
A Diagnostics Architecture for Component-Based System Engineering

by

Martin Ouimet

B.S.E., Mechanical and Aerospace Engineering (1998)

Princeton University

Submitted to the Department of Aeronautics and Astronautics

in Partial Fulfillment of the Requirements for the Degree of

Master of Science in Aeronautics and Astronautics

at the

Massachusetts Institute of Technology

June 2004

@ 2004 Massachusetts Institute of Technology
All rights reserved

72

MASSACHUSETTS INS E
OF TECHNOLOGY

JUL 12004

LIBRARIES

AERO

Signature of Author
Department of Aeronautics and Astronautics

May 14, 2004

2 -J

Certified by
Charles P. Coleman

Assistant Professor of Aeronautics and Astronautics
Thesis Supervisor

Accepted by
dward M. Greitzer

H.N. Slater Professor of Aeronautics and Astronautics
Chair, Committee on Graduate Students

A Diagnostics Architecture for Component-Based System Engineering

by

Martin Ouimet

Submitted to the Department of Aeronautics and Astronautics
on May 14, 2004 in Partial Fulfillment of the

Requirements for the Degree of Master of Science in

Aeronautics and Astronautics

Abstract

This work presents an approach to diagnosis to meet the challenging demands of

modern engineering systems. The proposed approach is an architecture that is both

hierarchical and hybrid. The hierarchical dimension of the proposed architecture

serves to mitigate the complexity challenges of contemporary engineering systems.

The hybrid facet of the architecture tackles the increasing heterogeneity of modern

engineering systems. The architecture is presented and realized using a bus represen-

tation where various modeling and diagnosis approaches can coexist. The proposed

architecture is realized in a simulation environment, the Specification Toolkit and

Requirements Methodology (SpecTRM). This research also provides important back-

ground information concerning approaches to diagnosis. Approaches to diagnosis are

presented, analyzed, and summarized according to their strengths and domains of
applicability. Important characteristics that must be considered when developing a
diagnostics infrastructure are also presented alongside design guidelines and design
implications. Finally, the research presents important topics for further research.

Thesis Supervisor: Charles P. Coleman
Title: Assistant Professor of Aeronautics and Astronautics

2

Contents

1 INTRODUCTION

2 DIAGNOSIS AND FAULT-TOLERANCE

2.1 Diagnosis

2.2 Fault-Tolerance

2.3 Faults, Fault Types, and Fault Models

2.4 M odeling

2.5 Approaches to Diagnosis

2.5.1 Direct Observation

2.5.2 Probabilistic Inference

2.5.3 Constraint Suspension

2.5.4 Signal Processing

2.5.5 Discrete Event Systems

2.6 Diagnosability

2.7 Other Considerations

2.8 Analysis and Summary

3 PROPOSED ARCHITECTURE

3.1 Hierarchical Architecture

3.2 Hybrid Architecture

3.3 Data Bus Architecture

4 ARCHITECTURE REALIZATION

. 15

. 16

. 18

. 20

. 2 1

. 22

. 23

. 25

.. 27

.. 28

. 3 1

. 3 2

. 3 3

36

. 36

. 39

-~~ ~ ~ ~ 4 1

44

3

7

13

4.1 SpecTR M . 45

4.2 R ealization . 46

4.2.1 Structure . 47

4.2.2 Approaches . 48

4.2.3 The Java API . 53

4.3 Summary and Extensions . 53

5 CONCLUSION 55

4

List of Figures

Generic System Representation

Fault-Tolerant Controller Architecture

A Simple AND Gate

A Network of AND Gates and OR Gates

A Simple Automaton

Hierarchical Architecture

Data Bus Architecture

Agent Realization of the Conceptual Architecture

Diagnostics Architecture Structure

Diagnosis using a Signal Processing Approach . .

Diagnosis using Constraint Suspension

Diagnosis using Discrete Event Systems

5

2-1

2-2

2-3

2-4

2-5

3-1

3-2

3-3

4-1

4-2

4-3

4-4

. 14

. 18

. 23

. 26

. 29

37

41

42

48

49

50

52

List of Tables

2.1 Approaches to Diagnosis . 34

4.1 Global Sensor Map for Uniquely Identifiable Failures 51

6

Chapter 1

INTRODUCTION

Technological advances have pushed the boundary of what modern engineering sys-

tems can accomplish. With the constant increases in computer performance, con-

temporary engineering systems have come to rely heavily on automation for nominal

operation. Automation has played a major role in meeting the performance and func-

tionality demands expected of current engineering systems. However, these advances

have also drastically increased the complexity of common modern systems. Ampli-

fied complexity inevitably introduces an increase in the possible failures of advanced

systems [13]. Even with enhanced quality control processes and other methods aimed

at removing failures from systems, building systems without faults remains an elusive

task. Given the assumption that faults are inevitably present in systems of moderate

complexity, the need to find and correct these faults becomes an integral part of the

performance of such systems. Consequently, modern engineering systems face the

challenging task of diagnosing and accommodating unexpected faults. Furthermore,

all systems should react to faults in a safe, non-destructive manner, so that the system

can continue nominal operation or minimize operational losses.

Application domains where increasing dependence on automation and booming

complexity can be observed include manufacturing, transportation, and space explo-

ration [7,14,16,22,27,29]. Among these application domains, the need for reliability

is extremely high, especially in safety-critical systems and mission-critical systems.

Safety-critical systems are distinguished by potential physical harm to humans. Such

7

systems include aviation, manned space exploration, and nuclear power plant opera-

tion. On the other hand, mission-critical systems may not involve potential physical

harm to humans, but reliability in such systems is important because of the high

cost of failure or the high cost of downtime. Such systems include unmanned space

exploration, manufacturing systems, and power systems. The responsibilities put on

safety-critical and mission-critical systems require that they be of utmost reliability

or that, should they fail, they do so gracefully so as to minimize the cost of failure.

Evidently, as a system becomes more complex, diagnosing faults in such a system

also becomes more difficult. Alongside increasing complexity, modern systems also

display increasing heterogeneity [29]. This increase in heterogeneity introduces new

challenges to system diagnosis and modeling. Continuous dynamics and discrete

behavior need to coexist and new failure modes are introduced as a side effect of

heterogeneity and complexity. The combination of disparate components into a single

system introduces failure modes that cannot be isolated to single-component failures

[13]. Not only do components need to be diagnosed at a low-level, but faults arising

from interaction between components must also be captured. As a result, in order

to meet the reliability targets, a reliable diagnostic infrastructure must be able to

handle the complexity and heterogeneity of modern engineering systems.

A survey of the literature presents numerous diagnostic technologies [2,3,8,10,12,

17,24, 27, 29]. The proposed approaches display desirable diagnostic attributes for a

breed of systems. Moreover, certain diagnostic technologies serve a special purpose

very proficiently [19,27]. With the increasing heterogeneity of systems, a comprehen-

sive diagnostics architecture should be flexible enough to combine various diagnostics

technologies into the diagnostics strategy. Combining diagnostics approaches will

enable the system designers to capitalize on the strengths of the various methods.

Another interesting point to note is that the diagnostics strategy is very closely tied

to the modeling of the system. In turn, the system model is dependent on the dynam-

ics of the system. Consequently, as was previously elicited, realistically modeling the

dynamics of modern systems will require some form of hybrid modeling to capture

the full behavior of the system (even if it is to be approximated). As a result, the

8

diagnostics strategy will also need to incorporate hybrid capabilities.

This work presents a diagnostics architecture that is both hierarchical and hybrid.

The hierarchical dimension of the architecture helps mitigate the complexity of mod-

ern systems through levels of abstraction. By leveraging levels of abstraction, the

responsibilities of the diagnosis component can be distributed. Moreover, the logic

needed at the top level of the system can also be simplified to a more manageable

level. Hierarchical diagnosis has been studied to a certain extent [6], but the concepts

could be expanded further. Furthermore, hierarchical considerations have not been

fully realized in a complete and flexible hybrid architecture. The concept of hierarchi-

cal abstractions have been around for quite some time in a variety of fields (computer

science, cognitive engineering, mechanical engineering, etc.). The benefits reaped by

other fields can also carry over to the field of diagnostics.

The hybrid dimension of the architecture enables the combination of diagnostics

technologies into a comprehensive diagnostics framework. As Chapter 2 will reveal,

there exists a plethora of approaches to diagnostics. While all of these approaches

have the same goal - finding and accommodating faults in systems - the means by

which they reach their goal can vary significantly. The hope is that a hierarchical

and hybrid architecture can meet the diagnostics needs of increasingly complex and

heterogeneous engineering systems. This work also presents a realization of the con-

ceptual architecture using a data bus architecture and a simulation environment. The

data bus architecture enables universal information dissemination and a plug-and-play

environment for diagnostics technologies. Developing such a flexible framework will

enable system designers to tailor their diagnostics strategy to the needs of their spe-

cific project. Given the wide range of applications of this work, flexibility should be

emphasized. The simulation environment presented enables system designers to test

out their diagnostics strategy during the early phases of system design.

Creating a comprehensive diagnostic strategy for modern engineering systems is

an important challenge. However, developing such a strategy from concept to produc-

tion introduces another set of challenges. Not only is diagnosis development highly

dependent on system development but diagnosis behavior is also difficult to verify

9

and validate. Given that many of the target systems for this technology (especially

space exploration systems) operate in highly uncertain environments, validating and

verifying the behavior of the diagnostics strategy becomes of utmost importance.

While it would be impossible to predict all of the possible operating conditions of

such systems, running a series of simulation provides a good starting point for veri-

fying behavior. The reality of most diagnostics technologies is such that most faults

need to be predicted in advance. While this reality unveils inherent limitations in the

technology, a simulation environment can play an important role in estimating the

performance of the system under novel faults.

Other development challenges include how to design systems that are diagnosable

and how to understand how different system designs affect diagnosability. These

challenges are not limited to this work only, but to any work on diagnostics. System

decisions such as what sensors to include in a system affect not only the diagnostics

infrastructure, but the system as a whole. However, if tradeoffs can be evaluated in

an empirical manner (rather than through instinct or past experience), the decisions

on system design and diagnosability implications can be fully understood. Other

important challenges in system design (and not only in diagnostics design) is the idea

of reuse. Reuse has often been cited as a viable means of reducing development cost

and time to production. However, reuse faces multiple challenges that have led to

rethink the benefits of reusing implementation. It has been argued that, perhaps,

reuse has not been targeted at the right phase of the system lifecycle [28]. Design

and specification may provide adequate phases of the lifecycle where reuse could be

viable. Reuse of design and specification can potentially reduce cycle targets if applied

properly [28].

