
Task Assignment Algorithms for Teams of UAVs in
Dynamic Environments

by

Mehdi Alighanbari

M.S., Electrical Engineering, NC A&T State University, 2001
B.S., Electrical Engineering, Sharif University of Technology, 1999

Submitted to the Department of Aeronautics and Astronautics
and the Alfred P. Sloan School of Management

in partial fulfillment of the requirements for the degrees of MASSACHUSETTS INS E
OF TECHNOLOGY

Master of Science in Aeronautics and Astronautics
and I J UL O 1 2004

and
Master of Science in Operations Research LIBRARIES

at the
MASSACHUSETTS INSTITUTE OF TECHNOLOGY

June 2004 AERO

@ 2004 Massachusetts Institute of Technology. All rights reserved.

A uth or ... ,....7 .,. -

Department of Aeronautics and Astronautics
and Operations Research Center

f May 14, 2004
C ertified b y :.-

Jonathan P. How
Associatey of Aeronautics and Astronautics

Thesis Supervisor
Certified by

Eric Feron
Associate Professor of Aeronautics and Astronautics

Thesis Supervisor
A ccepted by Edward M .r ite

Edward M. Greitzer
Professor of Aeronautics and Astronautics

Chair, Departmental Committee on Graduate Studies
Accepted by

/I k

...
John N. Tsitsiklis

Professor of Electrical Engineering & Computer Science
Codirector, Operations Research Center

Task Assignment Algorithms for Teams of UAVs in Dynamic

Environments

by

Mehdi Alighanbari

Submitted to the Department of Aeronautics and Astronautics
and

Alfred P. Sloan School of Management
on May 14, 2004, in partial fulfillment of the

requirements for the degrees of
Master of Science in Aeronautics and Astronautics

and
Master of Science in Operations Research

Abstract

For many vehicles, obstacles, and targets, coordination of a fleet of Unmanned Aerial
Vehicles (UAVs) is a very complicated optimization problem, and the computation
time typically increases very rapidly with the problem size. Previous research pro-
posed an approach to decompose this large problem into task assignment and tra-
jectory problems, while capturing key features of the coupling between them. This
enabled the control architecture to solve an assignment problem first to determine
a sequence of waypoints for each vehicle to visit, and then concentrate on designing
paths to visit these pre-assigned waypoints. Although this approach greatly simplifies
the problem, the task assignment optimization was still too slow for real-time UAV
operations. This thesis presents a new approach to the task assignment problem that
is much better suited for replanning in a dynamic battlefield. The approach, called
the Receding Horizon Task Assignment (RHTA) algorithm, is shown to achieve near-
optimal performance with computational times that are feasible for real-time imple-
mentation. Further, this thesis extends the RHTA algorithm to account for the risk,
noise, and uncertainty typically associated with the UAV environment. This work
also provides new insights on the distinction between UAV coordination and cooper-
ation. The benefits of these improvements to the UAV task assignment algorithms
are demonstrated in several simulations and on two hardware platforms.

Thesis Supervisor: Jonathan P. How
Title: Associate Professor

Thesis Supervisor: Eric Feron
Title: Associate Professor

3

4

Acknowledgments

In carrying out the research that went into this Masters thesis, there were several key

individuals that played large roles in helping me make it to the end. This was a long

and difficult road at times and I thank everyone whole-heartedly for their kindness

and support.

Firstly I would like to my advisors, Professor Jonathan How and Professor Eric

Feron for directing and guiding me through this research. Next, I would like to thank

my research colleagues, among them, Luca Bertuccelli, Louis Breger, Ian Garcia, Ellis

King, Yoshiaki Kuwata, Megan Mitchell, Arthur Richards, Chung Tin and Steven

Waslander. Thanks also to Professor How's administrative assistant, Margaret Yoon

for her support throughout this time and her help to put final touches on this thesis.

A special warm thank you to all my friends in Boston for their support and

assistance. In appreciation for a lifetime of support and encouragement, I thank my

parents, Javaad and Shayesteh Alighanbari, and my sisters, Jila, Jaleh and Laleh.

This research was funded in part under DARPA contract # N6601-01-C-8075 and

Air Force grant # F49620-01-1-0453. The testbeds were funded by DURIP Grant

#F49620-02-1-0216.

5

6

Contents

1 Introduction

1.1 Literature Review

1.2 Thesis Outline

2 Receding Horizon Task Assignment

2.1 M otivation .

2.2 Background

2.2.1 Time-Discounted Value as the Objective

2.3 Iterative M ethods

2.3.1 Receding Horizon Task Assignment .

2.3.2 Munition Constraints

2.3.3 Munition Constraints as an Effective Cost-

2.3.4 Time Constraints

2.4 R esults .

2.4.1 Dynamic Environment

2.4.2 Optimal Value for Petal Size (m)......

2.5 Conclusions .

To-Go

3 Filter-Embedded Task Assignment

3.1 Introduction

3.2 Problem Statement

3.3 Frequency Domain Analysis

3.4 Filter Design

3.4.1 Binary Filter

3.4.2 Assignment With Filtering: Formulation

7

15

17

. 19

21

21

22

26

27

28

32

34

35

38

38

40

44

45

45

46

49

52

53

55

3.4.3 Assignment With Filtering: Implementation

3.4.4 Assignment With Filtering: Simulation Results . . .

3.5 Conclusions .

4 Cooperative Planning

4.1 M otivation .

4.2 Cooperative UAV Task Assignment in Risky Environments

4.2.1 Stochastic Formulation

4.2.2 Advantages of Cooperative Assignment

4.3 Cooperative Weapon Target Assignment

4.3.1 Non-cooperative Formulation

4.3.2 Cooperative Formulation

4.3.3 A Simple Example

4.3.4 Larger Simulations

4.4 Approximate Dynamic Programming

4.4.1 One-step Lookahead

4.4.2 Two-step Lookahead

4.5 Conclusions .

5 Experimental Results

5.1 Hardware Testbeds .

5.1.1 Rover/Blimp Testbed

5.1.2 UAV Testbed .

5.2 MICA OEP Experiment .

5.3 Conclusions

6 Conclusions

Bibliography

8

56

61

63

65

65

66

67

69

76

77

78

79

80

86

86

87

92

93

93

95

101

104

108

109

113

List of Figures

1.1 Typical UAV mission .

1.2 M ission abstraction .

2.1 Visibility graph and shortest paths for the allocation problem . . .

2.2 Comparing greedy performance to the optimal solution

2.3 A case where the greedy method fails to find feasible solution . . .

2.4 Flight time, loiter time, time of arrival, and time of task execution

2.5 Dynamic Environment Simulation

2.6 Comparing performance for different values of m

2.7 Comparing computation time for different values of m

3.1

3.2

3.3

3.4

3.5

3.6

3.7

3.8

Effect of churning on a simple assignment problem . . .

Equivalent frequency response of the planning system

Simulation results for a binary filter

Result of an unfiltered assignment

Filtered plan with r = 3

Filtered plan with r = 5

Block diagram representation of assignment with filtering

Comparing the results of a filtered and an unfiltered plan

3.9 Histogram showing correlation of filtered and unfiltered assignments

4.1 Example of purely deterministic allocation

4.2 Example of deterministic equivalent allocations

4.3 Example of maximum expected value allocation

9

16

16

24

29

33

36

41

43

43

48

53

54

56

. 57

. 57

. 59

. 62

63

70

73

74

4.4 Example of cooperative weapon target assignment 81

4.5 The effect of survival probability p, and time discount factor A on the

perform ance . 82

4.6 Optimal solution for the problem of 10 weapons and 10 targets, p, =

0.9 and A = 0.9 . 84

4.7 Optimal solution for the problem similar to Figure 4.6 with p8 = 0.9

and A = 0.97 . 85

4.8 One-step lookahead solution to a problem similar to Figure 4.6, with

p, = 0.9 and A = 0.9 . 88

4.9 Two-step lookahead solution to a problem similar to Figure 4.6, with

pS = 0.9 and A = 0.9 . 90

4.10 Comparison of the performance of the one-step and two-step looka-

head policies with the optimal DP solution 91

5.1 Algorithm Architecture . 94

5.2 4 of 8 ActivMedia P3-AT Rovers 95

5.3 1 of 4 Blim ps . 95

5.4 4 Rover experimental results . 97

5.5 4 Rover experimental data from a typical SEAD-like mission 97

5.6 4 Rover experimental data . 98

5.7 4 Rover experiment: Initial Plan . 98

5.8 4 Rover experiment: Plan after first re-assignment 99

5.9 4 Rover experiment: Assignment after change in the location of targets 99

5.10 4 Rover experiment: Last assignment 100

5.11 4 Rover experiment: Rover trajectories as measured during the ex-

perim ent . 100

5.12 6 of 8 U AV s . 101

5.13 PiccoloTM autopilot from Cloud Cap Tech 101

5.14 Hardware-in-the-loop UAV testbed 102

5.15 Five UAV mission with dynamic task assignment using RHTA . . . 103

10

5.16 MIT CPP algorithms inside in the planning hierarchy 104

5.17 The overall MIT controller implemented on the OEP 106

5.18 OEP experiment: Planned trajectories during the second loop closure 106

5.19 OEP experiment: Shows diagnostics available to evaluate progress of

the controller . 107

5.20 OEP experiment: Results after the eleventh loop closure 107

11

12

List of Tables

2.1 Simulation results for 8 UAVs and 20 waypoints 44

2.2 Simulation results for 8 UAVs and 30 waypoints 44

2.3 Simulation results for 8 UAVs and 40 waypoints 44

4.1 Results of the three formulations in risky environments (nominal threat

lev els) . 75

4.2 Expected values in threatening environments 75

4.3 Probability of reaching high value target 75

4.4 Comparison of the cooperative and non-cooperative assignment for dif-

ferent values of A and p .. 83

4.5 Comparing the result of the non-cooperative, DP, one-step lookahead

and two-step lookahead solutions . 89

13

14

Chapter 1

Introduction

With the recent world events, there is a significant interest in extending the capabil-

ities of future Unmanned Aerial Vehicles (UAVs) to support ground forces, provide

timely intelligence, and execute the "dull, dirty tasks in harm's way" [1, 2, 3, 4]. UAVs

can be sent into missions that would endanger the lives of the aircrews of manned

vehicles, such as the Suppression of Enemy Air Defense (SEAD) missions for chemical

manufacturing facilities with a high concentration of Surface to Air Missile (SAM)

sites. UAVs can also stay aloft longer for surveillance and reconnaissance missions.

One key extension envisaged for the future is using multiple UAVs to perform coordi-

nated search, reconnaissance, target tracking, and strike missions. However, several

fundamental problems in decision making and control must be addressed to ensure

that these autonomous vehicles reliably (and efficiently) accomplish these missions.

The main issues are high complexity, an uncertain and very dynamic environment,

and partial/distributed information.

Figure 1.1 shows an example of a typical SEAD UAV mission with heterogeneous

vehicles, fixed obstacles, removable no-fly-zones (NFZ) associated with the SAM sites,

and targets of various types. The environment is uncertain, risky, and very dynamic.

Figure 1.2 presents an abstraction of this problem with multiple aircraft with different

capabilities, payloads, and sensors. Some UAVs will be tasked to find and suppress

the air defenses, some will attempt to strike the high value targets, and others must

assess the damage done. These tasks must be done in a specific order and the goal is

15

Capabilities

No-fly zone

Fig. 1.1: Typical UAV mission [5]. Fig. 1.2: Mission abstraction.

to maximize the team performance. Thus, new methods in planning and execution

are required to coordinate the operation of the fleet of UAVs. In particular, an overall

control system architecture must be developed that can perform optimal coordination

of the vehicles, evaluate the overall system performance in real time, and quickly

reconfigure to account for changes in the environment or the fleet. This thesis presents

new results that address the issues of risk and variability in the environment in the

task assignment part of the cooperative path planning (CPP) problem for UAVs.

For many vehicles, obstacles, and targets, fleet coordination is a very compli-

cated optimization problem [6, 7, 8], and the computation time increases very rapidly

with the problem size. J. Bellingham, et.al. [9] developed an approach to decompose

this large problem into assignment and trajectory problems, while capturing key fea-

tures of the coupling between them. This allows the control architecture to solve

an allocation problem first to determine a sequence of waypoints for each vehicle to

visit [8], and then concentrate on designing trajectories to visit these pre-assigned

waypoints [10, 11]. The decomposition approach simplifies the coupling between the

assignment and trajectory design problems by calculating and communicating only

the key information that connects them [8]. The cost calculation is done using a

straight line approximation of the feasible paths around the "obstacles" (e.g., build-

ings, no-fly-zones) in the environment. These costs are then used in the assignment

problem solved by a petal algorithm [12, 8], which is a heuristic that significantly

decreases the computation time of the task assignment by reducing the problem size.

This reduction is accomplished by enumerating the plans (petals) for each UAV and

16

then pruning infeasible plans and/or ones that are unlikely to be part of an optimal

plan. The key here is that these cost calculations and pruning are done prior to the

optimization, which then allows us to pose a much smaller optimization problem.

While the resulting assignment algorithm was shown to be much faster than the orig-

inal formulation, experiments have shown that, with timing constraints, it is still too

slow to be considered for use in real-time applications [13]. Thus the goals of the

research in this thesis were to address the following key problems:

1. Develop algorithms to perform UAV task assignment (with side constraints) in

real-time for dynamic environments.

2. Develop modifications to these faster task assignment algorithms to reduce their

sensitivity to noise and uncertainty in the environment.

3. Modify the task assignment formulation to ensure both coordination and coop-

eration between the UAVs to improve the fleet performance in a risky environ-

ment:

e Coordination: allocating tasks to meet the constraints, avoid overlap, and

optimize some objective.

9 Cooperation: coordinated TA with additional knowledge of the future im-

plications of a UAV's actions on improving the expected performance of

the other UAVs.

1.1 Literature Review

Numerous researchers have examined all aspects of the UAV assignment problem [4,

6, 7, 8, 14, 15, 16, 17, 18, 19, 20, 21, 22]. This includes traditional methods for vehicle

routing problems (VRPs) from the operations research (OR) and artificial intelligence

(AI) communities [23, 24]. Exact optimization methods such as Branch and Bound,

Branch and Cut, Constraint Satisfaction Problems (CSPs), and Dynamic Program-

ming (DP) have been used to solve the problem to optimality. While guaranteed

to yield optimal results, these methods are computationally intensive, and this com-

plexity becomes an important issue when the problem has hard side constraints [25].

17

These complexity issues make the exact methods intractable for many problems, ei-

ther because they are too large or they take too long to solve. As a result, several

approximation methods have been proposed to resolve the complexity issues.

Classical heuristic methods, such as constructive and two phase methods were used

to solve larger size VRP problems in a reasonable amount of time [12]. These methods,

however can generate solutions that are far from optimal. Different metaheuristics

methods such as Tabu search, Simulated Annealing, and Genetic Algorithms have

also been proposed in recent years for the VRP. These methods, which typically

embed a classical heuristic inside them, often give better solutions to the problem than

classical heuristic methods, but they also tend to be more time consuming [26, 27, 28].

These approximations help to reduce the computation time compared to the exact

methods, but most of these methods are still computationally intractable for real-time

replanning.

Iterative network flow algorithms, in which tasks are assigned to UAVs sequen-

tially in a greedy fashion, have also been the focus of recent research on UAV task

assignment [7]. These heuristic methods are shown to be able to calculate the assign-

ment very rapidly compared to other existing methods. These methods however, can

generate plans that are far from optimal. This disadvantage of greedy methods will

be discussed extensively in this thesis.

Approaches to the allocation problem which emphasize timing constraints have

also been proposed [4, 15, 16]. In these approaches, detailed paths are selected for each

of the vehicles in order to guarantee simultaneous arrival at an anti-aircraft defense

system, while minimizing exposure to radar along the way. However, these methods

require that task assignment and trajectory design to be solved simultaneously which

increases the problem size and makes it prohibitive for large problems.

This work presents a methodology to solve the UAV task assignment problem

rapidly for real-time applications while the performance is kept close to optimal. A

key distinction in this work is that, while it uses standard OR task assignment tools,

we are not operating them "open-loop" (or at steady-state) as is typically done in the

OR field, but instead we are using these algorithms in a "high bandwidth" closed-

18

loop system. As a result we might expect similar stability problems to occur from

mis-modeling the environmental disturbances, noise in the sensor measurements, and

uncertainty in the estimation of the environment.

1.2 Thesis Outline

Chapter 2 of this thesis presents a new approach to the task assignment algorithm in

which an assignment is achieved for each UAV in a short time that makes it suitable for

real-time replanning in dynamic battlefields. A reliable planning system must be able

to account for changes such as moving targets, UAV losses, etc. and generate a new

optimal plan rapidly. This chapter introduces Receding Horizon Task Assignment

(RHTA) algorithm based on the "petal" algorithm and further illustrates that a

good solution (close to optimal) can be achieved in a reasonable amount of time,

suitable for real-time applications. Simulations using Boeing's Open Experiment

Platform (OEP) [29] and results from a hardware testbed are presented in Chapter 5

to demonstrate the effectiveness of RHTA in dynamic and real-world environments.

Task assignment in the controls literature has been generally viewed as an open-

loop optimization with deterministic parameters. The optimization is generally done

once, and task reassignment occurs only when substantial changes in the environment

have been observed. In reality, these information updates are continuously occurring

throughout the mission due to the vehicle sensing capabilities, adversarial strategies,

and communicated updates to the vehicle situational awareness (SA). In this case, the

typical response to a change in the SA is to reassign the vehicles based on the most

recent information. The problem of reassigning due to the effect of changes in the

optimization has been addressed by R. Kastner, et.al. [30] in their use of incremental

algorithms for combinatorial auctions. The authors propose that the perturbed opti-

mization problem should also include a term in the objective function that penalizes

changes from the original solution. The work of J. Tierno and A. Khalak [31] also

investigates the impact of replanning, with the objective function being a weighted

sum of the current objective function and the plan difference from the previous op-

19

timization to the current one. Both of these formulations rely on the plan generated

prior to the current one as a reference. They do not consider the impact of noise in

the problem, nor do they develop techniques to mitigate this effect on the replanning.

