
Software Fault Identification via Dynamic Analysis

and Machine Learning

by

Yuriy Brun

Submitted to the Department of Electrical Engineering and Computer
Science

in partial fulfillment of the requirements for the degree of

Master of Engineering in Electrical Engineering and Computer Science

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

September 2003

@2003. All rights reserved.

Author
Department of Electrical Engineering and Computer Science

August 16, 2003

C ertified by ..
Michael D. Ernst

Assistant Professor
Thesis Supervisor

Accepted by.....
Arthur C. Smith

Chairman, Department Committee on Graduate Students

I

2

Software Fault Identification via Dynamic Analysis and

Machine Learning

by

Yuriy Brun

Submitted to the Department of Electrical Engineering and Computer Science
on August 16, 2003, in partial fulfillment of the

requirements for the degree of
Master of Engineering in Electrical Engineering and Computer Science

Abstract

I propose a technique that identifies program properties that may indicate errors. The
technique generates machine learning models of run-time program properties known
to expose faults, and applies these models to program properties of user-written code
to classify and rank properties that may lead the user to errors.

I evaluate an implementation of the technique, the Fault Invariant Classifier, that
demonstrates the efficacy of the error finding technique. The implementation uses
dynamic invariant detection to generate program properties. It uses support vector
machine and decision tree learning tools to classify those properties. Given a set
of properties produced by the program analysis, some of which are indicative of
errors, the technique selects a subset of properties that are most likely to reveal an
error. The experimental evaluation over 941,000 lines of code, showed that a user
must examine only the 2.2 highest-ranked properties for C programs and 1.7 for Java
programs to find a fault-revealing property. The technique increases the relevance
(the concentration of properties that reveal errors) by a factor of 50 on average for C
programs, and 4.8 for Java programs.

Thesis Supervisor: Michael D. Ernst
Title: Assistant Professor

3

4

Acknowledgments

I would like to thank my advisor, Michael Ernst, for all the patience, guidance, and

leadership he has brought to this project. He has provided invaluable experience and

support throughout my work with the Program Analysis Group. As far as advisors

go, and I've had a few over the years, he has proven himself as a reliable and caring

mentor who takes extraordinary amounts of time out of his schedule to promote the

wellbeing of his students.

A great deal of progress on my research was made possible by the contributions of

fellow researchers, especially Ben Morse and Stephen McCamant. Ben and Stephen

provided help in modifying source subject programs used in the experimental eval-

uation. Thank you to David Saff, who provided the FDanalysis subject programs

used in the experimental evaluation. I also thank Ben, Stephen, David, and all my

colleagues in the Program Analysis Group, in particular Alan Donovan, Lee Lin, Jeff

Perkins, and Toh Ne Win for their continuing suggestions and contributions to this

thesis.

Thank you to Gregg Rothermel, who provided the original sources for the subject

programs used in the experimental evaluation.

Thank you to Ryan Rifkin who implemented a support vector machine learner

SVMfu and provided feedback and support of the software.

I would also like to thank my parents Tatyana and Yefim Brun and sister Dina

Brun for their continuous support and encouragement. The values they have instilled

in me proved extremely motivating in my undergraduate, and now graduate careers.

Finally, I would like to thank Kristin Jonker for her friendship and help throughout

the many nights turned mornings that allowed this work to proceed.

5

6

- ---,- -- er is.

Contents

1 Introduction 11

2 Related Work 15

3 Technique 17

3.1 Creating Models. 17

3.2 Detecting Faults. 19

4 Tools 21

4.1 Program Property Detector: Daikon 21

4.2 Property to Characteristic Vector Converter 23

4.3 Machine Learning Algorithms . 24

4.3.1 Support Vector Machine Learning Algorithm 24

4.3.2 Decision Tree Machine Learning Algorithm 25

5 Experiments 27

5.1 Subject Program s . 27

5.1.1 C program s . 27

5.1.2 Java program s. 28

5.2 Procedure 29

5.3 M easurem ents . 30

6 Results and Discussion 33

6.1 R esults . 33

7

6.2 Ranked Property Clustering . 34

6.3 Machine Learning Algorithm Advantages 36

6.3.1 SVM Advantages . 37

6.3.2 Decision Tree Advantages . 37

6.4 User Experience . 38

6.5 Important Property Slots . 39

7 Future Work 41

8 Contributions 43

A Definitions of Slots 45

A.1 Property Type Slots . 45

A.2 Program Point Slots . 60

A.3 Program Variable Slots . 60

A.4 Property-Specific Slots and Other Slots 61

8

List of Figures

3-1 Creating a Program Property Model 18

3-2 Fault-Revealing Program Properties 18

3-3 Finding fault-revealing program properties using a model 19

5-1 C programs used in the experimental evaluation 28

5-2 Java programs used in the experimental evaluation 29

5-3 Example of the relevance and brevity measures 32

6-1 C program relevance results for the Fault Invariant Classifier . . 35

6-2 Java program relevance results for the Fault Invariant Classifier . . . 35

6-3 Relevance vs. set size . 36

6-4 Two sample fault-revealing properties 38

9

10

Chapter 1

Introduction

Programmers typically use test suites to detect errors in programs. Once a program

passes all the tests in its test suite, testing no longer leads programmers to errors.

However, the program is still likely to contain latent errors, and it may be difficult

or expensive to generate new test cases that reveal the remaining errors. Even if new

tests can be generated, it may be expensive to compute and verify an oracle that

represents the desired behavior of the program.

The technique presented in this thesis can lead programmers to latent code errors.

The technique does not require a test suite that separates succeeding from failing runs,

so it is particularly applicable to programs whose executions are expensive to verify.

The expense may result from difficulty in generating tests, from difficulty in verifying

intermediate results, or from difficulty in verifying visible behavior (as is often the

case for interactive or graphical user interface programs).

The new technique takes as input a set of program properties for a given program,

and outputs a ranking or a subset of those properties such that the highly-ranked

properties, or the properties in the reported subset, are more likely than average

to indicate faults in the program. The program properties may be generated by

an arbitrary program analysis; these experiments use a dynamic analysis, but the

technique is equally applicable to static analysis.

The intuition underlying the error finding technique is that many errors fall into

a few categories, that similar errors share similar characteristics, and that those char-

11

acteristics can be generalized and identified. For example, three common error cate-

gories are off-by-one errors (incorrect use of the first or last element of a data struc-

ture), use of uninitialized or partially initialized values, and exposure of representation

details to a client.

This technique helps the programmer find errors in code and is most useful when

errors in a program are hard to find. It is common for developers to be aware of

thousands of errors in a project, and be unable to fix all the errors because of time

and other resource limitations. This technique can be used to detect properties of

most critical errors, to help correct those errors first. By training machine learning

models on properties of past projects' most critical errors, the technique selects the

properties that expose errors most like those ones, letting the programmers correct

the most critical errors first. For example, the authors of a new operating system can

use past versions of operating systems to create models of fault-revealing properties

that have proven costly, such as errors that caused a computer crash and required a

reboot, errors that required the company to release and distribute software updates,

etc. Thus, if a company wanted to lower the number of software updates it had to

release, it could create a model of faulty code of past operating systems that required

updates, and find such errors in the new operating system, before releasing it to the

users.

The technique consists of two steps: training and classification. In the training

step, the technique uses machine learning to train a model on properties of erroneous

and non-erroneous programs; it creates a machine learning model of properties that

expose errors. (The experiments evaluate two different machine learning algorithms:

support vector machines and decision trees.) In the classification step, the user sup-

plies the precomputed model with properties of his or her code, and the model selects

those properties that are likely to indicate errors. A programmer searching for latent

errors or trying to increase confidence in a program can focus on those properties.

The experiments demonstrate that the technique's implementation, the Fault In-

variant Classifier, is able to recognize properties of errors in code. The relevance (also

known as utility) of a set of properties is the fraction with a given desirable prop-

12

erty. The output of the machine learning technique's implementation has average

relevance 50 times that of the complete set of properties. Without use of the tool,

the programmer would have to examine program properties at random or based on

intuition.

This thesis argues that machine learning can be used to identify certain program

properties that I call fault-revealing. Although the thesis does not give a rigorous

proof that these properties lead users to errors in code, it does contain an intuition

argument and also sample evidence of such properties from real programs that do

lead to errors, in section 6.4.

13

14

Chapter 2

Related Work

This research aims to indicate to the user specific program properties that are likely to

result from code errors. Because the goal of locating errors is so important, numerous

other researchers have taken a similar tack to solving it.

Xie and Engler [21] demonstrate that program errors are correlated with redun-

dancy in source code: files containing idempotent operations, redundant assignments,

dead code, or redundant conditionals are more likely to contain an error. That re-

search is complementary to mine in three respects. First, they use a statically com-

puted metric, whereas I use a dynamically analysis. Second, they increase relevance

by 45%-100%, whereas my technique increases relevance by an average of a factor of

49.6 (4860%). Third, their experimental analysis is at the level of an entire source file.

By contrast, my technique operates on individual program properties. Rather than

demonstrating that a file is more likely to contain an error, my experiments measure

whether the specific run-time properties identified by my technique (each of which

involves two or three variables at a single program point) are more likely to arise as

the result of an error.

Like my research, Dickinson et al. [4] use machine learning over program execu-

tions, with the assumption that it is cheap to execute a program but expensive to

verify the correctness of each execution. Their goal is to indicate which runs are

most likely to be faulty. They use clustering to partition test cases, similar to what

is done for partition testing, but without any guarantee of internal homogeneity. Ex-

15

ecutions are clustered based on "function call profile", or the number of times each

procedure is invoked. Verifying the correctness of one randomly-chosen execution

per cluster outperforms random sampling; if the execution is erroneous, then it is

advantageous to test other executions in the same cluster. Their experimental eval-

uation uses three programs, one of which had real faults, and measures number of

faulty executions detected rather than number of underlying faults detected. My

research identifies suspicious properties rather than suspicious executions, but relies

on a similar assumption regarding machine learning being able to make clusters that

are dominantly faulty or dominantly correct.