This work also presents an approach to system design [28] that attempts to capi-

talize on design and specification reuse. The reuse methodology can also be applied to

diagnostics design and specification. The proposed approach uses domain specificity

and an executable design environment to enable specification reuse, verification, and

validation. The environment provides a set of system engineering tools that enable

system design and simulation in a component-based framework. In this framework,

10

components (in the form of design and specification) can be reused and combined

into a complete system using a plug-and-play philosophy. Reuse can be more success-

fully achieved within a specific domain (such as spacecraft design). Using a similar

methodology, a set of diagnostics best practices for a specific domain can be devel-

oped and tested during the system design phase. This methodology would ease the

development cycle and provide a quantitative basis on which to evaluate diagnos-

tics approaches. Furthermore, this methodology would enable the incorporation of

diagnostics considerations incrementally into a system from the system's inception.

Traditionally, diagnostics implications have been left to the end of the development

cycle as an add-on feature. Delaying the considerations has the adverse effect that

the diagnostics strategy will be limited to the design decisions made earlier in the

system design.

In summary, this work provides a diagnostics strategy to tackle the increasing

demands of modern engineering systems. Furthermore, this work provides a method-

ology and an environment for tackling the challenges of developing and implementing

the diagnostics strategy. This is accomplished through a proposed architecture that

is both hierarchical and hybrid. Furthermore, the proposed architecture is realized

and simulated in a component-based environment. This work does not address di-

agnosability analysis, design iterations for diagnosability, problem size limitations

(tractability), or diagnosis with humans in the loop. While those topics are all im-

portant considerations, they fall outside the scope of this work. However, those topics

are touched upon in relevant chapter and the reader is directed to appropriate sources

for further insight.

This work is divided into 3 chapters, excluding the introduction (this chapter)

and the conclusion. Chapter 2 provides an overview of the field of diagnosis, includ-

ing descriptions of the various approaches that have been suggested in the literature.

Chapter 2 also supplies background information, including definitions, problem sit-

uation, and important considerations. Chapter 3 describes the proposed diagnostics

architecture from a theoretical perspective. The theoretical perspective includes trea-

tise on the hierarchical and hybrid nature of the architecture, as well as the conceptual

11

path into the architecture realization. Chapter 4 provides the physical realization of

the architecture, with an emphasis on how this architecture can be realized in the

proposed simulation environment. Finally, the conclusion (Chapter 5) provides clos-

ing thoughts on the accomplished work, as well as suggestions for how this work can

be further expanded.

12

Chapter 2

DIAGNOSIS AND

FAULT-TOLERANCE

Before embarking on a detailed discussion of diagnosis and relevant technologies, it

is imperative to define the key terms. Perhaps the first question to answer should be

What is Diagnosis?. The short answer to this question is diagnosis is the detection

and explanation of malfunctions in a system. The term malfunction can be further

refined to include any unexpected behavior of a system. However, to be able to

define unexpected behavior, a model of expected behavior must be available and

completely understood. Representing expected behavior of a system is the primary

focus of modeling. Fault-tolerance is a concept very closely related to diagnosis. Fault-

Tolerance represents the malfunction resolution to ensure that the system performs

adequately. Not surprisingly, diagnosis and fault-tolerance go hand in hand because

malfunction resolution can only occur once the malfunction has been detected and

identified. Diagnosis and fault-tolerance form an important set of techniques and

concepts that are relevant to many types of engineering systems.

Before expanding on the preliminary definitions of diagnosis and fault-tolerance,

other key terms need to be introduced. The Plant is generally understood to be

the underlying controlled process. This process can be a vehicle (for example a

spacecraft), a chemical process (for example a nuclear reactor), or any other physical

process. The plant is usually fixed and contains natural dynamics that cannot easily

13

Figure 2-1: Generic System Representation

be changed (for example, an airplane is subject to certain aerodynamic forces that

cannot be altered unless the airplane is redesigned). However, the goal of engineering

systems is to get the plant to perform something specific and useful (for example,

make an airplane fly from point a to point b). The way this is accomplished is by

utilizing the plant dynamics in a way such that it meets the intended goals. The

plant is typically equipped with a set of actuators that affect its dynamics. The

component responsible for dictating what the plant should do and how it will do it is

the controller. The controller utilizes the actuators to command the plant dynamics

to achieve the desired goals. For example, in an airplane, the actuators include,

among other components, the engines, the rudder, and the ailerons. Moreover, the

controller needs a way to know the state of the plant's dynamics in order to issue the

appropriate control commands. This is achieved via sensors that relay information

about the various dynamics of the plant. For example, in an airplane, airspeed,

angular rates, and altitude are common sensor measurements used to govern the

control laws. The plant, the controller, and the set of actuators and sensors make up

the System. A generic system architecture is depicted in Figure 2-1.

For a variety of reasons, the controlled element may not behave as the controller

expects. Any deviation from expected nominal behavior of the controller is considered

a fault. Faults can occur in actuators (for example, the aileron of an airplane not

responding to commands), sensors (for example, the airspeed sensor returns corrupted

data) or in the plant (for example, a power unit can go down). Regardless of where

14

the fault occurs, the controller must be able to recognize the presence of off-nominal

behavior and react appropriately. Therefore, a fault-tolerant controller should contain

a diagnosis component as well as a fault-adaptation dimension (Figure 2-2. Although

there are numerous available means to adapt to faults in the controlled element (for

example robust controller design) [4], this work is concerned solely with a diagnosis

approach supplemented with an adaptation mechanism.

2.1 Diagnosis

Diagnosis involves a multi-step process also sometimes called health-monitoring. Un-

der nominal operation, the diagnoser remains a passive component of the system.

However, the diagnoser must constantly analyze the behavior of the system to ensure

that faults are detected in a timely manner. The diagnoser has 3 main responsibilities:

* Fault Detection

9 Fault Isolation

9 Fault Identification

Fault detection involves the realization that something wrong has occurred. Al-

though this seems like a simple task, the diagnoser must be careful to discriminate

between the occurrence of a fault and the occurrence of a disturbance. A Disturbance

is a temporary unexpected shift in operating conditions (for example, a gust of wind).

This distinction brings about interesting issues of sensitivity and false alarms. An

ideal diagnoser would detect all faults and give no false alarms. In reality, however,

increasing sensitivity will undoubtedly lead to false alarms. This topic is treated

further in a subsequent section. Fault Isolation takes place after the detection that

something has gone wrong. More specifically, fault isolation aims to attribute the

fault to a specific component or set of components. Although faults can result as a

sequence of failures in multiple components, this work focuses mostly on single fault

diagnosis. Multiple faults are an important and challenging topic and are treated

15

briefly in a subsequent chapter. The final part of the diagnosis algorithm involves

fault identification. Fault identification classifies the fault according to its observable

behavior or a predefined fault model. The idea behind these 3 steps is to determine

what has occurred, where it has occurred, and what the implications are (what correc-

tive action may be taken, if any). Naturally, extracting this information is necessary

to determine how the system can recover from the fault. Recovering from the fault

is the responsibility of fault-tolerance.

2.2 Fault-Tolerance

There are a number of approaches to fault-tolerance. Traditionally, fault-tolerance

has been implemented using physical redundancy. Physical redundancy involves du-

plicating physical components so that when a component has been identified as faulty,

the system can switch to a duplicated component and continue its function. However,

given the increasing complexity of modern engineering systems, the number of com-

ponents in a typical system is large and the duplication of every possible component

is realistically not viable (sometimes for financial reasons, sometimes for physical re-

strictions on allowed space and weight). However, for certain critical components,

it is still common to use physical redundancy (power units are a good example). A

different kind of redundancy, Analytical Redundancy, has gained popularity because

it does not require the duplication of expensive components. Analytical redundancy

uses redundancy in the functions of a system. For example, in the case of a two-engine

aircraft, if one of the engine blows out and becomes non-functional, the aircraft can

still function using the remaining engine. However, the thrust differential (between

the blown engine and the functional engine) will impart a moment about the airplane's

yaw axis. The corresponding yawing moment from the differential thrust vectors can

be canceled out using the rudder. Additionally, functionality supplied using engine

differential can be accomplished using the rudder. This type of redundancy and re-

configuration can become quite complicated and must be considered carefully during

the system design phase. Any type of closed-loop automated dynamics brings about

16

serious implications (especially in safety-critical systems) and should be analyzed and

tested appropriately.

Another common form of failure-tolerance is the use of a "reset" or "recycle"

command to cycle the faulty component out of its failed state. This type of failure-

tolerance is common in computer systems (a reboot is often necessary after a computer

has been on-line for quite some time). Analogously, this type of failure-tolerance is

well-suited for components that accumulate data over time and can become saturated

(like sensors). If a "reset" command is being issued to a given component, the entire

system must be aware that the component is being recycled and hence is not avail-

able until it is brought back on-line. Moreover, there is no guarantee that a given

component will work correctly even after it has been "reset". It is entirely possible

that the component could be malfunctioning because of causes other than state-based

saturation. If this is the case, the component is identified as "broken" and another

means must be sought to achieve fault-tolerance.

Finally, if the fault cannot be completely explained or if the fault is so severe that

the system cannot adequately recover from it, it is often customary to resort to a

"safe" mode of operation. This type of strategy is necessary for any critical system

because it is impossible to guarantee the performance of the system in the face of

every possible fault (or combination of faults). When in safe mode, the system is put

in a state so that no critical actions can be taken that might endanger the system

or the operators of the system. When a system is in safe mode, it requires outside

assistance to resume operation or simply to decide on what to do next. For example,

the spacecraft Deep Space One entered the safe mode when it had detected that it

had lost its star tracker, a critical component vital to the normal operation of the

spacecraft. Once safe mode was entered, mission operations entered on a long and

complex rescue effort to salvage the spacecraft. Ideally, a controller should be able to

react and adapt to any possible fault. However, in reality, it is usually not possible to

adapt to every possible fault. It is customary to design a system to be able to handle

a set of known failures. The safe mode is a popular way to handle failures that are

not in the set of known faults.

