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abstract

Cognitive development is one of nature's most important mechanisms for
creating robustly adaptive intelligent creatures. From felids to oscines,
developing animals are capable of learning in adverse environments with a
reliability that often outpaces the current state-of-the-art in artificial intel-
ligence (AI) The purpose of this thesis, therefore, is to examine how
insights from cognitive development might be applied to the design of AI
architectures. Starting with a targeted review of the ethological literature, I
identify the key computational lessons of development, the fundamental
conceptual insights that suggest intriguing new strategies for behavioral
organization. These insights are then employed in the design of a develop-
mental behavior architecture in which a hierarchical motivation-based
behavior system is coupled to a distributed set of domain-specific learning
tools. The architecture is deployed in a synthetic character (Hektor the
mouse) whose challenge is to learn to play a competitive card matching
game successfully against a human user. Evaluation of Hektor's perfor-
mance on this task, at both qualitative and quantitative levels of descrip-
tion, reveal that the developmental architecture is capable of surmounting
complex learning objectives in a novel and efficient manner. I conclude
that the architecture presented here represents a valuable starting point for
further consideration of developmental design principles.
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in t r o d u c t io n

1.1 on the perils of intuition

This thesis concerns itself with the matter of cognitive development, a

topic with which we all have a considerable degree of first-hand experi-

ence. When it comes to thinking closely about the processes and results of

development, therefore, it is remarkably easy to feel that we have a firm

intuitive grasp of the phenomenon. Development, our intuitive logic tells

us, is the process of transitioning from a cognitively and physically helpless

infant form to an independent adult form. Development is about 'grow-

ing up,' or progressing in a smooth and continuous way from the primi-

tive to the sophisticated.

From this perspective, the idea of applying the concept of develop-

ment to the design of artificially intelligent robots or virtual creatures may

appear to be a somewhat esoteric intellectual enterprise. Why, one might

"The challenge

is to forget

about how we

think the world

ought to work,

and instead

figure out how

it works in

fact."

(Searle, 1998)



chapter 1

ask, should we make a computational system that has to go through the

bother of growing up anyway? Do we really want to burden ourselves with

moody adolescent robots? What, other than a clever piece of engineering,

would a computational model of development represent? I argue that the

more refined understanding of development possessed by ethologists and

psychologists holds the answers to all of these questions. The goal of this

thesis is to begin making connections to this rich body of existing knowl-

edge, demonstrating how insights gained from the study of cognitive

development in living systems can open exciting new possibilities for AL.

1.2 thesis organization

The conceptual groundwork for this thesis begins in chapter 2: a computa-

tional perspective on development, in which I argue that the intuitive

notion of development, despite its seeming obviousness, is actually deeply

misleading in important ways. In particular, I use knowledge drawn from

the ethology and psychology research communities to debunk what I refer

to as the intuitive myth of development, the misunderstanding amongst

many computer scientists and artificial intelligence researchers that ontog-

eny is a process of linearly increasing organismic complexity. Beginning

from the intellectual perspective of Coppinger [23], I show that develop-

ment is better conceptualized as a progression through differentially spe-

cialized forms, each of which is sophisticated in the context of its unique

ecological niche.

20|1
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Taking this refined understanding of the phenomenon as a starting

point, I then articulate the position that development holds fundamental

insights into the question of how to best design robust and adaptive artifi-

cial creatures. A careful analysis of the ethological literature is used to syn-

thesize the key computational lessons of development, lessons that I argue

form the conceptual basis for a compelling new approach to Al. A review

of related work in the AI and machine learning communities in chapter 3:

relationship to prior computational work positions this new approach with

respect to its computational antecedents.

In chapter 4: a developmental behavior architecture, I describe how the

lessons learned from the biological literature can be applied to the imple-

mentation of a new style of computational behavior system. Following

theories of hierarchical behavioral organization articulated by investigators

such as Baerends, Blumberg, Dawkins, Hogan, Timberlake, and Tinber-

gen ([1], [6], [24], [25], [70], [34], [69], [35], [71]), I define a behavior

architecture in which a creature's behavioral capabilities are organized into

a motivation-based hierarchy. Comprised of modular behavioral elements

arranged in a reconfigurable lattice structure and coordinated by top-level

motivational subsystems, the architecture supports the kind of evolving spe-

cialization that is a hallmark of development in living systems [23]. Learn-

ing is integrated into the architecture in the form of specialized learning

tools (SLTs), distributed domain-specific learning mechanisms inspired by

|21
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the cognitive specializations observed to guide learning in the ontogeny of

many animal species. I argue that arranging SLTs in cooperative hierar-

chies is a sensible and flexible means of achieving scalable behavioral adap-

tation.

Having defined the general framework of the developmental behavior

architecture, chapter 5: hektor: a computational case study describes how

the architecture is applied to a specific problem of computational learning.

Hektor is a mouse who is motivated by his ever-present desire for cheese,

which can be won by wagering with the user on a competitive card match-

ing game called CheeseWhiz. Hektor's learning task is to derive the user-

determined matching rules that govern the game in order to amass a glori-

ous fortune in cheese. What might otherwise be a trivial problem of

exhaustive search, however, is complicated by the fact that the user period-

ically has the ability to secretly alter the rules of the game; Hektor must

thus deploy an intelligent and efficient learning strategy in order to be suc-

cessful. The architecture of the developmental behavior system is further

elaborated and clarified by describing how it maps onto Hektor's particu-

lar learning challenge. The organization of Hektor's behavior system is

detailed, as well as the set of four independent SLTs that combine to drive

his learning.

Hektor is put to the test in chapter 6: evaluation and discussion, which

describes a series of experiments used to evaluate his proficiency at the

22|1
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CheeseWhiz task. Detailed qualitative description of Hektor's behavior

and learning are presented in order to help the reader appreciate how the

diverse mechanisms of the developmental architecture are combined and

deployed in practice. A series of quantitative studies then undertake to for-

mally evaluate Hektor's learning performance and compare it to that

which would be expected from a naive search strategy. It is found that

Hektor's developmental architecture allows him to learn much more effi-

ciently than might otherwise be possible, enabling him to compete effec-

tively with the human user even under very adverse experimental

conditions.

Finally, in chapter 7: conclusions and future directions, I summarize the

contributions of this thesis, and make some suggestions for future

research. I conclude that this thesis provides a valuable proof-of-concept

for the applicability of developmental design principles to AL, and argue

that there is a wealth of possibilities for future exploration.

Now, without further ado, let's commence with the real work of this

thesis and move on to consider the ground truth of cognitive development

as it occurs in living systems.

|23
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a computational
perspective on
development 2

In this chapter I undertake a targeted review of the ethological literature in

order to motivate the computational importance of development. The

central question of "why development?" is answered by adopting the per-

spective on the phenomenon advocated by the noted canine ethologist

Ray Coppinger [23]. In this conception, development is not about simple

things becoming more complex; it is rather about managing complexity in

response to the demands of the creature's ever-changing environment.

Development, in other words, is largely about organizing, supervising, and

integrating the results of learning. Two key lessons bearing on this point

are elucidated from the literature and used to make suggestions as to how

developmental design motifs might benefit Al architecture; these design
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motifs will serve as the guiding principles for the developmental architec-

ture described in chapter 4. Finally, the developmental approach to Al is

put in context by considering its relationship to prior computational

work.

2.1 why development?

Let us begin by directly confronting the primary question that is raised by

this work: why development? That is, if our ultimate goal is to create an

adult virtual creature, why should we do so by way of the putatively prim-

itive infant and juvenile forms?

The answer to this dilemma comes from recognizing, as ethologists

and psychologists would, that the question itself rests on a false premise.

The view that a creature's early ontogenic forms are simply incomplete

approximations to its final adult state is a manifestation of the intuitive

myth of development. According to this misconception, widespread

amongst AI and computer science researchers, development is a process of

linearly increasing complexity wherein the creature goes from a primitive

infant state to a well-adapted adult state. While this sort of description

may be a reasonably apt one for the morphological changes that occur dur-

ing ontogeny, it is not at all accurate with respect to the accompanying

cognitive and behavioral changes.

26|1
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Coppinger has written with great effectiveness on the myth of linear

development [23]. He remarks:

Ontogenic growth is not linear progression; rather, the maturing

animal undergoes complex redefinition at distinct stages, often

adding or subtracting whole organ systems, necessitating a con-

comitant reintegration of the whole organism at each stage.

Contrary to intuition, the process of development is one of discontinuous

change and large-scale behavioral reorganization; it is a process of transi-

tioning between distinct specialized forms. As we shall see, replacement

and restructuring, not just refinement, are critical to the processes of

development.

It is very important to recognize that the specialized forms through

which a creature transitions during ontogeny are not orderable on some

grand scale of overall complexity; rather, each is uniquely adapted to face

the demands that will confront the creature during the corresponding

period in development. In considering the mammalian neonate, for exam-

ple, we should be careful not to let the form's physical helplessness fool us

into regarding it as fundamentally primitive. Rather, the crucial thing to

focus on is the fact that the neonate is supremely well-adapted to its onto-

genic niche. Natural selection does not begin once a creature reaches

adulthood - it operates at all stages in development. Both the infant and

the adult, therefore, represent "the most efficient and competitive uses of



chapter 2

form to capture energy in their respective niches" [23]; they are simply dif-

ferent specialized forms for achieving different specialized ends.

So, returning to our starting point, why development? We have seen

that development, properly understood, is a process that is centrally con-

cerned with adapting creatures in a flexible and robust way to dynamically

changing environments. The computational significance of development

in this light is quite clear. If we can create artificial creatures which are as

nimbly adaptive to changing circumstances as developing animals, then

we will have come a very long way indeed from the current state-of-the-art

in artificial intelligence. In the rest of this chapter, I will demonstrate how

this degree of sure-footedness in a changing environment is in fact a direct

result of the infant to juvenile to adult movement of ontogeny.

2.2 development and learning

At this point in the discussion we must confront one of the most nettle-

some theoretical issues facing any developmental research program: an

articulation of the difference between development and learning. In par-

ticular, now that I have argued that development is fundamentally a pro-

cess of adapting to a changing environment, I must ward off the assertion

that development is simply learning carried out over a longer time scale.

Ethologists and psychologists have expended a considerable amount of

effort arguing over the distinction between learning and development

28|1
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(reviewed in [1] and [41]). Opinions have spanned the full range of possi-

bilities, from denying that development is anything other than learning to

arguing that traditional learning processes provide virtually no insight into

development [1]. From a more dispassionate perspective, it seems unlikely

that either of these extreme positions is correct. As Shettleworth has

argued, both learning and development are processes by which experience

shapes the behavior of an organism [63]; this commonality makes it

unsurprising that, in many respects, learning and development should be

deeply intertwined.

In this chapter I will present a version of this more modern 'interac-

tionist' synthesis (see, for example, [22], [45], [41], [31], [65], [66], [32])

which holds that development and learning are separable but tightly cou-

pled processes. More specifically, I will argue that development is the phe-

nomenon that guides learning so as to make it both feasible and adaptive.

The adaptive component of this argument is particularly important as it

runs counter to the seemingly sensible proposition that learning is always

a good thing. In fact, the effortful process of learning should be engaged

only when it is necessary, e.g. when an organism is imperfectly adapted to

its environment [23]. The most fit creature, in other words, is not neces-

sarily the one that learns the most, rather it is the one that learns the right

things at the right times in order to take optimal advantage of its niche.
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Development is the process that helps the creature direct and constrain its

learning in this adaptive fashion.

In the coming sections of this chapter, I will argue that the key con-

ceptual lessons of development all bear on the fashion in which develop-

ment interacts with learning. Specifically, I will show that one of the most

powerful aspects of development is the manner in which it allows an

organism to learn in the appropriate context, thereby greatly simplifying

the task. Similarly, I will argue that another critical feature of development

is its use of specialized tools for learning, effectively deploying prior

knowledge of the learning task to help make it more tractable.

2.3 a brief word on mechanism

While the definition of a specific computational architecture for develop-

ment will be considered in detail in chapter 4, it is helpful to our current

purposes have a high-level intuition in mind regarding the mechanistic

underpinnings of the phenomenon. To provide this intuition, let us con-

sider the general style of cognitive architecture which developmentalists

attribute to animal minds, and consider what insights this suggests for the

basic attributes of a computational model.

A computationally well-defined view of development begins with the

behavior systems tradition, as exemplified by the work of authors such as

Baerends, Blumberg, Dawkins, Hogan, Timberlake, and Tinbergen ([1],
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[6], [24], [25], [70], [34], [69], [35], [71]). From our perspective, the

important aspect of the behavior systems view is its highly modular repre-

sentation of behavioral organization. In broad terms, a behavior system

can be conceptualized as consisting of an organized collection of special-

ized behavioral modules, each of which is defined in terms of the simple

function which it executes. While the precise definition of these modules

is not important for the purposes of this discussion, we can usefully follow

Hogan for an illustrative example [34]. Hogan expresses his behavior sys-

tems in terms of central, perceptual, and motor modules. Central modules

are conceptualized as corresponding to particular functional drives such as

feeding or reproduction; they help to coordinate the activity of the percep-

tual and motor modules to which they are attached. In a cow, for example,

the central module for feeding might orchestrate the activity of a percep-

tual module responsible for locating inviting patches of grass, and a motor

module that controls the grazing motor pattern.

The importance of this kind of modular organization arises from its

dynamic flexibility. Critically, a modular cognitive architecture suggests a

coherent way of conceptualizing the discontinuous changes that occur

during development. In particular, modular organization provides a con-

venient (if admittedly abstract) mechanistic interpretation for the prior

statement that the operations of replacement and reorganization are fun-

damental during ontogeny; replacement and reorganization can be
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thought of as referring to 're-wiring' of the connections between the mod-

ules in the behavior system. This kind of large-scale reorganization

amongst the modules, in addition to refinement taking place within the

modules themselves, is fundamental to development. In Hogan's words,

"The study of development is primarily the study of changes in [modules]

and in the connections among them" [34]. Throughout the course of this

chapter, I will rely on the notion of re-wiring connections amongst the ele-

ments of a modular behavior system to supply a high-level mechanistic

interpretation for developmental change.

Having now set the stage with a more accurate understanding of devel-

opment, let us move on to the second half of this chapter, an investigation

of the phenomenon's key computational lessons.

2.4 a unifying theme: constrain and
conquer

We are now in a position to begin exploring the 'big lessons' of develop-

ment - the central insights that make the phenomenon so useful as a

means for thinking about the design of intelligent artificial creatures.

Before doing this, however, it is useful to consider the unifying theme that

positions these lessons in relationship to one another, a theme that I term

constrain and conquer.

As we will soon see, each of the big lessons of development is funda-

mentally concerned with managing the learning process in a clever and
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flexible way. The consensus that emerges from these lessons is that

attempting to create a monolithic, domain-general learning algorithm is

not the best means of achieving flexible learning. Rather, robust and adap-

tive learning comes from the imposition of meaningful constraints to

guide and simplify the process. Development, in this view, can be under-

stood as nature's means of providing these constraints.

I will present two broad classes of developmental constraints for close

analysis. First, it will be shown that the process of development helps crea-

tures to learn the right things in the right contexts. The critical insight

here, simple to articulate but powerful in practice, is that the optimal con-

text for learning a given skill will often be quite different from the context

in which that skill will ultimately be expressed. Secondly, I will present

examples of how development simplifies many learning tasks by endowing

creatures with highly specialized, domain-specific learning tools. I will

argue that development illustrates how a plurality of special-purpose learn-

ing mechanisms can often achieve far superior results to a single general

mechanism.

2.5 lesson one: learn in the right contexts

Research in artificial intelligence has traditionally been focused on the

how of learning: what is the algorithmic machinery that must be in place

for particular kinds of learning to occur? When one looks to development
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'A surprising fact

about the feeding

behavior of many

neonatal animals

is that their early

feeding

movements are

relatively

independent of

motivational

factors associated

with food

deprivation."

(Hogan, 1994)

for inspiration, however, it quickly becomes clear that in nature, it is often

the when of learning that is the dominant question. The key insight that

evolution seems to have hit on is that by situating learning in the right

context, it is often possible to greatly simplify the problem.

In this section, we will consider the implications of this first big lesson

of development. The subject of neonatal feeding behavior will be dis-

cussed as a source of biological inspiration, one that gives rise to several

key points in a preliminary computational definition of the 'right' context

for learning. We will then go on to consider several corollaries to this cen-

tral lesson, drawing insight from the subjects of instinctive behavior and

juvenile play to suggest additional design guidelines for a developing arti-

ficial creature.

2.5.1 biological inspiration: neonatal feeding
behavior

As the sidebar quote intimates, the feeding behavior of neonates is a

surprisingly counterintuitive phenomenon. In particular, it has been

shown by numerous independent investigators that the feeding of baby

rats, puppies, kittens, and even humans is largely independent of nutri-

tional state ([33], [30]). Why should this be so?

Hogan, through his work on the early feeding behavior of chicks, has

presented an intriguing framework for understanding this developmental

puzzle [34]. Hogan begins by observing that while chicks first display
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pecking (the key motor pattern involved in their feeding behavior) within

hours of birth, this pecking is initially independent of nutritional state.

Early pecking appears to be better described as exploratory in nature,1 and

may be directed towards a variety of food and non-food targets in the

environment. The connection between pecking and the cessation of hun-

ger does not begin to form until several days after the chick has hatched,

and even then it must be mediated by specific functional experience; the

chick must experience pecking followed by ingestion to form the critical

association. The chick, in other words, must learn that pecking is a reliable

strategy for reducing hunger rather than being given this knowledge

innately.

On the surface, all of Hogan's findings are deeply counterintuitive;

they seem to fly in the face of any standard notion regarding the design of

a complex computational system. The design begs the question: why leave

critical parameters of a system, parameters whose values are known a pri-

ori, unspecified? Why isn't the all-important association between pecking

and eating simply hard-wired into the chick?

In order to answer this question we must admit one more important

fact about chicks. Specifically, it turns out that for the first few days of life,

chicks simply don't need to eat; their nutritional requirements are met

1. Hogan, in fact, likens this early pecking to play. This comparison is actually
quite suggestive, as we shall discover in the discussion on the role of play
behavior in mammalian neonates.
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entirely by the residual effects of the egg's yolk. The implication of this

fact is that were pecking initially associated with the reduction of hunger,

it would be highly unlikely to be expressed to any significant degree dur-

ing the first few days of life; the motivation for its expression would simply

be absent. This hypothetical situation would be deeply problematic for the

chick's development, insofar as early exploratory pecking appears to be

critical for refining the perceptual mechanisms that the chick uses to iden-

tify food. As Hogan notes, "The putative food-recognition mechanism in

newly hatched chicks must be largely unspecified because of the very wide

range of stimuli that are characteristic of items that chicks will come to

accept as food" [34]; it is the process of early exploratory pecking that

serves the critical function of optimizing this food-recognition apparatus

for the chick's immediate environment. Hence, a chick that was not moti-

vated to peck for the first few days of its life, which indeed did not peck at

all until it first experienced hunger, would find itself in a very dangerous

situation. Such a chick would be faced with the prospect of learning a

non-trivial amount of information (the refined motor pattern and its

appropriate eliciting stimulus in the environment) quickly and accurately,

or starving for want of success.

The lesson in all of this is clear: the optimal context for learning a par-

ticular behavior is often not the context in which the behavior will ulti-

mately be expressed. Why wait to learn how to obtain food, in other
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words, until you're already hungry? Learning is best conducted before it is

critical, such that errors can be corrected rather than incurring disastrous

consequences. Miller articulates this idea very nicely, remarking on what

he terms "the anticipatory nature of development" [51]:

[T]he capacity to exhibit species typical behavior develops prior to

the time that an organism actually needs to exhibit such behavior

in adapting to its ecological niche.

Though this point can seem rather obvious in retrospect, it must be noted

that it has not often been explicitly recognized in the design of artificial

learning systems. It is often somehow easier or more intuitive to think of

learning as occurring in the same context as that of the desired final behav-

ior. In the next section, I will attempt to begin redressing this deficiency

by defining some of the key features that might be used to identify advan-

tageous learning contexts in a computational setting.

2.5.2 computational implications: what defines
the right context for learning?

As the designers of AI systems, how can we go about identifying the right

learning contexts for our creatures? While specific policies must naturally

be tailored to specific situations, I would argue that the preceding discus-

sion has illuminated several general design guidelines.

the right context makes learning safe

This is the design guideline that resonates most strongly in the example

provided by Hogan's chicks. The right context for learning is one that is



chapter 2

safe, that will not strongly punish the creature for mistakes or failures. As

has already been noted, one direct consequence of this guideline is that

learning contexts and expression contexts will very often be distinct.

Whenever it is possible to learn a skill or a skill component in a situation

other than that in which the skill is demanded, doing so will almost always

be to the creature's advantage.

It should be noted that the ability to learn in safe contexts in the fash-

ion being described makes several interesting demands on an artificial

creature's design. First, the creature must have some ability to flexibly

define the relevant reward signals for guiding its learning. To help unpack

this statement, note that when a behavior is learned in the context in

which it will be expressed, the relevant reward signal is often inherent in

the behavior's function. For example, if a chick were to learn how to peck

in the context of being hungry, then the reward signal specifying a success-

ful peck would be the accompanying ingestion of food. However, as we

have seen, chicks initially learn how to peck in an exploratory context, not

one motivated by their nutritive state. In the exploratory context, what is

the reward signal that the chick uses to identify examples of well-formed

pecks? It is as though the chick must have some innate representation for

what a good peck feels like proprioceptively, and is able to use this knowl-

edge to generate an implicit reward signal for refining its motor behavior.

To generalize, the salient point is that the chick is able to use subtle, prob-
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lem-specific reward signals to guide its learning in contexts where the

learned behavior is not yet functional. This is likely to be a very important

point in the design of developmental AI systems, and it is one to which we

will return to later in this chapter.

The second design demand that learning in safe contexts imposes is

that the products of learning must be capable of being repurposed into

new domains; they must be redeployable from the context in which they

were initially acquired to the context in which they will ultimately be most

useful. Fortunately, the modular cognitive architecture that we have previ-

ously discussed provides a convenient mechanism for this kind of knowl-

edge redeployment. That is, at an abstract level, the activity of learning

and expressing a behavior in different contexts can be understood in terms

of re-wiring the connections between modules in the behavior system. The

changing motivational context for pecking behavior in chicks, for exam-

ple, can be explained in terms of the pecking motor module forming a new

connection to the central mechanism corresponding to hunger.2 The

modularity of the cognitive building blocks, in other words, makes it con-

2. Of course, just because the observed behavior can be conceptually explained
in this manner does not mean that this process (taken at a suitable level of
abstraction) is actually the full mechanistic story in the chick. In addition to
(or rather than) being motivated by hunger, for example, the pecking motor

module may well be self-rewarding in the same manner that many compo-

nents of felid predatory behavior are thought to be [43]. The point being

made here is simply that a modular cognitive architecture allows us to tell a

plausible story regarding knowledge redeployment, if not one that is neces-

sarily isomorphic with biological reality.
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ceptually simple for the products of learning to be reused in dynamic

ways.

the right context separates distinct learning objectives

A close consideration of Hogan's experiments reveals a second design

guideline: the right context should make it possible to separate distinct

learning objectives. To see what is meant by this, note that developing

chicks actually have to learn several distinct things about their pecking

behavior; they must learn not only what pecking is useful for, but also how

to peck effectively. One of the important consequences of the fact that

pecking is initially exploratory rather than functional in nature is that the

chick is able to approach these two learning problems separately. The

chick learns how to peck before it has pressing nutritional demands, and

then learns why to peck after it has mastered the relevant motor program.