Hangal and Lam [9] use dynamic invariant detection to find program errors. They

detect a set of likely invariants over part of a test suite, then look for violations

of those properties over the remainder of the test suite. Violations often indicated

erroneous behavior. My research differs in that it uses a richer set of properties;

Hangal and Lam's set was very small in order to permit a simple yet fast implemen-

tation. Additionally, my technique can find latent errors that are present in most or

all executions, rather than focusing on anomalies.

Groce and Visser [8] use dynamic invariant detection to determine the essence of

counterexamples: given a set of counterexamples, they report the properties that are

true over all of them. (The same approach could be applied to the succeeding runs.)

These properties abstract away from the specific details of individual counterexamples

or successes, freeing users from those tasks. My research also generalizes over successes

and failures, but uses a noise-resistant machine learner and applies the resulting

models to future runs.

16

Chapter 3

Technique

This chapter describes the error detection technique that the Fault Invariant Clas-

sifier implements. The technique consists of two steps: training and classification.

Training is a preprocessing step (Section 3.1) that extracts properties of programs

for which errors are known a priori, converts these into a form amenable to machine

learning, and applies machine learning to form a model of fault-revealing properties.

Classification step is the user suppling the model (Section 3.2) with properties of

new code to select the fault-revealing properties, and using those properties to locate

latent errors in the new code.

The training step of the technique requires programs with faults and versions of the

same programs with those faults removed. The programs with faults removed need not

be error-free, and the ones used in the experimental evaluation described in chapter 5

did contain additional errors. (In fact, some additional errors were discovered in other

research that used the same subject programs [10].) It is an important feature of the

technique that the unknown errors do not hinder the technique; however, the model

only captures the errors that are removed between the versions.

3.1 Creating Models

Figure 3-1 shows how to produce a model of error-correlated properties. This pre-

processing step is run once, offline. The model is automatically created from a set

17

code with code with
known faults aults removed

program program
analysis analysis

properties pprts

machine learner

(:model:

Figure 3-1: Creating a program property model. Rectangles represent tools, and ovals
represent tool inputs and outputs. This entire process is automated. The model is
used as an input in Figure 3-3. The program analysis is described in Section 4.1, and
the machine learner is described in Section 4.3.

properties of properties of code with
code with faults faults removed

fault-revealing non-fault-revealing
properties properties

Figure 3-2: Fault-revealing program properties are those that appear in code with
faults, but not in code without faults. Properties that appear only in non-faulty code
are ignored by the machine learning step.

of programs with known errors and corrected versions of those programs. First, pro-

gram analysis generates properties of programs with faults, and programs with those

faults removed. Second, a machine learning algorithm produces a model from these

properties. Figure 3-3 shows how the technique uses the model to classify properties.

Before being inputted to the machine learning algorithm, each property is con-

verted to a characteristic vector and is labeled as fault-revealing or non-fault-revealing

(or is possibly discarded). Section 4.2 describes the characteristic vectors. Proper-

18

user code)

program analysis

machine classifier

fault-revea ing
properties

Figure 3-3: Finding likely fault-revealing program properties using a model. Rectan-
gles represent tools, and ovals represent tool inputs and outputs. This entire process
is automated. The model is produced by the technique of Figure 3-1.

ties that are present in only faulty programs are labeled as fault-revealing, properties

that appear in both faulty and non-faulty code are labeled as non-fault-revealing, and

properties that appear only in non-faulty code are not used during training (Figure 3-

2).

3.2 Detecting Faults

Figure 3-3 shows how the Fault Invariant Classifier runs on code. First, a program

analysis tool produces properties of the target program. Second, a classifier ranks

each property by its likelihood of being fault-revealing. A user who is interested in

finding latent errors can start by examining the properties classified as most likely

to be fault-revealing. Since machine learners are not guaranteed to produce perfect

models, this ranking is not guaranteed to be perfect, but examining the properties

labeled as fault-revealing is more likely to lead the user to an error than examining

randomly selected properties.

The user only needs one fault-revealing property to detect an error, so the user

should examine the properties according to their rank, until an error is discovered,

and rerun the tool after fixing the program code.

19

20

Chapter 4

Tools

This chapter describes the tools used in the experimental evaluation of the Fault

Invariant Classifier technique. The three main tasks are to extract properties from

programs (Section 4.1), convert program properties into a form acceptable to machine

learners (Section 4.2), and create and apply machine learning models (Section 4.3).

4.1 Program Property Detector: Daikon

The prototype implementation, the Fault Invariant Classifier, uses a dynamic (run-

time) analysis to extract semantic properties of the program's computation. This

choice is arbitrary; alternatives include using a static analysis (such as abstract in-

terpretation [2]) to obtain semantic properties, or using syntactic properties such as

duplicated code [21]. The dynamic approach is attractive because semantic properties

reflect program behavior rather than details of its syntax, and because runtime prop-

erties can differentiate between correct and incorrect behavior of a single program.

Daikon, a dynamic invariant detector, generates runtime properties [5]. Its out-

puts are likely program properties, each a mathematical description of observed rela-

tionships among values that the program computes. Together, these properties form

an operational abstraction that is syntactically identical to a formal specification,

including preconditions, postconditions, and object invariants.

Daikon detects properties at specific program points such as procedure entries and

21

exits; each program point is treated independently. The invariant detector is provided

with a variable trace that contains, for each execution of a program point, the values

of all variables in scope at that point. Each of a set of possible invariants is tested

against various combinations of one, two, or three traced variables.

Section A.1 (45) contains a complete list of properties extracted by Daikon. For

scalar variables x, y, and z, and computed constants a, b, and c, some examples of

checked properties are: equality with a constant (x = a) or a small set of constants

(x E {a,b,c}), lying in a range (a < x < b), non-zero, modulus (x = a (mod b)), linear

relationships (z = ax + by + c), ordering (x < y), and functions (y = fn(x)). Proper-

ties involving a sequence variable (such as an array or linked list) include minimum

and maximum sequence values, lexicographical ordering, element ordering, proper-

ties holding for all elements in the sequence, or membership (x E y). Given two

sequences, some example checked properties are elementwise linear relationship, lex-

icographic comparison, and subsequence relationship. Finally, Daikon can detect im-

plications such as "if pL null then p.value > x" and disjunctions such as "p.value > limit

or p.left E mytree".

A property is reported only if there is adequate statistical evidence for it. In

particular, if there are an inadequate number of observations, observed patterns may

be mere coincidence. Consequently, for each detected property, Daikon computes

the probability that such a property would appear by chance in a random set of

samples. The property is reported only if its probability is smaller than a user-defined

confidence parameter [6].

The properties are sound over the observed executions but are not guaranteed

to be true in general. In particular, different properties are true over faulty and

non-faulty runs. The Daikon invariant detector uses a generate-and-check algorithm

to postulate properties over program variables and other quantities, to check these

properties against runtime values, and then to report those that are never falsified.

Daikon uses additional static and dynamic analysis to further improve the output [6}.

22

4.2 Property to Characteristic Vector Converter

Machine learning algorithms take characteristic vectors as input, so the Fault Invari-

ant Classifier converts the properties reported by the Daikon invariant detector into

this form. (This step is not shown in Figures 3-1 and 3-3.)

A characteristic vector is a sequence of boolean, integral, and floating point values.

Each value is placed into its own slot in the vector. It can be thought of as a point

in multidimensional space.

For example, suppose there were a total of four slots: one to indicate whether

the property is an equality, one to indicate whether the property is a > relation, one

to report the number of variables, and one to indicate whether the property is over

floating point values. A property x = y, where x and y are of type int, would have

the values of 1 (or yes) for the first slot, 0 (or no) for the second slot, 2 for the third

slot, and 0 (or no) for the fourth slot. Thus the property x = y would be represented

by the vector (1, 0, 2, 0). Likewise, a > b + c, where a, b, and c are floating point

variables, would re represented by the vector (0, 1, 3, 1).

A characteristic vector is intended to capture as much of the information in the

property as possible. Overall, the characteristic vectors contain 388 slots. The ma-

chine learning algorithms of Section 4.3 are good at ignoring irrelevant slots. Ap-

pendix A contains a complete listing of the slots generated by the converter.

Daikon represents properties as Java objects. The converter uses reflection to

extract all possible boolean, integral, and floating point fields and zero-argument

method results for each property. Each such field and method fills exactly one slot.

For instance, some slots of the characteristic vector indicate the number of variables

in the property; whether a property involves static variables (as opposed to instance

variables or method parameters); and the (floating-point) result of the null hypoth-

esis test of the property's statistical validity [6]. Other slots represent the type of

a property (e.g., two variable equality such as x = y, or containment such as

x E val-array).

During the training step only, each characteristic vector is labeled as fault-revealing,

23

labeled as non-fault-revealing, or discarded, as indicated in Figure 3-2.

In order to avoid biasing the machine learning algorithms, the Fault Invariant

Classifier normalizes the training set to contain equal numbers of fault-revealing and

non-fault-revealing properties by repeating the smaller set. This normalization is

necessary because some machine learners interpret non-equal class sizes as indicating

that some misclassifications are more undesirable than others.