17

Figure 2-2: Fault-Tolerant Controller Architecture

2.3 Faults, Fault Types, and Fault Models

A fault has been defined as a malfunction of a system. While this definition is accu-

rate, the broadness of the definition makes it difficult to specify in great details what

the possible faults of a system are. As mentioned in a preceding paragraph, in order

to detect unexpected behavior, a model of expected behavior must be available. This

model typically takes the form of a specification document, mathematical equations,

or a plethora of other representations. Faults are then understood as observed be-

havior that contradicts the expected behavior as explained by the model. Faults can

come in many flavors and must be further refined to enable deeper analysis.

Faults in a system can be divided into two main types - abrupt or discrete faults,

and gradual or incipient faults. An example is in order to distinguish between these

two different types of faults. Imagine a simple pipe/valve system. The valve regulates

the flow of liquid through the pipe. If the valve is closed, no liquid flows. If the valve is

open, liquid can flow. The first type of fault, abrupt or discrete fault, encompasses all

faults that have a discrete set of states. If we consider the valve example and restrict

the valve to a discrete set of states (OPEN or CLOSED), possible abrupt faults would

be FAILED-OPEN and FAILEDCLOSED. These faults would reflect that the valve

is expected to be open/closed (based on commands) but is in fact closed/open (the

opposite state to the expected state). Since we assume that the valve cannot be in

any other state when it fails, we can say that the valve is subject to two abrupt faults.

The second type of fault, incipient or gradual fault, describes faults that degrade over

time in a continuous fashion. Referring back to the valve example, if we suppose

18

that the valve can lose its stanching ability, we can describe an incipient fault. More

specifically, when the valve is closed, we expect that no liquid passes through it.

If after some operational amount of time, the valve starts eroding, a small amount

of liquid can pass through it when it is in the closed position. Furthermore, the

longer the valve is in operation, the more it erodes away and loses stanching ability.

Gradually, the amount of liquid that can pass through gets larger and larger such

that, eventually, the valve no longer serves its purpose. Typical incipient faults are

not reversible and will only get worse as time elapses.

Faults can be further characterized based on how they manifest themselves in the

system. Intermittent faults can be thought of in terms of the abrupt and incipient

faults. When the two types of faults were presented, it was assumed that once the

faults reveal themselves, the relevant component stays in the faulty state. Intermit-

tent faults are different because they tend to reveal themselves periodically and to

oscillate between faulty and nominal behavior. Referring to the valve example, for

non-intermittent faults, if the valve enters the FAILEDCLOSED state, it will stay

in that state unless some corrective action is taken. Similarly, if the valve has eroded

enough that it is no longer useful, it will stay in a not useful (failed) state or get worse

until corrective action is taken. However, intermittent faults describe faults that can

appear and disappear. Referring back to the valve example, if the valve were to os-

cillate between OPEN and CLOSED, the observed behavior would be an oscillation

between OPEN and FAILED-CLOSED or between CLOSED and FAILEDOPEN

depending on the expected behavior. These types of faults are especially difficult to

diagnose because different samplings of the behavior yield different answers. Never-

theless, these types of faults reveal themselves in regular patterns so that a careful

analysis of the history of the system behavior can isolate the patterns and correctly

diagnose the fault [19]. Another characterization of faults is that of transient faults.

In certain systems, faults may occur at a specific time, but the fault does not produce

anomalous behavior until much later after the fault has occurred. The time latency

makes the diagnosis problem even more challenging since the location of the observed

anomalous behavior is typically far removed from the occurrence of the fault. Tran-

19

sient faults are hard to detect until it is already too late and are even harder to isolate

to individual components.

One of the main challenges of diagnosis and fault-tolerance is that faults are often

novel. If one could predict the future and know what all the possible faults could be,

the problem wouldn't be as complex and as interesting as it is. Unfortunately, the

reality is such that one cannot predict the future. However, historical information

and experience, especially in fields that have matured through a series of mishaps,

can dictate what potential faults can be and how they can be remedied. It might be

argued that if one knew what the faults will be, one can design the system in such

a way that the fault will not occur. While this statement is partly true for certain

faults, many of the possible faults cannot be easily erased through design. Especially

for faults that result from a highly uncertain operating environments. Furthermore, it

is also likely that faults are present because of system design and cannot be eradicated

without completely redesigning the system. However, those faults remain important

and must be accounted for. One way to identify certain faults is to have a predefined

model of what the behavior of the system would be if the given fault were to occur. As

a result, if the relevant behavior is observed, the fault is assumed to have occurred.

The classification of such behavior is often called a fault model or fault signature.

Often times, it is customary to link the fault model to a predefined solution, if pos-

sible (in the form of a rule-based system). Care should be taken to ensure that the

observed behavior can only result from the occurrence of the fault and not from some

other combination of events. If the behavior is explainable in other ways, automated

resolution of the problem could lead to more catastrophic behavior. Failures and fault

models form the basis for many of the approaches to diagnosis and fault-tolerance.

2.4 Modeling

As mentioned in previous sections, diagnosis concerns itself with the detection and

explanation of unexpected behavior of a system (faults). In order to perform this task,

the diagnoser must have a model of what is considered nominal behavior. Often times,

20

the model takes an analytical form either as a logical model (for discrete dynamics)

or as a mathematical equation (for continuous dynamics). The model exists as a

redundant system to the actual physical system. The model is typically fed all of the

inputs that are fed to the controlled element. The model then predicts the expected

outputs. The predicted outputs are periodically compared with the measured outputs

of the physical system (from sensor measurements) 2-2. If a discrepancy is observed

between predicted and measured output, a failure is said to have occurred and the

diagnoser will go through a series of steps (called an algorithm) to explain the fault.

The details of these algorithms will be explained in the following section. However, it

is important to note the importance of modeling and the importance of sensors. The

variables measured by sensors are often termed the observables. The granularity of the

model and the granularity of the observables will dictate what can be diagnosed and

what cannot be diagnosed. This point must be emphasized early in the design stages

because the choice of sensors greatly affects the diagnosability characteristics of the

system. Furthermore, the model used by the diagnoser must also receive great care

in how detailed the behavior of each component should be. These considerations are

extremely important and will be treated in more depth in the Architecture Realization

Chapter (Chapter 4).

2.5 Approaches to Diagnosis

The approaches to diagnosis all have the common task of detecting and explaining

faults in a system. However, the means utilized to achieve this task differ greatly

among the approaches to diagnosis. The differences often stem from the model used

to represent the behavior of the system. The model will dictate what algorithms

can be applied and how those algorithms will function. Given the heterogeneity of

system dynamics, there is no single way to model a system. Consequently, most of the

listed approaches have abilities to diagnose certain types of faults but no approach

is positioned to encompass all types of faults. In order to adequately model typical

modern engineering systems, existing approaches must be mixed and matched. The

21

listed approaches encompass the most relevant approaches for the context of this

work. Other approaches are certainly possible. The presented list provides a feasible

set that is in no way complete. For the sake of brevity, approaches not relevant to

this work have been touched upon in the analysis section, but they have not been

presented in details in this section. For further details about the listed approaches or

other possible approaches, the reader should consult source [4].

2.5.1 Direct Observation

Perhaps the most basic form of diagnosis is that of direct observation. To explain

direct observation, consider the AND gate in Figure 2-3. The behavior of the AND

gate can be easily described using a truth table. Inputs and outputs can take any of

two discrete values (1 or 0). If both inputs have a value of 1, the output will have a

value of 1. Any other combination of inputs will yield an output value of 0. If sensors

are available to measure the values of input 1, input 2, and the value of the output,

the diagnosis can be performed directly. For example, if it is observed that input 1

and input 2 have a value of 1 but that the output has a value of 0, the diagnoser can

automatically conclude that the AND gate is broken. Furthermore, it can be assumed

that the AND gate is broken with its output being 0 regardless of the inputs (this

preliminary conclusion can be later revised after more behavior is observed). The

direct observation approach can include more details such as how long the output

has had a value of 0 to reflect the potential latency in reaction to changing inputs.

Direct observation represents the most reliable form of diagnosis and perhaps the

most simple. Detecting and isolating failures is trivial in direct observation diagnosis,

but the corrective action still needs to be carried out.

However, unfortunately, direct observation is typically not possible in practice

because not all inputs and all outputs are measured by sensors. The complexity

of most systems prevents this possibility. Since direct observation is usually not

possible, the concept brings about the important topic of partial observability. In all

complex systems, the state of the system is not completely observable and must be

inferred based on the available information (sensor measurements). Often times the

22

Input 1
Output

AND

Input 2

Figure 2-3: A Simple AND Gate

inference mechanism poses an important challenge because there typically isn't only

one possible diagnosis given a set of observations. The challenge is to determine the

most likely possible diagnosis (or system state) given the evidence and to take the

appropriate action. However, acting on the inferred state should take into account

that the inferred state might be erroneous. If further evidence becomes available and

contradicts the previous inference, a new inference should be carried out. This type of

functionality involves non-determenism and probabilistic analysis and is the subject

of the following subsection.

2.5.2 Probabilistic Inference

Probabilistic Inference, sometimes called Bayesian Inference [1,11], refers to the pro-

cess of reaching a conclusion based on a most likely criteria (highest probability of

being right) given the available evidence (observations). This method contrasts with

direct observation, which is completely deterministic. The term probabilistic covers

the fact that probabilities are assigned to potential failures of components. As infor-

mation becomes available through sensor measurements, the probabilities of failure

of relevant components are updated. If unexpected behavior is observed, the com-

ponent with the highest probability of failure is inferred to have failed. The initial

probabilities of failure can be allocated based on historical data or test data although

this type of information is not always available. Nevertheless, even though historical

information might not be available, probabilities still need to be applied to failure

events. The assignment of probabilities is a popular debate because it is often done

subjectively [13]. Even though the assignment of probabilities may not be perfect,

probabilistic inference remains one of the few approaches that provides a solution to

the partial observability challenge.

23

The probabilistic inference approach is used for networked components that can-

not be directly observed. Figure 2-4 represents a simplified network of components

with partial observability. Although this example is somewhat of a toy problem, it

nevertheless illustrates the ideas and applications behind the algorithm. The indi-

vidual gates in the network can be construed as components within a system or as

subcomponents within a component. The level of granularity selected by the system

designer does not affect the functionality of the algorithm.

