instability criteria for respective situations. In addition, we

note that as the tip radius of the nanoindenter shrinks down to the order of atomic

spacing, local nucleation criterion should give way to the global criterion as given in

terms of the J-integral. However, in most situations, the value of the J-integral needs

to be numerically calculated (e.g., Li [56]). Only for some simple cases such as the

crack tip problem, can the value of J be obtained analytically, as it is well known

that the stress distribution near the crack tip is characterized by the analytic solution

of the K-field which makes the calculation of J straightforward.

Finally, it is of interest to compare two localized processes at crack tips studied

in chapter 3 to reveal the effect of bonding characteristics on the crack tip geometry

as well as its influence on the fine structures of atomistic energy landscape. The two

processes studied are shear dislocation nucleation in an FCC single crystal of Cu and

the covalent bond breaking in a diamond-cubic single crystal of Si, respectively. As

discussed above, these two crack-tip processes are highly localized compared with

that beneath the indenter, which makes the local instability criterion inapplicable

at crack tips. However, another level of localized deformation can be clearly seen

when comparing atomic displacements between these two processes. Specifically,

for dislocation loop emission in Cu, shear displacement distribution across the slip

plane at the saddle-point state exhibits a significantly extended feature as shown

in Fig. 3-4, while the opening distribution across the cleavage plane in Si at the

intermediate state of transition shows a highly localized mode of deformation as

given in Fig. 3-8. This difference in the geometry can be correlated to a difference in

bonding characteristics. That is, Si atoms have much stronger localized, directional

bonds, while the bonding interaction between Cu atoms is more delocalized and shows

22



little directionality. Besides the geometry, the energetics differs significantly between

the two processes. If we consider the crack front bond breakings as the formation of a

climb dislocation, the difference manifests as that in the energy barriers to dislocation

nucleation. Specifically, shear dislocation in Cu only experiences a single nucleation

barrier, while the result for Si shows that the secondary energy barriers exist on

the energy surface. These barriers impose substantial resistances to dislocation kink

migration, leading to very sluggish motion of the climb dislocation. While these

differences have been revealed qualitatively before (e.g., Argon [7]), our calculations

demonstrate that the quantitative characterization with full atomistic details is now

feasible.

The thesis is organized as follows: In chapter 2, homogeneous nucleation of a

dislocation beneath a nanoindenter in single crystal Cu is studied as a strain local-

ization event triggered by elastic instability of the perfect crystal at finite strain. A

novel interatomic potential finite element method is employed to simulate both 2D

cylindrical and 3D spherical indentations. The critical conditions of dislocation nu-

cleation predicted via the local instability criterion are quantitatively compared with

direct MD simulations. In chapter 3, 3D dislocation loop emission from a stressed

crack tip in single crystal Cu is first studied. The transition state of dislocation loop

emission is found using reaction pathway sampling schemes, the nudged elastic band

and dimer methods. The saddle-point geometry of the embryonic dislocation loop

and the associated activation energy are quantitatively compared with the contin-

uum estimate. Implications concerning homogeneous dislocation nucleation in the

presence of a crack-tip stress field are discussed. Then, the quasi-static crack exten-

sion in Si is studied via quantitative characterization of 3D lattice trapping barriers

to bond breakings at the crack tip. The physical origin of directional anisotropy in

brittle fracture is revealed from the analyses of the energetics of crack font kink-pair

formation. In chapter 4, the chemical reaction of hydrolysis in a silica nanorod is

studied using quantum mechanical molecular orbital theory calculations. Both the

stress-dependent thermodynamics and kinetics for the hydrolysis reaction are quan-

titatively characterized using reaction pathway sampling schemes. Implications con-
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cerning the stress-corrosion crack growth in silica glass are discussed. Finally, chapter

5 summarizes main results of this thesis work.
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Chapter 2

Nanoindentation-Induced

Homogeneous Dislocation

Nucleation

2.1 Introduction

Nanoscale contact of material surfaces provides an opportunity to explore and better

understand the elastic limit and incipient plasticity in crystals. A common mode

of instability at the elastic limit of a perfect crystal is strain localization, result-

ing ultimately in the homogeneous nucleation of crystalline defects such as disloca-

tions [38, 75, 115]. In load-controlled nanoindentation experiments, after a prelim-

inary elastic stage, a discontinuity in indenter displacement has been captured for

the measured load P versus indentation depth h response for several cubic crystals

[72, 69, 31, 21, 95, 35]. The underlying mechanism for the onset of this displace-

ment burst is thought to indicate atomically localized deformation, i.e. dislocation

nucleation. Recent in situ experiments by [35] using the Bragg-Nye bubble raft as

an analogue to the {111} plane of face-centered cubic (FCC) crystal clearly demon-

strated that nanoindentation of a two-dimensional crystal may lead to homogeneous

nucleation of dislocations within the crystal. Atomistic simulations by [97] via the
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quasicontinuum method revealed the process of nanoindentation-induced dislocation

nucleation near the surface in single crystal aluminum. However, a quantitative un-

derstanding of the critical condition for homogeneous dislocation nucleation is still

lacking. An accurate characterization of defect nucleation serves two purposes in

multiscale materials modeling. First, a reliable defect nucleation criterion can be ex-

tracted to seed the initial defect distribution and originate new defects in mesoscopic

dislocation dynamics simulations [28, 86]. Second, quantum mechanical ideal strength

calculations that reveal bonding and electronic structure characteristics [51, 67] can

be connected with the experimental nanoindentation P-h response. Specifically, as ab

initio calculations are computationally intensive, we may rely on an empirical inter-

atomic potential to identify the nucleation site and the critical stress state, and then

analyze the corresponding electronic structure characteristics using ab initio calcula-

tions. As a continuing effort of predictive modeling of defect nucleation [58, 106], in

this chapter [122], we present an atomistically faithful characterization of the criti-

cal condition of contact-induced homogeneous dislocation nucleation, based on three

essential elements: (1) a computationally efficient continuum method to perform sim-

ulations with experimentally relevant length/time scales; (2) an atomistically verified

instability criterion to predict dislocation nucleation; and (3) an optimally parame-

terized interatomic potential to model the constitutive response.

Finite strain elastic instability of perfect crystal during nanoindentation can be

studied using either an atomistic or a continuum approach. The most detailed infor-

mation beneath the indenter is revealed by direct molecular dynamics (MD) simula-

tions [45, 125]. However, due to the computational cost associated with keeping track

of large number of atoms, the physical length and time scales for MD simulations are

very limited. In contrast, continuum-level finite element method (FEM) calculations

with a hyperelastic constitutive relation based on an interatomic potential represent

a computationally efficient method to study nonlinear instability at comparatively

larger length scales and for realistic boundary conditions, into which crystallographic

and nonlinear (de)bonding features of the underlying lattice can be incorporated.

The basic premise of this approach is that every point in a continuum corresponds to
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a large, uniformly deformed region at the atomic scale. Hence the constitutive rela-

tion for each continuum point can be derived within the framework of hyperelasticity

with the Cauchy-Born hypothesis [14, 26, 98, 71, 2]. This hypothesis states that the

Bravias lattice vectors deform according to the macroscopic deformation gradient.

Based on this geometrical connection, one can calculate the local continuum stress by

deforming the underlying crystal structure according to the local, atomically uniform

deformation gradient, and resorting to the virial sum of interatomic forces [14, 108, 4].

Since the constitutive relation is obtained directly from the atomic lattice sum and

interatomic potential, key properties of the crystal such as crystalline anisotropy and

nonlinear elastic effects are incorporated automatically. This approach describes the

crystal behavior well as long as the spatial variation of deformation is not too large

on the atomic scale; it will break down near defects where non-local effects become

significant. Interatomic potential-based hyperelasticity is a full-continuum model and

represents the local limit of the more general continuum-atomistic framework of the

quasicontinuum method [98, 71, 99, 85, 49]. However, for the present investigation

of nanoindentation-induced elastic instability, deformation is approximately uniform

at the atomic scale - though it varies significantly on the macroscale - and thus it is

adequate to describe the crystal behavior accurately [58, 106]. Interatomic potential-

based hyperelasticity is significantly more straightforward to implement within any

general-purpose FEM package than the more flexible and thus more complex quasi-

continuum approach. In this framework, quantitative prediction of defect nucleation

may be achieved with the aid of an accurate and reliable defect nucleation criterion.

From the viewpoint of multiscale material modeling, one of the most useful insights

that could be gained from atomistic analyses of nanoindentation is the criterion for

defect nucleation. A physically rigorous criterion is much needed to replace ad hoc

criteria that one must otherwise adopt, such as a critical resolved shear stress (CRSS)-

based criterion. It is tempting to postulate that the critical stress a perfect crystal

can sustain is a robust material constant. We believe this is not the case because the

value of critical stress for the criterion depends on other stress components than just

the shear stress component acting on the plane. Density functional theory (DFT)
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calculations [67] have shown that the ideal shear strength of a Cu perfect crystal

depends strongly on other components of the stress. The ideal shear strength of

FCC simple metals is defined as the maximum shear stress that the crystal can

sustain when sheared on the {111} plane in the positive (112) direction. For Cu,

the DFT results by Ogata et al. [67] gave the maximum shear stress as 2.16 GPa

for relaxed shear (all stress components except the principal shear stress are zero)

and 3.42 GPa for unrelaxed shear (all strain components except the principal shear

strain are zero). This shows that the value of the maximum shear stress depends

on specifying the full local stress environment of the nucleation site. Furthermore,

the detailed study of dislocation nucleation by Shenoy et al. [86] indicated that the

stress-based nucleation criterion is able to capture only the qualitative features of the

instability point induced via nanoindentation. A significant quantitative difference

is found between their stress-based predictions and atomistic simulations. This is

another piece of evidence pointing to the limitations of the CRSS-based criterion for

predicting homogeneous dislocation nucleation under various loading conditions.

In this study, a localization criterion based on bifurcation analysis with atomistic

interactions will be employed to predict nanoindentation-induced dislocation nucle-

ation. This criterion was first proposed by Hill[38, 39]. He showed that the loss

of strong ellipticity in the strain energy function is an indication of the instability

in a solid. A review of localization analysis and its application for various types of

continuum inelastic material models was given by Rice[75]. Several recent studies

demonstrated the applicability of this criterion in the atomically-informed contin-

uum model where the link between the movement of atoms and the deformation of

the continuum was made via the Cauchy-Born hypothesis. For example, Gao and

Klein[29], Klein and Gao [48], and Zhang et. al.[118] applied this localization cri-

terion to detect strain localization for virtual internal bond (VIB) material models,

by which the cohesive interactions between the material particles are incorporated

into the constitutive law with recourse to the Cauchy-Born hypothesis. Van Vliet

et. al.[106] used this criterion to detect dislocation nucleation in 2D simulations of

nanoindentation in a model material characterized by a generic interatomic poten-
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tial. As shown in the following section, the application of this localization criterion

requires knowledge of the nonlinear stresses and elastic moduli, which can be readily

and rigorously calculated within the framework of interatomic potential-based hyper-

elasticity. Given these atomically informed continuum quantities, the energy-based

instability criterion is an effective tool to predict defect nucleation within a crystal,

as it can identify the location, character, and stress state required for homogeneous

nucleation of a crystalline defect.

The outline of this chapter is as follows. In section 2.2, the formulation of hyper-

elasticity which incorporates embedded atom model (EAM) interatomic potentials is

developed within the framework of continuum mechanics. Next, the elastic instability

criterion for defect nucleation is formulated, and the accuracy of EAM potentials is

verified by comparison with ab initio electronic structure calculations. In section 2.3,

the analytic solutions for frictionless indentation on a linear anisotropic elastic, single

crystal half space are given for both 2D and 3D loading configurations based on the

Stroh formalism, and analytic insights are used to rationalize the finite element sim-

ulations. In section 2.4, the 2D finite element simulations of nanoindentation based

on hyperelasticity and predictions of dislocation nucleation by the instability crite-

rion are validated via comparison with molecular dynamics simulations. The critical

state of nanoindentation-induced dislocation nucleation is quantified with full 3D fi-

nite element simulations in section 2.5, and discussions and concluding remarks are

presented in section 2.6.

2.2 Interatomic Potential-Based Hyperelasticity of

Crystalline Solids

2.2.1 Formulation

An interatomic potential-based constitutive relation can be derived within the frame-

work of hyperelasticity with the Cauchy-Born hypothesis [14, 26, 98, 71, 2]. In con-

tinuum mechanics, we may identify a stress-free configuration denoted by A. The
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current deformed configuration is denoted by B. A line element dxA in configuration

A is deformed into a line element dxB in configuration B by the macroscopic defor-

mation gradient F 9XB3/OxA. A fundamental postulate of hyperelasticity is the

existence of a strain energy function, e.g., Ogden [68]. Then, the symmetric second

Piola-Kirchhoff stress is defined by

SPK2 (2.1)
OE

with A as the reference configuration, where T is the strain energy density function

(per unit stress-free volume) and the Green strain E is defined by

E =- (F TF - 1). (2.2)2

The Cauchy stress at the current configuration B is obtained by

1
0- = FSPK2F T. (2.3)

det(F)

The link between the deformation of a continuum and that of the underlying

lattice is made through the Cauchy-Born hypothesis [26], which states that Bravais

lattice vectors of the crystal, bn (n = 1, 2, 3), deform according to the macroscopic

deformation gradient F,

B= Fb . (2.4)

In monatomic crystals like FCC and BCC simple metals, there are no internal

degrees of freedom, and the separation r between any two atoms also transforms as

rs = FrA. (2.5)

When the deformations of the continuum and the lattice are linked via the Cauchy-
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Born hypothesis, the continuum strain energy density can be calculated from the in-

teratomic potential energy of underlying lattice. Here, we have assumed temperature

T = 0, so there is no thermal fluctuation. As all atoms are identical, we may consider

the energy of one atom at the origin to be representative. Within the framework of

the embedded-atom method [23], the energy per atom 'I is

1 = V(jr'j) + U(p) (2.6)

where V is the pair potential, p is the ambient electron density for the atom at the

origin and U is the energy required to embed this atom into this electron density. In

Eq. (2.6), Irzl is the interatomic distance and the index i runs over all atoms within

a specified cut-off radius Rcut. Since each atom occupies a volume of a primitive unit

cell, the strain energy density T is related to the energy per atom I by IF = X/Q,

where QA is the volume of the stress-free primitive unit cell. Given T, Cauchy stress a

at the current configuration B can be obtained by substituting Eq. (2.6) into Eq. (2.3),

1 1 [lV aU ap~ orV =- + U& 13 13(2.7)
Q3 2 oBr 09p arl _ IrS '

where QB is the volume of the current primitive unit cell, and all derivatives in

Eq. (2.7) are evaluated at rz.

Next, the atomistic expression for the tangent modulus is introduced. Consider a

further deformation from the current configuration B to a new configuration C. A line

element dx8 in configuration B is deformed into a line element dxc in configuration C

by the deformation gradient F* - Oxc/OxB. The second Piola-Kirchhoff stress with

reference to configuration B is given by S*PK2 - OIF*/OE*, where IF* is the strain

energy per unit volume with reference to B and the Green strain E* 1(F*TF* -1)

The energy density V is obtained from the energy per atom xI by 'V = 'I/Q3. The

rate of S*PK2 is related to the rate of Green strain E* by

*PK2 = c* E* (2.8)
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where C*, which is a function of E*, is defined as

C* =a . (2.9)
OE*aE*

The tangent modulus C is C* evaluated at E* = 0,

C aE*aE* (2.10)
E*=O

1 ~ ~~~~~ 13 123 8 V B 2 p rkor or
03 2 &2 Ir|B p B2 irk 1rfk2Z QB{ [( Y- 1B1) 3U02  lOr)

02 U ( pri 4 r ( pr, 9ri
+ 2 (2.11)Op 2  4 r Ir I ar Ir1

In the above expression, all derivatives are evaluated at rl.

The interatomic potential-based constitutive model described above is imple-

mented in the finite element program Abaqus [1] by writing a "user material" subrou-

tine. In the dynamic, explicit computational procedures of this package, the nonlinear

response is obtained incrementally, given the internal forces created by the stresses in

the elements, as well as the applied external forces at the start of an increment, time

t. Finite element procedures solve for the acceleration at the start of the increment by

solving the discretized local equations of motion. The velocities at time t + At/2 and

the displacements at time t + At are updated by a central difference time-integration

procedure. The deformation gradient for each integration point at time t + At is then

calculated based on the updated displacement field. Given the calculated deformation

gradient, a constitutive equation subroutine is required in order to calculate the stress

in the element at time t + At. In the implementation of stress calculation according

to the Cauchy-Born hypothesis, each material point is represented by an FCC lattice,

always larger than a sphere of radius Rcut, which deforms according to the local con-

tinuum deformation gradient. That is, at the beginning of the calculation (t = 0), a

set of neighboring atoms is created to represent the atomic environment. The lattice

spacing is chosen such that the corresponding stress is zero. For each time increment,
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those neighboring atoms update their positions according to the local deformation

gradient F, which is generated according to the imposed boundary conditions. Then

Cauchy stress o- and tangent modulus C are calculated by substituting the deformed

positions of neighboring atoms into Eq. (2.7) and Eq. (2.11), respectively. Thus, ma-

terial properties depend exclusively on the atomistic description of the system. The

efficiency of finite element calculations allows for the simulation of systems which

are large compared to those achievable via molecular dynamics calculations, while

the computation remains faithful to atomistic interactions at large strains. As such,

this method qualifies as a multiscale approach. In the present study, the quasi-static

simulations of nanoindentation are made via the dynamic, explicit procedure at low

loading rates. The explicit solution method has proven to be effective in solving quasi-

static problems, and is particularly efficient for large, three-dimensional simulations

dominated by contact.

2.2.2 Instability Criterion for Predicting Defect Nucleation

The homogeneous nucleation of dislocations results from catastrophic elastic insta-

bility, as formulated at the continuum level by Hill [38, 39]. Hill showed that the loss

of strong ellipticity of the strain energy density function is an indication of elastic

instability of a solid, because at this point discontinuous modes of deformation be-

come admissible solutions to the equilibrium equations. Rice [75] derived the same

localization condition by admitting an incremental displacement jump across the dis-

continuous interface. The localized deformation manifests itself along this interface

as slip or shear bands in inelastic materials. Here, we summarize the main results

based on Rice's derivation and then connect these concepts to the non-linear elastic

model that incorporates an appropriate interatomic potential. In the atomistic limit,

the shear band represents unit shear, or a single dislocation characterized by its slip

plane and slip direction.

The instability criterion given in this section can be applied in both FEM and

MD simulations. Since MD simulations do not store information on the starting

configuration and deformation history, it will be preferable to derive the localization
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condition with reference to the current configuration B. To this end, we first consider

a further deformation from the current configuration B to a new configuration C and

derive the instability criterion at configuration C. Then, we take configuration C to

be coincident momentarily with configuration B and obtain the instability criterion

at the current configuration. The resulting expression will be suitable for both FEM

and MD implementations. Rice [75] assumed the following rate relation to describe

the material response,

= LF*T (2.12)

where L is the modulus tensor and the nominal stress tensor S* is defined so that

nS* is the force acting, per unit area in the configuration B, on a surface element

of normal vector n in B. It is related to the second Piola-Kirchhoff stress S*PK2I

which is defined with reference to B, by S* = S*PK2F*T. The localization condition

is determined by examining whether a bifurcation within a band of orientation n is

possible such that the continuing kinematical and equilibrium conditions are satisfied.

To maintain continuous velocity across the imaginary interface between stable and

unstable regions, the change in deformation gradient F* across the discontinuous

surface must be of the form,

zAg* =g n, (2.13)

where g is the relative displacement vector across the interface. The continu-

ous equilibrium condition requires that the difference of S* across the discontinuous

surface satisfies,

nA$* = 0. (2.14)

Then, substitution of the constitutive law defined by Eq. (2.12) and the continuing

kinematical condition given by Eq. (2.13) into the equilibrium condition Eq. (2.14)
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gives,

(nLn)g = 0. (2.15)

The onset of localization occurs when a non-trivial solution of g exists. That is,

the acoustical tensor Q(n) = nLn becomes singular [75],

det[Q(n)] = 0. (2.16)

From energy analysis, it can be proven that the acoustical tensor Q(n) is posi-

tive definite when the material is stable, e.g., Rice [75]. Therefore, the determinant

function det[Q(n)] will approach zero from the positive side. The dislocation will be

homogeneously nucleated when the determinant function det[Q(n)] attains zero-value

for the first time. The associated eigenvector g calculated from the matrix of Q(n)

will represent the slip vector at the onset of dislocation nucleation.

