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Abstract

A computer can never be too fast or too cheap. Computer systems pervade nearly
every aspect of science, engineering, communications and commerce because they
perform certain tasks at rates unachievable by any other kind of system built by hu-
mans. A computer system's throughput, however, is constrained by that system's
ability to find concurrency. Given a particular target work load the computer ar-
chitect's role is to design mechanisms to find and exploit the available concurrency
in that work load.

This thesis describes SUDS (Software Un-Do System), a compiler and runtime
system that can automatically find and exploit the available concurrency of scalar
operations in imperative programs with arbitrary unstructured and unpredictable
control flow. The core compiler transformation that enables this is scalar queue
conversion. Scalar queue conversion makes scalar renaming an explicit operation
through a process similar to closure conversion, a technique traditionally used to
compile functional languages.

The scalar queue conversion compiler transformation is speculative, in the
sense that it may introduce dynamic memory allocation operations into code that
would not otherwise dynamically allocate memory. Thus, SUDS also includes a
transactional runtime system that periodically checkpoints machine state, executes
code speculatively, checks if the speculative execution produced results consistent
with the original sequential program semantics, and then either commits or rolls
back the speculative execution path. In addition to safely running scalar queue
converted code, the SUDS runtime system safely permits threads to speculatively
run in parallel and concurrently issue memory operations, even when the compiler
is unable to prove that the reordered memory operations will always produce cor-
rect results.

Using this combination of compile time and runtime techniques, SUDS can find
concurrency in programs where previous compiler based renaming techniques fail
because the programs contain unstructured loops, and where Tomasulo's algo-
rithm fails because it sequentializes mispredicted branches. Indeed, we describe
three application programs, with unstructured control flow, where the prototype
SUDS system, running in software on a Raw microprocessor, achieves speedups
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equivalent to, or better than, an idealized, and unrealizable, model of a hardware
implementation of Tomasulo's algorithm.

Thesis Supervisor: Anant Agarwal
Title: Professor

Thesis Supervisor: Saman Amarasinghe
Title: Associate Professor
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Chapter 1

Introduction

Computer programmers work under a difficult set of constraints. On the one hand,

if the programs they produce are to be useful, they must be correct. A program that

produces an incorrect result can be, literally, deadly. A medical radiation therapy

machine that occasionally delivers the wrong dose can kill the patient it was in-

tended to heal [76].

On the other hand, to be useful a program must also produce its results in a

timely manner. Again, the difference can be critical. Aircraft collision avoidance

systems would be useless if it took them longer to detect an impending collision

than for the collision to occur. Similarly, today's vision and speech recognition

systems work too slowly to be used as tools for interacting with human beings.

After correctness, then, the computer engineer's main area of focus is the

"speed" or "performance" of the computer system. That this is the case, (and

should remain so), is a consequence of the fact that performance can often be

traded for other desirable kinds of functionality. For example, in the low-power

circuits domain, improved system throughput enables reduced power consump-

tion through voltage scaling [23]. In the software engineering domain, the widely

used Java programming language (first released in 1995) includes garbage collec-
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tion and runtime type checking features that were considered too expensive when

the C++ programming language was designed (circa 1985) [112].

Unfortunately, the twin goals of correctness and speed conflict. To make it more

likely that their programs are correct, programmers tend to write their programs to

run sequentially, because sequential programs are easier to reason about and un-

derstand. On the other hand, the rate at which a computer can execute a program

is constrained by the amount of concurrency in the program.

One solution to this conundrum is to allow the programmer to write a sequen-

tial program in a standard imperative programming language, and then automat-

ically convert that program into an equivalent concurrent program by techniques

that are known to be correct. There are two relatively standard approaches for

converting sequential imperative programs into equivalent concurrent programs,

Tomasulo's algorithm [117, 57, 104, 83, 1051, and compiler based program restruc-

turing based on a technique called scalar expansion [68].

