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ABSTRACT

The need to understand plastic deformation in amorphous covalently bonded materials
arose from the unique mechanical properties of disordered intergranular layers in nc-
TiN/a-Si 3N4 ceramic composites. Silicon was chosen as a model disordered network solid
for the purpose of conducting feasible atomistic computer simulations of plastic
deformation. Amorphous silicon structures were created by melting and quenching using
a molecular dynamics algorithm. These structured were plastically deformed by
conjugate gradient static energy minimization. Atomic level analysis was carried out
using appropriately generalized notions of stress and strain.

Plastic deformation was found to occur in a series of discrete stress relaxations, each one
of which was accompanied by a well localized atomic level rearrangement. The
transforming regions were roughly ellipsoidal in shape and involved the cooperative
motion 100-500 atoms spanning a length scale of 0.7-2.5nm. This length scale is large in
comparison to the typical thickness of disordered intergranular layers in nanocrystalline
ceramic composites, indicating that the plastic relaxation process in such intergranular
layers cannot be the same as the one found in bulk amorphous covalent solids.
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1. Introduction

The motivation for undertaking an investigation of plastic deformation in

amorphous silicon came from the unique mechanical properties exhibited by nc-TiN/a-

Si 3N4 nanocrystalline covalently bonded ceramic composite materials produced by S.

Veprek and coworkers at the Technical University of Munich in Garching, Germany.

These materials are created as thin films by either plasma or chemical vapor deposition

techniques (PVD and CVD, respectively) have shown ultrahardness under

microindentation on the order of 70-100GPa, i.e. commensurate with the hardness found

in diamond films (Argon and Veprek [2002]). Additionally, these materials exhibit

excellent microstructure stability at high temperature: they only begin to recrystallize at

about 1300K.

The excellent mechanical behavior and thermal stability of these materials has

made them excellent candidates for application as coatings for high-speed, high-

temperature machine tools. Indeed, they hold a significant advantage over carbon-based

coatings because the latter tend to dissolve easily into the substrate upon which they were

deposited if said substrate is iron-based (e.g. low carbon steel). Today, nc-(AlTi)N/a-

Si 3N4 composite ceramic coatings-whose structure is similar to the nc-TiN/a-Si 3N4

coatings that motivated this work-are commercially available through a joint venture

between PLATIT AG and SHM Ltd. 2.

Aside from their undeniable technological importance, nanocrystalline

TiN/amorphous Si 3N4 composite ceramic coatings pose a significant challenge to our

current understanding of the processes underlying mechanical behavior of covalently

bonded nanocrystalline materials. Polycrystalline metals with grain sizes on the order of

micrometers exhibit the well-known Hall-Petch effect: their strength increases with

decreasing grain size. Once the grain sizes reach 10-20 nanometer scales (Yip [1998]),

however, this trend is reversed and further decreases in grain size are accompanied by

decreases in material strength. Much like polycrystalline metals, nc-TiN/a-Si3N4 ceramic
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composites exhibit an increase in strength with decreasing grain size. Unlike in

nanocrystalline metals, however, nanocrystalline ceramic composite coatings continue to

increase in strength while grain size decreases to as low as 3-5 nm in diameter (Argon

and Veprek [2002]).

This stark difference between the mechanical behavior of metallic and ceramic

nanocrystalline materials suggests an important question concerning the differences in

mechanisms of plastic deformation in these two materials. In metallic nanocrystalline

materials, the crossover from increasing to decreasing strength with decreasing grain

sizes is attributed to the growing importance and eventual predominance of localized

grain boundary deformation over the increasingly difficult dislocation-mediated plasticity

of the crystallite grains themselves (Schiotz et al. [1998]). Dislocation-based plasticity of

crystalline grains in ceramic nanocrystalline materials is expected to be at least as

difficult as in the case of metals (because of the higher lattice resistance of covalently-

bonded materials). The lack of eventual softening with decreasing grain size in ceramic

composites, however, suggests that the mechanisms that enable grain boundary plasticity

in nanocrystalline metals either do not operate in ceramic composites or are far more

difficult to activate.

The goal of the present research is to shed light on the nature of mechanisms of

plastic deformation in grain boundaries of covalently bonded nanocrystalline materials

with the hope of explaining the ultrahardness of ceramic composite coatings. Studies of

the distribution of the TiN and Si 3N4 phases in nc-TiN/a-Si 3N4 ceramic composite

coatings have shown that the TiN aggregates into nanocrystallites of approximately 4-6

nm size while Si 3N4 forms a disordered intergranular component (Argon and Veprek

[2002]). The proportion of TiN and Si3N4 in the coatings is such as to allow the

intergranular material to percolate through the system, wetting the nc-TiN grains with a

layer of disordered material approximately 1-3 atomic diameters thick. Because of the

difficulty of dislocation motion in the nc-TiN grains, it is this intergranular layer that is

expected to govern the plastic deformation behavior of the nc-TiN/a-Si 3N4 ceramic

composite material as a whole.

The method we have chosen to address the problem described above is atomistic

computer simulation using empirical potentials. Such methods have been successfully
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applied in studying the mechanical behavior of nanocrystalline metals (Schiotz and

Jacobsen [2003]; Yamakov et al. [2002]) and the structure of covalently bonded

nanocrystalline materials (Keblinski et al. [1996a]). Unfortunately, empirical potentials

for materials with complex bonding behavior are very difficult to formulate. The nc-

TiN/a-Si 3N4 coatings under investigation here belong to the category of materials with

high bonding and chemical complexity. No empirical potentials have been developed that

would be capable to accurately representing the interactions among its three component

elements.

In light of the difficulties involved in modeling nc-TiN/a-Si 3N4 in its full chemical

complexity, an alternative approach was pursued. Instead of attempting to replicate the

behavior or nc-TiN/a-Si3 N4 specifically, an investigation was undertaken on a simpler

(elemental) covalently bonded material for which many empirical potentials have been

developed and tested: silicon. This approach allows us to effectively separate the

influence on mechanical behavior of covalent bonding from effects that could arise from

chemical (e.g. stoichiometric) constrains. As such, it simplifies the problem at hand to a

manageable form while retaining the most important qualitative distinction between

ceramic composites and nanocrystalline metals: the covalent vs. metallic (respectively)

nature of interatomic bonding.

Finally, the intergranular material in nc-TiN/a-Si 3N4 ceramic composites has been

described as a disordered layer 1-3 atomic dimensions in thickness (Argon and Veprek

[2002]). Such intergranular layers have been observed in Si both experimentally

(Furukawa et al. [1986]) and in simulations (Keblinski et al. [1996b]). In investigating

plastic deformation in these layers, one must distinguish between mechanical behaviors

ascribable to the disordered material in its bulk form from that which results from the

high degree of confinement of the material between neighboring nondeforming

crystallites. Unfortunately, to date there has been little research done on the large-strain

plastic deformation behavior of covalently bonded disordered materials. Therefore, as a

first step to understanding plasticity in confined disordered layers of covalently bonded

material, an effort was made to elucidate the plastic deformation behavior of covalently

bonded materials in bulk form. This manuscript describes the results of an investigation
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into the phenomenology of unit plastic deformation events in the chosen model

covalently bonded bulk amorphous material: amorphous silicon (a-Si).
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2. Background

This section presents a literature survey of work done in areas that serve as

background and motivation for the approaches taken in the present research.

2.1 Deformation mechanisms of nanocrystalline metals

Polycrystalline metals exhibit marked dependence in shear resistance on the

length scale (e.g. diameter) of their constituent grains. For grain sizes in excess of about

10-20nm, material plastic resistance is observed to increase as approximately the inverse

square root of the grain size. The details of this dependence-known as the Hall-Petch

relationship (Hall [1951]; Petch [1953])-remain largely unexplained to this day.

Nevertheless, it is generally thought that it arises as a result of the increasing difficulty of

nucleating and propagating dislocations in grains of decreasing size (Yamakov et al.

[2002, 2001]).

At grain sizes of about 10-20nm the Hall-Petch relationship breaks down, i.e.

further decreases in grain size are not accompanied by increases in material plastic

resistance (Yip [1998]). The nature of plastic deformation in this transition regime is

thought to be extremely complicated since in it dislocation mechanisms (which remain

operative to some extent) couple strongly with grain boundary processes resulting in

phenomena as diverse as nucleation of dislocations or stacking faults from grain

boundary edges and formation of new grains (Yamakov et al. [2002]).

At grain sizes below 10-20nm, dislocation motion in the grain interiors becomes

so difficult and the volume fraction of grain boundary material so high that plastic flow

occurs almost exclusively by means of grain boundary shear mechanisms. Such processes

have been observed in computer simulations of deformation of nanocrystalline metals

with grain sizes of 3-6nm (Schiotz et al. [1998]). Emission of partial dislocations and

stacking faults is also observed during the course of deformation, but this phenomenon

was shown not to contribute strongly to the permanent accumulation of plastic strain in
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the sample as a whole. By comparison, the highly localized atomic rearrangement events

observed between neighboring nanocrystalline grains lead to significant stress relaxation

and are therefore thought to be the most effective mechanism of plastic strain

accumulation.

The term coined to describe the overall effect of the discrete stress relaxation

events occurring in the intergranular regions of nanocrystalline metals-"grain boundary

sliding"-gives an intuitive mesoscale description of deformation in these materials.