The critical point here is that by selecting learning contexts intelli-

gently, it is often possible to tease apart the distinct elements of a com-

pound learning problem. Once again, this design guideline reaffirms the

importance of keeping the learning context distinct from the expression

context. If a behavior can be learned before it needs to be functional, then

the learning process can often be made more tractable by dividing it into

its component parts.
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the right context makes learning easier

This is something of a meta-guideline, as it is implicit in all of the points

that have been mentioned previously. However, it is worth mentioning

explicitly here in order to emphasize the fact that it is often much simpler

to learn behaviors in unexpected contexts. Take for example the phenome-

non of birdsong learning, which we will consider in much greater detail in

lesson two. The evidence suggests that the first phase of birdsong learning

occurs soon after chicks hatch, when they form an auditory template for

their species-typical song on the basis of the vocalization of conspecifics.

Why should this template be formed so early in ontogeny, often months

before the chick itself ever needs to vocalize? The answer is that this is the

time in the chick's life in which it is easiest to have continuous access to

the songs of conspecifics; for a newly hatched chick sitting in the nest, the

vocalizations of its parents are likely to be among the most distinct and

noticeable of the stimuli available in the environment. The lesson is that

by freeing creatures of the constraint that learning and expression must

occur in the same context, learning can migrate to the contexts that help

to make it easiest.

Having now introduced the first big lesson of development, let us turn

our attention to some of its important corollaries. In the following sec-

tions, I will expand my consideration of advantageous learning contexts by



421 chapter 2

considering the role that multiple contexts and opportunistic contexts

seem to play in development.

2.6 first corollary to lesson one: multiple
contexts for learning

The first corollary to lesson one regards the notion of multiple learning

contexts. The inspiration for this point derives from the development of

instinctive (e.g. highly stereotyped and species-specific) forms of behavior.

As we will see, the biological evidence suggests that the stability of instinc-

tive behavior within species is maintained not just by learning in the right

context, but by having multiple right contexts to learn in. This finding has

several interesting implications for our artificial creatures, regarding both

the importance of multiple learning contexts and the philosophical ques-

tion of learning versus hard-wiring.

2.6.1 biological inspiration: instinctive behavior

The ethologist David Miller has pointed out that many researchers have

made the mistake of regarding the 'development of instinctive behavior' as

something of an oxymoron [51]. After all, isn't instinctive behavior simply

genetically programmed? 'While genetic programs may be involved at

some level, the fact remains that genes code for proteins, not for behaviors.

In other words, "claiming that a behavior is caused by genes ... does not

bring us any closer to understanding the behavior's development than to

claim that it is caused by ecology, neurobiology, anatomy and so forth"

Rv - -1 - - I - OW.
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[51]. Instinctive behavior is therefore as legitimate a target for develop-

mental investigation as any other kind of behavior [40]. Indeed, by under-

standing how instinctive behavior typically arises during ontogeny, we can

understand something very important about how nature goes about 'pro-

gramming' its most robust forms of behavior.

Miller advances an intriguing hypothesis regarding the development

of instinctive behavior. Rather than regarding instinctive behavior as

somehow privileged, he argues that it generally arises from experiential

factors in a fashion that is analogous to the development of 'ordinary'

behavior. The only difference is that instinctive behaviors generally arise in

less obvious ways from more subtle, and often multiple, forms of experi-

ence; "the greater the stereotypy [e.g. instinctiveness] of the behavioral

outcome, the less obvious are the experiences that influence its develop-

ment." On this account, instinctive behaviors are simply those whose

emergence is highly canalized in the sense of Waddington [73]; their

development is supported by multiple independent experiential pathways

(in addition to relevant genetic and environmental factors), the collective

effect of which is to make the emergence of the behavioral in question a

virtual certainty.

As an example in support of Miller's hypothesis, let us consider the

mallard duckling. Since mallards are ground-nesting birds, mothers whose

ducklings have just hatched must be particularly vigilant for predators
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lurking near the nesting site. If the mother detects a threat in the vicinity

of the nest, she will issue an alarm call as a warning to her brood. Mallard

ducklings respond instinctively to this call by immediately ceasing all vocal

and locomotor activity. The response is so highly stereotyped that large

broods of 8 to 12 ducklings can be completely 'frozen' for multiple min-

utes at a time by a single exposure to the call.

So how does this instinctive behavior pattern come to be so reliably

encoded in the duckling, to the extent that it is ready to be perfectly

expressed virtually from the moment of hatching? In order to answer this

question, Miller undertook a variety of careful experiments designed to

isolate the specific experiential factors that appeared causal in the develop-

ment of the freezing response. The first finding was that ducklings

required some experience of their own perinatal vocalizations, or those of

their littermates, in order to be reliably receptive to the alarm call; duck-

lings which were incubated and hatched under devocalized, socially iso-

lated conditions did not manifest the freezing behavior. Note that it is not

direct (e.g. functional) experience of the alarm call itself that the ducklings

require to develop the freezing response, simply general experience of

vocalization.

This finding in itself may not be so surprising. One can imagine that

the perinatal experience ofvocalization is allowing the ducklings to param-

eterize some behaviorally important auditory template with general infor-
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mation about their conspecifics' vocal patterns, an idea that we will return

to in a slightly different context during lesson two. The truly remarkable

finding was the discovery that the freezing behavior of ducklings deprived

of auditory experience could be repaired through purely social experience.

That is, while devocalized ducklings raised in isolation had little sensitivity

to the alarm call, devocalized ducklings raised in groups responded in a

fashion that was virtually indistinguishable from that of normal ducklings!

Note that these socially raised ducklings still had no experience with con-

specific vocalization; their receptiveness to the alarm call was somehow

being repaired through an alternate experiential pathway. Though the pre-

cise mechanism of this social remediation is not yet clear, this remarkable

result does demonstrate the importance that multiple learning contexts

play in development. As Miller puts it [51]:

Metaphorically, just as a person can travel from one city to another

by means of different routes, so are there multiple developmental
trajectories connecting experiential events and behavioral out-

comes. A block in one path can be circumvented if development is

allowed to detour to another path.

2.6.2 computational implications: multiple
learning strategies versus innateness

I would argue that Miller's ducklings, and the subject of instinctive behav-

ior generally, have two important computational implications. First, they

argue that learning can be made significantly more robust simply by sup-

porting it with multiple learning contexts. As implied by the duckling
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example, the learning of particularly important skills should be

approached in such a way that an unexpected difficulty in one learning

context can be compensated for by the availability of another, indepen-

dent context. Second, the idea of multiple learning contexts is sufficiently

powerful that it can, in many cases, be trusted to generate behavior that we

might otherwise be tempted to build-in. Just as multiple learning contexts

can make instinctive behavior highly reliable without it being strongly

innate, so can they generate critical computational behaviors in the place

of rigid hard-wiring.

But why is this important? What's wrong, after all, with simply hard-

wiring a behavior that we known in advance will be necessary? The most

obvious answer to these questions is that even behaviors that can be largely

specified in advance will often have subtle parameters that cannot be com-

pletely predicted a priori; there will almost always be some aspect of the

behavior that can be better specified at run-time, in reference to the crea-

ture's specific, unpredictable environment, than it can be from the prover-

bial drawing board. By allowing such behaviors to be learned within a

robust combination of independent learning contexts, a greater degree of

adaptedness and flexibility can be achieved. A second and more subtle

answer has to do with the benefits that can be derived from the dynamic

reorganization of a behavior system, as occurs for example during learn-
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ing. In the next section, I will argue that this process of reorganization may

carry unanticipated advantages in the form of opportunistic learning.

2.7 second corollary to lesson one:
opportunistic contexts for learning

Not all potentially advantageous learning contexts can be predicted in

advance. How can we go about designing artificial creatures that can dis-

cover, and make profitable use of, opportunistic contexts for learning? In

this section, I will argue that the developmental phenomenon of play may

hold the answer to this question. In particular, play demonstrates how the

metamorphic restructuring of a behavior system, as occurs during the

juvenile phase of ontogeny, provides exactly the right circumstance for a

high-degree of exploratory, opportunistic learning.

2.7.1 biological inspiration: play

The inspiration for this section comes from that quintessential behavioral

trait of juvenile mammals: play. While it is easy to dismiss the phenome-

non of play as non-functional, a simple manifestation of the exuberance of

youth, some ethologists such as Coppinger have suggested that play may

actually be serving a deeply important purpose.

Let us begin by considering the essential difficulty inherent in the

juvenile stage of ontogeny. Coppinger frames this difficulty by observing

that while the infant and the adult both have well-defined ecological

niches, the juvenile stage of ontogeny is one that, by definition, is not

The

playfulness of

childhood is

the most

demanding

teacher we

have.

(Minsky, 2002)
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quite adapted to either. Indeed, the juvenile never quite attains an adap-

tive fit to its environment, existing instead in a constant state of cognitive

and morphological flux.3 Coppinger and Smith put the point rather poet-

ically [23]:

[The juvenile] has to metamorphose from a dependent form to an
independent form. It has to rebuild the morphology from the neo-
nate's niche to the adult's niche. It has to survive as the neonatal
behavior wanes and the adult behavior waxes. In other words, it
has to survive as the stereotyped neonatal form and behavior is
pulled apart and the adult form and behavior is assembled. It has
to live in the house as it is being rebuilt. (emphasis mine)

The analogy to remodeling a home seems quite instructive here. The juve-

nile period can be understood as one of profound remodeling in the

behavior system, with the architecture that defined the neonatal mind

being gradually re-assembled and re-wired into the adult architecture. The

real question then is how any organism survives the slings and arrows of

adolescence. How can a creature survive a lengthy phase in ontogeny in

which it is never fully adapted to its environment?

The answer to this conundrum may be derived by considering how the

apparent disadvantages of the juvenile can be turned to its advantage. To

wit, because of the metamorphic state of its behavior system, the juvenile

has a remarkable amount of freedom to experiment with applying the var-

ious components of its behavioral repertoire in novel situations. Rather

3. A phenomenon that many of us regrettably experienced first-hand in junior
high school.
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than being constrained by a "closed-form" behavior system in which

motor patterns are tightly organized into stereotyped sequences subserving

specific functional goals (e.g. hunting, reproducing, grooming, etc.), the

juvenile can engage more atomic components of its behavior in more vari-

able contexts. Leyhausen provides an excellent illustration of this phenom-

enon in his writings on developmental processes in juvenile cats [43]. He

observes that the elements of the adult hunting sequence (for example,

lying in wait, chasing, stalking, pouncing, etc.) emerge separately during

the juvenile period and are first displayed in a highly discontiguous fash-

ion. In his words:

[These] individual elements may sometimes already combine in

their later form, e.g. lying in wait with stalking, the stalking run

with the pounce, and so on, but at once they separate again and

appear singly or in combination with other playful movements,
some of which come from other functional contexts than that of

prey-catching.

It is precisely this unpredictable display of behavioral patterns, in uncoor-

dinated sequences and separated from their normal functional context,

which we naturally term 'play.' While play is in one sense an epiphenome-

nal consequence of the metamorphosis occurring in the behavior system

during the juvenile phase, it is also a condition which, as a consequence of

its variability, can act as a powerful engine for opportunistic learning. As

Coppinger and Smith remark, "In displaying each motor pattern in many

different sequences and social situations, a young mammal is learning the
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use and social effect of that motor pattern almost as though it were a tool

being manipulated" ([23], emphasis in original) The juvenile survives its

metamorphosis to adulthood by being a facile learner and employing play

as its primary learning tool.

2.7.2 computational implications: the importance
of dynamic restructuring

Thus, it turns out that the matter of play has rather profound computa-

tional implications. Specifically, we have seen that even systems that are

very well adapted to their environment (e.g. mammals) can benefit greatly

from opportunistic learning. Moreover, the gradual rearrangement of

behavior modules that occurs during the metamorphosis from neonate to

adult can provide exactly the kind of variability and experimental fluidity

that is necessary to drive this sort of learning. Opportunistic learning, in

other words, is greatly facilitated by the dynamic restructuring of the

behavior system and the opportunities for 'play', or the experimental

deployment of behavior in novel contexts, that it provides. In the parlance

of machine learning, play is an excellent means of balancing the competing

demands of exploration and exploitation [54]. All of this makes a strong

suggestion to the artificial intelligence community that we should not shy

away from the messiness incurred in the on-line reorganization of behavior

systems. Enduring the seeming disorder of a metamorphosing behavior

system may allow us to design artificial creatures that adapt to the precise,
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unpredictable nature of their environments with much greater agility than

can be achieved using more static approaches.

Let us note the connection between the point being made here and the

critical assertion of the preceding corollary, that learning, even of behav-

iors that can be largely pre-specified, has significant advantages over build-

ing-in. Learning, like the more general processes of developmental

reorganization, implies a dynamic rearrangement of the elements of the

behavior system. The process of learning one skill, therefore, introduces

variability into the behavior system that can potentially help to uncover

opportunistic contexts for learning another skill. By designing systems

that productively engage with processes of behavioral reorganization

rather than attempting to minimize them, we design systems that, much

like children, are capable of learning unexpected things in unexpected

ways.

2.8 lesson two: learn with the right tools

There is a general bias in the engineering of complex systems towards the

minimization of mechanism. Domain-general solutions, having a wider

range of applicability to multiple problems, are invariably seen as prefera-

ble to more restricted domain-specific solutions. While this desire for par-

simony is perfectly rational in theory, in this section I will argue that such

a design philosophy may not always be optimal in practice. In particular, I
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Even learning can

be innately

guided, so that a
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in advance how
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when it should
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which cues

should be

remembered,

how the

information

ought to be

stored, and when

the data should

be retrieved in the

future.

(J.L. Gould,

quoted in

Hauser, 1996)

will consider the problem of learning in autonomous artificial creatures,

and argue that it is better approached from the standpoint of specialized

rather than general mechanisms.

The central contention of this section is that if we want a system to

learn within multiple content domains then endowing it with distinct spe-

cialized tools for each of those domains is likely to be a more powerful

approach than attempting to create a single general-purpose solution. The

idea is similar to that advanced by Minsky in his influential Society of

Mind text, wherein he argues that "The power of intelligence stems from

our vast diversity, not from any single, perfect principle" [521. Of course,

skeptics may argue that such an approach is highly unaesthetic, sacrificing

the goal of a single elegant solution in favor of an undignified assortment

of narrow 'hacks.' My counterclaim is simply that a well-designed set of

special purpose tools can have an elegance of its own. If the reader will

indulge a slight digression, let us consider the Swiss army knife as an

example. A Swiss army knife may be a collection of distinct, domain-spe-

cific tools, but it is certainly not inelegant. Rather, it is a well-integrated

solution to a variety of problems, one that respects the fact that when you

have a can of soup to open the tool that you want is a can-opener, not an

awkward hybrid between a knife, a can-opener, and a corkscrew. Return-

ing to the domain of cognition, my claim is that the greater the amount of

domain-specific prior knowledge that can be deployed to help constrain
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and guide any given learning task, the easier that task will be. Specialized

learning mechanisms help to make this kind of useful structuring of prior

knowledge possible.

From a developmental perspective, there is strong evidence that much

of the learning that maturing creatures do is driven by highly specialized

domain-specific mechanisms. Indeed, the use of specialized learning

machinery during development seems to be the natural counterpart of the

previously discussed tendency to learn in specialized contexts; the two key

lessons of development, learn in the right context and learn with the right tools,

are actually very tightly coupled. In the following I will consider some spe-

cific examples of this specialized learning phenomenon drawn from the

wealth of research on birdsong learning. I will then go on to consider what

these examples imply about the necessary features of a computational

approach to learning specialization, and the role that such specialization

might play in a developmental AI architecture.

2.8.1 biological inspiration: birdsong learning

From the human perspective, birdsong may be among the most commonly

encountered and aesthetically pleasing manifestations of animal behavior.

Perhaps partially because of this native appeal, birdsong has been one of

the most vigorously studied sub-fields of ethology, and has given rise to a

startlingly complex research picture.
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[Birdsongs]are

among the

most highly

patterned

sequences of

actions that

animals

perform

naturally; only

the songs of

whales come

close in the

degree of

complexity

that they

display.

(Marler, 1999)

The phenomenon of birdsong is also of significant special interest to

developmentalists, due to the complexity of the factors that appear to con-

trol the occurrence and refinement of song during ontogeny. Of particular

interest for our purposes, current research into the developmental trajec-

tory of species-typical song repertoires has uncovered some remarkably

unexpected findings, and even begun to challenge the entrenched 'learned

versus innate' dichotomy. As we shall see, the development of species-typi-

cal song seems to be a process of learning in the context of "innate fore-

knowledge that is remarkably comprehensive" [47]; it is learning, in other

words, carried out using highly specialized, domain-specific tools.

Let us begin by considering the traditional model for birdsong learn-

ing, known as the sensorimotor model [46]. In outline,4 the model pro-

poses that the newly hatched chick first acquires an auditory template for

its species' song by listening to the vocalizations of conspecifics in its envi-

ronment. Later in life (often several months later), when the young bird

begins to vocalize on its own, it uses this stored template as a guide for

refining its own song. While conceptually simple, this model accounts for

a large body of experimental findings. Its hypothesis of auditory templat-

ing based on social experience explains the well-substantiated finding that

chicks deprived of exposure to their conspecifics' vocalizations will fail to

4. In order to avoid digressing too far from the matter at hand, I here present
only the briefest summary of the sensorimotor model. For further detail, the
reader is referred to Marler's writings on the subject. A recommended start-
ing point is [46].
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manifest species-typical song later in life (see, for example, [49]). Similarly,

the importance of the learned template for guiding later efforts at vocaliza-

tion is supported by the fact that birds deafened after template formation

(but before experience of their own vocalization) also produce highly

abnormal song [39].

Though the weight of the experimental evidence argues that the sen-

sorimotor model is likely to be correct in many respects, more recent

thought has cast doubt on whether it represents the full story. The key

insight here comes from Marler, who has argued that the kind of open

learning posited by the sensorimotor model is not enough to account for

the fidelity with which species-typical song is transmitted between genera-

tions [46]:

Given the uncertainties of copy error, the likelihood of drift as

song patterns are passed from generation to generation, and per-

turbations of the transmission process by intergenerational
changes in the acoustic environment in which songs are learned, it

is unlikely that any aspects of song structure would remain uni-

form over time throughout an entire species range if song learning

were a fully open process.

In other words, the song-learning task confronted by developing birds

must be being constrained in some fashion, or it could not possibly be

accomplished in as successful and robust a fashion as it is observed to be.

How, for example, do birds in natural habitats know which of the bird-

songs in their environment they are supposed to learn? Why do chicks
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reliably learn their own song rather than, say, the song of a different spe-

cies in a neighboring tree?

Marler and Sherman provided some insight into these questions via

their comparative study of song development in swamp sparrows and song

sparrows [48]. Under natural conditions, the songs of these two species are

easily distinguishable, with the call of the song sparrow being longer and

more complex than that of its less melodious counterpart. Note that the

prediction of the basic sensorimotor model, however, is that these cross-

species differences should largely disappear when chicks from the two spe-

cies are raised under identical conditions. After all, if species differences

are grounded entirely in differential experience with the song of conspecif-

ics, then it should be fairly easy to undermine these differences by manip-

ulating the environment of the developing chick. Marler and Smith tested

this prediction by raising swamp sparrow and song sparrow chicks under

identical conditions of social isolation. Not surprisingly, the chicks raised

in these circumstances failed to develop normal songs. What was surpris-

ing, however, was the fact that the resulting songs were in fact differentia-

ble using the same criteria used to differentiate the two species' songs in

the wild. The isolated song sparrows' songs, for example, were longer, con-

tained fewer trilled syllables and more note complexes than those of the

isolated swamp sparrows, recapitulating key differences that are observed

in normally raised birds from these species.
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To explain these and other similar results, Marler proposed that birds

must have some form of preactive template, a low-level auditory template

that exists innately (e.g. irrespective of actual experience with conspecifics'

song) and that specifies some of the basic attributes of the species-typical

song [46]. Preactive templates are hypothesized to become active at a par-

ticular point in ontogeny, helping to focus the bird on the right portion of

its 'song space' in order to make learning and refinement easier. The impli-

cation here is that birds are not approaching the song-learning task from a

cognitive tabula rasa, but rather with some significant degree of prior

knowledge. It is as though the bird is endowed with some general notion

of what it is that needs to be learned before the learning actually occurs.

An even more striking manifestation of the role that foreknowledge

may play in the song learning process regards the timing of critical periods

for exposure to conspecifics' song. In this context, critical period is the

term applied to the window of time in which a chick can use experience

with the song of conspecifics to construct the song template hypothesized

by the sensorimotor model. 5 Though findings here are not yet conclusive,

work by Whaling et al. [77] suggests that chicks may actually be able to

extend the critical period if they fail to receive appropriate tuition during

the usual time-window. It is as though the chick is able to determine that

5. As distinct from the preactive templates which Marler proposed in his refine-
ments of the basic model.
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it has not yet encountered the appropriate learning context, and retain its

receptivity to learning in consequence.6

Experimental findings such as these, as well as the preceding logical

considerations regarding the stability of species-typical song, all militate

strongly against the kind of completely open learning proposed by the

basic sensorimotor model. The contrary suggestion is that "the native

songbird brain has extensive foreknowledge about the natural song pat-

terns of its species" [46]. The songbird is indeed learning about its song on

the basis of auditory experience with conspecifics, but this learning

appears to be taking place under the direction of a highly specialized

mechanism capable of using innate prior knowledge to simplify the learn-

ing task. With these points of biological inspiration in mind, let us now

turn to an examination of how this kind of domain-specific learning

machinery might be adapted to a computational setting.

2.8.2 computational implications: specialized
learning tools

As the birdsong examples illustrate, there is good reason to believe that

much of the learning that animals do during development is greatly sim-

plified by the deployment of specialized domain-specific mechanisms.

How might we go about designing computational analogues of such

6. Of course, it is not necessary for this determination to be conscious. In the
sparrows studied by Whaling et al., for example, the extension of the critical
period appears to be mediated by a suppression of testosterone levels that
occurs under conditions of social isolation.
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mechanisms to serve a similar simplifying role in a developmental Al

architecture? In this section I will articulate the conceptual specification

from which the implementation of such computational analogues, which I

term specialized learning tools (SLTs), will proceed in chapter 4. This articu-

lation will take the form of a series of design requisites representing the

essential features of SLTs as distilled from our consideration of biological

development.

requisite 1: contextual triggers

Specialized learning tools must contain mechanisms for identifying the

context or contexts in which they can operate most effectively; they must

be capable, in other words, of initiating (or providing the option to ini-

tiate) the learning process that they embody when conditions are favorable

for its success. Note that this requisite makes explicit the important con-

nection between lesson one and lesson two. In lesson one we discussed the

general features that characterize advantageous contexts for learning; the

onus for translating these general considerations into specific policies for

the activation of learning mechanisms is carried by the SLTs.

As was implied in lesson one, a given SLT may specify multiple con-

texts in which it could profitably be engaged. It seems likely in fact that

most SLTs, particularly those corresponding to the learning of 'instinctive'

or otherwise critical behavioral elements, would want to specify a diverse

collection of possible learning contexts. These contexts could be assigned



chapter 2

some prioritization that would interact with the perceived urgency of the

learning objective. For example, an SLT might specify an ideal learning

context, one that might be highly specific but worth waiting for so long as

the content of the learning in question is not yet critical. This ideal trigger

could then be supplemented with a trigger for a less optimal but more

common context, one that could perhaps be utilized if the creature were

running out of time in which to learn the desired content.

requisite 2: representation of task importance

In the context of a complete creature, learning is just one of many cogni-

tive tasks that must be carried out at any given time in order to survive;

learning may not always be the creature's most important priority. In order

to optimally integrate learning into the creature's ongoing behavior, it is

therefore important that each specialized learning tool maintain an explicit

representation of the current importance of its designated learning task.