Chapter 3 presents a modified formulation of the task assignment problem that can

be used to tailor the control system to mitigate the effect of noise in the SA on the

solution. The approach here is to perform the reassignment at the rate that the infor-

mation is updated, which enables us to react immediately to any significant changes

that occur in the environment.

Chapter 4 considers a stochastic Mixed-Integer Linear Programming MILP for-

mulation of the task assignment problem, which maximizes the expectation of the

mission's vale (score) and achieves cooperation between UAVs. This formulation ad-

dresses one of the most important forms of coupling in the assignment problem; the

coupling between the mission that one UAV performs and the risk that other UAVs

experience. Each UAV can reduce the risk for other UAVs by destroying the anti-

aircraft defenses that threaten them. While the approach in Ref. [28] assumes a fixed

risk for visiting each of the waypoints, the ability to reduce this threat is not addressed

directly. The formulation in Chapter 4 optimizes the use of some vehicles to reduce

risk for other vehicles, effectively balancing the score of a mission, if it were executed

as planned, against the probability that the mission can be executed as planned.

Chapter 4 further extends the idea of cooperation to the Weapon Task Assignment

(WTA) and proposes a Dynamic Programming algorithm as the way to achieve the

cooperation in a WTA problem. To reduce the computation complexity and solve

the curse of dimensionality associated with DP algorithm, two approximation DP

methods are also proposed to solve this problem. It is shown that these methods can

reduce the complexity of the problem considerably while keeping the performance

close to optimal.

20

Chapter 2

Receding Horizon Task Assignment

2.1 Motivation

Battlefields are dynamic environments that change rapidly. Targets move, their values

change with time, UAVs get shot down, etc. A reliable planning system therefore,

must be able to account for these changes and generate a new optimal plan, including

both the UAV task assignment and the detail trajectory design. However, the exact

algorithms for UAV task assignments that give optimal plans are slow and typically

cannot be implemented in real-time for reasonably large problems. To overcome

these computational issues, several approximation methods have been developed that

are much faster than the exact methods, but most of these are still not suitable

for real-time implementation. More extreme approximations can solve the problem

very rapidly, but usually yield poor performance results. Greedy algorithms, which

are very fast and therefore can be implemented in real-time, also usually perform

poorly. This chapter presents a new receding horizon methodology that can perform

the UAV task assignment in real-time and yield close to optimal performance. Next

section describes the petal algorithm which is an approximation method for UAV

task assignment and is the base for Receding Horizon Task Assignment (RHTA)

algorithm [12, 8].

21

2.2 Background

This section defines the UAV task assignment problem and establishes the basis for

the new Receding Horizon Task Assignment (RHTA) approach to this problem. The

RHTA is based on the petal algorithm [12, 8]. In using these algorithms (petal and

RHTA), several assumptions are made. First, the set of tasks have been identified for

each team of UAVs. Second, the tasks have been divided between the team of UAVs

and the waypoints for each team have been identified. The location of the waypoints

are presented by a N x 2 matrix B as [Bx Bwx]. Each team is made up of N,

UAVs with known starting points, speed, and capability (i.e., strike, reconnaissance,

etc.). The starting state (its initial position) of the UAV v is given by the vth row

of the matrix So as [xzv yov]. The amount of munitions available on each UAV is

also known.

The UAV capabilities are represented by the Nv x N, binary matrix K. K,,, 1

represents a UAV v capable of performing the task associated with waypoint w (kV. =

0 if it cannot perform the task). It is also assumed that there are polygonal "No Fly

Zones" (shown as a rectangle for simplicity) in the environment. The location and

size of the rectangles are designated by the coordinates of the lower-left corner of

each obstacle j as (Zjl, Zj2) and the upper-right corner as (Zj 3, Z). These two pairs

together, make up the jth row of the N, x 4 matrix Z.

Given this information, the problem is to assign the UAVs to the waypoints to

optimally fulfill a specific objective. There are several possibilities for developing a

generic objective function that can be specifically adjusted to different problems. The

most common objective of these types of problems is to minimize mission completion

time, which is defined as the time that the last UAV finishes its mission. The minimum

time formulation is presented here and this formulation is then extended to consider

the cost that reflects the value of the mission. The minimum time objective can be

written as

t = max t, (2.1)

22

Ji(f, t) = - + tv (2.2)

where tv is the time that UAV v finishes its mission. a < 1 weights the average

completion time compared to the maximum completion time. If the penalty on the

average completion time were omitted (i.e., a = 0), the solution could include as-

signing unnecessarily long trajectories to all UAVs except for the last to complete its

mission.

The minimum time coordination problem could be solved by first planning de-

tailed trajectories for all the possible assignments of waypoints to the UAVs and all

the possible orderings of those waypoints, and then choosing the detailed trajecto-

ries that minimize the cost function, denoted Ji (t, t) [32], but there are many such

possibilities and designing each is computationally demanding. Instead of planning

detailed trajectories for all possible task allocations, the petal algorithm constructs

estimates of the finishing times for only a subset of the feasible allocations, and then

performs the allocation estimated to best minimize the cost function [8].

The algorithm developed for this approach can be explained as follows. First,

a list of all un-ordered feasible task combinations were enumerated for every UAV,

given its capabilities. Next, the length of the shortest path made up of straight

line segments between the waypoints and around obstacles was calculated for all

possible order-of-arrival permutations of each combination. The construction of these

paths can be performed extremely rapidly using graph search techniques [8]. The

minimum finishing time for each combination was estimated by dividing the length

of the shortest path by the UAV's maximum speed. Some of the task allocations

and orderings have completion times that are so high that they can confidently be

removed from the list to reduce the decision space of the optimization (pruning),

and solve the allocation problem faster. Given these cost estimates, the allocation

problem was then solved to find the minimum time solution.

The steps of this algorithm are depicted in greater detail Figures 2.1(a)-2.1(c),

in which a fleet of UAVs (designated o) must visit a set of waypoints (designated

x). First, the visibility graph between the UAV starting positions, waypoints, and

23

7

(a) Visibility graph and (b) Shortest path for (c) Shortest paths for all
shortest paths UAV 6 over one UAVs over same
between UAV 6, all combination of combination of
waypoints waypoints waypoints

Fig. 2.1: Visibility Graph and Shortest Paths for the Allocation Problem.

obstacle vertices is found. The visibility graph is shown in Figure 2.1(a) as grey lines.

Next, the algorithm searches this graph to find the shortest paths between all pairs

of waypoints, and the starting position of each UAV and all waypoints (Figure 2.1(a)

shows the results for UAV 6 with black lines). In Figure 2.1(b), one combination

of fewer than nmax waypoints has been chosen, and the shortest path from UAV 6's

starting position to visit all of them is shown. In Figure 2.1(c), the shortest path

to visit the same combination of waypoints is shown for each vehicle. Note that, as

expected, the best permutation of these waypoints is not the same for all vehicles.

The algorithm produces four matrices whose pth columns, taken together, fully

describe one permutation of waypoints. These are vector row u, whose element up

identifies which UAV participates in the pth permutation; V, whose Vi entry is 1 if

waypoint i is visited by permutation p and 0 if not; T, whose Ti entry is the time

at which waypoint i is visited by permutation p, and 0 if waypoint i is not visited;

and C, whose element C, is the time at which permutation p is completed. This

procedure is described in detail in [8].

Once the approximate costs for a UAV to visit a set of waypoints were calculated,

mathematical method was developed for allocating the waypoints to each UAV based

on these costs and other constraints. The base of the task allocation problem was

formulated as a Multidimensional Multiple-Choice Knapsack Problem (MMKP) [33].

24

The "knapsack" in this case is the complete mission plan. The V column correspond-

ing to each of the NM permutations makes up the multi-dimensional weight. The

"multiple-choice" comes from choosing which permutation to assign to each of the

Nv different UAVs (sets). The objective is to assign one permutation (element) to

each vehicle (set) that is combined into the mission plan (knapsack), such that the

cost of the mission (knapsack) is minimized and the waypoints visited (weight) meet

the constraints for each of the Nw dimensions. The problem is given by

min J2 = E Cpx,
pEM

subject to Vi E W : Px, =1
pEA (2.3)

VvEV :E x

where M = {1, ... ,NM}, Mv C M are the permutations that involve UAV v, and

W = {1,... Nw} is the list of waypoints. The binary decision variable x, = 1 if

permutation p is selected, and 0 otherwise. The cost in this problem formulation

minimizes the sum of the costs to perform each selected permutation. The first

constraint enforces that waypoint i is visited once. The second constraint prevents

more than one permutation being assigned to each vehicle.

The solution to the MMKP selects a permutation for each vehicle. The cost in

Eq. 2.2 is a weighted combination of the sum of the individual mission times (as in

the MMKP problem) as well as the total mission time. In order to include the total

mission time in the cost, a new continuous variable, t, is introduced and the following

constraint is added to the original formulation in Eq. 2.3

Z CPx, < (2.4)
pEM

The constraint forces t = max, t, and allows the total mission time to be included

25

in the cost. The new cost is as follows,

- a'
J3 = t + N E CPXP (2.5)

pEM

The problem is now a Mixed-Integer Linear Programming (MILP) problem that can

be solved using commercially available software such as CPLEX [34]. The solution to

the task allocation problem is now a set of ordered sequences of waypoints for each

vehicle, which ensure that each waypoint is visited the correct number of times while

minimizing the mission completion time.

2.2.1 Time-Discounted Value as the Objective

Minimizing the mission completion time is one of the many possible objectives that

can be used in the allocation problem. In the min-time formulation, all of the target

values are considered to be identical and the objective is to visit all of them in the

minimum possible time. However, in real-world applications, the values of the targets

are quite different and therefore it is desirable to assign UAVs to specific targets based

on their values. In many situations, UAVs are either not capable of visiting all of the

targets, or they are not interested in visiting risky, low-valued targets. This section

introduces a different objective function that captures the notion of target value.

Chapter 4 presents a more general objective function that accounts for both target

values and mission risks. The value-based objective function can be written as

Nt

max J4 = A sizi (2.6)
i=1

where si is the value associated with the task at waypoint i, and ti is the time in

which waypoint i is visited. 0 < A < 1 is a discount factor that accounts for the

decrease in target value with time. This factor is included in the objective function

to better represent the real-world problems in which the value of visiting a target

decreases proportional to the time in which it is visited. For example, consider the

case of mobile Surface to Air Missile (SAM) sites. Once the enemy finds out that

26

their SAM sites have been identified, they will typically start moving the missiles to a

new location and, as a result, the task at the original waypoint loses value over time.

With this new objective function, the constraint in Eq. 2.3 that forces the problem

to assign UAVs to all targets can be relaxed, which allows more general problems

to be solved. In the next section this objective function is used to perform the task

allocation in the Receding Horizon Task Assignment (RHTA) algorithm.

2.3 Iterative Methods

The petal algorithm explained in section 2.2 is fast compared to exact algorithms

and results in optimal assignments when pruning is done properly. The degree of

pruning needs to be balanced because pruning too many petals can lead to poor

performance, but insufficient pruning can result in extensive computation time. It

is shown in [8, 13] that the petal algorithm can be applied to fairly large problems,

but the computation time increases rapidly as the size of the problem grows. This

is due to an enumeration of all possible combinations of targets [8]. The Receding

Horizon Task Assignment (RHTA) algorithm is proposed to solve the computation

time issues by solving the large problem by breaking it down to smaller problems

and iteratively solving the smaller problems. RHTA still uses the petal algorithm

to generate possible assignments for each UAVs and solves a MILP to pick the best.

The difference is that in RHTA the size of each combination (the size of each petal)

is constrained. This limits the number of combinations that have to be analyzed and

significantly reduces the size of the optimization problem. Of course, limiting the

size of each combination (petal) will result in an incomplete set of assignments, in

the sense that waypoints are left unassigned even though there are UAVs capable of

visiting these waypoints. To solve the problem to completion, the same procedure

is applied to the remaining targets to generate a new set of petals for each UAV.

These petals (new assignments) are then added to the previous assignments. This

process is continued to completion (i.e., either all the waypoints are assigned or no

more waypoints can be assigned due to munition limitation).

27

A greedy algorithm in which targets are assigned to UAVs one by one in an

iterative fashion similarly reduces the size of each petal to 1. Greedy methods usually

have a huge advantage in computation time over all other methods, but yield poor

performance results, negating the savings in computation time. The problem with an

iterated greedy and similar "myopic" methods is that, in the process of finding the best

assignment (best petal) in the current iteration, the effect of the remaining waypoints

is ignored, as illustrated in Figure 2.2 where the result of a greedy assignment is

compared with the optimal assignment for a simple example.

In this example the objective is to maximize the time-discounted value achieved by

one UAV visiting two targets with different values. The discount factor (A in Eq. 2.6)

is set to 0.75. The resulting assignment from the two algorithms are quite different.

In the greedy assignment (Figure 2.2(a)), the high value waypoint WP2 is visited first

(this is the nature of greedy algorithms) and a value of 11.25 is achieved in the first

iteration. In the second iteration WP1 is visited and the total accumulated value

for this assignment is 17.2. In the optimal solution, waypoint WP 1 is visited first,

resulting in a value of 10.5 and waypoint WP2 is visited next for a total accumulated

value of 21.5. The flaw in the greedy assignment comes from ignoring the future. In

the first stage it compares the time discounted value in WP1 and WP 2. Because the

discounted value is greater for WP2, it chooses this waypoint first. The degradation

in performance becomes crucial for larger problems since the greedy algorithm ignores

a bigger portion of the problem by ignoring the future. The next section details how

the Receding Horizon Task Assignment solves the performance issues associated with

greedy methods while keeping the computational demands low.

2.3.1 Receding Horizon Task Assignment

Receding Horizon Control, used interchangeably with Model Predictive Control (MPC),

is a well known methodology in controls literature [35, 36]. When applying an op-

timal control is not possible due to the complexity or size of the problem, MPC is

a good replacement candidate. MPC approximates an infinite horizon optimal feed-

back control problem by using the online solution of a finite-horizon optimization.

28

1.

1.1 -*
4

1.05

UAV WP1 *

si =14

o0 q
0 0.5 1 15 2 0 0.5 1 1.5 2

(a) Greedy Solution (b) Optimal Solution

Fig. 2.2: Comparing greedy performance to the optimal solution

The first portion of the plan is executed and the process is repeated. This combines

feedforward control, as the problem plans for future actions, with feedback, as each

new plan uses new information. The RHTA essentially follows the same idea. In each

iteration the plan for each UAV is limited to m < N, waypoint visits. This means

in enumerating combinations of waypoints only the combinations of size less than or

equal to m are enumerated . This number of combinations is far smaller than the

number of combinations enumerated using the petal algorithm, especially for large

problems. Having these combinations, the best permutation for each combination

is calculated the same way as in the petal algorithm, generating a set of paths of

maximum size m for each UAV. Having these sets of paths (also called petals), the

following optimization is applied to generate the best path for each UAV.

N, Ny

max J5 = ESxo, (2.7)
v=1 p=1

N, Noyp

subject to E E AixV, < 1 (2.8)
v=1 p=1

Nvp

Vv E 1. ... NZ x p= 1 (2.9)
p= 1

zo {O, 1} (2.10)

29

15-

WP2

2= 20

1.15

WP2
1.1

s2=20

1.05

UAV WP1

s1 = 14

where N, is the number of petals for UAV v. zo, is a binary variable and equals 1

if the pit petal of UAV v is selected and 0 otherwise. Sv, represents the value of pth

petal of UAV v and is calculated prior to the optimization:

Sv,= Z A'isi Vv c 1.. . N (2.11)
iEWp

V is the index of waypoints in the pth petal and ti, is the time in which waypoint

i is visited in petal p. In the first constraint (Eq. 2.8), Avpi equals 1 if waypoint i

is visited in permutation p of UAV v and 0 otherwise. This constraint ensures that

each waypoint is visited at most once. The second set of constraints limits each UAV

to only one petal. The above optimization is a Mixed-Integer Linear Programming

(MILP) and can be solved using CPLEX to find the best assignment for each UAV.

Having the best petal (list of waypoints to visit) for each UAV, the first waypoint

in the list of each UAV is picked and assigned as the first waypoint to be visited by

that UAV The assigned waypoints (one for each UAV) are then removed from the

list of waypoints to visit, leaving a smaller list of waypoints to visit. The smaller

list becomes a new assignment problem to be solved. The new position of UAVs will

be the position of their assigned waypoints. The starting time for each UAV needs

to be updated using the distance between the starting position of UAVs and the

position of their first targets. The same procedure is then used to produce the next

set of waypoints for the UAVs, and the procedure is repeated until all waypoints are

assigned, or there are no resources left (i.e., no munitions). This algorithm gives an

ordered list of waypoints to be visited by each UAV. All the steps of this approach are

shown in Algorithm 2.3.1. The performance advantages of this algorithm over other

iterative methods such as greedy algorithm is the result of looking at the near future

in each step of planning. In each step, the algorithm plans for m > 1 waypoints for

each UAV but only uses the first waypoint for each UAV. This helps the algorithm to

avoid "myopicness" which causes the iterative methods to degrade in performance.

30

1: Find the shortest distance between all waypoint pairs (ij) as D(ij) using straight
lines around obstacles;

2: set W = Wo (the set of all waypoints)
3: set M, = 0, v := 1,.. , Nv (The mission for UAVs. Sequence of waypoints to visit)
4: set T, = 0, v := 1, ... , Nv (The initial time of UAVs)
5: while W f 0 do
6: for all UAVs v do
7: p := 1;
8: for all numbers nc of waypoints to visit, nc, := 1,. . . , m do
9: for all combinations C of nc, waypoints that v is capable of visiting do

10: for all permutations i of waypoints [wi,... , weJ in C, with i := 1... n !
do

11: Tii := d(wi)/vmax + T,

12: Si = AT'i s, ;
13: for d := 2... nc, do
14: Tdi T(d-1)i + D(wd_1, wd)/vmax {Cumulative time from start}
15: S, +- St + ATd' swd;
16: end for
17: Pi = [wi, ... ,wnj;
18: end for
19: imax argmaxi Si; \\ {Choose the best permutation.}
20: S"p=i_ ;
21: Pp Pimax;

22: p <- p + 1;
23: end for
24: end for
25: end for
26: solve the optimization problem to find the best permutation for each UAV v
27: Pvmax = argmax, p : := 1,..
28: for all UAVs v do
29: wv Pvpvax (1); \\ {Picks the first waypoint in the permutation}
30: M <- [Mv w,); \\ {Adds the waypoint to the mission list of UAV}
31: T= d(wv)/Vmax + Tv; \\ {updates the time of each UAV}
32: W +- W - wV; \\ {removes the selected waypoints from the list}
33: end for
34: end while

Algorithm 2.3.1: Receding Horizon Task Assignment Algorithm

31

2.3.2 Munition Constraints

The UAVs are assumed to be of different types and carry different types of munitions.