Namely, intergranular regions are seen as layers whose inherent disorder makes them

fertile sites for undergoing large strain plastic shear flow. Connections have also been

proposed between the deformation processes in disordered grain boundaries and those

observed in glassy metals due to similarities in the structure of local atomic environments

in these two settings (Wolf et al. [1995]; Lund and Schuh [2003]). More fundamental

insight into the mechanisms that enable "grain boundary sliding" is nonetheless lacking.

2.2 Grain boundary structure in nanocrystalline network solids

The argument for the increasing difficulty of dislocation motion with decreasing

grain sizes in metals holds all the more true for covalently bonded materials such as the

nc-TiN/a-Si3N4 ceramic composites or nc-Si. The reason for this conclusion is that the

lattice resistance to dislocation motion is vastly higher in covalently bonded materials

than in metals. FCC metals typically have a negligible lattice resistance (about 20 MPa

(Olmsted at el. [2001])) and BCC metals have lattice resistances in the range of 600-900

MPa (Conrad [1963]) while the lattice resistance in Si is around 13 GPa (Ren et al.

[1995]), i.e. almost a full three orders of magnitude higher. In Cu, dislocation motion

ceases to play an important role in plastic flow behavior at grain sizes on the order of 10-

20nm. Thus, in nc-TiN/a-Si 3N4, where the size of crystalline grains is thought to be in the

range of 4-6nm, the contribution of dislocation-mediated plasticity to the overall plastic

response of the material can be safely ignored. As a result, the structure and mechanical

behavior of intergranular material in nanocrystalline covalently bonded materials is of

prime importance to understanding the plastic flow behavior of such materials.
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While there have been no investigations of the mechanisms of plastic deformation

by computer simulation in the case of nanocrystalline covalently bonded materials such

as nc-Si, a number of studies of grain boundary structure have been undertaken

(Keblinski et al. [1996a, 1996b]). These investigations have shown that for high angle

boundaries between neighboring grains (i.e. for orientations that are not among the few

special orientations with extremely low interface energies) there forms a disordered

intergranular layer of 1-3 atomic dimensions in thickness. Using computer simulations of

intergranular structure in silicon bicrystals, Keblinski et al. [1996b] have demonstrated

on a number of crystal orientations that structurally indistinguishable disordered layers

form both when an initially unrelaxed grain boundary is annealed as well as when two

neighboring crystal slabs are allowed to grow out from the melt until they impinge upon

each other. Furthermore, they show that the disordered intergranular structure is

thermodynamically stable in the sense that its overall energy is smaller than that of the

corresponding unrelaxed grain boundaries.

Keblinski et al. [1996a] have also carried out computer simulations to study the

structure of grain boundaries in nanocrystalline silicon. Starting with a configuration of

grains that avoided all high symmetry grain boundaries, they annealed the sample and

found that-much as in the case of the bicrystal-there formed a disordered intergranular

layer of 1-3 atomic diameters thickness. Structurally indistinguishable grain boundaries

formed when the same configuration of crystalline grains was grown from the melt,

starting with a set of properly oriented crystalline seeds. Radial and angular distribution

functions constructed at grain boundaries, triple junctions, and 4- and 6-fold points

demonstrated that intergranular material in each of these regions could be considered

disordered.

Experimental evidence in support of the existence of disordered intergranular

material between highly misoriented crystalline slabs has also been found. When

developing the technology of joining perfectly crystalline silicon wafers for

semiconductor purposes, Furukawa et al. [1986] observed that the nature of the bond

between wafers depended sensitively on the crystalline misorientation of the silicon

wafers. In particular, when the surfaces being joined had little or no misorentation, a

nearly perfect crystalline structure was formed. When two (100) surfaces were
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misoriented by 45 degrees, a thin grain boundary whose structure was difficult to discern

resulted. If (100) and (111) surfaces misoniented by 45 degrees were joined, however, the

resulting annealed intergranular structure was a disordered layer of thickness around 10

atomic diameters.

Careful study of the structure and distribution of components in the nc-TiN/a-

Si 3N4 ceramic composites suggests that the TiN phase forms crystalline grains 4-6nm in

size while Si 3N4 forms a 1-3 atomic diameter-thick disordered layer that wets the nc-TiN

grains. This conclusion was reached after studies of stoichiometry (Veprek and Argon

[2002]) revealed that the proportions of TiN to Si 3N4 were just right to allow such

wetting to take place. Therefore, the expected intergranular structure of Si 3N4 in nc-

TiN/a-Si 3N4 coincides with the structure of intergranular layers in nc-Si as simulated by

Keblinski et al. [1996a], lending support to the choice of investigating the mechanical

behavior of the chemically complex nc-TiN/a-Si 3N4 using elemental silicon as a model

system.

2.3 Deformation mechanisms in glassy metals and polymers

As was explained in the preceding sections, plastic deformation in nanocrystalline

covalently bonded materials is expected to take place chiefly in the intergranular regions.

These regions-as indicated by simulation and experiment-can be described as layers of

disordered material confined by neighboring (nondeforming) crystallites. In order to

understand the nature of deformation in these intergranular layers, however, it is

necessary to distinguish between deformation characteristics ascribable to plastic

deformation in bulk disordered covalently bonded materials from those that can be

attributed to the severe degree of confinement to which these materials are exposed

within the context of nanocrystalline structure. To obtain this distinction, plastic

deformation in bulk disordered network materials must first be understood.

Unfortunately, to date there have been few investigations of plastic deformation in such

materials. To gain some background on deformation in other types of amorphous solids,

therefore, we review deformation processes in glassy metals and polymers.
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Before computing capabilities became sufficiently great to allow for meaningful

atomistic simulations of plastic deformation, other methods of modeling the collective

behavior of systems composed of discrete particles interacting with spherical potentials

were developed. Among the most notable is the bubble raft technique, which allowed for

the investigation of systems composed of hundreds of constituent particles in two

dimensions. As a means to visualizing complex rearrangements occurring under

deformations applied externally, this method was an invaluable tool in the qualitative

study of atomic scale behavior of disordered materials (Argon and Kuo [1979]). Upon

complete description of the interbubble potential function the method became

quantitative as well and yielded some of the earliest insights into the mechanisms of

plastic deformation in disordered materials whose constituent atoms could be thought of

as interacting with pair potentials, namely metallic glasses (Argon and Shi [1983]).

Because of its value as a rapid visualization tool, the bubble raft technique is still used

today (Van Vliet and Suresh [2002]).

Using the bubble raft method, Argon and Shi [1983] constructed a two

dimensional representation of a metallic glass by mixing bubbles of two different sizes

and not allowing them to arrange into crystalline domains. They then deformed the

bubble raft by externally applying displacements to the walls of the raft in a way that

could be interpreted as applying total system-wide strain increments. In the course of the

deformation process, they observed that certain regions of the bubble raft suddenly

underwent large, localized bursts of displacement. These localized rearrangements

usually involved about 10 atoms. Analysis of changes in bubble positions within the

active regions before and after a rearrangement clearly indicated that these

transformations were shearing events and led to the irreversible accumulation of shear

strain, i.e. to localized plastic deformation. Using the interbubble potential developed

earlier, Argon and Shi were able to use their insight into the kinematics of atom cluster

rearrangements to calculate a distribution of activation energies associated with the

transformations.

These findings stood in stark contrast to the Eyring hypothesis of flow in liquids

(Eyring [1936]) that-until then-had been considered a likely candidate (on grounds of

structural similarity (Kauzmann [1948])) for explaining flow in glassy materials. This
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hypothesis stipulated that individual atoms of a liquid or glass could irreversibly change

their position in a manner similar to diffusion when an opening appeared in the

surrounding medium. As indicated, however, bubble raft visualizations indicated a

mechanism involving the collective motion of around 10 atoms, not just 1 as Eyring had

proposed. Even more seriously, the motion of a single atom moving through open

channels in the surrounding medium is a mechanism that is inherently incapable of

producing shear transformations since shear cannot even be meaningfully defined unless

at least 4 interacting, neighboring atoms rearrange in a cooperative manner.

In a later series of molecular dynamics computer simulations on a two

dimensional single component system of particles interacting with a central potential,

Deng et al. [1989] verified the results found in the bubble raft studies. Defining a local

strain measure, they were able to identify transforming regions as those in which high

levels of deviatoric strain had suddenly been created. Furthermore, they addressed the

question of the correlation of excess volume distribution to the localization of shear

transformations (Turnbull and Cohen [1961, 1958]; Cohen and Turnbull [1959]). By

using a local structure descriptor based on the Voronoi tessellation around atomic

positions, Deng verified that certain regions within the model metallic glass were more

prone to undergoing irreversible transformation than others.

Building upon the work of Deng, Bulatov and Argon [1994] constructed a

simplified model of metallic glasses that presupposed a single plastic deformation

mechanism that could be activated by both thermal motion and mechanical stresses. This

assumption was meant to combine the observations that plastic deformation in glassy

metals is local and occurs preferentially at certain sites. Through a series of simulations,

Bulatov showed that this single deformation mechanism-because of elastic interactions

between transforming regions and the surrounding nondeforming matrix-is able to

reproduce all the high and low temperature behaviors observed in metallic glasses.

The work of Bulatov and Argon [1994] makes no reference to the type of

interatomic potential governing the system from which the constitutive parameters that

enter into his model (the form of thermal and mechanical activation behavior) are taken.