This importance rating will almost certainly be dynamic, reflecting the

fact that certain learning tasks will increase or recede in importance over

the course of ontogeny. Through the careful specification of possible

learning contexts and management of task importance ratings, it should be

possible to define an intelligent balance between learning things that are

opportunistically convenient, and learning things that are necessary.
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requisite 3: structured prior knowledge

The most important design requisite for any specialized learning tool is

the embodiment of domain-specific prior knowledge relevant to its learn-

ing task. Such prior information is the analogue of the "extensive fore-

knowledge" which was discovered to be present in the context of birdsong

learning; it is the innate understanding of the problem in question that

helps to both simplify and minimize the learning that must take place.

While the relevant prior knowledge for any given learning situation is

likely to be quite problem specific, it is possible to make a few meaningful

generalizations. First, it is important that an SLT embody some prior

knowledge regarding the particular environmental stimuli or internal

states that are likely to be most salient for its learning task. The SLT

should provide some heuristics, in other words, to help identify the rele-

vant portions of the creature's state and action spaces. At a less abstract

level, we can think of this variety of prior knowledge as specifying a partic-

ular attention management strategy; it dictates how the creature should

direct its perceptual resources in order to maximize the likelihood of learn-

ing.

Second, the ethological literature strongly suggests that SLTs should

include a 'best guess' or default model for the content that is to be learned,

something very much like the preactive template proposed by Marler in

his work on birdsong learning. While one might be suspicious of detailed
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prior models of this sort on the grounds that they might make learning

unduly rigid, the biological evidence does not support this position. On

the contrary, so long as the models include a suitable provision for being

overridden on the basis of specific contrary experience, it appears that they

may actually make learning a good deal more robust. Additionally, detailed

prior models allow the creature to actively monitor the progress of its own

learning, an idea that we will take up again shortly.

requisite 4: representation of the reward signal

This design requisite gets at one of the most subtle but pervasive lessons of

development: the fact that developing creatures seem to be sensitive to

implicit reward signals that are far less obvious than the kinds of uncondi-

tioned stimuli we are used to considering. What, for example, is the rele-

vant reward signal that drives the refinement phase of birdsong learning,

in which the bird converges on the appropriate form for its species-typical

song? All of the available evidence suggests that the 'reward' in this case is

simply the goodness-of-fit between the bird's vocalization and its stored

auditory template [46]. Meaningless in any other context, the bird some-

how comes to construe this information as a reward signal that guides

learning in the specific circumstance of song refinement.

The implication here is that SLTs should maintain a representation of

the reward signal that is meaningful for their particular learning task. If

such a reward signal can be specified, then many apparently unsupervised

----- ------
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learning problems can be converted into a simpler supervised form, one in

which the learning tool itself is providing the feedback. Note that this

point again recapitulates the central importance of prior knowledge for

learning in development. If the SLT has some approximate representation

for what is to be learned (as was discussed in the last design requisite) then

it can greatly simplify the learning task by providing feedback to help

channel it in the right direction.

requisite 5: ability to detect sufficient learning

One highly desirable consequence of the detailed prior knowledge that has

been attributed in the design of SLTs is the fact that this knowledge makes

it possible to detect when sufficient learning has occurred. That is, in addi-

tion to being able to detect when conditions are appropriate to begin

learning, it is important for SLTs to be able to detect when conditions sup-

port the cessation of learning.

Aside from the obvious benefits that this design requisite confers in

terms of efficiency, it also makes it possible for the creature to detect cir-

cumstances in which it is failing to learn in the desired fashion. This

knowledge could in turn be employed to modify other parameters of the

SLT such as the target learning context or the rated importance of the

learning task. If the system is failing to learn in its current state, in other

words, it can take the proactive measures of attempting to utilize a differ-
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ent learning context, or dedicating more cognitive effort to the learning

task.

requisite 6: mechanism for integration

One of the most important challenges of learning, easy to overlook in the-

ory but impossible to bypass in practice, is the question of how the results

of learning should be integrated into the behavior system. How can a

learning creature make the most effective use of what it has discovered

about the world? The final design requisite for specialized learning tools is

that they should provide a specific mechanism for addressing this ques-

tion.

While it is difficult to make very specific claims at this conceptual level

of analysis, it seems logically reasonable to argue that dividing the burden

of learning amongst a diversity of specialized tools may help to make

knowledge integration significantly more tractable. That is, much of the

difficulty of integration in the abstract comes from the diversity of the

forms in which meaningful knowledge can accumulate during learning.

Defining a completely generic scheme for knowledge integration is there-

fore unlikely to be a successful enterprise. The SLT approach to learning,

however, avoids this pitfall entirely. Because each SLT is responsible for

learning within just one well-defined domain, each SLT need only specify

an integration policy for one kind of knowledge; this is a much more con-
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strained problem that is likely to have a feasible solution in the majority of

cases.

the big picture: specialized learning tools as behaviors

In order to conclude the discussion on specialized learning tools, let us

consider the topic from the perspective of the behavior systems in which

they will be contained. The important point to be made here is that SLTs

can be thought of in much the same terms as any other computational

behavioral primitive. In the Al architecture of Blumberg et al., for exam-

ple, the behavior system is comprised of behavioral primitives known as

action tuples [8]. Each tuple specifies a trigger context in which it can

profitably be engaged, a particular action or motor pattern that it initiates,

and a 'do-until' context that specifies when it should disengage. Note that

SLTs have a high-level organization that mimics that of the action tuple

very closely; SLTs have contextual triggers to signal when they can be use-

fully activated, a representation for the pattern of action that they embody

(e.g. a particular learning strategy) and an ability to detect when they

should cease to be active. Thus, in many respects, SLTs can be thought of

in much the some terms as any other form of behavior; they are just

behaviors that happen to have the beneficial side-effect of introducing new

knowledge into the creature.
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2.9 summing up: the key lessons of
development

This chapter has covered quite a lot of ground with respect to the compu-

tational significance of development. Before progressing on to a review of

related prior work in the AI domain, let's take a moment to briefly sum up

the key computational lessons of development.

The first key lesson of development is that the 'when' of learning is

often just as important as the 'how'. In particular, it has been shown that

the best context for learning a given behavior will often be very different

from the context in which that behavior will ultimately be expressed.

Development makes this point very strongly, because the ability to identify

the right contexts for learning often makes the difference between a young

creature's survival and its premature demise. As corollaries to this central

point, it was noted that the process of development also relies on the

clever use of multiple and opportunistic contexts for learning. Important

behaviors can often be reliably learned rather than simply hard-wired in

advance by providing multiple, independent experiential pathways for

their development. This process of learning, like the more general ontoge-

nic processes of which it is a part, implies a structural reorganization of the

creature's behavior system, which in turn supports a high degree of explor-

atory, opportunistic learning.
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The second key lesson of development is that learning should be

undertaken using the right tools. This lesson issued a direct challenge to

the conventional computational wisdom that less, from a mechanistic per-

spective, is almost always more. Specifically, it was shown that the diverse

forms of learning that occur during development are not supported by an

elaborate domain-general mechanism, but rather by a plurality of highly

specialized domain-specific tools. The critical feature of these specialized

learning tools is that they include a significant, often surprising, degree of

prior knowledge about the problem that they are intended to solve. By

embodying a specific notion of what it is that they are intended to learn

SLTs help make learning much more tractable, and allow it to proceed in

advantageous contexts that do not provide obvious reward signals to guide

the learning process.

These lessons serve as the conceptual foundation for the developmen-

tal AI architecture that is described in this thesis. Before we begin consid-

ering the specific implementational details of that architecture, however, it

is important to position this thesis in relation to prior work in the compu-

tational domain. How, in other words, does a developmental approach to

Al fit into the larger landscape of machine learning and artificial intelli-

gence research? The next chapter will consider this important question.
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Organizing a review of prior computational work relating to development

turns out to be a surprisingly challenging enterprise. On the one hand, it

is true that the idea of an explicitly developmental behavior architecture

has only a handful of precedents in the literature. On the other hand, it is

also true that researchers as early and eminent as Minsky [52] have long

argued that the phenomenon of cognitive development represents both an

important challenge and profound opportunity for Al. While such a mul-

tifaceted intellectual history is obviously amenable to multiple perspec-

tives, I will now present my own interpretation of how this thesis' research

fits into the web of prior computational work.



chapter 3

3.1 organization of this review

My review will begin with a brief consideration of machine learning, the

field of related work that is (seemingly) most distant from the develop-

mental themes being elaborated in this thesis. I will argue that, despite

their surface differences, the concerns of machine learning and develop-

mental Al are actually complementary in important ways. Contrastingly, I

will then discuss artificial life and genetic algorithms, approaches to com-

putational intelligence that appear on the surface to be more 'biological.'

Here I will assert that the evolutionary bent of such approaches is actually

much less helpful for the developmental research program than the more

formal tools of machine learning. The complementarity between machine

learning and developmental Al will then be more explicitly highlighted by

shifting the discussion to a consideration of behavior-based Al and syn-

thetic characters. Recent work in this domain, particularly that of Blum-

berg and collaborators ([6], [7], [8], [5]) provides an excellent

demonstration of the convergence between the tools of traditional

machine learning and more biologically-motivated approaches to Al archi-

tecture.

Having set the broader context for this thesis, I will then move on to a

discussion of recent work that is more explicitly developmental in charac-

ter. I will begin with the field of sociable robotics and its treatment of a

number of developmental themes such as the infant-caregiver interaction

__ - W __ ___ - -WONNOO,
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and the emergence of theory of mind. This will lead me to the few extant

examples of developmental behavior architectures, and a rather enlighten-

ing comparison between insightful and down-right ugly approaches to the

problem. Finally, I will conclude the chapter with a brief consideration of

alternative computational conceptions of development drawn from the

psychological community.

3.2 a developmental take on machine
learning

The field of machine learning is an impressively expansive one ([54] and

[27] are recommended as good introductions) and our consideration of it

here will be mainly philosophical. To wit, the key feature of machine learn-

ing from the perspective of this thesis is its algorithm-centric view of learn-

ing. Machine learning, in other words, is much less concerned with the

architectural organization of learning in the context of a complete system

than it is with the (often abstract) consideration of specific learning algo-

rithms. This is of course not a bad perspective to take on the problems of

computational learning, simply one that is quite different from the devel-

opmental perspective being developed here. As we will see, however, these

two perspectives are actually complimentary in quite important ways.

Consider for example the subfield of reinforcement learning (detailed

in [38] and [67]), a common technique for allowing computational sys-

tems to learn from experience. In brief, reinforcement learning considers
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an agent, capable of executing a discrete set of actions, that exists in a

world whose possible configurations can be described by a set of discrete

states. The goal is for the agent to learn which actions to take in which

world states in order to achieve some desired goal or reward state [7].

While we will return to reinforcement learning in more detail later in this

chapter, the salient point for now is simply that there are many aspects of

cognitive development that can be formally reduced to a problem of this

form. Berlin, for example, has described the development of predatory

behavior in felids as being formally equivalent to a reinforcement learning

problem [5]. In other words, reinforcement learning is a potentially pow-

erful tool that can be deployed in the context of a developmental architec-

ture in order to solve a specific problem.

The point I am leading up to here is simply that the concept of the

specialized learning tool maps beautifully onto the methodological frame-

work of machine learning. We have described SLTs as domain-specific

computational mechanisms capable of solving particular problems. SLTs

can thus be conceptualized as simply architectural 'wrappers' for particular

machine learning algorithms. A developmental creature might have a rein-

forcement learning-based SLT for guiding the development of stereotyped

behavioral sequences, a neural net-based SLT for learning to recognize

conspecifics, and so forth. The algorithmic concerns of machine learning
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are thus highly complementary to the architectural concerns of develop-

mental AL.

3.3 artificial life and genetic algorithms

Moving in the direction of more biologically inspired prior work, let us

now consider the fields of artificial life (ALife) and genetic algorithms

(GAs).1 Investigators in these fields have studied the construction of sys-

tems that develop in an evolutionary (as distinct from ontogenetic) sense.

Ray, for example, investigated the evolution of small computer programs

that competed for the limited resource of CPU time, and was able to dem-

onstrate the emergence of adaptive strategies such as parasitism [58].

Hammond and collaborators created a simulated ecosystem in which sim-

ple agents mated, fought, and ultimately evolved within a resource-limited

environment [36]. Sims showed how genetic algorithms could be used to

evolve functional morphologies for locomotor tasks such as walking and

swimming [64].

While on the surface this work may appear to be somewhat more rele-

vant to developmental Al than machine learning, I argue that this is in fact

not the case. The reasons for this relate to the timescale and complexity of

the learning pursued in ALife and GA systems. Note that work in these

1. Genetic algorithms are of course themselves an example of machine learning.
For the purposes of this discussion, however, I wish to draw a distinction
between formal and stochastic machine learning approaches. Genetic algo-

rithms being of the latter variety, I will be content to group them with artifi-

cial life without further comment.
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fields is generally concerned with how a population of agents adapts over

time; how, in other words, does natural selection take place within a vir-

tual world in order to favor the survival and transmission of particular

behavioral traits? Because of this emphasis on populations rather than

individuals, ALife and GA approaches typically utilize simple agents and

stochastic learning mechanisms. The complexity, in other words, comes

not from the behavior of any particular agent, but rather from the aggre-

gate behavior of the population as a whole over time. By contrast, the

emphasis of the developmental Al agenda is on driving sophisticated

learning processes within the context of a single creature's behavior system.

The goal is not to create a horde of mindless agents that randomly con-

verge on an adaptive behavioral strategy across hundreds of generations,

but rather to create a single 'smart' creature that can learn what it needs to

learn in real-time without making any catastrophic errors. While ALife

and GA research has generated interesting and useful insights, I argue that

the algorithmic rigor of machine learning combined with the kind of

architectural scaffolding being developed in this thesis is a more produc-

tive platform for pursuing the goals of developmental Al.

3.4 behavior-based ai and synthetic
characters

Though it has not in general had an explicitly developmental emphasis,

behavior-based Al is the subfield of existing computational research to
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which this thesis has the strongest intellectual connections. I will accord-

ingly treat this topic in more depth, beginning with a brief historical

sketch of its development before moving on to a consideration of its cur-

rent state-of-the-art.

3.4.1 a historical interlude

The historical trajectory of behavior-based Al is arguably best traced to

Brooks' work on autonomous robotics. Drawing inspiration from crea-

tures such as insects, Brooks articulated the notion of a subsumption archi-

tecture in which a hierarchy of simple computational modules (each

decidedly non-intelligent on its own) gives rise to coordinated, intelligent

top-level behavior [17]. Brooks' approach was revolutionary in that it pro-

duced robots capable of navigating robustly in real-time, in stark contrast

to the torturously slow pace of prior autonomous robots [18]. Aside from

the specifics of the subsumption architecture (which would go on to influ-

ence researchers from Minsky [52] to Blumberg [6]) the key idea in

Brooks' work was that simple behavioral rules, akin to those that animals

seem to employ to guide their actions, could often outperform more for-

mal mathematical approaches to AL.

This idea was appropriated into the realm of computer graphics by

Reynolds in his much-cited paper on the animation of avian flocking

behavior [59]. Reynolds used agents called 'boids', governed by a simple

perceptual mechanism and behavioral ruleset (e.g. avoid collisions, match
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velocity and remain near to other boids), to animate flocking without

painstakingly specifying the motion of each individual. Though their

capabilities were modest, the architecture of Reynold's boids was an

important watershed: they were individually self-contained entities, situ-

ated in a virtual world and making decisions about their behavior in real-

time on the basis of their perceptions. They were, in other words, simple

but complete synthetic characters rather than abstract disembodied

agents.

Reynolds work was followed and significantly expanded by Tu and

Terzopoulos, who created intricate underwater animations using autono-

mous virtual fish [72]. Tu and Terzopoulos provided a good explicit state-

ment of behavior-based AI's defining characteristic, remarking that their

approach ,to simulating natural complexity was "to model each animal

holistically as an autonomous agent situated in its physical world' (emphasis

mine). Tu and Terzopoulos' fishes had an intriguing physics-based locomo-

tor model, but more important from our current perspective was their

behavior system. Much elaborated relative to Reynold's set of simple

behavioral rules, Tu and Terzopoulos' behavior system included perceptual

input from multiple sensors, representations for "habits" (e.g. individual

behavioral preferences) and drives such as fear, hunger, and libido, and a

loosely hierarchical organization of behavioral routines. Though the initial

emphasis of Tu and Terzopoulos, like Reynolds, appears to have been the
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animation properties of their creatures, it is clear from their enthusiastic

paper that they become increasingly intrigued by the behavioral sophisti-

cation of their creations. Situating complete synthetic characters in mean-

ingful virtual environments, in other words, was proving to be a promising

approach to Al as well as computer graphics.

Following Tu and Terzopoulos's fish was Blumberg's (rather more char-

ismatic) dog Silas ([9], [6]). Blumberg's work made the fundamental con-

tribution of taking the emerging behavior-based AI paradigm and putting

it on a solid biological footing by considering the computational insights

to be gained from classical ethology. While references to biological

ground-truth had by now begun to appear in the computer animation lit-

erature ([29], [50]), they were largely absent from work such as that of Tu

and Terzopoulos. 2 By contrast, all aspects of Blumberg's system, from the

hierarchical organization of the behavior system to the perceptual model

and action selection strategy, were modeled after the ethological theories of

investigators such as Baerends, Dawkins, Lorenz, and Tinbergen [6].

Blumberg's work on Silas thus marks the origin of the computational etho-

logical perspective that undergirds this thesis.

2. Tu and Terzopoulos do make passing reference to the animal behavior litera-
ture, but the details of their behavior system owe more to common sense
intuitions about 'what fish seem like they ought to do' than to ethology.
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3.4.2 current work: the synthetic characters group

With this historical context in view, let us now consider some of the more

recent work in behavior-based AL, and its relationship to the developmen-

tal research program of this thesis. While behavior-based AI has now per-

colated into domains as diverse as interactive cinema [551 and consumer

electronics [1], I wish to focus on how the ethological perspective that

Blumberg pioneered with Silas has continued to be refined in the recent

work of the Synthetic Characters Group at the MIT Media Lab. This

work provides an excellent example of how the formal tools of machine

learning can be combined with insights from ethology to yield powerful

results, and thus serves as an important model for this thesis.

a computational model of clicker training

One of the most intriguing combinations of ethologically-inspired Al and

machine learning to come out of the Synthetic Characters Group is a

clicker-trainable virtual dog named Dobie [8].3 Note that the problem

faced by Dobie, that of learning 'when to do what' in order to maximize

the reward received from a human trainer, is fundamentally a problem of

reinforcement learning. Formally, Dobie must discover the state-action

pairs that lead to the most reliable pattern of reward in his environment.

On the surface it might seem that this problem could be solved

through the straight-forward application of an 'off-the-shelf reinforce-

3. See Pryor [57] for a detailed discussion of clicker training.
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ment learning technique such as Q-Learning ([74], reviewed in [67] and

[5]) In summary form, Q-Learning represents the state-action space as a

grid, with rows corresponding to perceptual states and columns to possible

actions. The Q-Learning algorithm is essentially an incremental, exhaus-

tive search of this state-action space in which the learning agent gradually

converges on the appropriate value for each state-action pair given the pat-

tern of reward it experiences. While the algorithm is theoretically sound in

that it is guaranteed to converge [67], it is simultaneously nearly useless

for a 'real-world' situation such as that faced by Dobie.

Note that Dobie's potential state and action spaces are both continu-

ous and extraordinarily large. Even assuming that one could impose some

approximation of discretization on these spaces, their sheer size would

make Q-Learning intractable. What is needed is a more clever variant of

Q-Learning, and that's where ethology comes in. Real dogs of course solve

the learning problem that Dobie faces, and do so with lemon-sized brains

that have considerably less computational horsepower than the computers

on which Dobie is implemented. As Blumberg and collaborators have

argued, the secret to this feat is that real dogs know how to take advantage

of reliable heuristics and trainer feedback. For example, dogs (as well as

other animals) are biased to learn proximate causality: they constrain their

search for the cause of a reward to a narrow temporal window around the

occurrence of the reward ("I got a cookie because I sat immediately after
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my owner said 'sit', not because I was scratching my ears five minutes

ago") Similarly, dogs make excellent use of the supervisory signals pro-

vided by the trainer to guide their exploration of their state, action, and

state-action spaces. While we will not digress into the full details of the

implementation here (the interested reader is referred to [8]), the upshot is

that by building these sorts of ethologically motivated heuristics and biases

into Dobie, Blumberg et al. were able to create a trainable computational

system with many of the same learning capabilities as a real dog.

a computational model of predatory sequence development

Another line of research from the Synthetic Characters Group that relates

to this thesis is Berlin's recent investigation of the problem of sequence

learning. Again combining the methodological perspectives of machine

learning and ethology, Berlin utilized models of the development of preda-

tory sequences in felids (see, for example, [43]) to implement a novel vari-

ant on Q-Learning termed timed hierarchical Q-learning (THQL) THQL

was shown to be extremely effective at learning to sequence behaviors in

order to achieve a distal reward. Interestingly, the fundamental insight of

the algorithm was essentially the first key lesson of development, that the

'when' of learning is as important as the 'how'. By staging the onset of dif-

ferent behavioral capabilities in a staggered fashion and motivating his

creature to experiment with new skills as they were acquired, Berlin was

able to improve significantly on the performance of the standard Q-learn-
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ing algorithm. Berlin's work is thus a very good example of how ethologi-

cal insight can not only complement but actually improve traditional

machine learning techniques.

to sum up

The critical point that I wish to drive home here is fundamentally the

same as the conclusion of section 3.2: a developmental take on machine

learning: by combining the formal tools of machine learning with archi-

tectural insights provided by ethology, extremely powerful results can be

obtained. The work in this thesis is simply an extension of this principle

into the domain of development.

3.5 sociable robotics

Thus far we've examined how this thesis relates to the broader context of

non-developmental prior work, from traditional machine learning to

behavior-based AI and synthetic characters. With this background in place

we can now turn our attention to work with a more explicitly develop-

mental flavor. To begin, I'd like to consider the recent burgeoning of

research in the field of sociable robotics.

Defined in large part by the work of Breazeal, the goal of the sociable

robotics research program is to develop robots that "model people in social

and cognitive terms in order to interact with them" [13]. The ease of

interaction that sociable robots strive for is beneficial not only from the
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perspective of interface design, but also with respect to the robot's own

learning. That is, by interacting with people in an intuitive fashion that is

evocative of a child-caregiver or student-teacher interaction, such robots

can take advantage of our natural capacity for teaching. Note that this idea

of using innate social scaffolding to drive the learning process ([11], [14],

[15]) is an extremely close parallel to the prior chapter's notion of embed-

ding structured prior knowledge in domain-specific learning tools; both

lines of theory emphasize the importance of innate structure in helping to

make learning in complex environments tractable. Not surprisingly then,

ideas from cognitive development have been central to the sociable robot-

ics research program from its inception [19], and indeed have recently

inspired the establishment of a new subfield termed 'epigenetic robotics'

[56]. In this section I will confine my attention to the main-line of sociable

robotics research as represented by Breazeal and Scassellatti's work, exam-

ining how these researchers have made excellent use of insights drawn

from specific phenomena in the broad sweep of cognitive development.

The rather more questionable results of the epigenetic robotics research

program will be considered briefly in the following section.

Undoubtedly the best known sociable robot is Breazeal's Kismet [11].

With its expressive face and blue eyes, Kismet is designed to interact with

humans in a fashion that explicitly mimics the dynamics of the infant-car-

egiver interaction [16]. For example, much as infants help to regulate the

------- ---
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duration and intensity of their social interactions by providing easily dis-

cernible affective feedback to their caregivers (e.g. fussing or looking

away), so does Kismet provide similarly intuitive feedback to help the user

interact at a distance that is optimal for its vision system. Kismet can also

use a combination of affective feedback and proto-speech to entrain users

in a turn-taking 'dialogue' analogous to that which caregivers engage in

with their pre-linguistic infants [12]. Scassellatti has undertaken related

investigations focusing on slightly different dimensions of the infant-care-

giver interaction. For example, Scassellatti's work has addressed how psy-

chological theories of joint attention and theory of mind in infancy might

be applied in order to give robots these critical social abilities ([60], [61]).