4.3 Machine Learning Algorithms

The experiments use two different machine learning algorithms: support vector ma-

chines and decision trees. Section 6.3 presents the advantages each machine learner

offered to the experiments. Machine learners treat each characteristic vector as a

point in multi-dimensional space. The goal of a machine learner is to generate a

function (known as a model) that best maps the input set of points to those points'

labels.

Machine learners generate models during the training step, and provide a mecha-

nism for applying those models to new points in the classification step.

4.3.1 Support Vector Machine Learning Algorithm

A support vector machine (SVM) [1] considers each characteristic vector to be a

point in a multi-dimensional space; there are as many dimensions as there are slots

in the vector. The learning algorithm accepts labeled points (in these experiments

there are exactly two labels: fault-revealing and non-fault-revealing), and it tries to

separate the labels via mathematical functions called kernel functions. The support

vector machine chooses the instantiation of the kernel function that best separates the

labeled points; for example, in the case of a linear kernel function, the SVM selects a

plane. Once a model is trained, new points can be classified according to which side

of the model function they reside on.

Support vector machines are attractive in theory because they can deal with data

of very high dimensionality and they are able to ignore irrelevant dimensions. In prac-

24

tice, support vector machines were good at ranking the properties by their likelihood

of being fault-revealing, so examining the top few properties often produced at least

one fault-revealing property. The two implementation of support vector machines,

SVMlight [12] and SVMfu [14], dealt poorly with modeling multiple separate clusters

of fault-revealing properties in multi-dimensional space. That is, if the fault-revealing

properties appeared in many clusters, these support vector machines were not able to

capture all the clusters in a single model. They did, however, represent some clusters,

so the top ranking properties were often fault-revealing.

The results reported in this paper use the SVMfu implementation [14].

4.3.2 Decision Tree Machine Learning Algorithm

A decision tree (also known as identification tree) machine learner [20] separates the

labeled points of the training data using hyperplanes that are perpendicular to one

axis and parallel to all the other axes. The decision tree machine learner follows

a greedy algorithm that iteratively selects a partition whose entropy (randomness)

is greater than a given threshold, then splits the partition to minimize entropy by

adding a hyperplane through it. (By contrast, SVMs choose one separating function,

but it need not be parallel to all the axes or even be a plane.)

A decision tree is equivalent to a set of if-then rules (see section 6.3.2 for an

example). Decision trees cannot be used to rank properties, but only to classify

them. The decision tree technique is more likely to isolate clusters of like properties

than SVMs because each cluster can be separated by its own set of hyperplanes, as

opposed to a single kernel function.

Optionally, decision tree learning allows boosting to refine models to cover a larger

number of separated clusters of points. Boosting trains an initial model, and then

trains more models on the same training data, such that each subsequent model em-

phasizes the points that would be incorrectly classified by the previous models. During

the classification stage, the models vote on each point, and the points' classifications

are determined by the majority of the models.

The experiments use the C5.0 decision tree implementation [13].

25

26

Chapter 5

Experiments

This chapter describes the methods used in the experimental evaluation of the Fault

Invariant Classifier.

5.1 Subject Programs

Experimental evaluation of the Fault Invariant Classifier uses twelve subject pro-

grams. Eight of these are written in C and four are written in Java. In total, the

twelve programs are 624,000 non-comment non-blank lines of code (941,000 with

comments and blanks).

5.1.1 C programs

There are eight C programs used as subjects in the experimental evaluation of the

technique. Seven of the eight were created by Siemens Research [11], and subsequently

modified by Rothermel and Harrold [15]. Each program comes with a single non-

erroneous version and several erroneous versions that each have one error that causes

a slight variation in behavior. The Siemens researchers created faulty versions by

introducing errors they considered realistic. The 132 faulty versions were generated by

10 people, mostly without knowledge of each others' work. Their goal was to introduce

as realistic errors as possible, that reflected their experience with real programs.

27

Average Faulty Total
Program Functions NCNB LOC versions NCNB LOC
print-tokens 18 452 539 7 3164 4313
printtokens2 19 379 489 10 3790 5373
replace 21 456 507 32 14592 16737
schedule 18 276 397 9 2484 3971
schedule2 16 280 299 10 2800 3291
space 137 9568 9826 34 325312 334084
tcas 9 136 174 41 5576 7319
tot-info 7 334 398 23 7682 9552
Total 245 11881 12629 166 361048 406445

Figure 5-1: C programs used in the experimental evaluation. NCNB is the number
of non-comment non-blank lines of code; LOC is the total number of lines with
commends and blanks. The print-tokens and printtokens2 programs are unrelated,
as are the schedule and schedule2 programs.

The researchers then discarded faulty versions that failed too few or too many of

their automatically generated white-box tests. Each faulty version differs from the

canonical version by one to five lines of code. Though some of these programs have

similar names, each program follows its own distinct specification and has different

sets of legal inputs and outputs.

The eighth program, space, is an industrial program that interprets Array Def-

inition Language inputs. It contains versions with errors made as part of the de-

velopment process. The test suite for this program was generated by Vokolos and

Frankl [19] and Graves et al. [7]. Figure 5-1 summarizes the size of the programs, as

well as the number of faulty versions for each.

5.1.2 Java programs

There are four used as subjects in the experimental evaluation of the technique. Three

programs were written by MIT's Laboratory in Software Engineering 6.170 class as

solutions to class assignments. Each student submits the assignment solution during

the term, and then, after getting feedback, gets a chance to correct errors in the code

and resubmit the solution. The resubmitted solutions are typically very similar code

to the original solutions, but with errors removed.

28

Average Faulty Total
Program Functions NCBC LOC versions NCBC LOC
Geo 49 825 1923 95 78375 115364
Pathfinder 18 430 910 41 17630 54593
Streets 19 1720 4459 60 103200 267534
FDAnalysis 277 5770 8864 11 63470 97505
Total 363 7145 16156 207 262675 534996

Figure 5-2: Java programs used in the experimental evaluation. NCBC is the number
of non-comment non-blank lines of code; LOC is the total number of lines with
comments and blanks.

Because the student Java programs may, and often do, contain multiple errors in

each version, a larger fraction of the properties are fault-revealing than for the other

programs. As a result, there is less room for improvement for the Java programs (e.g.,

picking a property at random has a 12% chance of picking a fault-revealing one for

Java programs, and only a 0.9% chance for C programs).

The fourth Java program, FDAnalysis takes as input a set of test suite executions,

and calculates the times at which regression errors were generated and fixed [16]. The

FDAnalysis program was written by a single graduate student at MIT, who made and

discovered eleven regression errors in the process. He took snapshots of the program

at small time intervals throughout his coding process, and thus has available the

versions of programs immediately after (unintentionally) inserting each regression

error, and immediately after removing it.

Figure 5-2 summarizes the sizes of the four Java programs.

5.2 Procedure

My evaluation of the Fault Invariant Classifier implementation uses two experiments

regarding recognition of fault-revealing properties. The first experiment uses support

vector machines as the machine learner and the second experiment uses decision trees.

The goal of these experiments is to determine whether a model of fault-revealing

properties of some programs can correctly classify the properties of another program.

The experiments use the programs described in section 5.1. Two machine learning

29

techniques -support vector machines and decision trees -train models on the fault-

revealing and non-fault-revealing properties of all but one of the programs. The

classifiers use each of these models to classify the properties of each faulty version of

the last program and measure the accuracy of the classification against the known

correct labeling, determined by comparing the properties of the faulty version and

the version with the fault removed (Figure 3-2).

Some machine learners are able to output a quality score when classifying prop-

erties. The Fault Invariant Classifier uses this quality score to limit the number of

properties reported, which makes the technique more usable.

My evaluation consists of two experiments, one to evaluate each of the two machine

learners, C5.0 decision trees and SVMfu support vector machines. Each experiment

is performed twice, once on the eight C programs, and once on the four Java pro-

grams. Each experiment trains a machine learner model based on the fault-revealing

properties of all but one program, and then tests the effectiveness of the model on

the properties of the last program, the one not included in training.

5.3 Measurements

My experiments measure two quantities: relevance and brevity. These quantities

are measured over the entire set of properties, over the set of properties classified as

fault-revealing by the technique, and over a fixed-size set.

Relevance [17, 18] is a measure of usefulness of the output, the ratio of the number

of correctly identified fault-revealing properties over the total number of properties

considered:

correctly identified fault-revealing properties
all properties identified as fault-revealing

Overall relevance is the relevance of the entire set of all program properties for a given

program. Classification relevance is the relevance of the set of properties reported

as fault-revealing. Fixed-size relevance is the relevance of a set of preselected size; I

30

selected 80 because it is the size that maximized average relevance for all the programs

in the experiments. Relevance of a set of properties represents the likelihood of a

property in that set being fault-revealing. I define the brevity of a set of properties

as the inverse of the relevance, or the average number of properties a user must

examine to find a fault-revealing one. Brevity is also measured over the overall set of

properties, classification set, and fixed-size set.

The importance of the classification relevance measure is that it is the fraction

of properties that the tool classifies as fault-revealing. If user wishes to explore all

the properties that the tool reports as having a chance to expose an error, the user

should expect that fraction of them to be fault-revealing. Fixed-size relevance is

that fraction of properties that are fault-revealing in a set of a given size. That

is, if the user examines only the top 80 properties, or if the tool is configured to

report only 80 properties, the user should expect that fraction of properties to be

fault-revealing. Brevity represents the average, or expected number of properties a

user has to examine to find a fault-revealing one, and since I believe that users want

to examine the minimum number of properties before finding a fault-revealing one,

brevity provides insight into the efficiency of the use of the user's time.

For example, suppose a program has 20 properties, 5 of which are fault-revealing.

