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Abstract

This thesis developed a wearable motion capture system to record Parkinson's patients performing
daily activities during each of the three stages of their medication cycle. Five calibrated accelerome-
ters continuously monitored motions of the subjects' torso, wrists and ankles, and stored the resulting
data onto a low-cost compact flash (CF) memory card.

Five hours of data was recorded from a volunteer with PD wearing the motion recording system,
along with the corresponding medication state rated by an observing physician. This data was
divided into training and test sets, where one-quarter was reserved for testing.

A neural network demonstrated 85% correlation between data sampled from all five accelerome-
ters to the dyskinetic medication state labelled by the physician. Noting inherent confusion between
a sedentary patient with high dyskinesia and a properly medicated patient moving energetically, a
second neural network was trained to identify periods of walking, with 75% correlation. Using this
activity classifier to remove periods of walking increased the overall accuracy to 91%.
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Chapter 1

Introduction

The recent announcements that celebrities such as Michael J. Fox, Muhammad Ali, and Pope John

Paul II suffer from Parkinson's Disease (PD) have drawn increasing public interest to the disease

and the search for a cure. In truth, over a million people suffer from Parkinson's disease in the US,

with approximately 50,000 new patients diagnosed each year. The National Institute of Neurological

Disorders and Stroke estimates that the total cost of health care for Parkinson's patients exceeded

$5.6 billion last year[l].

While Parkinson's is a chronic, progressive disease of the nervous system without a known cure, a

variety of medications may provide dramatic relief from its symptoms. Effective treatment requires

careful monitoring of the patient's symptoms to adjust dosage, typically through an observer hired

to record the occurrence and frequency of movement impairments.

The goal of this thesis is to design an automated monitor to augment (and in some cases, replace)

the human observer and aid physicians in fine-tuning medication dosage. As an added benefit, the

same device could offer a standardized benchmark to evaluate new PD drugs and surgical procedures.



Chapter 2

Parkinson's Disease

Parkinson's disease is a progressive neurological disorder that results from degeneration of neurons in

a region of the brain that controls movement (substantia nigra). This degeneration creates a shortage

of the neurotransmitter dopamine, a chemical messenger responsible for transmitting signals between

the substantia nigra and the next "messenger center" of the brain, the corpus striatum. Studies have

shown that Parkinson's patients have a loss of 80 percent or more of dopamine-producing cells in

the substantia nigra[2, 3, 4].

Normally, dopamine operates in a delicate balance with other neurotransmitters to help coordi-

nate the millions of nerve and muscle cells involved in movement. Without enough dopamine, this

balance is disrupted, causing the movement impairments that characterize the disease:

" Tremor of the hands, arms, legs and jaw, is a primary feature of Parkinson's disease. Classically,

tremor appears while the individual is at rest and improves with intentional movement. The

tremor often begins on one side of the body, frequently in one hand.

* Bradykinesia (slowness of movement) or akinesia (an inability to move, "freezing")

" Impaired balance and coordination, an unsteady walk with a shuffling gait, and a stooped

posture.

" The severity of Parkinson's symptoms tends to worsen over time.

While no drug can stop the progression of PD, a variety of medications provide dramatic relief from

its dehibilitating symptoms. These drugs work by stimulating the remaining cells in the substantia

nigra to produce more dopamine (Levodopa drugs), or by inhibiting other neurotransmitters to

restore chemical balance in the brain (anticholinergic drigs).



During early treatment, side effects from drug therapy are usually not a major problem. But as

the disease progresses, the drugs work less evenly. As a result, many patients experience involuntary

movements (dyskinesia), especially when the medication is having its peak effects. Waxing and wan-

ing of the response to the drug (wearing off effects) is also common, resulting in the reappearance of

the characteristic symptoms of PD. Together, these effects form three phases of medication - The ex-

hibition of classic PD symptoms (tremor, slow movement) when the medication has worn off (known

as the "OFF" state[5]), normal movements free of tremor when the medication is balanced ("ON"

state), and exaggerated involuntary movements when the medication is at highest concentration

("Dyskinesia").

Doctors work with patients to tailor a medication regimen to maximize the duration of the ON

state, using direct observation of the medication cycle as the basis of adjustment. The goal of

this thesis is to construct a wearable system to monitor this motion-based cycle and generate an

automated daily log of a patient's medication state - see Figure 2-1 for a hypothetical output.