This type of sociable robotics research has been exceptionally fruitful.

For the purposes of this thesis, however, we should note that its approach

to development differs from the more architectural perspective that I have

begun to develop in this thesis. Whereas work in sociable robotics has

focused on implementing specific models of individual human social com-

petencies and their development, it has not yet addressed the broader

question of how insights from development might be used to structure the

organization and learning abilities of a general-purpose behavior system.
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3.6 developmental behavior architectures

Let's now turn to an examination of the prior work that is closest to the

content of this thesis: the construction of developmental behavior archi-

tectures. As has been said, there has actually been only a modest quantity

of prior research directed at this specific object. We'll examine two

approaches: the Autonomous Mental Development research program of

Weng et al, and Drescher's schema-based architecture.

Hailing from the aforementioned epigenetic robotics camp, Weng and

his collaborators have purported to be interested in the broader architec-

tural perspective on development that concerns this thesis. Pursuing a

research program that they term Autonomous Mental Development

(AMD), Weng et al. have called for the creation of robotic systems whose

behavior is determined by "developmental programs" that will allow them

to be raised to be competent at tasks that have not been exhaustively pre-

specified [75]. Unfortunately, this work seems to be based almost entirely

on the flawed intuitive formulation of development as a process of linearly

increasing complexity that was discussed in the previous chapter. Weng et

a. make virtually no reference to the actual biological phenomenon of

development, and consequently have no concrete proposal for how the

developmental programs they describe might be implemented. While the

most recent results of the AMD program are interesting from the stand-
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point of neural networks ([37], [76]), they make no headway on the larger

issue of designing developmental behavior architecures.

A much more credible foray into developmental architectures was pro-

vided by Drescher's investigation of a computational learning system

inspired by the theories of the famed psychologist Jean Piaget [26].

Drescher's system is based on a core representation which he terms a

schema. At its simplest level, a schema can be thought of as a specification

of a pre-condition, a post-condition, and an action that connects the two

with a specified degree of certainty. For example, a schema might represent

the notion that ifthe sidewalk is icy and I run to catch the bus then I am

likely to end up with a new bruise. Of course, the schemas that Drescher is

concerned with are much less complex than this, pertaining to the basic

sensorimotor learning of a simple virtual creature in a highly constrained

'gridworld.' What is remarkable about Drescher's architecture is the fact

that within this simple environment, his creature's learning was shown to

recapitulate some of the early milestones in Piagetian cognitive develop-

ment. Beginning with a handful of extremely primitive percepts (e.g. the

ability to detect an object in a given region of the field of view, the ability

to sense contact on a given portion of the body), Drescher's creature was

able to bootstrap its way to the formation of much more elaborate con-

cepts such as object permanence. This bootstrapping was achieved using a

clever mechanism for generating radically new concept representations
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using what Drescher refers to as manifestations, or cumulative perceptual

states.

Drescher's work is quite elegant but not without its flaws. In particu-

lar, as Blumberg has remarked, the fact that Drescher's creature had "no

focus of attention, either spatially or temporally" [6] meant that its learn-

ing was constrained to occur through a process of "exhaustive cross-corre-

lation" [26]. That is, in order to determine which actions might be

relevant to which consequences (without the benefit of any a priori con-

straints) Drescher's system was continually forced to compare all of the

creature's actions with all of the perceived changes in the environment

across the entire history of the simulation. Though Drescher argued that

this computational burden was acceptable, it proved to be enough to rap-

idly bring down a Connection Machine modeling a 7 x 7 gridworld [6].

Scalability, obviously, was not a strength of Drescher's architecture.

Foner and Maes [28] attempted to remediate this weakness using an

approach quite similar to the temporal windowing mechanism previously

described for Blumberg's Dobie [8]. By giving a Drescher-esque develop-

mental creature a focus of spatial and temporal attention and the ability to

use that focus to restrict the search for meaningful action-consequence

correlations, the efficiency of the learning was improved by as much as 30

times [6]. Again the application of ethological principles, in this case the
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heuristic of proximate causality, has proved a fine complement to a more

traditional machine learning/AI approach.

Before leaving this section, it should be noted that Drescher's work

differs from this thesis both in its targeted scale of application and its cen-

tral methodological commitments. In terms of scale, Drescher is con-

cerned with understanding and simulating only a very narrow slice of

ontogenetic time - that of early infancy. Also, as we have seen, scalability

to complex environments is a significant (though not necessarily insur-

mountable) challenge for Drescher's system. Methodologically, it is worth

noting that Drescher is firmly on the side of domain-general learning

architectures, and that he largely rejects the importance of innate structure

that has been argued for in the preceding chapter. Thus, while Drescher's

work represents an excellent counterpoint to this thesis, it has not covered

the same intellectual ground that I intend to tread.

3.7 alternative computational conceptions
of development

Finally, as a conclusion to this chapter, it is interesting to consider a radi-

cally different computational conception of development drawn from the

psychological community: the dynamical systems approach of Thelen and

Smith ([68], reviewed in [42]). Thelen and Smith oppose what they see as

the overly zealous application of nativism in the mainstream of develop-

mental psychology and have thus attempted to articulate an altogether dif-
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ferent view of developmental organization. What makes this work worthy

of mention in a computational literature review is the mathematical and

computational rigor of their alternative conception. Collaborating with

physicists and mathematicians, Thelen and Smith have attempted to

describe a broad range of developmental phenomenon, from motor devel-

opment to aspects of higher-level cognitive processes, as arising from self-

organizing complex dynamical systems. In common with connectionists,

Thelen and Smith subscribe to a view of developmental organization in

which the distinction between representation and algorithm (or "struc-

ture" and "process" as they put it) is collapsed. Thelen and Smith view

cognition not as the result of explicit computation over a set structured

representations, but rather as a consequence of the emergent and distrib-

uted interaction of simple units that have no independent representational

significance. While Thelen and Smith's ideas are very much outside of the

mainstream in developmental psychology (and, for that matter, rather far

afield from the central conceptual commitments outlined in this chapter)

they are interesting to consider as an alternative means of conceptualizing

the computational aspects of development.

Having thoroughly surveyed both the biological ground-truth of

development and the computational work that it has inspired, we are now

ready to turn our attention to the specific implementational details of this

thesis. In the next chapter we will embark on a discussion of the develop-
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mental behavior architecture that represents this thesis' core computa-

tional contribution.
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In the previous chapter we examined the biological literature in order to

get beyond the intuitive myth of development. Rather than a simple linear

progression in complexity, we found development to be a process through

which creatures reconfigure their complexity in order to adapt to their

changing ontogenetic environment. The critical connection between

development and learning was examined in detail, and the key lessons of

learning in the right contexts and learning with the right tools were emphasized.

In this chapter we will deploy these insights in order to design a develop-

mental behavior architecture.

4.1 design preliminaries

Let's begin by considering how the key computational lessons of develop-

ment can be translated into specific design guidelines for the architecture.
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In particular, 'll now show how the conclusions of the preceding chapter

can be mapped onto the design principles of hierarchy, modularity, and

distributed learning.

4.1.1 hierarchy

Our intuitive conception of behavioral organization naturally lends itself

to hierarchy. That is, we tend to think of our lower-level behaviors (for

example, slicing bread) as being coordinated by superordinate levels of

behavioral structure (I sliced bread because I wanted a sandwich because I

was hungry). Ethological theorists too tend to ascribe hierarchical organi-

zation to behavior. The previously cited behavior systems proposals of

Baerends, Blumberg, Dawkins, Hogan, Timberlake, and Tinbergen ([1],

[6], [24], [25], [70], [34], [69], [35], [71]), for example, all rest on the

foundation of hierarchical structure.

In addition to its intuitive tractability, hierarchical behavior organiza-

tion has several important computational advantages. First, it is conceptu-

ally simpler to define behavior selection strategies when the behavior space

is divided according to its granularity; behavior selection in a hierarchical

system can proceed incrementally from the general to the specific rather

than having to arbitrate across an expansive flat space. Second, a hierarchi-

cal behavior system allows learning to occur at multiple levels. We might

have motor learning occurring at the lowest level of the behavior system,

that of the primitive motor action, while the sequence learning necessary
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to coordinate multiple motor actions occurs at a higher level of the hierar-

chy. For all of these reasons, the developmental behavior architecture

developed in this thesis will be organized in a hierarchical fashion.

4.1.2 modularity

The subject of modularity arose previously in section 2.3, where we dis-

cussed its relationship to the kinds of discontinuous behavioral changes

that are observed during development. Recall that modularity is envi-

sioned as providing a conceptual mechanism for large-scale developmental

reorganization via the 're-wiring' of connections between behavioral mod-

ules. As this idea has proven an appealing and powerful theoretical con-

struct, we will seek to embed the flexibility of modular construction in the

design of the behavior system.

To be slightly more specific, I will take the modularity design principle

as dictating that each element of the behavioral hierarchy should be a

complete and independent unit of functionality capable of generating a

specified behavioral consequence. Moreover, these elements should be as

uniform in their external interfaces as possible such that they can dynami-

cally reconnected and reconfigured. This kind of flexibility will be quite

important for implementing the first key lesson of development, that of giv-

ing our creatures the ability to deploy skills in different contexts from

those in which they were originally learned.
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4.1.3 distributed specialized learning

This design guideline is a direct echo of the second key lesson of develop-

ment: we wish to bypass a monolithic general-purpose learning mechanism

in favor of a multiplicity of domain-specific specialized learning tools (SLTs)

While I will not here rehearse the benefits of this learning architecture

which were extensively discussed in the preceding chapter, it is worth

pointing out that this organization has some important engineering bene-

fits. Specifically, by dividing a creature's learning requirements into indi-

vidual specialized mechanisms, it becomes easier to integrate those

mechanisms with the relevant nodes in the behavior system. Distributing

learning, in other words, simplifies the process of unifying the learning

process with the creature's behavior. The modular nature of SLTs also

allows vastly different learning algorithms to operate simultaneously in the

context of a single behavior system. We will return to these matters in

greater detail later in this chapter, when we begin discussing specific

implementational details for SLTs.

4.1.4 summing up the preliminary design

Our preliminary design discussion has resolved that the behavior sys-

tem will be comprised of a hierarchically organized set of behavioral mod-

ules and associated specialized learning tools. In the next two sections of

this chapter, I will discuss the design of these components in detail.

------------
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4.2 behavioral elements

The modules of the behavior system, its constitutive 'atoms', are behavioral

elements. In this section I will examine the common core of engineering

that unifies all behavioral elements and provides for their reconfigurable

modularity, as well as the specializations found in the various behavioral

element subtypes.

4.2.1 the basics

organization

The behavior system consists of a set of behavioral elements arranged in a

hierarchical lattice. Each behavioral element is allowed to have multiple

parents as well as multiple children. A critical feature from the standpoint

of modularity is the fact that none of the behavioral elements has any spe-

cific representation of its parents and children; the current view of all the

system's parent-child relationships is instead centrally maintained by the

behavior system. Hence, each behavioral element can operate as a reason-

ably independent entity; the element adheres to a communication model

to exchange information with whatever parents and children it may have,

but it does not represent specific information about the state or identity of

these neighboring elements. From the perspective of the individual behav-

ioral elements then, a change in the hierarchy's overall structure would be

entirely transparent.
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communication

Behavioral elements communicate with one another through a message

passing protocol. Messages called behavioral parameters can be exchanged

between parents and children on every tick of the simulation. While the

contents of behavioral parameters can vary widely, the following are the

most commonly exchanged data:

* modifiers and specifiers for the current behavior. For example, a

higher element in the behavior system could potentially pass

an 'adverb' to its child in order to modify the style of the final

motor output (e.g. "whatever you do, you should do it hap-

pily").

* propagated value, which can be used for altering the course of

action selection (section 4.2.3).

* feedback from SLTs, which allows learning to influence the

expression of behavior (section 4.3.2).

The role that these kinds of data play in the behavior system's functioning

is elaborated in later sections of this chapter.

4.2.2 subtypes

The complete behavior system is composed of behavioral elements of sev-

eral different subtypes inspired by the hierarchical levels recognized in

Timberlake's theory of behavioral organization [69]. As has been said,

these subtypes all share a considerable amount of common engineering;

however, they also have some important differences that allow them to

I - lk
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serve distinct roles in the behavioral hierarchy. I will now briefly review

the three major subtypes of behavioral element.

motivational subsystems

At the highest (e.g. most abstracted) level of the behavior system we have

motivational subsystems, which map directly onto Timberlake's notion of

subsystems [69]. As the name implies motivational subsystems can be

thought of as the entry points for distinct subhierarchies of the overall

behavior system, each corresponding to a particular motivational state.

Because they are the highest level of the behavior system, motivational

subsystems play a special role in behavior selection which I will discuss in

section 4.2.3.

behavioral modes

The children of motivational subsystems are generally behavioral modes,

which correspond to Timberlake's mode constructs [69].1 Behavioral

modes can be loosely thought of as 'strategies'; they correspond to pat-

terned sequences of goal-directed actions. For example, a creature with a

hunger motivational subsystem might have hunt and scavenge as two associ-

ated behavioral modes, each represents a particular sequence of motor

behaviors useful for achieving the common motivational goal.

1. The behavior architecture makes very few restrictions as to which subtypes of

behavioral elements are allowed to be the parents/children of other elements.
The only definitive rule is that the 'roots' of the behavior system must be

motivational subsystems, while the leaves must be motor primitives.
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motor primitives

Behavioral modes generally have motor primitives as children, correspond-

ing to Timberlake's actions [69]. Motor primitives are where the proverbial

rubber meets the road in the behavior system; they correspond to individ-

ual atoms of motor activity, and provide an interface point for the crea-

ture's motor system. Motor primitives are also the leaves of the behavior

hierarchy and do not themselves have children.

4.2.3 behavior selection

The process by which behaviors are selected for expression is one of the

most important aspects of any computational behavior architecture. In

this thesis' behavior system, behavior selection proceeds from roots (moti-

vational subsystems) to leaves (motor primitives) in a fashion that maxi-

mizes behavioral coherence while preserving the creature's ability to react

rapidly to unexpected changes in the environment.

value and activity states

Before commencing with a specific discussion of the behavior selection

process, we first need a bit more information about the representation of

behavioral elements.

Behavior selection is value-based, with higher-valued behavioral ele-

ments winning expression over those which are less valued. Hence, each

behavioral element continuously updates an explicit representation of its

value, roughly its expected utility given the current state of the world.
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Value is computed from both intrinsic and extrinsic factors. Intrinsically,

each behavioral element has a fixed base value. Extrinsically, behavioral

elements may receive propagated value from children, parents, or associated

SLTs. As we will see in section section 4.3.2, this value propagation is cen-

tral to the mechanism by which SLTs influence behavior selection.

As behavior selection proceeds, behavioral elements are assigned dif-

ferent activity states. At any given moment, behavioral elements may be

either passive, active, or focal. A behavioral element is focal if it is the cur-

rent locus of behavior selection; note that only one element of the behav-

ior system may be focal at a time. Those behavioral elements which are not

focal but are on the path of current behavior selection (e.g. were previ-

ously focal but then passed focus on to one of their children) are said to be

active. All other behavioral elements are passive. Note that this definition

of activity states means that the focal element is always connected to an

active motivational subsystem through a sequence of active intermediate

elements, an idea that is illustrated in figure 4.1.

moving forward: motivation to motor action

Now that we've seen the representational machinery that supports behav-

ior selection, let's move on to consider theforward portion of the behavior

selection process. In forward selection, the creature refines a motivation to

an appropriate motor action. To accomplish this, on each step of forward

selection the focal element arbitrates amongst its children, selecting the
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motor
primitives

behavioral
modes figure 4.1 The

motivational focal element
subsystems (shown in orange)

is always
connected to the
active motivational
subsystem through
a string of active
behavioral
elements (shown in
yellow). The route
traced between
the two is referred
to as the path of
behavior selection
(shown in blue).

child with the highest value. This child then becomes focal, and the for-

merly focal parent reverts changes to the active state. This process recurs

until a motor primitive becomes focal, an event that corresponds to the

expression of the corresponding action. A schematic illustration of this

process is provided in figure 4.2, which depicts forward selection from a

motivational subsystem to a motor primitive.

moving backward: maintaining coherence

Once behavior selection has reached a motor primitive, the behavior sys-

tem must step backwards in some fashion in order to select a new behavior.
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motivational
subsystems

behavioral
modes

motor
primitives

figure 4.2 An
illustration of forward
behavior selection, in
which focus shifts
from a motivational
subsystem to a motor
primitive. In (a),
arbitration amongst
the motivational
subsystems has
identified the highest
valued and made it
focal. In (b), this focal
subsystem proceeds
to arbitrate its
children and make
the highest valued
amongst them focal
in turn. This process
iterates until a motor
primitive is reached,
at which point the
creature expresses
the corresponding
action. Note that the
binary values present
during motor
primitive arbitration
illustrate the effect of
a sequencing
constraint in the
parent behavioral
mode.

a)

b)
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Note that there are several possible approaches to making this back-

wards step. For example, we might consider making the currently active

motivational subsystem focal and effectively restarting behavior selection

from that point. The difficulty with this methodology, however, is that it

presents a challenge in terms of maintaining behavioral coherence. If a

creature is attempting to engage in a coordinated sequence of motor

actions, then the greater the number of behavior selection steps that

intrude between action A and action B, the greater the likelihood of a

pathological departure from the desired sequence. Note that moving back-

wards all the way to the active motivational subsystem maximizes this

number of behavior selection steps. By contrast, this thesis' approach to

backwards selection is to switch focus to the active parent of the currently

focal element. The critical result of this methodology is that once a focal

motor primitive has executed, its active behavioral mode parent will

become focal.2 This behavioral mode, in turn, will shift behavior selection

back into the forward direction, making the next motor primitive in its

represented sequence focal. A schematic illustration of this backwards

stepping process is provided in figure 4.3.

Of course, motor primitives aren't the only behavioral elements from

which backwards stepping can be initiated. A behavioral mode, for exam-

2. Of course, as has been mentioned before, a motor primitive need not neces-
sarily have a behavioral mode as its parent. This is simply the most common
case, and hence the most useful for explanatory purposes.
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motivational behavioral motor figure 4.3 An
subsystems modes primitives illustration of the

backwards portion of
behavior selection. In
(a) the focal motor
primitive has fired, and
is returning focus to its
active parent. Note in
(b) that because this
backwards stepping
shifts focus up just one
level in the hierarchy,
the coherence of
sequences represented
by the focal behavioral
mode may be
preserved maintained.
Thus, in (c), the second
motor primitive in the
sequence represented
by the active behavioral
mode becomes focal.

|103



chapter 4

ple, that has reached the end of its prescribed sequence of motor primitives

might cause behavior selection to step backwards to its active motivational

subsystem.

startling: maintaining agility

Though behavioral coherence is often an important priority, sometimes it

is more important to react to an unexpected change in the environment

immediately [21]. If you put your hand on a hot stove, you want to

remove it pronto rather than calmly putting the finishing touches on your

grilled cheese sandwich. For this reason, motivational subsystems can ini-

tiate a startle response that causes the creature to rapidly transition

between arbitrarily disjunct regions of its behavior space.

Unlike other behavioral elements, motivational subsystems recompute

their value on every tick of the simulation. In particular, they continuously

update the extrinsic propagated value which has accrued from all of their

child elements. If the value of a passive motivational subsystem surpasses

that of the currently active motivational subsystem, then a startle occurs

and control transitions immediately to the newly high-valued subsystem.

A critical element in this formulation is the fact that even when behav-

ioral modes and motor primitives are passive, they still have the opportu-

nity to continuously dispatch feedback to their parents. Thus, when a

passive element detects a change in the world that makes it suddenly more

valuable, it can dispatch the appropriate propagated value signal upward
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through the hierarchy to its parent motivational subsystem(s) Motiva-

tional subsystems, then, act as clearinghouses of sorts for behavioral rec-

ommendations from all of their children. When the combined value of

these recommendations suggests that the creature should reevaluate its

current behavioral priorities, the startle mechanism insures that exactly

that occurs.

Now that we've had the opportunity to become thoroughly

acquainted with the design of behavioral elements, let's move on to the

matter of learning. In the next section, I'll explain how specialized learning

tools are integrated into the behavior system architecture that has been

described thus far.

4.3 specialized learning tools

Inspired by the discussion of domain-specific learning mechanisms in

chapter 2, learning in the behavior system is accomplished using a distrib-

uted collection of specialized learning tools. As we will see in this section,

many of the design principles for SLTs intentionally mimic those

employed in behavioral elements, thereby allowing for a seamless integra-

tion between acting in the world and learning from those actions.

4.3.1 the basics

Let's begin by considering some of the foundational aspects of SLT design.
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organization

Like behavioral elements, SLTs are designed to be arranged in hierarchical

structures; an SLT hierarchy is termed a toolbox. Toolboxes are intended to

take advantage of the naturally hierarchical nature of many learning tasks.

'While a toolbox's component SLTs are generally each capable of operating

independently, their integration into the toolbox allows them to share and

integrate the results of their learning in a way that helps to focus and sim-

plify learning at higher and lower levels.

As a conceptual example, consider a character that is learning to play

checkers. At the simplest level the character must first learn the basic

mechanics of the game: the ways in which pieces are allowed to move and

how to capture the opposing player's pieces. Building on these basics, the

character must then begin learning about the best way to coordinate effec-

tive sequences of moves. At a higher level still, the character also needs to

begin to learn about his opponent's strategy and the best means of coun-

tering it. A specialized learning toolbox for such a character could incorpo-

rate individual SLTs designed to address each level of this learning

hierarchy. The learning output from lower-level SLTs in the toolbox would

help to constrain and refine learning at higher levels of the hierarchy. We

will return to this notion in more detail in chapter 5, where we will see

how a toolbox hierarchy helps to make a multi-faceted learning objective

more tractable.
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communication

In order for SLTs to cooperate they must first communicate. This is

accomplished using the same message passing protocol employed in

behavioral elements. SLTs can exchange learning parameters with their par-

ents and children that may contain data such as:

e activation and deactivation signals used to control SLT activity.

- perceptual data that has been filtered or refined using the results

of an SLTs learning.

. results from hypothesis testing used to refine predictive mod-

els.

Again, we will see more specific examples of this communication process

in chapter 5.

In addition to communicating with one another, SLTs also need to be

able to communicate with behavioral elements. This is accomplished by

dispatching behavioral parameters to the communication channels of tar-

get elements, a subject that we will now explore as part of the SLT theory

of operations.

activity states

Like behavioral elements, specialized learning tools can be either active or

passive at any given time. These activity states are designed to help con-

serve computation, as only active SLTs participate in the potentially

expensive process of forming and testing hypotheses described in the next

section. The intuition is that if the learning context for which an SLT was

designed is not present, it should wait in a passive state that requires very
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little computational effort. Indeed, the only thing that passive SLTs do is

to execute a simple update routine on each tick of the simulation designed

to determine whether they should become active. For the remainder of

this chapter we'll confine our consideration to the operation of active

SLTs.

4.3.2 theory of operations: hypothesize-act-
update

With the basic aspects of SLT design now in place, we may now turn our

attention to a description of their pattern of operation. SLT operation is

partitioned into learning epochs, or iterations of a hypothesize-act-update

cycle. 3 During each epoch, i) an SLT forms a hypothesis as to how the

state of the world is likely to evolve (generally conditional on some sug-

gested action), ii) the creature optionally performs the suggested action,

and iii) the SLT attempts to update its predictive model with the observed

consequences. Using this readily generalizable framework, SLTs are capa-

ble of addressing a wide variety of specific learning challenges. Let's con-

sider each portion of a learning epoch in detail.

hypothesis formation

At the outset of each learning epoch the SLT must form a hypothesis as to

how it thinks the state of the world will evolve over the next (arbitrary)

period of time. This hypothesis formation is generally accomplished by

3. It should be noted that my hypothesize-act-update cycle is conceptually
quite similar to the expectation generation mechanism used by Burke to
learn apparent temporal causality relationships [20].
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combining data from i) the currently perceived state of the world, ii) pre-

viously perceived state stored in the belief system, and iii) the results of

prior hypothesizing stored in the SLT.