His general conclusions are therefore expected to apply to disordered covalently bonded

materials as much as to metallic glasses. It is nevertheless instructive to step back and
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observe how differing empirical atomic interactions do influence the plastic deformation

behavior of disordered media by reviewing computer simulations of such behavior in

glassy polymers.

Unlike metals, polymers are governed by two types of atomic interaction: strong

covalent bonds along polymer chain backbones and weak van der Waals-type interactions

between atoms on separate polymer chains (Theodorou and Suter [1985]). This

comparatively more complex form of bonding along with a variety of possible chain

conformations and branchings leads to a large variety of possible local structure features

in polymers (Theodorou and Suter [1986]; Hutnik et al. [1991]). The kinematics of

plastic transformation in these materials is similarly more convoluted: they involve

significantly larger numbers of participating atoms than in metallic glasses (on the order

of hundreds (Mott et al. [1993])) as well as a large variety of discernable structural

rearrangements (Hutnik et al. [1991]).

Nonetheless, despite the intricacies of bonding and transformation kinematics

apparent in polymers, certain features of the fundamental mechanisms of plasticity in

these materials are entirely analogous to those occurring in the far simpler metallic

glasses. Deformation in polymers also occurs in discrete, localized bursts. It can be

activated thermally as well as mechanically and the atomic rearrangements that

accompany plastic deformation can be characterized as shear transformations (Mott et al.

[1993]). Finally, the relaxation strain spectra found in computer simulations-according

to Bulatov-are not inconsistent with operation of a finite number of activated processes.

2.4 Why dislocations do not mediate plasticity in amorphous solids

The success of dislocation mechanics in explaining crystal plasticity prompted

some investigators (Gilman [1968]) to suggest that the notion of "dislocation" can be

sufficiently generalized so that a dislocation-based structure analysis could be performed

on disordered materials. The difficulty with constructing such a generalization lies in the

inherent reference to the crystal lattice in the traditional definition of edge and screw

dislocations: both are characterized by their respective Burgers vectors (McClintock and
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Argon [1966]). Such a characterization is impossible in materials that by definition do not

contain a crystalline component. A number of generalizations were nevertheless made

(Gilman [1968]), but only one resulted in a distinguishing criterion sufficiently

unambiguous to be applied in the context of atomistic simulation. This criterion made no

reference to the underlying core configuration of "generalized dislocations" and focused

instead on the effect that a dislocation produces in the surrounding material. Namely, it

claimed that a generalized dislocation is the kind of structure difference between two

configurations that produces a difference in stress fields between these two

configurations that can be characterized by the well-known stress fields produced in a

crystal lattice by the introduction of screw and edge dislocations (Chaudhari [1979]).

Using this definition as a starting point, Chaudhari et al. conducted computer

simulations to investigate whether it would be possible to observe generalized

dislocations in a metallic glass. They started by creating large samples of disordered

material and characterizing the stress distributions within them. They then followed a

procedure borrowed from elementary mechanics of materials textbooks for introducing

dislocations into these samples: the removal of a half-plane of atoms to create an edge

and the shear-like shifting of a half-plane of atoms to create a screw (McClintock and

Argon [1966]). Analysis of the resulting stress fields revealed that the difference in the

distribution of stresses between the new and initial sample configurations were indeed in

good agreement with those observed in crystal lattices.

Upon equilibration by potential energy minimization of the new configurations,

however, the stress field associated with the edge dislocation construction vanished: no

coherent difference between the initial and equilibrated edge configuration could be

found. In the case of the screw construction, equilibration did not destroy the

characteristic stress fields of screw dislocations in crystal lattices. Neverthelesss, the

elastic energy stored in the stress fields associated with this construction was so high

compared to the typical activation energy of localized shearing transformations of the

kind investigated by Argon and Shi [1983] as well as Deng et al. [1989] that under

normal loading conditions these shearing transformations would quickly dissipate the

generalized screw dislocation. Experimental studies of dissipation of dislocation
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structures in crystals under irradiation confirm the relative instability of highly stressed

regions in amorphous media (Cherns et al. [1980]).

The conclusion that can therefore be drawn from the work of Chaudhari et al. is

that generalized edge dislocations are not stable within a disordered medium. Generalized

screw dislocations, on the other hand, though stable and therefore conceivably

observable, cannot be responsible for plastic flow in disordered materials because their

operation is not energetically favorable compared to other deformation mechanisms

(localized shear transformations) known to operate in these same materials (Argon

[1981]).

2.5 Structure and rigidity of covalent network materials

As was pointed out in the previous section, metallic systems can be seen as

interacting with simple spherical potentials while polymers involve strong covalent

bonding along backbones and weak bonding between individual chains. Purely

covalently bonded materials-also known as covalent network materials-involve only

strong atomic interactions of the kind found along polymer backbones. Thus, such

materials represent a state of local atomic constraint more extreme than that found in

either metals or polymers. For this reason, network materials could be expected to exhibit

some particularities in the character of unit shear transformations occurring within them

during plastic deformation much along the lines of the differences found between unit

shearing events in glassy metals and polymers.

Although no earlier work has been done on elucidating the details of unit plastic

transformations in disordered covalently bonded solids, there have been investigations

into how the bonding structure of such materials affects their rigidity. A simple local

constraint model may be used to elucidate the effect of the average number of covalent

bonds between neighboring atoms on the rigidity of a random network material (Thorpe

et al. [2000]). This approach-first proposed as a means to finding compositions for

optimal glass formability in chalcogenides (Phillips [1979, 198 1a, 198 1b])- predicts a
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linear dependence of the concentration f of zero frequency eigenmodes on the average

coordination:

f = 2 -(r)

In particular, according to this treatment there are no more such modes above an average

coordination of 2.4. Therefore, above this critical value the potential energy of a well-

relaxed covalently bonded system is likely to be "stiff' in all eigendirections. These

predictions have been verified by simulations performed on random bond network

models (Thorpe et al. [2000]) and fall into a general class of problems often referred to as

"rigidity percolation" (Kantor [1984]).

Materials with average coordination higher than 2.4 can be considered covalent

network materials. The amorphous Si 3N4 intercrystalline layers in nc-TiN/a-Si 3N4

materials that motivated this research have an average coordination of 3.5>2.4, i.e. they

can be thought of as covalent network materials. Silicon-whose average coordination is

usually not below 4-results in a level of local atomic constraint that also classifies it as a

covalent network material.

The best-known model of the structure of well relaxed four-fold coordinated

random network materials was proposed by Zachariasen [1932]. This view holds that

covalent bonds between atoms are so stiff that any change in their equilibrium length

would incur a heavy energy penalty. Thus, energy would be minimized in a disordered

covalently bonded material if lack of long-range order were accommodated through

structural features other than changes in bond lengths, in particular through bond angle

distortions (Zallen [1979]). This structural model is called the continuous random

network (CRN). Its radial distribution function is clearly distinguishable from that of

disordered materials interacting through spherical potentials as the latter gives evidence

of significant variability in bond lengths as well as of ill-defined second nearest neighbor

positions (Zallen [1979]).
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3. Methods

This section describes the computational methods used to model the structure and

deformation behavior of amorphous silicon. It also describes analysis methods used to

extract useful information from the computer simulations.

3.1 Empirical potentials

By the Born-Oppenheimer approximation (Ziman [1995]), under temperatures

and pressures characteristic of our everyday experience the ground state energy of a

group of atoms can be found by assuming that electronic degrees of freedom relax

completely while nuclear positions remain unchanged. Forces acting on individual nuclei

are then described by the variation in this ground state energy with nuclear positions. In

principle, one could accurately simulate the dynamics of an arbitrarily large collection of

atoms using this semi-quantum mechanical approach. In practice, however, such an ab

initio scheme of atomistic simulation is severely limited by the inadequate capabilities of

modern computers and can only be applied to short-time simulations of groups of about

100 atoms without resorting to use of large parallel machines. Since the research

described here requires several thousand atoms and long annealing periods, the high

accuracy of ab initio must be traded for the high efficiency of simulation based on

empirical potentials.

Atomistic simulation based on empirical potentials incurs significantly fewer

computational costs than that based on ab initio methods because instead of relaxing

electronic degrees of freedom in order to determine the ground state energy of a given

configuration of atomic nuclei, the form of the ground state energy is assumed a priori.

The forces on individual nuclei are then simply determined as the negative gradient of the

system-wide potential energy (the assumed ground state energy) with respect to the

positions of said atomic nuclei.
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In most cases the form of the assumed potential is a sum of terms arising from

interactions of pairs, triples, quadruplets, etc. of atoms:

V(ri, r2 ,...rN)=ZV 2(r,rj)+ ZV 3 (rir,, rk)+... 3.1
i<j i<j<k

Generic physical insights are used to choose a functional form for the potential energies

V2 , V3 , etc. These functional forms generally include undetermined parameters that can

be chosen to make the behavior of a collection of atoms governed by the empirical

potential conform as closely as possible to the behavior of the substance being modeled.

Naturally, all functional forms entering into the empirical potential must satisfy the

requirements of objectivity and frame indifference.