Further, suppose that the technique classifies 10 properties as fault-revealing, 3 cor-

rectly and 7 incorrectly, and of the top two ranked properties one is fault-revealing and

the other is non-fault-revealing, as shown in Figure 5-3. Figure 5-3 is a 2-dimensional

projection of a multidimensional space.

In the example in Figure 5-3, the original relevance is 0.25 and the fixed-size

relevance is 0.5. The improvement in relevance is 2 times.

The best achievable brevity is 1, which happens exactly when relevance is 1. A

brevity of 1 means all properties are guaranteed to be fault-revealing.

31

0 0 0 0

0 +

0
0

0

.Iclassified as
fault-revealing

classified as
non-fault-revealing

Figure 5-3: Example of the relevance and brevity measures. Fault-revealing properties
are labeled with crosses, non-fault-revealing properties are labeled with circles. The
properties in the shaded region are the ones classified by the machine learner as fault-
revealing, and the ranking of the properties is proportional to their height (i.e., the
property at the top of the shaded region is the highest ranked property).

32

Overall Classification Fixed-size (2)

Relevance 5 = 0.25 - = 0.3 = 0.5

Brevity = 4 1 = 3.3 2 =2

Chapter 6

Results and Discussion

The experimental evaluation, described in this chapter, showed that the Fault Invari-

ant Classifier implementation of the error-finding technique is capable of classifying

properties as fault-revealing. For C programs, on average 45% of the top 80 proper-

ties are fault-revealing, so the user only has to examine 2.2 properties to find a fault-

revealing one. For Java programs, 59% of the top 80 properties are fault-revealing,

so the user only has to look at 1.7 properties to find a fault-revealing one.

The results show that ranking and selecting the top properties is more advanta-

geous than selecting all properties considered fault-revealing by the machine learner.

This chapter is organized as follows. Section 6.1 presents the results of the exper-

imental evaluation. Section 6.2 observes a formation of clusters within the ranking

of properties. Section 6.3 discusses advantages and disadvantages of using support

vector machines and decision trees as the machine learner. Section 6.4 presents some

data on sample user experience with the tool. Section 6.5 discusses my findings

regarding what makes some properties fault-revealing.

6.1 Results

Figure 6-1 and 6-2 show the data for the experiments that evaluate the technique,
with the fixed size of 80 properties. The first experiment uses SVMfu as the machine

learner, and the second uses C5.0.

33

Figure 6-2 shows the data for the experiments with the Java programs. The SVMfu

classification relevance differed little from overall relevance; however, the SVM was

very effective at ranking: the fixed-size relevance is - = 49.6 times as great as the

overall relevance for C programs and 05= 4.8 times as great for the Java programs.

The C5.0 classification relevance was 4 = 5.2 times as great as the relevance of

all the program properties. For Java programs the improvement was 0.336 - 2.70.122

times. Since decision trees can classify but not rank results, fixed-size relevance is not

meaningful for decision trees. The Java program improvements are smaller because

there was more room for improvement in the C programs, as described in section 5.1.2.

The C programs averaged 0.009 relevance before application of the technique, while

Java programs averaged 0.120 relevance.

Figure 6-3 shows how set size affects relevance. This figure shows the data from

the experiment over C programs. The average fixed-size relevance, over all programs,

is maximal for a set of size 80 properties. I computed the data for this figure by

measuring the relevance of each program version and computing the average for each

fixed-size set. Property clusters, described in section 6.2, cause the flat part of the

curve on the left side of the graph.

I am greatly encouraged by the fact that the technique performs on the largest

program, space, far better than average. This fact suggests that the technique is

scalable to large programs.

6.2 Ranked Property Clustering

The results of the experiment that uses SVMfu as the machine learner reveal that

properties are classified in clusters. That is, when ordered by rank, properties are

likely to appear in small groups of several fault-revealing or non-fault-revealing prop-

erties in a row, as opposed to a random distribution of fault-revealing and non-fault-

revealing properties. I believe that these clusters form because small groups of pro-

gram properties are very similar. In other words, some fact about the code is brought

forward in more than one property, and if that fact exposes a fault, then all those

34

Relevance
SVMfu C5.0

Class- Fixed- Class-
Program Overall ification size ification
printtokens2 0.012 0.222 0.050 0.012
print-tokens 0.013 0.177 0.267 0.015
replace 0.011 0.038 0.140 0.149
schedule2 0.011 0.095 0.327 0.520
schedule 0.003 0.002 0.193 0.003
space 0.008 0.006 0.891 0.043
tcas 0.021 0.074 0.233 0.769
tot-info 0.027 0.013 0.339 0.190
Average 0.009 0.010 0.446 0.047
Brevity 111 100 2.2 21.3
Improvement - 1.1 49.6 5.2

Figure 6-1: C program relevance results for the Fault Invariant Classifier. The data
from each program corresponds to the classifier's output using a model built on the
other programs. The fixed size is 80 properties (see Figure 6-3). Brevity of a set is
the size of an average subset with at least one fault-revealing property, or the inverse
of relevance.

Figure 6-2: Java program relevance results for the Fault Invariant Classifier. The
data from each program corresponds to the classifier's output using a model built on
the other programs. The fixed size is 80 properties (see Figure 6-3). Brevity of a
set is the size of an average subset with at least one fault-revealing property, or the
inverse of relevance.

properties will be fault-revealing. In Figure 6-3, the flat start of the curve is a result

of such clustering. For each program versions, the first few program properties are

either all fault-revealing, or non-fault-revealing, thus the relevance over all versions

is exactly equal to the fraction of versions that have a highest-ranked fault-revealing

35

Relevance
SVMfu C5.0

Class- Fixed- Class-
Program Overall ification size ification
Geo 0.120 0.194 0.548 0.333
Pathfinders 0.223 0.648 0.557 0.307
Streets 0.094 0.322 0.690 0.258
FDanalysis 0.131 0.227 0.300 0.422
Average 0.122 0.332 0.586 0.336
Brevity 8.2 3.0 1.7 3.0
Improvement - 2.7 4.8 2.7

0.5

0.4

0.3

cu 0.2
e

0.1

0 50 100 150 200

Number of Properties

Figure 6-3: Relevance vs. set size averaged across all C program versions using the

machine learner SVMfu. Beyond 250 properties, the relevance drops off approximately

proportionally to the inverse of the set size. Property clusters, described in section 6.2,
cause the flat part of the curve on the left side of the graph.

cluster. After a dozen or so properties, the variation in cluster size makes the curve

smoother, as some clusters end and new ones start in other versions, varying the

relevance.

The clusters suggest that it may be possible to filter incorrectly identified outlier

properties by selecting those that lie in clusters.

6.3 Machine Learning Algorithm Advantages

While decision trees and support vector machines try to solve the same problem,

their approaches are quite different. Support vector machines offer some advantages,

described in section 6.3.1, while decision trees offer advantages of their own, described

in section 6.3.2.

36

6.3.1 SVM Advantages

Support vector machines are capable of ranking properties. Ranking, as opposed to

classification, of properties proved significantly more useful for two reasons. First,
the fixed-size relevance was fifty times greater than the overall relevance, while the

classification relevance for SVMfu was only marginally better than the overall rele-

vance. Second, the classification set size, or number of properties reported as likely

fault-revealing, was too large to expect a user to examine. Building support vector

machine models and applying those models to program properties allowed for ranking

of the properties which created smaller output sets with higher relevance. The exper-

iments showed that looking at just 2.2 properties of C programs and 1.7 properties

of Java programs, on average, is sufficient to find a fault-revealing property. This

statistic is important because it indicates the expected work for a user. Examining a

smaller number of properties means less work for a user in order to locate an error.

6.3.2 Decision Tree Advantages

Decision tree models were able to improve the classification relevance just like the

support vector machine models, but because decision trees do not support ranking,

it was not possible to optimize the set size using decision trees. However, unlike

support vector machine models, the rule sets produced by decision trees are easy to

read and may provide insights into the reasons why some properties are classified as

fault-revealing. For example, one rule produced by a decision tree read "If a property

has 3 or more variables, and at least one of the variables is a boolean, and the property

does not contain a sequence variable (such as an array), then classify the property as

non-fault-revealing."

I attempted to use boosting with decision trees, as described in section 4.3.2. In

the experiments, boosting had a no significant effect on relevance. I suspect that a

nontrivial subset of the training properties misclassified by the original model were

outliers, and training additional models while paying special attention to those out-

liers as well as the other truly fault-revealing properties neither hurt nor improved

37

Program Description of fault Fault-revealing property Non-fault-revealing property

replace maxString is maxPattern > 5 lin = null

initialized to 100
but maxPattern is 50

schedule prio is incorrectly (prio > 2) = return < 0 prio-queue

set to 2 instead of 1 contains no duplicates

Figure 6-4: Sample fault-revealing and non-fault-revealing properties. The fault-
revealing properties provide information such as the methods and variables that are
related to the fault. All four properties were classified correctly by the Fault Invariant
Classifier.

the overall models. The resulting models classified more of the properties correctly,

as fault-revealing, but at the same time misclassified more outliers.

6.4 User Experience

The experiments indicate that machine learning can identify properties that are likely

fault-revealing. Intuition, and the related work in section 2, indicate that fault-

revealing properties should lead Users to find errors in programs. However, I have

not performed a user study to verify this claim. This section provides examples of

fault-revealing properties and some non-fault-revealing properties, to give the reader

an intuition of how fault-revealing properties can lead users to errors.

Figure 6-4 provides two examples of fault-revealing properties (one for each of

two different erroneous programs), and two examples of non-fault-revealing proper-

ties for the same two faulty versions. The fault-revealing and non-fault revealing

property examples appear in the same methods (addstr for replacereplace and up-

grade-process-prio for schedule).