Hypothesis formation is almost always accompanied by the dispatch-

ing of an associated behavioral parameter to the SLT's target behavioral

element(s) That is, if an SLT hypothesizes that the creature will find a

cookie in the cupboard, then an accompanying behavioral parameter must

be formed to suggest the 'look in cupboard' action to the behavior system.

This kind of behavioral suggestion can take several forms. In some

instances, a behavioral parameter will literally contain an identifier for a

motor primitive that the SLT is requesting be engaged. In other cases, the

parameter will contain propagated value intended to bias behavior selec-

tion in a particular direction. The specific form of the suggestion generally

depends on the subtype of behavioral element that the SLT is targeting

with its feedback; suggestions made at higher levels of the behavioral hier-

archy have more latitude for generality than those made at lower levels.

taking action

Once an SLT has formed its hypothesis it is up to the behavior system to

take the action appropriate for verifying it. Note that this verification is not

mandatory; learning is just one of the things that a creature will be

attempting to do in the world at any given time, so behavioral suggestions

from SLTs must be constantly balanced against other behavioral priorities.
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In general, the more urgent it is that the hypothesis be verified, the more

propagated value will be associated with the corresponding behavioral

parameter.

After the SLT has formed its hypothesis and dispatched the appropri-

ate parameters to the behavior system, it commences to monitoring the

creature's current perceptual state for an epoch completion event. An epoch

completion event indicates that the creature has taken whatever action is

necessary to verify or disprove the current hypothesis and that new data is

available for updating the SLT's predictive model accordingly. Returning

to the previous cookie example, the firing of the 'open cupboard' motor

primitive might represent an epoch completion event for the SLT in ques-

tion. Note that since the behavior system is never obligated to act on the

suggestions made by SLTs, many SLTs specify a maximum period of time

during which they will await an epoch completion event; if epoch comple-

tion is not observed during this time period, the SLT will simply abort the

current epoch and return to hypothesis formation.

updating the model

When an epoch completion event is observed, the SLT can update its pre-

dictive model using the observed results in the world. Note that this is the

point in the learning epoch at which learning actually occurs. That is, it is

at this point that the SLT adjusts its expectations (and hence future
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hypotheses) in accord with the observed consequences of the creature's

actions.

4.3.3 whence specialization?

The description of SLTs in this section has focused on their core engineer-

ing - the common design traits that all SLTs share. Specialization occurs

in the implementation of specific instances of SLTs, at which point the

user must define the mechanisms by which hypotheses are generated, vali-

dated, and integrated into the continuing operation of the SLT. In the

next chapter we will consider these matters in more detail through the

example of Hektor the mouse, and his penchant for high-stakes card games.
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hektor: a computational
case study 5

It's now time to put the developmental behavior architecture described in

chapter 4 to the test. In this chapter I introduce Hektor the mouse, and

describe how this thesis' developmental architecture will allow him to suc-

ceed in a complex competitive learning interaction with a human user.

5.1 introducing hektor

Hektor the mouse is the brother of Max (figure 5.1), star of a previous

installation by the Synthetic Characters Group [4]. Hektor's major moti-

vation in life, like that of his big brother, is his insatiable desire for cheese.

As Hektor also has a bit of a gambling streak, he has been known to

attempt to satisfy his appetite by playing a competitive card matching

game called CheeseWhiz with a human user.



chapter 5

5.1.1 cheesewhiz

CheeseWhiz is a high-stakes card game in which Hektor can win cheese

by wagering on the agility of his learning; a typical CheeseWhiz gaming

table is depicted in figure 5.2.

CheeseWhiz is played with a deck of nine different cards, of which

both the player (Hektor) and the House (the human user) have an unlim-

ited supply. As shown in figure 5.3, each card has two features: color (either

red, green, or blue) and shape (either circle, triangle, or square) At the out-

set of the game, the House specifies a set of matching rules by first select-

ing one of these two features as the critical feature, and then selecting a

matching response for each possible seed within that feature. For example,

one set of matching rules might look like the following:

Critical
Feature: color

red is matched by blue

green is matched by red

blue is matched by green

Note that if desired, the same response can match multiple seeds.

Once the House has set the initial rules, the game is ready to begin.

The player specifies a wager corresponding to the number of pieces of

cheese that he would like to bet on the outcome of the upcoming hand.
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figure 5.1 Hektor's brother, Max. Sharing a strong mutual resemblance to their

mother, the two are said to be practically indistinguishable.

figure 5.2 A typical CheeseWhiz gaming table.
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U

A

A
figure 5.3 The

nine cards that

comprise the

CheeseWhiz

deck.

The House then randomly deals a card, and the player must respond with

a card that he thinks matches the House's play. If the player is able to

match the House's card successfully he wins the wagered amount of

cheese; otherwise it's time to pay up. Both the player and the House begin

with ten pieces of cheese in their respective banks; a game is considered

complete when one or the other party has no cheese left in the bank and

'busts'. For the purposes of this simulation we'll presume that both the

player and House banks reset to ten pieces of cheese between games.

As specified thus far, CheeseWhiz is neither terribly exciting nor very

challenging. A simple approach for the player would be to wager a very
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small amount of cheese on each hand while performing an exhaustive

exploration of the possible rule space. Whatever losses might be incurred

at the beginning of the game could be more than made up for once the

complete set of matching rules was known. What prevents this trivial solu-

tion from being viable, and consequently makes the game interesting, is

the fact that the House periodically' has the ability to juggle, or secretly

modify, the matching rules. Hence the player that attempts to explore the

rule space through a slow brute-force search will rapidly discover himself

bereft of his cheese. The key to succeeding at CheeseWhiz is to deploy a

clever learning strategy that allows the matching rules to be learned with

maximum rapidity, such that they can be exploited before the House has

the opportunity to change them. Conversely, when the matching rules do

change, the player must be able to adjust and relearn with suitable quick-

ness.

5.1.2 why is this a good test case?

There are several considerations that recommend CheeseWhiz as a com-

pelling test case for this thesis' developmental architecture. First, the time

constraints on learning that have been noted above mimic the fact that

learning in nature must often take place very efficiently. Just as a defense-

less duckling needs to learn the appropriate response to the maternal alarm

1. The minimum number of deals between juggles is variable, and can be
adjusted to change the difficulty of the game. See chapter 6 for a detailed
consideration of how the interval between juggles impacts Hektor's perfor-
mance.
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call almost instantaneously, so does Hektor need to learn using the mini-

mum possible number of trials. Second, as we will explore in more detail

in the coming sections of this chapter, CheeseWhiz provides an excellent

opportunity to mobilize the key lessons of development: there are multiple

behavioral contexts between which the results of learning must be flexibly

repurposed (section 5.2.1) as well as a multifaceted learning objective that

can be profitably tackled using a set of specialized learning tools (section

5.3)

5.2 hektor's behavior system

In this section I will consider the organization of Hektor's behavior sys-

tem. Starting with a decomposition of the behavior space into its compo-

nent contexts, I will describe how Hektor's behavior is generated from the

interaction of three motivational subsystems and their associated behav-

ioral modes and motor primitives. This discussion will set the stage for the

second half of this chapter, in which I will detail the specialized learning

tools underlying Hektor's learning.

5.2.1 contextual breakdown of the behavior space

Beginning with the discussion of the first key lesson of development in chap-

ter 2, this thesis has emphasized the importance of the 'when' of learning.

The behavioral context in which a creature attempts to learn a given skill

will often have as much to do with success or failure as the specific learn-
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ing algorithm employed. Accordingly, the first important task in describ-

ing Hektor's behavior system is to divide his behavior space into its

component contexts, or conceptually isolable subspaces. What, in other

words, does Hektor need to be able to do exactly, and how is that set of

behavioral possibilities most naturally partitioned?

One natural decomposition of Hektor's behavior space is as follows:

* Passive Observation. The set of behaviors involved in respond-

ing to the House's deal with a random card and observing the

result. Hektor might be in this behavioral context at the very

outset of the game, when he has no information with which to

form useful hypotheses about the matching rules.

* Active Exploration. The space of behaviors needed to investigate

specific hypotheses as to the game's rules. Hektor might engage

in such behaviors after several rounds of passive observation

when he has accumulated enough initial data to form mean-

ingful hypotheses.

e Knowledge Deployment. Behaviors involved in utilizing a well-

formed set of matching rule hypotheses to win (or, as we will

see in the case of feigning, lose) a given hand. Hektor might

engage these behaviors once he has formed a complete model

of the matching rules or whenever it is important to achieve a

particular outcome on a given hand.

We'll take these three subspaces, observation, exploration, and deploy-

ment, to be the set of behavioral contexts that span Hektor's possible

actions.
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5.2.2 behavior system organization

Now that we've identified Hektor's behavioral contexts we can progress to

discussing the organization of his behavior system, depicted schematically

in figure 5.4. In this section we'll unpack the details of this diagram.

motivational subsystems

In section 4.2: behavioral elements we identified motivational subsystems

as the entry points for motivationally distinct subhierarchies of the overall

behavior system. Having partitioned Hektor's behavior space into three

distinct contexts, it is thus logically sensible to dedicate a motivational

subsystem to each. Accordingly, figure 5.4 shows observational, experi-

mental, and deployment motivational subsystems at the top-level of Hek-

tor's behavioral hierarchy. Consistent with the role that motivational

subsystems were previously described to play in behavior selection (section

4.2.3), these motivational subsystems provide the overall direction as to

which of Hektor's behavioral contexts is currently active.

behavioral modes

Each of Hektor's motivational subsystems has a child behavioral mode.

Recall from section 4.2.2 that behavioral modes correspond to patterned

sequences of goal-directed actions. In this case the sequences of actions

represented by the different behavioral modes are all identical, at least on

the surface: all three modes implement a wait-place wager-play card

sequence. The difference between the behavioral modes arises from the

------ ------ NOW
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observational
sit ~~

figure 5.4 A schematic
illustration of Hektor's
behavior system.
Motivational
subsystems are shown
as orange ovals,
behavioral modes as
purple rounded
rectangles, and motor
primitives as blue
diamonds. Specialized
learning tools are
depicted as gray
rectangles. The gray
lines connecting
behavioral elements
indicate parent-child
relationships in the
behavioral hierarchy.
Red lines connecting
specialized learning
tools to behavioral
elements indicate the
points at which the SLTs
communicate with the
behavior system.

exploratory
s~t II
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fact that they also serve as the interface point between Hektor's SLTs and

his behavior system. Using the communication system described in sec-

tion 4.3.2, Hektor's SLTs pass behavioral parameters on to their target

behavioral modes that are intended to achieve the distinct objectives of the

parent motivational subsystems. For example, the deployment SLT will

pass behavioral parameters to the 'play for known result' behavioral mode

indicating which card should be played in order to achieve a desired out-

come on the current hand. The mechanisms by which the SLTs derive the

parameters that are passed to the behavioral modes will be considered in

detail in the latter half of this chapter.

motor primitives

As has been said, motor primitives are the point in the behavior system at

which individual atoms of observable motor action are output by the crea-

ture (section 4.2.2). Hektor has a very simple set of motor primitives: an

idle (default) primitive that is engaged while waiting for the House to play

its card, a wagering primitive that corresponds to the act of placing a bet,

and a card playing primitive that causes Hektor to put a specified card into

play.

Note that this parsimony in motor primitives is made possible by two

previously described engineering decisions (section 4.2.1). First, because

behavioral elements are allowed to have multiple parents, a single set of

motor primitives can subserve all three motivational subsystems. Secondly,
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the use of behavioral parameters allows the behavioral modes to customize

the specific behavior of the wagering and card playing motor primitives;

these primitives are parameterized by their active parent with the amount

of the bet or the identity of the desired card respectively before firing.

With this basic view of Hektor's behavior system in place, let's now

turn to the more interesting matter of how the activity of this system is

orchestrated by Hektor's specialized learning tools.

5.3 hektor's specialized learning tools: an
introduction

Hektor's learning is organized using four distinct specialized learning tools

coordinated by a top-level toolbox; this SLT structure is illustrated sche-

matically in figure 5.5 and unpacking its details will occupy the remainder

of this chapter. Before embarking on this discussion, however, let us first

pause to make an important point with respect to the scope and limita-

tions of Hektor's learning.

As has been emphasized, the primary concern of this thesis is architec-

ture. I have set out to demonstrate how the key computational lessons of

development can be harnessed to define a novel means of organizing a

computational learning system. The importance of Hektor, and in partic-

ular of Hektor's learning mechanisms, is to provide a computational

'proof-of-concept' for the viability of this developmentally inspired design.
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Given this (and also the inevitable time constraints of a Master's thesis) it should be

acknowledged that some of the algorithmic aspects of Hektor's learning hierarchy have not

been pushed to the limits of their possible refinement. In particular, as we will see in the com-

ing sections of this chapter, both the observational and the wager controller SLTs are imple-

mented in a simplified form, one that conforms to the architectural commitments of SLTs but

does not actually learn about or adapt to the House's play patterns. While possible refine-

ments for these SLTs will be discussed in the context of future work, the salient point at

present is how all of Hektor's SLTs, from the simplified to the more fully-realized, together

succeed in bringing the SLT architecture to life and demonstrating its potential. To put it

another way, the point that I will demonstrate in the remainder of this thesis is not that Hek-

tor's SLTs are at present a perfect means of addressing his learning challenges, but rather that

they are an impressively good means of doing so with the architectural potential to become

even better.

figure 5.5 Sche-
matic diagram of
Hektor's SLT hierar-
chy. Each of the
elements of this
hierarchy is
described in detail
in the following
sections of this
chapter.

I

............ ..............................
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With this minor caveat in place, let us now forge ahead with the

detailed discussion. I will first consider the matching toolbox and its role

in managing the predictive models utilized by all of Hektor's SLTs. Each of

these SLTs will then be considered in turn, focusing on how their specific

operations map onto the hypothesize-act-update cycle of the SLT learning

epoch.

5.4 the matching toolbox

As discussed in section 4.3.1, matching toolboxes are intended to facilitate

the efficient sharing and integration of data amongst a hierarchy of related

SLTs. In the particular case of Hektor's matching toolbox, this facilitation

takes the form of managing a set of matching models that are referenced and

updated by all of the subsidiary SLTs. I will now briefly discuss the pur-

pose and representational details of matching models, and then move on to

the more substantive matter of how the matching toolbox goes about man-

aging them.

5.4.1 matching models

Matching models are the basic units with which Hektor represents his

hypotheses as to the game's rules. A schematic illustration of the key com-

ponents of a matching model is provided in figure 5.6. As shown in the fig-

ure, matching models consist of:

*A feature identifier. Which of the two possible matching features, shape

or color, is the focus of this model?

|125



chapter 5

*A representation of the putative rule set. What are the specifics of this

model's hypothesis regarding the game rules?

*A prediction accuracy history. Within a small temporal window, how

accurate has this model been at predicting the observed course of the

game?

matching model

feature: color

putative rule set:

red green blue

<red> 0QQ

<green> j
<blue> 1L1 h1i

prediction accuracy history:

+ - - - (4%)

figure 5.6 Schematic illustration of a matching model. The feature specifier indi-

cates which of the two possible matching features this model is focusing on. The

putative rule set, depicted as a grid, shows the predicted results of matching seed

features (whose names are listed in angle-brackets) with response features. These

results are represented as either a blank grid square (no data), a gray circle (no

match), or a blue circle (match). The prediction accuracy history represents this

model's predictive power over a moving window of the past five deals. In the fig-

ure, deals on which the model made (or would have made) the correct prediction

are indicated with a plus sign, whereas incorrect predictions or predictions that

could not be made due to lack of data are indicated by a minus sign. The matching

model in the figure has predicted two of the 5 past deals correctly, for a current

accuracy of 40%.

.......... ........... ........... ..................
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5.4.2 model management

Now that we know what matching models are, let's consider how the

matching toolbox goes about managing them. This management begins

with the division of the models into two categories: active models and

inactive models.

Active models are those that represent currently viable hypotheses as to

the matching rules. At the outset of the simulation the set of active models

is initialized with two empty default models, one of which presumes that

shape is the critical feature and the other of which focuses on color. Subse-

quently, active SLTs in the update phase of their hypothesize-act-update

learning epoch (see section 4.3.2) will signal the matching toolbox to

update the active models with the outcome of each newly completed

hand. If a new outcome is consistent with or enlarges upon the set of out-

comes a model has previously recorded, then that model remains active. If

however an observed outcome contradicts the contents of a model (indicat-

ing that either the model's rule hypothesis was inaccurate or that the

matching rules have been juggled) then the model is deactivated and trans-

ferred to the set of inactive models.

Inactive models are models that have been found to be inconsistent with

the current set of matching rules. Of course, the easiest approach to deal-

ing with inactive models would be to simply discard them. However, as we

will see, by storing inactive models Hektor gains the ability to quickly rec-
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ognize when the House is reverting to an old rule set that he has previ-

ously observed. The stored set of inactive models thus helps contribute to

the agility with which Hektor can respond to changing matching rules.

SLTs in the update phase of their learning epoch do not cause the

matching toolbox to update inactive models' rule sets with the outcome of

each new hand, but they do cause the toolbox to update inactive models'

prediction accuracy histories. These updated prediction accuracy histories

are used to determine when an inactive model may have returned to corre-

spondence with the current matching rules (that is, when the House may

have reverted to an old rule set represented by the inactive model) and the

model should thus be reactivated. How exactly this determination occurs

turns out to be a more subtle question than one might think.2

The most intuitive policy would be to simply reactivate an inactive

model whenever its prediction accuracy history exceeded that of the most

accurate active model. However, because newly initialized active models

necessarily have low prediction accuracy histories until they have gone

through at least some refinement, this straight-forward approach is inef-

fective. Reactivating inactive models strictly on the basis of a comparison

between their prediction accuracy history and that of the active model(s)

inevitably leads to new active models being thrown out in favor of ques-

tionable inactive models. This problem can be allayed somewhat if a pre-

2. Indeed, we will revisit this matter in much greater detail in chapter 6.
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diction accuracy threshold, below which inactive models are ineligible for

reactivation, is utilized. However, an even more principled solution is to

allow reactivation to occur only when all active models have been found to

be inconsistent. That is, the matching toolbox will revert to an inactive

model only when it has conclusive evidence that the matching rules have

been juggled.

For example, consider a situation in which the House opens with a

same color rule set in which each color is matched by the same color. After

a short period it switches to a different rule set, causing the same color

matching model that had begun to represent the same color rule to be

deactivated. Then, after another short period, the House reverts to the

same color rule. Suppose further that the currently active model fails to

detect this change for several hands. This could occur because, as we will see

in section 5.6: the exploratory sit, the exploratory SLT frequently utilizes

the input of inactive models when determining which card Hektor should

play; the inactive same color model could hence by helping to steer Hek-

tor's responding in the right direction even while the active model made

incorrect predictions. As this process occurs, the matching toolbox is qui-

etly recomputing the prediction accuracy history of the same color model

after each hand. Since this accuracy is computed over a short temporal

window, after several hands it will reach a significant value. Then, once the

active model is finally proven inconsistent and deactivated, the toolbox
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can reactivate the existing same color model. Hektor can now pick up

where he left off with respect to this rule set, and converge on a complete

hypothesis much more quickly.

5.4.3 model generalization

The matching toolbox performs one more important function whenever

an SLT causes the set of active matching models to be updated with a

newly observed outcome. Specifically, the toolbox will generalize the active

matching models whenever possible.

Generalization is based on the rules of CheeseWhiz, which state that

the House must specify one matching response for each possible seed.

Thus, when a matching response is found for a given seed, the toolbox can

make the generalization that all other responses for that seed must not

match. Conversely, if two non-matching responses are found for a given

seed, then the only remaining response must be the match. These two

forms of generalization, termed positive and negative respectively, are

illustrated in figure 5.7.

At this point we've become familiar with the matching toolbox and its

management of Hektor's matching models. Note, however, that we've

been careful to point out how this management process is driven by con-

trol signals from active SLTs in the update phase of their learning epochs.

Let's move on then to consider each of Hektor's SLTs, and the phases of

their particular learning epochs, in detail. In order to map this discussion
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a) positive generalization
red green blue red green blue

<red> <red> Q l* o

<green> F <green>

<blue> <blue>

b) negative generalization
red green blue red green blue

<red> Q Q <red> Q*Q
<green> <green>

<blue> <blue>

figure 5.7 Generalization of an active matching model can occur in two ways. In

positive generalization (a), the determination of the matching response for a given

seed allows the other two possible responses to be marked as non-matches. In

negative generalization (b), finding two non-matching responses for a given seed

identifies the third response as the match.

as explicitly as possible onto the general architectural discussion of the pre-

ceding chapter, I'll divide my commentary on each SLT into sections cor-

responding to i) its activation conditions, and ii) the hypothesize-act-

update phases of its learning epochs.

.. .. .... ...
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5.5 the observation sit

The observation SLT is the simplest of Hektor's learning mechanisms. It's

purpose is simply to 'kick-start' Hektor's matching models, generating ini-

tial datapoints that can be used to begin the more principled process of

active exploration.

5.5.1 activation conditions

The observational SLT becomes active whenever the average number of

datapoints per active matching model falls below a threshold value. This

activation triggers the beginning of a learning epoch, the phases of which

we will now consider.

5.5.2 phase one: hypothesis formation

As noted in the introduction to Hektor's SLTs (section 5.3), the observa-

tion SLT is one of the simplified portions of Hektor's overall learning

mechanism. As such, the SLT forms no explicit hypotheses. Rather, dur-

ing the hypothesis formation phase of its learning epoch it simply dis-

patches a behavioral parameter containing propagated value to the

behavior system's observational behavioral mode.

5.5.3 phase two: taking action

Propagated value from the observation SLT causes the observational

behavioral mode to become active, at which point it prompts Hektor to

respond to the House's deal with a random card. The results of this ran-

dom play are assimilated during the update phase.
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5.5.4 phase three: updating

The observational SLT passes the consequences of playing a random card

up the hierarchy to the matching toolbox, which then updates the match-

ing models as previously described (section s.4.2) Once the active models

have acquired initial data in this fashion, the more interesting and proac-

tive learning operations managed by the exploratory SLT can commence.

5.6 the exploratory sit

In contrast to the observation SLT, the exploratory SLT is the most com-

plex and fully realized SLT in Hektor's learning arsenal. It has the respon-

sibility of enabling Hektor to explore the game's matching rule space

efficiently enough to win.

5.6.1 activation conditions

The exploratory SLT becomes active whenever the observation SLT

becomes passive. In terms of the behavior system, this means that the

exploratory SLT will be active whenever either the exploratory or deploy-

ment motivational subsystems are engaged. This, it will turn out, has

important consequences for the exploratory SLT's ability to cooperate

with the deployment SLT, a topic that we will consider in section 5.7.7 and

(in more detail) in section 6.2. Once activated, the exploratory SLT cycles

through learning epochs structured as follows.
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5.6.2 phase one: hypothesis formation

We can think of the exploratory SLT as forming hypotheses of the form:

Responding to the House's deal with card x will most efficiently
expand my knowledge of the matching rules.

The real meat of the computation that occurs during hypotheses forma-

tion, therefore, is the determination of this best response card x.

The logic used to identify the response card can be divided into several

cases depending on the number and activity state of Hektor's matching

models. Each of these cases is illustrated in figure 5.8 and discussed sepa-

rately below.

multiple active models

In the event that there are multiple active models, the exploratory SLTs

objective is to attempt to differentiate between them as quickly as possible. In

other words, the SLT wants to determine which of the active models actu-

ally corresponds to the current matching rule set and deactivate the

remainder. The most efficient means of accomplishing this task is by

attempting to find response cards for which the active models make con-

flicting predictions. To illustrate this idea, consider figure 5.9.