A simple empirical potential often used in examples is the classic Lennard-Jones

potential (Allen and Tildesley [2000]):

12 / 6

V=4E
j<i rij i

where e and a are the characteristic energy and length, respectively, and rj is the

distance between atoms i and j. This potential consists entirely of pair interaction (i.e.

two-body) terms and contains two undetermined parameters. It was originally meant to

describe noble gasses, but potentials of similar form have been used to simulate metallic

glasses as well (Deng [1989]). The functional form of the two-body term is shown in

figure 3.1 and the motivation behind it is easy to understand. If the distance between a

pair of atoms increases indefinitely we assume that the forces on both atoms will

approach zero, i.e. the slope of the potential energy will vanish. On the other hand, if two

atoms are moved sufficiently close together we know that degeneracy pressure arising

from the Pauli exclusion principle (Huang [1987]; Ziman [1995]) as applied to the core

electrons of the atom pair will cause the potential energy of the system to rise

dramatically. Finally, we realize that atom pairs can attain a stable equilibrium distance.

At this distance, the potential energy of the pair is minimized.

22



1

CL
4a)

C

Dependence of Lennard-Jones pair potential energy on distance

6 - - - -- - - - -

5 - -

4 - - - - - -

3.-.--. - . - .-.-

2. ......... ... ........ ...... . ..... ..... ... ...... ...

1. .... ...... .... ....... ....... ......... ....

0 ..... ..... .... .... ..... ........ .... ...

- ...... ..1. ... .... .. . .... ..

1 1.2 1.4 1.6
Reduced distance (cr/r .)

1.8 2

Figure 3.1: The essential physical features of the Lennard-Jones pair potential are the strong repulsion at
close distances, vanishing interaction at large distances, and the intermediate equilibrium (minimum

energy) state.

The lowest energy crystal configuration attainable in most spherically symmetric

empirical potentials such as Lennard-Jones is the densely packed face centered cubic

structure. The lowest energy STP configuration of silicon, however, is diamond cubic.

Therefore, to create a basic empirical potential for silicon one must incorporate at least

one physical insight in addition to those described above, namely that potential

interactions favoring the arrangement of bonds between neighboring atoms at the

tetrahedral angle of 6 = cos'(- -) ~109.50 be added. The distinguishing features of

empirical potentials created to model silicon center around the way in which this physical

insight was incorporated into the functional form of the potential and in the number of

additional modifications made so that the behavior of an atomic system modeled by the
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potential in question accorded with subtler experimentally determined characteristics of

silicon.

En excellent review of available empirical potentials for silicon was given by

Balamane et al. [1992]. Here, however, we shall only describe the most commonly used

ones, namely those due to Stillinger and Weber [1985], to Tersoff [1986], and the EDIP

(Bazant et al. [1997]). Of these three, the Stillinger-Weber potential was chosen for the

present work due to its simplicity and good semi-quantitative agreement with the

behavior of real silicon. For this reason, it shall be described in greater detail than the

other two empirical potentials.

The Stillinger-Weber potential consists of a summation of two- and three-body

potential interaction terms:

V (r r2,...rN =:2(r j)+ j:V3(rijrj ,rik )
i<j i<j<k

where rij indicates the distance between atoms i and j. The potential contains

characteristic length and energy parameters a and e. These parameters are used to

nondimensionalize the component terms V2 and V3 as follows:

V2 (rj )= 'f2 (rij /a)
V3 (rj rkri ) = Ef3 (r, /a r /a ri/ /

The functional form of the two-body terms f2 was chosen to be

f 2(r) = A(Br- )e , r < a

0, r > a

This functional form embodies the same physical intuitions as does the Lennard-Jones

potential. The exponential term applies a "potential cutoff radius," i.e. it is a construction

that ensures that the value of the two-body interaction and all of its derivatives goes to
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zero at the distance specified by parameter a. A, B, p, q also denote parameters and can

be chosen to fit the form of the potential to experimental results for silicon.

The three-body potential terms have the form

3 (rij rjk 1 ik)= h(r , rik ,I Ojk)+ h(rj , rk,6,,k )+ h(rik, ri , OkJ

(r , rk {(cos iik + 1) e( ri~" aIk- , (r1 < a)A (k <a)

ii ik

r. + r - ri
Ojik = r r

2 rirk

The essential feature of this functional form is the (cos 0 + 1)2 term. When the bond

angle Ojik is precisely the tetrahedral angle found in the diamond cubic lattice

configuration, the value of this term vanishes. Otherwise, it has some positive value.

Therefore, the three-body interactions so constructed fulfill the requirement of favoring

the four-fold coordinated configuration exhibited by silicon in its diamond cubic form.

Note that the exponential term fulfills the same purpose here as in the case of two-body

interactions, namely it enforces a potential cutoff radius. A and y are parameters of the

potential.

The parameters appearing in the functional forms described above were chosen to

ensure the best agreement with the experimentally observed behavior of silicon. The

criteria guiding the selection were:

" Stability of the diamond cubic lattice structure at STP

" Temperature of the melting point

" Silicon contracts upon melting and forms a highly coordinated liquid form

" Lattice spacing and atomization energy of crystalline silicon

These criteria led to the following choice of parameters:
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A = 7.049556277

B = 0.6022245584

p = 4

q =0

a =1.80

A =21.0

y =1.20

= 0.20951nm

e =50kcal / mol = 3.4728 -10-19 J

The behavior of the resulting empirical potential is in good semi-quantitative agreement

with experiments (Luedtke and Landman [1989]), particularly for the liquid state. Its

greatest drawback is its tendency to overpredict the coordination of well-relaxed

amorphous silicon by about 4%. Nevertheless, its simplicity and intuitive functional form

made it the most attractive model for the purposes of this study.

Unlike the Stillinger-Weber potential, the Tersoff potential includes only two-

body terms:

V = Z fr -)Ae - BeA
i,j#i

This choice of functional form is motivated by the realization that binding-energy curves

for solid cohesion and chemisorption can be described by a single dimensionless curve

and three scaling parameters (Rose et al. [1983]) and that this behavior can be achieved

by the assumption of an interatomic potential of the above form (Abell [1985]). The first

exponential term in brackets describes repulsion while the second describes bonding. In

order to ensure that silicon have the required tendency to form the four-fold coordinated

diamond cubic structures, the value of Bij could not be taken as constant. Instead, it was

given a complex functional form that reflected the weakening of bond strengths in a

highly coordinated atomic environment. f, is a potential cutoff radius function.

The parameters in the final functional forms specified by Tersoff were fitted to

give maximum agreement for the lattice constant, bulk modulus of bulk Si, and for the
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cohesive energies of the Si 2 dimer, the diamond cubic structure, and of hypothetical Si

simple cubic and FCC structures. The behavior of the potential so parametrized was

tested by comparing it to results from a number of ab inito simulations, mainly of lattice

defect structures (Tersoff [1986]). This potential was not chosen for the present study

because its relatively complex functional form does not lend itself to easy algebraic

manipulation nor to immediate intuitive understanding.

The EDIP (Environmentally Dependent Interatomic Potential) combines the

approaches used in the Stillinger-Weber and Tersoff potentials: it includes two- and

three-body interactions, both of which depend on the form of the environment of

individual atoms. The highly involved parametrization of this potential (Bazant et al.

[1997]) results in good transferability to certain types of silicon lattice defect structures

(Justo et al. [1998]). EDIP is also capable of modeling well-equilibrated amorphous

silicon structure better than Stillinger-Weber can. Nevertheless, it does not do well in

reproducing certain properties of silicon in its liquid form (Keblinski et al. [2002]). In

particular it severely underpredicts the coordination and volume contraction of the melt.

Its ability to accurately model quickly quenched (suboptimally relaxed) disordered

structures is therefore in question. These drawbacks together with the high complexity of

EDIP made its use unattractive for the purposes of this study.

3.2 Molecular dynamics (MD) simulation

The collective behaviors of systems composed of many atoms and governed by

complex interaction potentials are most commonly investigated by Monte Carlo (MC)

and molecular dynamics (MD) simulations (Allen and Tildesley [2000]). The former are

especially convenient in studies of long-time thermodynamic behavior, particularly if the

salient unit processes are already well understood. The latter are more useful when

detailed investigations of atomic level motion are called for. Therefore, in cases when

little is known about the physical processes governing long time collective behavior-as

in the formation of amorphous silicon from the melt and the deformation behavior of the

resulting material-molecular dynamics is preferred despite the greater computational

27



resources it requires. The fundamentals of this simulation technique are described in this

section.

Given an interaction potential, a molecular dynamics can be carried out by

specifying an initial atomic configuration (including boundary conditions) and integrating

the Newtonian equations of motion

i = Pilmi 3.2
p = -VV = fA

Here r, p, m, and f denote position, momentum, mass, and force (respectively), V is the

assumed interatomic potential, and i indicates one of the 3N degrees of freedom of the

system (each associated with a component of a single atom's position). Equations 3.2 are

integrated using a finite difference scheme such as the commonly used Gear predictor-

corrector (Allen and Tildesley [2000]). In this method, time derivatives of atomic

positions up to the fifth order are stored in memory. They are used to predict the future

positions and their time derivatives after a suitably chosen time increment At. These

predicted quantities are then corrected to account for information obtained from

computing atomic accelerations using the interatomic potential. The computation of

potential-related quantities like atomic accelerations is by far the most time-consuming

step in an MD simulation. Thus, since they only require a single acceleration computation

per time step, numerical integration techniques such as the Gear predictor-corrector are

preferable to Runge-Kutta-type schemes in MD simulations.