The first example in Figure 6-4 relates to the program replace, which is a regular

expression search-and-replace routine. The program initialized the maximum input

string to be of length 100 but the maximum allowed pattern to only 50. Thus if a user

entered a pattern that matched a string correctly, and that pattern was longer than

50 characters, the faulted by treating valid regular expression matches as mismatches.

The single difference in the properties of this version and a version with a correctly

38

initialized pattern is that one method addstr in the faulty version was always called

when maxPattern was greater than or equal to 50.

The second example in Figure 6-4 relates to the program schedule, a program

that arranges a set of tasks with given priorities. The program's input is a sequence

of tasks with priorities, and commands regarding those tasks, e.g., changing priorities.

In the faulty version, when the user tried to increase the priority of a job to 1, the

software actually set the priority to 2. The fault-revealing property for this program

version is that a function returned a non-positive number every time priority was 2

or greater.

In these examples, the fault-revealing properties refer to the variables that are

involved in the error, while the non-fault-revealing properties do not. Thus if a

programmer were to examine the fault-revealing properties shown above, that pro-

grammer would likely be lead to the errors in the code.

The fault-revealing properties are supposed to lead programmers to errors in code

by attracting the programmers' attention to methods that contain the errors and

variables that are involved with the errors. The examples shown in Figure 6-4 provide

some evidence that fault-revealing properties do in fact expose methods and variables

that reveal errors. To generate more solid evidence to support the claim, one could

design a user study where users were asked to remove errors from programs, some

with the help of the Fault Invariant Classifier, and other without its help.

6.5 Important Property Slots

One advantage of using decision trees as the machine learner is the human-readability

of the models themselves. The models form a set of if-then rules that can be used to

explain why certain properties are considered fault-revealing by the machine learning

classifier, while other properties are not.

I generated decision tree models based on fault-revealing and non-fault-revealing

properties of the programs described in section 5.1, one model per program, and

examined those models for common rules. I believe that those common rules are the

39

ones that are most applicable to the general program property.

The following are some if-then rules that appeared most often:

If a property was based on a large number of samples during test suite execution

- or in other words, properties of code that executes often - and these properties

did not state equality between two integers or try to relate three variables by fitting

them to a plane, then that property was considered fault-revealing.

If a property states that a sequence does not contain any duplicates, or that a

sequence always contains an element, then it is likely fault-revealing (this rule was

present in most models). If the property was also over top level variables (e.g., array

x is a top level variable, where as an array which is a field of an object, such as obj.x

is not a top level variable), then even more likely (more models included this rule)

the property is fault-revealing.

If a property is over variables deep in the object structure (e.g., obj.left.down.x),

then the property is most likely non-fault-revealing. Also, if a property is over a se-

quence that contained one or fewer elements, then that property is non-fault-revealing.

40

Chapter 7

Future Work

In the experiments, the Fault Invariant Classifier technique was accurate at classifying

and ranking properties as fault-revealing and non-fault-revealing. The experiments

show that the technique's output can be refined to be small enough not to overwhelm

the user, and this thesis has begun to argue, by presenting examples, that the fault-

revealing properties are useful to locating errors in code. The next logical step is to

evaluate the technique in use by programmers on real code errors, by performing a

case study to determine whether the tool's output helps users to locate and remove

errors.

Programmers can greatly benefit from knowing why certain properties are con-

sidered fault-revealing and others are not. Additionally, interpreting decision tree

models of fault-revealing properties, as shown in section 6.5, can provide insight into

the reasons properties reveal faults and explain why the Fault Invariant Classifier

technique works. The knowledge can also indicate how to improve the grammar of

the properties and allow for more fault-revealing properties.

The experiments are over a limited set of programs. These programs are widely

available and have been used in previous research, permitting comparison of results,

and they have multiple realistic faults and test suites. However, they have problems

that constitute threats to validity; for example, in addition to size the faults for seven

of the eight C programs were injected by the same ten programmers. These programs

were appropriate for an initial evaluation of the technique, but a stronger evaluation

41

will execute the experiments on more, larger, and more varied programs. Expanding

the program suite will indicate which programs the technique is most effective for and

generalize the results reported in this thesis.

A number of future directions are possible regarding the machine learning aspect

of this work. For example, one could augment existing machine learning algorithms

by first detecting clusters of fault-revealing properties in the training data, and then

training separate models, one on each cluster. A property would be considered fault-

revealing if any of the models classified it as such. This approach may improve the

relevance of the technique because in the current state, some machine learners may

not accurately represent multiple clusters within one model.

The clustering idea can extend even further via a detailed analysis of the re-

quirements of the learning problem and development of an expert machine learning

algorithm that would specialize in learning program property models. A specialized

algorithm may greatly increase the classification power and relevance of the technique.

This thesis has demonstrated the application of the property selection and ranking

technique to error location. It may be possible to apply the technique to select prop-

erties that improve code understanding or are helpful in automatic proof generation.

It may also be used to select properties that expose only a single type of error, e.g.,

buffer overrun errors or system failure errors.

42

Chapter 8

Contributions

This thesis presents the design, implementation, and evaluation of an original program

analysis technique that uses machine learning to select program properties. The goal

of the technique is to assist users in locating errors in code by automatically presenting

the users with properties of code that are likely to expose faults caused by such errors.

This thesis also demonstrates the ability of a machine learning algorithm to select

program properties based on models of properties known to expose faults. It is

a promising result that a machine learner trained on faults in some programs can

successfully locate different faults in different programs.

The experimental evaluation of the technique uses an implementation called the

Fault Invariant Classifier. The evaluation reports experimental results that quantify

the technique's ability to select fault-revealing properties. In the experiments over

twelve programs with a total of 624,000 non-blank non-comment lines of code (941,000

with comments and blanks), the 80 top-ranked properties for each program were on

average 45% fault-revealing for C programs and 57% for Java programs, a 50-fold and

4.8-fold improvement, respectively, over the fraction of fault-revealing properties in

the input set of properties. Further, the technique ranks the properties such that, on

average, by examining 2.2 properties for the C programs, and 1.7 properties for the

Java programs, the user is likely to encounter at least one fault-revealing property.

I provide some preliminary evidence that links fault-revealing properties to errors

in code, and suggest a user study that can be used to provide more solid evidence.

43

I also present some preliminary analysis of machine learning models that reflect the

important aspects of fault-revealing properties, that can help programmers better

understand errors.

44

Appendix A

Definitions of Slots

This appendix contains the definitions of all 388 slots used in the Fault Invariant

Classifier implementation of the error-finding technique. Program properties are con-

verted to mathematical vectors by measuring various values of the property and filling

the vector's slots with those values. The slots described below are specific to program

properties extracted by Daikon. A subset of the slots are all the types of properties

that Daikon extracts. These types are listed separately in section A.1. Slots that deal

with the location of the property in the code are listed in section A.2, and slots that

deal with the properties' variables are listed in section A.3. Finally, section A.4 lists

slots that are specific to only certain properties and other general slots.

The Fault Invariant Classifier extracts all slots dynamically. The experimental

evaluation relies only on the slots described in this appendix.

A.1 Property Type Slots

Each program property has a type. The slot vector reserves a slot for every type

of property; these slots have a value of either 1 or 0, indicating the type of a given

property. For any one property, the vector contains a 1 in one of these slots and

0 in all the others. Note that the same properties over different types of variables,
e.g., integers or doubles, have different names. The information presented here is also

available in the Daikon user manual [3].

45

" CommonFloatSequence: Represents double sequences that contain a common

subset. Prints as "{el, e2, e3, ...} subset of x[]."

" CommonSequence: Represents long sequences that contain a common subset.

Prints as "{el, e2, e3, ...} subset of x[]."

" CommonStringSequence: Represents string sequences that contain a common

subset. Prints as "{sl, s2, s3, ...} subset of x[J."

" DummyInvariant: This is a special property used internally by Daikon to repre-

sent properties whose meaning Daikon doesn't understand. The only operation

that can by performed on a DummyInvariant is to print it. For instance, dummy

invariants can be created to correspond to splitting conditions, when no other

property in Daikon's grammar is equivalent to the condition.

" EltLowerBoundFloat: Represents the property that each element of a double[]

sequence is greater than or equal to a constant. Prints as "x[] elements > c."

* EltNonZero: Represents the property "x # 0" where x represents all of the

elements of a long sequence. Prints as "x[] elements : 0."

" EltNonZeroFloat: Represents the property "x $ 0" where x represents all of

the elements of a double sequence. Prints as "x[] elements $ 0."

" EltOneOf: Represents long sequences where the elements of the sequence take

on only a few distinct values. Prints as either "x[] == c" (when there is only

one value), or as "x[] one of {cl, c2, c3}" (when there are multiple values).

* EltOneOfFloat: Represents double sequences where the elements of the se-

quence take on only a few distinct values. Prints as either "x[] == c" (when

there is only one value), or as "x[] one of {cl, c2, c3}" (when there are multiple

values).

" EltOneOfString: Represents String sequences where the elements of the se-

quence take on only a few distinct values. Prints as either "x[] == c" (when

46

there is only one value), or as "x[] one of {cl, c2, c3}" (when there are multiple

values).

" EltUpperBound: Represents the property that each element of a long[] sequence

is less than or equal to a constant. Prints as "x[] elements < c".

" EltUpperBoundFloat: Represents the property that each element of a double[]

sequence is less than or equal to a constant. Prints as "x[] elements < c."

" EltwiseFloatEqual: Represents equality between adjacent elements (x[i], x[i+1])

of a double sequence. Prints as "x[] elements are equal."