The tasks at the waypoints are also of different types. One important objective in the

UAV assignment problem is to assign the UAV with the right munition to a specific

waypoint. If waypoint w can only be visited by UAVs that carry munitions of type

A, a UAV without this munition should not be assigned to this waypoint. It is a

simple constraint that can easily be included in the optimization problem when the

assignment is done in a single optimization problem. However, it can cause a problem

in any iterative method if it is not implemented correctly. For example consider the

simple 2-UAV, 4-waypoint example in Figure 2.3 which compares the results of an

iterated greedy method with the optimal solution. In this example, UAV and UAV2

have two munitions of type A and two munitions of type B, respectively. Waypoints

WP and WP 2 each can be visited by UAVs carrying munitions of either type, but

waypoints WP 3 and WP 4, can only be visited by UAVs with type A munitions. In the

optimal solution (Figure 2.3(b)), UAV 1 visits waypoints WP3 and WP4 and UAV2 ,
visits the rest of the waypoints. But in the greedy case, the first stage of planning

ignores the future, so in order to assign the correct UAV to one target, the best

assignment is UAV to WP 1 and UAV 2 to WP 2. Given these assignments, in the

next stage, UAV 2 is not able to visit the remaining waypoints WP3 and WP4 , and

therefore the mission will be incomplete. The incomplete mission can be viewed here

with two perspectives: one perspective is to say that the greedy mission generates a

feasible answer that is poor in performance. The second perspective is to say that

it resulted in an infeasible assignment, in which not all the possible waypoints are

visited. In either case, the greedy mission fails because it ignores the future.

To resolve this issue, a set of constraints is introduced here to be implemented in

iterative methods. This set of constraints ensures that each waypoint is visited by

the right type of munitions and also the number of munitions that is used by each

UAV is less than or equal to its capacity. Suppose there are K types of munition,

M 1 , M 2 , .. . , MK. Also assume that M1 > M 2 > ... > MK which means, if a waypoint

32

-UAV2 WP4 - 4.5- UA2 WP4

4 t .---------------- --- A 4 ---

3.5- - 3.5- A

3- 3-

2.5 2.5

2- 2-

1.5- 1.5 -
UAVI UAV1

1 - -- ----------------- *WP1 AP3 - -- WP3

05 A/B *WP3 1tA------------wP A/ I
0.5 - A - 0.5 - A -

0- 0-

-0.5 --4.5 0 1 2 3 4 5 6 7

(a) Greedy Solution (b) Optimal Solution

Fig. 2.3: A case where the greedy method fails to find feasible solution

can be visited by munition Mi it can also be visited by any munition of type Mi, where

j < i. As an example, consider long-range missiles (LRM) and small-range missiles

(SRM). A waypoint that needs to be targeted by SRMs can also be targeted by a LRM,

but not vice versa. For each waypoint w there is an index i for which any munition of

type j < i can be used. This is represented by the binary matrix 0 of size K x Nw.

A matrix @ of size K x Nv represents the capacity of the UAVs. The element (i, v) of

4 represents the number of munitions of type Mi in the UAV v. The implementation

of these constraints are done both inside and outside the optimization. Prior to the

optimization, the required munition of each type to visit all the remaining waypoints

is calculated.

Nw

#i = E im Vi e 1 ... K (2.12)
w=1

For each petal p the required munition of each type is also calculated

p = E 0iw Vi 1. .. K (2.13)
wEWp

For each petal p and each UAV v, the remaining munition for UAV v, Q, is also

calculated, if it gets assigned to petal p. This is not simply the difference between the

33

current UAV munitions and the required munition because we must account for the

fact that a munition with a smaller index can substitute for a munition with a larger

index. In calculating these values, if a UAV has less than the required munition for a

specific petal, then that petal will be eliminated since it cannot be part of a feasible

solution.

These values(#, y, Q) are then written into a data file and used in the optimization.

The constraints in the optimization environment are:

K

Wi =3 Q3 jp Vi c 1 ... K (2.14)
pEP j=i

K

j=i

oi ;> Xi V' e 1. ... K (2.16)

pi is the remaining munition of type Mi after this iteration. Xi is the required muni-

tion of type Mi for the rest of the mission and Eq. 2.16 ensures that the remaining

munitions are enough to complete the mission.

2.3.3 Munition Constraints as an Effective Cost-To-Go

Another way of applying the munition constraints is to relax them and add them

to the objective function as a penalty term. There are some advantages for doing

that. One is that the same algorithm can be used for the case in which the available

munitions are less than those required for the mission. In this case, if hard constraints

are used, the resulting optimization will be infeasible. By relaxing these constraints

and adding them to the objective function (soft constraints), the best assignment

with the available munitions will be achieved. Another advantage of soft constraints

is that if a good value for the penalty coefficient is chosen, the penalty function

would play the role of an effective "cost-to-go" function. The optimization then has

the flexibility of trading between optimality and feasibility (here by feasibility we

mean visiting all the possible waypoints). To transform the munitions constraint

34

from a hard constraint in Eq. 2.15-2.16 to a soft constraint, Eq. 2.16 is replaced with

(0 i f oi > xi
i P=iVi E 1 ... K (2.17)

Pi - Xi if Pi < Xi

and the objective function is rewritten as

N, Np K

max J6= ZZ Sxvp-, + yZ (2.18)
v=1 p=1 i=1

where -y is the penalty coefficient. Note that the best choice of Y is problem specific.

2.3.4 Time Constraints

Time and precedence constraints are crucial components of UAV planning. For any

target, the sequence of identification, strike, and bomb damage assessment (BDA)

should be kept in the right order. Synchronous observation of a target by several

UAVs is another example of timing constraints. When assignment is done as a single

MILP problem, formulation and inclusion of these constrains are simple, although

the resulting problem will be much harder and take a much longer time to solve [13].

These types of constraints are referred to as "hard side constraints" in operations

research literature. In [13], a method to include timing constraints with loitering

in the petal algorithm is extensively discussed and the impact of different types of

constraints in the computation time is examined. Here, the methodology is briefly

presented and a much simpler method is introduced to include timing constraints in

the RHTA, which does not change the complexity of the problem.

Suppose there are Nt timing constraints, which are represented by a Nt x 2 matrix

F and vector d of size Nt. The kth row of F, [i, j] along with the kth element of d,

dk specify a timing constraint that forces the task j to be executed at least dk time

steps after task i. Defining TOE (Time Of Execution) as the vector that represents

the execution time for each task gives each constraint the form of TOEj > TOEi+ dk.

To make the problem more general, dk need not be a positive number. The loitering

35

Time of arrival TOEof waypoint i T

time

Flight time Loiter time
(Fly at max speed) at waypoint i

Fig. 2.4: Flight time, loiter time, time of arrival, and time of task execution.

time at waypoint i is defined as the time difference between the time of execution and

the time of arrival at waypoint i (Figure 2.4). The UAVs are assumed to fly at the

maximum speed between waypoints and expected to loiter before executing the task.

Note that they can also be regarded as flying at a slower speed between the waypoints,

or loitering at the previous waypoint. To represent loitering, the N. x N, loitering

matrix L is introduced, whose Lij element expresses the loiter time at the ith waypoint

when visited by UAV j. The elements of matrix L are a set of new parameters in

the optimization. Note that Lij = 0 if waypoint i is not visited by UAV j. We need

to include the loitering matrix to ensure that if the timing constraints are consistent

(or, the problem is feasible), the algorithm finds a feasible solution.

In the MILP formulation, the time of the task execution at waypoint i, TOE, is

written as

Nm

TOEj Ti Xy + LBi , i = 1, .. ., Nw (2.19)
j=1

where the first term expresses the flight time from the start point to waypoint i at

Vmax, and LBj is the sum of the loiter times before executing the task at waypoint i.

Define the set WV such that W is the list of waypoints visited on the way to waypoint

i (including i), so that

Nv

LBi=(Ljk , i=1,...,NW (2.20)
jEWj k=1

Only one UAV is assigned to each waypoint, and each row of L has only one non-

zero element. To express the logical statement "on the way to", we introduce a large

number M, and convert the one equality constraint equation (Eq. 2.20) into two

36

inequality constraints.

Nw NV NM

LB ; E Ojp, E Lk) + M 1 -E Vix) (2.21)
j=1 k=1 p=1 P

Nw Nv NMLB> E OijP E Ljk) - M (1 - E Vx) (2.22)
j=1 k=1 p=1

o is a three-dimensional binary matrix that expresses waypoint orderings, and Oijp

1 if waypoint j is visited before waypoint i (including i j) by permutation p, and

0 if not. When waypoint i is visited by permutation p, the second term on the right-

hand side of the constraints in Eqs. 2.21 and 2.22 disappears, producing the equality

constraint:

NW NV

LB= E Oij, E Lk) (2.23)
j=1 (k=1

which is the same as Eq. 2.20. Note that when waypoint i is not visited by permutation

p, Oij, = 0 for all j and Vp = 0, so that both of the inequality constraints are relaxed

and LBj is not constrained.

The cost function J3 of Eq. 2.5 to be minimized in the optimization can be rewrit-

ten as:

Nv Nw

J7 + a CPXP + E E Lij (2.24)
Nv PM Nw j=1 j=1

The first term gives the maximum completion time of the team, the second gives the

average completion time, and the third gives the total loiter times. # > 0 is used to

include an extra penalty that avoids excessive loitering. The above methodology for

including timing constraints can be easily translated and implemented in the time-

discounted value formulation.

37

Timing Constraints in RHTA

Since RHTA is an extension of the petal algorithm, these constraints can be imple-

mented the same way in the RHTA algorithm. But as discussed in [13], these types

of constraints can considerably increase the computation time. Since the motivation

of RHTA was to decrease the computation time and make it suitable for real-time

implementation, including timing constraints in this fashion could defeat the objec-

tive. However, in the case where we are willing to gain performance at the price of

computation time, this method might be useful. The following presents a very sim-

ple alternative to include timing constraints into the algorithm without changing the

degree of complexity. The basic approach is to apply the timing constraints outside

the optimization. To do so, in each iteration all the waypoints that their precedent is

not visited are removed from the waypoint list. They are added back to the waypoint

list as soon as their precedence waypoint is visited. For example if waypoint i is

required to be visited before j then, waypoint i is the precedence for waypoint i. In

the algorithm, waypoint j will be removed from the waypoint list initially and gets

added to the waypoint list after waypoint i is assigned. Using loitering we also ensure

that the required delays between the visits are satisfied.

2.4 Results

This section presents several simulation results to demonstrate the capabilities of the

receding horizon task assignment algorithm.

2.4.1 Dynamic Environment

The simulation in Figure 2.5 applies the Task Assignment presented in this chap-

ter to a dynamic environment. The structure of the problem was motivated by the

AlphaTech SHARC challenge problem [14]. The changes in the environment dur-

ing the simulation occur with no prior knowledge and the fleet is reassigned as the

environment changes.

38

The simulation includes two types of vehicles and two types of obstacles. The solid

black areas are no-fly zones that no vehicle can pass through, such as mountains or

buildings. The second obstacle type, marked with a square, is a Surface to Air Missile

(SAM) site that can detect within the surrounding circle. The o vehicles are stealth

vehicles (vehicles that are not observable by radar) capable of evading SAMs and

are responsible for removing the SAM sites. The A, o, and V vehicles do not have

stealth capability and cannot fly through SAM zones. These vehicles are responsible

for removing the targets marked with x. These vehicles also are only capable of flying

60% of the maximum speed of the stealth vehicles.

In order to discuss the simulation, the vehicles are numbered as shown in Fig-

ure 2.5(a). Vehicles 1 and 2 are stealth vehicles, while vehicles 3-5 are not. The

simulation proceeds left to right, row by row through the plots. Figure 2.5(a) shows

the original environment and initial allocation of vehicles to targets.

The second plot (Figure 2.5(b)) shows how the fleet is reassigned when vehicle

1 removes SAM site R1. The trajectory for vehicle 4 is modified to fly through

the previously obstructed SAM zone reducing the mission time and hence the time-

discounted value for this vehicle. As a result, vehicle 4 trades target T2 to vehicle

5 and takes over target T4 in order to reduce the total mission time for the fleet.

This demonstrates both the complete coordination among the fleet of vehicles and

the ability of this method to make decisions regarding not just the current task, but

future tasks that contribute to the total cost of the mission.

In Figure 2.5(c), vehicle 2 has removed SAM site R2, which again allows vehicle 4

to shorten its trajectory. However, a new SAM site R5 is also detected by vehicle 1,

which results in a reallocation of tasks for the stealth vehicles. Vehicle 1 is now

tasked with removing R5, while vehicle 2 receives R3 in addition to the previous

task of removing R4. Again this shows coordination in the determination for the task

assignment and trajectory planning. Note that vehicle 3 must also change trajectories

to avoid the new SAM area.

The fourth plot (Figure 2.5(d)) occurs after all the remaining SAM sites have been

removed. Vehicle 5 flies through a gap in no-fly zones, producing another exchange

39

of target assignments with vehicle 4. Vehicle 4 is assigned T3, while vehicle 5 receives

targets T1, T2, and T4. Vehicle 3 shortens its trajectory to fly below an obstacle

once vehicle 2 removes SAM R3.

In Figure 2.5(e) a new target T7 is discovered by vehicle 5. Vehicle 5 is assigned

the new target but trades T2 and T4 to vehicle 4 to make up for the increased cost

in accepting the new target. The result is an allocation that still minimizes the

mission time for the fleet. The final plot shows the trajectories flown by each vehicle

throughout the optimization.

This simulation demonstrates the capability of the UAV task assignment algorithm

presented in this chapter to adapt to changes in the environment. This simulation

demonstrates how a complete reassignment of tasks leads to coordination between

the vehicle in completing the total mission. This coordination is demonstrated by

numerous exchanges of tasks to re-optimize the plan.

2.4.2 Optimal Value for Petal Size (in)

A very important parameter in designing the receding horizon task assignment (RHTA)

algorithm is the maximum size of each petal, m in each iteration. The larger this

value, the longer the paths that are generated in each iteration. Intuitively, as m

increases, the performance and the computation time both increase. By setting m

to a large enough value the solution of the petal algorithm can be achieved in one

iteration. On the other hand, if m = 1 the algorithm will generate the same result

as an iterated greedy algorithm. Thus, computation time is often sacrificed in order

to gain better performance and vice versa. The RHTA algorithm, however, manages

to work with a single parameter, m, and balances the computation time and per-

formance. The objective is to find a value of m for which the algorithm generates

a close-to-optimal answer in a reasonable amount of time. To experimentally find

an optimal value for m, RHTA was applied to many randomly generated problems

using different values for m. Table 2.1 illustrates the results of a set of simulations

with 8 UAVs and 20 waypoints using four different values for m (m = 1, 2,3,4). As

expected, as m increases, the accumulated value, or performance, increases as well

40

Initial UAV Assignment

.5

-150 -100 -50 0 50 100 150
xposition

(a) Initial Plan

Phase 3

-150 -100 -50 0 50 100 150
xposition

(c) Phase 3

Phase 5

-150 -100 -50 0 50 100 150
x positio

(d) Phase 4

Final Trajectories

(e) Phase 5 (f) Phase 6

Fig. 2.5: Dynamic Environment Simulation. The stealth vehicles, o are capable of
flying through and removing SAM sites noted with squares. The other vehicles are
restricted from flying through SAM zones and must remove targets marked with x's.

41

2

x position

(b) Phase 2

Phase 4

0

Phase 2

as the computation time. The third column of the table shows the ratio of accumu-

lated value (performance) to the best calculated accumulated value (the solution for

m = 4). The solution for m = 4 and m = 3 are identical in performance, but the

computation time is considerably higher when m = 4. Comparing m = 1 and m = 2

with m = 3, the performance is slightly better for m = 3 but the computation time

is much longer. Based on this set of experiments, m = 1 and m = 2 are both good

candidates in the sense that they can generate close-to-optimal solutions very quickly.

The fourth and fifth columns of the table show the times when the last UAV finishes

its mission (mission completion time) and the summation of all UAV finishing times.

These two can also be used as a measure of performance. Comparing these values

for different m, shows that m = 2 generates almost an identical solution to the best

solution while m = 1 is much worse.

To see if the same results hold for other cases, two additional sets of simulations

are used. Table 2.2 shows the results for many randomly generated scenarios with 8

UAVs and 30 waypoints. Note that in this case m = 4 is computationally intractable

and therefore the results are just for m = 1, 2, 3. Table 2.3 illustrates the result of

scenarios with 8 UAVs and 40 waypoints. The histograms in Figures 2.6, 2.7 compare

the performance and the computation time respectively for the 3 values of m in this

set of simulations. Both performance and computation time are normalized to their

best values. These sets of results validate the conclusion that m = 2 is a good value

for balancing performance and computation time.

Note that the value for computation time in these tables are the total computation

time of all iterations. In real-time replanning where the environment is dynamic, the

algorithm does not need to generate a complete plan at each replanning as the part

of the plan for the future will change as the environment changes. Therefore in each

replanning only one or two iterations of the algorithm are enough. This will reduce the

computation time considerably and makes it feasible for real-time implementation.

42

- 1-step
2-step

[~ 3-step

0.7 0.75 0.8 0.85
performance(normalized)

0.9 0.95 1

Fig. 2.6: Comparing performance for different values of m. The performance is the
accumulated values. Here the accumulated values are normalized with respect to the
best accumulated value.