ON W/ DK

ON

OFF

08 09 10 11 12 13 14 15 16 17 18 19 20 21 22 23

Figure 2-1: Desired system output (medication state vs. time of day)



Chapter 3

Hardware Design

This chapter discusses the hardware developed for this thesis, as well as the rational behind its

design. While the initial goal was to design a generic accelerometer sensor for medical studies, the

actual specifications of the project were tailored to measuring Parkinson's Disease.

After consulting with a Neurologist specializing in PD, it was determined that multiple sensors

were needed, and would be attached to each wrist and ankle, with a fifth sensor worn around the

waist to measure torso movement. Additionally, a minimal set of requirements was determined,

ranked below in order of importance:

Rugged The sensors will be worn on potentially dyskentic patients having little or no control over

their movements. All hardware must withstand basic physical abuse (cables snagging

and pulling, boards being jostled and bumped, etc).

Networkable The system must support at least five sensors communicating over a shared data bus.

Ideally, the low-level protocol would include some form of error detection or correction.

Light-Weight Since the device will interact mostly with elderly patients, the system should burden

them with minimal additional weight.

Accurate The accelerometers must detect fine motions such as subtle tremors. Additionally, the

system must sample the sensors at least at 30 times a second to guarantee accurate

sampling of these events.

Easy to use The system might be loaned to doctors to collect data in their practice or patients to

use while at home, so the fabricated hardware needs to be simple to assemble, test, and

use.



3.1 Accelerometer Sensor Board

The sensor design used in the project is based off of accelerometer hardware previously fabricated

for the MIThril wearable computing project[6]. This design was selected as a foundation due to its

small footprint and portable, low-power architecture. The following describes the features of the

new hardware:

Figure 3-1: Prototype layout of Accelerometer sensor board

1. Standard MIThril header, passing regulated power, 12C data network, and DallSemi one-wire

networks to the accelerometer board. The Hirose 3500 connector is rated for 10,000 insertion

cycles and locks to resist physical strain.

2. The main Microcontroller was upgraded from a UltraViolet (UV) erasable PIC17C76 to a

Flash-reprogramable PIC16F874. While the two processors offer a nearly identical feature-set,

the newer 16F874 was included in a much smaller surface-mounted package, since Flash chips

do not need physical removal for erasure and reprogramming. This decreased the overall size

of the accelerometer board.



3. A four-toggle, micro-DIP switch was added to the design to allow easy selection of the device

IDs uniquely identifying each device on the I2C network. Previously, each accelerometer's

software included a hard-coded 12C ID, which required complete reprogramming to adjust

sensor networks. Simply adjusting the DIP switches now allows up to eight devices to share

the same 12C communication bus and provides visual confirmation of the current configuration.

4. The board layout uses two ADXL202E series accelerometers[7] mounted perpendicularly to

give true three-axis measurements, which are sampled by the PIC16F874 Microcontroller at

frequencies up to 67 hertz. Each accelerometer can measure both dynamic acceleration (vi-

bration) and static acceleration (gravity) across a measurement range of 2g.

5. One of Dallas Semiconductor's DS2405 one-wire power switches was included to allow for ad-

ditional power saving techniques. The external device utilizing the sensor boards can remotely

toggle power power when motion data is not needed, extending battery life. Additionally, the

one-wire device includes a globally unique 64-bit hardware ID which is useful for keeping track

of specific devices used in clinical experiments.

* The accelerometer sampling algorithm was changed from constantly reading the ADXL202E

to only reading on command and storing the most recent value. This new algorithm eliminates

inconsistencies occurring when the sensor board published updated accelerometer values while

previous values were still being read, and has the added benefit of synchronizing the recording

frequency across multiple sensor boards.

" A calibration mode was added to the firmware to account for normal variations in the ac-

celerometer manufacturing process. Before use, each accelerometer's axes were calibrated with

respect to the earth's gravity to give a uniform response across all the hardware. These settings

were saved in non-volatile memory inside each microcontroller.



The following sections describe these added features in greater detail and systematically works

through major software design decisions. Please see figure 3-2 for an overview of the main routine.

Power-Up

Measure PWM

output from

Initialize X,Y,Z,T axes

hardware

I

Load EEPROM

calibration

Data N
Data Normal NoEncode PWM timings

from selected axis

idle U
loop?

measurements with

calibration data
Yes

Figure 3-2: Flowchart of accelerometer main routine

3.1.1 Initialization

Upon power-up, the PIC16F874 Microcontroller initializes its hardware interfaces and clears internal

variables.