Given a judicious choice of simulation parameters (such as the integration time

step At) a simulation of the type described above results in an energy-conserving system

trajectory, as predicted by equations 3.2. Additionally, a variety of specialized techniques

exist to conduct simulations at constant temperature, pressure, enthalpy, Gibbs free

energy, etc. (Allen and Tildesley [2000]). Many of these techniques require a

modification of the equations of motion according to Gauss' principle of least constraint

(Evans and Morriss [1984]). A well known example is the Hoover [1983] constant

temperature algorithm which requires that instead of solving the classical Newtonian

equations of motion 3.2 the MD algorithm be used to integrate
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r, = pilmi

A =fi - (Jrjpj :j=1...3NI)pi
3N

( rj, pj : j = 1... 3NI) = '

j=1

This altered set of equations of motion can be shown to generate trajectories that sample

the canonical ensemble (Evans and Morriss [1983]) just as the trajectories of 3.2 sample

the microcanonical.

As was mentioned before, the most time-consuming step of an MID simulation is

the evaluation of an interatomic potential-related quantity such as the system potential

energy or atomic accelerations. The root cause of this limitation is the need to loop over

all pairs of atoms in the case of a two-body potential or all triplets of atoms in the case of

a three-body one. The number of computations required therefore scales as the second

and third power of the total number of atoms (respectively) and can easily exceed one

billion computations per evaluation for systems containing thousands of particles. The

evaluation process can, however, be made significantly faster if the form of the

interatomic potential incorporates a cutoff radius, as does the Stillinger-Weber potential.

In that case each atom only interacts with other atoms within a certain a distance of it. It

can therefore be arranged through the use of linked-cell and Verlet neighbor lists (Allen

and Tildesley [2000]) that the number of computations required scale linearly with the

number of atoms, making large-scale MD simulation feasible.

3.3 Conjugate gradient static energy minimization (CGSEM) simulation

While MD is a useful method for investigating the behavior of collections of

atoms obeying full Newtonian or Gauss-constrained dynamics, there are circumstances

when motions of individual atoms do not have much effect on the physical phenomenon

of interest and may even obscure it. Such a situation arises in the investigation of plastic
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deformation mechanisms at low temperature, i.e. when diffusion does not play a major

role (Argon [1996]). It is then convenient to remove atomic motion entirely and to

simulate the deformation behavior of an atomic system by applying increments of the

loading parameter and ensuring that the potential energy of the system is at a local

minimum for each value of the externally applied load. The resulting system behavior can

then be viewed as corresponding to the temperature-dependent mechanical behavior

extrapolated to zero temperature, where all phenomena uniquely associated with the

approach to (the physically unattainable) absolute zero have been ignored.

A simulation of the type described is often referred to as static energy

minimization (SEM) simulation (Mott et al. [1993]) or a potential landscape method

(Stillinger and Weber [1983]). Since it is generally used on systems that are

thermodynamically metastable (e.g. as amorphous silicon is with respect to crystalline

silicon), it does not require the attainment of global potential energy minima. An initially

disequilibrated structure must simply be brought to an equilibrium configuration by

minimization of potential energy to a local minimum. The core algorithm that lies at the

heart of a typical SEM simulation is therefore one of the classical local minimization

schemes, such as the Newton-Raphson, quasi-Newton, conjugate gradient, or steepest

descent method (Bertsekas [1999]).

Newton-Raphson and quasi-Newton techniques guarantee the fastest convergence

to equilibrium in the vicinity of a local minimum. Nevertheless, they require the largest

computational resources and suffer from a number of inadequacies if minimization is

attempted for a configuration initially far from stable equilibrium. Steepest descent is the

simplest and most robust of the four schemes mentioned above, but it offers the slowest

rate of convergence. The conjugate gradient (CG) method was therefore chosen for the

current investigation. It offers superlinear convergence in the vicinity of a minimum,

requires comparatively small computational resources per simulation step, and operates

reliably for all initial configurations (Bertsekas [1999]).

The CG method-as all techniques for minimization of nonlinear functions-is an

iterative method. Given a starting configuration, it produces a new one with a lower value

of the function to be minimized. This cycle is then repeated using the configuration just

obtained as the new starting configuration. Assume that at the beginning of the kth cycle
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the system is in some configuration xk where x is a 3N-dimensional vector containing all

the atomic positions. We then vary the system configuration by displacing atoms linearly

along a given direction d (d is a 3N-D vector) by some amount ak (a is a scalar). The

displaced configuration is

xk+1 = xk + akdk 3.3

Given some direction dk, a can be chosen by conducting a one-variable unconstrained

minimization of the potential energy V(xk+1 ) = V(xk + akd k ) = V(a) along dk using a

line-minimization scheme such as the Brent method (Brent [1973]) or cubic interpolation

(Bertsekas [1999]). Once a minimizing a is found, this procedure is repeated starting

from x k+ and along a new direction d k+ until some previously specified convergence

criterion is met.

The heart of the conjugate gradient method lies in the selection of the line-

minimization direction d. The most common choice-and the one used in the current

research-is due to Polak and Ribiere [1969] and can be stated briefly as

R kg k k-1

= k-1i k-i 
.

g .*g

gk =V xV(xk)

g -as the last line indicates-is the gradient of the potential function at configuration xk

with respect to the atomic positions x.

If in the above formula we had # =0, the algorithm would reduce to the steepest

descent method, i.e. for any initial configuration the line minimization 3.3 would be

carried out in the direction where V(x) decreases the fastest. Though such an approach

appears reasonable at first glance, it can be shown to offer slow (often nearly linear)

convergence if the minimum lies in a narrow "potential valley" (fig. 3.2). The value of

selecting # as indicated in 3.4 is that every new minimization direction dk is linearly
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independent of the (k-1) previous directions. The frequent retracing along previous

minimization directions apparent in the "zigzag" approach to the minimum characteristic

of the steepest descent method (fig. 3.2) is therefore avoided. As a result, the conjugate

gradient method yields superlinear convergence rates, sometimes even approaching the

quadratic convergence of the more complex and computation-intensive quasi-Newton

methods (Bertsekas [1999]).

a) b)

Figure 3.2: Minimization in a narrow valley. a) The steepest descent method retraces its steps in a
characteristic "zigzag" pattern. b) Successive conjugate gradient directions are chosen to be linearly

independent from the previous ones, leading to faster convergence.

3.4 Analysis

MD and CGSEM are capable simulating the dynamic and static structure

evolution of collections of atoms, but say nothing of the task of interpreting and

analyzing the output structures. Appropriate techniques must therefore be chosen and

brought to bear on the results of any atomistic simulation in order to extract some

physical insight from it. This section describes methods that allow the outputs of a MD or

CGSEM simulation to be understood in terms of concepts commonly used in continuum

mechanics, namely "stress" and "strain."

3.4.1 Atomic stress

The stress components of a system described by a potential function V(r, r 2 ,...rN

can be expressed as (Allen and Tildesley [2000])
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B TP O +~Iav 3.4
V au af

The first term on the right hand side arises from thermal motion and depends linearly on

temperature and density (kB is the Boltzmann constant). The second term is the variation

of the potential energy with the appropriate component of the deformation gradient u. V

is the total system volume.

The derivation of expression 3.4 interprets "stress component" as the appropriate

resolved force component per unit area acting across any chosen surface and follows the

approach typically used in the kinetic theory of gasses (Haile [1997]). For the purposes of

atomic-level structure analysis, however, it is convenient to ignore the thermal

component and to reinterpret the potential-derived part in expression 3.4 in terms of

atomic contributions to the total system stress. This goal can be achieved

straightforwardly if the empirical potential V has the form of a sum of terms such as 3.1.

For two-body interactions, for example, we make use of the fact that the forces exerted

on each atom participating in the interaction are equal and opposite to write down

~af = 1 ~ Lja>, atomic fuja jfl

V fiiV j ,, 2V~i ) i 2V-i

where 14 is the atomic volume of atom i. It can set as the average volume per atom in a

given system or determined according to the more sophisticated Voronoi tessellation (see

section 3.4.2). The subscripts a and #9 on 4 and r, denote Cartesian components of

those vectors. In general, we can write

atomic
ia _farfl

33



where the summation is taken over all forces acting on atom i. This form of the atomic

stress is easily applied to three-body terms as well as higher order ones (Brown and

Neyertz [1995]).

3.4.2 Atomic strain

In addition to characterizing stresses on the atomic level, it is convenient to be

able to define a measure of atomic-level strain. Such a definition was proposed by Mott

who made use of the dual Voronoi and Delaunay tessellations of space in his

development (Mott et al. [1992]). The strain measure described here is essentially Mott's,

although with a few modifications.

Given any set of points in a space-call them "atoms"-the Voronoi tessellation

subdivides the space into polyhedral regions constructed around individual atoms. These

regions have the property that any location within a given region is closer to the atom

around which the region is constructed than to any other atom (De Berg et al. [2000]).

Locations on boundaries between two such regions are equidistant from two atoms.

Locations where three such regions meet are equidistant from three atoms. For a general

distribution of atoms in space (i.e. for one that lacks any symmetry properties, e.g. a

random distribution) there are no points that are equidistant from five or more atoms.

Nevertheless, such circumstances can arise in ordered distributions of atoms such as

crystal lattices.