The instability condition based on the above bifurcation analysis will be applied to

the current configuration B to detect dislocation nucleation once Cauchy stress or and

tangent modulus C are calculated through either FEM or MD simulations. To study

bifurcation in configuration B, we take configuration C to be coincident momentarily

with configuration B, i.e., F* = 1. Under this condition, the following relations can

be easily derived,

*= *K2 + (2.17)

E = (N* + N*T) (2.18)

Substituting Eqs. (2.17) and (2.18) into Eq. (2.12), and using Eq. (2.8), one ob-

tains,
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LijkI = Cijkl + Ui 6 j-k. (2.19)

Cauchy stress a in configuration B arises in the expression of the modulus tensor

L because the current configuration B is generally a stressed state. Since the mod-

ulus tensor L is calculated according to the atomistically informed Cauchy stress 0'

and tangent modulus C in configuration B, as defined by Eq. (2.7) and Eq. (2.11),

the crystal lattice information is incorporated automatically. This tensor has the

symmetry

Lijk - Llki, (2.20)

but,

Lijkl $ Ljikl, Lijkl h Lijlk, (2.21)

as g and n are conceptually distinct vectors. Thus, Eq. (2.16) fully defines the site

and slip character of dislocations nucleated within simulations of calculable o and C.

Homogeneous nucleation of a defect has been studied in the context of elastic wave

instability by Li et al. [58]. That is, the defect nucleation is realized by a dynamic

process which comprises the progressive steepening of a localized wave front and

arrest of the final atomistically sharp wave front in a low-dimensional atomic energy

landscape. The free energy-based A-criterion for wave instability [58] is equivalent

to the defect nucleation criterion given by Eq. (2.16). The wavevector k and the

polarization vector w for the unstable transverse wave corresponds to the slip plane

normal n and the associated slip vector g, respectively. Though the current study is

not concerned with dynamics, the defect nucleation criterion given by Eq. (2.16) is

still referred to as the A-criterion.
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Table 2.1: Elastic constants and intrinsic stacking fault energies for Cu
Method C11 (GPa) C12 (GPa) C44 (GPa) ?sf (mJ/m 2 )
Experiment 168.4 121.4 75.4 45
EAM-Mishin 169.9 122.6 76.2 44.4
EAM-Ackland 168.4 121.3 75.3 46.8

2.2.3 Calibration of EAM Potentials by ab initio Calculation

Recent advances in optimal parametrization of the interatomic potential [64, 65]

enable improved accuracy of the constitutive model of interatomic potential-based

hyperelasticity, within its intrinsic limitations. The EAM potential for Cu [65] is

employed in the present indentation simulations. The elastic constants (at the stress-

free state) and stacking fault energies obtained from experiments and calculated via

the EAM-Mishin potential are given in Table 2.1. For comparison, the corresponding

values calculated from another commonly used EAM potential by Ackland et al.[3]

are also listed in Table 2.1.

A reliable potential should both fit well the single point properties such as elastic

constants and the intrinsic stacking fault energy, and also characterize accurately

the deformation path up to the elastic limit. Consider a homogeneous simple shear

deformation on the (111) plane along the [112] direction. Figure 2-1 shows the shear

stress versus shear strain response predicted by the EAM-Mishin potential. Here, the

shear strain is defined by the shear displacement divided by the Shockley partial slip

in the [112] direction ao/V6', where ao is the lattice constant. In order to test the

accuracy of the EAM-Mishin potential, an ab initio DFT calculation is performed

whereby simple shear deformation is applied to a six-atom supercell of three { 111}

layers. The stress versus strain response in the DFT calculation is obtained by using

the generalized gradient approximation (GGA) within an ultrasoft pseudopotential

total energy scheme [67]. It can be seen from Fig. 2-1 that the prediction via the

EAM-Mishin potential is in good agreement with the ab initio calculation. Figure 2-1

also shows the shear stress versus strain curve based on the EAM-Ackland potential.
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Figure 2-1: Stress versus strain curve for simple shear of Cu.
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Compared with the ab initio DFT calculation, the EAM-Mishin potential gives a

more accurate description of finite shear deformation than does the EAM-Ackland

potential. We demonstrate below that the choice of a reliable potential is critical for

an accurate prediction of both the load versus displacement response and mode of

dislocation nucleation in nanoindentation simulations.

The above simple shear calculations also reveal an important feature at finite de-

formation, i.e., asymmetry of shear stress response with respect to the shear direction.

It can be seen from Fig. 2-1 that the critical shear stress in the [112] direction (3.91

GPa) is much lower than the peak stress when sheared in the opposite direction, i.e.,

the [112] direction (20.4 GPa). This asymmetry in critical shear stress is due to the

effect of finite deformation, and can be understood by examining the relative motion

between adjacent close-packed planes in an FCC crystal. In Figure 2-2, the dashed

circles represent one atomic layer of the close-packed (111) plane. The solid circles

represent atoms above this layer, and are originally located in sites such as the one

denoted by a. The shear along the partial slip [112] direction corresponds to motion

of the atom from site a to b and the reversed shear along the [112] direction from site

a to c. It is immediately evident from Fig. 2-2 that, within the finite shear deforma-

tion regime, the reversed shear along the [112] direction requires a larger dilatation

normal to the slip plane due to the misfit of adjacent plane atoms, and hence needs to

overcome a larger energy barrier. Consequently, the critical shear stress in the [112]

direction will be much higher relative to that in the [112] direction. Therefore, not

only the magnitude of shear stress but also the direction and the sense of shear defor-

mation is relevant in defining and predicting dislocation nucleation. This dependence

of the homogeneous dislocation nucleation barrier on shear direction is in contrast to

the conventional crystal plasticity model which assumes the symmetric resistance for

the motion of existing dislocations [9]. The assumption of a symmetric slip barrier

is based on the statistical nature of the resistances which include forest dislocations

threading through the slip plane, solute atoms or second phase particles acting as

discrete obstacles in the slip plane.
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Figure 2-2: Schematics of shear along the Shockley partial slip [112] direction (from
site a to b) and reversed shear along the [112] direction (from site a to c) above the
close-packed (111) plane.

2.3 Indentation on a Linear Anisotropic Elastic

Solid

As a complementary analysis of nanoindentation via interatomic potential-based hy-

perelasticity, the analytic solutions for frictionless indentation on a linear elastic,

single crystal are given in this section for both 2D and 3D configurations. Analytic

insights regarding the effects of crystalline anisotropy are discussed, and serve to

rationalize the results of interatomic potential-based finite element simulations.

2.3.1 2D Indentation by a Cylindrical Indenter

Consider a frictionless cylindrical indenter of radius R pressed into a linear anisotropic

elastic half space, as shown in Fig. 2-3. The coordinate system is oriented such that

the X3 axis is parallel to the axial direction of the cylinder. Within the regime of

linear elastic deformation, the resulting displacement field is only a function of in-

plane coordinates (X 1 , X 2 ) and has no variation in the out-of-plane x 3 direction. This
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is a generalized two-dimensional problem which can be solved by recourse to the

Stroh formalism given in Appendix A. Fan and Hwu [27] derived the general solution

of punch indentation on a linear anisotropic elastic half space. We apply this general

solution to the present geometric configuration. To first order, the cylindrical profile

can be approximated by a parabola. By solving a standard Hilbert problem, the

derivative of the complex function f, as defined in Appendix A, is given by

x2,

x3

Figure 2-3: Schematics of 2D indentation: a cylindrical indenter on an elastic half
space.

[ (B- 1)12 (Zj - - a2

2(M 1)22R (B- 1)2 (Z2 - - a2 (2.22)

(B-1)32 Z3 - 33- a2

where a denotes contact half-width, and the matrices B and M, as defined in Ap-

pendix A, can be determined uniquely for a given set of the material elastic constants.

The subscript in Eq. (2.22) denotes the corresponding component of the matrix. The

stress field is obtained by substituting the above expression into Eqs. (A.12) and

(A. 13). Note that a difficulty arises in deriving the 2D load-penetration relation

which is absent in the 3D case: For an elastic half space loaded two-dimensionally,
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the displacement field decays logarithmically from the contact point [42]. Thus, there

exist arbitrary, unresolved constants for the displacement field such that the load-

penetration relation depends on the system size and the boundary conditions. How-

ever, the analytic expression relating indentation load and contact half-width can be

obtained by requiring that the stress singularity at the contact edge vanishes. This

explicit relation is given by

ira2
P = r . (2.23)

2(M-1)22R*

The corresponding solution for isotropic elasticity has the same functional form,

except that the value (M- 1 )2 2 is replaced by (1 - v)/p, where p is shear modulus and

v is Poisson's ratio.

Based on the complex function given by Eq. (2.22), the stress distribution beneath

the indenter is calculated for a cylindrical indentation normal to the (111) surface of

Cu along the [110] direction. The coordinate system in Fig. 2-3 is oriented such that

the x1 and x2 axes correspond with the [112] and [111] directions, respectively. The

out-of-plane x3 axis is along the [110] direction. The elastic constants for single crystal

Cu are taken to be the values fitted by the Mishin potential as listed in Table 2.1.

The radius of the indenter R is taken to be 50 A, and the imposed contact half-width

is chosen as a = 17.4 A to facilitate comparison with MD and FEM simulations.

The distribution of Mises stress beneath the indenter is shown in Fig. 2-4(a). The

effect of material anisotropy is revealed by comparing the Mises stress contour for an

isotropic material [42] with that for single crystal Cu. For an isotropic material, this

stress distribution is symmetric with respect to x2 . Taking Poisson's ratio to be 0.3,

the point of maximum Mises stress is along x 2 axis at a depth of 0.70a. For single

crystal Cu, the anisotropy factor, defined by 2C 4 4 /(C 1 1 - C 12 ), is 3.22. As shown in

Fig. 2-4(a), the Mises stress contour is not symmetric about X2 due to this elastic

anisotropy. The point of maximum Mises stress is off-center by 0.24a and at a depth

of 0.66a. The corresponding maximum Mises stress is 10.16 GPa.

Dislocations tend to nucleate and move on certain close-packed slip planes and
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Figure 2-4: Stress contour beneath a cylindrical indenter from the 2D analytic so-
lution: (a) Mises stress, (b) Shear stress resolved into (111)[112] slip system. The
numbers indicated on the contour map are in units of GPa.
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directions in crystalline metals. The shear stresses resolved into the FCC primary

slip systems of {111}(110) and {111}(112) are calculated. For the current orientation

of the underlying crystal structure with respect to the indentation loading axis, the

maximum magnitude of resolved shear stress is on the Shockley partial slip system

(111)[112]. The slip plane (111) is oriented at 19.470 with respect to X2 axis. Figure 2-

4 (b) shows the contour of resolved shear stress on the (111)[112] slip system. The

point of maximum magnitude of resolved shear stress lies to the left of X2 axis by

0.54a and at a depth of 0.66a. The corresponding resolved shear stress is -7.55GPa.

Analytic insights gained from the above linear elastic analysis can be used to

rationalize numerical simulations. First, for this particular orientation, the out-of-

plane displacement is null due to the mirror symmetry of the lattice with respect to the

(110) plane (prior to the possible symmetry breaking caused by the elastic instability).

Therefore, this is a true plane strain problem within the elastic deformation regime.

No further approximation is made for this generalized plane strain problem when using

plane strain elements in 2D finite element simulations. More importantly, the choice

of the current indenter geometry will facilitate the study of homogeneous nucleation

of dislocation in the bulk by mitigating surface effects. That is, for the current

orientation, the resolved shear stress reaches its maximum value at some distance

beneath the surface. This is in contrast with the computational nanoindentation

study by Tadmor et. al. [97], which examined the same crystallographic orientation

as considered in the present work, but under a rectangular punch indenter. The sharp

corners of such an indenter induce dislocation emission from the contact point at the

surface, where the interpretation of atomic stress at free surfaces is unclear [18] and

the role of ledge formation is difficult to quantify unambiguously.

2.3.2 3D Indentation by a Spherical Indenter

The analytic load versus displacement relation is given in this subsection for inden-

tation of a spherical indenter on the {111} surface of a single crystal half space.

Figure 2-5 shows a spherical indenter of radius R in contact with a linear elastic

anisotropic half space. The coordinate system is oriented such that x1, x2 and X3
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axes correspond with the [112], [111] and [110] directions, respectively. To first order,

the spherical indenter can be approximated by a paraboloid. The general elastic solu-

tion for the indentation on an anisotropic half space by a paraboloid was first derived

by [114] using the Fourier transform technique. Based on the Green's function for

an elastic, anisotropic half space [11], the simplified elastic solutions for the inden-

tation load versus displacement response were given by Vlassak and Nix [104, 105],

Swadener et al. [96] for various indenter profiles. Willis[114] showed that the contact

area produced by a paraboloid on an anisotropic, elastic half space is elliptical in

shape. For indentation normal to a {111} surface with inherent three-fold rotational

symmetry, the contact area is circular. The load P versus penetration h relation is

simply given by

x3

Figure 2-5: Schematics of 3D indentation: a spherical indenter on an elastic half
space.

4
P = E* (2.24)

3

where the indentation modulus E* is

E*= 127rL (Y) d (2.25)
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In Eq. (2.25), the Barnett-Lothe tensor L, defined by Eq. (A.14) in the Appendix

A, is calculated in the transformed x' - X2 - X' coordinate system, which is obtained

by rotating x1 and x 3 axes in the x1 - x 3 plane an angle -y about x2 axis. For an

isotropic material deformed via a rigid indenter, the indentation modulus E* reduces

to E/(1 - v2 ), where E denotes Young's modulus. The above analytic solution will

be used to benchmark 3D FEM simulations. For elastic constants fitted by the EAM-

Mishin potential as given in Table 2.1, the value of E* calculated from Eq. (2.25) is

153 GPa.

2.4 2D Nanoindentation-Induced Dislocation Nu-

cleation

2.4.1 Validation of FEM Simulations

In this subsection, FEM simulations using interatomic potential-based hyperelasticity

is validated by comparing 2D cylindrical indentation results with direct MD simula-

tions. The same interatomic potential of Cu fitted by Mishin et al. [65] is used for the

constitutive input of FEM simulations and MD interatomic force field calculations.

The indentation orientation is the same as that for the linear analysis in section 3.

That is, a cylindrical indenter along the [110] direction is imposed normal to the (111)

surface.

ABAQUS/Explicit [1] is implemented to simulate 2D indentation. A small system

size, 200 x 100 A, is simulated for direct comparison with MD calculations. Plane

strain linear, triangular elements are used, with each element representing a homoge-

neously deformed crystallite. The boundary conditions are fixed at the bottom, free

on the top surface and fixed in the x1 directions on two sides. The cylindrical indenter

is defined by an analytic rigid surface with a radius R of 50 A. The contact between

the indenter and the surface is frictionless. The quasi-static solution is approximated

by maintaining the kinetic energy at less than 1% of the internal energy of the system.

MD simulations at the temperature 1K are performed to compare with FEM
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calculations. The same in-plane boundary conditions as FEM simulations are used

and periodic boundary conditions (PBC) are applied for the out-of-plane x3 direction.

In order to follow the minimum image convention in MD coding, ten layers of atoms

are used along the x3 direction. This ensures that the half-thickness of the PBC box

is greater than the Mishin potential cut-off radius. The indenter is regarded as an

external repulsive potential interacting with copper atoms at the surface [45],

XF ext (r) = AH(R-r)(R-r)3 (2.26)

where A is a force constant and H(r) is the step function. In the present calculations,

A = 1OeV/A'. The indentation proceeds in displacement-control at a speed of about

1 m/s.
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Figure 2-6: Load versus displacement curves of nanoindentation
indenter from FEM and MD simulations.

by a cylindrical

The calculated nanoindentation responses based on the Mishin potential are given

in Fig. 2-6. It can be seen that the P-h responses predicted by FEM and MD are
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in good agreement. The MD response shows a sharp drop in load at an indentation

depth of 6.65 A, which indicates the onset of homogeneous nucleation of dislocation

within the crystal. This load drop was not captured in the corresponding FEM

simulation because the 2D setting constrains the out-of-plane displacement mode

that the homogeneously nucleated dislocation takes, as shown in the MD simulation.

Figure 2-6 also shows the P--h response calculated via the Ackland potential for the

same indenter radius and crystallographic orientation. Though agreement between

FEM and MD predictions based on the Ackland potential further validates the FEM

calculation, the significant differences in the predicted P-h response and critical load

drop point given by each of these potentials underscore the importance of optimal

parametrization of the interatomic potential.

The calculated stress distribution beneath the indenter is compared between FEM

and MD simulations based on the Mishin potential. FEM stress computation at each

material point follows the constitutive model of interatomic potential-based hypere-

lasticity as given by Eq. (2.7), which is dictated by the local deformation gradient.

In contrast, for every atom in the MD simulation, atomic Cauchy stresses are cal-

culated by substituting the actual coordinates of neighboring atoms into Eq. (2.7).

Thus the positions of neighboring atoms are explicitly tracked for every time step.

Though the definition of atomic Cauchy stress is not strictly well-posed in terms of

the continuum concept of stress, the value of atomic stress represents an effective

measure of the stress state imposed on each atom. Figures 2-7(a) and (b) show the

contours of Mises stress calculated from FEM and MD simulations, respectively. The

indentation depth is 6.65 A, corresponding to the indenter displacement immediately

preceding dislocation nucleation. It can be seen that the FEM prediction based on

interatomic potential-based hyperelasticity is in good agreement with that of the MD

simulation. Both simulations give the maximum Mises stress about 25 GPa. How-

ever, the Mises stress contours shown in Figs. 2-7 (a) and (b) differ significantly from

the linear elastic result for indentation on a 2D half space, as shown in Fig. 2-4 (a) for

the same contact half-width as FEM simulations. These differences can be attributed

to the elastic nonlinearity of the highly deformed material near the indenter and the
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boundary effects due to the finite size of the simulated system.
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Figure 2-7: Contours of Mises stress (in GPa) beneath a cylindrical indenter: (a)
FEM and (b) MD simulations.

2.4.2 MD Simulation of Dislocation Nucleation

Though MD simulations are limited by the achievable length and time scales, this

approach has the distinct advantage of allowing defects to nucleate and evolve spon-

taneously, without prescribing the site and nature of such defects. Thus, the atomic

structure of the emerging dislocation is directly revealed by MD simulations. Figure 2-

8 (a) shows the embryo of a homogeneously nucleated dislocation via MD simulation

using the Mishin potential. Atoms are color-encoded by coordination number N [57].
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Figure 2-8: MD simulations of nanoindentation by a cylindrical indenter: atomic
structure of homogeneously nucleated dislocation on the (111) plane. (a) Shockley
partial slip along the [121] direction from Mishin potential; (b) Shockley partial slip
along the [112] direction by Ackland potential.
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Perfectly coordinated atoms, N = 12, are color-encoded as yellow, and other colored

atoms indicate N $ 12. Tracing of atomic trajectories indicates that relative motion

between the left and right two (111) layer blue atoms represents a Shockley partial

slip along the [121] direction within the (111) slip plane. This partial slip takes a

mixed in-plane and anti-plane shear mode. Due to the 2D nature of MD simulations,

the homogeneously nucleated defect is a dislocation line with the [110] line direction

perpendicular to the x1 - x2 plane. Note that there is another equivalent Shockley

partial slip direction [211] due to mirror symmetry of the (111) slip plane with respect

to the x 1 - X2 plane.

For comparison, Fig. 2-8 (b) displays the atomic structure of the homogeneously

nucleated dislocation via MD simulation using the Ackland potential. It can be

seen that the activated slip system of the Shockley partial is on the (111) plane

and along the [112] direction. In contrast to the mixed shear mode of the Shockley

partial slip predicted by the Mishin potential, the simulation via the Ackland potential

generates a partial slip event with a pure in-plane shear mode. This discrepancy in

slip orientation can be correlated with the simple shear calculations given in Fig. 1,

which shows that the Ackland potential predicts a fictitiously high critical stress when

sheared in the [112] direction and a decrease in critical shear stress when sheared in the

reversed direction, with respect to calculations via the Mishin potential. When using

the Ackland potential in nanoindentation simulation, due to this artifactual reduction

of the shear barrier in the [112] direction (equivalent to the [112] direction in Fig. 2-2),

the Shockley partial slip is first developed along this direction. In contrast, the high

shear barrier along the [112] direction for the Mishin potential forces the Shockley

partial slip to develop in the [121] direction. This slip direction is equivalent to

the [112] direction in Fig. 2-2 and hence has a much lower critical stress. The MD

simulations are terminated at this point because further evolution of the dislocation

structure, including heterogeneous nucleation of dislocations and interaction among

dislocations, depend strongly on the loading rate and the simulated system size. This

topic on massive dislocation activity beneath the indenter is addressed by VanVliet

et al. [106].
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2.4.3 Prediction of Dislocation Nucleation by Instability Cri-

terion

Continuum level defect nucleation studies require a reliable instability criterion which

should capture the moment, location and nature of homogenously nucleated defects.

Below, both the interatomic-potential-based A-criterion and the critical resolved shear

stress (CRSS) criterion are evaluated by comparing the corresponding defect nucle-

ation predictions with those obtained via direct MD simulations.