Returning to the example of Figure 2-4, the numbers assigned to each gate are

assumed (or known) probabilities of failures. Even though some of the components

appear to be identical, different probabilities are assigned to each component in order

to augment the relevance of the example. The observables are the Inputs (numbered 1

through 6) and the Outputs (numbered 1 through 2). The values of the intermediate

steps between Inputs and Outputs are not directly observable. However, a truth table

for the network is available for the model of the system. Although the truth table is

too long to print in its entirety, some important characteristics can be highlighted:

" If Input 1 or Input 2 (or both) is 0, Output 1 is 0

* If Input 3 and Input 4 are 0, Output 1 is 0

" Otherwise, Output 1 is 1

* If Input 5 and Input 6 are 1, Output 2 is 1

" If Input 3 or Input 4 (or both) is 1, Output 2 is 1

* Otherwise, Output 2 is 0

The model relationships having been established and the observables having been

defined, different failure scenarios can be analyzed. For the first scenario, let's assume

that Input 1, Input 2, and Input 3 have been observed to be 1. Additionally, Output

1 has been observed to be 0 and Output 2 has been observed to be 1. Given the

logical relationship between the components, Output 1 should be 1. Consequently, a

fault is inferred to have occurred. The algorithm should narrow down the candidates

24

for failures to AND 1, AND 3, and OR 1 (given the logical relationship). How the

discrimination between the candidates occurs depends on the algorithm. A simple

algorithm would pick the candidate with the highest probability of failure from the

candidate set (in this case OR 1). A smarter algorithm would realize that since the

Output 2 observable is consistent with the model, OR 1 must be functioning correctly

(especially if it is observed that Input 5 or Input 6 is 0). If this is the case, OR 1 would

be eliminated from the candidate set and a new potential candidate would be selected

based on probability (in this case, it would be AND 3). This example is fairly simple.

In more complex examples, more probabilities may need to be calculated based on

the observables and the model. In all cases though, it is highly unlikely that the fault

can be isolated to a single component without resorting to probability analysis for

discrimination. Constraint suspension, the topic of the next section, takes a similar

approach without the probability analysis.

The approach presented above represent an oversimplification of the probability

concept known as Bayesian Inference. However, the ideas presented are similar to the

basic concepts behind Bayesian Inference. The core idea is to treat observable values

as random variables with probability distributions. The probability distributions (and

consequently inferred probabilities) are updated as information becomes available.

The original probabilities are typically called "a priori" probabilities and updated

probabilities are typically called "a posteriori" probabilities. The process of updating

probabilities is carried out using Bayes' theorem (where the term Bayesian Inference).

For a more detailed treatise of Bayesian Inference and probability concepts, the reader

is referred to [1, 11].

2.5.3 Constraint Suspension

Constraint suspension combines the benefits of direct observation and probabilistic

inference while trying to avoid the drawbacks. Constraint suspension is best applied

to logic systems or systems where the constraints of each component can be clearly

identified and abstracted. The main idea behind constraint suspension is to iteratively

suspend each component's constraints in the model (in the case of a logic system,

25

0.05

Figure 2-4: A Network of AND Gates and OR Gates

the truth table), and to verify if suspending a component's constraints renders the

observables consistent with the model. If suspending a component's constraints causes

consistency, that component is considered a failure candidate. Constraint suspension

typically stops after generating the set of potential candidates. As in the case of

probabilistic inference, it is possible that more than one candidate can explain the

observed system behavior. How candidates are discriminated amongst each other

is often left to further analysis. However, there can be a degree of suspicion based

on how many rows in the truth table each suspension rules out. This process of

discrimination is analogous to the discrimination process for probabilistic inference

and is not guaranteed to be exact.

Referring back to the example problem depicted in figure 2-4, the algorithm can be

illustrated. Iteratively suspending each component's constraints, the candidates for

the faults remain AND 1, AND 3, and OR 1. Although the candidates are the same

for both approaches, the conclusion is reached in a much more different fashion in each

case. In the probabilistic case, candidates are ranked in terms of their probability

of failure. In the constraint suspension case, candidates aren't ranked, but they are

put into a set based on iteratively relaxing constraints. In the end, as is the case

for many of the diagnostics problems, there is no unique answer to the diagnosis

question and the best option left to the diagnostics infrastructure is to suggest a

26

most likely candidate. Further example could be drafted where probabilistic analysis

and constraint suspension could yield different results (based on ranking), but the

supplied example conveys the main ideas behind the approach. Both of the explained

approaches work better on systems that can be modeled using discrete logic or systems

that exhibit discrete dynamics. For systems modeled using continuous dynamics, a

different approach must be considered.

2.5.4 Signal Processing

Although discrete logic can adequately model the dynamics of a wide range of systems,

many systems also contain continuous dynamics. The most obvious type of continuous

dynamics is a simple differential equation. The model of the system is thus fairly

simple and the diagnostics task is also fairly simple granted that the necessary outputs

can be readily measured. If the output of the system (in this case the dependent

variable of the differential equation) can be observed, the continuous dynamics can

be analyzed in some depth. Numerous approaches have been suggested for how to

diagnose continuous signals [4]. However, most of these approaches consist of 2 similar

steps:

" Residual Generation

" Residual Analysis and Decision-Making

The residual generation stage is analogous to the model/observation comparison

stage of the probabilistic inference approach. More specifically, the measured signal is

processed and subtracted from the predicted signal from the model. However, because

the residual generation will compare a real-time signal with a model, sampling time

comes into effect. Furthermore, noise considerations are important when processing

continuous signals. A plethora of approaches dealing with noise and stochastic signals

is available in the literature (Kalman Filter, Parity Space, etc.) [4]. However, for the

scope of this work, the residual generation phase will be a simple comparison between

measured output from the sensor and the model output. Noise considerations will be

27

excluded. The second stage, analysis and decision-making deals with what action is to

be taken given the residual's signature. Once again, this process can be very complex

by incorporating continuous signals from various sensors and tracking the error (or

integrals of the errors or derivatives of the errors over time). For the sake of this

work, a simple approach is taken. A decision is reached by specifying an acceptable

error band (typically denoted epsilon) and if the residual exceeds the error band,

a fault is assumed to have occurred. Because signal processing and mathematical

manipulations of signals go beyond the scope of this work, fault causes will be assigned

directly to error bands that are too large. For example, for an airplane, giving an

input to the rudder should enact a certain yaw moment. If the yaw moment measured

by gyros and the yaw moment predicted by the model differ by too wide a margin,

a failure in the rudder is assumed. The actual failure mode can be determined using

fault models or can be assigned directly (for example, assume that the rudder is

stuck in the neutral position if the measured response is very small). Diagnosis of

continuous systems represents a very important branch of diagnosis and fault-tolerant

control. Many of the systems targeted by the field of control engineering are systems

modeled using differential equations. Consequently, a plethora of refined approaches

are available in the literature [3,4,8]. However, with the increase use of computers

to implement functionality, differential equations are not sufficient to describe the

behavior of most systems. Discrete Event Systems provide a means to model systems

to reflect the state-based dynamics of many contemporary systems.

2.5.5 Discrete Event Systems

To better understand Discrete Event Systems, some preliminary definitions should be

given. A Discrete Event System (DES) is a discrete-state, event-driven system, that is,

its state evolution depends entirely on the occurrence of asynchronous discrete events

over time [5]. More specifically, discrete event systems are a way to model state-based

systems that have well-defined transition rules between each state. Discrete event

systems use automata as the basis for modeling. The automata can take on many

of the traditional properties linked to automata (deterministic vs. stochastic, timed

28

FAIL

Figure 2-5: A Simple Automaton

vs. untimed, etc.). For the sake of this work, only finite-state deterministic automata

will be considered. This limitation is not very restrictive because it corresponds

adequately with the simulation platform that will be outlined in Chapter 4. Moreover,

stochastic properties can be captured using the probabilistic inference described in a

previous section. Also, non-determinism of an automaton can also be removed with

a corresponding deterministic automaton [9]. For a brief review of automata theory,

a simple automaton is presented in figure 2-5. The presented automaton has 3 states,

(ON, OFF, FAILED), and can be cycled between each state using a set of 2 commands

(TURNON, TURNOFF). The FAIL transitions (to the FAILED state) is triggered

using a set of sensor readings and assumptions about what state the automaton should

be in. Moreover, there can be more states depending on whether failure modes are

available and the diagnoser needs to differentiate between each failure mode (might

be necessary if reconfiguration is required).

The automaton has a start state, the OFF state. The automaton will be switched

to the FAILED state only if it is detected that the automaton does not behave as it

should (by the diagnoser component). Performing diagnosis on discrete event systems

has been heavily explained in a number of sources [5, 12, 23,24]. The approach can

be summarized as a series of 4 steps [23]:

1. Component Modeling

2. Component Composition

3. Creating a Sensor Map for the System

29

F FAIL

4. Revise Model Transitions to Reflect the Sensor Map

The first step involves the modeling of individual components. The second step,

component composition, involves combining individual components into a single model

automaton. The resultant model is a complete automaton that reflects the total be-

havior of the system. The third step involves creating a sensor map using the set

of available sensors of the system. The failure events of the system are modeled as

states and sensor readings are defined for each state of the system. Transitions to

failed states are achieved via unique combinations of sensor readings (from the global

sensor map).

To better illustrate the discrete event systems approach, an example is given.

Consider a simple pump/valve system (adapted from [23]). The pump and the valve

are connected via a pipe. The pump causes fluid to flow through the pipe and the

valve governs whether the fluid flows all the way through the pipe or if it stops at the

valve. The pump has 4 states (ON, OFF, FAILEDON, FAILED-OFF) and the valve

has 4 states (OPEN, CLOSED, FAILED-OPEN, FAILEDCLOSED). The system is

also equipped with a sensor at the pump and a sensor at the valve (readings are

HIGH or LOW depending on the presence of pressure at the sensor). If the pump

in ON and the valve is OPEN, the pressure sensor at the valve should reads HIGH.

Similarly, if the pump is OFF, the sensors at both the pump and the valve should

read LOW regardless of the state of the valve.

A few failure scenarios can be considered. If the pump is assumed to be OFF

and the valve is assumed to be OPEN (based on command history), but the sensor

at the pump reads HIGH and the sensor at the valve reads LOW, it can be assumed

that the pump has entered the FAILED-ON state and the valve has entered the

FAILED-CLOSED state. Other similar failure scenarios can be considered. This

example illustrates one of the main ideas behind this type of diagnosis. To perform

this type of diagnosis successfully, unique failure signatures are necessary. For the

presented failure scenario, if the sensor at the pump reads HIGH and the pump

is assumed to be off, the assumed failure for the pump is FAILEDON. No other

failure can cause this signature. To successfully model and diagnose systems using

30

discrete event systems, fault models must be known. But because this modeling

approach uses a discrete set of states (including failure states), the diagnosable faults

will be limited to the faults in the set of states. While this limitation might seem

negative, discrete event systems nevertheless provide the basis for modeling many

modern systems. Furthermore, they provide the ability to preform diagnosability

analysis, a characteristic not easily achieved using the other approaches.