The code then examines the state of the 4-bit DIP switch to determine the sensor's address on the

12C communication bus. The value encoded in the switch is added to a base ID of "OxBO", used to

distinguish the accelerometer sensors from other 12C devices used with the MIThril wearable. (The

least-significant bit is currently dropped since the 12C protocol requires even hardware addresses;

toggling the LSb represents a request for data from the 12C master device.)

Additionally, the Microcontroller is configured to respond to the non-specific "OxOO" 12C address.

Commands sent to this broadcast address are synchronously received by all devices on the 12C

network.

Next, the PIC loads 20 bytes of calibration data from internal non-volatile EEPROM, checking

to ensure critical values are within sane ranges. New microcontroller's EEPROM are arbitrarily

initialized either high (OxFF) or low (OxOO) when manufactured, and could potentially lock-up the

device during the first boot, never allowing valid calibration data to be programmed over the 12C

bus!



Finally, the PIC enables the interrupt routines handling 12C communication, and flashes an "I'm

alive" blink sequence on the LED to signal successfully finishing the power-up initialization.

3.1.2 Data Acquisition

Once the initialization routine finishes, the PIC idles in a tight loop waiting for an external command

signaling it to sample the four channels of accelerometer data. In this case, the 12C command "0x08"

is caught by the interrupt routine, which in turn clears our idle loop and starts the PIC sampling

data. Section 3.1.3 contains a detailed discussion of the interrupt routines.

T2

Figure 3-3: ADXL202E Duty Cycle output

The data from the ADXL202E accelerometers are encoded using a Pulse-Width Modulated

(PWM) scheme, with a 50% duty cycle corresponding to Og acting upon the device. The ratio

between T1 and T2 changes in proportion to the amount of acceleration acting upon the device.

With perfectly manufactured hardware, the acceleration can be calculated using the following for-

mula:

A(g) = (T1/T2 - 0.5)/12.5%

The PIC uses a simple polling loop and a 16-bit internal timer to measure the TI and T2 values

on the X-axis. The T2 period was set in hardware to last for one millisecond, yielding approximately

2500 counts per T2 cycle with our microprocessor running at 10MHz1 and a resolution of 3.2mg (312

counts per g). Additionally, our polling loop algorithm's worst case running time is 2ms for a single

axis.

The PIC continues this routine for the three remaining axes; the Y, Z, and redundant X-axis "T".

The algorithm requires 8ms as the worst case runtime needed to time all four axes, though empirical

testing shows a typical runtime of 6ms.

At this point, the execution branches based on an internal calibration mode. If the calibration

mode is enabled, the firmware simply returns the TI and T2 values for a selected axis. Each timing

value is encoded as a unsigned long integer (representing the range 0-65535) and together they are

'Four clock cycles are required for each instruction cycle.



stored in the normal four-byte output of the system. Please refer to section 3.1.4 to see how these

values are used to calculate the calibration constants loaded on startup.

Assuming we are instead in a normal execution mode, the PIC emulates floating-point math to

convert the ±2g PWM data into values mapped across a signed byte [-128 to 1271. The aforemen-

tioned calibration data is used during these calculations to reduce the impact of slight differences

in the fabrication of each accelerometer. Since this particular microcontroller does not contain a

hardware floating point unit (FPU), these calculations take a significant amount of time. Almost

seven milliseconds are spent simply number crunching.

Once these four values are calculated, the PIC disables interrupts to prevent data inconsistencies,

publishes the temporary calculations for download, re-enables interrupts, and then returns to the

beginning of the main routine to wait in the idle loop.

A worst-case total of 15ms are required to measure and calculate the calibrated accelerometer

output, limiting our maximum sampling rate to 67 hertz.

3.1.3 12C Interrupt Routine

This interrupt routine compliments the previously described data acquisition code by interacting with

the external device controlling the sensor board. This routine is responsible for two major tasks:

using the microcontroller's embedded communication hardware to implement the 12C protocol, and

executing the higher-level commands transmitted to the board using 12C.