Each of these techniques presents the architect with a set of tradeoffs. In partic-

ular, Tomasulo's algorithm guarantees the elimination of register storage depen-

dences, and is relatively easily extended to speculate across predictable depen-

dences, but does so at the cost of partially sequentializing instruction fetch. On

the other hand, compiler based restructuring techniques can find all of the avail-

able fetch concurrency in a program, and have relatively recently been extended

to speculate across predictable dependences, but have not, prior to this work, been

capable of eliminating register storage dependences across arbitrary unstructured

control flow. The SUDS automatic parallelization system eliminates the tradeoffs between

Tomasulo's algorithm and compiler based program restructuring techniques.

Informally, renaming turns an imperative program into a functional program.

Functional programs have the attribute that every variable is dynamically written

at most once. Thus functional programs have no anti- or output- dependences. The
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cost of renaming is that storage must be allocated for all the dynamically renamed

variables that are live simultaneously. The particular problem that any renaming

scheme must solve, then, is how to manage the fixed, and finite, storage resources

that are available in a real system.

Tomasulo's algorithm deals with the register storage allocation problem by tak-

ing advantage of its inherently sequential fetch mechanism. That is, if Tomasulo's

algorithm runs out of register renaming resources, it can simply stall instruction

fetch. Because instructions are fetched in-order, and sequentially, the previously

fetched instructions that are currently using register renaming resources are guar-

anteed to make forward progress and, eventually, free up the resources required to

restart the instruction fetch mechanism.

Traditional compiler based renaming techniques, like scalar expansion, take a

different approach, renaming only those scalars that are modified in loops with

structured control flow and loop bounds that are compile time constants. This

enables the compiler to preallocate storage for scalar renaming, but limits the ap-

plicability of this technique to structured loops that can be analyzed at compile

time.

The SUDS approach, in contrast, is to rename speculatively. The SUDS com-

pile time scheduler uses a compile time technique called scalar queue conversion to

explicitly rename scalar variables. Scalar queue conversion dynamically allocates

storage for renamed scalars, and thus can rename across arbitrary control flow

(even irreducible control flow). Unlike Tomasulo's algorithm, which depends on

sequential fetch to avoid overflowing the finite renaming resources, SUDS fetches

instructions from different parts of the program simultaneously and in parallel. As

a result, scalar queue conversion's dynamically allocated renaming buffers may

overflow.

SUDS deals with these overflow problems using a checkpointing and repair
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mechanism. SUDS periodically checkpoints machine state, and if any of the re-

naming buffer dynamic allocations should overflow, SUDS rolls back the machine

state to the most recent checkpoint and reexecutes the offending portion of code

without renaming. In the (hopefully) common case the renaming buffers do not

overflow.

Because SUDS can fetch multiple flows of control simultaneously, and even

when the control flow graph is unstructured or irreducible, SUDS exploits concur-

rency that neither Tomasulo's algorithm nor previous compiler based renaming

techniques can exploit. Despite the fact that SUDS implements both scalar renam-

ing and speculative checkpoint/repair in software, it is able to achieve speedups

equal to, or better than, an idealized (unrealizable) hardware implementation of

Tomasulo's algorithm.

The next section explains why finding concurrency is fundamental to computer

system performance. Section 1.2 describes the SUDS approach to finding concur-

rency. Section 1.3 describes the specific technical contributions of this work.

1.1 Technology Constraints

Why is automatic parallelization important? There are two ways to make a com-

puter system "faster." The first is to reduce the amount of time to execute each op-

eration. This goal can only be achieved by improved circuit design and improved

fabrication techniques.

The second technique is to increase the throughput of the system. This is the

domain of the computer architect. In this section we will point out that the only

way to increase system throughput is to increase the number of independent oper-

ations simultaneously in flight. And we will further demonstrate that technology

constraints demand that system throughput can only increase sublinearly in the
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amount of available parallelism. Thus, architectural performance improvements de-

pend on our ability to find parallelism in real world workloads.

One method for demonstrating this claim is to invoke Little's Law [78],

X = N/R. (1.1)

Little's Law says that the system throughput, (number of operations completed

per unit time), X, is equal to the quotient of the number of independent operations

simultaneously active in the system, N, and the time required to complete each

operation, R.