2.6 Diagnosability

Diagnosability is an important concept for the analysis and design of complex engi-

neering systems. Diagnosability can be defined as the unique identification of failure

events given available observations (sensor readings). In other words, diagnosability

concerns itself with what can and cannot be diagnosed given a system design. Aside

from the discrete event systems approach to diagnosis, the presented approaches to

diagnosis do not directly address the notion of diagnosability. Probabilistic analysis

cannot directly assert diagnosability because of the stochastic nature of the analysis.

However, constraint suspension allows for diagnosability analysis if the fault signa-

tures are known. Furthermore, constraint suspension can also enable a certain level

of diagnosability analysis without fault models. For example, using iterative con-

straint suspension, it is possible to determine whether the suspension of constraints

of 2 components lead to the same set of constraints being discarded. If diagnosability

analysis can be performed during the system design phase, useful design decisions

can be made iteratively. A useful design platform would enable a system designer

to determine diagnosability of a design and to understand diagnosability effects of

adding/removing a sensor in the system. Moreover, a useful design platform would

also enable a system designer to determine what faults would need to be diagnosed

and to supply a set of sensors required to enable the correct diagnosis of the desired

faults. Although diagnosability analysis is an important concept, such analysis will

be treated only briefly in the context of this work.

31

2.7 Other Considerations

The given definitions capture the basic concepts behind diagnosis and fault-tolerance.

Furthermore, the suggested approaches also provide a good overview of the techniques

used to achieve the desired tasks. However, the information presented in this chapter

still does not address all important considerations. First and foremost, most of the

listed approaches have been presented only in the context of single failures. The

theory of how to diagnose multiple failures is a very important topic. For some of the

approaches (for example discrete event systems), diagnosing multiple failures comes

more naturally than for other approaches (for example signal processing techniques).

For other approaches, like probabilistic analysis, the possible combination of failures

increases the required analysis and calculations considerably. Not only do conditional

probabilities need to be calculated, but joint conditional probabilities must also be

considered (including pairwise, triplewise, etc.). How to diagnose multiple failures

remains an important and interesting topic although it falls outside the scope of this

work.

Aside from multiple failures, trajectory tracking poses another interesting chal-

lenge to the diagnosis task. Trajectory tracking involves keeping a time history of the

system at hand so that the system state can be inferred using current information

and past information about the system. Trajectory tracking is especially important

for diagnosis approaches that rely on a most likely state inference approach (like

Bayesian Inference). Since multiple states can be inferred at any one time, the non-

determinism must be tracked over time. This way, when more information becomes

available and the most likely state turns out to be erroneous, the next most likely

state can be inferred using current and past information. How many trajectory to

track and how much information to track is highly dependent on the system at hand.

Nevertheless, trajectory tracking is an important characteristic of inference engines

such as Livingstone [29].

Furthermore, this work and the corresponding diagnosis approaches refer to au-

tomated diagnosis, that is, diagnosis carried out by a computer. However, for many

32

engineering systems, the automated diagnosis task is complemented with a human

operator or supervisor. For most engineering systems, closed loop fault tolerance

can be harmful, especially in the face of uncertainty. Typically, the automation will

perform a preliminary diagnosis and further action (further analysis and problem

resolution) is often left to the human component of the system. An example of di-

agnosis with humans in the loop is when a system enters the safe mode after it has

detected an unknown failure. Moreover, for novel faults and more complex faults

that cannot be diagnosed using automation, the diagnosis task is often performed

by the human supervisor. Other important considerations for system diagnostics in-

clude human factors considerations, human-computer interaction considerations, and

cognitive engineering considerations. The human dimension of diagnostics is an im-

portant problem that has not received much attention. A comprehensive solution

would incorporate the human operator as an integral component of the diagnostics

infrastructure design. Some of the same concepts of automated diagnosis apply to

diagnosis with humans in the loop (for example, diagnosability). However, the infor-

mation needs to be presented to the human in a way conducive to readability and

human analysis.

2.8 Analysis and Summary

The presented list of approaches to diagnosis does not comprise a comprehensive

inventory of available possibilities. Moreover, the approaches presented have been

treated somewhat superficially for the sake of conciseness. The most important prop-

erties have been exposed for the context of this work. For a more in-depth treatise

of these approaches or for a more comprehensive list of approaches, sources [2,4, 5]

provide a good starting point for further investigation. Nevertheless, the approaches

presented represent an adequate set for the architecture presented in this work. The

behavior of most engineering systems can be modeled using a mix of state machines

(automata), equations, and truth tables. Consequently, incorporating discrete logic,

state-based behavior, and continuous dynamics into the architecture will prove a fea-

33

Table 2.1: Approaches to Diagnosis
Technique Main Strengths

Model-Based Artificial Discrete Logic Systems,
Intelligence Techniques [29] Abrupt Faults

Discrete-Event Systems [12] State-based Systems,
Abrupt Faults

Principal Component Analysis [19] Intermittent Faults

Knowledge-Based Systems [26] Systems Difficult to Model,
Neural Networks [2] Incorporating Historical and

Expert Systems Expert Knowledge

Fuzzy Logic [3,10] Systems with Uncertainty,
Systems with Vagueness,

Capturing Human Reasoning
Probabilistic Reasoning [11,20] Systems with Uncertainty

Signal Processing Techniques [8] Continuous Systems,
Gradual (Incipient) Faults

sible modeling and diagnosis basis. Some of the approaches not covered in this work

include approaches based on Fuzzy Logic, Statistical approaches (Principal Compo-

nent Analysis being the most widely known), Knowledge-Based Systems, and Neural

Networks. Table 2.1 provides a summary of the surveyed approaches, including their

strengths and what types of faults they are most well-suited to diagnose. Moreover,

since modeling is a big part of the problem, the strengths also include the types of

systems typically targeted by the approaches.

It must be reemphasized that this table does not represent all of the possible

approaches to diagnosis and modeling. However, these approaches were extracted

from a recent survey of the literature on diagnosis. Now that a strong basis has

been established on diagnosis and fault-tolerance, the architecture to include these

approaches can be drafted. It must also be reemphasized that the listed approaches

is not intended to represent the best approaches to diagnosis. As the summary ta-

ble illustrates, all of these approaches have their redeeming values and the choice of

approach is often a matter of expertise and preference. The purpose of this work is

to provide a framework that is comprehensive yet flexible so that approaches can be

mixed-and-matched at will depending on expertise and preference. It is also impor-

tant to repeat that diagnostics is an important consideration in any system but that

34

the level of sophistication is also highly dependent on expertise and mission needs.

Many systems contain a very rudimentary set of diagnostics capabilities and it serves

the purpose very well. Other systems, however, require more detailed diagnostics

capabilities and the diagnoser can become quite convoluted. Whatever the project

requirements, the hope is that the proposed architecture can meet the requirements

of most diagnostics projects. Chapter 3 details the proposed architecture in more

details.

35

Chapter 3

PROPOSED ARCHITECTURE

Chapter 2 covered the basics of diagnosis and fault-tolerance. Furthermore, Chapter

2 provided a survey of approaches to diagnosis and summarized the strengths of

the proposed approaches alongside important considerations for system design. This

chapter will describe the proposed diagnostics architecture for the component-based

framework. The proposed architecture contains 2 main characteristics - a hierarchical

decomposition to ease some of the complexity, and a hybrid dimension to enable the

combination of multiple of the proposed approaches. Furthermore, this chapter also

drafts the conceptual architecture's topology in the form of a data bus architecture.

The data bus architecture will prove adequate for the realization in the simulation

environment. In summary, this chapter provides the conceptual architecture that will

form the basis for the architecture realization, presented in Chapter 4.

3.1 Hierarchical Architecture

The proposed architecture uses an approach to system decomposition based on three

levels, as outlined in [15, 28]. The system is first decomposed into subsystems and

furthermore into components. The three levels can then be identified as system-level,

subsystem-level, and component-level [15]. This system decomposition is typical of

spacecraft systems and other large engineering systems. The diagnostics strategy

performs tasks at each of these levels to obtain a complete picture of the state of the

36

Figure 3-1: Hierarchical Architecture

system. The extracted state involves a complete description involving information

from the small (component-level) and the large (system-level). The main idea behind

the hierarchical strategy is to utilize component-level diagnosis to perform system-

level diagnosis.

Figure 3-1 illustrates the proposed hierarchical architecture. At the lowest level,

each component is equipped with a diagnoser that monitors the health and status

of the relevant component. Each subsystem is also equipped with a diagnoser whose

responsibility is to capture faults that may result from interaction between compo-

nents. Finally, a supervisor reigns over the subsystems and uses information from

both the component and subsystem diagnosers to perform system-level diagnosis and

coordination. The main idea is to distribute the diagnostic responsibilities across the

different levels to keep the complexity of the supervisor to a manageable level. For

example, the supervisor does not need to concern itself with implementation details

of single components. Those details are the responsibilities of the diagnosers at the

component level. The supervisor is primarily concerned with relationships among

components and subsystems, and only such information is propagated through the

various levels.

37

Other advantages of providing diagnosis at various levels allow the diagnostic

strategy to be included early in the design phase. By incorporating diagnostic con-

siderations early in the system design, the proper sensors and interfaces between levels

can be determined. This strategy will ease the process of building systems that are

diagnosable. This approach is contrasted with a traditional approach of incorporating

diagnosis as a final step of the system design once the system architecture has already

been finalized [15]. Once the diagnostic considerations and the system architecture

have been finalized, communication interfaces across the different levels of the system

can be derived. Diagnostic capabilities can then be developed in parallel in accor-

dance with the agreed interfaces between each level. Furthermore, decomposing the

diagnostics infrastructure into levels might ease reusability.

There are obvious challenges with implementing hierarchical diagnosis successfully.

Selecting the appropriate level of abstraction can be challenging. Selecting a level too

coarse might not provide the appropriate information required by the upper layers.