The generic 12C protocol specifies transactions consisting of an address byte (identifying partic-

ular hardware) followed by an arbitrary number of data bytes[8]. This thesis extends the generic

protocol by designating the first non-address byte as a command to the firmware with optional

subsequent data bytes. Table 3.1 lists the additional commands:

Table 3.1: 12C commands supported by sensor board

Command (hex) Description

Ox00 Toggle LED Off
Ox01 Toggle LED On
0x02 Return X value on next read
0x03 Return Y value on next read
OxO4 Return Z value on next read
0x05 Return T value on next read
0x06 Next byte selects calibration mode {normal, X,Y,Z,T}
0x07 Flashes subsequent 20 bytes of calibration data in EEPROM

0x08 Request for system to acquire accelerometer data



The interrupt routine is triggered by internal microcontroller hardware receiving a byte through

valid 12C communication. Since the built-in hardware is blind to the higher-level aspects of the 12C

protocol, the firmware must keep track of the communication state.

The interrupt routine first determines if the received hardware address byte is a request for data,

signaled by setting the Least Significant bit of the address. If this byte indicates a read request, the

current index of the cyclic output buffer is transmitted over 12C, and is subsequently updated to

refer to the next location in the buffer. If instead there is no request for data, the received byte is

our 12C address, so the 12C state is adjusted from NOTHING to ADDRESSRECEIVED.

After verifying that a valid command byte has been received, the interrupt routine then either

directly handles a simple request (such as turning on an LED) or updates the 12C state to reflect

one of two multi-byte commands (CALIBRATIONMODE or CALIBRATION-DATA).

With CALIBRATIONMODE, the interrupt routine expects a single additional byte used to

designate normal operation of the accelerometer (OxOO) or to select the raw data of the specified

axis be returned for calibration (0x01-0x04). In CALIBRATIONDATA, the routine programs the

subsequent 20 bytes of calibration data into the microcontroller's EEPROM. These 20 bytes are

further described in the following section, section 3.1.4.

After the required number of bytes have been read, the 12C state is reset to NOTHING, and the

communication process begins anew.

3.1.4 ADXL202E Calibration

While Analog Devices holds the ADXL202E hardware to precise production tolerances, it is impos-

sible to avoid slight variations in the manufacturing process, resulting in minor timing discrepancies

between specific accelerometers. To correct this problem, the sensor boards were programmed to

calibrate each accelerometer with respect to gravity to give a uniform response across all hardware.

This section describes the external software used to interrogate the sensor board and generate the

calibration values used during data acquisition. The following algorithm is a slight variant from an

Analog Devices application note[9].

An external program collects multiple samples from each axis of the on-board accelerometers

responding to ±1g, using the Earth's gravity as a reference. The program prompts the user to hold

the accelerometer board in the proper orientations, collecting needed data at each stage. After eight

orientations (±g for four axes), the program uses the formulas described below to generate calibra-

tion constants, then flashes the new configuration data over the 12C link into on-board EEPROM.



These new calibration values are used once the sensor board reboots.

Three values are needed per axis to ensure calibrated output:

T2cal The averaged value of duty-cycle period (T2) during the calibration procedure.

Zcal The Og value of duty-cycle output (TI) at the time of calibration, calculated using

the following formula:
Tlmax - Tlmin

Zcal=
2

K The scaling factor used to ensure the proper resolution (in bits) of the accelerometer

calculation. To ensure ±2g is mapped to ±128 counts (to result in an 8-bit number),

K is calculated by:
T2cal * 128

Tlmax - Tlmin

Since the ADXL202's duty cycle modulator uses the same reference for both axes, T2cal is averaged

and only stored once per accelerometer. Zcal and K are calculated for each axis, resulting in 10

values: [T2cali, T2cal2 , Zcalx, Zcaly, Zcalz, ZcalT, Kx, Ky, Kz, KTI. Two bytes are required to

store each calibration constant, resulting in total of 20 bytes of data flashed into EEPROM.

Once the calibration constants are known, only two formulas are required to calculate acceleration

from a TI and T2 measurement:

Zactual =Zcal * T2
T2cal

This formula accounts for changes in T2 due to drift or jitter by using the averaged values from

exposure to 2g of acceleration. Calibrated, scaled acceleration can then be calculated using:

K * (TI - Zactual)
AccelerationT2



3.2 Data-recording Hardware

Figure 3-4: SAK hardware

Rather than using the full MIThril wearable, which includes multiple single-board computers,

wireless networking hardware, and a head-mounted display, Vadim Gerasimov's "Every Sign of Life"

(ESL) board[10] was chosen as a light-weight data recording system.