Since all the atomic information is channeled through the Cauchy stress a and

tangent modulus C, the A-criterion can be readily incorporated into finite element

analysis. Localization indicator det[Q(n)] is calculated at the element level to detect

dislocation nucleation. Testing for the formation of a localization surface involves

a search over all the possible orientations specified by the vectors n. Given the

atomistically informed L tensor, the general algorithm for searching critical surfaces

involves a constrained 6-dimensional minimization by which the localization surface

normal n and the direction of relative displacement vector g, as defined in section

2.2, are determined simultaneously [58, 106]. For the FCC lattice considered here,

we simply trace the current surface normals n of close-packed { 111} slip planes from

their initial surface normals n' by the relation n = nF- [9]. When an instability

occurs, the acoustical tensor Q(n) will no longer be positive definite.
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Figure 2-9: Contour of det[Q(n)] by 2D FEM simulation.

Figure 2-9 shows the contour of det[Q(n)] at an indentation depth of 6.68 A, cor-
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responding to the moment when the onset of dislocation nucleation is first detected

at one integration point. The critical indentation depth predicted by FEM calcula-

tion is in good agreement with that by MD simulation. In calculating det[Q(n)], the

modulus L is normalized via the elastic constant C44 = 75.4 GPa. It can be seen from

Fig. 2-9 that the interpolated values of det[Q(n)] within the dark grey region beneath

the indenter are small negative values, which indicate the site of a homogeneously

nucleated dislocation. The position of this dislocation nucleation site is 14.25 A below

the surface, and displaced 5.75 A from the central x 2 axis, while the center of dislo-

cation core in MD simulation shown in Fig. 2-8 is approximately 16.66 A below the

surface and displaced 5.16 A from the x2 axis. Thus, FEM prediction of the nucle-

ation site agrees well with that of MD simulations, to one atomic lattice spacing. The

direct prediction of slip directions via the eigenvector analysis of the corresponding

matrix Q(n) is limited by the present, highly symmetric crystallographic orienta-

tion. MD simulations indicate that the Shockley partial slip develops along one of

two equivalent slip directions, i.e., [121 and [211], within the (111) plane. This is a

degenerate-eigenvector situation which can be detected numerically by diagonaliza-

tion of the matrix Q(n). For the degenerate case, the slip orientations resulting from

the instability can be identified from crystallographic symmetry, without resorting to

a higher-order (cubic, quartic) analysis of the strain energy.

For comparison, the stress-based dislocation nucleation criterion (CRSS) is also

evaluated in FEM calculations using the constitutive model of interatomic potential-

based hyperelasticity. The linear elastic analysis indicates that the maximum resolved

shear stress occurs on the Shockley partial slip system (111)[112], while the MD sim-

ulation indicates that the dislocation will nucleate in one of two other equivalent slip

systems, (111)[121] or (111)[211]. Since the critical shear stress sensitively depends

on other local stress components [67] as discussed in Introduction, the value of CRSS

corresponding to the local stress environment associated with nanoindentation is a

priori unknown. Therefore, we back out the value of CRSS within a nanoindentation-

induced stress field from the A-criterion. Specifically, the shear stresses resolved into

different slip systems are calculated when the indenter is displaced to the critical
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Figure 2-10: Distribution of resolved shear stress (in GPa) by 2D FEM simulation:
(a) (111)[112] slip system, (b) (111)[121] slip system.
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depth for dislocation nucleation as predicted by the A-criterion. Figures 2-10 (a) and

(b) show contours of resolved shear stress on (11i)[112] and (111)[121] slip systems

from FEM calculations. It can be seen from Fig. 2-10(a) that the shear stress along

the [112] direction maximizes on the right side of the X2 axis with a value about 2.8

GPa and the shear stress along the [112] direction maximizes on the left side with a

value approximately 11.1 GPa. In contrast, Fig. 2-10(b) shows that the shear stress

in the [121] direction maximizes on the left side of the X2 axis with a value about

5.6 GPa and the shear stress along the [121] direction maximizes on the right side

with a value about 1.4 GPa. Due to the asymmetric instability threshold for finite

shear deformation, the dislocation will nucleate along the [121] direction as shown in

MD simulations, though the magnitude of the corresponding resolved shear stress,

5.6 GPa, is smaller than that in the [112] direction, 11.1 GPa. Thus the critical shear

stress for nanoindentation by a cylindrical indenter is determined to be 5.6 GPa. This

value is much higher than that for the unrelaxed simple shear (3.4 GPa) from DFT

calculation since the instability occurs within a highly compressive stress environment

associated with nanoindentation. This result reinforces the concept that the critical

shear stress required to nucleate a dislocation homogeneously is not a unique value,

but is in fact quite dependent on the local stress state of the crystal.

The site of maximum resolved shear stress along the [121] direction shown in Fig-

ure 2-10(b) is about 9.9 A below the surface and 9.2 A on the left of x 2 axis. It

differs from the site of minimum det[Q(n)] shown in Fig. 2-9. MD simulation of the

dislocation nucleation process verifies that the A-criterion accurately predicts the lo-

cation of dislocation nucleation, whereas the CRSS criterion is only approximate. The

advantages of the A-criterion over the CRSS criterion could be further appreciated

as follows: The A-criterion is parameter-free for a given lattice structure and inter-

atomic potential. Dislocation nucleation occurs as a natural consequence of losing

the positive-definite property of the acoustical tensor Q(n). Moreover, the influence

of the stress state on instability is embedded in the L tensor. For the CRSS criterion,

the threshold needs to be calibrated and a fixed value of CRSS is unable to capture

accurately instability for various stress states.
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2.5 3D Nanoindentation-Induced Dislocation Nu-

cleation

In this section, we present 3D simulations of nanoindentation by a spherical indenter

to quantify the critical state of dislocation nucleation in single crystal Cu. Actual

experimental conditions are approached by creating a system size larger than that

attainable via atomistic simulations and by maintaining a quasi-static indentation

loading rate. Predictions are given as to when and where the dislocation will nucleate

within the crystal, and what slip mode the nucleated dislocation will take. The critical

stress state at the nucleation site is verified by the DFT calculation. The ideal shear

strength probed through nanoindentation, which is defined as the CRSS at the site

of the first homogeneous dislocation nucleation event, is evaluated. Finally, 3D MD

simulations are performed to verify predictive simulations qualitatively.

2.5.1 Load-Displacement Response

Indentation is simulated for a frictionless spherical indenter pressed into the (111)

surface of an anisotropic, elastic half space. The radius of the indenter is 500 A, the

approximate tip radius of a nominally sharp Berkovich indenter used in nanoindenta-

tion experiments. Extensive testing is undertaken to assess the effects of geometry of

the simulated system, imposed far-field boundary conditions, element type, and node

density by comparing with the Hertzian solutions for linear isotropic and anisotropic

elastic materials. The size of the simulated system is taken to be 3000 x 3000 x 6000

A. The choice of the elongated system along the indentation direction is based on the

study of FEM calculations of Vickers indentation by Giannakopoulos et al.[32], who

showed that the boundary condition error is minimized in this manner. The compu-

tational cost can be further reduced considering the three-fold rotation symmetry of

the (111) surface. In the simulation, the displacement along the bottom of the mesh is

constrained to be zero, while the displacements of lateral surfaces are unconstrained.

The force on the indenter will increase by about 5% if the traction-free boundary
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Figure 2-11: Load versus displacement curves of nanoindentation by a spherical in-
denter.

condition of lateral surfaces is changed to be fixed [53]. The graded mesh comprises

4-node linear brick elements. The typical size of elements near the indenter is about

10 A, and indentation proceeds in displacement-control. Figure 2-11 compares the

indentation responses predicted by the analytic solution given in section 3.2, FEM

simulations based on linear anisotropic elasticity and on interatomic potential-based

hyperelasticity. The FEM simulation based on linear anisotropic elasticity is in good

agreement with the analytic solution, while the force on the indenter from the FEM

simulation based on interatomic potential-based hyperelasticity is larger due to the

non-linear elastic effect generically termed "pressure-hardening", but which has been

discovered to be highly dependent on orientation [67]. The calculations are termi-

nated at an indentation depth of 50.3 A, when the onset of dislocation nucleation is

first detected via the dislocation nucleation criterion. The corresponding indentation

load is about 17.4 pN. Load-controlled nanoindentation experiments [95] on polycrys-

talline Cu films of different film thicknesses showed that the first burst in the P-h

57



(111)[211] (111)[211]

C

(111)[112]

xA

(111)[112]
[110]

(I11)[I21] _

[01](111)[121]

Figure 2-12: Illustration of dislocation nucleation sites and the corresponding slip
systems: top view of the indented (111) surface. Some important crystallographic
planes and directions are also projected into the (111) plane.

response occurs at a load of 35 ± 10 pN. This discrepancy between the predicted and

experimentally determined critical load is mainly due to the idealization of rounded

Berkovich indenter tip as a spherical indenter, and/or to various experimental un-

certainties such as estimated tip radius, surface oxidation and strong polycrystalline

texture in real films.

2.5.2 Prediction of Dislocation Nucleation

The dislocation nucleation sites are identified via the A-criterion. Figure 2-12 shows

the top view of the indented (111) surface. The global Cartesian coordinate system

is the same as that in the linear analysis. For the convenience of positioning nucle-

ation sites, the (r, 9, z) coordinate system is introduced, where (r, 9) are the polar

coordinates in the x1 - X3 plane and the coordinate z is the distance below the (111)
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surface. The important crystallographic planes and directions are projected into the

(111) plane as shown in Fig. 2-12. The (111) surface has a three-fold rotation sym-

metry about the [111] direction. The other three close-packed { 111 }-type planes,

represented by the shaded triangles in Fig. 2-12, are positioned symmetrically below

the (111) surface, and at an orientation of 1200 with respect to the [111] loading axis.

For 2D indentation discussed in the previous section, the (111) slip plane is favored

for dislocation nucleation due to the kinematic constraints imposed by the 2D nature

of the simulation. In contrast, three {111}-type slip planes beneath the (111) surface

are equivalent in 3D indentation.
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Figure 2-13: Contour of det[Q(n)] by 3D FEM simulation, the cross section plane is
X1 - x 2 plane.

Without loss of generality, the critical sites for dislocation nucleation on the (111)

slip plane are first identified. The corresponding spatial distribution of det[Q(n)]

is 3D in character, but it is symmetric with respect to the 9 = 27r/3 plane due to

the symmetry of the (111) slip plane about the 0 = 27r/3 plane. The distribution

of det[Q(n)] within the 9 = 27r/3 plane presents very similar characteristics to that

for the 2D case as shown in Fig. 2-9. As the detected sites deviate from the 9 =

27r/3 plane, the spatial distribution of det[Q(n)] changes. Two nucleation sites are

identified from the critical elements with vanishing det[Q(n)]. The projected positions
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of these two critical sites are schematically represented by points A and C in Fig. 2-

12. The contour of det[Q(n)] for the (111) slip plane is shown in Fig. 2-13. The

black color element with a small negative value of det[Q(n)] indicates the site of

nucleation. One nucleation site within the X1 - x 2 plane (0 = 0) is visible in Fig. 2-13

and it corresponds to point A in Fig. 2-12. The in-plane coordinate of this nucleation

site (in the undeformed coordinate system) is 92.7 A below the contact surface and

off the central axis by 96.5 A. For the present indentation simulation (indenter radius

R = 500 A and critical penetration depth h = 50.3 A), the nominal contact radius

a = Rh = 158.6 A. Thus, the nucleation sites are 0.58a below the contact surface

and displaced from the central axis by approximately the same distance, 0.61a.

The slip directions of the homogeneously nucleated dislocation are predicted by

the eigenvector analysis of the corresponding matrix Q(n). The deformation gradient

matrix FCrit corresponding to the critical element in Fig. 2-13 is

0.984 -0.011 0.000

Fcrit = 0.115 0.920 0.005 . (2.27)

L 0.000 -0.001 1.0641

The Cauchy stress, elastic constant and current slip plane normal are then calcu-

lated. The eigenvector analysis predicts that the slip vector g (in the global coordinate

system) is [0.630 0.346 0. 6 9 5]T, while the normalized slip vector calculated from the

classical relation gives g = FgO = [0.675 0.374 0 .63 6 ]T, where the initial slip vector

g' (in the crystal coordinate system) is [1 - 1 - 2 ]T. Accordingly, at the nucleation

site A, a Shockley partial slip along the [112] direction will develop within the (111)

slip plane. For the (111) slip plane at the nucleation site C, the Shockley partial

slip direction is determined to be along the [211] direction by taking into account the

symmetry of the (111) plane with respect to the 0 = 27/3 plane.

Similarly, the nucleation sites and slip modes for the (ill) and (111) slip planes

are determined based on three-fold symmetry of the (111) surface. In summary,

there are three symmetrically distributed dislocation nucleation sites below the (111)
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Table 2.2: Positions and slip systems of homogeneously nucleated dislocations
Nucleation Site Position (r, 0, z) Slip systems

A 0.61a, 0, 0.58a (111)[112] & (111)[mi2]
B 0.61a, 27r/3, 0.58a (111)[121] & (111)[121]
C 0.61a, 47r/3, 0.58a (111)[211] & (111)[211]

surface, as designated schematically by the points (A, B, C) in Fig. 2-12. At each site,

two slip planes are equally likely to be activated. Table 2.2 summarizes the positions

and slip systems at each nucleation site. In previous studies [95, 35], the maximum

equivalent shear stress criterion is used to identify the dislocation nucleation sites.

From the Hertzian contact solution based on linear elasticity [42], the only potential

dislocation nucleation site is along the central axis at a depth of 0.48a.

2.5.3 Ideal Shear Strength of Cu

One of the potential applications of nanoindentation is the experimental characteri-

zation of the ideal shear strength of the material. The correlation of the ideal shear

strength with the onset of P-h discontinuity has been made by stress analysis from

the Hertzian contact solution based on linear isotropic elasticity, see Gerberich et al.

[31] for Si, Kiely et al. [47] for Au, Suresh et al. [95] and Gouldstone et al. [34] for

Al and Cu. A recent study by Krenn et al. [50] gave a better connection between the

atomistic and experimental estimates of ideal shear strength of W and Mo by taking

into account non-linear elastic effects. The detailed ab initio DFT calculations for

affine shear deformation of Cu and Al by Ogata et al. [67] showed that the ideal shear

strength strongly depends on the triaxial stress state. In this subsection, the ideal

shear strength of Cu is obtained from the critical shear stress resolved in the Shock-

ley partial slip direction at the dislocation nucleation site. Though the value of ideal

shear strength is not uniquely defined and depends on the deformation history and

state at the point of instability, the ideal strength probed through nanoindentation

provides a means to quantify this mechanical parameter experimentally.
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Substitution of the deformation gradient matrix Eq. (2.27) into Eq. (2.7) give the

Cauchy stress in the global coordinate system

-0.79 -5.86 0.22

U.Mishin = -5.86 -19.38 0.49 GPa. (2.28)

L0.22 0.49 -4.61

Using the same deformation gradient in Eq. (2.27), the ab initio DFT calculation

following the scheme by Ogata et al. [67] gives the Cauchy stress

--0.59 -5.90 0.21

oDFT = -5.90 -19.24 0.48 GPa. (2.29)

0.21 0.48 -5.41

The agreement between the above two calculations demonstrates the accuracy of

quantitative characterization of the critical stress state from FEM simulations via the

Mishin potential. The ideal strength, e.g., resolved shear stress in the (11)[112] slip

system, is then calculated to be 4.56 GPa, and the corresponding triaxial stress is

-8.26 GPa. Compared to the fully relaxed pure shear deformation calculation (the

ideal shear strength of 2.16 GPa and triaxial stress of zero) by Ogata et al.[67], the

ideal shear strength probed by nanoindentation is greater by a factor of two, due to

the large triaxial stress at the critical site of dislocation nucleation.

2.5.4 MD Simulation

Direct MD simulations conducted for a smaller system at a comparatively high in-

dentation loading rate (about 6 m/s) qualitatively verify the prediction of dislocation

nucleation via the A-criterion. A spherical indenter with a radius of 50 A is pressed

into the (111) surface of a Cu cube with an approximate side length of 100 A. Fig-

ures 2-14(a) and (b) show the bottom view (along the [111] direction) and the side
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[111]

[110]

(a) (b)

Figure 2-14: MD simulation of nanoindentation by a spherical indenter: atomic struc-
ture of homogeneously nucleated dislocations beneath the (111) surface: (a) bottom
view along the [111] direction; (b) side view along the [112] direction. The indenter
first contacts the green atom.

view (along the [112] direction) of three dislocation embryos nucleated on the inclined

{ 111 }-type slip planes beneath the surface, respectively. The perfectly coordinated

atoms within the bulk (N = 12) have been removed from the images for clarity, such

that only surface and imperfectly coordinated atoms are visible. The green atom in

Fig. 2-14(a) represents the first contact point between the indenter and the (111)

surface. In contrast to the formation of a straight dislocation line in 2D simulation,

the dislocation embryo nucleates as a group of atoms, and will expand into a partial

dislocation loop. Embryo size is indicative of the sequence of embryo nucleation, with

larger embryos nucleating at earlier time increments. In the MD simulation, it is ob-

served that the largest embryo shown in Figs. 2-14(a) and (b) first nucleates along the

(111) plane. Then, the medium-sized embryo nucleates along the (111) plane almost

simultaneously. The site and slip mode of this second embryo is symmetric to that

of the first embryo, with respect to x 1 - x2 plane. In the time increment shown in

Figs. 2-14(a) and (b), the smallest embryo has just nucleated. It will expand within

the same (111) slip plane as the first embryo and coalesce. These three, symmetri-

cally distributed nucleation sites observed in MD simulations agree with predictions

from FEM simulations via the A-criterion. The same distribution of nucleation sites
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and structure of dislocation embryos were also observed by Kelchner et al. [45] in

MD simulations of indentation on the (111) surface of Au. They further identified

the slip vector via the centrosymmetry parameter. For example, they observed that

the slip on the (111) plane is in the [121] direction, which agrees with the prediction

based on the eigenvector analysis of the A-criterion. Thus, the important features

of the homogeneously nucleated dislocations predicted by FEM calculations via the

A-criterion qualitatively agree with MD simulations, though the quantitative state

including the critical indentation load and stress field for dislocation nucleation differ

due to discrepancies in loading rate and system size.

In MD simulations for Cu given above and for Au by Kelchner et al. [45], it is ob-

served that at the very early stage of dislocation nucleation, the glide process always

occurs along two of the three inclined {111}-type slip planes. A three fold symmetric

defect structure is never obtained. The loss of the (111) surface three-fold symme-

try can be explained by examining the distribution and slip characters of nucleated

dislocations shown in Figs. 2-14(a) and (b) with reference to the predictions given in

Table 2.2 and Fig. 2-12. Though there exist three equivalent dislocation nucleation

sites and two possible slip planes at each site, the first nucleated two dislocations

along the (111) and (111) slip planes occupy each of two possible nucleation sites

for the (111) slip plane, respectively. Moreover, the two nucleated dislocations with

symmetric sites and slip modes could accommodate geometrically the deformation

imposed by the indenter penetration. Accordingly, the subsequent activation of the

glide process along the (111) slip plane is likely to be suppressed, as observed in MD

simulations.

2.6 Discussion and Summary

Nanoindentation-induced homogeneous dislocation nucleation in single crystal cop-

per has been analyzed within the framework of hyperelasticity with the Cauchy-Born

hypothesis. Homogeneous dislocation nucleation is interpreted as a strain localiza-

tion event triggered by elastic instability in a perfect crystal at finite strain. Since
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the constitutive model of interatomic potential-based hyperelasticity incorporates the

key crystal properties such as crystalline anisotropy and nonlinear elastic effects, it is

well-suited to the study of defect nucleation at the continuum level while maintaining

fidelity with the underlying atomistic response. The efficiency of the finite element

formulation permits the simulation of significantly larger systems than would other-

wise be possible. However, care must be taken in applying this approach for predictive

modeling of defect nucleation because the Cauchy-Born hypothesis is only valid when

the spatial variation of the continuum deformation field is gradual on the atomic scale.

For problems such as dislocation nucleation at an atomistically sharp crack tip [80],

the large strain gradient near the crack tip necessitates the use of the quasi-continuum

or direct atomistic methods which can account explicitly for non-local effects. How-

ever, in the present study of a relatively slowly varying deformation field imposed by a

50 nm-scale indenter radius, interatomic potential-based hyperelasticity is efficiently

and effectively utilized.

As the present simulations idealize indentation normal to an atomically flat sur-

face, it follows that the dislocation nucleates homogeneously within the crystal and

moves/grows to approach the free surface. This atomistic process is in contrast

with nanoindentation-induced heterogeneous dislocation nucleation from surface steps

[47, 125], a process subject to a much lower energy barrier that may significantly

decrease the simulated or experimentally measured critical load. Furthermore, we re-

stricted the present dislocation nucleation study to the idealized limit of behavior at

OK, and in the absence of specific effects of thermally activated processes. As a result,

the ideal shear strength obtained via 3D indentation simulation represents the me-

chanical threshold for nanoindentation-induced dislocation nucleation. The effect of

thermal motion on homogeneous nucleation of dislocation loops under a simple shear

stress state has been studied by Xu and Argon [115] using a variational boundary

integral method to determine the saddle point configuration and the corresponding

activation energy. They found that for perfect crystals such as Au, Cu, Al and Si,

the energy barriers are far too high for thermal motion to play a significant role in

dislocation nucleation, even under applied shear stress levels equal to half of the ideal
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simple shear strength. The activation energy for homogeneous dislocation nucleation

beneath the nanoindenter could be evaluated using the same scheme as Xu and Argon

[115]. FEM simulations of nanoindentation using interatomic potential-based hyper-

elasticity will provide a more realistic stress state beneath the nanoindenter, rather

than using a simple shear stress state as an input for activation energy calculation.