300

250-

200 -

150

100-

50 -

Fri--mH 7 FI HK_
2 4 6 8 10 12

computation time(normalized)
14 16 18 20

Fig. 2.7: Comparing
computation times are

for each instance.

computation time for different values of m = (1, 2, 3). The
normalized with respect with the smallest computation time

43

300

250-

200-

150-

100-

50

0.65

0 L--
0

F= 1 -step
2-step

[]3-step

Table 2.1: Simulation results for 8 UAVs and 20 waypoints

Accumulated
value

580
606
608
608

I
I

Ratio to the
Best Solution

0.954
0.997
1.0
1.0

I
I

Mission
Time

15
12
12
12

I Total
Finishing Times

84
74
73
73

Computational
Time (sec)

0.4
.6

2.8
12.2

Table 2.2: Simulation results for 8 UAVs and 30 waypoints

Petal Size Accumulated Ratio to the Mission Total Computational
(in) value Best Solution Time Finishing Times Time (sec)

1 660 0.970 18 96 0.5
2 677 0.996 11 79 1.9
3 680 1.0 11 75 13.1

Table 2.3: Simulation results for 8 UAVs and 40 waypoints

Accumulated Ratio to the Mission Total C
value Best Solution Time Finishing Times

813 0.925 21 127
869 0.989 14 101
879 1.0 14 92

omputational
Time (sec)

0.5
4.1

66.4

2.5 Conclusions

In this chapter we proposed a new approach for fast UAV task assignment problem

that maintains a high degree of optimality. The concept of Model Predictive Control

was implemented in the task assignment algorithm to decrease the complexity of the

optimization problem by limiting the size of the problem. The resulting iterative

method, which we call the Receding Horizon Task Assignment (RHTA) was shown to

perform well for large problems in dynamic environments. It was shown to be suitable

for the dynamic environment in which real-time planning is crucial. It was also

shown that the planning horizon m was an important parameter that can be tuned

to balance the performance and computation time. The results of many different

simulations showed that m = 2 achieves the best balance between computation time

and performance for large problems.

44

LPetal Size
(in)

1
2
3
4

LPetal Size
(m)

1
2
3

F

Chapter 3

Filter-Embedded Task Assignment

3.1 Introduction

Future autonomous vehicles will be required to successfully operate in inherently

dynamic and uncertain environments [3, 4]. The vehicles will be required to make

both low-level control decisions, such as path planning, and high-level decisions, such

as cooperative task assignment, based on uncertain and noisy information. While the

impact of uncertainty on feedback control has been analyzed in detail in the controls

literature, equivalent formulations to analyze this impact on the high-level planning

processes have only recently been developed [31, 37]. Uncertainty will inherently

propagate down from the high-level decisions to the lower-level ones, and thus it is

very important to extend these tools and algorithms to provide new insights on the

behavior of these real-time higher-level guidance and control algorithms in the face

of uncertainty.

Task assignment in the controls literature has been generally viewed as an open-

loop optimization with deterministic parameters. The optimization is generally done

once (possibly made robust to uncertainty in the problem [38, 39, 40]), and task

reassignment occurs only when substantial changes in the environment have been ob-

served (e.g., UAV loss or target classification [42, 13]). In reality, these information

updates are continuously occurring throughout the mission due to vehicle sensing ca-

pabilities, adversarial strategies, and communicated updates of situational awareness

45

(SA). The typical response to a change in the SA is to reassign the vehicles based on

the most recent information. The problem of task reassignment due to changes in the

optimization has been addressed by R. Kastner, et.al. [30] in their use of incremental

algorithms for combinatorial auctions. The authors propose that the perturbed opti-

mization problem should also include a term in the objective function that penalizes

changes from the original solution. The work of J. Tierno and A. Khalak [31] also

investigates the impact of replanning, with the objective function being a weighted

sum of the current objective function and the plan difference from the previous op-

timization to the current one. Both of these formulations rely on the plan generated

prior to the current one as a reference. They do not consider the impact of noise in

the problem, nor do they develop techniques to mitigate its effect on replanning.

The objective of this chapter is to develop a modified formulation of the task

assignment problem that mitigates the effect of noise in the SA on the solution. The

net effect will be to limit the rate of change in the reassignment in a well defined

manner. The approach here is to perform reassignment at the rate that information

is updated, which enables immediate reaction to any significant changes in the en-

vironment. We demonstrate that the modified formulation can be interpreted as a

noise rejection algorithm that can be tuned to reduce the effect of variation in the

uncertain parameters in the problem. Simulations are then presented to demonstrate

the effectiveness of this algorithm.

3.2 Problem Statement

Consider the general weapon target assignment (WTA) problem expressed as a linear

integer program (LIP). The following optimization can be solved to generate a plan,

Xk at time k,

max C Xk
Xk

s.t. Xk E Xk (3.1)

Xk E (0, 1 }N

46

where Ck E 7ZN is the cost vector and Xk is a vector of binary variables of size N. Xk(i)

is equal to one if target i is selected in the assignment at time k, and zero otherwise.

Here Xk denotes the invariant feasible space for Xk. This space could represent general

constraints such as limits on the total number of vehicles assigned to the mission.

Targets are assumed to have a value ck, and the problem becomes one of select-

ing the "optimal" targets to visit subject to the afore mentioned constraints. In

the deterministic formulation, the solution becomes a sorting problem, which can

be solved in polynomial time. From a practical standpoint, these target values are

uncertain as they could be the result of classification, battle situational awareness of

the vehicle, and other a priori information. Furthermore, these uncertain values are

likely to change throughout the course of the mission, and real-time task assignment

algorithms must respond appropriately to these changes in information.

The most straightforward technique is to immediately react to this new informa-

tion by reassigning the targets. In a deterministic sense, replanning proves to be

beneficial since the parameters in the optimization are perfectly known; in a stochas-

tic sense replanning may not be beneficial. For example, since the observations are

corrupted by sensor noise, the key issue is that replanning immediately to this new in-

formation results in the task assignment equivalent of a "high bandwidth controller",

making it susceptible to tracking the sensor noise. From the perspective of a human

operator, continuous reassignments of the vehicles in the fleet may also prove to be un-

desirable, especially if this effect is due primarily to sensing errors. Furthermore, since

the optimization is continuously responding to new information, it is likely that the

integer constrained assignment will vary continuously in time, resulting in a "churn-

ing" effect in the assignment, as observed in [41]. The noise tracking and churning

features are undesirable both from a control and human operator perspective.

A simple example of churning is shown in Figure 3.1, where one vehicle is assigned

to visit the target with the highest value. The original assignment of the vehicle

(starting on the left) is to visit the bottom right target. At the next time step,

due to simulated sensing noise, the assignment for the vehicle is switched to the

top right target. The vehicle changes direction towards that target, and then the

47

5-
Tar'gets

SatPoint
4 - Trajectory

3-

2 -

1 -

-2-

-3-

-4-

0 2 4 6 8 10 12 14 16 18

Fig. 3.1: Effect of churning on a simple assignment problem

assignment switches once again. The switching throughout the course of the mission

is an extreme behavior of the churning phenomenon. In fact, it can be seen that as

the mission progresses, the vehicle is still alternating the targets to visit, and never

converges to an assignment that does not change. While this is a dramatic example

of churning, it captures the notion that sensing noise alone could cause a vehicle

to switch assignments throughout the course of the mission. Similar behavior was

observed by Tierno [43] as a result of modeling errors in the cost calculations for the

task assignment.

Clearly, Figure 3.1 shows an extreme situation. However, likely missions will in-

volve multiple vehicles, each with unique information and independent sensors and

noise sources. It might be quite difficult to identify and correct for churning behavior

in a large fleet of UAVs. The subsequent sections in this chapter present methods

of modifying the general task assignment problem to automatically avoid this phe-

nomenon.

48

3.3 Frequency Domain Analysis

The general assignment problem was introduced in Eq. 3.1. Note that the main issue

was that, even with small variations in the target values, the assignment problem

results in highly differing solutions. Clearly, constraining the rate of change of the

assignment would result in an attenuation of the churning phenomenon. As noted

in [31], a key issue is which metric to use to measure the change in the assignment.

There, the authors suggested a connection between time and frequency domains with

regards to planning systems. In this section those ideas are extended by formally

relating the time and frequency domain specifications for the assignment problem.

The approach proposed here is similar to that used in GPS (global positioning

system) which uses correlation techniques to compare received satellite signals and

locally generated Gold codes. A similar approach can be used if we consider the

solution Xk as a length N binary "code". We restrict attention to a specific instance

of Eq. 3.1, in which m vehicles are to assigned to N targets (m < N). Thus the

following integer program is obtained:

max ckjXk
Xk

N

s.t. EXk(i) = mn (3.2)

k C{0, } N

First note that each solution assigns m vehicles to N targets, so they have the same

auto-correlation:

X 1xk-1 X x xk m (3.3)

The two solutions are then compared using the cross-correlation

Rk-1,k = Xkj 1 Xk (3.4)

where Rk-l,k provides a direct measure of the changes that have been made to the

plan from one time-step to the next. At time-step k, if a previous solution Xk_1

49

already exists, then a constraint that limits the number of changes that are allowable

in the current solution can be included:

max ck Xk (3.5)

N

s.t. ZXk(Z) = m (3.6)

XkXk m - ak (3.7)

E {E , 1}N (3.8)

where the integer ak indicates the number of changes that are allowed in the new

plan.

One difficulty with this approach is that the new problem can become infeasible.

This infeasibility can be avoided by converting the constraint in Eq. 3.7 to a soft

constraint where ak is a parameter that must be optimized

max c -3p (3.9)

N

s.t. Zxk(i) = m (3.10)
i 1

0 < a< < F (3.12)

Xk E {o, I}N (3.13)

where F represents an upper bound on the rate of change of the plan and # represents

the relative cost of making changes to the plan. The key point in this formulation is

that F represents the largest possible decorrelation of the plan from one time-step to

the next. Therefore

Ro, 1 > m - F

Roq > m-2F

50

(3.14)

Ro,k > m - kF

Note that since variables are binary, the cross correlation must remain positive semi-

definite, and we must ensure that Roj > 0 Vj. To demonstrate the above state-

ments (Eq. 3.14), define the plan Pk = Xk and the change in the plan, APkl as the

difference between P+1 and Pk

P1 = PO + AP1

P2 = P1 + AP 2

Then, by taking the cross-correlation between plans Po and P1,

PoT 1 PoT(Po + AP1) > M - F

> PoT(AP1) > -F

(3.15)

(3.16)

(3.17)

Likewise, for the cross-correlation between plans Po and P2, by substituting the above

result,

P P2 = POT(PO + AP1 + AP2) > M -F + POTAP2. (3.18)

Now consider the case with AP7'AP 2 = 0 (implying that the difference between two

plans is orthogonal), therefore

plTAp2 = (p0 + Ap J)TA2 = pTAp _F0 2 > (3.19)

Combining these results,

PorP 2 m - F + PoOTAP 2 > m - 2F (3.20)

The above can be extended by induction to any value of k, giving the result that

RO,k PTPk > m - kU (3.21)

51

This corresponds to a triangular correlation plot that is of the form of the Bartlett

Window typically used in lag windows [44]. Insights into the frequency content of the

equivalent controller can be developed by converting the linear correlation plot into

the frequency domain via the Fourier transform. This conversion is straightforward

since the correlation plot is equivalent to the Bartlett window

W {r, 1- TI/f, ITI < (3.22)
10, rl ;> n

Here n is the window parameter; we then have

W n i27rf ~A 1L At"sin~nr t

Wn(f) = At E w,2e- 2 " = t f (3.23)
T__n n sin(7rf At)

There are various measures of the bandwidth of Wn(f), one being Ow 1.5/(nAt)

[44]. In this case, n = ceil(m/F) and At = T, so

1.5 1.517
W ~ ((m/F)Ts) mTs

which clearly shows that increasing F (the maximum decorrelation rate) increases the

effective bandwidth of the controller, as might be expected. A typical plot for this

conversion is shown in Figure 3.2. This analysis establishes an explicit link between

the time and frequency domains for the task assignment problem, a relation that has

been exploited in many other areas of control design and analysis because it is often

insightful to discuss the control problem in the time domain, and modeling errors and

sensing noise in the frequency domain.

3.4 Filter Design

Section 3.3 introduced time and frequency domain interpretations of the task assign-

ment problem. In this section, the correlation concept introduced in the Section 3.3 is

extended to develop a filter for the assignment problem. This filter rejects the effect

52

y= 0.95

8 0 Correlation

6-

2-

0 1 100006eeee6eee0
0 5 10 15 20 25 30 35 40

k

100
-. -. . .- Freq from Data

- Freq from Analytic
10

10
CO

10

0 0.5 1 1.5 2 2.5 3
Frequency

Fig. 3.2: Equivalent frequency response of the planning system with a constraint on
the correlation with the previous plan. The control system is effectively a low-pass
filter, with a bandwidth proportional to F/(mT,), shown by the vertical dashed line.

of noise in the information (parameter) vector and can be tuned to capture different

noise frequencies.

3.4.1 Binary Filter

Similar to section 3.3, assume that the plan is a binary vector of size N. Also assume

that the length of this vector stays constant in each replanning. Define a binary filter

of size r, a system whose binary output changes at most with the rate of once every

r time steps. Figures 3.3 shows the input and output to two binary scalar filters with

lengths r = 3, r = 5. As illustrated in Figure 3.3-top, the input is a signal with the

maximum rate of change (change at each time step). The output is a binary signal

with the maximum rate of one change every 3 steps (Figure 3.3-middle), and every 5

steps (Figure 3.3-bottom). These figures show the filter for a single binary value, but

53

15

15 20

Time Step

~IT i~LL TI
20 25 30 35

25 30 35

Fig. 3.3: (top): Input to the binary filter; (middle):
Filtered signal (r = 5)

Filtered signal (r = 3); (bottom):

the same idea can be extended to a binary vector.

Now we present equations that result in a binary filter of size r. Let us define a

single binary input signal to the filter at time k, Xk, and a filtered output signal Yk.

Define 6 Yk,i as the changes in the value of y in the past iterations:

6yk,i =
yk-i (D yk-i+1 i = 2,) r

(3.24)

where D represents the exclusive OR (XOR) operation. Having these differences,

define Zk as follows:

(3.25)zk = y,1 -- rZk- Yk +-Z6Yk,i

Zk is thus a weighted summation of the difference in plans from time k - r to k.

Now if Zk > 1, then y has changed at least once in the previous r steps and Xk is

different from Yk-1; therefore if Zk > 1, Yk should equal Yk-1 = (Xk) and yk = Xk

54

0 5 10 15 20 25 30 35

1e -

0

C

C

C
LMrn
1

as

C

Q)

LL

0.5 -

0.5 V-

0
0

0.5 F-

00
0

10

5 10

1. 1 1 1 1 1 1q, IF IV 1W I 1W W, 1W W W I W W- W W W I

I I I I I I I I I 1 1 1 1 1,& I I I I I

I
0

5 20 2:5 30 35

otherwise. Yk can be calculated as follows:

yk= k if Zk<l (3.26)
~, X k otherwise

where - denotes the NOT operation. Having defined the binary filter, the following

sections demonstrate how to implement it inside the planning algorithm.

3.4.2 Assignment With Filtering: Formulation

Starting with the simple assignment problem of Eq. 3.1; the idea here is to replan

for the same system in each time step and suppress the effect of parameter noise

(uncertainty) on the output of the system (generated plan). If the above problem

is solved in each iteration, the optimization parameters will be directly impacted by

the noise and the assignment can be completely different at each step. To avoid large

variations in the solution, a binary filter is integrated into the problem to limit the

rate of change in the assignment problem.

The modified assignment problem can be written as follow:

max c T Y (3.27)
Uk ,zk k

s.t. Yk E Yk (3.28)

Zk = yE yk-1 (3.29)

t~i = zgT oy = 0 i = 2,. . . , r (3.30)

where 6 yk,j represents the changes in the assignment in previous plans and functions

as an input to the optimization problem:

6yk,i = Yk-i e Yk-i+1 i = 2,... , r (3.31)

Note that 6 yk,i can be calculated prior to optimization, as the previous plans have

been stored. Also note that the constraint in Eq. 3.30 restricts changes in the current

plan from the previously generated plans.

55

xlr 0 0 00 * . 0 0 00 00 00 0 0 0 0 0 0 0 0.0 0 0 0 0 0 0 0

x2- * 0

C

X3 - 0 O 0 0 O O 0 0 9 O 0 0 0 * 0 O 0 O 0 0 O 0 O 0 O 0 0 0 0 0

x410 1 02 0

Time Step

Fig. 3.4: Unfiltered plan (i. e., optimal plan) showing which two of the four targets
are chosen at each time step.

3.4.3 Assignment With Filtering: Implementation

This section presents the result for a simple but general assignment problem and

compare the results of the unfiltered and filtered formulations. The objective of this

problem is to pick m targets from N existing targets (m < N) in order to maximize

the total value of the selected targets. Each target has a value associated with it that

is affected by noise:

Ck = C -| 0Ck (3-32)

where c is the nominal target value and ock is the noise added to these values. The

nominal value for all targets is set to 5. Solving this problem for N = 4, m = 2

for 30 iterations results in 30 different plans which are directly affected by the noise.

Figure 3.4 shows the result of this simulation. In the following figures, filled circles

represent 1 and unfilled circles represent 0. Thus, targets 1 and 2 are selected in

assignment 1, targets 1 and 4 are selected in assignment 2, etc.

56

x
1

r 0 0 0 0 0 O . 0 0 0 0 0 0 0 * 0 0 0 0 00 0 0 0 0 0 0 0

-0000 000 0 o0 0006...00o oO...

- 00 00 0 00 0 00 &000 00 0 000 00 000 0 00 00

Tm - - - - Se
Time Step

x2 o 0 0 0000.0.... 00 0 00.0 .00 0 0

X3- 00000000 00 00 00 00 0 00 00 00 0000

- - - -i- - - - Se0 0 p0 1
Ti,, Step

20 25 30

Fig. 3.5: Filtered plan with r = 3

The filter is implemented by converting

for LIP implementation:

Zk(i) > -- 1(i) - yk(i)

Zk(i) > Yk-1(i) - yk(i)

Zk(i) Yk(i) + -i 1i)

Zkt) < 2 - yk(i) - yA-1(i)

Zk(i) E {0, 1}

Fig. 3.6: Filtered plan with r = 5

the constraint in Eq. 3.29 to linear form

(3.33)

(3.34)

(3.35)

(3.36)

i=1,... , N (3.37)

One potential issue with this formulation, is that it might make the problem

infeasible. This means that if the basic problem has a solution, a solution is not

guaranteed in the filtered formulation. The constraint that is capable of making the

filtered formulation infeasible is tk,i = 0, i = 2,... , r. This limits the number of bit

changes in the plan compared to previous plan and can make the problem infeasible.