The main feature of this 4-inch by 2-inch board is a Microchip PIC16F877 microcontroller inter-

facing with a general purpose Compact Flash (CF) header. The embedded software allows data to

be stored either on traditional Type-I CF cards or on the higher capacity IBM microdrives, allowing

for up to one Gigabyte of storage.

Each series of measurements recorded by the ESL board is timestamped using a Maxim DS1302

timekeeping chip. This real-time clock provides full calendar information with second resolution and

is supplementally powered by an lithium-ion backup battery capable of running the clock for five

years. While the clock is accurate within a few minutes per month of operation, the ESL board

allows the chip to be synchronized with a PC's clock via the serial port.

Finally, the ESL board can be expanded with a 2-way FM radio module or with custom daughter

boards plugged into standardized headers.

Four rechargeable AAA batteries power the ESL board, and typically last for 36-hours of con-

stant use. Recording at 50 hertz from 5 accelerometers - one on each limb, plus one as an ESL

daughter board worn in a belt pouch -allows approximately 17 hours of data to be recorded onto

an inexpensive 64 megabyte CF card.



3.2.1 ESL software Modifications

Vadim's original ESL code was modified to record data from the five of the accelerometer sensor

boards described previously. The flowchart in Figure 3-5 illustrates the new data sampling routine:

Initialize next 512-byte sector

Write header and timestamp
(12 bytes)

Zero Millisecond timer

Broadcast read request

Delay 20ms for sampling

Store 4 bytes from 5 sensor boards

No While Yes
less than
500 bytes

(25 iterations)

Figure 3-5: Accelerometer sampling routine

The output is stored on the attached Compact Flash card as a single file in a FAT-16 filesystem.

A secondary program running on a desktop computer converts the binary file into human readable

format suitable for use with Matlab.

3.3 Packaging

Finding a way to attach the system to the human body was the final challenge in designing the

hardware. The major tradeoff was between comfort during multiple-hour wear and a tight fit for

a reliable coupling of accelerometer to limb. After much investigation, athletic wrist and elbow

support equipment was found to be a ideal balance between comfort and snug fit. Velcro was used

to attach the accelerometer boards to the athletic straps (Figure 3-6).



Figure 3-6: Velcro ankle and wrist mounting hardware

Running the wires between the components was also an issue. The amount of cabling was first

reduced by constructing a custom wiring harness with light-weight, four-conductor cable. Cables for

the upper body were kept out of the way by running them through the patient's shirt and out the

sleeves. Wires for the ankle accelerometers were run over the patient's pants and held in place with

strips of self-adhering ace bandage.

3.4 Testing

Individual accelerometer boards were fabricated, calibrated, and tested in isolation. These boards

were then connected to the ESL board stack, tested on the bench, and worn around the Media Lab.

The cables and locking connectors were tested to ensure simple snags would not result in dropped

data[11, 12].



Chapter 4

Experiment

Two volunteers, located through Memorial Hospital's Parkinson Day Center , were instrumented with

the data recording system while they performed common daily tasks (walking, sitting and reading

quietly, and sitting in animated conversation). Particular care was taken to record each volunteer

performing the same activities during the three phases of their medication (Off, On, Dyskinesia).

For verification, each patient was filmed with a digital video camera synchronized to the system's

real-time clock.

Additional care was taken to consistently place the accelerometer sensors in the same location

on each patient. Even though the system could run for over 24 hours, batteries were replaced at

the start of each data collection. Additionally, even though the system could record 17 hours of

accelerometer data, it was powered down at a halfway point for the CF card to be removed and

backed up onto a laptop.

Figure 4-1 displays all data recorded from the first patient, organized by accelerometer location.

The volunteer's medication state was rated every ten minutes by a trained physician observing

the experiment. The physician filled out two separate test based on visual observation of the subject,

classifying "On Vs Off" behavior separately from "Dyskinetic" motions.

Figure 4-2 displays the plotted observations for Subject 1.



Accel B4 (L Arm) Magnitude

Hours Hours

Accel 86 (R Leg) Magnitude

1 2 3 4 5
Hours

Accel BO (Hip) Magnitude

Figure 4-1: All accelerometer data recorded from Subject 1, smoothed and displayed by sensor
location. Sensor BO shifted two hours into data collection, resulting in the plot offset. The data
from Subject 2 looks similar, though without the shift in BO.

Accel B2 (R. Arm) Magnitude



Dyskinesia for Subject 1

Hours

On/Off for Subject 1

Hours

Figure 4-2: Physician's observations for Subject 1.