We conclude by noting that the study of defect nucleation within the framework of

hyperelasticity is not limited to simple FCC lattices and bulk homogeneous material

systems. Further extension of interatomic-potential-based hyperelasticity has been

made to other type of lattices, e.g., Tadmor et al. [99] and Smith et al. [89] for

nonsymmorphic crystal lattices such as diamond cubic Si, Arroyo and Belytschko [8]

for a one-atom thick carbon nanotubes, etc. Furthermore, the instability analysis

we employed to predict defect nucleation within the bulk can also be generalized to

study surface and interface instabilities, as well as homogeneous defect nucleation

at coherent grain boundaries with the aid of a generalized instability criterion at

interfaces (e.g., Needleman and Ortiz [66]). Such extensions will further demonstrate

the applicability of defect nucleation analyses within the framework of hyperelasticity,

and will enable the study of a wide range of phenomena at the continuum level,

while maintaining explicitly the atomistic interactions which govern the mechanical

response.
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Chapter 3

Dislocation Emission and Cleavage

Decohesion at Crack Tips

3.1 Dislocation Loop Emission from a Crack Tip

in Cu

3.1.1 Introduction

A central issue in understanding the ductile versus brittle behavior of solids is the

local response of an atomically sharp crack at critical loading [46, 82, 25, 80, 120, 13].

While it is widely recognized that cleavage decohesion and dislocation emission are

the two major competing modes of response, atomistically accurate analysis of dislo-

cation loop emission in the presence of a crack-tip stress field has not been carried out.

In this section, we perform reaction pathway analysis using a many-body interatomic

potential to determine the atomic configurations that make up the activated displace-

ment fields (shear and tensile) surrounding a crack tip under prescribed load, and the

associated energetics. In this way we obtain, in full atomistic details, a description

of the emission of an embryonic dislocation loop from the crack tip. Comparing our

findings with existing continuum-level treatments, we show that inclusion of atomic-

level details gives rise to quantitative corrections which are physically understandable.
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The implication of our results is that homogeneous nucleation [117] of a dislocation

loop at an atomically smooth crack tip in a ductile crystal like Cu is unlikely to be

a dominant process. It also follows that local structural heterogeneities, such as a

crack-tip ledge, are likely to govern the brittle-ductile response of a solid, for which

an atomic-level description along the lines presented here is now feasible.

From a continuum perspective, crack-tip dislocation emission corresponds to the

birth and shedding of a shear-type singularity (the dislocation) from the primary,

tensile-type singularity (the crack tip). Atomistically, the embryonic dislocation

emerges from the stressed crack tip as a distribution of shear displacements between

atoms across the slip plane [5]. As the applied strain energy release rate G increases

to the critical value for spontaneous dislocation emission, defined here as the ather-

mal Gemit, the incipient shear emanating from the crack tip loses its stability, which

leads to a fully formed straight dislocation that moves away from the crack. For

loads less than Gemit, dislocation emission can occur by overcoming activation energy

barriers via thermal fluctuations. This is a very localized process involving the un-

stable emission of a 3D dislocation loop from a crack tip [82]. Based on the Peierls

concept, the saddle-point configurations and the associated activation energies have

been calculated by recourse to the interplanar potential (7-surface) and approximate

numerical schemes of finding unstable transition states [84, 81, 116, 117]. Although

these continuum models provide great physical insights into the nucleation events, a

complete understanding of the thermally activated process of dislocation nucleation

necessitates a fully atomistic study of the emission of a 3D dislocation loop from a

crack tip.

3.1.2 Geometry and Method

Consider a semi-infinite crack in an otherwise perfect fcc single crystal Cu, schemat-

ically shown in Fig. 3-1. The straight crack front, lying on a (111) plane, runs along

the [110] direction. The activated slip plane under mode I loading is (111), inclined

at 0 = 70.530 with respect to the (111) crack plane. Our simulation cell consists of

a cracked cylinder cut from the crack tip, with radius R = 80A. The atoms within
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Figure 3-1: Orientations of the crack and the inclined (111) slip plane across which a
dislocation loop nucleates.

5A of the outer surface are fixed according to a prescribed boundary condition while

all remaining atoms are free to move. To capture the 3D nature of a dislocation

loop emitted from the crack tip, the simulation cell length along the cylinder is taken

to be suitably long, 61A, with periodic boundary condition imposed. The effects of

finite size on the simulation results will be discussed later. One layer of atoms is

removed to create a crack. The total number of atoms within the system is 103,920.

The interatomic interactions are modeled using the embedded atom method (EAM)

potential of Cu [65]. The stacking fault energy given by this potential is 44.4mJ/m 2,

the experimental value being 45mJ/m 2 . The unstable stacking energy 7u1 given by

the potential was fitted to the ab initio calculation, -yu = 158mJ/m 2 . To demonstrate

the accuracy of our atomistic calculations, we compare the stress distribution from

atomistic calculation shown in Fig. 3-2(a) with the analytic solution based on the

Stroh formalism [93], shown in Fig. 3-2(b) at the same load level K = 0.44MPafiii.

Atoms in Fig. 3-2(a) are color-coded according to the atomic stress. It is seen that

the atomistic calculation is in agreement with the singular, analytic solution up to a

few atomic spacing away from the crack tip. To reveal the overall agreement between

two calculations, the upper limit of the contour bar in Fig. 3-2 is set to 5GPa.

Prior to identifying the pathways of thermally activated dislocation nucleation,

we first determine the athermal load Gemit, the value at which the activation energy
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Figure 3-2: Distribution of o- under mode I load Kemit = 0.44MPa\/ii: (a) atomistic
calculation, (b) analytic solution. The stress on the contour bar is in unit of GPa.
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barrier for dislocation nucleation vanishes leading to an instantaneous emission of a

straight dislocation without thermal fluctuations. We apply incrementally a mode I

load G, or the equivalent stress intensity factor K. At each step, the initial positions

of atoms are set according to the anisotropic linear elastic Stroh solution [93]. Then

the system is relaxed using conjugate gradient method while the outer boundary is

held fixed. As in previous studies [20], at low loads we observed the emergence of an

embryonic dislocation in the form of a distribution of shear displacements of atoms

across the (Mii) slip plane in front of the crack tip. This incipient dislocation with

a straight core along the crack front is only partially formed in that the maximum

shear displacement between two crack-tip atoms across the adjacent (111) slip planes

is less than one half the Burgers vector b = ao/6[112] of a fully formed Shockley

partial dislocation, where ao = 3.615A is the lattice constant of Cu. As the applied

load increases to Gemit = 1.629 J/m 2 (or the equivalent Kemit = 0.508MPa/ il based

on the Stroh solution [93]), the metastable state (local energy-minimum) correspond-

ing to the atomic configuration with a partially formed dislocation disappears from

the energy landscape (spinodal instability). At this point a straight ao/6[112](111)

Shockley partial dislocation is emitted from the crack tip. The leading edge of the

newly formed dislocation moves away from the crack and stops against the fixed outer

boundary at about 40A from the crack tip, laying down a stacking fault in its wake.

As both the crack front and outer boundary of the simulation cell are translationally

invariant with respect to the x 2 direction, the final energy-minimized state also pos-

sesses a straight dislocation parallel to x 2 axis. We note that the athermal Gemit from

the present atomistic calculation is higher than the value given by analytic criterion

Gemit = 87us,/[(I + cos6) sin 2 6] = 1.067 J/m 2 [80], as the latter was derived with-

out considering the resistance to crack-front surface production in association with

dislocation emission [119, 116, 83].

For a given load below Gemit, we use the nudged elastic band (NEB) method [43] to

determine the minimum-energy path (MEP) [43] of a partial dislocation loop bowing

out from the initially straight crack front. In configurational space, the state with

the highest-energy along the MEP is the saddle point on the edge of the energy basin
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enclosing the initial state. For each NEB calculation at a given G, the initial state is

taken as the relaxed configuration initially set according to the linear Stroh solution

as introduced above. It is relative to this state that an embryonic dislocation with a

straight core emerges and remains stable near the crack tip. In contrast, the final state

contains a fully formed Shockley partial dislocation. This local energy-minimum state

is obtained by unloading the simulation cell embedded with a pre-existing Shockley

partial dislocation which is generated by loading the system above Gemit. Then a

discretized path consisting of 15 replicas of the system is constructed to connect the

initial and final states. The calculation is considered converged when the potential

force on each replica vertical to the path is less than 0.005eV/A. Based on the result

of NEB relaxation, we use the dimer method [36] to refine the calculations of both

the saddle-point configuration and the associated activation energy AEact. The latter

is defined as the energy difference between the saddle point and initial state. The

replica with the highest energy from a converged NEB relaxation is taken as the initial

input to the dimer method. For the final relaxed dimer, we find the local curvature

of energy surface along the dimer direction to be negative and the potential forces on

two images in the direction of the dimer are 0.003eV/A and -0.003eV/A, respectively,

the opposite sign indicating the two images are sitting on two sides of the saddle

point. The rotational force, which is the net force acting on one of the images vertical

to the direction of the dimer, is less than 0.001eV/A.

3.1.3 Results and Discussions

The MEP of a dislocation loop bowing out at a typical load G = 0.75Gemit is shown

in Fig. 3-3. With the initial-state energy as a reference, the energy variation AE

along the MEP can be seen. The normalized reaction coordinate is defined as the

ratio between 1, the hyperspace arc length along the MEP from the initial to the

current state, and 10, the total arc length along the MEP. The continuous energy curve

is obtained by cubic-polynomial interpolation of the calculated energies of replicas,

indicated by circles, with the aid of the potential force projected in the direction of the

path on each replica [37]. The activation energy AEact from the refined calculation
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Figure 3-3: The minimum energy paths for nucleating a dislocation loop (solid line)
and a straight dislocation (dashed line).

using the dimer method is 1.1eV. For comparison the MEP of nucleating a straight

dislocation in the present simulation cell is also shown. Note that the activation

energy of nucleating a straight dislocation is known to diverge with increasing length

of crack front [84, 81, 116]. However, for the present calculation with a finite size of

simulation cell, the process of emitting a straight dislocation represents a competing

nucleation mechanism for the same set of initial and final states. As the length of

simulation cell along the x2 direction has already been taken to be sufficiently long,

it is seen that activation energy barrier AEact for nucleating a 3D dislocation loop is

lower than that for a straight dislocation. The difference in AEact from the refined

calculations using the dimer method is about 0.31eV.
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Figure 3-4: The saddle-point configuration at G = 0.75Gemit under mode-I load. (a)

Atomic structure of dislocation loop. Atom color indicates coordination number N:
light pink, N = 9, green, N = 10, dark pink, N = 11, blue, N = 13, atoms with
perfect coordination N = 12 are made invisible; (b) Contour plot of shear displace-
ment distribution across the slip plane; (c) Contour plot of opening displacement

distribution.
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Along the MEP of nucleating a 3D dislocation loop, dislocation emission is seen

as a localized outward protrusion from the straight crack front. This incipient bulge

expands subsequently by spreading out in both the forward and lateral directions. The

atomic structure of the saddle-point configuration obtained from the dimer method is

shown in Fig. 3-4(a), where all the perfectly coordinated atoms are removed for clarity,

and the remaining atoms are those in the core of the protruding dislocation loop,

along with those on the crack surfaces. Figure 3-4(b) shows the distribution of shear

displacement in the x1 direction across two adjacent (111) slip planes containing the

dislocation loop shown in Fig. 3-4(a). The continuous shear distribution is obtained

by cubic-spline interpolation of the calculated shear displacements, normalized by

b = ao/vf6 = 1.476A, at discrete lattice sites. It is evident from Fig. 3-4(b) that the

embryonic dislocation develops in the form a non-uniform distribution of shear across

the slip plane. The maximum shear occurs right at the crack front with a value of

1.13b, while minimum shear along the crack front is 0.41b. The contour line of b/2

shear displacement (in green color) represents approximately the locus of dislocation

core as shown in Fig. 3-4(a). Within the region enclosed by the dislocation loop, slips

between pairs of atoms across the slip plane are around one b, indicating this part of

the crack tip has been swept by a fully formed dislocation. In contrast, for pairs of

atoms outside the loop, the slips are less than b/2. Additionally, Figure 3-4(a) shows

that the coordination numbers of two rows of crack-front atoms within the end points

of the loop change from values of 9 and 12 at the initial state to 10 and 11 at the

transition state respectively, signifying crack-front surface production [119, 116, 83].

The normal stress across the slip plane is also of interest since it has the effect

of reducing the resistance for dislocation nucleation [116]. Figure 3-4(c) shows the

corresponding distribution of opening displacement between the same pair of adja-

cent (111) planes, normalized by the interplanar spacing h = ao/V/ = 2.087A. The

maximum opening also occurs at the crack front with a value of 0.12h. A ring of rel-

atively large opening displacements (in light-blue color) develops ahead of the crack,

corresponding to the loop shown in Figs. 3-4(a) and (b). This is the locus of the

dislocation core where large shear-induced dilations exist across the slip plane.
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Further comparison of the present atomistic results relative to continuum-level

findings [81, 116] shows quantitative differences in the contour of the saddle point

configuration and the magnitude of the activation energy. One should keep in mind,

however, that besides differences in the methods used and the way constitutive behav-

ior are specified, the previous studies were concerned with mode II loading where the

activated slip is along the crack plane and the effects of shear-tension coupling and

surface-production resistance are known to be weak. Figure 3-4(b) indicates that, at

the saddle-point state, the dislocation has extended in the forward direction by about

10b and spreaded out along the crack front by about 30b. Previous results on the

saddle-point loop configuration [81, 116, 117] showed forward and lateral extensions

of less than 5b and 20b, respectively. For the activation energy AEact, the present

result of 1.1eV is significantly larger than a first continuum estimate, based on a per-

turbative approach, of 0.18eV [81] and a second, improved estimate of 0.41eV using

a more flexible representation of the incipient dislocation loop [116]. It is physically

reasonable that the atomistic treatment should give a higher value than a continuum

description since the former is presumably capable of capturing more fully the effects

of surface production on the atomic level.

The activation energy allows one to estimate the rate of thermally activated dis-

location nucleation. Nucleation from a straight crack front, commonly referred to as

homogeneous nucleation [117], should be distinguished from nucleation from discrete

heterogeneities along the crack front, such as a ledge, where local crack-front reori-

entation facilitates nucleation of a screw dislocation, involving no significant surface

production and therefore lower thermal activation barrier[121, 117]. For the present

problem of homogenous nucleation, the frequency of nucleation events per unit dis-

tance along the crack front can be estimated from v = n(cshear/b) exp (-AEact/kBT)

[81], where cshear = 3km/s is the shear wave speed, and n = 1/30b the number of nu-

cleation sites per unit length of crack front. Here, 30b is taken in light of the range that

the loop spreads out along the crack front laterally. Then one finds v 1.0/(s - mm)

at room temperature. Taking v ~ 10 6 /(s . mm) to be the threshold for thermally

activated nucleation in metal in laboratory measurements [81], we conclude that ex-
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perimental observation of homogeneous nucleation is unlikely. On the other hand,

the presence of any heterogeneity along the crack front can significantly reduce the

activation energy for a local process [117, 121]. For any specified heterogeneity, the

atomistic method presented in this work should be applicable.

We conclude by commenting on the size effect of our simulation cell. It has been

shown that attraction between neighboring loops, due to periodicity along the crack

front, leads to an underestimate of AEact, and a period of 32b is sufficient to obtain

an accurate value for the activation energy of an isolated loop [116]. Our choice of

simulation cell with a period of about 40b is based on this result. Regarding the effect

of in-plane radius R of the cell, we have seen in Fig. 3-4 that the dislocation loop at

the saddle-point configuration is localized near the crack tip. Hence, the effect of cell

boundary on the transition state is expected to be much weaker than that on the final

state, where the equilibrium location of a fully formed dislocation sensitively depends

on the size of the simulation cell. We have studied finite-size effects in the nucleation

of straight dislocation which is computationally less demanding. The 2D nature of

the problem requires only a thickness of about 10A along the crack front following

the minimum-image convention. Comparing the values of AEact for R = 80A and

120A, we find the difference is less than 6%. We therefore believe that size effects

should not affect the accuracy of the saddle-point configuration and the activation

energy reported here.

3.2 3D Lattice Trapping Barriers to Brittle Frac-

ture of Si

3.2.1 Introduction

Ample experimental evidence (e.g., Wiederhorn [112]; Lawn [55]) has indicated that

cracks in many brittle solids are able to undergo quasi-static extension under sus-

tained, constant loading, at least for a suitably restricted range of loads. One of

the key microscopic steps controlling this time-dependent crack growth is the stress-

77



mediated, thermally activated bond breakings at the crack tip, either with or without

the aid of reactive foreign species from the environment. The microscopic energy bar-

riers that limit the kinetic rate of crack tip bond breaking are the so-called "lattice

trapping" barriers (Thomson et al. [1001). Specifically, the total energy of a cracked

body under stress is not a smooth function of crack length microscopically. Due to the

periodicity of the discrete lattice, the energy landscape fluctuates at the atomic scale.

As a result, the crack tip may be trapped within a well of local energy minimum on

the energy surface, as a dislocation is trapped by the Peierls barrier. The mobility

of the crack is then controlled by the stress-mediated activation energies, which are

the barrier heights of the saddle points on the separatrices of the present energy well.

In addition, it was further recognized that quasi-static crack extension is inherently

a 3D process involving a series of localized bond breaking events at the crack front

(Lawn [54]; Thomson et al. [101]; Marder [60]). Hence, to provide a realistic estimate

on the kinetic rate of crack growth, it is essential to characterize the lattice trapping

effect quantitatively in a 3D setting.

Despite recent progress in the experimental techniques of probing the atomic struc-

tures near crack tips (e.g., Celarie et al. [17]; Wiederhorn et al. [113]), computer

simulation remains the most effective way of studying the atomic process of crack tip

bond breaking (e.g., Sinclair and Lawn [87]; Sinclair [88]; Spence et al. [91]; Perez and

Gumbsch [73, 74]; Bernstein and Hess, [13]). As a continuing effort along this line, we

report in this paper the first atomistic calculation of 3D lattice trapping barriers to

brittle fracture of Si in vacuum. The study is carried out by systematically probing

the potential energy surface of a cracked system calculated using the Stillinger-Weber

(SW) interatomic potential (Stillinger and Weber [92]). We quantitatively determine

the transition pathways of localized bond breaking at the stressed crack front using an

effective configurational space exploration scheme, the nudged elastic band method

(Jonsson et al. [43]). The calculated energy variations along transition pathways

reveal the energetics of crack front kink-pair formation and migration. It follows

that the origin of the directional dependence in cleavage crack propagation can be

explained in terms of the difference in the energetics of kink-pair formation for two
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different crack orientations. Moreover, it is conceivable that, with the geometries and

energetics of crack front kink pairs presented in this paper as input, a coarse-grained

study of the time evolution of crack front morphology becomes feasible along the lines

of Lawn [54] and Cai et al. [16, 15].

3.2.2 Model and method

Geometry

The system studied is a (111) plane cleavage crack in Si with a straight crack front

along the [110] and [112] directions, respectively. For the convenience of later com-

parison, the first crack orientation is denoted as the (111)[110] crack, while the second

is the (111)[112] crack. To contrast the structural differences, figures 3-5(a) and (b)

show the relaxed atomic configurations near the crack tip for two crack orientations at

respective Griffith critical loads, to be determined in section 3.2.3 and section 3.2.4.

For both orientations, the atomistic simulation cell consists of a cylinder cut from the

crack tip (Zhu et al. [123]), with the cylinder radius R = 80A. Atoms within 5A of

the outer surface are fixed according to a prescribed boundary condition based on the

displacement field of anisotropic linear elastic Stroh solution (Stroh [93]; Suo [94]),

and all remaining atoms are free to move. To reveal the 3D nature of crack front

extension, the simulation cell length along the cylinder is taken to be suitably long,

20 unit cells, with a periodic boundary condition (PBC) imposed. Since the 12-atom

unit cell we take for Si is orthorhombic, the length of the simulation cell along the

cylinder direction, 1, as well as the total number of atoms within the system, N,

are different for the two crack orientations. For the (111)[110] crack, 1 = 76.8A and

N = 77,200; while for the (111)[112] crack, 1 = 133.OA and N = 133,760. For both

orientations, the coordinate system is taken such that the x' axis is along the crack

front direction and the x' axis is (111). Thus, cracks extend in the direction along

the x' axis.
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(a)

(b)

Figure 3-5: Atomic configurations near the crack tip: (a) the (111)[110] crack; (b)

the (111)[112] crack
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Table 3.1: Lattice parameter (in A), elastic
shuffle plane surface energy (in J/m 2) Of Si

constants (in GPa) and relaxed { 111}

Potential ao C11 C12 C44 'Y

Expt. 5.429a 167a 65a 81a 1 .2 4b

SW 5.431 162 82 60 1.45
EDIP 5.430 175 62 71 1.05

a: Balamane et al. [10]; b: Spence et al. [91].
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Figure 3-6: Cohesive responses of cleaving a single crystal of Si along the { 111}
shuffle plane: The solid line is for the SW potential and the dashed line for the EDIP
potential.
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Interatomic potentials

The main results presented in this paper are calculated using the three-body Stillinger-

Weber potential (Stillinger & Weber [92]). The material properties, including lattice

parameter, elastic constants, and relaxed {111} shuffle plane' surface energy, are

listed in table 3.1. For comparison, these properties are also calculated using the en-

vironment dependent interatomic potential (EDIP) (Bazant et al. [12]; Justo et al.