To avoid this difficulty, this set of constraints can be relaxed and added to the cost

function as a penalty function. The new cost function can be written as:

max c yk + dt
Yktk,i i=1

(3.38)

Figures 3.5 and 3.6 show the results of applying filtering to the previous example,

57

X4) -

with values of r = 3, r = 5 used for the filter length. Comparing these results with

the result of the unfiltered formulation, we can see noise mitigation in the filtered

formulation. Although this result helps us to somehow attenuate the noise effect and

reduce the rate of change in the plan, it does not completely reject noise as expected.

The filter clearly prevents sudden changes in the plan; a change in the ith element

of Xk, Xki), can happen only after being in its current state for r time steps. The

ultimate goal is to make the filter respond to low frequency changes and suppress

high frequency changes, which will help us to reject the high frequency noise while

responding to low frequency changes in the environment (system). This will reduce

churning which is the result of noise and/or the changes in the environment that

occur too rapidly to track, and may therefore be treated as noise as well. In the

above formulation, the filter has memory which allows it to use the previous outputs

to generate the current output. The solution can be written as:

yA f(Xk, Yk_1, Yk-2, .. , Yk-r) (3.39)

where Xk is the current optimal solution (interpreted as the input to the system)

and Yk-1, , Yk-, are the previous plans (outputs of the system). In addition to

these values, the previous unfiltered plans can also be used as input to the filter. At

each iteration, both filtered, yk, and unfiltered, Xk, plans can be generated. Having

generated Xk, a filter of the following form can then be designed:

yk = f(zX, zk-1, ... z7X-, yk_1, yk-2, ... - yk-r) (3.40)

Figure 3.7 gives a block diagram representation of assignment with filtering. Here,

FTA and UFTA represent the filtered and unfiltered task assignments respectively.

TA represents the overall task assignment and Z 1 represents a bank of unit delays.

To explain how this can reduce the impact of high frequency noise in the param-

eters, suppose the objective is to reject noise with frequency 1 but also track changes

occurring with frequency of 0.5. This means the effect of noise makes the system

parameters change at each time step, while the changes in the parameters are oc-

58

I T

Ck

IA

Xk I

YkI

L----------------------

Fig. 3.7: Block diagram representation of assignment with filtering

curring every two time steps. Now consider at time k the unfiltered solution to two

previous plans: Xkl and Xk-2. In order to calculate Yk given Xk and these values, the

difference between Xk-2, Xk_1, and Xk are used:

6Xk = Xk1 (Xk and Xk =x k-2eXk-1

Then calculate the output as

SXk() if SXk(06Xk-1(z) 0
yk(i) = (3.41)

Yk-1Q) if Xk(Z) 6 Xk_1() 1

If the value of the bit Xkl(i) had changed from its previous value,xk-2 (i) and the

value of the same bit is changed from Xk1(i) to Xk(i) then it means that this change

is an effect of changes with the frequency of 1 which is intended to be canceled.

Therefore the change is ignored and yk(i) = Yk-1(i). Now this idea of filtering noise

is used to implement an assignment algorithm that is robust to high frequency noise

in the environment. In other words the effect of noise in the information vector is

suppressed in the assignment. To avoid the difficulties of adding hard constraints

to the assignment problem, the constraints are relaxed and added to the objective

function. A filter that rejects noise with frequencies greater than - can be formulated2q

59

I

as follows:

max cy A - #T(ye yk_1) (3.42)

s.t. Yk E Yk (3.43)

5rj= Xk- @ Xk--1 (3.44)

Ok = b36x_ (3.45)
j= 1

where bj is the weighting coefficient and xj is the unfiltered solution at step j and

is given as an input to the optimization. The second term in the objective function

(Eq. 3.42) is the penalty associated with changes that are made in the current plan

compared to the previous plan. #k is the coefficient vector that penalizes each change

(each bit in the assignment vector). Each element of this coefficient vector is a

weighted summation of previous changes in the optimal plan. Since the optimal

plan will track environmental noise, measuring changes in the optimal plan results

in a good metric to identify and suppress such disturbances. This is implemented in

Eqs. 3.44-3.45. The coefficients bj tune the effect of previous plans in the current

plan. By setting these coefficients, we define the importance of the changes in the

previous plans and so the bandwidth of the filter. A good candidate for by is

by = b (3.46)

where b is a constant that can be set based on the problem. This set of coefficients will

attenuate the effect of the changes that happened in the far past (larger j), compared

to the recent changes in the plan. As j increases then, the weighting on the past

plans is decreased.

The formulation above is a special case of the general filter in Eq. 3.40 with r = 1,

which was described for simplicity. A more comprehensive form of this filter (r > 1)

can also be implemented to obtain more general filtering properties. For instance, by

combining the formulation given above with the formulation in the previous section,

a filter with the properties of both can be generated. This filter will reject noise with

60

high frequency while limiting the rate of change of the plans. Current research is

investigating the best way to include a more general form of assignment filter (binary

filter) in the task assignment problem.

3.4.4 Assignment With Filtering: Simulation Results

Figure 3.8 present the results of the unfiltered and filtered formulations for the exam-

ple introduced in section 3.4.3. The cost coefficients change randomly with time (top

plot of Figure 3.8). The noise is uniformly distributed in the interval [-0.5, 0.5].The

middle plot shows that the unfiltered plan tracks the noise in the cost coefficients to

a much greater extent than the filtered plan (bottom plot). To demonstrate that the

filtered plan is only rejecting the "noise", the coefficient c2 is changed at time step 7

by increasing it by 0.7 and at time step 16 by decreasing it by 1.4; the results show

that the filtered plans were modified to follow these lower frequency changes.

Figure 3.9 makes another comparison between the unfiltered and filtered assign-

ments. An example with 40 targets and 20 vehicles was simulated for 100 time steps.

At each time step, the current plan was correlated with the previous plan, and the

results are shown in the plot. As expected, the filtered plans exhibit much higher

correlations than the unfiltered plans.

61

C

C

yl 00 0 00 0

y2- @ o o O O O O O O O O * O O 0o

0 0 0 0 0 0 0 0 0 0 0 * 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

y4'
0

- - - --- - - -

Time Step

Fig. 3.8: (top):Noisy cost coefficients; (middle): Plans with no filter; (bottom):
Filtered plan

62

1

2

4 A

0 5 10 15 20 25 30

Time Step

- 000 0 0 0 0 0 0 0 0 0 0 0 0 0 OID 0 0 0 0 0 0 0 0 0 0

000 0 0000 1 200000000000 0 00
0 5 10 15 20 25 30

AD

*0

0
0

C

x1

x2

x4

C:

C:
Z)

C
CES

-0
(D

y3

45

Fig. 3.9: Histogram showing correlation of filtered and unfiltered assignments

3.5 Conclusions

This chapter has formulated a modification of the classical task assignment under

noisy conditions. We have extended the frequency domain interpretation as originally

formulated in [31] using correlation as a metric. A formulation that limits the rate

of change of the assignment to mitigate the churning phenomenon is developed . To

attenuate the effect of noise in the assignment problem, we have developed a noise

rejection scheme that is incorporated in the planning algorithm. We demonstrated

the effectiveness of this scheme in simulation, and showed good signal-tracking and

noise-rejection properties. Future work will investigate the role of robust approaches

to the task assignment and their relation to the recently developed noise rejection

algorithms.

63

50 r

| |Filtered
Unfiltered

0.8
Normalized Correlation

40F

35

30

0

.25

20

15

10

5

0.
0.6

64

Chapter 4

Cooperative Planning

4.1 Motivation

Previous chapters addressed the problem of UAV task assignment for cases where the

environment is dynamic. Chapter 2 proposed a Receding Horizon Task Assignment

(RHTA) algorithm as a method for fast replanning of the problems in which the

environment changes rapidly. Chapter 3 addressed high rate replanning issues and

proposed a filtering algorithm to eliminate these problems. The algorithms in the

previous chapters generate a coordinated assignment for each team of UAVs, assigning

tasks to each UAV to maximize an overall objective. The plan is coordinated since

each UAV does not maximize its own objective, but gets assigned to optimize the

overall objective. The timing of the planning (i.e., a UAV performs a BDA task

after another UAV has performed strike on a specific target) shows coordination

of all the activities. In UAV planning, coordination is essential for optimizing the

team objective and is achieved in the algorithms that were proposed in previous

chapters. However coordination is not sufficient for many problems and UAVs must

also cooperate to accomplish certain missions. Here we define a cooperative plan as

one in which the action of one agent (here, a UAV) directly improves the performance

of another agent. The plan for each UAV in a cooperative plan is tightly coupled with

the plan of other UAVs, for example some of the actions of UAVs are planned to create

a shorter path with less risk for other UAVs. The following sections formulate this

65

concept in different ways for different applications.

4.2 Cooperative UAV Task Assignment in Risky

Environments

Real-world air operations planners rely on cooperation between aircraft in order to

manage the risk of attrition. Missions are scheduled so that one group of aircraft opens

a corridor through anti-aircraft defenses to allow a second group to attack higher value

targets, preserving their survival. The main planning challenges involve utilizing

the maximum integrated capabilities of the team, especially when each UAV can

perform multiple functions (e.g., both destroy anti-aircraft defenses and attack high

value targets). Cooperation is not just desirable, it is crucial for designing successful

missions in heavily defended environments. A successful method of performing task

allocations cannot assume the mission will always be executed as designed, but must

account for an adversary in the environment who is actively attempting to cause

failure. The simulations presented show that ignoring the probability of UAV loss

results in mission plans that are quite likely to fail. Furthermore, techniques that

model this probability [45, 28], but ignore its coupling to each UAV's mission can

result in very poor performance of the entire fleet.

Clearly, a UAV mission planning formulation must recognize the importance of

managing UAV attribution, and have the capability to use the same strategies as

real-world air operations planners. The new formulation in this section approaches

this by capturing not only the value of the waypoints that each UAV visits and of

returning the UAV safely to its base, but also by capturing the probability of these

events. In order to maximize the mission value as an expectation, this stochastic

formulation designs coordination plans that optimally exploit the coupling effects of

cooperation between UAVs to improve survival probabilities. This allocation recovers

planning strategies for air operations and provides significant improvements over prior

approaches [45, 28].

66

4.2.1 Stochastic Formulation

This section discusses the extension of the petal algorithm (discussed in Section 2.2)

in order to capture the stochastic effect of the environment and achieve a plan with

cooperation between UAVs. The constraints presented in Section 2.2 are applied to

force the following variables to take their desired values. V,,p equals 1 if waypoint w

is visited by vehicle v on its pth permutation and 0 if not, t, is the time that waypoint

w is visited, to, is the aircraft's time of departure from its starting point, Pdvwp equals

1 if the dth destination visited by permutation p for vehicle v is waypoints w and 0

if not, and Tdv is the length of time after its departure that vehicle v visits its dth

waypoint.

A new stochastic optimization formulation will be presented that maximizes the

expected value. This optimization exploits phasing by attacking the anti-aircraft de-

fenses before the high value targets, and preserves the survival of the UAV that visits

the high value target. To determine whether an anti-aircraft defense is in operation

while a UAV flies within its original range, the waypoint visitation precedence is eval-

uated. If the time that UAV v begins the leg leading to its &h destination is less than

the time waypoint w is visited, then waypoint w is considered to threaten the UAV

on this leg from d - 1 to d, and the binary decision variable Advy is set to 1 to encode

this waypoint visitation precedence. The logical equivalence

Advw = 1 # tov + T(d-1)v tw (4.1)

can be enforced with the constraints

tov + Td-1)v tw + M(1 - Advw) ± e

tw tov + T(d- 1)v + M(1 - Advw) ± e

where c is a small positive number and M is a large positive number. With this prece-

dence information available, constraints can be formulated to evaluate the probability

qdv that vehicle v survives to visit the dth waypoint on its mission. The probability

67

4dvw of vehicle v not being destroyed on the leg leading to itsdh destination by an

intact air defense at waypoint w for the selected permutation is evaluated as

qdvw = qdvpwXvp (4.2)

If waypoint w is visited before the vehicle starts the leg to destination d, then the

anti-aircraft defense at w is assumed not to threaten the vehicle. Thus the actual

probability qdvw that vehicle v is not destroyed by an anti-aircraft defense at w is 1.

Otherwise, it is 4dvw-

qdvw < qdvw + M(1 - Advw) and qdvw 1 (4.3)

The actual probability qdv of reaching each destination can be found by evaluating

Eq. 4.8 in terms of the actual probability of surviving each anti-aircraft defense qdvw-

NW

qdv = q(d-1)v J qdvw (4.4)
w=1

Again, d = 0 corresponds to the vehicle's starting position and qov = do, = 1.0.

Because Eq. 4.4 is nonlinear in decision variables qdvw and qdv, it cannot be included

directly in the formulation, but can be transformed using logarithms as

Nw

log qdv = log q(d-1)v + 1 log qdvw (4.5)
w=1

While this equation form accumulates the effects of each of the anti-aircraft defense

sites on the survival probability over each leg of the mission, it only provides log qdv.

Evaluating the expected value requires qdv, which can be recovered approximately as

dv by raising 10 to the exponent log qdv using a piecewise linear function that can

be included into a MILP accurately using 3 binary variables. The exact function is

nearly linear in the range of interest where probabilities are above 0.3 [42, 46].

The expectation of the mission value is then found by summing waypoint values

multiplied by the probability of reaching that waypoint. If the value of the dth way-

68

point visited by vehicle v in its pth permutation is sdvp, then the expectation of the

value Sdv that will be received from visiting the waypoint is

Vp E {1, 2,...,Np} d: s q _<dvs ±p + M(1 - xvp) (4.6)

and the objective of the stochastic formulation is

nmax Nv Nv
max J = E Esdva1l- 2 (to + Tnmaxv) (4.7)
Xvp,tov d=1 v=1 NyV=1

4.2.2 Advantages of Cooperative Assignment

To show the advantages of cooperation achieved by using the stochastic formula-

tion, two alternative formulations ("purely deterministic" and "deterministic equiva-

lence") [42] are presented and the results of an example using the three formulations

are compared.

Purely Deterministic Formulation

This formulation ignores the risk in the environment and uses the maximum value

formulation discussed in Chapter 2 to generate the optimal plan. Figure 4.1 shows

the results of the purely deterministic formulation for an example of 3 UAVs and 5

waypoints. The central waypoint has a score of 100 points, and the other waypoints

have a score of 10. The UAVs each receive a score of 50 for returning to their starting

point, representing the perceived value of the UAVs relative to the waypoints. In

this work, the probability that a UAV is destroyed is calculated as proportional to

the length of its path within the anti-aircraft defenses range. In the nominal threat

level case, the constant of proportionality was chosen so that a path to the center

of the smaller anti-aircraft defense would have a probability of survival of 0.96. The

formulations were also applied in environments in which the nominal constant of

proportionality was multiplied by factors of 3 and 7, respectively. These particular

selections are arbitrary, but the results of this comparison illustrate important trends

in performance as the threat level increases. Under the nominal threat levels, this

69

Fig. 4.1: Example of purely deterministic allocation. The vehicles start at left and
visit waypoints at right. tdv gives the time at which point d is reached on UAV v's
mission, including departure time from starting point. qd, is the probability that point
d is reached on UAV v's mission. The probability of being shot down is assumed to
be proportional to the length of the path in the anti-aircraft defense's range, shown
with circles. Note that the middle vehicle aircraft does not delay its departure, and
that the bottom vehicle passes through the large anti-aircraft defense second from
the bottom once without destroying it.

formulation gave a probability of 0.86 that the high value target at the center would

be reached by the UAV to which it was allocated. When the probability of destruction

on each leg was increased by a factor of 3, the probability of reaching the high value

target was 0.57, and when the probability of destruction was increased by a factor of

7, the probability of reaching the high value target was 0.25. Thus, in well-defended

environments, the deterministic formulation plans missions that are highly susceptible

to failure.

70

t ,=0t01

q31=O.92

t =0

q32=0.86

t =0

q33=0.83

Deterministic Equivalence Formulation

In the deterministic equivalence formulation the threat that each waypoint poses

to the UAVs is a fixed quantity, so that destroying it does not decrease the risk

to other vehicles. This formulation reduces the problem to multiplying the value

associated with each waypoint along a UAV's mission by the probability that the

UAV reaches that waypoint. This calculation can be done for every permutation

before the optimization is performed, so no probabilities are explicitly represented in

the optimization program itself.

Let 4dvp be the probability that vehicle v reaches the dth destination on its pth

permutation, and let d = 0 correspond to the vehicle's starting position. Then 5ov =

1.0 for all permutations, and

Nw

qdvp = q(d-1)vp H idvwp (4.8)
W=1

qdvwp is the probability that an anti-aircraft defense at waypoint w does not shoot

down UAV v between its (d - I)th and dth destinations. Then, the cost function of

the deterministic equivalent formulation is

Nv nmax Nv Np
max J = -O'if - o' v-Imxvdpdpv (4-9)0" ~ E StO +q-av dvpsdvpXvp (9XvptOv Nv d1 V=1 P=1

where idvpsdvp is evaluated in the cost estimation step, and is passed into the opti-

mization as a parameter.

The plans from the deterministic equivalent formulation are shown in Figure 4.2.

This formulation includes a notion of risk, but does not recognize the ability of UAVs

to cooperate to decrease the probability of attrition. As the threat level of the envi-

ronment increases, this formulation tends to result in "pessimistic" plans, in which

some of the waypoints are not visited. In the case that the risk is 3 times the nominal

value, only 3 of the waypoints are visited and one UAV is kept in the base since the

paths are too risky (Figure 4.2(b)). As the risk increases to 7 times its nominal value,

the optimal plan is to keep all the UAVs in the base and do nothing (Figure 4.2(c)).