4.1 Analysis

The goal of this section is to analyze the accelerometer data to determine:

" If the system can detect the different phases of medication associated with Parkinson's Disease.

" Which accelerometer placement(s) on the body are best suited to this task.

Unfortunately, at the time of writing this thesis, the physician has only fully annotated the first

subject's dataset. As a result, all analysis of the system is based on results from this patient.



4.1.1 Correlation in Matlab

Each accelerometer produced a four-component signal vector composed of unsigned bytes (0-255),

sampled at approximately 40 Hz. A preprocessing step averaged the two redundant components of

the four-axis accelerometer to produce a three-component vector. A script was written to compute

the magnitude of the delta's of adjacent vectors, representing quality of motion as the strength of

the change in acceleration.

The physician rated the patient's dyskinesia on a scale of 0-4, with 4 being the most dyskinetic.

Visual observation suggested a high correlation between the accelerometer data and physician's

observations. Direct comparison proved difficult - the physician's observations were recorded every

minute while the accelerometers sampled data at 40 hertz. An averaging filter with a three minute

"window" was first run across the data sets before they were compared.

Figure 4-3 shows the superposition of the physician's observations of Dyskinesia overlaid on the

smoothed magnitude of accelerometer B2, which was mounted on the subject's right arm.

Accel B2 (R. Arm) Magnitude Vs. Dyskinesia

0 1 2 3 4 5
Hours

Figure 4-3: Right-arim accelerometer and dyskinesia data smoothed using three-minute window.
There is an 82% correlation.



Initial analysis of the smoothed data showed correlation between the accelerometer outputs and

dyskinesia as observed by the physician. Specifically, the highest correlation was found with the

accelerometer on the right arm, which produced an 82% correlation.

Unfortunately, this simple technique falsely assumes any period of rapid motion directly corre-

sponds to dyskinesia. It would, for example, be unable to differentiate a sedentary patient with high

dyskinesia from a properly medicated patient going for a walk.

There are two ways to deal with this problem:

" Constrain the experiment to only compare data recorded during similar tasks (walking, for

example).

" Further analyze the accelerometer data to guess the patient's current activity from the con-

strained set of tasks.

4.1.2 Detecting Walking

In his paper, "Real-Time Motion Classification for Wearable Computing Applications"[13], Rich

DeVaul used a single three-axis accelerometer to classify a range of user activity states (sitting,

walking, running, biking, riding the subway). Following his methodology, the following is a power

spectrum of the waist-mounted accelerometer:

Spectrum of B6 (Leg) Accelerometer

18

10

8

6

4

2-

OO 1 2 3 4 5
Hours

This plot provides a visual means to pick out periods where the patient walked (vertical bars),

suggesting that an automated system could perform the task. Inspired by this apparent correlation,

a Neural Network was developed to autonomously identify periods of walking.



The video record was examined to determine the precise timestamps of walking activity, a task

greatly simplified by the use of synchronized clocks on all devices. The regions of walking were

flagged with a dataset parallel to the accelerometer data, and both datasets were subdivided to form

training and test sets. Each dataset was subdivided into 5 second windows, with 3.75 seconds used

for training, and 1.25 seconds used for testing. These numbers were chosen to allow a 3:1 training-

to-test set ratio. Unfortunately, there was not enough data to form a separate "evaluation" data set,

so all algorithms were evaluated against the test set.

Using the Matlab Neural Network Toolkit (nntool), several multi-layer neural networks (NNs)

were created. The immense size of the data set (800,000 bytes per axis) severely limited the network

topologies Matlab would simulate. In fact, Matlab would crash on any networks with greater than

eight input nodes or more than a single neuron in the hidden layer. Correspondingly, all of the

NNs used in this thesis included a hidden layer containing a single neuron, and an output layer also

containing a single neuron.

Initial experiments with walking used three separate networks trained on logical sets of ac-

celerometer data: both hands, both legs, and the hip. While these results were not ground-breaking

(70%,71%,56% correlation), the corresponding weight vector of each NN was examined to find which

inputs were the most important. Seven axes were found to be the most useful: x & y axes of the

right arm, and right and left leg. Additionally, the z-axis of the left leg was deemed important.

A final NN was designed using these seven inputs (with 3/4*800,000 raw data points per axis),

and trained against the training data based on periods of observed walking. After training, the NNs

were run on the test data, and their output compared to the observed walking times in the test data.