Given a Voronoi tessellation of any configuration, it is possible to construct yet

another subdivision of space: the Delaunay tessellation. This scheme uses the same

principle that was applied to find the Voronoi tesslellation, but with the vertices of the

Voronoi tessellation as starting points, i.e. it subdivides space into regions centered on

vertices of the Voronoi tessellation such that any location within a region is closer to the

vertex around which it is constructed than to any other vertex. This tessellation can be

shown to result in a subdivision of space into tetrahedra whose vertices are the atoms of

the given configuration for which the original Voronoi tessellation was constructed. A

moment's reflection will reveal that since the vertices of the Delaunay tessellation are the

original atoms of the configuration, one more application of the principle used to generate
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the tessellations described above will once again yield the Voronoi tessellations. The

Voronoi and Delaunay tessellations are therefore dual (De Berg et al. [2000]).

Voronoi and Delaunay tessellations each offer distinct advantages for the

purposes of defining an atomic-level strain measure. The polyhedra of the Voronoi

tessellation are purely geometrical objects each of which is unambiguously associated

with one atom. Furthermore, their shape is uniquely determined for any distribution of

atoms. The deformations of Voronoi polyhedra resulting from displacements of atoms in

the system are therefore a natural candidate for defining an atomic level strain measure.

Their drawback, however, is that these deformations can be highly nonuniform (owing to

the potentially nonuniform displacements of the underlying atoms) and the resulting

strain measure would have to exhibit a sufficient complexity to reflect these effects. The

Delaunay tessellation, on the other hand, yields tetrahedra whose deformations are easily

described by uniform strains. It is centered not on atoms, however, but on interstitial

regions, i.e. the vertices of the Voronoi tessellation. An ambiguity therefore arises as to

the atom to which the strains observed in a Delaunay tetrahedron should be assigned.

Mott's solution to the problem described above was to find the strains for the

components of the Delaunay tessellation, but to apportion them to individual atoms

making use of the Voronoi tessellation. This assignment was achieved by finding the

volume of the intersection between each Voronoi polyhedron and Delaunay tetrahedron.

The (nonuniform) strain of each Voronoi polyhedron was then determined as a sum of

contributions from all Delaunay tetrahedra that intersected it, each term in the sum being

weighted by the previously determined intersection volume:

atomic _ -rv int er sec tion Dlta
6 af V atomic J Delaunay

The initial construction of the Voronoi and Delaunay tessellations was achieved

by the method of Tanemura et al. [1983] and the apportioning of strains was conducted

essentially as described by Mott [1992]. Nonetheless, two important improvements were

made. First, as pointed out earlier, for general distributions of atoms it is very unlikely

that there should exist points equidistant from four (five, for 3-D) or more atoms. If such
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a "degenerate" situation should arise, it would correspond to five or more Voronoi

polyhedra meeting at a single vertex. The amorphous structures under study here are

sufficiently disordered for degenerate situations to arise very rarely, but regions of local

partial crystallinity are nonetheless possible. In such cases, the original algorithm fails.

The modification introduced for the purposes of the current research circumvents this

problem by recognizing the degenerate situations described above and arbitrarily

choosing from among the number of equivalent configurations that are made possible by

it (Tanemura et al. [1983]).

The second improvement concerns the method of finding intersections between

Delaunay tetrahedra and Voronoi polyhedra. Whereas Mott used a recursive method that

defined the total intersection volume iteratively as a sum of successive terms, the method

used here determines the intersections directly by finding the region bounded by all

surfaces of both the Voronoi polyhedron and Delaunay tetrahedron of interest. It

therefore avoids all possible problems of convergence. It was found that Mott's

implementation frequently failed to give consistent outputs even when the initial

tessellation was successful. The improved scheme failed only once out of the almost one

thousand times that it was applied.

3.4.3 Hydrostatic and deviatoric tensor components

The methods for finding atomic level stresses and strains described above yield a

full tensorial description of these quantities. For the purposes of analysis, however, it is

usually convenient to find scalar quantities that by themselves characterize certain

aspects of the full tensor. Two such scalars are of particular interest: the hydrostatic and

equivalent deviatoric components. Given any tensor A they are

Ahyd tr(A)

A e ( = -- Ahyd )T (A Ahyd

These scalars have particular significance in the context of mechanical deformation of

materials. The negative hydrostatic component of the stress tensor is the system pressure.
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Similarly in the case of strain, the hydrostatic component corresponds to dilatation.

Meanwhile, the times the deviatoric component of stress is the von Mises stress often

used in yielding criteria (McClintock and Argon [1966]).
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4. Results

This section describes the results of MD and CGSEM simulations carried out in

the course of the investigation. All results pertain to systems containing 4096 atoms. In

order to eliminate any possible surface effects, all simulations were conducted under

periodic boundary conditions.

4.1 Creating a-Si

The available methods that attempt to create computer models of a-Si with a

continuous random network structure can be broadly classified into two categories: direct

construction by bond switching (Wooten et al. [1985]) and melting and quenching

(Luedtke and Landman [1989]). The former starts with a diamond cubic crystalline

sample and progressively disorders it by rearranging individual bonds according the pre-

specified rules. Although effective for small system sizes, this method becomes

cumbersome when thousands of atoms are involved. Furthermore, the bond-switching

process is inherently unphysical as no instance of such "self-amorphization" at low

temperatures has been observed in silicon.

a-Si creation by melting an quenching, on the other hand, has been known at

times to produce final structures whose character was further from the anticipated

continuous random network than when bond switching was used (Luedtke and Landman

[1989]). Nevertheless, the way in which melting and quenching arrives at the amorphous

configuration is more true to the way a-Si could be made in an experimental setting.

Therefore, the approach used in the present research was the melting and quenching

approach.
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4.1.1 Initial condition: c-Si

Melting and quenching was accomplished by using a constant temperature

molecular dynamics (MD) algorithm. The initial conditions provided for the simulation

were the positions of atoms in a perfect diamond cubic silicon crystal. This initial system

configuration was constructed in such a way that all atoms were stationary and in

equilibrium (corresponding to zero temperature). The size and shape of the simulation

cell was chosen in such a way as to minimize the overall system potential energy

(corresponding to zero stress).

Figure 4.1: The configuration of atoms in the diamond cubic crystal structure. In the Stillinger-Weber
potential for silicon, the equilibrium distance between nearest neighbor atoms (i.e. the bond length) in this

configuration is 0.235nm.
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The diamond cubic structure can be described in terms of cubic unit cells-each

containing eight atoms-repeating in the x, y, and z directions. Although this cubic cell is

not the primitive cell (the primitive unit cell is similar to the one for the FCC

configuration, but contains two atoms (Ziman [1995])), it is convenient for the purposes

of both constructing and visualizing a crystalline silicon (c-Si) configuration. Figure 4.1

illustrates the arrangement of atoms in the diamond cubic crystal structure. It is easy to

see that in this configuration each atom has four nearest neighbors, i.e. diamond cubic c-

Si is four-fold coordinated.

4.1.2 Melting

The initial crystalline structure described above was melted by conducting MD

simulations at increasing temperatures. Starting at T=25K, the temperature was increased

by increments of 25K up to T=4000K. At each temperature, the structure was

equilibrated for 2000 MD time increments (a total of 10.7 ps), corresponding to 140

atomic vibration periods in the Stillinger-Weber potential. The rate of temperature

increase was therefore 2.33 .1012 K/s, i.e. much higher than can normally be achieved

experimentally (with the possible exception of pulsed laser melting (Thompson et al.

[1984])). Conducting the melting process at lower rates of temperature increase did not,

however, yield any changes in the observed melting profile. This insensitivity to heating

rate can be explained by lack of temperature-activated relaxation processes in the

crystalline state and the very fast thermodynamic equilibration of atomic positions in the

liquid state.

The dependence of system specific volume (volume normalized by the volume of

c-Si at zero temperature and stress) during melting is shown in figure 4.2. The most

prominent feature of this profile is the sudden drop of volume at a temperature of about

2500K. This volume drop coincides with the melting of the crystalline configuration and

is characteristic not only of silicon, but also generally of many substances that exhibit a

diamond cubic crystalline structure (Angell et al. [1996]), the best known of these being

water. Indeed, obtaining a drop in volume upon melting was one of the central
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motivations behind the choice of parameters for the Stillinger-Weber potential (Stillinger

and Weber [1985], see section 3.1).
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Figure 4.2: c-Si contracts upon melting and-given a high quench rate-does not recover all of the lost
volume upon vitrification.

Although melting of c-Si in a MD simulation such as the one described here

occurs at about T=2500K, this is not the phase transition temperature between the

crystalline and molten state, i.e. it is not the thermodynamic melting temperature Tm.

Broughton and Li showed that Tm for the Stillinger-Weber potential is 1691 ± 20K

(Broughton and Li [1987]). Because, however, the initial crystalline arrangement in the

simulation described here was flaw-free, the system could undergo a high degree of

overheating due to the large barrier to nucleating an initial molten region. Defects such as

grain boundaries can serve as preferred sites for easy nucleation of the melt. Indeed, if

such defects are introduced into the initial configuration, the temperature at which the
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system undergoes melting is drastically decreased and approaches Tm (Phillpot et al.

[1989]).
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Figure 4.3: a) RDF of molten silicon. Distances have been normalized by the Stillinger-Weber
characteristic distance (section 3.1). B) ADF of molten silicon.