71

This situation occurs when the contribution to the expected value of visiting the

remaining waypoints is offset by the decrease in the expected value due to a lower

probability of surviving to return.

Figure 4.3 shows the optimal cooperative assignments for this problem using a

stochastic formulation. A careful analysis shows that this formulation recovers phas-

ing (e.g., to2 = 76) and preserves the UAV that visits the high value target. As the

threat level in the environment increases, the upper and lower waypoints are ignored

(Figure 4.3(c)). The ability to reduce risk through cooperation is captured by eval-

uating the actual risk during optimization as a function of the waypoint visitation

precedence.

Analysis of the Results

After the assignment problem was solved for nominal threat values using the three

formulations described above, the resulting allocation solutions were evaluated using

the model of the stochastic formulation of Section 4.2.1. Table 4.1 shows a comparison

of the resultant expected value, mission completion time, and probability of survival

of the three formulations. The computation time of each formulation is also shown.

The expected values of the purely deterministic and stochastic formulations are very

different, although the waypoint combinations assigned to each UAV are the same.

The allocation differs mainly in timing, emphasizing the importance of timing of the

activities.

While some improvement over the purely deterministic formulation is seen in the

deterministic equivalent formulation, the stochastic formulation achieves the highest

expected value. Although this formulation also does the best job of protecting the

survival of the UAV that visits the high value target, it is the most computationally

demanding formulation.

The results of applying all three formulations in high threat environments are

shown in Tables 4.2 and 4.3, which indicate that (in high threat environments) the

purely deterministic and deterministic equivalent approaches are incapable of recov-

ering a higher expected value than would be achieved by keeping the UAVs at their

72

(b) Risk : 3x Nominal

(c) Risk: 7x Nominal

Fig. 4.2: Example of deterministic equivalent allocations. Nominal probabilities of
destruction at top left, increased by a factor of 3 at top right and increased by factor
of 7 at bottom. At top left, UAV 1 could exploit phasing by waiting for UAV 2 to
destroy the anti-aircraft defense second from the top threatening 1 on its way to its
target. However, the probabilities are fixed quantities, so the benefits of cooperation
between UAVs are not recognized, and UAVs 1 and 2 leave simultaneously at t = 0.
As the threat level of the environment increases, the allocation that maximizes the
expectation of value keeps the UAVs at their base in order to collect the reward for
safe return, and the high value waypoint is not visited.

73

t=0t01

q3 =1 .00

t =0 2 0

q =32 1.00

-=0

q33=1.00

(a) Risk : Nominal

(a) Risk : Nominal (b) Risk : 3x Nominal

q =0.29
to=

q3=0.74
t32=126

q =1.00
t =0

(c) Risk : 7x Nominal

Fig. 4.3: Example of maximum expected value allocation. Nominal probabilities
of destruction at top left, increased by a factor of 3 at top right and increased by
a factor of 7 at bottom. Note that in all 3 cases, phasing is employed: the two
larger anti-aircraft defense sites have been visited before the UAV that visits the high
value begins its mission, and this UAV retains the highest probability of survival.
As the threat level of the environment increases, only the high value target and the
anti-aircraft defenses that threaten the route to it are visited.

74

t =0
q31=0.92

-02=76

q32=0.97

1 030
q33=0.92

t =0

q 31=0.74

t02
q 32 0.84

t03=79
q3=0.80

Table 4.1: Results of the three formulations in risky environments (nominal
threat levels)

Exp. Mission Time Computation
Formulation value t Time (sec)
Purely Deterministic 251.3 219.5 6.5
Deterministic Equivalent 263.8 219.5 7.0
Stochastic 273.1 276.5 27.1

Expected values in threatening environments. Various probabilities
of destruction (nominal, and 3 and 7 times higher).

Expected value
Formulation Nominal x 3 x 7
Purely Deterministic 251.3 173.1 81.4
Deterministic Equivalent 263.7 219.6 150.0
Stochastic 273.15 239.9 208.7

Probability of reaching high value target. Various probabilities of
destruction (nominal, and 3 and 7 times higher).

Probability
Formulation Nominal x3 x7
Purely Deterministic 0.86 0.57 0.25
Deterministic Equivalent 0.92 0.74 0.00
Stochastic 0.97 0.9 0.74

base. Also, these two formulations are not capable of designing a plan that is likely

to reach the high value target (the probability of reaching the high value target for

the purely deterministic approach is 0.25 and is 0 for the deterministic equivalent).

Chapter 5 presents the results of a purely deterministic formulation on Boeing's

Open Experiment Platform (OEP). The results of the experiments validate the above

arguments. By ignoring the risk in the assignment, UAVs are assigned to targets

aggressively and therefore they get shot down as they implement the plan. These

results express the need for taking into account the risk of the environment and

planing cooperatively to reduce this risk.

75

Table 4.2:

Table 4.3:

4.3 Cooperative Weapon Target Assignment

The UAV task assignment problem is closely related to the Weapon Target Assign-

ment (WTA) problem, which is a well-known problem that has been addressed in

the literature for several decades [45, 47, 48, 49, 50]. The problem consists of N"

weapons and Nt targets, and the goal is to assign the weapons to the targets in order

to optimize the objective, which is typically the expected accumulated value of the

mission. Each target i has a value (score) of si and, if it is targeted by weapon j, then

there is a probability pi that the target will be destroyed. Therefore the expected

value of assigning weapon j to target i will be pijsi. Several extensions of the general

problem have been addressed and solved using different methodologies. This section

looks at the WTA problem from a different perspective, but the main idea is similar

to the case of cooperation discussed for the UAV task assignment.

The problem addressed is that of weapon target assignment in a risky environment.

Two formulations will be presented. The first is simple to solve, but the objective

function ignores the effect that the tasks performed by some of the weapons can have

on the risk/performance of the other weapons. The resulting targeting process is

shown to be coordinated, but because it ignores this interaction, it is non-cooperatve.

The second formulation accounts for this interaction and solves for the optimal coop-

erative strategy using Dynamic Programming (DP). Two approximation methods are

also discussed later as an alternative approach to solve these problems and achieve

an answer that is close to optimal in a reasonable computation time.

Consider the WTA problem where the targets are located in a risky environment

and a weapon can get shot down while flying over these targets. (Some of these targets

represent SAM sites that can shoot down UAVs or weapons). Targets have different

values that get discounted with time, meaning that if the target is hit now its value

is higher than if it is hit in the future. Including this time discount is particularly

important for environments with targets that pop-up and then disappear/move. Since

the weapons are at risk of being shot down, there is a limited probability of success

for each weapon aiming at the target; this will be a function of the risk associated

76

with the regions it must fly over.

The problem is to assign weapons to targets in different stages (time steps) in

order to maximize the expected accumulated value. Note that "time" and "stage"

are used interchangeably in this formulation. The expected value for target i, with

value of si at time t, is pi(t)Atsi, where (Ai 1) is the time discount factor. pi(t)

represents the probability of success in destroying target i at time t and is a function

of the existing SAM sites at time t. The problem then can be formulated as

N Nt

max E pi(t)A'sixit (4.10)
t=1 i=1

N

s.t. z: it < 1 V (E {1 Nt}
t=1

N Nt

E E xit < N. (4.11)
t=1 i=1

xit E {0, 1} Vi E {1. .. N}, Vt C {1... N}

where decision variable, xit equals 1 if target i is assigned to be hit at stage t. The total

number of stages (time horizon) is N. The first constraint ensures that each target

is assigned at most once, and the second constraint limits the number of assigned

targets to the number of available weapons.

With the time discount, it is typically desirable to hit the targets as soon as

possible (i.e., in the first stage). However, since the risk in the environment will be

reduced in later stages as SAM sites are removed, the probability of success, pi (t), will

increase with time, which increases the expected score. Therefore there is a trade-off

between time and risk that must be captured in the optimization problem.

4.3.1 Non-cooperative Formulation

The first formulation is defined as an assignment in which the effect of weapons on

the performance of other weapons is ignored. In this case the probability of success

pi(t) is not a function of time and the objective function in Eq. 4.12 can be rewritten

77

as
N Nt

max E E pi Asixit (4.12)
t=1 i=1

Since the survival probabilities are constant in this formulation, the time discount

Ai < 1 forces the targets to be assigned in the first stage. As a result, the opti-

mization simplifies to a sorting problem in which the targets are sorted based on

their expected value pisi and N, targets that have the largest expected values get

assigned. Chapter 5 presents the results of this formulation, showing that the task

assignment is coordinated, but not cooperative.

4.3.2 Cooperative Formulation

This section presents a more cooperative weapon target assignment approach that

can be solved as a Dynamic Programming (DP). To proceed, define the state of the

system at each time step (stage) t to be the list of remaining targets, rt, and the

number of remaining weapons, mt. Several assumptions have been made to simplify

the notation: the weapons are assumed to be similar; the time discount factor Ai

is assumed to be equal for all targets; and the risk associated with the SAM sites

are assumed to be equal. However, the same algorithm can be used and the same

discussion holds for the general case.

At any stage t, the decision (control), ut is defined to be the list of targets to be

hit at that stage. Bellman's equations for this problem can be written as

Jt*(rt, mt) = min m S(ut) + A Jt* (rt - ut, mt - |ut) , t E {0, ..., N - 1}
Uut I<m{

Jk (rN, MN) = 0 where S(ut) = E pi(t)si (4.13)
Si Eut

and luti is the size of ut (i.e., the number of targets assigned at stage t). p(t)

represents the survival probability associated with the path that the weapon takes

to the target. Note that it can be an arbitrary function of this path (e.g., simply

proportional to the time that weapon is inside each SAM range) or it can also be a

function of the distance from the center of SAMs.

78

Solving the DP in Eq. 4.13 for ro equal to the list of all the targets, and mo equal to

the number of available munitions, gives a sequence of optimal u* that defines which

targets to hit at each stage. JO*(ro, mo) is the optimal expected score. Note that the

horizon in the above DP problem, N, is finite and is less than the number of targets

(N < Nt). It is trivial to show that in any optimal assignment all the targets are

targeted before stage N. In this work, N = Nt. Because pi(t) is a function of time, the

benefit of removing SAM sites in reducing the risk for other weapons is captured in the

formulation. The DP solution will thus provide the optimal balance between risk and

time. Furthermore, since weapons will be assigned to targets specifically to reduce

the risk for other UAVs, the solutions will be both coordinated and cooperative.

4.3.3 A Simple Example

The first example is similar to Figure 4.3, which was used to show the effectiveness of

the cooperative assignment. The problem in Figure 4.4 has 5 targets (all SAM sites)

with different values and ranges (the circles around the SAM sites show their range).

The score of each target is shown next to it. The dotted lines show the trajectory

(assumed to be straight lines between weapon and target) to each target from the

weapon site, and the solid portion corresponds to the risky part of the path that goes

over the SAM. The position of the weapons is shown by A and the total number

of available weapons at the beginning of the mission is shown next to the weapons

(N. = 3 in this example).

To calculate the survival probability of flying over SAM site j for dj units of

distance, the following equation is used

A- d (4.14)

where 0 < p < 1 and 1 - p is the probability of getting shot down for flying over the

SAM site for 1 unit of distance. The overall survival probability for a weapon flying

79

over a set J of SAM sites to target i can be calculated as

P = 11 pj (4.15)
jEJ

The survival probability, p is set to 0.95 and the time discount coefficient, A, is set

to 0.9 for this example. Figure 4.4 shows the optimal DP solution to this problem.

Figure 4.4(a) is the initial state of the environment. In stage 1 (Figure 4.4(b)), SAM

sites 1 and 2 are removed, reducing the risk along the path to SAM site 5, which has

a much higher value (e.g., a command post). The dotted circles show that the SAM

site has been removed and risk is no longer associated with flying over that region. In

stage 2 (Figure 4.4(c)), the last weapon is assigned to the high value target through

a low-risk path.

To see the advantages of cooperation in this formulation, the expected value of this

assignment is compared to the first formulation in Eq. 4.12. This approach assigns

the three highest value targets in a single stage. The expected value for the two

assignments for different values of time discount factor, A, and survival probability, p,

are shown in Table 4.4. For a fixed value of A, as the survival probability decreases, the

difference between the expected value of cooperative and non-cooperative assignments

increases. This shows that cooperation is crucial in high risk environments. For a fixed

p, as the value of A decreases the difference between the two assignments decreases,

showing that when time is very important in the mission, planning in stages is not as

attractive. Figure 4.5 shows the same results for a continuous range of p and different

values of A.

4.3.4 Larger Simulations

In this section a larger problem (Nt = N = 10) is used to better show the cooperation

achieved by this formulation. The value of survival probability, p is set to 0.9 and the

time discount factor, A is set to 0.9 as well. Figure 4.6 shows the result of the optimal

cooperative assignment using the DP algorithm. Figure 4.6(a) illustrates the initial

stage of the environment. In this example, targets 4 and 7 are high value targets and

80

(b) After Stage 1

(c) After Stage 2 (d) Legend

Fig. 4.4: The solution to the cooperative weapon target assignment for a problem of
3 weapons and 5 targets in a risky environment.

81

20

4

20
2

100

1

(a) Initial Stage

S45-00

q: 40-
0

35 - -
0
0

C)30-
(D
0
n 25 Increasing Lambda

D 20-
CL

0.3_ - \\\

0

(D

o 5

0
0.65 0.7 0.75 0.8 0.85 0.9 0.95

Survival Probability p,

(a) Absolute difference

1

0.9-

C)

E~ 0.7-

o0.5-

0

_0.5 0. 0.5 08 085 09 09

Fig. 4.5: The effect of survival probability p, and time discount factor -\ on the
advantages of a cooperative assignment over a non-cooperative assignment in the

WTA problem.

82

Table 4.4: Comparison of the cooperative and non-cooperative assignment for
different values of A and p,.

Cooperative solution Non-cooperative

Ps A = 0.6 A = 0.8 A = 0.9 A = 1.0 solution
0.80 12.8 16.2 17.8 19.5 2.8
0.90 37.1 45.7 50.0 54.3 13.9
0.95 61.4 74.7 81.3 88.0 38.6
0.98 82.4 99.4 108.0 116.5 81.2

the rest of the targets are SAM sites with different ranges and values. Figure 4.6(b)

shows the environment after stage 1. At stage 1, all the SAM sites that make the path

to high value targets risky are removed. Note that SAM sites 9 and 10, which are not

threatening any paths, are also removed. This is due to the fact that postponing the

assignment of these targets will just reduce their expected value.

In stage 2 (Figure 4.6(a)) the remaining weapons are assigned to the remaining

targets. To show the effect of the discount factor in the results, the same problem is

solved for A = 0.97. The optimal answer in this case assigns weapons to targets in 4

stages (Figure 4.7). Since the time discount is very close to 1, the effect of time on

the values of targets is very small and therefore the algorithm assigns the weapons

to targets in order to maximize their expected value pi(t)si. This situation forces the

weapons to be assigned to targets sequentially. In the first stage (Figure 4.7(a)), SAM

sites 6, 8, 9, and 10 that are on the way to the rest of the SAM sites are removed.

In stage 2 (Figure 4.7(b)), SAM sites 2,3, and 5, whose paths were cleared in the

previous stage, are assigned to be hit. Figure 4.7(c) shows the 3 rd stage where high

value target 7, which now has a no-risk path, is removed. SAM site 1 is also removed

in this stage to clear the path to high-value target 4. These two examples clearly

show cooperation in the assignment, in which the objective of the assignment is not

only to achieve value for each weapon, but also to increase the probability of success

for other weapons. This cooperative approach which results in an assignment with a

much higher overall expected value.

83

W100

(a) Stage 0

100

20 20

8
30

5

20 _90

(b) After stage I

(c) After stage 2

Fig. 4.6: Optimal solution for the problem of 10 weapons and 10 targets, p, = 0.9
and A = 0.9. The mission is implemented in 2 stages and the expected value = 160.

84

11100

n20 .20

; ,20

20
8

30

30:

20

46

.100

(a) After stage 1

100

20 20

3 20

20

30
-5

-- 30

- 20 -

(c) After stage 3

1 20

(b) After stage 2

W100
7,

20
I

-1 ,20

.20

3C
52

20

(d) After stage 4

~30

Fig. 4.7: Optimal solution for the problem similar to Figure 4.6 with ps = 0.9 and
A = 0.97. The mission is implemented in 4 stages and the expected value = 174.

85

100

20 2 20

20

30

30

20

4.4 Approximate Dynamic Programming

The DP algorithm generates an optimal cooperative weapon target assignment in

a risky environment, but as the dimension of the problem (number of targets Nt)

grows, the computation time grows exponentially for this approach. In this section

two approximation DP methods are proposed to solve computation issues for large

problems.

4.4.1 One-step Lookahead

In order to reduce the computation required by DP, an effective way is to reduce the

horizon at each stage based on the lookahead of a small number of stages [51]. This

idea is very similar to the receding horizon task assignment in which the planning

horizon is limited to reduce the computation. The simplest possibility is to use a one-

step lookahead where at stage t and state rt the control ut minimizes the expression

min {S(ut) + AfJ+1(rt - ut, mt - utI)}, t E {0, ... , N - 1} (4.16)
ututl<mt

Jt+1 is an approximation of the true cost-to-go function, Jt*+, with JN= 0. In the

one-step lookahead, having the approximation J, the calculation reduces to one min-

imization per stage, which is a significant savings compared to an exact DP. The

performance of the one-step lookahead policy depends on how well J approximates

the true cost-to-go. A good cost-to-go can be calculated using complex algorithms

and results in a close to optimal answer, but the computation complexity associated

with calculating the cost-to-go itself might defeat the purpose. Therefore, while a

good approximate cost-to-go is desirable, the calculation must be simple. A simple

approximation of cost-to-go for the problem of the weapon target assignment is intro-

duced here that can be calculated very fast. At stage t and state (rt, mt), Jt(rt, mt)

is the solution to the non-cooperative formulation in Eq. 4.12.