" EltwiseFloatGreaterEqual: Represents the property ">" between adjacent ele-

ments (x[i], x[i+1]) of a double sequence. Prints as "x[] sorted by ">."

" EltwiseFloatGreaterThan: Represents the property ">" between adjacent ele-

ments (x[i], x[i+1]) of a double sequence. Prints as "x[] sorted by ">."

" EltwiseFloatLessEqual: Represents the property "<" between adjacent ele-

ments (x[i], x[i+1]) of a double sequence. Prints as "x[] sorted by " ."

" EltwiseFloatLessThan: Represents the property "<" between adjacent elements

(x[i], x[i+1]) of a double sequence. Prints as "x[] sorted by "<."

" EltwiseIntEqual: Represents equality between adjacent elements (x[i], x[i+1])
of a long sequence. Prints as "x[] elements are equal."

" EltwiselntGreaterEqual: Represents the property ">" between adjacent ele-

ments (x[i], x[i+1]) of a long sequence. Prints as "x[] sorted by ">."

" EltwiseIntGreaterThan: Represents the property ">" between adjacent ele-

ments (x[i], x[i+1]) of a long sequence. Prints as "x[] sorted by ">."

* EltwiselntLessEqual: Represents the property "<" between adjacent elements

(x[i], x[i+1]) of a long sequence. Prints as "x[] sorted by "<."

47

* EltwiselntLessThan: Represents the property "<" between adjacent elements

(x[i], x[i+13) of a long sequence. Prints as "x[] sorted by "<."

Equality: The Equality property is used for displaying several equality Compar-

ison properties ("x == y", "x == z") as one Equality property ("x == y =

z"). This class is created after the actual property detection, and right before

printing hence this is not a real property class; it does not implement many

of the methods that most property classes do. Furthermore, calling arbitrary

methods on this class may not work.

" FloatEqual: Represents a property of "==" between two double scalars.

" FloatGreaterEqual: Represents a property of">" between two double scalars.

* FloatGreaterThan: Represents a property of">" between two double scalars.

e FloatLessEqual: Represents a property of'<" between two double scalars.

* FloatLessThan: Represents a property of"<" between two double scalars.

" FloatNonEqual: Represents a property of "i" between two double scalars.

" FunctionBinary: Represents a property between three long scalars by applying

a function to two of the scalars. Prints as either "x == function (y, z)" or as

"x == y op z" depending upon whether it is an actual function call or a binary

operator.

long operators are: * / % << > & && ^||

long functions are: min max gcd pow

" FunctionBinaryFloat: Represents a property between three double scalars by

applying a function to two of the scalars. Prints as either "x == function (y,

z)" or as "x == y op z" depending upon whether it is an actual function call

or a binary operator.

Current double operators are: /
Current double functions are: min max pow

48

" FunctionUnary: Represents a property between two long scalars by applying a

function to one of the scalars. Prints as either "x == function(y)" or "x = [op]

y" depending upon whether it is an actual function call or a unary operator.

Current long functions are:

" FunctionUnaryFloat: Represents a property between two double scalars by ap-

plying a function to one of the scalars. Prints as either "x == function(y)" or

"x = [op] y" depending upon whether it is an actual function call or a unary

operator.

Implication: The Implication property class is used internally within Daikon to

handle properties that are only true when certain other conditions are also true

(splitting).

* IntEqual: Represents a property of "==" between two long scalars.

* IntGreaterEqual: Represents a property of">" between two long scalars.

* IntGreaterThan: Represents a property of">" between two long scalars.

" IntLessEqual: Represents a property of"<" between two long scalars.

* IntLessThan: Represents a property of"<" between two long scalars.

" IntNonEqual: Represents a property of "$" between two long scalars.

* LinearBinary: Represents a Linear property (y = ax + b) between two long

scalars.

" LinearBinaryFloat: Represents a Linear property (y = ax + b) between two

double scalars.

" LinearTernary: Represents a Linear property (i.e., z = ax + by + c) over three

long scalars.

* LinearTernaryFloat: Represents a Linear property (i.e., z = ax + by + c) over

three double scalars.

49

* LowerBound: Represents the property 'x > c', where c is a constant and x is a

long scalar.

" LowerBoundFloat: Represents the property 'x > c', where c is a constant and

x is a double scalar.

Member: Represents long scalars that are always members of long sequences.

Prints as "x in y[]" where x is a long scalar and y[] is a long sequence.

" MemberFloat: Represents double scalars that are always members of double

sequences. Prints as "x in y[]" where x is a double scalar and y[] is a double

sequence Modulus Represents the property "x == r (mod m)" where x is a long

scalar, r is the remainder, and m is the modulus.

" NoDuplicates: Represents long sequences that contain no duplicate elements.

Prints as "x[] contains no duplicates."

" NoDuplicatesFloat: Represents double sequences that contain no duplicate el-

ements. Prints as "x[] contains no duplicates."

" NonModulus: Represents long scalars that are never equal to r (mod m) (for

all reasonable values of r and m) but all other numbers in the same range (i.e.,

all the values that x doesn't take from min(x) to max(x)) are equal to r (mod

m). Prints as "x 0 r (mod m)" where r is the remainder and m is the modulus.

" NonZero: Represents long scalars that are non-zero. Prints as either "x $ 0"

or "x 0 null" for pointer types.

" NonZeroFloat: Represents double scalars that are non-zero. Prints as :x # 0."

* OneOfFloat: Represents double variables that take on only a few distinct values.

Prints as either "x == c" (when there is only one value), or as "x one of {cl,

c2, c3}" (when there are multiple values).

50

" OneOfFloatSequence: Represents double[] variables that take on only a few

distinct values. Prints as either "x == c" (when there is only one value), or as

"x one of {cl, c2, c3}" (when there are multiple values).

* OneOfScalar: Represents long scalars that take on only a few distinct values.

Prints as either "x == c" (when there is only one value), "x one of {cl, c2,

c3}" (when there are multiple values), or "x has only one value" (when x is

a hashcode (pointer) - this is because the numerical value of the hashcode

(pointer) is uninteresting).

" OneOfSequence: Represents long[] variables that take on only a few distinct

values. Prints as either "x == c" (when there is only one value), or as "x one

of {cl, c2, c3}" (when there are multiple values).

" OneOfString: Represents String variables that take on only a few distinct values.

Prints as either "x == c" (when there is only one value), or as "x one of {cl,

c2, c3}" (when there are multiple values).

" OneOfStringSequence: Represents String[] variables that take on only a few

distinct values. Prints as either "x == c" (when there is only one value), or as

"x one of {cl, c2, c3}" (when there are multiple values).

" PairwiseFloatComparison: Represents a property between corresponding ele-

ments of two double sequences. The length of the sequences must match for

the property to hold. A comparison is made over each x[i], y[i] pair. Thus, x[]

is compared to y[O], x[1] to y[1], and so forth. Prints as "x[] [cmp] y[]" where

[cmp] is one of == 4 > > < <.

" PairwiseFloatEqual: Represents a property between corresponding elements of

two double sequences. The length of the sequences must match for the property

to hold. A comparison is made over each x[i], y[i] pair. Thus, x[O] is compared

to y[O], x[1] to y[1], and so forth. Prints as x[] == y[]."

51

" PairwiseFloatGreaterEqual: Represents a property between corresponding ele-

ments of two double sequences. The length of the sequences must match for

the property to hold. A comparison is made over each x[i], y[i pair. Thus, x[O]

is compared to y[OJ, x[1] to y[l], and so forth. Prints as "x[] ;> yU."

" PairwiseFloatGreaterThan: Represents a property between corresponding ele-

ments of two double sequences. The length of the sequences must match for

the property to hold. A comparison is made over each x[i], y[i} pair. Thus, x[O]

is compared to y[0}, x[1] to y[1], and so forth. Prints as "x[] > y[]."

" PairwiseFloatLessEqual: Represents a property between corresponding elements

of two double sequences. The length of the sequences must match for the prop-

erty to hold. A comparison is made over each x[i], y[i] pair. Thus, x[O] is

compared to y[O], x[1] to y[1], and so forth. Prints as "x[] <; y[]."

" PairwiseFloatLessThan: Represents a property between corresponding elements

of two double sequences. The length of the sequences must match for the

property to hold. A comparison is made over each x[i], y[i] pair. Thus, x[O] is

compared to y[O], x[1] to y[1], and so forth. Prints as "x[] < y[]."

" PairwiseFunctionUnary: Represents a property between corresponding elements

of two long sequences by applying a function to one of the elements. The length

of the sequences must match for the property to hold. The function is applied

to each (x[i], y[i]) pair. Prints as either "x[} == function(y[])'' or "x[] = [op]

y[]" depending upon whether it is an actual function call or a unary operator.

Current long Functions are:

" PairwiseFunctionUnaryFloat: Represents a property between corresponding el-

ements of two double sequences by applying a function to one of the elements.

The length of the sequences must match for the property to hold. The function

is applied to each (x[i], y[i]) pair. Prints as either "x[] == function(y[])" or

"] = [op] y[]" depending upon whether it is an actual function call or a unary

operator.

52

" PairwiseIntComparison: Represents a property between corresponding elements

of two long sequences. The length of the sequences must match for the property

to hold. A comparison is made over each x[i], y[i] pair. Thus, x[O] is compared

to y[O], x[1] to y[l], and so forth. Prints as "x[] [cmp] y[]" where [cmp] is one of

* PairwiseIntEqual: Represents a property between corresponding elements of

two long sequences. The length of the sequences must match for the property

to hold. A comparison is made over each x[i], y[i] pair. Thus, x[O] is compared

to y[O], x[1] to y[1], and so forth. Prints as "x[] == y[]."