Figure 4-4 shows the output of the best walking detector, which correctly classified walking 75%

of the time.
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Figure 4-4: Output of neural network designed to autonomously identify regions of walking, plotted
against corresponding regions of walking. There is a 75% correlation.

4.1.3 Detecting Dyskinesia.

As mentioned above, the initial analysis of the data determined an 82% correlation between the

accelerometer data and observed dyskinesia. This high correlation suggested that an automated

system could be used to determine dyskinesia based on the outputs of the accelerometers.

Following the methods used to determine regions of walking, the accelerometer output and the

dyskinesia observations were subdivided into training and test sets. A NN was created in Matlab

and trained on the output from all 5 accelerometers against the physician's dyskinesia observations.

Testing this network revealed a 71% correlation between the NN output and dyskinesia.



The correlation of the raw data (82%) suggests that the NN should be able to do better. Look-

ing at the physician's dyskinesia data provides some insight: the data includes measures of "slight,"

"moderate," "significant," and "intense" dyskinesia. Restricting this dataset to exclude "slight" dysk-

inesia and using it to train the NN has dramatic results; the correlation between this NN output

and all observed dyskinesia (including "slight") is 85% (see Figure 4-5).

Output of the Neural Network Trained Using Strength of Change in Acceleration
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Figure 4-5: Output of a neural network, trained using only dyskinesia levels "moderate," "significant,"
and "intense" with all 5 accelerometer outputs, and plotted against all observed dyskinesia levels.
There is an 85% correlation.



4.1.4 Improved Dyskinesia Detection

By combining the results of sections 4.1.2 and 4.1.3, dyskinesia can be predicted with even higher

accuracy. Using the NN from section 4.1.2, it is possible to isolate periods of walking from the

original dataset and remove them. Retraining the NN from section 4.1.3 on this data provides a

correlation of 91% with dyskinesia (see Figure 4-6).

Output of the Neural Network Trained on Data with Walking Removed
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Figure 4-6: Output of a neural network, trained after automatically identifying and removing walking
data. This NN was trained only using dyskinesia levels "moderate," "significant," and "intense" and
all 5 accelerometer outputs, and is plotted against all dyskinesia levels. There is an 91% correlation.



Chapter 5

Conclusions

The main roadblock in the treatment of Parkinson's is proper dosage of the medications which

provide relief from the symptoms. By automatically recording dyskinesia levels through different

stages of the patient's medication cycle, doctors can more effectively adjust dosages to each patient's

individual requirements. This thesis developed a way to automatically record and analyze such data.

The core hardware is a wearable medical data collection system, based off of low-power, calibrated

accelerometer sensors. Five of these sensors were connected to a Compact-Flash based data recording

board and successfully tested in an actual clinical setting. The system recorded ten hours of data

from two volunteers with PD as they performed everyday activities.

This data was examined in the hopes of finding a relationship between the subjects' motions

and their corresponding medication state, as rated by a physician observing the experiment. A

preliminary test found 82% correlation between a single accelerometer and the Dyskinetic ratings,

suggesting promise for in-depth analysis.

A neural network using all five accelerometers generated 85% correlation. This network was,

however, limited by confusion between a sedentary patient with high dyskinesia and a properly

medicated patient moving energetically. A second neural network was trained to identify periods of

walking (the only vigorous activity in our data set) with 75% accuracy. Using this activity classifier

to remove walking data increased our overall accuracy to 91%.



These results must be tempered by the recognition that they are based off a single data set, and

the Neural Network that performed best on the test set was used (vs. testing the network on an

entirely unseen set of data). However the recognition results are still significant, and suggest three

important lessons for working with accelerometer based PD systems:

* Activity classification is an important aspect of the classification system.

* Multiple accelerometers across the body show significant improvement over a single accelerom-

eter located anywhere on the body.

" The classification systems will be strongly tuned to each subject, as every person performs

basic movements differently (ie, walking rhythms)

The automated monitor system developed in this thesis, combined with the artificial-intelligence

based learning tools described, provide a way to successfully identify dyskinesia with significantly

greater than random accuracy, achieving 91% in the patient studied here. This result has the

potential to replace human observers in the monitoring of medication levels for Parkinson's patient.

By removing the necessity of a human observer, more accurate data can be taken more frequently,

hopefully allowing doctors to provide more effective treatments and dramatically improving the lives

of people living with Parkinson's Disease.
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