N Nt

Jt(rt,mt) = maxEpiAtsjxt (4.17)
t=1 i=1

86

N

s. t. Exit < 1, Vi E rt (4.18)
t=1

Nt N

E<_xit N (4.19)
i=1 t=1

This cost-to-go approximation assumes that all the remaining weapons are as-

signed to targets in the next stage. This is a simple approximation cost-to-go that

can be calculated very easily and as a result, the computation time required to gen-

erate the assignment is much lower than the exact DP algorithm. To compare the

result of the one-step lookahead approximation with the optimal solution from the

exact DP algorithm, the problem of 10 weapons and 10 targets discussed in Sec-

tion 4.3.4 is used. The results of the approximation method for A = 0.9 are shown in

Figure 4.8 and are compared to the optimal result in Table 4.5. In the optimal solu-

tion, the mission is accomplished in 2 stages while in the one-step lookahead solution

it is accomplished in 5 stages. This assignment has resulted in lower performance

compared to the optimal solution, but the computation time is considerably reduced.

In the next section, the two-step lookahead algorithm will be discussed to increase

the performance compared to one-step lookahead.

4.4.2 Two-step Lookahead

The two-step lookahead policy applies at stage t and state (rt, mt), and the control

ut minimizes

min {S(ut) + AJt+1 (rt - ut, mt - IutI)}, t E {0, ... , N - 1} (4.20)ut,Iut|<mt

where Jt+1 is obtained on the basis of a one-step lookahead approximation

Jt+1 (rt+1, m+1) = min {S(ut+i) + AJt+2 (rt+1 - ut+1, mt+1 - Iut+1|)}4.21)Ut+1,Iut+1|Imt+1

and it+ 2 is an approximation of the true cost-to-go function Jt+2. The approxima-

tion discussed in Eq. 4.19 for the one-step lookahead is also used for the two-step

87

(b) After stage 1

~100

20 20

20

(c) After stage 2

It100

20 20

1'~ 20
: 2

20

S 30

.30

20

(d) After stage 3 (e) After stage 4 (f) After stage 5

Fig. 4.8: One-step lookahead solution to a problem similar to Figure 4.6, with

Ps = 0.9 and A = 0.9. The mission is implemented in 5 stages and the expected value
= 133.

88

100

20 20

3

20

i I0

(a) Stage 0

20

20

20

Table 4.5: Comparing the result of the non-cooperative, DP, one-step looka-
head and two-step lookahead solutions for the problem of 10
weapons and 10 targets.

Expected Computation Number of
Algorithm Accumulated Value time stages
one-step lookahead 133.7 0.4 sec 6
two-step lookahead 160.0 13.4 sec 2
DP 160.0 56.2 sec 2
non-cooperative 21.9 0.1 sec 1

lookahead policy. This method is compared with the one-step lookahead and exact

DP solutions using the problem of 10 targets and 10 weapons are solved. The result

is shown in Figure 4.9 and is identical to the optimal solution. Table 4.5 compares

the results of this method with previous methods. Computation time is substantially

reduced compared to the exact DP case, but as expected, is higher than the one-step

lookahead. On the other hand, the performance increases form the solution of the

one-step lookahead, and in this case is identical to the optimal solution. To see if

these results hold for other cases, the three algorithms (exact DP, one-step and two-

step lookahead) were used to solve many randomly generated scenarios. In any set

of these scenarios, the number of targets, Nt, number of weapons, N., time discount

factor, A, and survival probability, p, are kept constant and the position and value of

targets and the range of SAM sites are randomly generated.

Figure 4.10 illustrates the results of these simulations. The horizontal axis in this

graph shows the degree of sub-optimality percentage defined as

100 x Joptimai - Japproximation (4.22)
Joptimal

The vertical axis shows the cumulative percentage of the cases that are within the

interval of sub-optimality indicated on the horizontal axis. These results clearly

demonstrate that two-step lookahead policy outperforms the one-step lookahead pol-

icy, and that the performance of the two-step lookahead is very close to the optimal

performance.

89

(b) After stage 1

20

0

430

100

20
3

202

8

&\30

20

(c) After stage 2

Fig. 4.9: Two-step lookahead solution to a problem similar to Figure 4.6, with

PS = 0.9 and A = 0.9. The mission is implemented in 2 stages and the expected value
= 160.

90

100

20 20

;P n20

330
5

20

6

(a) Stage 0

I

100

70 --

.4' 60 - -C 50 -

20

10 -

0 5 10 15 20 25 30 35 40
Degree of sub-optimality

Figure 4.10: Illustrating the performance of the one-step lookahead and two-
step lookahead policy against the optimal solution for different
values of A. Degree of sub-optimality is defined in 4.22.

91

4.5 Conclusions

This chapter discussed the problem of risk in the environment and a new stochastic

formulation of UAV task assignment problem was presented. This formulation explic-

itly accounts for the interaction between the UAVs - displaying cooperation between

the vehicles rather than just coordination. Cooperation entails coordinated task as-

signment with the additional knowledge of the future implications of a UAV's actions

on improving the expected performance of the other UAVs. The key point is that the

actions of one UAV can reduce the risk in the environment for the other UAVs; and

the new formulation takes advantage of this fact to generate cooperative assignments

to achieve better performance. We further extended the notion of cooperation to

the Weapon Target Assignment (WTA) problem. The problem was formulated as a

Dynamic Programming (DP) problem. A comparison with other approaches showed

that including this cooperation lead to a significant increase in performance. Two DP

approximation methods (the one-step and two-step lookahead) were also developed

for large problems where curse of dimensionality in DP is prohibitive. Simulation

results showed that the one-step lookahead can generate a cooperative solution very

quickly, but the performance degrades considerably. The two-step lookahead policy

generated plans which are very close to (and in most cases, identical to) the optimal

solution.

92

Chapter 5

Experimental Results

This chapter presents several experimental results for Receding Horizon Task Assign-

ment (RHTA) on multi-vehicle testbeds. These testbeds offer invaluable real world

experiences such as the effect of unknown parameters, model uncertainty, environ-

ment uncertainty and noise. The first set of experiments uses two testbeds that have

recently been developed at MIT to demonstrate the coordination and control of teams

of multiple autonomous vehicles [52]. The first testbed is comprised of eight rovers

and four blimps operated indoors to emulate a heterogeneous fleet of vehicles that

can be used to perform search and rescue missions. The second testbed uses eight

small aircraft that are flown autonomously using a commercially available autopilot.

This combination of testbeds provides platforms for both advanced research and very

realistic demonstrations. Typical results of the RHTA algorithm are presented for

two representative experiments that examine different capabilities of RHTA (i. e., re-

planning in real-time, and including timing/capability constraints). In the second set

of experiments, the RHTA algorithm is implemented in Boeing's Open Experimental

Platform (OEP) [29] for real-time planning in a dynamic environment.

5.1 Hardware Testbeds

The algorithm architecture shown in Figure 5.1 was designed to be very similar for

the two testbeds. Each box represents an action taken in the algorithm and is briefly

93

I I aJ a oi
M M - - = M - - - - - - M M - - - - M - J

Fig. 5.1: Algorithm Architecture.

explained here (for a detailed explanation of each action see [53]).

* Graph-based Path Planning: The map of the environment is translated

into a visible path graph and a distance matrix which then can be used in Task

Assignment.

e Task Assignment: The distance matrix and current state of the environment

are used to generate an ordered list of tasks for each UAV using the RHTA

algorithm.

e Trajectory Designer: The trajectory designer uses the models of the UAVs

and the list of tasks for each UAV to generate a detailed trajectory for each

UAV. Receding Horizon Control (RHC) [46, 53] is used to generate the detailed

trajectories.

" Low Level Controller: The low level controller enables each UAV to fol-

low the waypoints generated by the "Trajectory Designer" in the presence of

measurement noise and plant disturbances.

" Predictor / Comparator: In this part, the sensor output is translated to

generate estimates of the environmental states. The data is then compared to

propagated states and the results are reported to various parts of the architec-

94

Fig. 5.2: 4 of 8 ActivMedia P3-AT Rovers.

ture in order to initiate and aid in replanning.

9 Vehicle / Simulation: This can be either an actual vehicle (i.e., UAV, rover

or blimp) or a vehicle simulator.

5.1.1 Rover/Blimp Testbed

The first testbed uses multiple rovers and blimps operated indoors to emulate a het-

erogeneous fleet of vehicles that can be used to perform Suppression of Enemy Air

Defense (SEAD) type missions. The rovers in Figure 5.2 are ActivMedia's P3-AT's,

which are operated with minimum speed and turn rate constraints to emulate the

motion of an aircraft. A Sony VAIO mounted on the rover processes sensor data

and performs the low-level control, while all high-level planning is done off-board us-

ing 2.4 GHz Dell laptops running MATLAB and CPLEX. A direct wireless Ethernet

connection provides a fast and reliable network between the laptops, so this is equiv-

alent to having all computation performed onboard. The ArcSecond Constellation

3D-i [54] indoor positioning system is used to measure the vehicle position indoors.

This sensor has been verified to give ±4mm position accuracy at 20Hz. The 2.1m

diameter blimps in Figure 5.3 were scaled to carry a Sony VAIO and have a similar

control architecture and identical interface. The blimps were designed to perform re-

95

Fig. 5.3: 1 of 4 Blimps.

connaissance and classification tasks in conjunction with the rovers that act as strike

vehicles. The blimps can also be used to map the environment for the rovers.

Indoor results using the rovers to perform a representative SEAD mission with

dynamic tasking using RHTA is shown in Figures 5.4 and 5.5. The four rovers are

tasked to execute a SEAD mission in an environment with one centrally located

avoidance region and a removable SAM site (Figure 5.4). They are divided into

two sub-teams of strike and bomb damage assessment (BDA) vehicles, and each is

assigned two targets. For this scenario, BDA tasks are required to occur after each

strike task, and tasks were assumed completed when the vehicle passes within a

specified tolerance of the target point. The ability to dynamically reassign tasks is

demonstrated when one of the BDA vehicles (rover 2) is stopped before completing

all of its tasks and the second BDA-capable vehicle (rover 4) must finish the mission.

A second dynamic aspect of this scenario is demonstrated by giving one strike vehicle

(rover 3) the capability to eliminate the SAM site (represented by the dashed lines).

Once that task was completed, rover 4 can pass through the region, and it takes

advantage of this by cutting the corner to reach the first BDA more quickly. Rover 4

then completes the remaining BDA tasks by passing around the remaining obstacle

in the field.

Figures 5.7 to 5.11 show the results for a second scenario with 4 rovers and 14 tasks.

The environment is dynamic and RHTA with m = 2 is used for on-line reassignment.

The time step for this problem was set at 2 seconds, which was sufficient time to

communicate the vehicle state information, design new trajectories, and, if necessary,

re-compute the task assignment. The mission starts with 4 rovers (Figure 5.7), but

after only a few steps into this initial plan, rover 4 is lost (as shown in Figure 5.6).

Figure 5.8 shows the new plan where the tasks of rover 4 have been reassigned to the

other rovers. At a later point in the mission, the team realizes that two tasks (9 and

11) are located at positions that differ from those previously assumed, and a further

round of replanning occurs (Figure 5.9). Figure 5.10 shows the results of the last

re-plan which happens when two new tasks (15 and 16) are discovered and rover 3

is assigned to visit these locations. Figure 5.11 shows the waypoints generated by

96

Fig. 5.4: 4 Rover experimental results associated with Figure 5.5.
4 Rover Scenario

4i -

0

0 1 2 3 4 5 6 7 8 9 10
X [mi]

Fig. 5.5: 4 Rover experimental data from a typical SEAD-like mission.

97

Fig. 5.6: 4 Rover experimental data associated with Figures 5.7 to 5.11.

4

4

10
x[m]

op,14
8

5

013

2 3

15

Fig. 5.7: Initial Plan

98

30

25-

20-

E15

10

5

0

03

0

1

50 20

0

30

25-

20F-

E 15

10

5

0

30

25

20

E15

10

5

0

0 5 10 15 20
x[m]

Fig. 5.8: Plan after first re-assignment (rover 1 is lost).

-011 09
o14

03 08'

- 0,6

" " 5
7

02

13
4

0 5 10
x[m]

15 20

Fig. 5.9: Assignment after change in the location of targets 9 and 11

99

: 14

03 08

5
7

2 0
i 1

o4

o13

30
0,11

1

5

0 14
810' 016

6

5

4
13

10
x[m]

15

15

()7 A

20

Fig. 5.10: Last assignment (new tasks at wpts 15 and 16 appear).

5 10 15 20

Fig. 5.11: Rover trajectories as measured during the experiment.

100

25-

20k-

E15

101-

5

0

0

30

25-

20-

15

10-

5

0

00

..
00

00

0

0

IIC

0

Fig. 5.13: PiccoloTM autopilot from
Fig. 5.12: 6 of 8 UAVs. Cloud Cap Tech.

the planner and the actual trajectories of the rovers around the obstacles. The same

scenario was also implemented using the greedy (m = 1) algorithm, and the time-

discounted score accumulated by the rovers was 567. This score is approximately 10%

lower than the 625 score achieved using RHTA with m = 2. These results confirm

that RHTA with m = 2 can be implemented on a real-time testbed and yields better

performance than an iterated greedy approach (m = 1).

5.1.2 UAV Testbed

The UAV testbed is a fleet of 8 UAVs (Figure 5.12) that are flown autonomously using

the Cloud Cap commercial autopilot interfaced directly with the planning and task

assignment algorithms. Figure 5.13 shows the 7.5oz Piccolo autopilot from Cloud

Cap Technologies. Small aircraft (PT-60 sized trainers) were purposefully chosen

to reduce operational complexity while still providing a high degree of flexibility in

the missions that can be performed. The large trainer wing and Saito-91 four-stroke

engine allow an additional two pounds of payload for sensor or communications up-

grades. Twenty minute flights are easily achievable in the current configuration, and

further extensions are possible. The UAV testbed has been operated autonomously on

numerous occasions, and the flight results demonstrated the ability to track waypoints

101

Fig. 5.14: Hardware-in-the-loop UAV testbed.

and maintain altitude in the presence of moderate wind disturbances.

The autopilots also have an extensive hardware-in-the-loop (Figure 5.14) simu-

lation capability, which can be used to demonstrate a full suite of coordination and

control algorithms. The entire task assignment and trajectory design algorithms have

been run off-board and were uplinked to the UAV autopilots in real-time, exactly as

they will be during flight. Figure 5.15 shows experimental results from one such

hardware-in-the-loop simulation involving 5 UAVs, and a mixture of both high and

low value targets in a complex environment. For this scenario, high value targets

(HVT) {B, C, G} require both a strike and subsequent BDA, while the remaining low

value targets (LVT) require only a strike task by a single UAV. UAV 5 is also given

the capability to remove the centrally located SAM site, which the other UAVs are

not permitted to enter.

The initial assignments send strike UAVs 1, 2 and 3 around the obstacles to their

targets, while UAV 4 is assigned the first BDA task (Figure 5.15(a)). Note that

a typical mission timing constraint is also shown by requiring that strike task D be

completed only after the BDA for target B has been accomplished. UAV 5 is assigned

to take out the SAM site which would then permit the strike vehicles to pass through

the central region (Figure 5.15(b)). In this scenario, UAV 1 suddenly fails after

reaching target A, and the remaining tasks are re-assigned to the rest of the team

using the RHTA algorithm (Figure 5.15(c)). Figure 5.15(d) shows the completed

mission after all tasks have been completed.

102

500 1000 1500 2000 2500 3000

x (m)

3000

2500

2000

1500

500 1000 1500 2000 2500

x [m]

(a) Initial conditions and task assignments.
Solid blue lines are obstacles

0 500 1000 1500 2000 2500 3000 3500 4000 4500

(c) UAV1 lost, requires task re-assignment

(b) UAV5 strikes SAM site, allows other
UAVs to pass

x [m]

(d) Completed mission with all tasks
achieved

Fig. 5.15: Five UAV mission with dynamic task assignment using RHTA. Paths
show both the optimal planned trajectories and the hardware-in-the-loop autopilot
responses (with simulated wind turbulence).

103

0'
0 0

SAM 0

Strike

-

3000 3500 4000 4500

3000

2500

2000

E 1500

1000

UAV1
Loss

0

Reassignment

500

0

500C

0

5.2 MICA OEP Experiment

The Open Experimental Platform (OEP) [29] was developed by the Boeing Company

for evaluation of hierarchical planning and coordinated control methodologies as part

of the DARPA MICA program [5]. The OEP incorporates modeling and simulation

capabilities to analyze and test planning algorithms. Figure 5.16 gives a schematic of

the hierarchy of the MIT planning and control algorithms that were implemented.

MIT's Cooperative Path Planning (CPP) contains

three modules: "Coarse Router" (finding shortest path

around the obstacles using straight line approximation), TMC
"MILP Task Assignment" (receding horizon task assign- TDT

Dynamic Activity
ment algorithm), and "RH MILP Path Planning" (trajec- Selectio

tory designer), which are integrated into the overall plan- FTe Aiit

ning hierarchy as seen in Figure 5.16. In this setup, our Scheduling

algorithms used the output of JobShop, a coarse schedul- Resource

ing algorithm. We then performed a detailed scheduling

(assigned a specific vehicle to each task in the rank or- MIT CPP

dering given) and designed the detailed UAV trajectories. Coarse Router

The list of waypoints (with events and event timing) were MILP Task

then executed within the OEP. At each iteration, informa- Assignment

tion about the environment was obtained and compared RH MILP
Path Planning

with predictions to identify changes (removal of a target,

identification of new targets, loss of UAVs, etc.). The plan-

ner then returned a detailed waypoint list for the UAVs,

including the paths to follow and tasks to perform. A
Fig. 5.16: MIT CPP

schematic of the controller used is shown in Figure 5.17.
algorithms inside in the

Results from a typical scenario are shown in Fig-

ures 5.18 to 5.20. The scenario has 6 UAVs of three types,

classification, strike and BDA [29]. There are approximately 25 targets that have

a wide variation in value (ranging from 10 to 300). There are a total of 10 SAM

104

sites (both medium and long range), two of which are unknown and possibly mobile.

The initial goal of the mission is to use the UAV team to clear out the SAM sites

in this area of operation. However, two previously unknown, very high value targets

appear almost immediately after the start of the mission and the Operator provides

an input that there is a strong desire to strike these new targets. The results show

(Figure 5.18) some of the UAVs being diverted to hit the new HVTs with the rest

of the team taking over new roles. The medium SAM sites are then targeted and

several strike missions are executed. BDA tasks are assigned to occur after the strike

missions are performed.