" PairwiseIntGreaterEqual: Represents a property between corresponding ele-

ments of two long sequences. The length of the sequences must match for the

property to hold. A comparison is made over each x[i], y[i] pair. Thus, x[O] is

compared to y[O], x[1] to y[1], and so forth. Prints as "x[] > y[]."

" PairwiseIntGreaterThan: Represents a property between corresponding ele-

ments of two long sequences. The length of the sequences must match for

the property to hold. A comparison is made over each x[i], y[i] pair. Thus, x[O]

is compared to y[O], x[1] to y[1], and so forth. Prints as "x[] > y[]."

" PairwiseIntLessEqual: Represents a property between corresponding elements

of two long sequences. The length of the sequences must match for the property

to hold. A comparison is made over each x[i], y[i] pair. Thus, x[O] is compared

to y[O], x[1] to y[1], and so forth. Prints as "x[] y[J."

" PairwiseIntLessThan: Represents a property between corresponding elements

of two long sequences. The length of the sequences must match for the property

to hold. A comparison is made over each x[i], y[i] pair. Thus, x[O] is compared

to y[O], x[1] to y[1], and so forth. Prints as "x[] < y[]."

" PairwiseLinearBinary: Represents a linear property (i.e., y = ax + b) between

the corresponding elements of two long sequences. Each (x[i], y[i]) pair is ex-

53

amined. Thus, x[O] is compared to y[O], x[1] to y[1] and so forth. Prints as "y[]

= a * x[] + b."

* PairwiseLinearBinaryFloat: Represents a linear property (i.e., y = ax + b)

between the corresponding elements of two double sequences. Each (x[i], y[i])

pair is examined. Thus, x[O] is compared to y[O], x[1] to y[1] and so forth. Prints

as "y[= a * x[] + b."

" Reverse: Represents two long sequences where one is in the reverse order of the

other. Prints as "x[] is the reverse of y[]."

" ReverseFloat: Represents two double sequences where one is in the reverse order

of the other. Prints as "x[I is the reverse of y[]."

" SeqComparison: Represents properties between two long sequences. If order

matters for each variable (which it does by default), then the sequences are

compared lexically. Prints as "x[] [cmp] y[] lexically" where [cmp] can be ==

< < > >. If order doesn't matter for each variable, then the sequences are

compared to see if they are set equivalent. Prints as "x[] == y[]." If the

axillary information (e.g., order matters) doesn't match then no comparison is

made at all.

* SeqComparisonFloat: Represents properties between two double sequences. If

order matters for each variable (which it does by default), then the sequences

are compared lexically. Prints as "x[] [cmp y[J lexically" where [cmp] can be

== < < > >. If order doesn't matter for each variable, then the sequences are

compared to see if they are set equivalent. Prints as "x[3 == y[U." If the extra

information (e.g., order matters) doesn't match then no comparison is made at

all. SeqComparisonString Represents properties between two String sequences.

If order matters for each variable (which it does by default), then the sequences

are compared lexically. Prints as "x[[cmp] y[] lexically" where [cmp] can be

-- < < > >. If order doesn't matter for each variable, then the sequences are

compared to see if they are set equivalent. Prints as "x[] == y[]." If the extra

54

information (e.g., order matters) doesn't match then no comparison is made at

all.

" SeqFloatComparison: Represents double scalars with a property to each element

of double sequences. Prints as "x[] elements [cmp] y" where x is a double

sequence, y is a double scalar, and [cmp] is one of the comparators == < < >

" SeqFloatEqual: Represents double scalars with a property to each element of

double sequences. Prints as "x[] elements == y" where x is a double sequence

and y is a double scalar.

" SeqFloatGreaterEqual: Represents double scalars with a property to each el-

ement of double sequences. Prints as "x[] elements > y" where x is a double

sequence and y is a double scalar.

" SeqFloatGreaterThan: Represents double scalars with a property to each ele-

ment of double sequences. Prints as "x[] elements > y" where x is a double

sequence and y is a double scalar.

" SeqFloatLessEqual: Represents double scalars with a property to each element

of double sequences. Prints as "x[] elements < y" where x is a double sequence

and y is a double scalar .

* SeqFloatLessThan: Represents double scalars with a property to each element

of double sequences. Prints as "x[] elements < y" where x is a double sequence

and y is a double scalar.

* SeqIndexComparison: Represents properties between elements of a long se-

quence and the indices of those elements. Prints as "x[i] [cmp] i" where [cmp]

is one of < < > >.

" SeqIndexComparisonFloat: Represents properties between elements of a double

sequence and the indices of those elements. Prints as "x[i] [cmp] i" where [cmp]

is one of < < > >.

55

" SeqlndexNonEqual: Represents long sequences where the element stored at

index i is not equal to i. Prints as "x[i] i."

* SeqlndexNonEqualFloat: Represents double sequences where the element stored

at index i is not equal to i. Prints as "x[i] $ i."

* SeqlntComparison: Represents long scalars with a property to each element of

long sequences. Prints as "x[] elements [cmp] y" where x is a long sequence, y

is a long scalar, and [cmp] is one of the comparators == < < > >.

" SeqIntEqual: Represents long scalars with a property to each element of long

sequences. Prints as "x[] elements == y" where x is a long sequence and y is a

long scalar.

* SeqlntGreaterEqual: Represents long scalars with a property to each element

of long sequences. Prints as "x[] elements > y" where x is a long sequence and

y is a long scalar.

" SeqIntGreaterThan: Represents long scalars with a property to each element of

long sequences. Prints as "x[] elements > y" where x is a long sequence and y

is a long scalar.

" SeqIntLessEqual: Represents long scalars with a property to each element of

long sequences. Prints as "x[] elements < y" where x is a long sequence and y

is a long scalar.

" SeqlntLessThan: Represents long scalars with a property to each element of

long sequences. Prints as "x[] elements < y" where x is a long sequence and y

is a long scalar.

* SeqSeqFloatEqual: Represents properties between two double sequences. If

order matters for each variable (which it does by default), then the sequences are

compared lexically. Prints as "x[] == y[] lexically." If order doesn't matter for

each variable, then the sequences are compared to see if they are set equivalent.

56

Prints as "x[] == yE]." If the extra information (e.g., order matters) doesn't

match then no comparison is made at all.

" SeqSeqFloatGreaterEqual: Represents properties between two double sequences.

If order matters for each variable (which it does by default), then the sequences

are compared lexically. Prints as "x[] > y[] lexically." If the extra information

(e.g., order matters) doesn't match then no comparison is made at all.

" SeqSeqFloatGreaterThan: Represents properties between two double sequences.

If order matters for each variable (which it does by default), then the sequences

are compared lexically. Prints as "x[] > y[] lexically." If the extra information

(e.g., order matters) doesn't match then no comparison is made at all.

" SeqSeqFloatLessEqual: Represents properties between two double sequences.

If order matters for each variable (which it does by default), then the sequences

are compared lexically. Prints as "x[] < y[] lexically." If the extra information

(e.g., order matters) doesn't match then no comparison is made at all. SeqSe-

qFloatLessThan Represents properties between two double sequences. If order

matters for each variable (which it does by default), then the sequences are

compared lexically. Prints as "x[] < y[] lexically." If the extra information (e.g.,

order matters) doesn't match then no comparison is made at all.

" SeqSeqIntEqual: Represents properties between two long sequences. If order

matters for each variable (which it does by default), then the sequences are

compared lexically. Prints as "x[] == y[] lexically." If order doesn't matter for

each variable, then the sequences are compared to see if they are set equivalent.

Prints as "x[] == y[]." If the extra information (e.g., order matters) doesn't

match then no comparison is made at all.

* SeqSeqlntGreaterEqual: Represents properties between two long sequences. If

order matters for each variable (which it does by default), then the sequences

are compared lexically. Prints as "x[] > y[] lexically." If the extra information

(e.g., order matters) doesn't match then no comparison is made at all.

57

" SeqSeqlntGreaterThan: Represents properties between two long sequences. If

order matters for each variable (which it does by default), then the sequences

are compared lexically. Prints as "x[] > y[] lexically." If the extra information

(e.g., order matters) doesn't match then no comparison is made at all.

* SeqSeqIntLessEqual: Represents properties between two long sequences. If or-

der matters for each variable (which it does by default), then the sequences are

compared lexically. Prints as "x[] <; y[] lexically." If the extra information (e.g.,

order matters) doesn't match then no comparison is made at all. SeqSeqInt-

LessThan Represents properties between two long sequences. If order matters

for each variable (which it does by default), then the sequences are compared

lexically. Prints as "x[] < y[] lexically." If the extra information (e.g., order

matters) doesn't match then no comparison is made at all.

" SeqSeqStringEqual: Represents properties between two String sequences. If

order matters for each variable (which it does by default), then the sequences are

compared lexically. Prints as "x[] == y[] lexically." If order doesn't matter for

each variable, then the sequences are compared to see if they are set equivalent.

Prints as "x[] == y[]." If the extra information (e.g., order matters) doesn't

match then no comparison is made at all.

* SeqSeqStringGreaterEqual: Represents properties between two String sequences.

If order matters for each variable (which it does by default), then the sequences

are compared lexically. Prints as "x[] > y[] lexically." If the extra information

(e.g., order matters) doesn't match then no comparison is made at all.

" SeqSeqStringGreaterThan: Represents properties between two String sequences.

If order matters for each variable (which it does by default), then the sequences

are compared lexically. Prints as "x[] > y[] lexically." If the extra information

(e.g., order matters) doesn't match then no comparison is made at all.

* SeqSeqStringLessEqual: Represents properties between two String sequences.

If order matters for each variable (which it does by default), then the sequences

58

are compared lexically. Prints as "x[] < y[] lexically." If the extra information

(e.g., order matters) doesn't match then no comparison is made at all.