[44]) and given in table 3.1. Due to the short-ranged nature of the two potentials

(Holland and Marder [41]), the cleaved {111} surfaces are the ideal 1 x 1 type with-

out reconstruction. Figure 3-6 shows the cohesive responses of uniformly cleaving a

perfect crystal of Si along the { 111} shuffle plane into two blocks calculated from the

two potentials. Here, surface traction is plotted as a function of opening displacement

normalized by the equilibrium interplanar spacing do = V/3ao/4 = 2.35A. We first

note that, in order to integrate these curves to obtain the correct surface energy, the

tractions calculated from the short-ranged SW and EDIP models are generally larger

than the real value needed for the same interplanar separation (Holland and Marder

[41]). Comparing the two potentials, besides a spurious bend on the rising branch of

the EDIP potential, significant differences are seen in the peak stress as well as in

the slope on the falling side of the cohesive response. That is, beyond the interplanar

separation of respective traction peaks, the traction calculated from the SW potential

decreases smoothly to zero, while the response from the EDIP potential exhibits a

sharp drop. It has been an intensively investigated topic regarding the influence of

the interatomic force law on the lattice trapping effect (Sinclair [88]; Thomson et

al. [101]; Curtin [22]). Based on the analyses of a series of simplified interatomic

force laws, it was found that the slope of the falling side of the force law critically

affects the loading range within which the lattice trapping effect exists (Thomson et

al. [101]). The effect of the SW and EDIP potentials on lattice trapping barriers will

be discussed in section 3.2.5.

'For Si with a diamond-cubic structure, there are two types of {111} plane: one is the shuffle
plane which cuts through single covalent bonds along the direction perpendicular to the { 111} plane
and the other is the glide plane which cuts through triplets of covalent bonds inclined equally to the
{111} plane.
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Finding transition pathways of crack extension at different loads

The crack studied is under a pure mode I load as given by the stress intensity fac-

tor K 1. An atomistically faithful characterization of lattice trapping barriers requires

calculations being able to accurately capture the fine structures of the system's atom-

istic energy landscape. To this end, we employ the Hessian-free Nudged Elastic Band

(NEB) method (Jonsson et al. [43]) to determine the transition pathways of crack tip

bond breaking and calculate the associated activation energy barriers. The NEB cal-

culation requires a knowledge of both initial and final states. In other words, we need

to identify two different local energy minima on the same potential energy surface

mediated by K1 . For the present simulation setup, both the initial and final states

are well-defined. That is, they correspond to the equilibrium atomic configurations

before and after crack extension in the x' direction by one atomic spacing, denoted

by Aa. Note that the K-field load is applied via the displacement-controlled method,

which requires that the positions of atoms at the outer boundary of the simulation

cell are the same for both the initial and final states, as well as the same for those

intermediate states along the pathway. After both the initial and final states are

identified using the energy minimization scheme, a discrete elastic band consisting

of a finite number of replicas of the system is constructed to connect them (Jons-

son et al. [43]). The final relaxed pathway is the so-called Minimum Energy Path

(MEP). The MEP is defined as a continuous path in 3Nf dimensional configurational

space (Nf is the number of free atoms) with the property that at any point along

the path the atomic forces are zero in the 3Nf - 1 dimensional hyperplane perpen-

dicular to the path (Sorensen et al. [90]). The energy maximum along the MEP is

the saddle-point energy which gives the activation energy barrier. The calculation is

considered converged when the configurational force on each replica vertical to the

path is less than 0.002 eV/A. Of particular note is that, in any NEB calculation, the

reaction coordinate is unknown a priori and emerges as a natural result from the

converged pathway. Specifically, we define the hyperspace arc length along the MEP,

i.e., fMEP dX3Nf - dX3Nf, as the reaction coordinate, where X3Nf denotes a state in
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the hyperspace. Empirically, the bond length of the breaking Si-Si bond has been

taken as an approximate reaction coordinate (e.g., Bernstein and Hess [13]). This

approach of calculating the energy barrier corresponds essentially to finding the max-

imum point along a path which is constructed by connecting all the energy minima

within a series of hyperplanes vertical to a specific direction, i.e, the direction AX3Nf

corresponding to the degree of freedom represented by the Si-Si bond distance in a

multidimensional hyperspace. Obviously, it is only in some cases (e.g., dX3Nf ' AsX3Nf

is always positive) that this path may agree with the MEP defined above and thus

give an exact result for the activation energy barrier. But our calculations confirm

that, due to localized nature of Si bond breaking, the path obtained from the calcu-

lation using the empirical reaction coordinate of the Si-Si bond length is close to the

actual MEP in that they give the same transition states and barrier heights. Thus,

the relatively abstract, though physically rigorous, reaction coordinate obtained from

the NEB calculation can be approximately understood as the bond length of the

breaking Si-Si bond. Nevertheless, the NEB method represents a more robust way of

calculating the barrier height; it can be directly applied to study more complicated

transition pathways when bond breaking involves foreign chemical species (e.g., Zhu et

al. 2004b, submitted). Also note that for the same initial and final states, there may

exist several competing pathways with different activation energy barriers. Along the

same pathway, multiple saddle points may exist, and the kinetic barrier is determined

by the highest saddle point.

3.2.3 Formation and migration of kink pair for a (111)[110]

crack

In this subsection, we present results on the study of a (111) crack with a straight

crack front along the [110] direction using the SW potential. This crack orientation

has been used in most 2D simulations of Si cleavage fracture in the literature.
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Griffith critical load KIG

We first determine the Griffith load KIG, at which the change in the system's total

energy AE is zero when the crack extends in the [112] direction by one atomic spac-

ing Aa, with borders fixed. Corresponding to the present setup with 20 unit cells

along the [110] direction (PBC), 20 bonds need to be broken along the crack front to

accomplish this process. The value of KIG can be estimated from the relaxed surface

energy 7, using the Griffith relation in linear elastic fracture mechanics (LEFM) (e.g.,

Rice [76]). That is,

AE = (9c - 27')AA = 0, (3.1)

where gc denotes the critical strain energy release rate and AA = lAa is the area of

newly created surface. For a linear elastic, anisotropic solid, 9c is related to KIG by

1
9c = 4 H2 '2 K2G, (3.2)

where H2 2' is the effective compliance of the cracked system within the x' - x' plane

and it is the 22 component of the matrix H defined by equation (2.13) in the paper

of Suo [94]. Note that H was defined in terms of elastic constants Cyij in the global

coordinate system (Xi, X', X') where the crack front is along the x' axis. For the

(111)[110] crack, the computed H21 21 is 2.692 x 10- 11Pa- 1 using the elastic constants

given by the SW potential as listed in table 3.1. Then substitution of H2,2, and

surface energy ' , into equations (3.1) and (3.2) gives an estimate of the Griffith load

KIG = 0.656 MPav/ii. On the other hand, direct atomistic calculation to be detailed

in the next subsection gives a numerical result of KIG = 0.646 MPav/iii. The good

agreement in KG attests to the accuracy of atomistic calculation.

2D vs. 3D crack extension at KIG

Two competing pathways in our atomistic simulation are studied that advance the

crack along the [112] direction by one atomic spacing. In this subsection, we focus on
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Figure 3-7: Energy variation along the MEPs of breaking 20 crack front bonds at
the Griffith load KIG = 0.646 MPaV iii: (a) simultaneous breaking; (b) sequential
breaking.
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comparing the overall features of the two pathways and leave the detailed discussions

on the 3D pathway into the next subsection.

The first pathway is characterized by breaking every bond along the crack front

simultaneously. This is essentially a 2D fracture mode since what happens within

a unit cell is repeated along the crack front direction. The corresponding MEP

can be simply calculated using a 2D crack configuration. That is, only one unit

cell is needed along the crack front with PBC imposed. Obviously, the activation

energy barrier will grow linearly with the thickness of the simulation cell in the crack-

front direction. For later comparisons, figure 3-7(a) shows energy variation along the

MEP of simultaneously breaking 20 bonds along the crack front. Here, the circles

represent the calculated energies of the replica configurations and the continuous

curve is constructed by cubic-polynomial interpolation. The reaction coordinate is the

normalized hyperspace arc length along the MEP. It is first seen that, in advancing

the crack by one atomic spacing along the [112] direction, the net change in total

energy between the initial and final states is zero, at KIG = 0.646MPa/iii. This

value is obtained by trial-and-error searches in balancing the initial with final state

total energies. Evidently, at the Griffith load KIG, energy change is zero due to

the cancellation between the elastic energy decrease and the surface energy increase.

Moreover, the MEP shown in figure 3-7(a) has only a single peak with the activation

energy barrier of about 12.85 eV, corresponding to an average of 0.64 eV per crack-

front bond. We note that the present estimate of the barrier height per bond for

the 2D fracture mode, obtained by using a reasonably good empirical potential and

a highly accurate scheme of finding the transition state, is considerably higher than

those predicted by Sinclair [88] using highly simplified interatomic force laws, which

are in the range of 0.01 to 0.03 eV at the Griffith load corresponding to the interatomic

potential he used.

In contrast to the first pathway which is 2D in nature, the second pathway in-

volves breaking 20 bonds sequentially along the crack front and hence the process is

inherently 3D. Energy variation along the 3D MEP is shown in figure 3-7(b). Here,

the normalized reaction coordinate s is defined such that breaking one bond will in-
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crease s by one. Thus each integer number s labels a locally equilibrated state with

s broken bonds on the crack front and the intermediate coordinate between s and

s + 1 is the normalized hyperspace arc length along the MEP of further breaking

the (s + 1)th bond. Correspondingly, each red circle in figure 3-7(b) represents the

energy, in reference to that of the equilibrium state with a straight crack front, of a

metastable state of local equilibrium with s broken bonds on the crack front. The

curve with a single peak connecting two adjacent circles gives the energy variation

along the MEP of further breaking one more bond. Note that, for clarity, we only

plot the interpolated curve indicating the continuous energy variation along the MEP

and leave out the discrete data points corresponding to the calculated energies of 15

relaxed replica configurations between two adjacent circles. The detailed analysis on

energy variation along this 3D transition pathway will be given in the next subsec-

tion. However, the overall kinetic rate for the second mechanism can be determined

by the maximum barrier height which corresponds to the saddle point on the MEP

of breaking the 11th bond. Hence, the kinetic barrier is about 2.02 eV for the second

pathway.

Comparing energy variations along the two transition pathways at KIG, which

have the same initial and final states, we quantitatively confirm that even for the

present simulation cell with nanoscale thickness (76.8 A) along the crack front, the

3D extension mode is far more favorable kinetically than the 2D mode for cleavage

crack propagation. Therefore, in the rest of the paper, we will focus on the energetics

of 3D extension under different load levels and for different crack orientations.

Geometry and energetics of the crack-front kink pair at KIG

The detailed discussion on the 3D cleavage mode is given in this subsection. Figure 3-

8 shows the geometry of the crack front for a representative state of local energy

minimum with 10 broken bonds. A continuous field of crack opening displacement

across the two adjacent (111) planes are rendered by cubic-spline interpolation of the

opening displacements at discrete lattice sites, normalized by the interplanar spacing

do. Readers should be aware that this is just an effective way of visualizing completely
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Figure 3-8: Distribution of opening displacement across the (111) cleavage plane for
the (111)[110] crack. The kink pair consists of 10 broken bonds on the crack front.

discrete atomistic calculation results. It is seen that two kinks of opposite signs with

sharp features are developed locally on each side of the advanced crack front. This

highly localized mode of crack opening distribution is in distinct contrast with our

previous result of crack-tip nucleation of embryonic dislocation loop in an FCC Cu

crystal which exhibits a significant spreading of shear fault distribution across the

glide plane (Zhu et al. [123]). More importantly, this demonstration of localized

bond-breaking in a covalent solid lends support to our unit-process studies of bond-

strength reduction by water molecules to address the problem of environmental effects

on crack-tip bond breaking (Zhu et al. 2004, in preparation).

Since the crack front with s broken bonds is characterized by a pair of kinks with

opposite signs, it is convenient to describe the evolution of crack-front morphology in

terms of kink-pair formation and kink migration. Consider first the kink-pair energies

as given by the circles in figure 3-7(b). Now we extract those data points and replot

them in figure 3-9(a). In other words, the bottom envelope of figure 3-7(b) is shown

in figure 3-9(a). Also, we show in figure 3-9(a) the kink-pair energies for a larger

calculation consisting of 30 unit cells along the crack front (I = 115.2A), but with

otherwise identical setup. It is seen that, in both cases, to break the first bond beyond

the straight crack front requires an input of extra energy from the thermal reservoir.

This trend of energy increase is sustained in the subsequent bond breaking. However,

the energy increment associated with further bond breaking will gradually decrease as

the separation of kink pair, denoted by dKink, increases. Consequently, the kink-pair

energy approaches an asymptotic constant as dKink becomes large enough. To model
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Figure 3-9: Lattic trapping barriers at KIG: (a) Kink pair formation energies for
the simulation cell with 20 (solid line) and 30 (dashed line) bonds along the front,
respectively; (b) Selective MEPs of breaking 1st, 2nd, 5th, 8th, 10th bond on the
crack front.
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the effect of kink-pair separation, the system's total energy (in reference to a straight

crack front) can be partitioned into dKink-independent and dKink-dependent parts.

The latter is the interaction energy EKink-Int between two kinks of opposite signs

separated by dKink, and the former is twice the self energy EKink-Self of an individual

kink. That is to say, we write

AE = 2 EKink-Self + EKink-Int(dKink) (3.3)

for the ideal situation of a kink pair embedded in an infinitely long, and otherwise

perfectly straight, crack front. Following the theory of dislocation kinks, we conjec-

ture that EKink-Int(dKink) is of algebraic form -Cd-nk with a > 1, and the constant

C should depend only on the elastic constants of the material and geometric char-

acteristics of the kinks. In other words, EKink-Int(dKink) is asymptotically a smooth

function describing the elastic interaction between two opposite kinks. EKink-Self then

contains all the remaining atomistic energetic information, and can be interpreted as

the formation energy of an isolated kink on crack front.

From figure 3-9(a), the self energy EKink-Self estimated from the plateau of the

solid line, which comes from the simulation cell of 1 = 76.8 A, is about 0.80 eV. This

value is very close to an estimate of 0.81 eV from the thicker, 1 = 115.2 A simulation

cell. Furthermore, figure 3-9(a) shows that a further increase of dKink beyond 1/2

will decrease the kink-pair energy. This arises due to image interactions, as we are

not actually in the ideal situation of equation (3.3) of an infinitely long crack front.

Specifically, when dKink > 1/2, the attractive interaction from the image of the other

kink in the neighboring simulation cell will begin to dominate, leading to a decrease

of the total energy. Because by construction, the initial and final states in advancing

the crack by one atomic spacing in the x' direction, i.e., the crack front at x' = 0 x Aa

and 1 x Aa, have the same energy at KIc, it is straightforward to show that after the

image interactions have been taken into account, the kink pair energy in the PBC cell

should be roughly symmetric with respect to dKink = 1/2. Fortunately, it appears from

numerical results that EKink-Int(dKink) is a rapidly decreasing function with dKink, SO
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even with image interactions present, we can still unambiguously determine EKink-Self

to be around 0.8 eV.

Consider next the kinetic barriers for kink migration. Recall that each curved seg-

ment connecting two adjacent circles in figure 3-7(b) represents the MEP of migrating

a kink laterally by one atomic spacing. To facilitate comparison of kink migration

barriers at different dKink values, we show in figure 3-9(b) the MEP of breaking the

1st, 2nd, 5th, 8th, 10th bond, respectively. These curves in figure 3-9(b) are essen-

tially the folded and magnified presentations of the "cusps" in figure 3-7(b), with the

energy reference for each curve being that of the initial state of breaking an individual

bond, so all curves start from zero. Also shown in figure 3-9(b) are the data points

of the computed energies of replica configurations along each pathway. It is seen

first that breaking each individual bond from the 1st to the 10th is thermodynam-

ically unfavorable in that the final state has a higher energy than the initial state.

Moreover, the kinetic barrier for a forward transition will decrease, from 0.86 eV of

breaking the first bond to 0.44 eV of breaking the 10th bond. As the number of

broken bonds, i.e., the separation between two kinks dKink, increases, the migration

barrier will approach an asymptotic value corresponding to the kinetic barrier of mi-

grating an isolated kink, denoted as EKink-Migr. This value is given approximately by

the barrier height of breaking the 10th bond determined to be 0.44 eV. In addition,

we compare the present dKink-dependent kinetic barrier of breaking a bond with the

barrier height per bond for the 2D pathway in section 3.2.3 in which all bonds at the

crack front break simultaneously. It is of interest to observe that the kinetic barrier

of 0.64 eV per bond from the 2D calculation is close to the average of the upper and

lower limits from the 3D calculation.

Loading effect and lattice trapping range

In the literature, the Griffith critical load KIG is also termed the neutral load (e.g.,

Sinclair [88]), because the initial and final states in advancing the crack by one atomic

spacing have the same energy. As the applied load increases beyond KIG, the potential

energy landscape of the system will be tilted such that a forward transition becomes
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Figure 3-10: The MEPs at two load levels: the blue line is for K1 = 0.646 MPa.\iii
and the green line is for K = 0.70 MPaV/iii.

favorable both thermodynamically and kinetically. This loading effect can be clearly

seen from the MEP of sequentially breaking 20 bonds at a higher load of K =

0.70 MPaV/ii as shown in figure 3-10. For comparison, the same MEP shown in

figure 3-7(b) at the Griffith load KIG = 0.646 MPav'/ii is replotted in figure 3-10, but

adjusted to the new energy scale. It is seen from the MEP at K = 0.70 MPavyiii

that there exists a critical distance between a pair of kinks, dc "(K 1), above which

further separation of the kink pair will decrease the system's energy and thus becomes

thermodynamically favorable. Clearly, dJigk(KI) is finite if and only if K > KIG. At

K1 = 0.70 MPaVii, this state corresponds to that with 1 broken bond on the front

as shown in figure 3-10. In addition, the kinetic barrier of kink migration (moving in

the direction of separating the kink pair) decreases compared to the corresponding

barrier height with the same dKink, but at a lower load of KIG-

To characterize K1-dependent energetics of kink-pair formation and migration,

two more critical loads, beyond the Griffith load KIG, can be defined: The first one,

denoted by Kf, is related to the thermodynamic energy balance of kink formation.
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In other words, at Kf, the energy for nucleating the smallest possible kink pair, i.e.,

breaking the first bond beyond the straight front, vanishes. For the present simulation

setup, Kjf 0.79 MPaViii. The MEP of breaking the first bond at Kjf is shown in

figure 3-11(a). Evidently, the energy change is zero between the initial and final

states. But there is still a kinetic barrier of about 0.43 eV at this load level.

The second critical load, denoted by Kf, is the athermal load which is related to

the kinetics of kink-pair formation. That is, at Kf, the activation energy barrier for

breaking the first bond at the straight crack front vanishes. More importantly, our

calculations of MEPs at different load levels have indicated that, compared to the

barrier heights of later breaking other bonds, the kinetic barrier of breaking the first

bond is the slowest decreasing one as K increases. Hence, above Kf, the first kink

pair nucleation as well as subsequent kink migration can take place spontaneously

without the aid of thermal fluctuations, leading to instantaneous cleavage fracture.

In numerically determining Kf', we apply the load incrementally to the system.

At each load level, the corresponding MEP of breaking the first bond is obtained via

the NEB calculation. Figure 3-11(a) shows energy variations along MEPs at three

typical loads. Here, markers give the calculated energies of replica configurations

along the pathway and the continuous curves are constructed via interpolations. We

find that, as the applied load increases above K1 ~ 0.90 MPa-/i\i, we are unable

to obtain the relaxed initial state that is geometrically similar to those at lower

loads. In other words, the system tends to relax to another type of local energy-

minimum state which corresponds to a different deformation mode, i.e, amorphization

by forming new crack-tip ring structures. Since the focus of this work is to study a

particular kind of transition pathway, i.e., cleavage fracture along the (111) plane

via crack-front bond breaking, we leave this interesting topic of competitions among

different deformation modes to future investigation by noting that the study of these

two competing modes requires a force field capable of accurately describing both

types of deformation. Nevertheless, we can estimate Kf by extrapolating the barrier

heights calculated at lower load levels as shown in figure 3-11(b), where circles are

the calculated data points and the solid line is the polynomial fitting curve. It is seen
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that the activation energy barrier for breaking the first bond shows a slight nonlinear

dependence on K. The value of Kj", obtained by extrapolating the curve down to

zero activation energy, is about 1.0 MPaVii. This athermal load is the upper limit of

lattice trapping. Hence, the lattice trapping range given by the SW potential, defined

here in terms of the ratio Kj"/KIG, is about 1.55. In particular, we note that since

the 3D pathway is more favorable kinetically than the corresponding 2D pathway at

the same load level, the present estimate of lattice trapping range should be a lower

bound of that estimated from a 2D calculation. Furthermore, we point out that the

lattice trapping range predicted by the SW potential may still differ significantly from

the true response of Si considering the approximate nature of empirical potential.