Figures 5.19 and 5.20 show that the team successfully attacks most of the medium

SAM sites, but several of the UAVs were shot down as they attacked the medium

SAM sites protected by long SAMs. For UAVs to attack these medium SAMs it is

necessary to go inside the range of long SAMs which is a high risk environment. The

key point was that the receding horizon task assignment algorithm was very efficient

at "reacting" to changes in the environment to improve the paths of the UAVs to the

targets when a SAM is removed. However, it was not very "proactive" in creating

changes that would benefit the rest of the team. This motivated the design of the

cooperative task assignment algorithm discussed in Chapter 4. The proactive nature

of that assignment algorithm generates more cooperative behavior as members of the

team choose to hit some targets just to reduce the path length/risk for other UAVs.

For instance, a cooperative plan for the example mentioned above would first attack

the long-range SAMs to reduce the risk of the paths for the UAVs assigned to medium

SAMs.

105

AlphaTech I~~
I Model of UAV performance

Strategic Resources I munitions, targets, etc.

level Requests

Real-time
Trajectory design .

Waypoints,
Goals /associated

Plan actions &
Target

positions

Notification
of events I - - - - - - - - - -

and failures
Control

Sensor
feedback

Fig. 5.17: Figure shows the overall MIT controller implemented on the OEP. The
dark solid lines show loops that were closed in these experiments.

Fig. 5.18: Planned trajectories during the second loop closure. Note the UAV tasked
to hit the HVT target top-right and the UAV trajectories skirting the SAM site to
avoid detection.

106

1 10 20 30 4 o

Target F212EA Kill Chain

in01s

Fig. 5.19: Shows diagnostics available to evaluate progress of the controller. Results
shown after the seventh loop closure. Most medium SAM sites have been hit and/or

targeted.

Fig. 5.20: Results after the eleventh loop closure. Most of the medium SAMs have
been removed, but UAVs were not as successful against the long SAMs.

107

5.3 Conclusions

This chapter presented both hardware demonstrations of the receding horizon task

assignment on the rover and UAV testbeds and simulations on the OEP. The multi-

vehicle testbeds provide unique platforms to evaluate various distributed coordination

and control strategies in real-time with real vehicles and environments. The results

illustrated that RHTA can be implemented for real-time replanning in dynamic envi-

ronments. In the second part, a set of experiments on Boeing's OEP was presented.

In these experiments RHTA was used for real-time task assignment in a risky and

dynamic environment. The result show that RHTA performs well in reacting to

changes in the environment but the generated plans were rather aggressive. These re-

sult motivated the idea of cooperative assignment that was discussed in Chapter 4 to

generate more cooperative, risk averse assignment. The hardware implementation of

the algorithms and the results of these experiments allowed us to validate the theory

that was discussed in previous chapters.

108

Chapter 6

Conclusions

This thesis has addressed several issues in the UAV task assignment problem for

dynamic and uncertain environments. The following describes the contribution of

this thesis in each of these areas.

Chapter 2 presented a receding horizon formulation of the UAV task assignment

algorithm. This formulation uses the idea of "model predictive control" (MPC) in the

assignment problem and solves the problem in an iterative fashion. In each iteration

a limited horizon assignment problem is formed using "petal" formulation. Each of

these problems is a small Mixed-Integer Linear Programming (MILP) problem that

can be solved very rapidly using commercially available software such as CPLEX.

Timing constraints, which are examples of hard side constraints, typically make the

assignment problems much more difficult to solve, but they can be implemented in the

receding horizon task assignment (RHTA) algorithm without changing the complexity

of the problem. This is achieved by implementing the constraints outside the MILP

optimization. The RHTA formulation is quite general, and many other constraints

can be included, such as the capacity constraints (i.e., munition constraints). These

types of constraints were shown to cause other, more myopic, iterative methods (i.e.,

iterative greedy) to become infeasible or yield degraded performance. Violation of

these constraints is included in RHTA as a penalty term in the cost function, which

helps to ensure the feasibility of the future plans. These penalty terms can be regarded

as a very simple cost-to-go function that provides a coarse estimate of the score of

109

the remainder of the mission. This approach does not try to enumerate all (or many)

of the possible future plans to determine a "good" cost estimate, but instead it easily

identifies the future implications of "bad" short-term choices. Thus RHTA offers a

good trade between performance and computational effort.

Simulation results using RHTA for several scenarios were presented. The results

illustrated that RHTA can be implemented in real-time for replanning. They also

showed that RHTA is capable of solving large problems in reasonable computation

times. Comparing the results of RHTA to the greedy methods, which are known to be

fast to calculate, confirmed that the RHTA algorithm creates far better solutions than

the greedy methods without a substantial increase in the complexity of the problem

(or computation time). The results of the RHTA algorithm for different values of

petal size (m) were also compared and the results showed that there is a tradeoff

between performance (degree of sub-optimality) and computation time, and that this

can be tuned by the choice of the petal size. The examples showed that m = 2

gives the best result in which the computation time is small enough for real-time

implementation and the performance is close to optimal.

Chapter 3 discussed the issues associated with a fast replanning rate. It was

argued that fast replanning, which is crucial in a dynamic environment, can cause in-

stability and/or churning when the data is noisy or the environment is uncertain. The

frequency domain interpretation as originally formulated in Ref. [31] was extended in

Chapter 3 using correlation as a metric. A new filtering methodology was introduced

to attenuate the effect of noise in the environment in the assignment problem. The

assignment algorithm was then reformulated to include this filtering scheme, and sim-

ulation results were presented to show the effectiveness of this approach. The results

showed that this formulation can eliminate churning and instability by tracking the

signal and rejecting the noise.

Chapter 4 discussed the problem of risk in the environment and a new stochastic

formulation of UAV task assignment problem was presented. This formulation explic-

itly accounts for the interaction between the UAVs - displaying cooperation between

the vehicles rather than just coordination. Cooperation entails coordinated task as-

110

signment with the additional knowledge of the future implications of a UAV's actions

on improving the expected performance of the other UAVs. The key point is that the

actions of one UAV can reduce the risk in the environment for the other UAVs; and

the new formulation takes advantage of this fact to generate cooperative assignments

to achieve better performance. Chapter 4 further extends the notion of cooperation

to the weapon target assignment (WTA) problem. The problem was formulated as a

dynamic programming (DP) problem. A comparison with other approaches showed

that including this cooperation lead to a significant increase in performance. Two DP

approximation methods (the one-step and two-step lookahead) were also developed

for the large problem where curse of dimensionality in DP is prohibitive. Simulation

results showed that the one-step lookahead can generate a cooperative solution very

quickly, but the performance degrades considerably. The two-step lookahead policy

generated plans which are very close to (and in most cases, identical to) the optimal

solution.

Chapter 5 presented the hardware and simulation results for the RHTA algorithm.

Two hardware testbeds were used to implement the RHTA in real-time and the results

illustrated that RHTA is capable of reacting to the changes in the environment and

replanning in real-time. The RHTA algorithm was also implemented in the Boeing's

OEP demo which resembles a real-world environment. The results showed that RHTA

does a good job in reacting to the changes in the environments. However since the

environment is risky (due to existence of SAM sites), the performance was relatively

poor because this risk was neglected in the basic assignment. This further confirms

the need for taking into account the risk of environment and generating a risk averse,

cooperative plan.

The algorithms developed in this thesis have demonstrated the importance of in-

corporating risk and uncertainty in high level planning algorithms. These algorithms

were demonstrated to work on hardware testbeds that simulate real-world UAV op-

erations.

111

112

Bibliography

[1] U. S. A. Board, UAV Technologies and combat operations, Tech. Rep. Tech. Tep.

SAB-TR-96-01, November 1996.

[2] A. Kott, Advanced Technology Concepts for Command and Control, Xlibris Cor-

poration.

[3] 0. of the Secretary of Defense, Unmanned Aerial Vehicles Roadmap, technical

report, December 2002.

[4] P. R. Chandler, S. Rasmussen, "UAV Cooperative Path-Planning," In Proceed-

ings of the AIAA Guidance, Navigation and Control Conference, 2000. AIAA-

2000-4370.

[5] S. A. Heise, DARPA Industry Day Briefing, 2001.

[6] P. R. Chandler, M. Pachter, D. Swaroop, J.M. Fowler, J. K. Howlett, S. Ras-

mussen, C. Schumacher, and K. Nygard, "Complexity in UAV cooperative con-

trol," In Proceedings of the American Control Conference, Anchorage AK, May

2002.

[7] C. Schumacher, P. R. Chandler and S. Rasmussen, "Task Allocation for Wide

Area Search Munitions via Network Flow Optimization," In Proceedings of the

American Control Conference, IEEE, May 2002.

[8] J. S. Bellingham, M. J. Tillerson, A. G. Richards, J. P. How, "Multi-Task Assign-

ment and Path Planning for Cooperating UAVs," In Conference on Cooperative

Control and Optimization, Nov. 2001.

113

[9] A. G. Richards, J. S. Bellingham, M. Tillerson and J. .P How, "Co-ordination and

Control of Multiple UAVs," In Proceedings of the AIAA Guidance, Navigation

and Control Conference, 2002.

[10] J. S. Bellingham, A. G. Richards and J. P. How, "Receding Horizon Control of

Autonomous Aerial Vehicles", In Proceedings of the American Control Confer-

ence, Anchorage AK, May 2002.

[11] J. S. Bellingham, Y. Kuwata, and J. How, "Stable Receding Horizon Trajectory

Control for Complex Environments," In Proceedings of the AIAA Guidance, Nav-

igation and Control Conference, (Austin, TX), Aug 2003.

[12] G. Laporte and F. Semet, "Classical Heuristics for the Capacitated VRP," in The

Vehicle Routing Problem, edited by P. Toth and D. Vigo, SIAM, Philadelphia,

2002.

[13] M. Alighanbari, Y. Kuwata, and J. P. How, "Coordination and Control of Multi-

ple UAVs with Timing Constraints and Loitering," In Proceedings of the Amer-

ican Control Conference, June 2003.

[14] J. Wohletz, "Cooperative, Dynamic Mission Control for Uncertain, Multi-Vehicle

Autonomous Systems," special session presented at the IEEE Conference on

Decision and Control, Dec. 2002.

[15] T. McLain, P. Chandler, S. Rasmussen, and M. Pachter. "Cooperative control

of UAV rendezvous," In Proceedings of the American Control Conference, pages

2309-2314, Arlington, VA, June 2001.

[16] M. Goodrich R. W. Beard, T. W. McLain, "Coordinated target assignment and

intercept for unmanned air vehicles," In Proceedings of the 2002 IEEE Interna-

tional Conference on Robotics and Automation, Washington, DC, May 2002.

[17] K. Passino, M. Polycarpou, D. Jacques, M. Pachter, Y. Liu, Y. Yang, M. Flint,

and M. Baum, "Cooperative Control for Autonomous Air Vehicles," Chapter

114

12 in R. Murphy and P. Pardalos, eds., Cooperative Control and Optimization,

Kluwer Academic Publishers, Dordrecht, Netherlands, 2002.

[18] T. Schouwenaars, B. De Moor, E. Feron, and J. How. "Mixed integer program-

ming for multi-vehicle path planning," In Proceedings of the European Control

Conference, Porto, Portugal, September 2001.

[19] T. W. McLain and R. W. Beard, "Coordination Variables, Coordination Func-

tions, and Cooperative Timing Missions," In Proceedings of the American Control

Conference, June 2003.

[20] R. Olfati-Saber, W. B. Dunbar, and R. M. Murray "Cooperative Control of

Multi-Vehicle Systems Using Graphs and Optimization," In Proceedings of the

American Control Conference, June 2003.

[21] W. Kang and A. Sparks "Task Assignment in the Cooperative Control of Mul-

tiple UAVs," In Proceedings of the AIAA Guidance, Navigation and Control

Conference, (Austin, TX), Aug 2003.

[22] Y. Jin, M. M. Polycarpou, and A. Minai, "Cooperative Real-Time Task Alloca-

tion Among Groups of UAVs," Recent Development in Cooperative Control and

Optimization, S. Butenko, R. Murphey, and P. Pardalos eds., Kluwer Academic

Publishers, 2004.

[23] P. Toth and D. Vigo, The Vehicle Routing Problem, SIAM, Philadelphia, 2002.

[24] T. H. Cormen, C. E. Leiserson, and R. L. Rivest. Introduction to Algorithms,

MIT Press/McGraw-Hill, 1990.

[25] C. A. Floudas, Nonlinear and Mixed-Integer Programming - Fundamentals and

Applications, Oxford University Press, 1995.

[26] M. Gendreau, G. Laporte and J. Y. Ptvin, "Metaheuristics for the Capacitated

VRP," in The Vehicle Routing Problem edited by P. Toth and D. Vigo, SIAM,

Philadelphia, 2002.

115

[27] K. P. O'Rourke, T. G. Bailey, R. Hill and W. B. Carlton, "Dynamic Routing of

Unmanned Aerial Vehicles using Reactive Tabu Search," In Proceedings of the

67th MORS Symposium, Nov. 1999.

[28] J. L. Ryan, T. G. Bailey, and J. T. Moore, "Reactive tabu search in unmanned

aerial reconnaissance simulations," In D. J. Medeiros et al., editor, Proceedings

of the 1998 Winter Simulation Conference, 1998. e", IEEE, May 2002.

[29] MICA OEP user Guide, Boeing Company, Revision 10.

[30] R. Kastner, C. Hsieh, M. Potkonjak, and M. Sarrafzadeh, "On the Sensitivity of

Incremental Algorithms for Combinatorial Auctions," WECWIS 2002: Newport

Beach, California, USA.

[31] J. Tierno and A. Khalak, "Frequency Domain Control Synthesis For Time-

Critical Planning," In Proceedings of the IEE European Control Conference, Sept.

2003.

[32] A. G. Richards, J. P. How, "Aircraft Trajectory Planning with Collision Avoid-

ance using Mixed Integer Linear Programming," In Proceedings of the American

Control Conference, IEEE, May 2002.

[33] M. Moser, D. Jokanovic, and N. Shiratori, "An Algorithm for the Multidimen-

sional Multiple-Choice Knapsack Problem," JEICE Trans. Fundamentals, vol.

E80-A, pp. 582-589, Mar. 1997.

[34] ILOG, ILOG CPLEX User's guide, 1999.

[35] J.M. Maciejowski, Predictive Control with Constraints, Prentice Hall, England,

2002.

[36] D. Q. Mayne, J. B. Rawlings, C. V. Rao, P. 0. M. Scokaert, "Constrained Model

Predictive Control: Stability and Optimality," Automatica, 36(2000), Pergamon

Press, UK, p. 789-814.

116

[37] J. W. Curtis, "Churning: Repeated Optimization and Cooperative Stabil-

ity," Recent Development in Cooperative Control and Optimization, S. Butenko,

R. Murphey, and P. Pardalos eds., Kluwer Academic Publishers, 2004.

[38] J. M. Mulvey, R. J. Vanderbei, S. A. Zenios, "Robust optimization of large-scale

systems," Oper. Res. Vol. 43 (1995) pp. 264-281.

[39] M. Sim and D. Bertsimas, "The Price of Robustness," MIT Sloan Internal

Tech. Report, 2002.

[40] L. F. Bertuccelli, Robust Planning for Heterogeneous UAVs in Uncertain En-

vironments, SM Thesis, MIT Department of Aeronautics and Astronautics,

May 2004.

[41] J. W. Curtis, and R. Murphey, "Simultaneous Area Search and Task Assign-

ment for a Team of Cooperative Agents," In Proceedings of the AIAA Guidance,

Navigation and Control Conference, (Austin, TX), Aug 2003.

[42] J. S. Bellingham, M. Tillerson, M. Alighanbari, and J. P. How, "Cooperative

Path Planning for Multiple UAVs in Dynamic and Uncertain Environment," In

Proceeding of IEEE Conference on Decision and Control, Dec. 2002.

[43] Personal communication with Jorge Tierno, Sept. 2003.

[44] Percival and Walden, Spectral Analysis for Physical Applications, Cambridge

University Press, 1993.

[45] R. A. Murphey, "An approximate algorithm for a weapon target assignment

stochastic program," In Approximation and Complexity in Numerical Optimiza-

tion: Continuous and Discrete Problems. Kluwer Academic Publishers, 1999.

[46] J. S. Bellingham, Coordination and Control of UAV Fleets using Mixed-Integer

Linear Programming, SM Thesis, MIT Department of Aeronautics and Astro-

nautics, Aug. 2002.

117

[47] P. Hosein, and M. Athans, "The Dynamic Weapon Target Assignment Problem."

Proc. of Symposium on C2 Research, Washington, D.C. 1989.

[48] R. A. Murphey, "Target-Based Weapon Target Assignment Problems," in Non-

linear Assignment Problems: Algorithms and Applications, P. M. Pardalos and

L. S. Pitsoulis eds., Kluwer Academic Publishers, 2000.

[49] R K. Ahuja, A. Kumar, K. C. Jha, and J. B. Orlin. "Exact and heuristic al-

gorithms for the weapon-target assignment problem". Submitted to Operations

Research, 2003.

[50] P. Hossein, and M. Athans, "An Asymptotic Result for the Multi-Stage Weapon-

Target Allocation Problem," In Proceeding of IEEE Conference on Decision and

Control, Dec. 1990.

[51] D. P. Bertsekas, Dynamic Programming and Optimal Control, Athena Scientific,

Belmont, Massachusetts, 2000.

[52] E. T. King, M. Alighanbari, Y. Kuwata, and J. P. How, "Coordination and

Control Experiments on a Multi-vehicle Testbed," Proceedings of the American

Control Conference, IEEE, June 2004.

[53] Y. Kuwata, Real-time Trajectory Design for Unmanned Aerial Vehicles using

Receding Horizon Control, SM Thesis, MIT Department of Aeronautics and As-

tronautics, June 2003.

[54] ArcSecond, Constellation 3D-i Error Budget and Specifications, June, 2002.

http://www. arcsecond. com

[55] ActivMedia Robotics, Pioneer Operations Manual, January 2003.

http://robots.activmedia.com

118