Conversely, providing too much information across layers would negate the benefits

of the hierarchical decomposition. A good algorithm for deciding on the information

propagated across layers would provide a systematic way to determine the informa-

tion dissemination requirements. The information requirements are highly dependent

on the system at hand and the specific faults that will be diagnosed. Nevertheless,

a typical abstraction would use a black box approach and abstract the information

between layers as a set of inputs and outputs. Furthermore, distributing the diagnos-

tic responsibilities can also impend control logic modularity compared to centralized

diagnosis; but the flexibility of the architecture enables the system designer to se-

lect the appropriate amount of responsibility to be allocated to the various levels.

The delegation of responsibility can range from complete centralization to complete

decentralization.

The hierarchical decomposition will also ease the selection of what information

must be measured and propagated through each layer. However, the distribution of

diagnostic responsibilities represents only a subset of the features of the proposed

architecture. The other important facet, hybrid diagnosis, provides an even more

38

important set of facilities. The hybrid diagnosis capabilities can also be eased through

the use of hierarchical decomposition.

3.2 Hybrid Architecture

The hierarchical architecture presented in the previous subsection provides the system

designer ways to mitigate the complexity of diagnosing a large system. The mitigation

is achieved through abstraction and system decomposition. However, even through

abstractions, diagnosing a system composed of heterogeneous components is not a

trivial task. The inherent difficulty in hybrid diagnosis lies in the difficulty of deriving

a single model of the system to be diagnosed (or to derive a model using a single

modeling methodology). For obvious reasons, deriving a model of a system often

proves the most difficult task of diagnosis [6]. The model must serve the purpose of not

only providing an adequate representation of the behavior of the system, but it must

also lend itself to the type of analysis that the diagnoser seeks to achieve. The modern

breed of complex systems exposes a level of heterogeneity that is extremely challenging

to capture within a single model or a single modeling methodology. Furthermore,

certain aspects of a model are too difficult to model, such as non-linear aspects; in

this case, an explicit model of the system is not possible, and another approach must

be considered [2]. In other cases, a model of the system might already exist but the

available model might not yield itself to the desired type of diagnostic analysis.

A survey of the literature on diagnosis illustrates the depth and breadth of the

modeling and diagnosis techniques that have been attempted [2-4, 8, 10, 12, 27, 29].

Some approaches have also attempted to combine quantitative and qualitative ap-

proaches to diagnosis [2, 3, 24]. But no approach has situated a diagnostic strategy

in a comprehensive and flexible framework for heterogeneous systems with various

failure modes. For industrial systems, this requirement is becoming increasingly im-

portant. Chapter 2 outlined some of the important approaches in the context of this

work. As a reminder, Table 2.1 in Chapter 2 summarizes the surveyed approaches

and their strengths.

39

The proposed architecture provides a comprehensive yet flexible framework that

enables the coexistence of numerous diagnosis approaches. The principal idea is to

enable the system designer to select the appropriate approach based on diagnostics

requirements. For example, a heterogeneous system can utilize a model-based arti-

ficial intelligence technique to diagnose control logic failures [29] alongside a signal

processing technique to diagnose incipient faults [8]. Combining approaches enables

the strategy to capitalize on the strengths of available approaches while allowing ap-

proaches to complement one another. This strategy also allows the use of existing

models if they are available.

The flexibility of the hybrid architecture allows a large number of combinations

of diagnosis approaches. The vast space of approaches can lead to confusion about

what combination of approaches is best-suited to accomplish a specific diagnosis task.

Experience with diagnosis implementations in industrial systems suggests that domain

specificity can yield a set of best practices in certain domains [7,16,19, 25, 27]. By

capturing domain knowledge and experience, diagnostic strategy specifications can be

drafted and reused [15]. To enable this type of realization, the proposed architecture

must be comprehensive and flexible. The architecture should provide a platform

where domain specific sub-architectures can be derived and documented in a reusable

fashion. This topic is treated further in a subsequent section.

Drafting such a flexible framework is extremely powerful but can lead to increased

system complexity. The goal of the strategy is not to introduce undue complexity into

the system but to enable the system designer to make educated choices about the most

adequate diagnostic strategy. As domain specific diagnostic strategies are derived, the

complexity of developing a diagnostic strategy will be reduced. The flexibility of the

architecture empowers the designer to diagnose the most simple system - one that

uses a single model and single diagnostic strategy. It also enables the designer the

ability to incrementally add diagnosis blocks to the diagnostic strategy. The level of

complexity can be adjusted by the system designers depending on available resources

and other constraints.

40

Supqervisor

Bayesian Reskiual
Generator

Data Bus

Ne(Signals Control
States, yse

Network system
OtAputs)

Compoert-Fuzzy
Leve PLogic

LevelFP Danoser

Figure 3-2: Data Bus Architecture

3.3 Data Bus Architecture

The previous two sections described the hierarchical and hybrid aspects of the sug-

gested architecture. While the primary goal of the architecture is to provide a flexible

and comprehensive diagnostics framework, an adequate architecture also needs a con-

crete illustration of its realization. The realization of the architecture is accomplished

by using a centralized data store that makes the information available to all parties

involved. Fig. 3-2 illustrates the conceptual information sharing architecture.

The topology of the proposed architecture is a bus topology. Other topologies

could also be considered (such as ring and star topologies). However, at this time,

there is no evidence that suggests the superiority of another topology over the bus

topology. The centralized data store could also be implemented using a variety of

methods, including mapped memory, a database and shared files. The method of

choice should be left to the system designer. However, write access to the central re-

41

Percents

Databus

Ac uators Actions

Figure 3-3: Agent Realization of the Conceptual Architecture

source must be synchronized using a resource sharing mechanism. Such mechanisms

include queued requests, semaphores, and critical sections. An adequate interface

must be designed so as to abstract the data store implementation. If the implementa-

tion is properly abstracted, the actual means to accomplish the shared data facilities

can be easily altered based on preference or performance needs.

The main idea behind the data bus architecture is to distribute the information

to all components and diagnostic blocks in the system. This information includes

signals from components, as well as states, inputs and outputs. Various blocks can

then register themselves as consumers of this information. This way, the information

can be broadcasted to all parties interested. A given component would block write-

access from other components only if it detects a discrepancy and needs to perform

an action that might affect the rest of the system. Otherwise, the information can be

read by all parties concurrently. Obviously, the data store could become a bottleneck

in the system. Care must be taken to design the data store in such a way to meet the

information demands of the diagnosers without influencing the overall performance

of the system. Nevertheless, the hierarchical decomposition still provides the benefits

of mitigating complexity because information gathering is only a small fraction of

the diagnosis task. Information processing and inferring the system status based on

either a model or a knowledge base will still benefit from abstraction and decentralized

processing.

Figure 3-3 illustrates a realization of the data bus topology using the an agent

42

architecture (adapted from [20]). This agent architecture will be used as the basis for

the simulation of the architecture in the design environment.

Now that the conceptual architecture has been described, it can be realized in

the simulation environment. Chapter 4 will introduce the simulation environment

and outline how each approach to diagnosis can be implemented in the environment.

Furthermore, it will explain how the environment relates to the data bus architecture

and will supply a general framework for diagnostics in the environment. Chapter 4 will

also outline how the proposed architecture, along with the development environment

can be further realized.

43

Chapter 4

ARCHITECTURE

REALIZATION

The purpose of this chapter is twofold. First, the purpose of this chapter is to verify

and validate the adequacy of the proposed architecture. In order to accomplish these

goals, a simulation environment has been selected. The simulation environment se-

lected is SpecTRM (The Specification Toolkit and Requirements Methodology). The

goal of using SpecTRM is to test out the proposed architecture using an appropriate

system modeled in the environment. An overview of the SpecTRM environment is

available in a subsequent section. The second goal of this chapter is to establish

guidelines, on a general level, about how to implement the diagnosis algorithms pre-

sented in Chapter 2 in a simulation environment. SpecTRM has also been selected

as the simulation environment of choice because of its features and because of the

context of this work. Since SpecTRM has been developed and is used in the Complex

Systems Research Laboratory (formerly known as the Software Engineering Research

Laboratory), interests has garnered to display and understand the ability of the tool

to implement diagnostics algorithms. Since SpecTRM and associated research is an

important part of the research conducted in the laboratory, the choice of environment

is justified. However, the environment does provide an adequate platform for simula-

tion and validation because it contains all of the necessary capabilities. Although this

chapter will focus on implementation in SpecTRM, the topics covered in Chapter 2

44

and the proposed architecture presented in Chapter 3 are independent of the imple-

mentation platform. In summary, the hope is that demonstrating the architecture in

SpecTRM will educate users of the specific environment and also justify the feasibil-

ity of the approach to users of other environments. Before embarking on a detailed

account, the environment is presented.

4.1 SpecTRM

The Specification and Toolkit Requirements Methodology (SpecTRM) is an environ-

ment for specifying, verifying, and validating requirements for engineering systems.

The environment makes extensive use of the intent specification methodology, out-

lined in source [28]. SpecTRM enables the specification of system requirements at

various levels of granularity, from a high level overview of the system to the imple-

mentation details of each component. The granularity of details is controlled through

the use of specification levels. The refinement of details is carried out as levels are

increased. Level 1 represents the highest level (lowest level of details) and Level 6

represents the lowest level (highest level of details). Blackbox models that capture

the logical interactions between components and various control modes is the focus

of Level 3. The context for this work and for diagnostics in general lie in levels 1, 2,

and 3. However, levels 1 and 2 are primarily concerned with higher level requirements

specified using text. Since the focus of this work is modeling and the application of

algorithms, levels 1 and 2 will not be considered in the context of this work. Level 3

will be the focus of this chapter and of the subsequent chapter. Level 3 provides the

adequate level of details and facilities for the modeling purposes of this work.

SpecTRM proves a viable environment for the simulation of the proposed architec-

ture because it already provides a data bus architecture for exchanging information

between components. Furthermore, the environment enables the modeling of dis-

crete behavior (using truth tables), state-based behavior (also using truth tables,

with slight differences), and continuous behavior (using equations). As a result, the

hybrid dimension of the proposed architecture can be modeled adequately. The devel-

45

opment of system models will be done using SpecTRM-RL, the SpecTRM Require-

ments Language. SpecTRM-RL contains all of the necessary elements for creating

blackbox models (and consequently all enumerated behavior models) and for the im-

plementation of the diagnosis algorithms. Moreover, because SpecTRM provides a

component-based environment, it naturally lends itself to the system decomposition

presented in the previous chapter. Consequently, the environment provides the ap-

propriate facilities to implement the hierarchical nature of the proposed architecture.