However, the self-consistent calculations as well as the detailed analyses we have

presented above represent a significant improvement to an atomistically accurate

characterization of the 3D, load-mediated lattice trapping barriers to brittle fracture.

3.2.4 Propagation anisotropy

Although the {111}(1i0) crack (propagating in the (112) direction) is the most

frequently studied crack orientation, experimental fractography observations of the

cleavage surface indicate that, instead, a {111} cleavage crack prefers to propagate in

the (110) direction (e.g., George and Michot [30]). This preference of a crack prop-

agation direction within a certain cleavage plane is called propagation anisotropy.

Perez and Gumbsch [73, 74] have studied propagation anisotropy in Si by compar-

ing orientation-dependent lattice trapping ranges of 2D crack configurations. Here,

we provide a more detailed explanation of propagation anisotropy in terms of the

orientation-dependent energetics of crack front kink-pair formation and migration.

We first note that it is fundamentally difficult to rationalize propagation anisotropy

by only thermodynamic arguments (Perez and Gumbsch, 2000a). That is, the Griffith

criterion may suggest the preferential cleavage plane to be the one with the lowest

surface energy -,. But, within the same cleavage plane, two cracks of different orien-

tations would experience the same resistance -, to crack propagation and thus have

the same critical energy release rate g, as can be clearly seen from equation (3.1).

96



0 5 10 15 2
Reaction coordinate

(a)

5 10
Reaction coordinate

(b)

15 2

Figure 3-12: Comparison of lattice trapping barriers for two crack orientations: (a)
the MEP at respective Griffith load; (b) the MEPs at a higher load level K = 0.70
MPa-/ri. In both figures, the blue lines are MEPs for the (111)[110] crack and the
green lines are MEPs for the (111)[112] crack.
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Indeed, there may exist a difference in the critical stress intensity factor KIG which

arises from a variation of the effective compliance within the x'-' plane due to elas-

tic anisotropy for different crack orientations. However, as will be numerically shown

next, this difference is so small that KIG could not serve as a robust measure of

propagation anisotropy.

On the other hand, consider a realistic situation in which the material may come

with an assortment of flaws with distributions in sizes and aspect ratios. It seems

unlikely that a special pre-crack orientation is selected every time to first trigger

unstable propagation, just due to the condition of the initial flaws. A much more

plausible scenario is that, with the increase in macroscopic load, an ensemble of

crack orientations exceed the Griffith limit at approximately the same time; they

all start to grow, aided by thermal activations, since the respective load KI (here,

for simplicity, we only discuss mode I load) is still less than the corresponding Kf.

However, there is a special orientation whose front grows the fastest due to smaller

kink-pair formation and migration energies. If the system is under load control, K

will increases with a in a positive feedback, until this particular crack front reaches the

athermal threshold, Kf, first. At that point, runaway dynamical fracture occurs that

proceeds at near sound speed. Also, this orientational competition may occur not only

at physically separate crack fronts, but also at different places in one contiguous crack

front, leading to morphological evolution that favors faster growth of one orientation

until Kf is triggered first in that orientation. Therefore, we see that although the

lattice trapping ranges could be quite narrow in brittle materials, it is necessary to do

a careful study because a physically important question of which orientation triggers

dynamical fracture first could depend on the exact numbers.

Consider a (111) crack with a straight crack front along the [112] direction. For

this new orientation, the crack will extend in the close-packed [110] direction. The

crack-tip atomic structure is shown in figure 3-5(b). Similar to section 3.2.3, we

can estimate the Griffith load using the analytic LEFM Stroh solution and -Y,. The

effective compliance calculated for the new crack orientation is H2'2' = 2.71 x 1011

Pa- 1. Substitution of H212, and (111) surface energy -y, into equations (3.1) and (3.2)
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gives an estimate of the Griffith load KIG = 0.654 MPav/im. On the other hand,

the value of KIG determined from direct atomistic calculations is 0.643 MPa-V'ii.

Evidently, the value of KIG for the (111)[112] crack is very close to that of 0.646

MPadvii for the (111) [110] crack, which numerically proves that the Griffith criterion

cannot be applied to explain propagation anisotropy.

Though the difference in KIG for different crack orientations is small, the difference

in Kj" may be large. We begin by studying the energetics of crack front kink-pair

formation and migration for the (111)[112] crack at its Griffith load KIG = 0.643

MPa\ i. Figure 3-12 shows the MEP of sequentially breaking 20 bonds along the

crack front. For comparison, the corresponding MEP for the (111)[110] crack at

its Griffith load KIG = 0.646 MPav'im is also shown in figure 3-12. Here, the cir-

cles/squares are the locally stable kink-pair energies which are the sums of kink-pair

interaction energy and twice of the kink self-energy as given by equation (3.3), while

the saddle points between circles/squares give the kink-pair migration barriers. Com-

paring the two MEPs, a significant difference is seen in the kink-pair formation en-

ergies between two crack orientations, while the kink migration barriers are similar.

Specifically, for the (111) [112] crack, the kink self-energy EKink-Self, which can be esti-

mated from the asymptotic value of the lower envelope curve connecting the squares,

has a much lower value about 0.22 eV. Moreover, the interaction between kink pairs

is relatively weak. In contrast, for the (111)[110] crack, the kink self-energy is much

higher with a value of about 0.8 eV.

As the applied loads increase by the same ratio, our calculations indicate that

the kinetic barriers of extending the (111)[112] crack are always lower than those

of the (111)[110] crack, as demonstrated selectively in figure 3-12 using two MEPs

at K = 0.70 MPa\/ii. Finally, in order to estimate the lattice trapping range for

the (111)[112] crack, the athermal load Kj" needs to be identified. Similar to the

situation for the (111)[110] crack, the system tends to relax to a state of crack-

tip amorphization at higher loads. So we use the same method to estimate Kl" as

for the (111)[110] crack. Namely, we extrapolate the kinetic barriers of breaking

the first bond at different KI's down to zero barrier and find Kj" = 0.88 MPafiui.
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Figure 3-13: Distribution of opening displacement across the (111) cleavage plane for
the (111)[112] crack. The kink pair consists of 10 broken bonds on the crack front.

Correspondingly, the ratio of Kr"/KIG is 1.37, which indicates a narrower lattice

trapping range for the (111)[112] crack compared with that of the (111)[110] crack.

We note that the 2D simulations by Perez and Gumbsch (2000a, b) on {110} cleavage

cracks also demonstrate orientation-dependent lattice trapping ranges. However, the

present 3D calculations represent a more realistic probe of K 1-mediated, orientation-

dependent lattice trapping barriers.

The orientation-dependent kink-pair formation energy is closely related to the

bond densities along different directions within the (111) plane. The geometric profile

of the kinked crack front for the (111)[112] crack at KIG = 0.643 MPa.niii is shown in

figure 3-13, where the distribution of opening displacement across the cleavage plane

is plotted for the state with 10 broken bonds on the crack front. It is seen, first, that

both the leading and trailing edges of the crack front have a zigzag profile, in contrast

to the atomically smooth crack front for the (111)[110] crack as shown in figure 3-8.

The zigzag interpolated field indicates that the second array of bonds immediately

adjacent to the crack front also have relatively large opening displacements. This can

be explained as follows. Assuming the LEFM solution is approximately correct near

the crack front, it follows that the bond opening displacement (in the x' direction)

sensitively depends on its distance (in the x' direction) from the crack front. The

close packing of atoms along the x' direction for the (111) [112] crack leads to a smaller

distance of the second array of bonds from the crack front. As a result, larger opening

displacements are necessary for the second array of bonds, leading to a zigzag crack

front profile. In addition, as the second array of bonds becomes closer to the first
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array of bonds by acquiring larger equilibrium opening displacements, we also expect

that the atomistic energy barrier separating two arrays of crack front bonds, which is

in analogous to the barrier of the Peierls ridges in the dislocation theory, will become

smaller. It follows that the energy penalty for the crack front kinks, which is crossing

the analogous Peierls ridges, is smaller, leading to a lower kink formation energy and

the narrower lattice trapping range as well.

3.2.5 Discussions

Effect of interatomic potential

We selectively repeat some calculations using the EDIP potential to study the influ-

ence of the interatomic potential on results. The Griffith loads are first determined

for the two crack orientations. Atomistic calculations give KIG = 0.58 MPay'ii for

the (111)[110] crack and KIG = 0.59 MPad i for the (111)[112] crack. Similar to the

SW potential, the close values of KIG between the two crack orientations arises due

to a slight variation of the effective compliance within the x' - x' plane. However,

the SW and EDIP potentials give different predictions for the Griffith load due to

different values of elastic constants and surface energy as listed in table 3.1.

Figure 3-14 shows the energy variations along the MEPs at the respective Griffith

load for the two crack orientations calculated using the EDIP potential. Comparing

to results from the SW potential as shown in figure 3-12, we find that the (111)[112]

crack orientation is also favored kinetically. However, despite the general agreement

in trend, there are some quantitative differences in both the kink pair formation and

kink migration energies. Specifically, the EDIP potential gives a lower kink formation

energy, but a higher migration energy. Furthermore, our calculations of MEPs at

different load levels using the EDIP potential indicate that the lattice trapping range is

larger for both crack orientations compared to the corresponding result obtained from

the SW potential. This difference in lattice trapping range between the two potentials

can be correlated with the different cohesive responses of uniformly cleaving a perfect

crystal as shown in figure 3-6, while keeping in mind that the actual crack tip bond
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Figure 3-14: The MEPs calculated using the EDIP potential for two crack orientations
at respective Griffith load: the blue line is for the (111) [110] crack and the green line
is for the (111)[112] crack.
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breaking occurs under a non-uniform stress environment with a large stress gradient.

Recall that figure 3-6 shows a significant difference in the slope on the backside of the

cohesive response for the two potentials. Previous analyses from a series of simplified

interatomic force laws indicated that a steep slope on the backside of the force law will

lead to a large lattice trapping range (Thomson et al. [101]). Our present calculations

show the same trend quantitatively. Finally, we note that a recent 2D study by

Bernstein and Hess [13] on Si shows that the SW potential overestimates lattice

trapping barriers compared to the results obtained from a multiscale simulation, i.e.,

the tight-binding description of bonding near the crack tip embedded in an empirical

potential (EDIP) region. Nevertheless, the present study represents the first effort

of mapping out 3D lattice trapping energy barriers using the atomistic approach.

It is conceivable that a calculation using a more accurate force field along the lines

presented here will give a more realistic estimate on the 3D lattice trapping barriers.

Other competing transition pathways

In the present work, we focus on studying the lattice trapping barriers along a spe-

cific 3D transition pathway, i.e., breaking crack front bonds sequentially, to extend

the crack in the x' direction. Obviously, for a given K-field load, there exist other

competing pathways to extend a crack. However, among a few possible scenarios we

have studied, the present pathway is the most favorable kinetically. For example,

given s broken bonds on the front, we have studied the following two schemes of

further breaking bonds: The first one is to break the next two bonds at the front

simultaneously instead of breaking them one by one. This scheme essentially corre-

sponds to the situation in which the system evolves along different kinetic pathways,

but will reach the same final state. The calculated MEP for the new scheme gives a

much larger activation barrier. The second scheme is to break a bond on the advanced

front instead of on the trailing front. For this case, both the saddle point and final

state of the new scheme have higher energies than the corresponding values of the

original scheme. Hence, this scheme is thermodynamically unfavorable; needless to

say, the larger kinetic barrier is. Moreover, the study of morphological stability of an
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initially straight crack front in a linear elastic solid by Rice [77] indicates that, for a

crack under a displacement-controlled boundary condition, small perturbations from

straightness should decay with time. Assuming this long wavelength analysis works

for atomic-scale kinks, an initially straight crack front should maintain straightness

during quasi-static extension, which agrees with our atomistic calculations.
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Chapter 4

Stress-Dependent Reactivity of a

Silica Nanorod with Water

4.1 Introduction

The rates of chemical reactions involving solids are dependent on the mechanical

stress levels [33, 40, 55]. This effect on reaction kinetics can be attributed to a change

of activation energy barrier in the presence of stress. A typical example of stress-

dependent reaction kinetics is stress corrosion of silica glass by water. Specifically,

the strength of silica glass will decrease with time when subjected to a static load

in an aqueous environment [112]. This phenomenon, commonly referred to as de-

layed failure or static fatigue, results from slow growth of pre-existing surface flaws

due to stress corrosion by water from environment. It has long been recognized that

the coupling between mechanics and chemistry at the crack tip plays a central role

in stress corrosion of silica glass. From a microscopic viewpoint [62, 63], the intru-

sive water molecules chemically attack the strained siloxane (Si-O-Si) bonds at the

crack tip. Due to the elevated stress state near the crack tip, the hydrolysis reaction

is significantly enhanced, leading to the breaking of siloxane bonds and subsequent

formation of terminal silanol (Si-OH) groups. These newly formed terminal groups

separate from each other due to mutual repulsion, thereby completing the bond rup-

ture process. This molecular level mechanism of stress-enhanced chemical reactivity
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will ultimately affect the macroscopic kinetics of quasi-static crack motion, leading

to final catastrophic failure.

While recognizing the importance of molecular mechanism of crack tip chemistry,

most early studies of the silica glass-water fracture system relied on phenomenological

models to address the effect of stress corrosion by water. One of the earliest theories

of chemistry in brittle fracture was put forward by Orowan [70], who extended Grif-

fith's idea of equilibrium crack to study water-assisted crack growth by considering

environmental effect on surface energy reduction. Within a more general framework

of irreversible thermodynamics, Rice [76] derived an inequality governing the relation

between the crack extension rate and the associated thermodynamic driving force

in the presence of a chemically reactive environment. This relation is essentially a

global restriction on the detailed molecular kinetics of crack growth. Beyond a purely

thermodynamic perspective, Hillig and Charles [40] considered crack motion as a

stress-enhanced thermal activation process and formulated an Arrhenius-type rela-

tion to describe stress corrosion rate based on reaction rate theory. This model was

applied successfully by Wiederhorn [112] to correlate the experimental measurement

of crack velocity as a function of stress intensity factor. In addition, Charles and

Hillig's idea of stress-dependent thermal activation was also extended by Chuang and

Fuller [19] to study morphological evolution of notch tip and its implication for stress

corrosion cracking.

Despite the usefulness of the phenomenological models, a complete understanding

of stress corrosion in silica glass requires a detailed study of molecular mechanism of

crack tip chemistry and a quantitative characterization of stress-enhanced reaction

kinetics. From the standpoint of molecular orbital theory, Michalske and Freiman

[62, 63] first proposed a molecular interpretation of stress corrosion in vitreous silica.

The chemical interaction between the intrusive water molecule and strained siloxane

bonds was envisaged to proceed in a three-step sequence: (1) adsorption; (2) reac-

tion and (3) separation. By considering the electron and proton-donating capacity of

the intrusive chemical species and the polarity of the bridging bond, the Michalske

and Freiman (MF) model explained why water and other chemical species such as
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ammonia could be effective in promoting crack growth. However, the MF model did

not study the effect of stress on chemical reactivity of solids. This deficiency was

addressed by Michalske and Bunker [61]. Based on the molecular orbital calculation

which shows that bond angle deformations are most effective in increasing the chem-

ical reactivity, they suggested that the increasing chemical reactivity associated with

deformation could be attributed to the stress-induced pinching of O-Si-O bond angle

to form chemically active kink site. On the other hand, in contrast to Michalske and

Bunker's approach which studied stress-dependent chemistry through directly impos-

ing deformation on a certain type of siloxane ring, West and Hench [111] compared

chemical reactivities of different ring structures, i.e., various membered cyclosilox-

ane rings. From semi-empirical molecular orbital calculation (AM-1 method), they

obtained quantitative reaction pathways for three- and four-fold silica rings and a

five-fold ring-chain structure. Their results showed that three-membered ring is more

chemically reactive due to its lower energy barrier associated with larger ring strain.

In addition, the study of chemical reactivity of different ring structures is also useful

in understanding the kinetics of hydrolyzing silica surface where various types of ring

structures exist due to surface reconstruction, e.g., see Walsh et al. [109].

Although the above mentioned works provide great insights into the coupling

between mechanics and chemistry at the molecular level, to our knowledge, no sys-

tematic studies have been made on the explicit calculation of reaction barriers as

a function of mechanical stress to directly reveal stress-dependent chemical reaction

kinetics. In this chapter, we present a detailed investigation of stress-enhanced hy-

drolysis reaction via a model system, i.e., a single water molecule interacting with

a silica nanorod structure. We construct the nanorod as a representative structure

unit cut from a crack tip. Considering the discrete, localized nature of bond-breaking

in covalent solids [55], we study the unit process of hydrolyzing a stretched siloxane

bond at the surface of a nanorod as our first effort to reveal some fundamental aspects

of hydrolysis reaction taking place at a stressed crack tip. In addition, we rely on

this unit process study to address the problem of stress corrosion at a crack tip based

on the assumption that intrusive water molecules have direct access to individual
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crack-tip siloxane bonds. In other words, crack-tip hydrolysis reaction is the only

rate limiting step for stress corrosion and other transport kinetic processes such as

bulk diffusional flow and water diffusion at fractured surface are relatively fast. Fur-

thermore, the silica nanorod is constructed as a mechanically meaningful structure,

which is in contrast to the commonly used model clusters, e.g., H6 Si1 8 O7 by Lindsay

et al. [59]. The major structural characteristics of the nanorod is its geometric unifor-

mity. This property allows for a well-defined stress and strain to be associated with

the nanorod. Thus, we are able to explicitly map out families of reaction pathways,

parametrized by the continuous nominal stress. It follows that our further analysis of

stress-mediated reaction pathways can clearly reveal the stress-dependence of ther-

modynamic driving force and kinetic barriers of hydrolysis reaction. Through this

analysis, we take a step closer to a truly fundamental description of thermodynamics

and kinetics of quasi-static crack motion in silica glass.

4.2 Model and Method

4.2.1 Nanorod Structure

A silica nanorod composed of 108 atoms (36 SiO 2 units) is shown in Fig. 4-1(a) [124].

Our construction of a nanorod first involves the formation of planar six-membered

rings, Si6 O18 . As shown in Fig. 4-1(b), each Si6Ols ring contains six corner-linked

SiO 4 tetrahedra, where each tetrahedron has two bridging oxygen atoms that are

shared with two neighboring tetrahedra. The nanorod is then assembled by stacking

such rings (layers) one over another to form a rod-like network of SiO 4 tetrahedra.

For the structure to be free from dangling bonds, the nanorod is capped at the

ends by 'terminating' rings in which the six Si atoms are connected alternately by a

bridging oxygen or two oxygens, in the manner shown in Fig. 4-1(c). The resulting

structure is a stoichiometric silica nanorod with the bulk built up of corner-sharing

SiO 4 tetrahedra, where all Si and 0 atoms are four- and two-coordinated respectively,

but capped by three pairs of edge-sharing SiO 4 tetrahedra at each end. The size and
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Figure 4-1: Structure of (a) a relaxed nanorod, (b) an interior ring, (c) an end ring.
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geometry of the nanorod are similar to the channels in a-quartz and the outer wall

of the rod resembles the a-quartz (0001) surface, where all Si and 0 atoms are fully

coordinated without the presence of dangling bonds. Moreover, the hexagonal planar

six-membered rings of the nanorod exist in natural cyclosilicate minerals such as beryl

which contains those rings linked by Be and Al ions.

4.2.2 Force Field

The study of stress-enhanced hydrolysis kinetics entails the proper description of

interatomic interactions. Empirical potentials have been proven to have difficulty in

treating correctly the effects of charge transfer when bonds are broken and formed. On

the other hand, it is very computationally expensive to apply first principle quantum

mechanical calculation to explore various reaction pathways under different stress

states. As a reasonable compromise between accuracy and efficiency, we choose to

use semi-empirical molecular orbital calculation (PM3 method). The energies for

different nanorod configurations given below are calculated using MOPAC 2000. The

comparison study for hydrolysis reaction of various silica clusters between density

functional theory (DFT) calculation and semi-empirical molecular orbital method

(AM1 and PM3) has been given by Laurence and Hillier [52]. They found that

both optimized structures and transition states (for interaction with single water

molecule) from semi-empirical molecular orbital methods are qualitatively similar to

those obtained via DFT calculations, though there exist some quantitative differences.