Evaluation of radial and angular distribution functions (RDFs and ADFs) for

molten silicon clearly shows the disappearance of long range order as well as a loss of

definition in the bond angles between nearest neighbors (fig. 4.3). By integrating the RDF
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up to the first "trough" after the nearest neighbor peak we can conclude that the average

coordination of molten Si as modeled by the Stillinger-Weber potential is around 6,

which is in good agreement with the experiment (Davidovic et al. [1983]).

4.1.3 Quenching

Upon reaching T=4000K, the temperature of the system was decreased in 25K

increments and the system configuration was equilibrated by MD simulation at each new

temperature in the same way as was described above. The resulting variation of specific

volume during quenching is depicted in figure 4.2. The system persists in the molten state

for temperatures far below the melting temperature and eventually vitrifies at Tg: the

glass transition temperature. Subsequent heating of the vitrified material leads to

remelting at the glass transition temperature.

The phenomenon of undercooling is analogous to the overheating described above

in that a transition to the thermodynamically stable state (the crystalline state, in this

case) is impeded by a nucleation barrier. Much as this nucleation barrier can be reduced

in the case of melting by the insertion of defects into the crystal structure, it can be

eliminated in the case of crystallization if a small crystalline nucleus is added at a

temperature slightly below Tm. The molten material surrounding it then crystallizes on

time scales accessible to MD simulation (Keblinski et al. [1996a, 1996b]). The time scale

for the spontaneous creation of such a nucleus, however, is prohibitive given current

computational capabilities unless specially modified empirical potentials are used

(Nakhmanson and Mousseau [2002]).

Increasing degrees of overheating lead to the crystalline structure to become

increasingly unstable under thermal motion resulting in an eventual spontaneous

transition to the molten state (Phillpot et al. [1989]). Increasing degrees of undercooling,

however, are accompanied by ever decreasing atomic mobilities making it more difficult

for crystalline nuclei to form and grow. Eventually, atomic mobilities become so low that

the underlying liquid configuration becomes "kinetically frozen" and no longer

undergoes significant structural relaxation. The temperature at which this phenomenon

occurs is called the glass transition temperature Tg and is easily identified by the rapid
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change in thermal expansion coefficient of the material. Note from figure 4.2 that the

thermal expansion behavior of the material is nearly identical before melting and after

glass transition: thermal expansion coefficients for the crystal and glass are

ac-si =1.26 -10-'K-' and a,-si =1.14 -10-'K~', respectively. The thermal expansion

coefficient of the liquid, however, is nearly four times higher: a-si = 4.18 -10~' K-1 .

Unlike the melting phase transition from crystal to liquid structures (Huang

[1987]), the exact physical nature of the glass transition is not yet well understood.

4.1.4 Structure characterization

Much like in the case of metallic glasses, the character of amorphous silicon as

formed by melting and quenching depends sensitively on the rate of quenching: slow

quenching allows for greater structural relaxation resulting in a disordered configuration

whose macroscopic features (e.g. specific volume) more closely resemble that of the

crystal. Fast quenching, on the other hand, locks in a less-relaxed configuration whose

characteristics are less like those of the crystal. Figure 4.4 shows the effect of increasing

the quench rate from 2.33 .1012 K/s to 3.73 .1013 K/s on specific volume variation in

Stillinger-Weber a-Si. Unlike in the case of metallic glasses, slower quenching leads to a

rise in the specific volume of the product. Nevertheless, since silicon in its molten form is

denser than the crystal, this rise in specific volume is consistent with slowly quenched

glasses being more structurally relaxed and therefore more similar to the crystal structure

than those that were quenched quickly.

Because structural features of a-Si are not readily appreciable by inspection,

atomic-level differences between quickly and slowly quenched a-Si were investigated by

numerical means. Figure 4.5 compares the RDFs and ADFs of the quickly and slowly

quenched a-Si structures with those of c-Si. Note that in both cases long-range order is

lost and bond angles are widely dispersed (although less so than in the case of molten

silicon, see figure 4.3). The split second peak apparent in the RDFs of both structures

indicates that second nearest neighbors are ill defined in the system (Zallen [1979]). This

characteristic of the RDF is a feature commonly observed in equilibrated ball bearing
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packings and metallic glasses. Its presence in the RDFs of a-Si is a sign that some

residual structural characteristics of the (metallic) liquid form of silicon remain in the

system even after the glass transition.

Faster quench rates lead to smaller volume recovery

- quench rate = 2.33x1 012 K/s
- quench rate = 3.73x1 013 K/s

500 1000 1500 2000
Temperature [K]

2500 3000 3500 4000

Figure 4.4: The faster molten silicon is quenched, the denser the final amorphous structure.

In the continuous random network setting, no split second peak is expected

(Zallen [1979]). It is not surprising, therefore, that the structure of the more slowly

quenched system is in better agreement with experiment (Laaziri et al. [1999]).

Integration of the RDFs up to the first trough after the nearest neighbor peak shows that

the average system coordination of the quickly quenched structure is 4.6 while that of the

slowly quenched structure is 4.4. In this respect the slowly quenched structure is once

again in better accord with experiment.
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Comparison of RDFs between structures quenched at different rates
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Figure 4.5: a) The split in the second neighbor peak is less pronounced in the more slowly quenched
structure. b) The bond angles in the more slowly quenched structure are less dispersed than in the more

quickly quenched one.
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4.2 Irreversible deformation: system view

After a-Si structures were created using the melting and quenching process

described above, the best relaxed of them was deformed plastically by using conjugate

gradient static energy minimization (CGSEM) simulations. This section describes the

system-wide response of the material to such deformation.

4.2.1 Loading procedure

a-Si structures containing 4096 atoms and generated by the quenching process

described in section 4.1 were brought to the closest equilibrium configuration

(corresponding to zero temperature) by minimizing the system potential energy using the

CGSEM method (section 3.3). Next, in order to deform such equilibrated structures,

strain increments were successively imposed on the system by changing the shape of the

simulation cell. These strain increments were chosen such that they did not change the

system volume and did not allow for any deformation in the z-direction. Therefore, they

can be described as increments of volume conserving plane strain (figure 4.6).

dez=0.000

dyO=-0.000 9 9

dx=0.00 1

Figure 4.6: The system was loaded with volume conserving plane strain increments.
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After an increment of strain is imposed on the system, the resulting atomic

arrangement is in general no longer in equilibrium. Therefore, after each strain increment

the CGSEM algorithm was used to once again bring the system into the closest

equilibrium configuration. The process of successively deforming and reequilibrating an

a-Si system can be carried out repeatedly to generate a large-strain deformation profile.

4.2.2 Discrete stress relaxation events

If small increments of strain are applied to a system consisting of a few thousand

atoms, then a smooth variation of system pressure and deviatoric stress is observed. Now

consider that the deformed system is unloaded, i.e. that the CGSEM-based deformation

process described above is repeated except using strain increments that are inverse to the

ones used when initially deforming the system. Such deformation eventually returns the

simulation cell to its initial shape. For such unloading the system pressure and deviatoric

stress are seen to retrace the values they took in the case of initial loading (figure 4.7).

Therefore, when the system stress-strain response is smooth, the deformation is reversible

by simple unloading and can therefore be considered elastic.

If, on the other hand, a discontinuous change in the system stress is observed

during loading, the unloading behavior of the system becomes entirely different as figure

4.7 illustrates. The stress-strain behavior is clearly irreversible. Meanwhile, differences in

atomic positions between the system configuration for loading and for complete

unloading following the stress-strain discontinuity show that the system has suffered an

internal structural change that cannot be reversed by simple unloading (figure 4.8).

The stress relaxations described here have been observed before in deformation

simulations of a variety of disordered materials (e.g. Argon and Shi [1983]; Mott et al.

[1993]). They have been identified as indicators of discrete atomic-level mechanisms

responsible for system plastic deformation. The apparently smooth macroscopic stress-

strain behavior of materials undergoing plastic deformation is thought to be a result of the

ensemble-averaging of large numbers of unit events like the one shown in figure 4.7.
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Figure 4.7: Discrete a) deviatoric stress and b) pressure relaxations are not reversible upon unloading.
Circles on lines represent values from individual system configurations.
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Internal structural rearrangement accompanies discrete stress relaxation

Deviatoric strain
1

5 difference
in atomic
positions
due to
discrete

1 -stress
relaxation

5-

w
1.5

x 10-

Figure 4.8: Comparing positions of atoms in a-Si samples that are similarly strained but correspond to the
loading and unloading branches of figure 4.7 reveals that an internal structural rearrangement accompanies
the discrete stress relaxation. Distances are normalized by the characteristic length of the Stillinger-Weber

potential (section 3.1).

4.2.3 Deformation to large strain

If a large number of strain increments is applied to an a-Si system, multitudes of

discrete stress relaxations such as those described in section 4.2.2 are observed. From the

aggregation of these stress relaxations, certain characteristics of the material's

macroscopic plastic deformation behavior become immediately recognizable (figures 4.9

and 4.10).
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Loading and unloading of a-Si
2
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Figure 4.9: The system-wide loading and unloading behavior of a-Si is an "ensemble average" of individual
irreversible stress relaxation events.

The variation of deviatoric stress with loading (figure 4.9) clearly illustrates the

eventual attainment of a steady state flow state corresponding to plastic flow. No distinct

yielding point can be discerned, however, because of the small stress relaxation events

that occur even far below the level of deviatoric stress reached at steady state flow.