* SeqSeqStringLessThan: Represents properties between two String sequences. If

order matters for each variable (which it does by default), then the sequences

are compared lexically. Prints as "x[] < y[] lexically." If the extra information

(e.g., order matters) doesn't match then no comparison is made at all.

" StringComparison: Represents lexical properties between two strings. Prints as

"si [cmp] s2" where [cmp] is one of == > > < <.

" SubSequence: Represents two long sequences where one sequence is a subse-

quence of the other. Prints as "x[] is a subsequence of y[]."

" SubSequenceFloat: Represents two double sequences where one sequence is a

subsequence of the other. Prints as "x[] is a subsequence of y[]."

* SubSet: Represents two long sequences where one of the sequences is a subset

(each element appears in the other sequence) of the other. Prints as either

"x[] is a subset of y[]" or as "x[] is a {sub,super}set of y[]" if x and y are set

equivalent.

" SubSetFloat: Represents two double sequences where one of the sequences is

a subset (each element appears in the other sequence) of the other. Prints as

either "x[] is a subset of y[]" or as "x[] is a {sub,super}set of y[]" if x and y are

set equivalent.

" UpperBound: Represents the property 'x < c', where c is a constant and x is a

long scalar.

* UpperBoundFloat: Represents the property 'x < c', where c is a constant and

x is a double scalar.

59

A.2 Program Point Slots

Each property appears at a certain point in the program, such as a procedure entry

or exit. The following slots provide information about that program point:

" IsMainExit: States if the program point is the main exit of a method.

" NumValues: Reports the number of times this program point has been executed.

" PptSliceEquality: States if the program code contains equal variables equal.

" Arity: Reports the number of variables at this program point.

" IsPrestate: States if the program point is a precondition.

" PptConditional: States if this point is a conditional (only true for some inputs)

program point.

" PairwiseImplications: States if this program point contains Implication proper-

ties.

" IsEntrance: States is this program point is a start of a method.

A.3 Program Variable Slots

Each property is dependent on some variables. For example, x = y is dependent on

variables x and y. The following slots provide information about the variables:

" NumVars: Reports the number of variables in this property.

" Varinfolndex: Reports the index of the current variable. The slots for each

variable are extracted in order of the variable index.

* IsStaticConstant: States if the variable is a constant static variable.

* CanBeMissing: States if a variable can be missing for some executions.

60

* PrestateDerived: States if a variable is a derived variable (e.g., a field of another

variable) at the beginning of the method.

" DerivedDepth: States the depth of the derived variable (e.g., x.y has depth 1).

" IsPrestate: States if the variable value is at the beginning of a method. Note

that the variable may be at the beginning of a method, while the property is

not. For example, the property that states that variable x does not change

within a method, is over two variables, x at the end of the method, and x at

the beginning of the method.

" IsClosure: States if the variable is a closure.

" IsParameter: States if the variable is a parameter to the method.

" IsReference: States if the variable is passed to the method by value or reference.

" IsIndex: States if the variable is an index for a sequence.

" IsPointer: States if the variable is a pointer.

A.4 Property-Specific Slots and Other Slots

Slots listed below are either general slots about all properties, or specific to some

properties. Some properties have slots that are only valid for those properties. For

example, the LinearBinary property fits a line of type y = ax + b between two

variables x and y, so two of its slots are the values of a and b.

" CanBeEqual: States if variables of a property can be equal.

" CanBeLessThan: States if one variable of a property can be less than another

variable.

* CanBeGreaterThan: States if one variable of a property can be greater than

another variable.States if variables of a property can be equal.

61

* Probability: Reports the result of the null test hypothesis on the property.

* UnaryInvariant: States if the property is unary (over 1 variable).

" BinaryInvariant: States if the property is binary (over 2 variables).

* TernaryInvariant: States if the property is ternary (over 3 variables).

* Min: Reports the constant c for properties of type x > c or x > c.

" Max: Reports the constant c for properties of type x < c or x < c.

" NumElts: Sequence: Reports the number of elements in a sequence for all

properties over sequences.

" Falsified: States if the property has been falsified. No falsified propertied should

be reported to the user.

" HasCanonicalVariable: States if the property contains a canonical variable.

" HasNonCanonicalVariable: States if the property contains a non-canonical vari-

able.

* Iff: States if the property is bidirectional (contains an iff).

" EnoughSamples: States if the property has seen enough samples to be statisti-

cally justified.

* IsExact: States if the property is exact.

" IsObvious: States if the property is obvious.

* IsObviousStatically: States if the property is obvious because of static analysis.

* IsObviousDynamically: States if the property is obvious because of dynamic

analysis.

* IsWorthPrinting: States if the property is worth printing, as defined by Daikon

filters.

62

" IsImplied: States if the property is implied by another property.

" IsInteresting: States if the property is interesting, as defined by Daikon filters.

* HasUninterestingConstant: States if the property contains an uninteresting con-

stant.

" IsJustified: States if the property is statistically justified.

63

64

Bibliography

[1] Nello Christianini and John Shawe-Taylor. An Introduction To Support Vec-

tor Machines (and other kernel-based learning methods). Cambridge University

Press, 2000.

[2] Patrick Cousot and Radhia Cousot. Abstract interpretation: a unified lattice

model for static analysis of programs by construction or approximation of fix-

points. In Proceedings of the Fourth Annual ACM Symposium on Principles of

Programming Languages, pages 238-252, Los Angeles, CA, 1977.

[3] The Daikon Invariant Detector User Manual. http: //pag. ics .mit . edu/

daikon/download/doc/daikon.html, August 2003.

[4] William Dickinson, David Leon, and Andy Podgurski. Finding failures by cluster

analysis of execution profiles. In ICSE 2001, Proceedings of the 23rd International

Conference on Software Engineering, pages 339-348, Montreal, Canada, May 16-

18, 2001.

[5] Michael D. Ernst, Jake Cockrell, William G. Griswold, and David Notkin. Dy-

namically discovering likely program invariants to support program evolution.

IEEE Transactions on Software Engineering, 27(2):1-25, February 2001. A

previous version appeared in ICSE '99, Proceedings of the 21st International

Conference on Software Engineering, pages 213-224, Los Angeles, CA, USA,
May 19-21, 1999.

[6] Michael D. Ernst, Adam Czeisler, William G. Griswold, and David Notkin.

Quickly detecting relevant program invariants. In ICSE 2000, Proceedings of the

65

22nd International Conference on Software Engineering, pages 449-458, Limer-

ick, Ireland, June 7-9, 2000.

[7] Todd L. Graves, Mary Jean Harrold, Jung-Min Kim, Adam Porter, and Gregg

Rothermel. An empirical study of regression test selection techniques. ACM

Transactions on Software Engineering and Methodology, 10(2):184-208, April

2001.

[8] Alex Groce and Willem Visser. What went wrong: Explaining counterexamples.

In 10th International SPIN Workshop on Model Checking of Software, pages

121-135, Portland, Oregon, May 9-10, 2003.

[9] Sudheendra Hangal and Monica S. Lam. Tracking down software bugs using

automatic anomaly detection. In ICSE'02, Proceedings of the 24th International

Conference on Software Engineering, pages 291-301, Orlando, Florida, May 22-

24, 2002.

[10] Michael Harder, Jeff Mellen, and Michael D. Ernst. Improving test suites via

operational abstraction. In ICSE'03, Proceedings of the 25th International Con-

ference on Software Engineering, pages 60-71, Portland, Oregon, May 6-8, 2003.

[11] Monica Hutchins, Herb Foster, Tarak Goradia, and Thomas Ostrand. Experi-

ments on the effectiveness of dataflow- and controlflow-based test adequacy crite-

ria. In Proceedings of the 16th International Conference on Software Engineering,

pages 191-200, Sorrento, Italy, May 16-21, 1994.

[12] Thorsten Joachims. Making large-scale SVM learning practical. In Bernhard

Sch6lkopf, Christopher J. C. Burges, and Alexander Smola, editors, Advances in

Kernel Methods - Support Vector Learning, chapter 11. MIT Press, Cambridge,

MA, 1998.

[13] Ross Quinlan. Information on See5 and C5.0. http://www.rulequest.com/see5-

info.html, 2003.

66

[14] Ryan Michael Rifkin. Everything Old Is New Again: A Fresh Look at Historical

Approaches in Machine Learning. PhD thesis, MIT Sloan School of Management

Science, Cambridge, MA, September 2002.

[15] Gregg Rothermel and Mary Jean Harrold. Empirical studies of a safe regression

test selection technique. IEEE Transactions on Software Engineering, 24(6):401-

419, June 1998.

[16] David Saff and Michael D. Ernst. Can continuous testing speed software devel-

opment? In Fourteenth International Symposium on Software Reliability Engi-

neering, Denver, CO, November 17-20, 2003.

[17] Gerard Salton. Automatic Information Organization and Retrieval. McGraw-

Hill, 1968.

[18] C. J. van Rijsbergen. Information Retrieval. Butterworths, London, second

edition, 1979.

[19] Filippos I. Vokolos and Phyllis G. Frankl. Empirical evaluation of the textual

differencing regression testing technique. In Proceedings of the International

Conference on Software Maintenance, pages 44-53, 1998.

[20] Patrick Henry Winston. Artificial Intelligence. Addison-Wesley, third edition,
1992.

[21] Yichen Xie and Dawson Engler. Using redundancies to find errors. In Proceedings

of the ACM SIGSOFT 10th International Symposium on the Foundations of

Software Engineering (FSE 2002), pages 51-60, Charleston, SC, November 20-

22, 2002.

67