Assuming that we can increase parallelism without increasing operation la-

tency, (i.e., R = 0(1), which is not true, as we will see subsequently), then the

achievable system throughput is limited to the number of independent operations

that can run simultaneously. That is, at best, X oc N.

Pipelining is one popular architectural technique for increasing system

throughput. In a pipelined design each fundamental operation is divided into

multiple stages of approximately equal latency, and latches are placed between the

stages. Assume that the time to execute each fundamental operation is tf (i.e., the

time for just the combinational logic) and the time to latch a result is tt. Then if we

divide the fundamental operation into N pipeline stages we increase the latency of

each operation from tf to Nt, + tf. Thus by Little's Law

_ N
xpipeline -Nt + t

We can conclude two things from this derivation. First, as N grows, pipelining

improves throughput only to the limit of

lim Xpipee = -.
N-4oo t-
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That is, pipelining throughput is limited to the maximum rate at which we can

cycle a latch in a particular technology.

Second, suppose we desire to pipeline until we achieve a desired fraction, fx,

where 0 < f, < 1, of the maximum throughput 1 /t. Then

fX N
tt Nt +tf

and so

N tf fX
N = - .,ti 1 -- f

The fraction fx/(1 - fx) approximates a linear function when fx is close to 0, but

grows to infinity as fx approaches 1. Thus only a small fraction (about half) of

the maximum pipelining throughput is achievable, unless we can find a way to

grow N, the available operation parallelism, hyperbolically. Recent microprocessor

designs have come close to the limits of the linear regime [81, 3, 11], and thus

future designs will need to find another approach if they are to achieve greater

system throughput.

A second approach to increasing system throughput is to increase the number

of functional units. If it were the case that we could fetch the operands for each

operation in constant time, then we would be able to increase throughput linearly

as we increased the number of independent operations available in the system.

Unfortunately, this argument depends on the assumption that the functional units

are executing work that is completely independent and that they never communi-

cate. If even a small constant fraction of the results produced by each functional

unit need to be communicated to another arbitrarily chosen functional unit, then

we need to account for these communication costs in our calculation.

Recent analysis of technology scaling trends shows that communication costs

will be the dominant concern in computer architecture design by the year 2013 [81,
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3, 111. For example, in 35nm technology, and assuming a clock cycle time equiv-

alent to 8 fan-out-of-4 gate delays it is expected that it will cost more than two

hundred cycles to propagate a signal all the way across a chip. We can accurately

model these assumptions with the following simple abstract rules:

1. The propagation of information takes time linear in distance traveled.

2. The universe is finite dimensional.

3. Storing information consumes area linear in the quantity of information

stored.

Thus, the area of the entire system is at least proportional to N, where N is the

number of simultaneously active independent operations. An arbitrary commu-

nication operation in the system takes time proportional to the distance traveled,

which, on a two-dimensional computer chip, will on average, be proportional to

vN.' Plugging the result R = V into Little's Law we are led to the conclusion

that at best2

X c vN.

Thus, to improve computer system throughput by a factor of two, one must find at

least four times as much parallelism. Put another way, parallelism is the computer

architect's constrained resource, and thus improving parallelism is the most critical

component to future improvements in computer system throughput.

1 Online locality management techniques, like caching, might be able to reduce this distance
somewhat, but it is an open question whether the benefits would be substantial. Even offline tech-
niques, like VLSI circuit placement algorithms, typically produce results in the range R oc N0 1 to
R c< NO. 3 [73, 36].

21 can find no previous publication of this argument, but the designers of the Tera computer
system were clearly aware of it before 1990 [5].
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do

s = f(i)

if s
t = g(i)
u = h(i)
*t= U

i = j(i)
v = k(i)

while v

Figure 1-1: An example program.

1.2 Finding Parallelism

How, then, are we to find the parallelism required to improve throughput in the

next generation of computer architectures? The execution of a program can be

viewed as a process of unfolding the dynamic dependence graph of that program.