Unloading reveals a clear Bauschinger effect, indicating that residual backstresses are

accumulated in the system during plastic deformation. A state of zero deviatoric stress is

not reached upon unloading because of the pronounced effect of atomic level stress

variations on the overall system stress in an a-Si structure this small in size.

The interpretation of variation of system pressure with loading and unloading

(figure 4.10) proves to be more problematic than the interpretation of variation in

deviatoric stress. In particular, while the latter reaches a steady state flow condition at a

deviatoric strain level of about 1-2%, the former never attains steady state. Furthermore, a
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distinct asymmetry exists between the pressure profiles for loading and unloading. The

explanation of these issues is a topic in the author's doctoral research.

Loading and unloading of a-Si
-1.2I
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C 0.01 0.02 0.03 0.04

Deviatoric strain
0.05 0.06 0.07 0.08

Figure 4. 10: The system pressure profile fails to achieve steady state even after the deviatoric stress profile
has achieved it.

4.3 Irreversible deformation: atomic level

Discrete stress relaxations have been shown to reproduce the macroscopic stress-

strain features of plastic response. These events were accompanied by irreversible

internal structural changes. In this section we clarify the nature of the collective atomic

rearrangements that accompany discrete stress relaxation events.

4.3.1 Kinematics of transformation

The method for finding atomic level strain increments described in section 3.4.2

can be applied to any two system configurations. Once a set of atomic strain increments
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is found, the hydrostatic and deviatoric components can be computed (section 3.4.3).

Since plastic deformation in other disordered materials was found to be a localized

shearing process (section 2.3), the atomic deviatoric strain increment can be viewed as a

good measure of the intensity of a given atomic environment's contribution to the

structural rearrangement accompanying discrete stress relaxation.
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Figure 4.11: Atomic deviatoric strain increments are much higher for a-Si configurations undergoing stress
relaxation than for those being deformed elastically. Distributions have been normalized to unity.

Figure 4.11 shows distributions of atomic deviatoric strain increments computed

for a pair of structures that are elastically (reversibly) deformed versions of each other as

well as for a pair of which one corresponds to a configuration immediately preceding and

the other immediately succeeding a stress relaxation. The atomic deviatoric strains in the

latter are on average larger than those in the former by about two orders of magnitude.

Moreover, while the deviatoric strains of the majority of atoms fall into the low-strain

regime (<10-), there is a small number of atoms whose deviatoric strains are much larger
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than of the rest. These "outliers" in the atomic deviatoric strain distributions indicate

atomic environments where atomic rearrangement is concentrated during a stress

relaxation.

4.3.2 Visualization of transformation

The analysis of section 4.3.1 can be used in visualizing the geometrical character

of individual stress relaxations. Figure 4.12 shows a cluster of atoms containing only

atoms of highest deviatoric strain increment for a pair of a-Si configurations

corresponding to a stress relaxation. Clearly, the atomic rearrangements during discrete

plastic deformation events are highly localized in a well-defined region of space.

4.3 nm

Figure 4.12: Atoms whose environments undergo the largest deviatoric strain increment during a plastic
stress relaxation are well localized within the system configuration.

Figure 4.13 is a visualization of the region of highest atomic rearrangements for a

stress relaxation in a system of 1000 atoms (as opposed to the 4096 used in all other
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situations). Here the deformation is also highly localized, but it is not contained within a

closed region. Instead, it connects across the periodic boundary walls of the simulation

cell. This phenomenon is due to the excessively small system size and the strength of the

resulting elastic fields generated by periodic images of regions where deformation

localized. It has been observed before in glassy polymers (Mott et al. [1993]).

2.2 nm

Figure 4.13: For a system consisting of 1000 atoms, regions of highest shearing during plastic stress
relaxation connect across periodic boundary walls.

This connecting across periodic boundary walls of plastically transforming

regions was the motivating reason behind choosing a larger, 4096-atom system for the

research presented here. The atomic deviatoric strain increment characterization of the

kinematics of plastic transformation is therefore a useful tool in not only visualizing the

nature of atomic rearrangements accompanying discrete stress relaxation, but also

provides a means for detecting artifacts resulting from system size effects and the

accompanying elastic image forces.
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4.3.3 Analysis

Characterization based on atomic deviatoric strain increments allows for the

visualization of transforming regions and the extraction of qualitative information. A

more quantitative account of the kinematics of plastic deformation, however, requires

making an objective choice for the cutoff atomic deviatoric strain increment below which

atomic environments are not seen as participating in the rearrangements leading to

discrete stress relaxation. This choice was made individually for each event based on the

variation with the cutoff deviatoric strain of the stresses and potential energy per atom

associated with the transforming region.

By choosing a cutoff atomic deviatoric strain increment, a certain number of

atomic environments are marked as being within a transforming region while the other

ones are considered to be outside it. The stresses and potential energies per atom of these

regions can then be evaluated. As the cutoff deviatoric strain increment decreases, the

number of atoms participating in a transformation increases. Thus-via the cutoff

deviatoric strain increment-a correspondence can be drawn between the number of

atoms participating in an irreversible rearrangement and the stresses and potential

energies per atom associated with that rearrangement.

Figure 4.14 plots the number of atoms against the differences in pressure and potential

energy per atom for a typical pair of a-Si structures associated with a discrete plastic

event. For small numbers of participating atoms, the pressure and potential energy per

atom differences vary erratically. For large numbers, however, the variation dies down. A

certain "participation number" of atoms can be chosen that separates the regime of erratic

variation of pressure and potential energy per atom differences from their smooth

behavior. This participation number is an estimate for the size of the transforming

regions. For the relaxations observed, it was found to lie between 100 and 500 atoms per

event.
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Pressure change as a means to finding the size of a transforming region
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Figure 4.14: Differences in a) pressure and b) potential energy per atom inside a transforming region
between the atomic configuration immediately before and after a plastic stress relaxation help to determine

the size of the transforming region. Atoms with environments of highest deviatoric strain increment are
included in the transforming region first. The region is then enlarged by including atomic environments of
ever lower deviatoric strain increments. The size of the transforming region is taken to be the number of

atoms at which pressure and potential energy per atom differences cease to vary erratically.
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With an estimate for the size of transforming regions and the degree of the

accompanying deviatoric and hydrostatic stress relaxation, the distribution of deviatoric

and hydrostatic transformation strains for discrete relaxation events can be found. We use

the formulas (Argon [1996])

s)'stem C system
A 8 event _ A dev

dev N event

N\ system A07, system
A__event hyd

hyd N event B

where B = 106GPa and u = 33GPa are the bulk and shear moduli of SW a-Si,

respectively (Kluge and Ray [1988]). N denotes the number of atoms in a given

collection. Deviatoric transformation strains were found to be distributed between 0.01

and 0.35. Hydrostatic strains fell into the -0.7-0.1 range.

The localization of atoms that are highly active in a plastic rearrangement process

within a well-defined region of space (figure 4.12) lends itself well to approximating that

region of space as an ellipsoid (as has been done before in continuum models of plastic

transformation (Argon and Shi [1982])). Such an approximation allows for a quantitative

characterization of the dimensions of the region along its principal directions as well as of

its orientation with respect to the applied stress field.

The approximation described above was made by matching the moment of inertia

of a transforming region with the moment of inertia of a similarly oriented ellipsoid.

Once the atoms participating in a plastic transformation were determined, the components

of the inertia tensor for that region were found according to the formula

N

I' = Z (r 28.k - Xi 1 Xik 4.1
i=1

where N is the number of participating atoms. mi and ri are the mass and distance from

the origin of atom i. xi j is the j-component of the ith atom's position. The full inertia

tensor for a transforming region was diagonalized to extract the orientation of the region
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in the ellipsoid approximation. For the events analyzed, however, no preferential

orientation was found.

The diagonal form for the inertia tensor of an ellipsoid with semi-axes denoted by

ax, ay, and az is

I,=(a 2+ af 2

Similar expressions hold for Iy and I. These relations can be inverted to give the semi-

axes of an ellipsoid with principal moments Ix, Iy, z:

ax = X(gbI, + IZ ,

Thus, the diagonal elements of the inertia tensor for a transforming region (calculated

according to 4.1) can be used to find an "equivalent oriented ellipsoid" that provides an

estimate for the length scale and shape of that region. It was found that these equivalent

oriented ellipsoids generally had the shape of filaments, i.e. they had one long semi-axis

and two shorter semi-axes of equal length. The former had lengths in the interval 1.0-

2.5nm and the latter in the interval 0.7-1.8nm.
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5. Conclusions

The computer investigation of plastic deformation in amorphous silicon presented

here has yielded the following results:

" Plastic deformation occurs as a series of discrete stress relaxations, much as has

been observed in glassy metals and polymers.

* Individual stress relaxations are accompanied on the atomic level by highly

localized shearing events involving 100-500 atoms and occurring within roughly

ellipsoidal regions.

" The length scales involved in the kinematics of atomic rearrangements appear to

be within the 0.7-2.5nm range.

The findings presented here have important consequences in the study of

irreversible deformation in highly confined covalently bonded intergranular material. In

particular, since the thickness of such confined films is in the 0.2-1nm range, it can be

concluded that the mechanism responsible for plastic deformation in bulk amorphous

covalently bonded materials cannot operate in such a setting.
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