In the figure, Hektor has thus far played three hands. On one of these

hands Hektor was able to match the House's blue square card with a green

triangle card. The active matching models consequently represent two pos-
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YES mo

Search for
conflicting mediated
response. response.

Found
conflicting inactive med.
response?

NO YES

Search for Generate inate response
multiply conflicting :

exploratory response.medned mode
response..

Found Consider only
multiply exp. NO most accurate

response? active model.

YES

Generate
multiply

exploratory
response.

figure 5.8 Schematic of the logic governing the exploratory SLT. Conditional branch points are

shown as green diamonds, operation points as blue rectangles, and output generation points as red

rounded rectangles. Specific details for each of the operation and output generation points are

given in the text.

............. ................ : ..........
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figure 5.9 An illustration of how multiple active models can make conflicting pre-

dictions for a given response card. Given the card dealt by the House (a), the con-

tent of the two active models (b) can be combined to generate a response card (c)

for which the models make conflicting predictions. Specifically, as the red high-

lighted data points in (b) indicate, the color model predicts that a green circle

response will lead to a match, while the shape model predicts that such a response

will fail to match. See the accompanying text for more details.
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sible partial hypotheses as to the matching rules: either blue is matched by

green, or square is matched by triangle. Suppose that the House now deals

a blue circle card (figure 5.9a) How should Hektor respond? Note that it is

possible for the active models to make conficting predictions for this card.

While the shape model predicts that responding to a circle with a circle will

lead to failure, the color model posits that responding to blue with green

will lead to success (figure 5.9b); hence the models disagree on the

expected outcome of responding with a green circle card (figure 5.9c) By

responding with a green circle, therefore, Hektor is able to determine

which of the two active models is in fact consistent with the current

matching rule.

In this fashion, the exploratory SLT attempts to identify and exploit

conflicts amongst the active models whenever possible. The strategy is a

very powerful means of quickly narrowing down Hektor's hypothesis

space, and is thus one of the most important contributors to the efficacy of

the exploratory SLT and the matching toolbox generally.

Of course, it isn't always possible to coerce the active models into mak-

ing conflicting predictions. If the exploratory SLT can't find a conflict for

the House's card, it attempts to generate a multiply exploratory response.

Such a response is one that will simultaneously expand the rule space cov-

erage for two or more active models, as illustrated in figure 5.10.
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a) color model shape model

red green blue circle sqr tri

<red> 0<circle>0

<green> 0 <sqr> 01
<blue> <tri>

b)

housedeal
C) color model shape model

red green blue circle sqr tri

<red> 1 <circle> 7
<green> <sqr> 0

<blue> 0J <tri> 10

d)
multiply

exploratory
response

figure 5.10 An illustration of how a multiply exploratory response can simulta-

neously expand the rule space coverage of more than one active model. In (c), the

red highlighting indicates the response to the House's deal that will succeed in

expanding both models. See the accompanying text for more description.
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In part (a) of the figure Hektor has again already played three hands,

this time without discovering a match. Suppose that the House now deals

a blue square card (figure 5.1 Ob) By responding with a red circle, Hektor will

simultaneously expand the rule space coverage for both of the active mod-

els (figure 5.10c) By generating this type of multiply exploratory response

whenever possible, the exploratory SLT helps Hektor explore the match-

ing rule space with maximum rapidity.

Finally, there can also be situations in which no conflicting nor multi-

ply exploratory responses are possible. When the exploratory SLT encoun-

ters this dilemma it selects the active model with the most accurate

prediction accuracy history and reverts to the single active model case, the

logic for which we will now describe.

single active model

In the case of there being just a single active model, the exploratory SLTs

mission is simply to expand that model's rule space coverage as quickly as

possible. For any given House card then, the exploratory SLT attempts to

produce a response card for which the active model has not yet recorded

the result.

Recall, however, that a single active model can only specify ha/fof a

response card, since it only models one of the two possible card features,

either shape or color. The exploratory SLT thus uses this situation as an

opportunity to generate an inactive model mediated response. As the name
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implies, such a response is one that is formulated with input from an inac-

tive matching model. Specifically, the card feature for which the active

model has not provided a specification is determined by querying the

inactive models for a potential match.

Consider figure 5.11. The figure depicts a situation in which the

House began with a color-based matching rule for which Hektor was able

to derive a correct matching model. The House then juggled the rules,

causing the deactivation of the completed matching model as indicated by

its lightened shading in figure 5.11 a. Hektor is now attempting to learn

the new rule set. Suppose the House now deals a blue triangle card (figure

5.11 b) The active matching model specifies that the response card should

be a square in order to expand its rule space coverage. To determine the

color of the response card, the exploratory SLT now consults the inactive

matching model. According to the inactive model, blue should be matched

by red (figure 5.11 c); Hektor thus plays a red square card in response (figure

5.11d)

Why do things this way? Recall that the purpose of storing inactive

matching models is to give Hektor the ability to recognize when the

House is re-using a previously encountered rule set (see section 5.4.2)

Inactive model mediated responses are the mechanism by which this recogni-

tion occurs. That is, if the House reverts to a previously utilized rule set for

which Hektor has an inactive matching model, that matching model needs
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<red>

<green>

<blue> *

b)

house
deal
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figure 5.11 An illustration of how an inactive model mediated response allows an

inactive model (here indicated by lighter coloration) to exert control over Hektor's

behavior. In (c), observe that the inactive model combines its prediction that red

should match blue with the active model's determination of the response card's

shape. See the accompanying text for more detail.
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an opportunity to prove its correspondence to the matching rules in order

to be reactivated. By specifying a component of Hektor's responses in the

manner described here, the inactive model can improve its prediction

accuracy history and consequently become eligible for reactivation.

Note that the ability to generate an inactive model mediated response

hinges on the availability of an inactive matching model whose dimension

of interest is the opposite of that specified by the active matching model.

That is, if we have an active shape model, we need an inactive color model

to construct an inactive model mediated response. If this is not the case,

the exploratory SLT will simply randomly select a value for the feature not

specified by the active model.

5.6.3 phase two: taking action

Thus far we've examined the logic by which the exploratory SLT forms

hypotheses regarding the best response card for a given deal. That infor-

mation must now be communicated to the behavior system in order to

take the appropriate action. This communication is accomplished by dis-

patching a behavioral parameter to the exploratory behavioral mode con-

taining both propagated value and the identity of the desired response

card. The exploratory behavioral mode is then activated by the propagated

value, and ultimately causes Hektor to express the action of playing the

specified card.
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5.6.4 phase three: updating

Once the selected response card has been played, the exploratory SLT

completes its learning epoch by passing the observed result to the match-

ing toolbox where it is used to update the set of matching models as previ-

ously described (section s.4.2)

5.7 the deployment and wager controller
sits

Since the operations of the deployment and wager controller SLTs are

quite tightly coupled, in this section I will consider the two systems

together. I will first describe the conceptual role of both of the two SLTs,

and then explain how their learning epochs interact in order to achieve

their intended purposes.

5.7.1 responsibilities of the sits

Let's begin our consideration with the deployment SLT. The responsibility

of the deployment SLT is to allow Hektor to mobilize his knowledge of

the matching rules in order to achieve a desired goal. The goals that drive

Hektor's knowledge deployment in the context of CheeseWhiz are either

i) to win a particularly high-stakes hand, or ii) to deceive the House

regarding the extent of his knowledge of the matching rules. The former

goal is obviously useful when Hektor has complete (or nearly complete)

knowledge of the matching rules and wishes to aggressively increase his

cheese supply. The latter and rather more subtle goal is useful for buying
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time. Suppose for example that Hektor is converging on a complete model

of the matching rules, but a recent string of wins threatens to prod the

House into juggling the rule set. By intentionally losing a hand or two,

Hektor can feign ignorance and perhaps gain more time to complete his

matching rule hypothesis.

The wager controller SLT is responsible for managing Hektor's cheese

supply and specifying the amount that Hektor should wager on each

hand. Note that implicit in this responsibility is the fact that the wager

controller SLT must determine whether or not the deployment SLT

should be activated, and if so to what end. That is, if Hektor is running

out of cheese, the wager controller SLT will want to both place a minimal

bet and request an assured matching response from the deployment SLT.

Let's consider how all of this takes place.

5.7.2 wager controller sit: activation conditions

As Hektor must place a wager on every hand, the wager controller SLT is

continuously active. Prior to each House deal it executes a learning epoch

as follows.

5.7.3 wager controller sit phase one: hypothesis
formation

The hypotheses that the wager controller SLT forms can be thought of as

having the form:
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Given the amount of cheese in the bank and the likelihood that
the House will soon juggle the rules, the best wager for the current
hand is x and the desired outcome is y.

As has been previously noted (section 5.3), the current implementation of

the wager controller SLT is a simplified one. This means that the three

salient determinations underlying hypothesis formation, e.g. how likely

the House is to juggle, the amount of cheese to wager, and the desired out-

come of the hand, are all made according to a fixed (as opposed to adap-

tive) rule set. We'll return to this matter in our consideration of future

work, where we'll make some suggestions as to how the wager controller

SLT might be modified to become more powerful. In the meantime, let's

consider the rule set that the wager controller SLT currently uses to drive

its hypothesis formation.

A flow chart depicting the wager controller SLT's rule set is given in

figure 5.12. As the figure shows, the first step in the wager controller SLTs

operation is the assessment of whether Hektor should 'bet the farm' in

order to radically increase his cheese supply or perhaps win the game

entirely. This course of action will be appropriate when Hektor has a sin-

gle matching model that is either complete or very nearly so, such that he

is very likely to be able to successfully match any card that the House

might deal. To make this determination, the SLT checks what percentage

of the active matching model's rule space has been specified and compares
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figure 5.12 A schematic illustration of the logic governing the wager controller SLT. Conditional branch

points are shown as green diamonds and output generation points as red rounded rectangles. See the

accompanying text for a detailed explanation of the figure's contents.
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that value to a threshold. 3 If the percentage exceeds the threshold, the SLT

specifies a wager equal to Hektor's total amount of cheese and designates

matching as the desired outcome of the hand.

Of course, most of the time the wager controller SLT is not in a posi-

tion to behave in such an aggressive fashion. If Hektor has multiple active

models or a single model whose rule space is not yet sufficiently specified,

the SLT will pursue a less risky betting strategy. Several distinct circum-

stances can pertain in this situation.

First, if Hektor's cheese supply has fallen below a caution threshold,

the wager controller SLT will trigger very conservative behavior: it will

specify the minimum bet of one piece of cheese and request a matching

outcome for the current hand. Second, if Hektor is not dangerously low

on cheese and his supply in fact exceeds that of the House by a specified

multiplier (generally 1.5), the wager controller SLT will attempt to capital-

ize on the opportunity to win a game; it will specify a wager amount equal

to the balance of the House's bank and again request a matching outcome.

Third, if Hektor has neither a surfeit nor a deficit of cheese, the SLT will

consider whether a little tactical deception might be in order. That is, if i)

Hektor has won several hands in a row, ii) his active matching model is

being refined but is not yet complete, and iii) the House has not recently

juggled the rules, the wager controller SLT will specify a small wager and

3. Naturally this threshold is quite high, typically between 0.75 and 0.90.
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request an intentional loss in order to deceive the House. As previously

mentioned, the goal here is to prevent the House from juggling the rules,

allowing more time for Hektor to complete his learning.

Finally, if none of the above special conditions holds, then the wager

controller SLT will simply specify a wager that is proportional to the aver-

age percentage of the matching rule space covered by the active models. In

this situation, no specification of a desired outcome is made.

5.7.4 wager controller sit phase two: taking action

The wager controller SLT is unique in that it takes action both through

the behavior system and also through the superordinate deployment SLT.

On the behavior system side, the wager controller SLT dispatches a behav-

ioral parameter to the wagering motor primitive containing both propa-

gated value and the amount of the desired wager. This causes Hektor to

place the appropriate bet. On the SLT side, ifthe wager controller SLT

arrived at a desired outcome for the current hand then a learning parame-

ter containing that data is sent to the deployment SLT. This causes the

deployment SLT to activate, which we will discuss momentarily.

5.7.5 wager controller sit phase three: updating

Since the wager controller SLT's rule set is currently static, the update

phase of its learning epoch is empty. In future implementations this por-

tion of the epoch would use the observed result of the completed hand to

update the SLT's model of the House's behavior.
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5.7.6 deployment sit: activation conditions

The deployment SLT is activated whenever it receives a learning parame-

ter from the wager controller SLT specifying a desired outcome for the

current hand. Upon activation the deployment SLT engages in a learning

epoch as we shall now describe and then returns to its passive state.

5.7.7 deployment sit phase one: hypothesis
formation

Hypotheses formed by the deployment SLT have the natural form:

Playing card x will lead to desired outcome y.

These hypotheses are generated in a straightforward manner by consulting

the active matching models for a response appropriate to the desired out-

come given the card that has been dealt by the House.

Of course, for a given House card and desired outcome, it will some-

times be the case that the active matching models are unable to suggest an

appropriate response card. For example, suppose that Hektor has acquired

twice as much cheese as the House, a situation that the wager controller

SLT recognizes as a safe opportunity to attempt to win a game. The wager

controller SLT will send a request to the deployment SLT for a matching

response. Suppose further that Hektor's matching models are still in the

process of being refined, such that they cannot specify a matching

response for the card that the House deals. What response card should

Hektor play in such a situation?
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Since Hektor can't deploy his knowledge as desired in this situation,

the next best thing is to use it as an opportunity to continue his explora-

tion of the matching rule space. Accordingly, the deployment SLT will

refrain from forming any hypothesis in this situation and instead defer con-

trol to the exploratory SLIT The exploratory SLT will then guide Hektor's

response as previously described, in a fashion that maximizes the amount

that will be learned from the outcome of the hand. This situation is a par-

ticularly elegant example of cooperation between SLTs.

5.7.8 deployment sit phase two: taking action

The deployment SLT takes action in much the same fashion as the explor-

atory SLT. A behavioral parameter containing propagated value and the

desired response card is dispatched to the deployment behavioral mode,

which in turn becomes activated and causes the specified card to be

played.

5.7.9 deployment sit phase three: updating

After sending a behavioral parameter to the deployment behavioral mode

the deployment SLT observes the outcome of the hand. If the outcome is

what the deployment SLT had intended, then the current matching mod-

els are accurate and no adjustments need to be made. If, on the other

hand, the outcome is not as expected, then the active matching models no

longer correspond to the current matching rules. In this situation the

deployment SLT sends a control signal to the matching toolbox causing

mob,
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the active models to be deactivated, new default models to be constructed,

and (if appropriate) any recently accurate inactive models to be reacti-

vated.

5.8 moving forward: evaluation

In this chapter we've developed a detailed understanding of Hektor's

behavior and learning such that we're now in a position to begin consider-

ing their efficacy. In the next chapter I will undertake a thorough evalua-

tion of Hektor's capabilities, assessing the strengths and weaknesses of the

developmental design stance.
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In this chapter I undertake a thorough evaluation of Hektor and the devel-

opmental architecture on which he is based. Through both qualitative and

quantitative analysis of Hektor's performance on the CheeseWhiz task, I

will assess how successful this thesis' developmental approach to behav-

ioral organization and learning has been. I will also consider some philo-

sophical points regarding the relationship between this thesis and more

traditional machine learning approaches and the ultimate scalability of

developmental Al.

6.1 quantifying the learning task

Let's begin our evaluation by making some specific quantifications regard-

ing the learning task Hektor is being asked to perform. First, recall that

there are nine distinct cards in the CheeseWhiz game (see figure 5.3). Since
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the player is presumed to have an infinite supply of cards with which to

respond to the House's deal, this means that there are 9 x 9 = 81 distinct

deal-response combinations. Thus, in principle, the game's rule space con-

tains 81 elements.

However, recall that Hektor's matching toolbox embeds the prior

knowledge that matching rules must be specified either with respect to

color or shape but not a combination of the two. This knowledge effec-

tively constrains and divides the original 81 element rule space into two

parallel 3 x 3 = 9 element rule spaces. For the purposes of evaluation then,

I will take the overall size of the learning task's rule space to be 18 ele-

ments.

Given this quantification, approximately how many deals would be

required to learn the matching rules via a simple exhaustive search strat-

egy? A lower limit on this learning time is obviously 18 deals. However,

note that this optimistic estimate presumes that the House will supply a

sequence of 18 cards that can be used to perfectly span the rule space. In

reality, since House cards are generated randomly, this circumstance is all

but an impossibility; it is likely that exhaustive search would require sig-

nificantly more than 18 deals to converge on a complete rule set. None-

theless, for the purpose of maintaining a challenging standard of

comparison, let's hold ourselves to the estimate of 18 deals as the bench-

mark we are attempting to better.

--MEW
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6.2 putting it all together: a detailed
example

Having established an explicit standard of comparison, we are now in a

position to begin judging the efficacy of Hektor's learning. Before we

commence with a quantitative evaluation, however, it is perhaps helpful to

get a more qualitative 'big picture' overview of how all the many compo-

nents of Hektor's design fit together into an integrated whole. What kind

of observable behavior, in other words, do all of the behavioral elements

and specialized learning tools that have been described in the last two

chapters give rise to? In this section I'll answer this question by considering

a detailed 'transcript' from a real example of Hektor playing CheeseWhiz

with a human user; I'll describe how Hektor's learning framework guides

his behavior so as to converge on a model of the matching rules as effi-

ciently as possible. Then, in the remainder of this chapter, 'll consider

Hektor's average performance as quantified across numerous repetitions of

individual trials like the one described here.

6.2.1 parameters for the example

In this example the user has initially specified a 'same color' matching rule

in which color is the critical feature and like matches like. Given that there

are 18 elements in the partitioned matching rule space, we'll opt for a chal-

lenge and say that the user is allowed to juggle the rules every nine deals.I

---- ----- - NVAWPF
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Note that under these circumstances, a naive strategy of exploring the state

space by brute force would almost certainly fail.

6.2.2 a behavioral transcript

The behavioral transcript for this example is presented visually in figure

6.1. The following describes the figure's contents in detail.

getting your feet under you: observation

At the outset Hektor has no information about the matching rule other

than his prior knowledge that either shape or color must be the critical fea-

ture. This prior knowledge is reflected in his initializing an empty match-

ing model for each of these possible dimensions (figure 6.1 a) Since the

empty models provide no traction for engaging in active exploration of the

rule space, Hektor's observational motivational subsystem becomes

engaged. Hektor places the minimum bet of one piece of cheese, and

responds to the House's opening blue square card with a randomly selected

red circle card (figure 6.1b). This initial wager is unsuccessful, but both of

Hektor's two active matching models now contain a data point (figure

6.1c)

sizing things up: exploration

Now that Hektor's matching models are non-empty, a control signal from

the exploratory SLT causes Hektor's exploratory motivational subsystem

1. The question of how the interval between juggles impacts Hektor's success at
CheeseWhiz is actually quite an interesting one; it will be considered in
detail in section 6.3.2.

---------------
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figure 6.1 A visual
'transcript'for a real
instance of Hektor
playing CheeseWhiz
with the user. Match-
ing models, depicted
as grids, show the
results of matching
seed features (whose
names are listed in
angle-brackets) with
response features.
These results are rep-
resented as either a
blank grid square (no
data), a gray circle (no
match), or a blue cir-
cle (match). Note that
the changing balance
of both Hektor's and
the House's bank are
given to the right of
the depictions of the
matching models. On
each deal, the wager
is indicated to the left
of the cards. The
cards themselves,
labeled house or
mouse as appropri-
ate, show the deal-
response combina-
tion that occurred on
each hand; results are
given to the right of
the cards.
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figure 6.1
(continued)
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to engage. Hektor's learning priority is now to differentiate the validity of

the two active models.

Hektor places a conservative wager of two pieces of cheese, and the

House plays a green circle card. Hektor's exploratory SLT attempts to

determine the best response. It isn't possible to respond to this card in a

way that might cause the two active models to diverge (e.g. the models

don't yield conflicting predictions for any possible response to a green cir-

cle), so the SLT selects a response that will at least increase each model's

coverage of its rule subspace; Hektor plays a red circle card, and is again

unsuccessful (figure 6.1 d).

Since the active models now span slightly larger proportions of their

rule subspaces (figure 6.1 e), Hektor increases his wager to three pieces of

cheese. The House plays a red square. Once again the exploratory SLT can't

identify a conflicting response for the two active models, so red square is

played to expand rule subspace coverage. This time Hektor is successful

(figure 6.1f).

With success comes the ability to generalize; since each of the critical

feature's values is matched by at most one response value, Hektor's match-

ing toolbox is now able to significantly expand both model's coverage of

their rule subspaces (figure 6.1 g). Hektor places an increased wager of five

pieces of cheese on the basis of this significant expansion in his model's

capabilities. The House plays a red circle.
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Hektor's exploratory SLT now detects an opportunity. The color

model predicts that responding to red with red will yield success, while the

shape model predicts that responding to a circle with a circle will lead to

failure (figure 6.1 g) Hence, by responding with a red circle card, Hektor

will be able to determine which of the two currently active models is accurate.

Hektor plays a red circle and wins the wager (figure 6.1 h) The shape model,

having thus been proven inconsistent, is deactivated (figure 6.1 i)

exploiting an opportunity: deployment

Hektor's deployment SLT is now activated by the fact that Hektor has sig-

nificantly more cheese in his bank than the House. Though Hektor has

not yet converged on a complete model of the matching rules, his deploy-

ment SLT recognizes that this is a good opportunity to play aggressively

and attempt to win a game; learning, in other words, has temporarily

taken a subsidiary role to the opportunistic goal of bankrupting the

House. Hektor places a bet of five pieces of cheese, which if won would

cause the House to bust. Unfortunately for the House, the next card in it's

deck is a red square, which Hektor has already seen; Hektor responds with

a red circle and takes the game (figure 6.1j)

completing the model: exploration

Though Hektor has won the first game, the House has only dealt five

times and hence cannot yet juggle the rules. As the second game begins

Hektor thus has a distinct advantage. As the House bank resets to ten
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pieces of cheese (figure 6.1k), Hektor reverts to his exploratory motiva-

tional subsystem in order to continue refining his active matching model.

Hektor wagers six pieces of cheese.

The House plays a blue square. This is good news for Hektor, as he can

now finalize the blue portion of his matching model's rule subspace. Hek-

tor responds with a green square and loses (figure 6.11), but his updated

active model now covers seven of the nine possible elements of its rule sub-

space (figure 6.1 m)

the coup de grace: deployment

Since his active matching model now spans more than 75% of its rule sub-

space, Hektor shifts back to the deployment motivational subsystem; he is

again going to play aggressively. Hektor bets all of his four remaining

pieces of cheese. The House plays a green circle. Hektor's deployment SLT

finds that it cannot locate a response to this card that is guaranteed to be

successful (figure 6.1 m), and consequently defers to the exploratory SLT.

The exploratory SLT suggests a green circle response; Hektor plays this

card and wins the hand (figure 6.1n) The active model generalizes, and

Hektor has now converged on a complete, accurate model of the matching

rules in just seven deals (figure 6.1). Note that the House still has to deal

twice more before it can juggle the rules. Hektor places the maximum bet

on each of these deals and wins two more games from the House. At the

end of nine deals, Hektor has won three games without losing one.
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6.2.3 preliminary discussion

The preceding is a good typical example of Hektor's ability to play

CheeseWhiz effectively. Whereas converging on the correct matching rule

using a naive exploration of the rule space would have likely required more

than eighteen deals, Hektor has accomplished the task in just seven.

Several aspects of this performance deserve preliminary comment.