Moreover, the environment is developed based on the Eclipse platform, a flexible

open source workbench. The Eclipse platform is a fully open development environ-

ment that makes extensive use of the Java plug-in paradigm. The flexibility of the

paradigm enables the development of plug-ins to perform any desired functionality.

While this work will not spend too much time on the implementation of algorithms

using the Java API, it is important to consider this property of the environment be-

cause it allows full flexibility in the simulation environment. Furthermore, SpecTRM

also supplies a set of API facilities that plug-ins can utilize. For more information

about SpecTRM, SpecTRM-RL, the available API facilities, the intent specification

methodology, or the Eclipse Platform, the reader is referred to sources [21,28].

4.2 Realization

In specTRM, most of the modeling is done using truth tables and logic transitions.

However, the conditions evaluated in the truth tables can be full statements such as

the discrete value of a state variable, a timing constraint, conditions on a continu-

ous variable, the value of a function, or any combination of the enumerated types.

Consequently, even though the modeling is achieved through logical correlations, the

conditions are not limited to discrete logic in the traditional sense (where every con-

dition is a logical True/False condition and cannot be an expression). The goal of this

chapter is not to explain how to use SpecTRM, but to illustrate how the diagnostics

strategy can be drafted in SpecTRM. For more information about SpecTRM, the

reader is referred to [21].

46

4.2.1 Structure

While the diagnostics strategy will vary greatly based on the system, the diagnostics

infrastructure will take on a fairly consistent structure. The system decomposition

outlined in the previous chapter provides a good starting point on which to allocate

diagnostic responsibilities. The top level presents the summary information of the

diagnostics infrastructure. Typical control modes will include normal operation, safe

mode, and fault detected mode. Moreover, if a fault is detected, the information

needs to be conveyed to the top layer. This is accomplished by using two levels of

information (or, in SpecTRM terms, two states). A summary table of the faulty com-

ponent can be build so that the faulty component can be readily identified. Moreover,

if some of the fault signatures are known, they can be entered in a summary table as

well. Aggregating all of this information from lower level components enables the easy

identification of the fault without having to iterate between all the components. Fig-

ure 4-1 provides a typical diagram, in SpecTRM, of the summary information. The

summary information is driven by component status and other means of detecting

faults. Moreover, gathering all of the information at the top level will ease the process

of reconfiguring the system and applying fault-tolerance methods. The top level infor-

mation will also enable the diagnosis of inter-subsystem and inter-component faults.

While the structure presented in figure 4-1 represents system level summary informa-

tion, a similar aggregation can be performed at the subsystem level using component

level information. If such a hierarchical decomposition is selected, the system level

summary information would contain subsystem information and the subsystem level

summary information would contain component level information.

If a fault is detected but the detected fault does not match any of known fault

signatures, the detected fault will be classified as Unknown and no fault signature

will be identified. Furthermore, the system will enter safe mode. Aggregating the

information at the top level will also ease fault-tolerance and fault reconfiguration

logic at the supervisor level.

47

SUPERVISORY MODE INFERRED SYSTEM STATE
System Monitoring Detected Fault Fault Signature

Unknown -Unknown
CONTROL MODE -Component 1 -Component 1 Failure 1

-Failure Det ected -Component 2 -Component 1 Failure 2
-Normal -Component 3 -Component 1 Failure 3
-Safe -Component 2 Failure 1

-Component 2 Failure 2

Figure 4-1: Diagnostics Architecture Structure

4.2.2 Approaches

With the architecture structure laid down, this section will focus on explaining how

the various approaches outlined in Chapter 2 can be implemented in the simulation

environment.

Signal Processing

The implementation of the signal processing strategy is quite simple. The assumption

is that the system has already been modeled using the appropriate equations and that

sensor readings are available to compute the relevant residuals. For the context of this

work, the residual is simply the subtraction of the expected value of the signal from

the sensor reading (absolute value of the difference). For a continuous component,

the state transition table would look something like figure 4-2. The modeled behavior

does not contain behavior transitions besides the proper fault detection logic (other

logical behavior would need to be added). Additions to the signal processing approach

can include filter blocks to the measured signal (for example, Kalman filters). The

Kalman filters can be implemented using the Java API to enable more sophisticated

signal processing capabilities. Filters can be supplied as extra blocks in the data bus

architecture, or as intermediate blocks between sensor measurements and the data

bus. The summary and extensions section will explain in greater details how the

48

= Unknown
Control Mode is Unknown T

= Normal
Control Mode is Normal
Residual <= Epsilon

= Failed
Residual > Epsilon
Residual > Epsilon for at Least T Seconds
Control Mode is Unknown

Figure 4-2: Diagnosis using a Signal Processing Approach

environment can be extended to supply more sophisticated capabilities.

Constraint Suspension

Constraint suspension involves a few more transition tables, one for suspending the

constraints of each component. Referring back to the example in figure 2-3, and

using the probabilities outlined in the figure to discriminate between the possible

candidates, a subset of the fault transition tables is outlined in figure 4-3. The out-

line contains only the fault detection conditions for the OR 1 gate. The transition

tables are not complete but provide a snapshot of the logic needed to perform con-

straint suspension. Part of the problem with implementing the Constraint Suspension

algorithm in SpecTRM is that it requires a rather large number of truth tables. How-

ever, the hierarchical decomposition can reduce the number of necessary truth tables

if the decomposition is chose carefully.

Discrete Event Systems

To illustrate how the discrete system approach can be implemented in SpecTRM,

we refer back to the pump/valve example described in Chapter 2. The valve can be

in any of 4 states (OPEN, CLOSED, FAILEDOPEN, FAILED-CLOSED) and the

pump can be in any of 4 states as well (ON, OFF, FAILED-ON, FAILEDOFF).

49

= Unknown
Control Mode is Unknown

= Normal

Input 1 is HIGH
Input 2 is HIGH
Input 3 is HIGH
Input 4 is HIGH
Input 5 is HIGH
Input 6 is HIGH
Output 1 is HIGH
Output 2 is HIGH

= Failed
Input 1 is HIGH
Input 2 is HIGH
Input 3 is HIGH
Input 4 is HIGH
Input 5 is HIGH
Input 6 is HIGH
Output 1 is HIGH
Output 2 is HIGH

F
F
T
T

T

Figure 4-3: Diagnosis using Constraint Suspension

50

T

T

T

Table 4.1: Global Sensor Map for Uniquely Identifiable Failures
Pump State Valve State Sensor at Pump Sensor at Valve
FAILEDON ANY HIGH ANY

FAILED-OFF ANY HIGH ANY
ON FAILED-CLOSED HIGH LOW
ON FAILEDOPEN HIGH HIGH

FAILEDON FAILED-CLOSED HIGH LOW
FAILEDON FAILED-OPEN HIGH HIGH

There are 2 sensors, one at the pump and one at the valve. The possible sensor

readings are HIGH or LOW. Figure 4-4 shows the behavior of the pump component.

The main points to take away from this example are the failure signatures and how

they are represented using truth tables. The global sensor map for the example

is illustrated in table 4.1 (adapted from [12]). The table contains only the global

sensor map entries for failures that are uniquely identifiable (including multiple fault

signatures). It is important to consider that this table does not automatically match

a fault signature with a state, but it matches a fault signature and an expected

state with the state. For example, in the first row of the table, given the history of

commands, the pump is expected to be OFF. However, given that the sensor at the

pump reads HIGH, it is clear that the pump has failed in the ON state (hence the

FAILEDON mapping). The multiple failure scenarios are a bit more complex since

they involve the combination of 2 sensor readings in conjunction with the expected

state. Important modeling characteristics are also illustrated in the table. In order

to correctly diagnose the state of the valve, the pump must be in the ON state or in

the FAILED-ON state. Otherwise, no relevant information can be extracted about

the state of the valve. Another interesting point to note in this example is that

the modeling should probably contain an extra state for the valve and for the pump

to reflect novel and unknown failures. The unknown state would be entered when

unexpected behavior is observed and the unexpected behavior cannot be matched

with known expected state and failure mode combinations. Although including the

unknown failure state is somewhat of a modeling preference, it remains an important

facility to hanlde novel faults.

51

= Unknown
Control Mode is Unknown

On
Last Command Sent is TurnOn
Time since Last Command Sent is Greater than 10 secondsl
Last State is Off
Sensor at Pump Reads HIGH

Off
Last Command Sent is TurnOff
Time since Last Command Sent is Greater than 10 seconds
Last State is On
Sensor at Pump Reads LOW

FailedOn
Last Command Sent is TurnOff
Time since Last Command Sent is Greater than 10 seconds
Last State is On
Sensor at Pump Reads HICH

FailedOff
Last Command Sent is TurnOn
Time since Last Command Sent is Greater than 10 seconds
Last State is Off
Sensor at Pump Reads LOW

Figure 4-4: Diagnosis using Discrete Event Systems

52

T

T
T
T

T

T
T

T

Tl

T
T
TT|

4.2.3 The Java API

While the sophistication of the diagnosis algorithm is highly dependent on the gran-

ularity of the model, the SpecTRM environment provides the necessary flexibility to

control the level of granularity. However, as evidenced by the examples illustrated in

the preceding sections, the state-based nature of the environment makes it difficult

to incorporate trajectory tracking or to include more sophisticated signal processing

techniques. Furthermore, the environment makes it difficult to understand involved

algorithms such as constraint suspension (because of the large number of truth ta-

bles). Some of these limitations can be overcome by the openness of the environment.

Since the environment is built on the Eclipse platform, it provides an open envi-

ronment where Java plug-ins can be easily integrated. Furthermore, the SpecTRM

development environment also supplies a set of API calls that can be used to access

various parts of the model. By utilizing the Java API, more sophisticated algorithms

can be developed and features such as trajectory tracking can be implemented. For

more information on the Java API, the reader is referred to source [21].