Considering that semi-empirical method is significantly faster than higher level first

principle calculations, we apply semi-empirical calculations as our first step to explore

stress-mediated reaction pathways.

4.2.3 Mechanical Deformation

Mechanical deformation of the nanorod is imposed via the displacement controlled

method. We use 15 atoms in each end-ring as grips, with each atom given a prescribed

displacement in the axial direction of the rod, and all other atoms in the rod are
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allowed to relax using conjugate gradient method. To characterize the stress state of

the nanorod we take the sum of all forces acting on the cross section divided by the

nominal cross section area Ao = 47rd20 = 88.9A2 where doo denotes the side length

of a Si0 4 tetrahedron and it is also the edge length of the hexagon composed of six

bridging Os within the planar six-membered ring. The nominal cross section of the

nanorod is taken as the circle enveloping a hexagon with a radius R = 2dOO. To

measure the tensile strain applied to the nanorod, we take the elongation of the rod

divided by the initial gage length (distance between two grips) lo = 4doo = 13.3A.

4.2.4 Finding Reaction Pathway and Transition State

The study of stress-enhanced hydrolysis reaction kinetics is carried out within the

framework of Transition State Theory (TST) (e.g., Vineyard [103]). The problem

then becomes that of identifying the reaction mechanism and finding the free energy

barrier. Within the harmonic approximation to TST, the problem is further reduced

to finding minimum energy path (MEP) on the potential energy surface. The MEP is

defined as a continuous path in 3N dimensional configuration space (where N being

the number of free atoms) with the property that at any point along the path the

atomic forces are zero in the 3N - 1 dimensional hyperplane perpendicular to the

path [90]. The energy maximum along the MEP is the saddle-point energy which

gives the activation energy barrier. Since the potential energy surface will evolve

with stress, the stress-enhanced kinetics manifests as a stress-dependent activation

energy barrier.

The minimum energy paths of hydrolysis reactions are calculated using the nudged

elastic band (NEB) method [43, 37]. Prior to NEB calculations, we first identify a

physisorbed state which corresponds to a local energy minimum along the reaction

pathway. Here, physisorption refers to the process of hydrogen bond formation be-

tween Hwat of water molecule and the bridging 0 b, of nanorod. During physisorption,

there is no real chemical bond breaking and/or formation. In contrast, hydrolysis

reaction is a chemisorbed process since it involves dissociation of water molecule as

well as formation of new chemical bonds, i.e., silanol surface groups.
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The NEB calculations proceed in two steps: we first calculate the physisorption

pathway by choosing as the initial state where the water molecule is separated from

a stressed nanorod by about 15A. The final state is one of the physisorbed states,

while keeping extension of grip ends the same as that of the initial state. Then the

chemisorption pathway is located by choosing as two endpoints the initial physisorbed

state and the final chemisorbed state, respectively. The elastic band consists of seven

equally-spaced images of the system forming a discretization of the path between

two fixed endpoints. The calculation is considered converged when the force on each

image is less than 0.05eV/A. A continuous MEP is then obtained by cubic polynomial

interpolation of the calculated energies with the aid of the potential force projected

in the direction of the path on each image [371. Since the spacing between adjacent

images is fixed during NEB relaxation, the transition state may not be coincident with

any of the relaxed images. Hence we show the transition state in section 4.3 using

the relaxed image closest to the saddle point. Additionally, for the same set of initial

and final states, there may exist several competing reaction pathways corresponding

to different reaction mechanisms. As the potential energy landscape evolves with

stress, the same type of initial guess, e.g., straight line interpolation of intermediate

images in configuration space between two endpoints, may relax to distinct pathways

at different stress levels. Therefore, in order to follow the evolution of the same

transition mechanism with an increase of stress, we first identify one pathway of

interest at zero stress. Then, in all subsequent NEB searches at other stress levels,

the final relaxed path from a previous search will be taken as an initial path for

relaxation at a new stress level, but the system will be uniformly scaled according

to the current extension of the nanorod. Since external loading is applied via the

displacement-controlled method, during each NEB relaxation, we keep the positions

of atoms at grip ends for all intermediate images fixed at that of the initial state.

The tensile stress within the nanorod at the initial state is then taken as the nominal

stress for the calculated activation energy barrier.
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Figure 4-2: Stress vs. strain curves for uniaxial tension of the dry nanorod (the
blue/black line) and hydrolyzed nanorod (the green/gray line).

4.3 Results

4.3.1 Uniaxial Tension

The stress-strain response for uniaxial tension of a nanorod without water is first

calculated as shown in Fig. 4-2 by the blue line. It can be seen that the nanorod

deforms linearly in the early stages. The corresponding tension modulus is about

183GPa. Then the stress-strain variation shows a slight nonlinearity up to the point

of failure where the stress drops precipitously. The breaking stress at the onset of

failure a-cr is about 55.2GPa and the corresponding critical strain Ec is 0.36. The

value of -cr represents nanorod's athermal mechanical strength, i.e., the maximum

resistance to fracture in the absence of thermal fluctuations. This athermal strength

cr will be used later as a strength-normalizing parameter for the calculated activation

energy barriers at different stress levels. As the inter-ring siloxane bonds are the

primary load carriers, we focus on geometric changes for a representative inter-ring

siloxane bond located in the middle section of the nanorod. The calculated Si-O

bond length immediately preceding bond-breaking is 1.827A compared to 1.686A at
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the fully relaxed state. Correspondingly, the Si-O-Si bond angle changes from the

initial value of 114.3' to 146.00.

We also show in Fig. 4-2 the uniaxial stress-strain response of a hydrolyzed

nanorod. The atomic structure of the hydrolyzed nanorod with silanol surface groups

is shown in Fig. 4-4(d). Similarly, stress increases almost linearly with strain, but

with a lower tension modulus of 154GPa. More importantly, there exists a compres-

sive stress of about 1.44GPa within the hydrolyzed nanorod at zero strain. The origin

of the residual stress at zero strain lies in the repulsive interaction between two fully

relaxed silanol groups. As will be demonstrated later, the existence of this residual

stress will lead to a term, which is linearly dependent on the applied stress, in the

thermodynamic driving force of hydrolysis reaction.

4.3.2 Physisorption and Chemisorption

Physisorption involves formation of two hydrogen bonds with two bridging Obrs of

the nanorod. We identify two states of physisorption. One corresponds to an asym-

metric binding form with different hydrogen bond lengths as shown in Fig. 4-4(b). At

zero stress, the calculated bond lengths are 1.75A and 2.50A, respectively. Another

physisorbed state takes a symmetric binding form as shown in Fig. 4-6(b). Two hy-

drogen bond lengths at zero stress are both 1.79A. The energy variation associated

with physisorption is defined as hydration energy, Ehydr, of the nanorod [24]. That is,

Ehydr = Ephys-rod-wat - (Erod + Ewat), (4.1)

where Ephys-rod-wat is the total energy of the nanorod with a physisorbed water

molecule, Erod is the energy of the nanorod without water, but at the same stress

level of the hydrated nanorod, and Ewat is the self-energy of a water molecule. At

zero stress, the calculated Ehydr for the asymmetric and symmetric binding forms

are -0.57eV and -0.63eV, respectively. Comparing the two physisorbed states, it

is evident that a lower hydration energy leads to stronger hydrogen bonding as in-
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Figure 4-3: Stress-dependent chemisorption energy. The circles represent the cal-
culated data points and the solid line corresponds to the polynomial fit given by
Eq. (4.3).

dicated by a shorter hydrogen bond length. We also calculate the hydration energy

as a function of stress and find that stress only affects hydration energies slightly

for both physisorbed states. Take the asymmetrically adsorbed state as an exam-

ple: when stress is increased to about 35GPa, the hydration energy only reduces

by about 0.03eV down to -0.60eV. In addition, we also calculate the MEPs of ph-

ysisorption and find that no saddle point exists along the MEPs irrespective of stress

levels. Therefore, physisorption of a single water molecule to the silica nanorod is a

thermodynamically favorable process without kinetic barrier.

In contrast, chemisorption involves formation of two silanol surface groups. At a

given stress level, the relaxed structure of the hydrolyzed nanorod may take various

forms with different arrangements of relative position of the two silanol groups. These

geometrically similar states correspond to local minimums with very close energy

levels on the potential energy surface. To examine the effect of stress, we focus

on a representative type of relaxed structure as shown in Figs. 4-4(d)/4-6(f)/4-8(d).

This representative structure of chemisorption will later be taken as the final state
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to identify various pathways of hydrolysis. With an elongation of the hydrolyzed

nanorod, the total energy of the system increases since more elastic energies are

stored within the system. More importantly, as shown in Fig. 4-3, the chemisorption

energy Echem will change from positive values at low stress levels to negative ones at

high stress levels. Here, Echem is defined as the difference in total energy between the

chemisorbed state Echem-rod-wat and the water-nanorod non-interacting state at the

same stress level. That is,

Echem = Echem-rod-wat - (Erod + Ewat). (4.2)

This trend of increasing chemisorption energy with stress indicates that the chemisorp-

tion will evolve from a thermodynamically unfavorable process to a favorable one with

an increase of mechanical tensile stress. Hence the simulation result about stress ef-

fect on chemisorption is consistent with the concept of stress-enhanced hydrolysis

reaction from the thermodynamic perspective. Moreover, the functional dependence

of chemisorption energy Echem on stress can be revealed by a polynomial fit up to the

second power of the nominal stress, a. The solid line in Fig. 4-3 corresponds to the

fitting formula given by

Echem = 0.7004 - 0.0472o - 0.0024a 2 (4.3)

where Echem and o are in units of eV and GPa, respectively. The physical meaning

of the coefficients in Eq. (4.3) as well as implications for understanding the effect of

stress on hydrolysis reaction will be discussed in section 4.4.

4.3.3 Reaction Pathways of Hydrolysis

In transition from the initial to final state of chemical dissociation, three distinct

reaction mechanisms are identified with the characteristic initial processes as wa-
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Figure 4-4: Atomic configurations along the transition pathway for mechanism
I: (a) initial state, (b) physisorbed state, (c) saddle-point configuration, (d) final
chemisorbed state.
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Figure 4-5: Stress-dependent minimum energy paths for mechanism I.

117

1 -

0 a)

b)d

1 --

2-

3 - 0.15
- 0.30

4 - 0.44
- 0.58

5F 0.64

-

-



ter dissociation, water molecular chemisorption, and direct siloxane bond-breaking,

respectively.

The first mechanism is characterized with the following sequence of reaction steps:

(1) physisorption; (2) subsequent water dissociation which involves proton transfer

and bond formation between Si-Owat; and (3) final bond breaking between Si and

bridging 0 b, of the siloxane bond. We show in Fig. 4-4 a series of snapshots along the

reaction pathway at a stress level of 16.7GPa (0.30-cr). The corresponding location

on the MEP for each frame is marked in Fig. 4-5. Atoms in Fig. 4-4 are color-

coded according to the differences in atomic charge (Coulson charge calculated from

MOPAC2000) between the present value and the one at the initial state. Thus, the

charge redistribution during processes of bond breaking and formation can be revealed

clearly. It is seen that, as the water molecule approaches the nanorod, physisorption

first occurs with formation of two asymmetric hydrogen bonds as shown in Fig. 4-

4(b). A small color variation indicates that there is only a slight charge transfer

from in association with hydrogen bond formation. Then a concerted reaction occurs

in which proton transfer to the bridging 0 br is followed immediately with electron

transfer from Owat to Si atom. During this process, a significant charge variation is

observed as shown in the saddle-point configuration of Fig. 4-4(c). Specifically, as

the bridging Obr forms a new bond with the incoming proton, it loses electron and

becomes positively charged. On the other hand, as Si atom forms a new bond with

Owat, it gains electrons and thereby becomes negatively charged. The reaction is

finally accomplished by forming two new silanol groups as shown in Fig. 4-4(d).

The stress-dependent MEPs corresponding to the first reaction mechanism are

shown in Fig. 4-5. As the nanorod is loaded with an incremental stretch of 0.5A, the

MEPs are parametrized by the corresponding nominal stresses, normalized by acr.

To facilitate comparison at different stress levels, we take the energy of the initial

state as zero and plot energy variation relative to the initial state as a function of

the reaction coordinate s. Here, the reaction coordinate is defined as follows: for

any given extension of the nanorod, we take as s = 0 the initial state at which the

nanorod and water are non-interacting and as s = 1 the final chemisorbed state.

118



Within a 3N configurational space, where N is the total number of free atoms within

the system, the hyperspace arc length along the MEP between the initial state R,

and an intermediate state R is given by

1 J /dR - dR. (4.4)
Ri

Then, the normalized reaction coordinate s is defined as

s = 1 (4.5)
if

where if denotes the hyperspace arc length between the initial and final states. It is

seen from Fig. 4-5 that, in reference to the initial state, the energies at saddle point

as well as that at the final equilibrium state will decrease as the stress increases. The

barrier height as a function of stress is plotted in Fig. 4-10 and will be compared with

other mechanisms at the end of this section.

The second reaction mechanism is different from the first one in that a metastable,

molecularly adsorbed state exists along the reaction pathway going from the ph-

ysisorbed to the final hydrolyzed state. We show in Fig. 4-6 snapshots along the

reaction pathway at stress of 16.7GPa (0.3-cr) and plot in Fig. 4-7 the calculated

MEPs at different stress levels. Similarly, the corresponding location on the MEP

for each frame in Fig. 4-6 is also marked in Fig. 4-7. The atomic configuration of

molecularly adsorbed state which corresponds to a local minimum on the MEP is

shown in Fig. 4-6(d). Note that this metastable state is absent on the MEP at zero

stress and it starts to appear as the applied stress increases to about 5GPa. At this

molecularly adsorbed state, Si atom adopts five-fold coordination and forms a new

bond with Owat. For example, the bond distance between Si and Owat is 1.916A at

a stress of 16.7GPa. This value falls into the range of an empirical chemical bond

length. Due to the existence of such a metastable state on the MEP, there are two en-

ergy barriers that need to be overcome in going from the initial state to the final state
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Figure 4-6: Atomic configurations along the transition pathway for mechanism II:
(a) initial state, (b) physisorbed state, (c) the first saddle-point configuration, (d)
metastable molecularly adsorbed state, (e) the second saddle-point configuration, (f)
final chemisorbed state.
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Figure 4-7: Stress-dependent minimum energy paths for mechanisms II.
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Figure 4-8: Atomic configurations along the transition pathway for mechanism
III: (a) initial state, (b) physisorbed state, (c) saddle-point configuration, (d) final
chemisorbed state.

of chemical dissociation. Two saddle-point configurations along the reaction pathway

are shown in Fig. 4-6(c) and (e), respectively. The barrier height corresponding to

each saddle point is also plotted in Fig. 4-10 as a function of stress. It is of interest

to note that the two curves cross at stress about 27GPa. This crossing indicates that

the rate limiting step for the second reaction mechanism will switch from the process

of water molecule dissociation followed by Si-Owat bond-breaking at low stresses to

the process of water molecularly binding with penta-coordinated Si at high stresses.

We will compare stress-dependent barrier heights with other mechanisms at the end

of this section.

Lastly, a third reaction mechanism of hydrolyzing a strained nanorod is identified.

This mechanism distinguishes itself from the other two in that the reaction first in-

volves breaking a Si-Ob, bond within the nanorod, and then terminating the dangling

bond via the dissociated water molecule. Likewise, we show in Fig. 4-8 snapshots
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Figure 4-9: Stress-dependent minimum energy paths for mechanism III.

along the reaction pathway at stress of 31.8GPa (0.58ucr) and plot in Fig. 4-9 the

calculated MEPs at different stress levels. The configuration close to the saddle point

is shown in Fig. 4-8 (c). It can be seen that the dangling Ob, bond is being ter-

minated by a proton transferring from a dissociated water molecule. For the third

mechanism, the energy variation has a stronger dependence on the deformation state

of the nanorod. Hence, we plot different MEPs in Fig. 4-9 at smaller stress intervals.

Figure 4-10 compares the barrier height as a function of stress for the three dif-

ferent mechanisms of hydrolysis reaction. Evidently, tensile stress will reduce the

activation energy barrier for any specific reaction mechanism. More importantly,

as the relative barrier height of different mechanisms changes with an increase of

stress, the switching of rate-limiting steps will occur either within one type of reac-

tion pathway, as discussed earlier for the second reaction mechanism, or among dif-

ferent reaction mechanisms. Thus, combining the results on stress-mediated barrier

height with those of the stress-dependent chemisorption energy, a complete picture

of stress-dependent hydrolysis reaction kinetics can be revealed. At the stress level

below about 20% of athermal strength acr, the negative value of chemisorption en-

122



1.2

00-

1 - -+-II-Ist-
c --v- II-2nd

0.8-

0.6 --

-0.4-

0.2 --

0 --

-0.2 -

--0.4 --

-0.6-

-0.8
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

Normalized stress

Figure 4-10: Stress-dependent activation energy barriers.

ergy indicates that the hydrolysis reaction is thermodynamically unfavorable. For the

applied stress within 20 - 75% of athermal strength, the second reaction mechanism

will be the rate-limiting process. Note that there will be a switching of rate limiting

step within the pathway at about 50% of athermal strength. Finally, as the applied

stress increases to above 75% of athermal strength, the third reaction mechanism will

have lowest activation energy barriers. However, the negative values of barrier height

indicate that the reaction has become kinetically barrierless.

4.3.4 Bond Breaking in a Dry Nanorod

While the present study focuses on stress-dependent hydrolysis reaction, it is also

of interest to compare the differences in breaking a siloxane bond with and with-

out water. We show in Fig. 4-11 the MEPs of breaking a siloxane bond in a dry

nanorod at two representative stress levels of 31.8GPa and 35.5GPa, respectively.

It can be seen that, when stress is applied up to 31.8GPa, siloxane bond-breaking

without water is still thermodynamically unfavorable, while hydrolysis reactions un-

der the same stress level are all thermodynamically favorable irrespective of detailed
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Figure 4-12: Snapshots along the transition pathway of siloxane bond breaking in the
absence of water, the nominal stress is 35.5GPa: (a) initial state, (b) saddle point
configuration, (c) final state.
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transition mechanisms. Evidently, the presence of the water molecule facilitates silox-

ane bond-breaking. As the applied stress increases, the MEP of breaking a siloxane

bond without water changes dramatically. When stress is increased to 35.5GPa, the

corresponding MEP shown in Fig. 4-11 by the dashed line indicates that siloxane

bond-breaking becomes thermodynamically favorable with an activation energy bar-

rier of about 0.6eV. Figure 4-12 shows the images of atomic configurations along

the MEP at stress 31.8GPa. It is seen that, at the final state, there is a significant

charge variation in association with the broken siloxane bond. In contrast, the charge

variation of the final hydrolyzed states shown in Figs. 4-4(d)/4-6(f)/4-8(d) are rel-

atively small because the dangling siloxane bond is terminated by the dissociated

water molecule.

4.4 Interpretations

As we focus on the molecular interpretations of energy variation along the MEPs

in section 4.3, we consider next an elementary analysis of stress-dependence of the

thermodynamic driving force and the kinetic barrier of chemical reaction using the

nanorod as an example. To our knowledge, this is the first time that an explicit

analysis of the stress/strain-dependent MEP is carried out and applied to analyze

the atomistic simulation results, although a similar approach has been taken to study

continuum inelastic deformation (e.g., see Rice [78] and Argon [6]). More importantly,

the present analysis helps to elucidate the crack extension driving force of brittle

fracture for the situation in which the effect of surface relaxation is significant, such

as stress corrosion by water. Specifically, we find that an important term, which

is linearly dependent on the external loading, is commonly left out in formulating

the crack extension driving force. Our simulation results indicate that this term

may play an important role in determining the Griffith's critical condition of brittle

fracture initiation. In the following discussions, we will mainly focus on analyzing the

strain-dependent MEP, considering that the nanorod is loaded via the displacement-

controlled method in our simulations. A brief discussion on the stress-dependent
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Figure 4-13: Schematics of the minimum energy paths at different load levels.

MEP will be given in section 4.4.4 to contrast the difference between two loading

methods.

4.4.1 Strain-Dependent MEPs

Figure 4-13 schematically plots two MEPs corresponding to situations in which the

nanorod is extended by zero and AL, respectively. When the nanorod is deformed,

the total energy of the nanorod system will increase due to the accumulating elastic

energy associated with mechanical deformation. Thus, the upper curve in Fig. 4-13

should represent the MEP of hydrolyzing a deformed nanorod, while the lower curve

the MEP of hydrolyzing a undeformed nanorod. The local minima i on the MEPs

correspond to the initial states in which the nanorod and single water molecule are

non-interacting; and the local minima f correspond to the final chemisorbed states.

The x-axis in Fig. 4-13 represents a generically defined reaction coordinate, i.e., the

locations of the initial/saddle-point/final states may drift along the MEP at different

load levels.

Prior to analyzing energy variation along the MEPs, we first specify the scheme

of labeling states on the MEPs at different load levels. Here, we follow the most
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intuitively direct labeling scheme as given in section 4.3, while an alternative scheme

will be discussed in section 4.4.4. Recall that, in section 4.3, a normalized reaction

coordinate s is defined, as given by Eq. (4.5), such that s E [0, 1] labels all states

connecting state i to state f on the MEP for any given nanorod extension. According

to this definition, the initial and final states are fixed at s = 0 and s = 1, respectively.