First, note how Hektor transitions fluidly between his motivational sub-

systems, each corresponding to a context with differing behavioral and

learning objectives. In particular, note how Hektor learns in the 'safe' con-

texts of observation and exploration on low-wager hands, and then

deploys the results of that learning in the functional context of high-stakes

hands. Hektor's transitions between behavioral contexts are not rigid and

inflexible; for example, even though his rule model was far from complete

at the outset of the fifth deal, Hektor still entered his deployment motiva-

tional subsystem in order to take advantage of the opportunity presented

by the House's depleted cheese supply. True to the first key lesson of develop-

ment, the intelligent management of behavioral contexts is central to Hek-

tors success.

Closely related to this first point, note also that cooperation between a

distributed set of specialized learning tools allows Hektor to accomplish

his learning objectives efficiently. Though each of the individual SLTs is

specialized for learning within a particular behavioral context, they behave
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as an integrated whole under the supervision of the top-level matching

toolbox. Hektor thus demonstrates that the second key lesson of develop-

ment, that of learning using a multiplicity of domain-specific mechanisms,

need not give rise to disjoint or ill-coordinated behavior.

With this detailed example in mind, let's now move on to a more

quantitative analysis of Hektor's performance.

6.3 quantifying hektor's learning
performance

In the following two studies I undertake a quantitative evaluation of Hek-

tor's learning performance. Specifically, I assess and discuss both the aver-

age number of deals that Hektor requires to converge on a fixed rule set,

and the minimum number of deals between juggles that are necessary for

Hektor's success.

6.3.1 study one: average number of deals to
convergence

The goal of this first study was to arrive at a robust estimate of the average

number of deals that Hektor requires to converge on a fixed set of match-

ing rules. By comparing this value to the size of the rule space, we will gain

a more refined understanding of the efficiency of Hektor's learning mech-

anisms.
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experimental design

This study consisted of fifty individual trials with randomly selected, fixed

(e.g. non-juggled) matching rules. Within each trial, the House dealt ran-

domly generated cards until Hektor had arrived at a complete and correct

model of the matching rules. The number of deals required for this con-

vergence to occur was recorded, as was the number of wins and losses (if

any) that Hektor experienced along the way.

For this study, all of Hektor's free behavioral parameters were tuned

towards maximal aggressiveness. In particular, Hektor was set to transition

from passive observation to active exploration after having established just

one element of his matching models' rule subspaces. Similarly, Hektor

transitioned from exploration to deployment when his matching models

had accounted for 75% of their rule subspaces. Hektor was also aggressive

with respect to his wagering, always betting the maximum possible

amount of cheese when in the deployment motivational subsystem. These

settings were chosen to allow Hektor to converge on the matching rules as

quickly as possible.

results and discussion

A histogram plotting the results of the fifty trials is shown in figure 6.2.

Let's go over some of the datas' key features.

First and perhaps most importantly, the average number of deals

required for Hektor to converge on a randomly selected set of matching
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figure 6.2 Histogram depicting the distribution of fifty learning trials according to

the number of deals required for convergence on a correct model of the matching

rules. The mean number of deals for convergence is 7.8; the standard deviation is

2.3.

rules was found to be just 7.8, with a modest standard deviation of 2.3. In

the best case, observed twice in the course of the fifty trials, Hektor was

able to converge on the matching rules in just four deals. The maximum

number of deals observed before convergence was 15.

The data shows that Hektor's learning strategy is significantly outpac-

ing the performance that would be expected from a naive search of the

rule space. Even in the worst case scenario of 14 deals, Hektor's perfor-

mance was significantly better than the optimistic projection of 18 deals

......... ................................... ..........
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for exhaustive search. Moreover, the average requirement of just 7.8 deals

to span a rule space with 18 elements is quite impressive.

An interesting and important observation is that the rapidity of Hek-

tor's learning appears to be most notably constrained by his 'luck' with

respect to being dealt helpful cards by the House. That is, in those cases

where Hektor required a greater than average number of deals to converge

on the matching rules, the difficulty was invariably that the House was

slow in dealing the card(s) that were necessary for the rule space model to

be completed. This fact is underscored by figure 6.3, which plots the num-

ber of wins experienced by Hektor as a function of the number of deals

required for convergence. Though the data is somewhat noisy, particularly

for the 12-15 deal trials for which one or fewer occurrences were observed,

the overall trend is that a larger number of deals to convergence is corre-

lated with a larger number of wins along the way. In other words, Hektor

was frequently in the position of having the rule space 2/3 specified and

simply having to wait for a card that would allow the final 1/3 of the rule

space to be determined. 'While stuck in this waiting game, Hektor was

able to accrue a large number of wins due to his knowledge of the subset

of cards that were being dealt by the house. For the sake of comparison, a

plot of Hektor's average number of losses as a function of the number of

deals to convergence is given in figure 6.4.

|167



chapter 6

4 5 6 7 8 9 10 11 12 13 14 15
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figure 6.3 A plot of the average number of wins encountered by Hektor while con-

verging on fixed rule sets as a function of the number of deals required for conver-

gence. Data is averaged over the course of fifty trials.
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deals to convergence

figure 6.4 A plot of the average number of losses encountered by Hektor while

converging on fixed rule sets as a function of the number of deals required for con-

vergence. Data is averaged over the course of fifty trials.

............................
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Comparing figure 6.3 to figure 6.4 makes it clear that Hektor is win-

ning far more than he is losing while attempting to converge on a fixed

rule set; the relevant averages are in fact 1.2 wins versus 0.4 losses per con-

vergence. The natural next question is how this win:loss ratio might

change when the House begins to juggle the matching rules. How well will

Hektor's learning machinery cope with dynamically changing learning

objectives? This question is the focus of study two.

6.3.2 study two: adaptability to changing rules

Having determined Hektor's mean number of deals to convergence for a

stable rule set, the goal of this second study was to evaluate his ability to

cope with varying rules. By varying the rules at different frequencies and

observing Hektor's changing win:loss ratio, a profile of Hektor's ability to

cope with the demands of changing learning objectives will be con-

structed.

experimental design

For the purpose of maintaining maximal comparability to study one, all of

Hektor's behavioral parameters were kept constant in this study. Rule sets

were randomized both at the beginning of each trial, and also whenever

the minimum number of deals between juggles had elapsed. Juggle inter-

vals of 5, 6, 7, 8, 9, and 10 deals were tested. For each juggle interval, two

independent 100 deal-long trials were run. Hektor's total number of wins

and losses on each trial were recorded.
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results and discussion

Results from study two are summarized in figure 6.5, which plots the aver-

age number of wins and losses per 100 deal-long trial as a function of the

juggle interval. Several important features of this data bear elaboration.

First, note that as expected there is a trend towards an increasing

win:loss ratio as the number of deals between juggles increases. This point

is more directly illustrated in figure 6.6, which plots the win:loss ratio as a

function of juggle interval. As the House's ability to change the games'

rules increases, winning consistently becomes an increasing challenge for

Hektor.
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figure 6.5 Average number of wins and losses per 100 deals plotted against the

interval between juggles. Data shown is averaged across two independent trials.

.. .....................

170|1



evaluation and discussion

2.5

2.14

2

1.67
0

,1.5

V10 1.3
0.80 075ee

0.5

0

5 6 7 8 9 10

juggle interval (deals)

figure 6.6 Average win:loss ratio as a function of juggle interval, computed across

two independent 100 deal trials.

More important than this unsurprising general trend, however, are the

specific win:loss ratios observed. In particular, note that CheeseWhiz does

not become unprofitable for Hektor until the House can randomize the

rules ever six deals. This is quite an impressive performance. Even faced

with an 18 element rule state space that is subject to randomization every

seven trials, Hektor still manages to maintain a profitable win:loss ratio of

1.27. Taken together with the results of study one, these data demonstrate

that Hektor is not only capable of learning rule sets quickly, but also of re-

learning in an appropriately agile fashion when circumstances change.
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6.4 overall discussion

The results described in this chapter reflect quite favorably on Hektor's

learning capabilities. In the first place, we have seen that Hektor is capable

of converging on a set of matching rules for the CheeseWhiz game in just

7.8 deals. The rapidity of this convergence is more than twice as fast as an

optimistic assessment of the time required for a naive search of the rule

space. This finding illustrates that a set of distributed specialized learning

tools is capable of functioning in concert so as to efficiently achieve a com-

plex learning objective. We have also seen that the rapidity of Hektor's

learning is supported by the behavior system's ability to effectively deploy

the knowledge he has gained. The developmental behavior architecture

allows Hektor to transition smoothly between learning contexts and con-

texts in which learned behavior gives rise to its functional expression.

Secondly, we have seen that Hektor's architecture gives him the ability

to manage his learning in an unpredictably varying environment. Like the

biological systems from which we draw our conceptual inspiration, Hektor

learns precisely when he needs to learn. Once Hektor has converged on a

matching rule set, he disengages the more effortful aspects of his learning

mechanism and focuses solely on the task of deploying the knowledge he

has gained to greatest effect. When Hektor detects that the matching rule

set must have changed, however, he is capable of immediately reverting to

the observational and exploratory behavioral contexts and relearning as
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appropriate. This ability to move seamlessly between multiple behavioral

contexts and multiple learning objectives is a key attribute underlying

Hektor's ability to keep pace with a competitive human opponent.

6.4.1 hektor's scalability

What can be said about the scalability of Hektor's behavioral organization?

There are at least two interesting questions to consider here. The first

regards Hektor's ability to succeed at matching games with more than two

features. How would we expect Hektor's performance to change if we were

to play a matching game involving three, four or even more possible fea-

tures?

Obviously more features would mean a larger overall rule space and

consequently a slower average convergence time. However, there is noth-

ing at all in Hektor's engineering that would be expected to scale poorly in

this situation. Indeed, the exploratory SLTs ability to use conflicting pre-

dictions to arbitrate between multiple active models should scale extremely

well with an increasing number of matching features; if anything, finding

useful conflicts should become easier with more featural degrees of free-

dom. Hence, it is not expected that scaling to a greater number of match-

ing features would pose a difficulty for Hektor.

A more challenging case of scaling might come from removing the

restriction that matching rules must be expressed within features. 'What if

matching rules could be formulated across features as well? The most sig-
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nificant impact of such a change would be the fact that it would no longer

be possible to divide the matching problem into a set of parallel rule sub-

spaces apriori; consequently, the overall rule space size would increase dra-

matically. Again, however, there is nothing fundamental in this situation

that should prevent Hektor's current learning algorithms from being suc-

cessful. In particular, the exploratory SLTs ability to maximize on conflict-

ing model predictions should allow Hektor to efficiently distinguish

between situations involving inter- and intra-featural matching rules,

thereby rapidly whittling down the size of the rule subspace requiring

thorough exploration.

6.4.2 difficulties and limitations

We've now seen that Hektor's behavior and learning architecture are quite

successful overall with respect to the CheeseWhiz task. It is also instruc-

tive, however, to consider the difficulties and limitations that this chapter's

experimentation has revealed. Though happily few in number, these

points provide good fodder for considerations of future work.

a difficulty: recognizing previously encountered rule sets

In section 5.4: the matching toolbox, we described the mechanism by which

inactive matching models corresponding to previously encountered rule

sets are maintained in Hektor's memory. The motivating notion here was

that by keeping these inactive models, Hektor would be able to quickly

recognize when the House reverted to an old set of previously utilized
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matching rules. As discussed originally, however, the task of reactivating

these old matching models at the appropriate time is a thornier logistical

challenge than one might think. One can't simply reactivate an inactive

model whenever its prediction accuracy history exceeds that of the cur-

rently active models, as this would means that new active models would be

continually replaced by reactivated models before they could be refined.

Recall that the proposed solution to this problem was to reactivate inactive

models whose prediction accuracy history exceeded a specified threshold

only when all active models had been proven inconsistent.

In the abstract this solution seems an ideal compromise. Since the

exploratory SLT frequently references inactive models in order to deter-

mine the response card that Hektor should play (see section 5.6), inactive

models should have the opportunity to help guide Hektor's pattern of

responding, revealing situations in which they correspond to the matching

rules more precisely than the active model. The only caveat, as originally

mentioned in section 5.4, is that this will only work when it takes Hektor

several deals to detect the inconsistency in his active model. The inactive

models, in other words, must have time to prove their correspondence to

the matching rules before the currently active model is discovered to be

inconsistent. The experiments in this chapter have demonstrated that this

situation seldom arises in practice. In fact, Hektor generally detects modi-

fications of the matching rules on the first deal after they have occurred. In
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other words, it has been shown that the exploratory SLT doesn't 'acciden-

tally' hit on the correct response because of input from inactive models as

much as had been anticipated during the system's design. The mechanism

for reactivating old models corresponding to previously encountered rule

sets is consequently not as powerful as it might be.

a limitation: the assumption of one-shot inconsistency

According to the rules of CheeseWhiz, it is possible for Hektor to deter-

mine that a matching model is inconsistent after encountering just one

unexpected result. When a matching model makes an incorrect prediction

there is no question of noisy data or erroneous measurement - the model

is simply wrong. While this assumption of one-shot inconsistency makes

sense with respect to a card game, it is certainly true that many learning

situations are not so obliging. In fact it is often important to be able to dif-

ferentiate situations in which a new datum disagrees with an existing

model because the model is incorrect from those situations in which the

datum disagrees with the model because of noise in the sensor, etc. The

assumption of one-shot inconsistency, therefore, is one that would be use-

ful to remove from the matching toolbox in the future. As additional

incentive, it should be noted that abandoning one-shot inconsistency

should actually make the aforementioned challenge of detecting when to

reactivate old matching models significantly easier. That is, if an active

model's consistency were allowed to gradually decline over time, this
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would correspondingly give inactive models a more realistic opportunity

to prove their correspondence to the matching rules. We will return to this

topic in the next and final chapter's discussion of future work.

6.5 some philosophical evaluations

Thus far in this chapter we've evaluated Hektor, and the developmental

approach to Al that he embodies, in both a qualitative and quantitative

capacity. Before moving on to chapter 7 and this thesis' ultimate conclu-

sion, I would like to take a moment to consider some rather more philo-

sophical points of evaluation.

6.5.1 machine learning revisited

Let's begin by revisiting the matter of traditional machine learning, first

discussed in section 3.2. In this chapter there have been multiple mentions

of how Hektor's performance on the CheeseWhiz task compares with the

expected performance of an exhaustive search approach to the problem.

While exhaustive search is useful as a basic reference point because of its

conceptual tractability, it must be admitted that it sheds very little light on

how more realistic alternative approaches to CheeseWhiz might compare

to the developmental paradigm. How, in other words, might a competent

student of traditional machine learning approach CheeseWhiz? What

might the similarities and differences be relative to the developmental

approach pursued in this thesis? While I will not distract from the main
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argument of this thesis by investigating these questions in an experimen-

tally rigorous manner, I would like to consider them briefly in conceptual

terms. In the following I will thus offer my suggestions as to how the

developmental approach to learning adopted in this thesis might compare

to that suggested by a more traditional machine learning perspective.

algorithmic similarities

With regard to the overall details of the learning algorithm (abstracted, for

the moment, from its architectural context) I contend that a clever

machine learning approach would probably differ very little from the over-

all algorithm embodied by Hektor's SLTs. After all, considered in isolation

from their place in a larger behavior architecture, there is nothing explic-

itly developmental about the algorithmic details of the SLTs. The hypoth-

esis formation mechanism of the exploratory SLT, for example, is really

just an ad hoc machine learning algorithm, one that takes advantage of

known constraints (e.g. the rules of CheeseWhiz) to maximize its effi-

ciency and simplicity. While it would certainly be possible to apply a wide

range of more sophisticated machine learning techniques to CheeseWhiz

(reinforcement learning, neural networks, etc.)2 the operations of Hektor's

SLTs can be thought of as being abstractly equivalent to a kind of mini-

mum complexity machine learning solution to the problem.

2. Such techniques are perhaps more properly termed 'over-sophisticated' in
relation to the CheeseWhiz task.
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This argument for continuity between the algorithmic details of Hek-

tor's SLTs and traditional machine learning should come as no surprise

given what was said in section 3.2: a developmental take on machine learn-

ing. Recall that my argument in that section was that machine learning

and this thesis' developmental take on AL, despite the seeming distance

between their respective mathematical formalism and biological inspira-

tion, are actually deeply complementary. Specifically, I noted that the con-

cept of the specialized learning tool could be understood as a kind of

architectural 'wrapper' for domain-specific machine learning algorithms.

Fundamentally then, what has been created in Hektor can be understood

as a modest instance of machine learning: one that is embedded in the

context of a novel behavioral architectural but not radically different in its

abstract algorithmic detail from what a more traditional approach to the

learning problem might yield.

architectural differences

Of course, I do not wish to argue that Hektor's learning paradigm is actu-

ally nothing more than traditional machine learning, so what is the critical

distinction? The answer, as has been so conspicuously foreshadowed, is the

fact of the learning algorithm's surrounding architectural context. Though

algorithmically recognizable to a student of machine learning, Hektor's

learning differs from more traditional approaches in that it takes place

within, and is organized by, an explicitly developmental surrounding
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architecture. Leaving aside considerations of biological motivation for the

moment, there are several core computational distinctions that this archi-

tecture imposes between itself and unembellished machine learning.

First, as we have discussed many times now, the developmental archi-

tecture insists strongly on the usage of domain-specific learning mecha-

nisms. The more important consideration, however, is that the

developmental architecture sets the granularity of this domain-specificity in

learning to correspond to the granularity of the creature's behavioral repertoire.

This is an important idea, essentially a statement of how the key computa-

tional lessons of development are implemented in this thesis' architecture,

so let's take a moment to unpack it appropriately. What we are saying is

that not only will learning tasks be decomposed using domain-specific

SLTs, but each of these SLTs will exist at a level of specificity that allows it

to correspond to a specific element in the behavior system. This quality of

'matching granularity' makes it possible for acquired knowledge to be

repurposed almost effortlessly between distinct behavioral contexts. That

is, to impose an AI slant on an example from Leyhausen [431, if a compu-

tational felid has learned how to pounce effectively in a playful context,

then it will automatically know how to pounce effectively in the hunting

context because that knowledge is maintained in an SLT that is directly

linked to the pouncing motor primitive. The developmental architecture,

in other words, uses the domain-specificity of SLTs to collapse as much as
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possible the distinction between behavior and learning; learning is envi-

sioned as a consequence of behaving, not a parallel process.

This, I contend, is what constitutes the real distinction between the

developmental approach to learning utilized in Hektor and what might be

expected from a more traditional machine learning perspective. Hektor's

learning is not only domain specific, but domain specific in a way that is

carefully designed to map onto the elements of his behavioral repertoire. A

traditional machine learning approach, with its emphasis on algorithm

rather than architecture, would be unlikely to organize learning in this

manner.

So why have I done things this way in this thesis? The motivation for

this design comes from considerations of the ultimate scalability of the

developmental architecture. It is my contention that as the sophistication

of our computational creatures increases (e.g. as development becomes an

increasingly good metaphor for the way in which these creatures change

over time) this kind of architecturally imposed learning organization will

scale more readily than traditional machine learning. That is, as creatures

come to have more and more sophisticated behavioral capabilities, it will

become increasingly important (indeed, necessary) to manage learning

and behavior together rather than separately. The developmental approach

detailed in this thesis accomplishes this by defining an explicit architec-

tural specification for the relationship between learning and behavior - a
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specification that mirrors the relationship observed in the ontogeny of liv-

ing animals.

6.5.2 on the long-term scalability of
developmental ai

In the last section we hypothesized that the developmental learning orga-

nization employed in this thesis is likely to yield its most significant

rewards as the complexity of our creatures increases. It is a truly develop-

mental creature, in other words, that will best demonstrate the ultimate

capabilities of the developmental architecture. Of course, this argument

begs the question as to what developmental AIs prognosis for long-term

scalability is. What are the challenges, architectural or otherwise, that will

need to be overcome to progress from a developmentally inspired creature

such as Hektor to a creature that is developmental in a more profound

sense of the word?

This is a very difficult question to answer, and not one that can be

approached with real certainty at this early stage. If I might be permitted a

brief interlude for prognostication, however, I would begin by observing

that there is always room to improve any computational architecture,

especially one charged with a task as complex as managing the learning

and behavior of an autonomous creature. The architecture defined in this

thesis is certainly no exception to this rule. Indeed, in the future work sec-

tion of the next chapter we will begin the consideration of several varieties
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of possible improvements that most immediately suggest themselves. That

said, however, I would argue that constraints on this thesis' architecture

itself are unlikely to be the most immediate stumbling block with regard

to the realization of more fully developmental creatures. The general hier-

archical design of the behavior system, inspired by a wealth of both etho-

logical and computational theorizing ([1], [6], [24], [25], [70], [34], [69],

[35], [71]), is exceedingly flexible and does not pose any obvious barriers

with respect to supporting more elaborate behavioral repertoires. The

architecture as it currently exists, for example, already has the ability to

support multiple goals (in the form of multiple motivational subsystems or

groups of such subsystems) and could easily be extended to support multi-

ple simultaneous actions (using multiple threads of behavior selection and

cross-exclusion between motor primitives) Rather, I would predict that the

more significant barriers to the creation of full-fledged developmental

creatures will cluster around issues of environmental complexity.

Development, I have argued, is largely about architecture, about how

one organizes a learning system to adapt to the demands of highly sophis-

ticated, complex, and dynamic environments. In order to fully apply these

lessons, therefore, it is clear that we need to have environments that are

realistically complex enough to make the requisite organizational overhead

worthwhile. This, it turns out, is often quite a challenge at present.
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As a purely anecdotal example, the Synthetic Characters research

group (within which my research was situated) spent a great deal of time

over the summer of 2004 brainstorming ideas for a research installation

that would showcase the kinds of developmental insights discussed in this

thesis. By far the greatest challenge in this process was simply that of con-

ceiving of an environment in which there would be enough complexity to

make the importance of development manifest. Without suitable environ-

mental support (or, in this case, a suitable accompanying thesis!), develop-

mental Al runs the risk of appearing to be little more than an interesting

but perhaps over-complicated approach to behavioral organization.

This challenge of creating environments with enough complexity to

fully showcase developmental organization is particularly acute with

respect to the kind of wholly virtual environment used in this thesis. In a

completely virtual world all complexity must be created by the designer, a

process that is extremely labor intensive. Thus, I would argue that the cre-

ation of more sophisticated developmental creatures may well be better

supported by the domains of robotics or mixed-reality environments (such

as the ALIVE system of Maes et al. [44]). The real world is quite complex

enough for anyone's purposes; by situating our developmental creatures

within its complexity (or, initially, a partially attenuated version of its

complexity) we can avoid the potentially infeasible burdens of hand-cod-

ing both complex creatures and complex worlds for them to inhabit. By

------ -----
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challenging developmental AI creatures in more sophisticated environ-

ments, it will begin to be possible to more realistically assess the

approaches potential for long-term scalability.

Having now evaluated Hektor and this thesis' developmental architec-

ture from qualitative, quantitative, and even philosophical perspectives, let

us turn our attention to the conclusion of the thesis. In the next and final

chapter I will summarize the contributions that this thesis has made and

make some suggestions regarding potentially profitable avenues of future

research.
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conclusions and future
directions 7

In this chapter I conclude my thesis by reviewing its major contributions

and offering some suggestions for future research.

7.1 summary of contributions

This thesis has covered a significant amount of intellectual ground, from a

synthesis of the literature on animal cognitive development to a completed

application of that synthesis to the challenge of computational learning.

From this spectrum of research, I submit that the following contributions

have been made:

1. An elucidation of the computational significance of development. From a

broad review of the ethological literature on development, I have identi-
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fLied two key lessons with ready applicability to the design of computa-

tional systems.

First, I have demonstrated that during development the when of learn-

ing is often just as important as the how. This suggests that we need to pay

close attention to the question of how our Al architectures will select and

identify potentially valuable learning contexts. In particular, the develop-

ment of animals from oscines to felids makes the point that the best con-

text for learning a given skill will often be quite different from the context

in which that skill will ultimately be expressed.