4.3 Summary and Extensions

While the models presented do not constitute complete models in SpecTRM, they

nevertheless represent important sample realizations of the algorithms presented in

Chapter 2. Since the proposed architecture should resemble a plug-and-play envi-

ronment, it would be interesting and helpful to provide diagnostics capabilities in a

toolbox fashion within the SpecTRM environment. In order to do so, the Java API

should be utilized to provide a wizard and a step-by-step environment to define the

diagnostics strategy. To do so, commonalities of the approaches should be captured

in a parameterized environment so that each approach can be supplied in a fill-in-the-

blanks fashion. Furthermore, it would also be interesting to consider how to reuse

the diagnostics capabilities. Reuse is one of the cited benefits of the SpecTRM envi-

ronment. However, since the diagnostics capabilities are often at a level higher than

components, the potential for reuse is questionable. Certainly, the diagnostics capa-

53

bilities packaged with individual components can be reused. However, the bulk of the

logic and the reconfiguration capabilities exist at a level higher than the components

and hence cannot be easily reused. The reuse can happen in a domain specific devel-

opment environment where best practices are clearly established. Chapter 5 provides

the conclusion based on this work and some suggestions for future research areas to

expand on this work.

54

Chapter 5

CONCLUSION

The primary purpose of this research was to provide a flexible diagnostics framework

to meet the requirements of modern engineering systems. The key points of modern

engineering systems remain the heterogeneity of systems and the increasing com-

plexity of typical systems. The presented research supplied a literature review of the

popular approaches to diagnosis. Those approaches were presented, analyzed, and the

benefits and applications of the approaches were summarized in Chapter 2. In order

to meet the complexity challenges of engineering systems, a hierarchical diagnostics

framework was presented based on a system decomposition methodology. The pro-

posed architecture also addressed the heterogeneity challenges of engineering systems

by supplying a flexible framework to enable different approaches to modeling and

diagnosis to coexist. The resulting proposed architecture is the hierarchical hybrid

architecture explained in Chapter 3. Furthermore, in order to realize the architecture,

a data bus representation of the architecture was also presented. The data bus ar-

chitecture enables the flexible framework to coexist in a plug-and-play environment.

Finally, Chapter 4 presented a simulation environment, SpecTRM, as a viable devel-

opment and verification test bed for the proposed architecture. How to implement the

proposed approaches was illustrated using the SpecTRM environment. Furthermore,

suggestions were made about how the environment can be further utilized to achieve

the desired functionality.

A more thorough model highlighting the benefits of the architecture could not be

55

fully completed for this work but will be completed as continued research. However,

this work has set some important foundations on which future work can be based. The

first extension would be to develop a complete model in the SpecTRM environment

that demonstrates the hybrid and hierarchical features of the proposed architecture.

Furthermore, more work could be done to package the diagnosis approaches into a

toolbox. The benefits of a toolbox would be to provide the diagnostics set up fa-

cilities via a wizard to abstract some of the mechanisms used by the environment.

Furthermore, research should be conducted to determine the possibility of providing

the diagnostics framework in the form of a diagnosis engine component. The compo-

nent could be developed and added to the environment in the form of a Java plug-in.

More sophisticated facilities (for example Kalman filters) could also be developed and

provided as functionality blocks via the Java API. These suggestions concern mostly

the realization of the proposed architecture in the simulation environment. However,

this research also lays some important ground work for further study in the theoretical

aspects of diagnosis.

This work was concerned mostly with the automated aspects of diagnosis. While

the automated aspects are important, another important aspect concerns diagnosis

with humans in the loop. For many systems, troubleshooting and diagnosis must be

performed remotely by humans, without direct access to the relevant system. The sys-

tem design greatly affects what can and cannot be diagnosed remotely. Analogously

to automated diagnosis, systems can be designed so that they can be diagnosed by

humans. How to do so would require combining diagnosis theory with human factors,

cognitive engineering, and human-computer interaction. Furthermore, most diagnosis

implementation will probably divide responsibilities between humans and automation.

The exact task division will depend on the system at hand, but the interaction be-

tween humans and automation make this problem of particular interest to the human

factors community. The human component in the diagnosis task can be modeled as

an extra component in the databus architecture. However, one of the main challenges

of performing diagnosis with humans in the loop remains how to represent the infor-

mation to ease the role of the human. The role of the human includes understanding

56

how a given automated diagnosis was reached (to decide on the best course of action)

or how to interpret sensor information alongside a model to perform diagnosis (either

mentally or through the use of decision support tools). Diagnosis with humans in the

loop represent an important topic and will be the source of further research within

the context of this work.

Furthermore, the diagnostics capabilities of a system are highly dependent on

the system design. Currently, no methods exist to evaluate diagnosability capabil-

ities of a given system design and to understand how to design systems that can

perform desired diagnostics functions. An adequate diagnosis design platform would

incorporate these facilities while enabling design iterations and evaluation of different

designs. Another interesting topic would be to research how diagnostics strategies

can be reused. The benefits of component-based specification reuse has been argued

at length. However, it would be interesting to learn whether those concepts could be

extended to diagnostics capabilities as well.

In summary, the work presented here can serve as a basis for the suggested expan-

sions for future research. The work is generic enough to be widely applicable to the

field of diagnosis as a whole and specific enough to be implemented in the context of

a simulation environment or a design platform.

57

Bibliography

[1] A. H-S. Ang and W. H. Tang. "Probability Concepts in Engineering Planning
and Design", Volume 1, John Wiley and Sons Inc., 1975.

[2] H. Benkhedda and R. J. Patton. "Fault Diagnosis Using Quantitative and Qual-
itative Knowledge Integration", in UKA CC International Conference on CON-
TROL, Conference Publication No. 427, September 2-5 1996.

[3] G. Biswas, R. Kapadia, and X. W. Yu. "Combined Qualitative-Quantitative
Steady-State Diagnosis of Continuous-Valued Systems", in IEEE Transactions
on Systems, Man, and Cybernetic - Part A: Systems and Humans, Vol. 27, No.
2, pp. 167-185, March 1997.

[4] M. Blanke, M. Kinnaert, J. Lunze, and M. Staroswiecki. "Diagnosis and Fault-
Tolerant Control", Springer-Verlag Berlin Heidelberg, 2003.

[5] C. G. Casandras and S. Lafortune. "Introduction to Discrete Event Systems",
Kluwer Academic Publishers, 1999.

[6] R. Davis and W. Hamscher. "Model-based reasoning: Troubleshooting", in Read-
ings in Model Based Diagnosis, W. Hamscher, L. Console, and J. Kleer, editors,
pp. 3-24, Morgan Kaufmann, 1992.

[7] Y. Ding and D. Ceglarek. "Fault Diagnosis of Multistage Manufacturing Pros-
esses by Using State Space Approach", in SAME Transactions, Jornal of Man-
ufacturing Science and Engineering.

[8] P. M. Frank. "Fault Diagnosis in Dynamic Systems Using Analytical and
Knowledge-based Redundancy - A Survey and Some New Results", in Auto-
matica Vol. 26, No. 3, pp. 459-474, 1990.

[9] J. E. Hopcroft, R. Motwani, and J. D. Ullman. "Introduction to Automata The-
ory, Languages, and Complexity", Addison-Wesley Publishing Company, Inc.,
2002.

[10] R. Isermann. "On Fuzzy Logic Applications for Automatic Control, Supervision,
and Fault Diagnosis", in IEEE Transactions on Systems, Man, and Cybernetics
- Part A: Systems and Humans, Vol. 28, No. 2, pp. 221-235, March 1998.

58

[11] F. V. Jensen. "An Introduction to Bayesian Networks". Springer-Verlag New
York, Inc., 1998.

[12] S. Lafortune, D. Teneketzis, M. Sampath, R. Sengupta, and K. Sinnamohideen.
"Failure Diagnosis of Dynamic Systems: An Approach Based on Discrete Event
Systems", in Proceedings of the American Control Conference, Arlington, VA,
pp. 2058-2071, June 25-27, 2001.

[13] N. G. Leveson. "Safeware: System Safety and Computers". Addison-Wesley Pub-
lishing Company, Inc., 1995.

[14] R. Morris. "Automated Reasoning in NASAs Intelligent Systems Project", Guest
Lecture at the Massachusetts Institute of Technology, Department of Aeronautics
and Astronautics, September 12th, 2003.

[15] E. Ong and N. Leveson. "Fault Protection in a Component-Based Spacecraft
Architecture", Software Engineering Research Laboratory, Department of Aero-
nautics and Astronautics, Massachusetts Institute of Technology, 2003.

[16] E. Park, D. Tilbury, and P.P. Khargonekar. "Modeling, Analysis, and Implemen-
tation of Logic Controllers for Machining Systems Using Petri Nets and SFC"

[17] R. J. Patton, C. J. Lopez-Toribio, and F. J. Uppal. "Artificial Intelligence Ap-
proaches to Fault Diagnosis", 1999.

[18] M. Proust. " A la Recherche du Temps Perdu. Volume I: Du Cote de chez Swann".
Editions Livre de Poche, January 2002.

[19] G Rizzoni, C. Porceddu-Cillione, D. Moro and P. Azzoni. "Misfire Detection in
a High-Performance Engine by the Principal Component Analysis Approach",
SAE960622, 1996.

[20] S. Russell and P. Norvig. "Artificial Intelligence: A Modern Approach". Pearson
Education, Inc. 2nd Edition, 2003.

[21] Safeware Engineering Corporation. "SpecTRM User Manual". Version 1.0.38,
2004.

[22] T. Samad, J. Weyrauch. "Automation, Control and Complexity: An Integrated
Approach". John Wiley and Sons, 2000.

[23] M. Sampath. "A Discrete Event Systems Approach to Failure Diagnosis", Doctor
of Philosophy Dissertation, The University of Michigan, 1995.

[24] M. Sampath. " A Hybrid Approach to Failure Diagnosis of Industrial Systems", in
Proceedings of the American Control Conference, Arlington, VA, pp. 2077-2082,
June 25-27, 2001.

59

[25] S. Simani, R. J. Patton, S. Daley, and A. Pike. "Identification and Fault Diagnosis
of an Industrial Gas Turbine Prototype Model", in Proceedings of the 39th IEEE
Conference on Decision and Control, Sydney, Australia, December, 2000.

[26] M. Stefik. "Introduction to Knowledge Systems". Morgan Kauffman Publishers,
Inc., 1995.

[27] I. Y. Tumer and A. Bajwa. "A Survey of Aircraft Engine Health Monitoring
Systems", AIAA-99-2528, 1999.

[28] K. Weiss, E. Ong, and N. Leveson. "Reusable Specification Components for
Model-Driven Development", Software Engineering Research Laboratory, De-
partment of Aeronautics and Astronautics, Massachusetts Institute of Technol-
ogy, 2003.

[29] B. C. Williams. "Model-based Autonomous Systems in the New Millennium", in
Proceedings of AIPS-96, pp. 275-282, 1996.

60