But the reaction coordinate of the saddle point may drift along the MEP at different

load levels.

For any frozen state s, the energy of the nanorod system at strain c can be related

to that at c = 0 by

1
E(E, s) = E(0, s) + uo(s)cV + -ko(s)o 2 V + O(E2) (4.6)

2

where V = AOLO is the nominal volume of the nanorod, uo(s) is the residual stress

within the nanorod at (E = 0, s), and ko(s) is the nanorod stiffness at (c = 0, s). In

Eq. (4.6), we keep terms to second-order accuracy in c based on the fact that, as

shown in Fig. 4-2, both the initial (s = 0) and final states (s = 1) exhibit nearly

linear stress-strain responses up to the athermal strength limit. Hence, Eq. (4.6)

represents a reasonable approximation to the energy variation for both the initial and

final states. However, caution has to be taken in using Eq. (4.6) for any intermediate

state s, because the effective range, with which Eq. (4.6) is a good representation

of energy variation, may reduce. In addition, we note that, since the initial state at

E = 0 is stress free, the relation ao(0) = 0 holds.

Denote AE(c, s) as the energy change in transition from the initial state i to an

intermediate state s, while keeping extension of the nanorod fixed. From Eq. (4.6),

one obtains

AE(E, s) E(E, s) - E(E, 0)

= AE(O, s) + uo(s)EV + 1 Ako(s)c2V + O(E2). (4.7)
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where Ako(s) denotes the stiffness change from state i to s, i.e., Ako(s) = ko(s) -

ko(O). It is seen from Eq. (4.7) that the energy variation going from state i to s at a

fixed E can be partitioned into strain-independent and strain-dependent contributions.

The former, as represented by the term AE(O, s), is the energy difference between

state s and i at zero strain. For the strain-dependent part, the linear term in C arises

from the residual stress uo(s) in association with a partially hydrolyzed nanorod at

zero strain, while the quadratic term in c results from the change of nanorod stiffness

when a siloxane bond is partially broken.

4.4.2 Thermodynamic Driving Force

To correlate the above general analysis of energy variation along the MEP with sim-

ulation results, we consider the energy difference between two thermodynamically

equilibrated states i and f. As AE(E, 1) represents the energy increase in transition

from the initial to final state, its negative value is commonly defined as the thermo-

dynamic driving force of transition, denoted by D(E). That is,

D(E) -AE(E, 1)
1

- -AE(O, 1) - uo(1)EV - -Ako(1)E 2v
2

-AE(O, 1) - av(1 1 Ako(1) aW- (4.8)
ko(0) 2 [kO(O)] 2

where AE(O, 1) is the energy variation associated with reaction at zero strain. This

strain-independent energy term is greater than zero for hydrolysis reaction. Hence,

it can be regarded as the internal resistance to reaction. As two newly formed silanol

surface groups repel against each other, the residual stress ao(1) is compressive, i.e.,

ao(1) < 0, when we hold the two ends of the nanorod fixed. In addition, the nanorod

stiffness will decrease, i.e., Ako(1) < 0, when a strongly connected siloxane bond is

substituted with a pair of weakly interacted silanol groups. Hence, in the second

step of Eq. (4.8), both the linear and quadratic terms in E will contribute to increase
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the driving force D(e). The third step in Eq. (4.8) is given to facilitate correlation

with the fitting formula of Eq. (4.3), which is expressed in terms of the nominal stress

a = ko(0)E. Comparing with Eq. (4.8), the physical meaning of each term in Eq. (4.3)

becomes transparent. In addition, combining Eq. (4.8) and Eq. (4.3), we can estimate

values of both the residual stress uo(1) and the nanorod stiffness change Ako(1), once

the initial stiffness ko(O) is known. For the present nanorod system, the initial value

of ko(0) = 183GPa leads to estimates of uo(1) = -1.43GPa and Ako(1) = -27GPa,

comparing with direct calculation results of ao(1) = -1.5GPa and Ako(1) = -29GPa.

To prepare for the discussion on stress-dependence of the crack extension driving

force in section 4.4.3, we also calculate the critical condition when the thermodynamic

driving force of hydrolysis reaction vanishes. In other words, we need to determine the

critical load above which the forward transition of bonding-breaking starts to be ther-

modynamically favorable. From Eq. (4.3), the critical load a is solved to be 10.2GPa.

To demonstrate the importance of linear stress dependence, we intentionally drop the

linear term in Eq. (4.3) and then recalculate the critical load. This corresponds to

the situation in that the accurate stiffness change has been estimated, but the effect

of linear stress term is not taken into account. Then the critical value of a becomes

17.1GPa. Hence, there is an approximately 68% difference in the estimated critical

load if the linear stress-dependent term is ignored.

4.4.3 Implications for Brittle Fracture Analysis

The analysis of energy change associated with nanorod bond-breaking can help eluci-

date the thermodynamic driving force of brittle fracture. We first give a brief review

of the concept of lattice trapping in the atomic theory of brittle fracture [100, 55].

Consider a simplified model system with an atomically sharp crack embedded in an

otherwise perfect lattice. The quasi-static crack growth corresponds to a sequence

of localized bond-breaking process at the instantaneous crack tip. Under a given ex-

ternal loading, the total energy of the system can be written as a function of crack

length. Because of the lattice discreteness, the energy landscape fluctuates at the

atomic scale along the crack length direction. As a result, crack extension may cease
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temporarily when the system is trapped in a energy well. Thus, an activation energy

is required to overcome the local energy barrier. Each time the crack extends by one

lattice spacing, the system will move from one state of local energy minimum to an

adjacent one. The energy difference between the two local energy-minimum states

determines the instantaneous driving force of crack extension and the local maximum

in between gives the activation energy barrier, which determines the instantaneous

kinetic rate of crack growth.

A connection between the concept of lattice trapping at a crack tip and that of

bond-breaking in a nanorod can be established if we consider breaking a siloxane bond

in a perfect nanorod as effectively creating a small notch crack. Thus, the targeted

siloxane bond can be also thought as being lattice-trapped. Correspondingly, the

bond-breaking driving force given by Eq. (4.8) will represent the thermodynamic

driving force of creating a notch crack. Although the detailed atomic structure and

stress state are different for two situations, we believe that the general trend revealed

via the study on nanorod bond-breaking is instructive in understanding the hydrolysis

reaction at the crack tip, considering the discrete, highly localized nature of covalent

bond breaking involved.

Now suppose a single siloxane bond occupies an effective area Aa, we may write

the crack extension driving force as

D(e) = [9(E) - -y]Aa, (4.9)

where the strain-dependent terms of energy change are lumped together to give the

elastic energy release rate 9(E)

-o(1)EV + !Ak(1)E 2V
900) =2 (4.10)

Aa

and the strain-independent energy variation corresponds to the surface energy increase

rate 7, i.e.,
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AE(0, 1) (4.11)
Aa

It is well known that, for a Griffith crack within a linear elastic continuum, the

energy release rate 9(e) is only a function of 2. But the energy release rate 9(e)

given in Eq. (4.10) contains a linear term in e. We have demonstrated in the case

of nanorod bond-breaking that this linear term is important in determining the crit-

ical condition at which the forward transition of bonding-breaking starts to become

thermodynamically favorable. Recall that, under the fixed-displacement boundary

condition, this linear term arises from the residual stress, which is generated in as-

sociation with relaxation of two newly-formed silanol surface groups at zero strain.

As will be demonstrated in section 4.4.5, under the fixed-force boundary condition,

there is also a corresponding linear term in the stress that should be taken into ac-

count. However, this linear term is absent in the conventionally defined driving force

of crack extension. The reason is that it is a common practice to assign an energy

penalty, i.e., surface energy, to associate with creation of a fresh surface. However,

the corresponding relaxation at the newly created surface are commonly considered

to be negligible. Consequently, their effects in coupling with the applied external load

to change the system's energy, i.e., the thermodynamic driving force of quasi-static

crack extension, are ignored. Therefore, in applying the Griffith condition to deter-

mine whether a crack will grow or heal in a surface reactive environment, caution has

to be taken in formulating the correct form of the thermodynamic driving force. This

is particularly important when surface relaxation involves spatial accommodation of

foreign species.

4.4.4 Extremum Point Drift

In this subsection, we provide an alternative scheme of labeling various states on

the MEPs at different load levels. For this new scheme, the reaction coordinates

of both initial and final states will not be fixed. The only requirement is that, for
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states with the same reaction coordinate s on the MEPs at different load levels,

the instantaneous tensile modulus must be the same. Accordingly, an extremum

point may drift along the MEP at different load levels, and there will be a one-to-one

correspondence between the reaction coordinate of the initial/saddle-point/final state

and applied external loading. We note that introduction of such a scheme is motivated

by a well-known result in fracture mechanics, which can be readily derived using the

J-integral (e.g., see Rice [79]). That is, there exists a one-to-one correspondence

between the crack-tip bond opening displacement, 6, and the applied far-field load,

which can be expressed in terms of elastic energy release rate g. If we take the crack-

tip opening displacement as the reaction coordinate, the relation between 6 and g
clearly indicates that the initial state will not stay at a fixed reaction coordinate.

Since the initial, saddle-point and final states all belong to the category of the

extremum points on the MEPs, we next derive a general relation of the extremum-

point drift, under the only assumption that the instantaneous tensile modulus of the

nanorod at a frozen state of s is constant. Denote s* as the reaction coordinate of one

extremum point on the MEP at zero strain. For state s near s* on the same MEP,

the energy is given by

E(O, s) = E(O, s*) + sI o(s*)(s - s*)e 2 V + O(E2). (4.12)

where Ko(s) denotes the local curvature at s and it is given by

Ko(s) = 2 E( .S) (4.13)

Consider state s on the MEP at strain E. Note that Eq. (4.6) is still valid to

'The definition of reaction coordinate using crack-tip opening displacement is only approximately
valid because the reaction of bond-breaking may proceed along a rather complicated pathway which
can not be simply characterized by crack-tip bond distance. However, for the simple situation
involving highly localized bond breaking in vacuum, the distance of a pair of crack-tip bond may be
sufficient to be taken as a reaction coordinate.
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connect energies between states at different MEPs with the same reaction coordinate

s. Substitution of Eq. (4.12) into Eq. (4.6), one relates the energy at the point (e, s)

to that at (0, s*) by

1 1
E(c, s) = E(O, s*) + o(s*)(s - s*)O 2 V + Uo(s)CV + ko(s)E (4.14)

Denote s* as the saddle-point state on the MEP at strain e. That is,

aE(c, s)
aEs( s 0. (4.15)
Os

Substitution of Eq. (4.14) into Eq. (4.15), one obtains

1
ro(s*)(s* - s*) + u'(s*)e + Ik'(s*)c2 = 0. (4.16)

where prime denotes the derivative with respect to s. From Eq. (4.16), one obtains

Oo (so*)S= s - E + O(E). (4.17)
r';;o(s*)

Eq. (4.17) gives the first order estimate on the extremum-point drift based on infor-

mation at s* on the MEP of zero strain. Substitution of Eq. (4.17) into Eq. (4.14),

one obtains the relation between the extremum-point energy at strain E and that at

= 0,

E(E, s*) = E(0, s*) + ao(s*)EV + - [ko(s*) - E2V + O( 2 ). (4.18)0 0 2 0 o(s*)_

Evidently, the extremum-point drift along the MEP contributes to energy variation

on the second order in E. Denote so and s0ad as the reaction coordinate of the initial
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and saddle-point states on the MEP of zero strain, respectively. From Eq. (4.18), the

activation energy AE(E) at strain E is related to the activation energy AEo at zero

strain by

AE() = AEO++AOEV+ Ako+ 0 9 2V+ O(E2). (4.19)

where Ao- denotes the difference in stress between the saddle-point and initial states

on the MEP of zero strain, AkO the corresponding difference in the system's stiffness.

From Eq. (4.19), the activation energy AE(c) at strain e can be estimated using

information obtained from the MEP of zero strain. Practically speaking, we have to

make a few more calculations beyond the MEP of zero strain in order to estimate the

higher order quantities such as the system's stiffness. Nevertheless, this perturbative

analysis reveals the physical origin of external load-dependent terms in modifying

kinetic barriers of reaction.

4.4.5 Stress-Dependent MEP

Although the above analysis is given using the nanorod's strain as a control variable,

the procedure of derivation and results about the strain-dependent thermodynamic

driving force and activation barrier can be easily adapted to the stress-controlled

situation. When the nanorod is deformed under stress control, the total energy of the

system, G(u, s), involves contributions from both atomic configuration energy and

potential energy of the external stress, i.e., G = E - uEV. Following the same scheme

of labeling various states on the MEPs as that discussed in section 4.4.1, in parallel

to Eq. (4.6), the energy at stress o is related to that at zero stress by

1AG(o-, s) = AG(O, s) + Eo(s)oV - -Aco(s)u 2 .
2
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where co(s) is the strain within the nanorod due to the hydrolysis reaction at zero

stress, Aco(s) denotes the compliance change from state i to s. That is, Aco(s) =

co(s) - co(0), where co(s) is the compliance of the nanorod at an intermediate state

s and it is the inverse of the stiffness ko(s).

The connection between two loading conditions can be seen when Eq. (4.7) is

rewritten in terms of the nominal stress a, where a is related to the nominal strain

by o = ko(0)e. That is,

u0(s) ko(s) oW 1 ko(s)AE(E, s) = AE(0, s) + kO(s) k0(s) - -k0(0) Aco(s)a 2 V. (4.20)
ko (s) ko (0) 2 ko (0)

Comparing Eq. (4.20) with Eq. (4.7), it is seen that if the change in stiffness

at state s is small with respect to the initial stiffness ko(0), i.e., ko(s)/ko(0) ~ 1,

Eq. (4.20) and Eq. (4.7) will be equivalent, because the relations co(s) = uo(s)/ko(s)

and AE(0, s) = AG(0, s) always hold. Therefore, as a first approximation, the energy

variation associated with bonding breaking is independent of the type of boundary

conditions imposed. This is reminiscent of the well known fact in fracture mechanics:

The expression of energy release rate for crack extension is independent of loading

methods. However, for a finite size system such as a nanorod, there are only six

siloxane bonds intersecting each cross section plane of the nanorod. Breaking a single

bond will approximately reduce the effective tension stiffness of nanorod by one sixth.

Because of this significant stiffness change, the effect of different loading methods is

expected to be appreciable. In the future, it would be of interest to quantitatively

evaluate the size effect on the stress-dependence of thermodynamics and kinetics of

chemical reaction revealed from the present study.
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Chapter 5

Summary

In this thesis, the unit processes of configurational instability of crystal lattices under

various non-uniform structural and/or chemical environments are studied by system-

atically probing the atomistic potential energy landscape of each system using the

state of the art configurational space sampling schemes. The main results are sum-

marized as follows.

In chapter 2, homogeneous nucleation of a dislocation beneath a nanoindenter is

studied as a strain localization event triggered by elastic instability of the perfect

crystal at finite strain. The finite element calculation, with a hyperelastic constitu-

tive relation based on an interatomic potential, is employed as an efficient method to

simulate the process of nanoindentation. This implementation facilitates the study of

dislocation nucleation at length scales that are large compared to atomic dimensions,

while remaining faithful to the nonlinear interatomic interactions. An local insta-

bility criterion based on bifurcation analysis is incorporated into the finite element

calculation to predict homogeneous dislocation nucleation. This criterion is superior

to that based on the critical resolved shear stress in terms of its accuracy of predic-

tion for both the nucleation site and the slip character of the defect. Finite element

calculations of nanoindentation of single crystal copper by a cylindrical indenter and

predictions of dislocation nucleation are validated by comparing with direct molecular

dynamics simulations governed by the same interatomic potential. In addition, ana-

lytic 2D and 3D linear elasticity solutions based on the Stroh formalism are used to
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benchmark the finite element results. The critical configuration of homogeneous dis-

location nucleation under a spherical indenter is quantified with full 3D finite element

calculations. The prediction of the nucleation site and slip character is verified by

direct molecular dynamics simulations. The critical stress state at the nucleation site

obtained from the interatomic potential is in quantitative agreement with ab initio

density functional theory calculation.

In chapter 3, we first report on the atomistic calculation of the saddle-point con-

figuration and activation energy for the nucleation of a 3D dislocation loop from a

stressed crack tip in single crystal Cu. The transition state is found using reaction

pathway sampling schemes, the nudged elastic band and dimer methods. For the

{111}(110) crack, loaded typically at 75% of the athermal critical strain energy re-

lease rate for spontaneous dislocation nucleation, the calculated activation energy is

1.1eV, significantly higher than the continuum estimate. The implication for such a

high nucleation barrier is that experimental observation of homogeneous nucleation is

unlikely on the laboratory time scale. On the other hand, we expect that the presence

of any heterogeneity along the crack front can significantly reduce the activation en-

ergy for dislocation nucleation. For any specified heterogeneity, the atomistic method

presented in this work should be applicable. In the second part of this chapter, we

take up the atomistic calculation of 3D lattice trapping barriers to brittle fracture of

Si. The system studied is a (111) cleavage crack with a straight crack front along the

[110] and [112] directions, respectively. The activation processes of crack front bond

breaking are quantitatively characterized using a reaction pathway sampling scheme,

the nudged elastic band method. The calculated energy variations along transition

pathways reveal the energetics of 3D crack front kink-pair formation and migration.

We find that the physical origin of directional anisotropy in cleavage crack propagation

can be attributed to a difference in the kink-pair formation energy for different crack

orientations. In addition, the effect of interatomic potentials on results is studied

by comparing the Stillinger-Weber (SW) potential and the environment dependent

interatomic potential (EDIP).

In chapter 4, stress-corrosion processes of silica with water are studied by system-
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atically exploring the stress-dependent potential energy surfaces computed quantum

mechanically at the molecular orbital level. A bond-saturated silica nanorod with

clearly defined nominal tensile stress is constructed to model a structural unit of the

stressed crack tip. Three competing pathways of hydrolysis reaction are identified

with the characteristic initial processes as water dissociation, pentavalent chemisorp-

tion, and direct siloxane bond-breaking, which are the rate-limiting steps at low, inter-

mediate, and high stress levels, respectively. From our calculation results, important

aspects concerning the stress-dependent chemical reactivity are revealed. Of particu-

lar note is the linear stress dependence of the thermodynamic driving force, which was

not commonly considered in the Griffith's criterion of brittle fracture initiation. Its

physical origin lies in the coupling between the applied stress and volumetric expan-

sion of the atomic structure due to surface relaxation associated with bond breaking.

Our nanorod example quantitatively demonstrates that this linear stress-dependent

driving force is particularly important when the bond-breaking process involves space

accommodation of foreign species. Furthermore, we carry out a perturbative analysis

on the stress-mediated minimum energy paths, from which the physical origin of the

stress dependence of both thermodynamic driving force and kinetic energy barrier is

revealed.
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Appendix A

Stroh Formalism of Anisotropic

Elasticity

Basic equations for Stroh formalism, which are used for deriving 2D and 3D ana-

lytic indentation solutions, are given in this appendix [102]. A general solution for

displacement u and stress function <1 is given by

U = Af(z) + Af(z) (A.1)

<b = Bf(z) + Bf(z) (A.2)

where

A = [a, a 2 a3 ] (A.3)

B = [b, b2 b3] (A.4)

f = [fi(zi) f2(z2) f3(z3)] T (A.5)
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z, =x+p,,y, a=1,2,3

f is a complex function vector to be determined by satisfying the boundary conditions

of the problem considered. Given the elastic constants tensor CijkI which is expressed

in the global coordinates, p, and a, can determined by solving the following eigenvalue

problem

[Q + (R + RT)p + Tp2] a = 0 (A.7)

where

Qik = C1k11, Rik = Ci1k2 and Tik = Ci2k2 (A.8)

The non-zero solution of a requires that

det [Q + (R + RT)p +Tp 2 ] = 0 (A.9)

Equation (A.9) has six roots which form three conjugate pairs. The root p"' has a

positive imaginary part, and thus b, is obtained by

b_ = (RT + p T) a, (A.10)

The stresses are given by

3

{-2} = 2ReZ bof'(za)

3

{ui3 }l = -2ReZ bcpOfa(zQ')
a=1

(A.11)

(A.12)
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The impedance matrix M appears in the 2D indentation solution. It is defined by

M = -iBA- 1 (A.13)

M is a Hermitian matrix and independent of how a, and b, are normalized. The

inverse of impedance matrix M is also commonly used [94] and given by

Y = iAB- 1 = M- (A.14)

For isotropic material, Y is

1-V i 1-2v
A 2pL

Y = 1-2v 1-v 0 (A.15)

0 0

where p denotes shear modulus and v Possion's ratio. The Barnett-Lothe tensor

L is employed in deriving the 3D indentation solution. It is defined by

t = -2iBBT

where the vectors a, and b, are normalized by

2a, - ba = 1

(A.16)

(A.17)
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