Second, I have shown that contrary to AIs prevailing desire for

domain-general learning mechanisms, the process of development is often

guided by a multiplicity of highly domain-specific cognitive tools. Often

these tools endow developing animals with an innate "instinct to learn"

[45] by embedding significant prior knowledge of their learning objec-

tives. These ideas were used to motivate the proposal of specialized learning

tools, a framework for approaching computational learning using a distrib-

uted network of domain-specific mechanisms.

2. The implementation of a novel behavioral and learning architecture motivated

by the key computational lessons of development. The ideas drawn from the

literature on development were used to design a developmental AI archi-

tecture. The architecture features a hierarchical, motivation-based behav-
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ior system consistent with the theoretical structures of the ethological

behavior systems tradition ([1], [6], [24], [25], [70], [34], [69], [35],

[71]) By structuring the behavior system's hierarchy as a lattice, behavioral

elements can easily be shared between different parents; this allows behav-

ioral modifications that are learned in one context to be flexibly repur-

posed into others. An intelligent behavior selection algorithm takes

advantage of the system's hierarchical structure to preserve behavioral

coherence when desirable while retaining the agility to switch priorities

rapidly in response to unexpected changes in the environment.

Learning is accomplished using a set of specialized learning tools that

may be distributed as needed throughout the behavior system. While indi-

vidual SLTs are each tailored for a specific learning objective, they can be

integrated into hierarchical toolboxes in order to cooperatively deconstruct

complex learning tasks. Coordination between SLTs and the behavioral

elements to which they are attached allows the learning process to be

tightly integrated into the creature's overall behavior.

3. The successful deployment of the developmental architecture in a computa-

tional case study featuring a competitive learning interaction between an autono-

mous character and a human user. The developmental architecture

implemented in this thesis was tested in a computational case study. The

study involved Hektor the Mouse, who could attempt to win cheese by
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wagering with a human user on a card matching game called CheeseWhiz.

Hektor's learning task was to quickly learn the user-selected matching

rules that governed the game and to adjust appropriately when the user

secretly altered them.

While constrained enough to be tractable, the CheeseWhiz learning

task demanded the exploration of an 18 element rule space under signifi-

cant time constraints and was therefore a non-trivial challenge. Using the

hierarchical behavior system and a suite of specialized learning tools, how-

ever, Hektor was shown to be capable of converging on a correct model of

the matching rules in an average of just 7.8 deals. Moreover, Hektor was

able to maintain a highly favorable win:loss ratio of 1.5 even when the user

had the ability to randomize the 18 element rule space every 7 deals.

The net effect of these contributions has been to establish a critical

proof-of-concept for the developmental approach to Al proposed in this

thesis. With this initial exploratory work accomplished, there is now a vast

selection of exciting possibilities for future research. In the next section I

will review some of the possibilities for enlarging on the developmental Al

paradigm.

7.2 future research directions

What are some of the future challenges suggested by this work? While the

potential impact of developmental design principles on Al is very broad,

W - - - - - 1010
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ill focus here on the possibilities for future work that are most directly

suggested by this thesis.

7.2.1 hektor-specific improvements

To begin with the most specific, there are several ways in which Hektor

might be improved in the future.

improvements to matching models and their management

As was discussed in chapter 6, it would be worthwhile to modify the

matching toolbox to support graded model inconsistency, thereby giving

Hektor the ability to cope with potentially noisy data. One can think of

many interesting modifications to the rules of CheeseWhiz that might

make this ability valuable (for example, perhaps the House has the ability

to periodically bluff a matching rule change for one or two deals); more

generally, the ability to accommodate imperfect data is something that

would obviously be extremely useful for applications of the matching tool-

box outside the domain of CheeseWhiz.

A second improvement, closely related to that of supporting graded

model inconsistency, would be to revamp the mechanism by which Hek-

tor manages his inactive models. As previously mentioned, graded model

inconsistency would actually go a significant distance towards improving

matters in this area simply by giving the existing engineering the opportu-

nity to function more effectively. Beyond this amelioration, however, there

is room to consider alternative model reactivation strategies that could
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boost performance even further. One idea would be to use a pattern com-

pletion motif to detect when an inactive model should potentially be reac-

tivated. That is, suppose the matching toolbox detects that an active

matching model's specified rules are a subset of the rules for an inactive

model, indicating that perhaps the House has reverted to an old rule set.

In this situation, reactivating the inactive model in question could poten-

tially shortcut the process of reconverging on the old rule set, thereby

enabling Hektor to adapt very quickly. This is just one idea of course; the

more central intuition is that making the model reactivation scheme more

sophisticated would be quite likely to pay significant rewards in terms of

enhanced performance.

improvements to hektor's sits

In section 5.3 I discussed the fact that Hektor's observational and wager

controller SLTs currently exist in a simplified form. While conforming to

the architectural specifications for SLTs these learning tools do not at

present actually learn anything - they are instead governed by static rule

sets. It is quite likely that Hektor's performance on the CheeseWhiz task

could be significantly improved by focusing some effort on the refinement

of these components of his learning hierarchy.

The general idea for improving both of these SLTs would be to give

them the ability to model and adapt to relevant aspects of the House's

behavior. Rather than simply triggering Hektor to play a random card, for

192|1



conclusions and future directions

example, the observational SLT could condition its operation on a dynam-

ically computed estimate of prior probabilities, preferentially playing cards

that have been shown to be most likely to result in a match given the

House's cumulative history of matching rule specifications. Similarly, the

wager controller SLT could manage statistics regarding the House's likeli-

hood of juggling the rules conditioned on some short history of preceding

outcomes. Explicitly modeling the House's juggling behavior in this fash-

ion would make for much more effective feigning than is possible using the

current static rule set. Knowing when the House was likely to juggle the

rules would also enable the wager controller SLT to manage Hektor's

cheese supply more intelligently, adapting wager amounts to the likelihood

that the current model of the matching rules has remained accurate.

While Hektor's ability to learn in the context of the CheeseWhiz task

has already been found to be quite good, refining his simplified SLTs in

this fashion should make him an even more shrewd competitor.

7.2.2 behavior system improvements

Having vetted the behavior system architecture through its application in

Hektor, there are several candidates for future architectural improvement

that suggest themselves. First, it would be worthwhile to consider how the

message passing framework used to exchange information between behav-

ioral elements might be made easier to use. While conceptually simple and

powerful in its range of application, the work done for this thesis has

-moo,
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revealed that the message passing paradigm can pose a surprising challenge

for debugging. Thus, an obvious improvement would be to add a further

layer of abstraction to the communication model implemented by behav-

ioral elements, shielding users of the system from some of the nit-picky

complications and easily avoided difficulties that commonly arise.

Second, one of the capabilities that was clearly suggested by the etho-

logical literature but never fully elaborated in the behavior system is that

of allowing for dynamically changing topologies, or large-scale reorganiza-

tions of parent-child relationships. Such reconfiguration is quite useful

(conceptually at least) in more complex developmental scenarios in which

radically changing environmental demands necessitate a concomitantly

radical change in behavioral organization. While this idea of allowing for

dynamic 're-wiring' was part of the basic design of behavioral elements, it

was unnecessary for Hektor and thus never fully explored. It would be

quite interesting to investigate the benefits that might be obtained by uti-

lizing and refining this dynamic reconfiguration ability.

7.2.3 specialized learning tool improvements

What future improvements might we envision for specialized learning

tools? Thus far it has been shown that coordinating the activity of multiple

SLTs with toolboxes is a productive means of approaching complex, hier-

archically structured learning tasks. The next step in complexity, therefore,

might be to consider implementing the ability for toolboxes to communi-
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cate and cooperate with one another. This would extend the scale of the

learning problems for which SLTs would be useful.

More generally, it is intriguing to consider the continuing develop-

ment of the SLT concept at the content-specific level. To understand what

is meant by this, note that the core engineering for SLTs has been inten-

tionally left quite open-ended: the hypothesize-act-update cycle of SLT

function can be mapped onto virtually any learning situation. It's possible

then to consider the development of a kind of SLT library, a set of archi-

tecturally analogous learning tools, aimed at a range of adaptive objectives,

that can be installed in new creatures on a 'plug-and-play' basis. Of course

the vision of such a learning library would require many years (and a great

deal of hard work) to accomplish, but it is interesting to consider the ben-

efits that would inhere in the widespread adoption of a standardized SLT-

like learning architecture.

7.3 the final word

In conclusion, this thesis has demonstrated that the subject of cognitive

development is a potentially rich source of inspiration for the design of AI

architectures. Millions of years of evolution have converged on the process

of development as the best means of creating creatures that can adapt flex-

ibly to the changing demands of unpredictable environments. Rather than

spending a few million years more trying to do it differently, we would do
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well to take the lessons of development seriously in the design of our own

creations.



references

[1] Arkin, R. C., Fujita, M., Takagi, T., & Hasegawa, R. (2003} An
Ethological and Emotional Basis for Human-Robot Interaction.
Autonomous Systems, 42(3-41

[2] Baerends, G. (1976) On Drive, Conflict, and Instinct, and the
Functional Organization of Behavior, Perspectives on Brain Research
(Vol. 45)

[3] Balsam, P. D., & Silver, R. (1994) Behavioral Change as a Result of

Experience: Toward Principles of Learning and Development. In J.
A. Hogan & J. J. Bolhuis (Eds.) Causal Mechanisms of Behavioural
Development (pp. 327-357) Cambridge, UK: Cambridge University
Press.

[4] Berlin, M., Buchsbaum, D., Cochran, J., Downie, M., Lyons, D., &
Blumberg, B. (2004} Max T Mouse: A "Teasible" Synthetic Charac-
ter. Research sketch submitted to ACM SIGGRAPH 2004, Los
Angeles, CA.

[5] Berlin, M. R. (2003} Predatory Sequence Learningfor Synthetic Char-

acters. S.M. Thesis, Massachusetts Institute of Technology, Cam-
bridge, MA.



growing up virtual

[6] Blumberg, B. (1996). Old Tricks, New Dogs: Ethology and Interactive
Creatures. Ph.D. Dissertation, Massachusetts Institute of Technol-
ogy, Cambridge, MA.

[7] Blumberg, B. (2002). D-Learning: What Dog Learning Tells Us
About Building Characters that Can Learn. In G. Lakemeyer & B.
Nobel (Eds.), Exploring Artificial Intelligence in the New Millennium.
San Francisco: Morgan Kaufmann.

[8] Blumberg, B., Downie, M., Ivanov, Y., Berlin, M., Johnson, M. P., &
Tomlinson, B. (2002} Integrated Learning for Synthetic Characters.
Proceedings of ACM SIGGRAPH 2002, San Antonio, Texas.

[9] Blumberg, B., & Gaylean, T. A. (1995). Multi-Level Direction of
Autonomous Creatures for Real-Time Virtual Environments. Proceed-
ings of ACM SIGGRAPH 1995, Los Angeles, CA.

[10] Bolhuis, J. J., & Hogan, J. A. (Eds.). (1999). The Development ofAni-
mal Behavior: A Reader. Oxford: Blackwell Publishers.

[11] Breazeal, C. (2002). Designing Sociable Robots. Cambridge, MA:
MIT Press.

[12] Breazeal, C. (2002). Regulation and Entrainment in Human-Robot
Interaction. International Journal of Robotics Research, 12(10-11),
883-902.

[13] Breazeal, C. (2003). Toward Sociable Robots. Robotics and Autono-
mous Systems, 42, 167-175.

[14] Breazeal, C., Brooks, R. A., Gray, J., Hoffman, G., Kidd, C., Lee, H.,
Lieberman, J., Lockerd, A., & Mulanda, D. (2004). Humanoid
Robots as Cooperative Partners for People. Submitted to Interna-
tional Journal of Humanoid Robots.

[15] Breazeal, C., Hoffman, G., & Lockerd, A. (2004). Teaching and
Working with Robots as a Collaboration. Submitted to AAMAS 2004.

198|



references 1199

[16] Breazeal, C., & Scassellati, B. (2000) Infant-like Social Interactions
Between a Robot and a Human Caretaker. Adaptive Behavior, 8(1),
49-74.

[17] Brooks, R. A. (1985). A Robust Layered Control System for a Mobile
Robot (Artificial Intelligence Laboratory, A.I. Memo 864). Cam-
bridge, MA: Massachusetts Institute of Technology.

[18] Brooks, R. A. (2002). Flesh and Machines: How Robots Will Change
Us: Pantheon Books.

[19] Brooks, R. A., Breazeal, C., Irie, R., Kemp, C. C., Marjanovic, M.,
Scassellati, B., & Williamson, M. M. (1998). Alternative Essences of
Intelligence. Proceedings of the 1998 International Joint Conference
on Artificial Intelligence.

[20] Burke, R. (2001). It's About Time: Temporal Representations for Syn-
thetic Characters. S.M. Thesis, Massachusetts Institute of Technol-
ogy, Cambridge, MA.

[21] Burke, R., Isla, D., Downie, M., Ivanov, Y., & Blumberg, B. (2001)
Creature Smarts: The Art and Architecture of a Virtual Brain. Pro-
ceedings of the 2001 Computer Game Developers Conference.

[22] Carey, S. (1985). Conceptual Change in Childhood. Cambridge, MA:
MIT Press.

[23] Coppinger, R. P., & Smith, C. K. (1990), A Model for Understand-
ing the Evolution of Mammalian Behavior. In H. Genoways (Ed.),
Current Mammology, Vol. 2 (pp. 33-74). New York: Plenum Press.

[24] Dawkins, R. (1976) Hierarchical Organization: A Candidate Prin-
ciple for Ethology. In P. Bateson & R. A. Hinde (Eds.), Growing
Points in Ethology. Cambridge, UK: Cambridge University Press.

[25] Davey, G. (1989) Ecological Learning Theory. London: Routledge,

Inc.

[26] Drescher, G. L. (1991), Made-Up Minds: A Constructivist Approach

to Artifcial Intelligence. Cambridge, MA: MIT Press.



growing up virtual

[27] Duda, R. 0., Hart, P. E., & Stork, D. G. (2000). Pattern Classifica-
tion (2nd ed.). New York: Wiley Interscience.

[28] Foner, L. N., & Maes, P. (1994). Paying Attention to What's
Important: Using Focus of Attention to Improve Unsupervised
Learning. In D. Cliff & P. Husbands & J. A. Meyer & S. W. Wil-
son (Eds.), From Animals to Animats: Proceedings of the Third Inter-
national Conference on the Simulation of Adaptive Behavior.
Cambridge, MA: MIT Press.

[29] Girard, M., & Maciejewski, A. A. (1985). Computational Modeling
for the Computer Animation of Legged Figures. Computer Graphics,
19(3), 263-270.

[30] Hall, W. G., & Williams, C. (1999). Suckling Isn't Feeding, or Is It?
A Search for Developmental Continuities. In J. J. Bolhuis & J. A.
Hogan (Eds.), The Development of Animal Behavior: A Reader.
Oxford: Blackwell Publishers.

[31] Hauser, M. D. (1996). The Evolution of Communication. Cam-
bridge, MA: MIT Press.

[32] Hauser, M. D., & Spelke, E. (2004). Evolutionary and Develop-
mental Foundations of Human Knowledge. In M. Gazzaniga & N.
Logothetis (Eds.), The Cognitive Neurosciences, II. Cambridge, MA:
MIT Press.

[33] Hinde, R. A. (1970). Animal Behavior. New York: McGraw-Hill.

[34] Hogan, J. A. (1994). Structure and Development of Behavior Sys-
tems. Psychonomic Bulletin and Review, 1(4) 439-450.

[35] Hogan, J. A. (2001). Development of Behavior Systems. In E. M.
Blass (Ed.). Handbook ofBehavioral Neurobiology (Vol. 13, pp. 229-
279). New York: Kluwer Academic Publishers.

[36] Hraber, P. T., Jones, T., & Forrest, S. (1997). The Ecology of Echo.
Artificial Life, 3, 165-190.

200|1



references

[37] Joshi, A., & Weng, J. (2003, July 20-24). Autonomous Mental Devel-
opment in High Dimensional State andAction Spaces. Paper presented
at the 2003 International Joint Conference on Neural Networks,
Portland, OR.

[38] Kaelbling, L. P, Littman, M. L, & Moore, A. W. (1996). Reinforce-
ment Learning: A Survey. Journal ofArtipfcial Intelligence Research, 4,
237-285.

[39] Konishi, M. (1965). The role of auditory feedback in the control of
vocalization in the white-crowned sparrow. Condor, 66, 85-102.

[40] Kruijt, J. P. (1999). Ontogeny of Social Behavior in Burmese Red

Junglefowl (Gallus gallus spadiceus) (excerpt). In J. J. Bolhuis & J. A.
Hogan (Eds.), The Development of Animal Behavior: A Reader.
Oxford: Blackwell Publishers.

[41] Kuhl, P. K. (1999). Speech, Language, and the Brain: Innate Prepa-
ration for Learning. In M. D. Hauser & M. Konishi (Eds.), The
Design ofAnimal Communication. Cambridge, MA: MIT Press.

[42] Lemke, J. L. (1996). Self-Organization and Psychological Theory.
Theory and Psychology, 6(2), 352-356.

[43] Leyhausen, P. (1973). On the Function of the Relative Hierarchy of

Moods (As Exemplified by the Phylogenetic and Ontogenic Devel-
opment of Prey-Catching in Carnivores). In K. Lorenz & P. Ley-
hausen (Eds.), Motivation of Human and Animal Behavior: An

Ethological View. New York: Van Nostrand Reinhold Company.

[44] Maes, P., Darrell, T., Blumberg, B., & Pentland, A. (1996). The
ALIVE System: Wireless, Full-Body Interaction with Autonomous
Agents. The ACM Special Issue on Multimedia and Multisensory Vir-

tual Worlds.

[45] Marler, P. (1991). The Instinct to Learn. In S. Carey & R. Gelman

(Eds.), The Epigenesis of Mind: Essays on Biology and Cognition (pp.

37-66). Hillsdale, NJ: Erlbaum.

|201



growing up virtual

[46] Marler, P. (1997) Three Models of Song Learning: Evidence from
Behavior. Journal ofNeurobiology, 33, 501-516.

[47] Marler, P. (1999). On Innateness: Are Sparrow Songs "Learned" or
"Innate"? In M. D. Hauser & M. Konishi (Eds. The Design ofAni-
mal Communication (pp. 293-318). Cambridge, Massachusetts:
MIT Press.

[48] Marler, P., & Sherman, V. (1983). Song structure without auditory
feedback: Emendations of the auditory template hypothesis. Animal
Behavior, 33, 57-71.

[49] Marler, P., & Tamura, M. (1962). Culturally transmitted patterns of
vocal behavior in sparrows. Science, 146, 1483-1486.

[50] McKenna, M., & Zeltzer, D. (1990). Dynamic Simulation of
Autonomous Legged Motion. Computer Graphics, 24(4), 29-38.

[51] Miller, D. B. (1997). The Effects of Nonobvious Forms of Experi-
ence on the Development of Instinctive Behavior. In C. Dent-Read
& P. Zukow-Goldring (Eds.), Evolving Explanations ofDevelopment.
Washington, D.C.: American Psychological Association.

[52] Minsky, M. (1985). The Society of Mind. New York: Simon and
Schuster, Inc.

[53] Minsky, M. (2002). The Emotion Machine. Pre-publication draft.

[54] Mitchell, T. M. (1997). Machine Learning. Boston: WCB McGraw-
Hill.

[55] Perlin, K., & Goldberg, A. (1996). Improv: A System for Scripting
Interactive Actors in Virtual Worlds. Proceedings of ACM SIG-
GRAPH 1996, New Orleans, LA.

[56] Prince, C. G. (2002). Introduction: The Second International Work-
shop on Epigenetic Robotics. Proceedings of the Second International
Workshop on Epigenetic Robotics: Modeling Cognitive Develop-
ment in Robotic Systems, Edinburgh, Scotland.

202|1



references

[57] Pryor, K. (1999) Clicker Trainingfor Dogs. Waltham, MA: Sunshine
Books.

[58] Ray, T. S. (1998). Selecting Naturally for Differentiation: Prelimi-
nary Evolutionary Results. Complexity, 3(5), 25-33.

[59] Reynolds, C. W. (1987). Flocks, Herds, and Schools: A Distributed
Behavioral Model. Proceedings of ACM SIGGRAPH 1987, Ana-

heim, CA.

[60] Scassellati, B. (2000, September). Theory of Mindfor a Humanoid
Robot. Paper presented at the First IEEE/RSJ International Confer-

ence on Humanoid Robotics.

[61] Scassellati, B. (2003, July 20-24). Investigating Models of Social

Development Using a Humanoid Robot. Paper presented at the 2003
International Joint Conference on Neural Networks, Portland, OR.

[62] Searle, J. R. (1998). How to Study Consciousness Scientifically.

Brain Research Reviews, 26, 379-387.

[63] Shettleworth, S. (1994). The Varieties of Learning in Development:

Toward a Common Framework. In J. A. Hogan & J. J. Bolhuis

(Eds.), Causal Mechanisms of Behavioural Development (pp. 358-
376). Cambridge, UK: Cambridge University Press.

[64] Sims, K. (1994, July 1994). Evolving Virtual Creatures. Proceedings

of ACM SIGGRAPH 1994, Orlando, FL.

[65] Spelke, E. (2000). Core Knowledge. American Psychologist, 55,
1233-1243.

[66] Spelke, E. S. (2003). What Makes Us Smart? Core Knowledge and

Natural Language. In D. Gentner & S. Goldin-Meadow (Eds.),
Language in Mind: Advances in the Study of Language and Thought.

Cambridge, MA: MIT Press.

[67] Sutton, R. R, & Barto, A. G. (2000). Reinforcement Learning: An

Introduction. Cambridge, MA: MIT Press.

|203



growing up virtual

[68] Thelen, E., & Smith, L. B. (1994). A Dynamic Systems Approach to
the Development of Cognition and Action. Cambridge, MA: MIT
Press.

[69] Timberlake, W. (2000). Motivational Modes in Behavior Systems.
In R. R. Mowrer & S. B. Klein (Eds.), Handbook of Contemporary
Learning Theories (pp. 155-209). Hillsdale, NJ: Erlbaum Associates.

[70] Timberlake, W., & Lucas, G. A. (1989). Behavior Systems and
Learning: From Misbehavior to General Principles. In S. B. Klein &
R. R. Mowrer (Eds.), Contemporary Learning Theories: Instrumental
Conditioning Theory and the Impact of Biological Constraints on
Learning (pp. 237-275). Hillsdale, NJ: Erlbaum Associates.

[71] Tinbergen, N. (1951). The Study ofInstinct. New York: Oxford Uni-
versity Press.

[72] Tu, X, & Terzopoulos, D. (1994). Artificial Fishes: Physics, Locomo-
tion, Perception, Behavior. Proceedings of ACM SIGGRAPH 1994,
Orlando, FL.

[73] Waddington, C. H. (1999). Principles of Development and Differ-
entiation (excerpt). In J. J. Bolhuis & J. A. Hogan (Eds.), The Devel-
opment ofAnimal Behavior: A Reader. Oxford: Blackwell Publishers.

[74] Watkins, C. J, & Dayan, P. (1992). Q-Learning. Machine Learning,
8.

[75] Weng, J, McClelland, J, Pentland, A, Sporns, 0., Stockman, I., Sur,
M., & Thelen, E. (2001). Autonomous Mental Development by
Robots and Animals. Science, 291, 599-600.

[76] Weng, J., Zhang, Y., & Chen, Y. (2003, July 20-24). Developing
Early Senses About the World: "Object Permanence" and Visuoauditory
Real-time Learning. Paper presented at the 2003 International Joint
Conference on Neural Networks, Portland, OR.

[77] Whaling, C. S., Soha, J. A., Nelson, D. A., Lasley, B., & Marler, P.
(1998). Photoperiod and tutor access affect the process of vocal
learning. Animal Behavior, 56, 1075-1082.

204|1



references 1205