The nodes of this graph correspond to arithmetic operations that need to be per-

formed, while edges in the graph correspond to a partial ordering of operations

that needs to be enforced if the program is to produce the correct results. When

viewed in this way, then the process of finding parallelism becomes a process of

finding operations in the dynamic dependence graph that don't depend on one an-

other. Much of the difficulty in finding parallelism in imperative programs comes

from the fact that existing compilers and architectures build dependence graphs

that are too conservative. They insert false dependence arcs that impede paral-

lelism without affecting the correctness of program execution.

The SUDS automatic parallelization system relies on three basic principles:

1. Every imperative program can be converted into a functional program by

making renaming explicit. A functional (i.e., explicitly renamed) program

has the attribute that every variable is (dynamically) written at most once thus

functional programs have no anti- or output- dependences.

2. The flow dependences produced by following the single flow of control in
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Is = f(i)

u h~i) t g(i)

store *t i

v =k(i)

branch v

- branch s|-

u h W ti)()

store *t = u i = W i

branch v

Figure 1-2: The conservative dynamic dependence graph generated from the code
in Figure 1-1. Arcs represent dependences between instructions that must be hon-
ored for correct execution. Dotted arcs represent anti-dependences that can be
removed through dynamic renaming. Dashed arcs represent flow dependences
that can be removed through accurate control dependence analysis. The height of
this conservative dynamic dependence graph is 12 nodes, because there is a path
through the graph of length 12. The throughput of this program would be one
iteration every six cycles.

s7 = f (i6)o t

branch s7 f t

pendene u7 = hga p = j(i6) T

store *t7 = u7 v7 =k(i7)|

|branch v7 |

s8 = f(i7)

branch s8

t8 =g(i7) u8 = h(i7) A i = j(i7)

store *8 = uS | 8 = k(i8)

|branch v8 |

Figure 1-3: Dynam-ic renaming removes
anti-dependences. The height of the

graph has been reduced from the 12
nodes of the conservative dynamic de-

pendence graph to 10 nodes. The
throughput has been improved from
one iteration every six cycles to one it-
eration every five cycles.

s7 = f (i6) | i7 = i (i6)|

branch s7 ||v7 = k(i7)

u7 =h(i6) | |t7 =gi)||branch v7

store *t7 = u7 s8 = f(i7) iA = j(i7)

branch s8 v8 = k(As)

u8 = h(i7) t8 = g(i7) branch vS

store *t8 = u8

Figure 1-4: Control dependence
analysis removes conservative branch-
dependence arcs. The combination
of dynamic renaming and control
dependence analysis has reduced the
height of the graph to 7 nodes. The
throughput has been improved to one
iteration every three cycles.



i7 = j (i6) s7 = f (i6)

v7 = k(i7) |branch s7 i8 = j (i7) s8 = f (i7)

banch v7 F t7 = g(i6) u7 = h(i6) v8 = k(iA) branch s8

store) *t = u77 | branch v8 |t=gi) u8=h(i7)]

str *t8-= u8

Figure 1-5: Speculation breaks predictable dependences. The graph height has
been reduced to 5 nodes. The throughput has been improved to one iteration every
cycle.

the standard control flow graph representation are more conservative than

necessary. Control dependence analysis produces a more accurate, and sparser,

representation of actual program structure that makes multiple flows of con-

trol explicit.

3. Many true-dependences (in particular those on data structures in memory)

and control-dependences can be further eliminated by speculation.

Figure 1-1 shows an example of a simple loop with non-trivial dependences.

Figure 1-2 shows the conservative dynamic dependence graph of two iterations

of the loop. The figure is annotated with the dependences that limit parallelism.

The variable i creates a true-dependence, because the value written to variable i

in the first iteration is used in the second iteration. The reads of variables s, t,

u and v in the first iteration create anti-dependences with the writes of the corre-

sponding variables in the second iteration. In this conservative representation ev-

ery operation is alsoflow-dependent on the branch that proceeds it. Finally, there is a

memory-dependence between the potentially conflicting store operations in the two

iterations. We can see by looking at the graph that, without any further improve-

ment this loop can execute at a maximum rate of one iteration every six "cycles"

(assuming that each instruction takes a cycle to execute).

Figure 1-3 shows the benefits of renaming to remove anti-dependences. Re-
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naming creates a uniquely named location in which to hold each intermediate

value produced by the program. Since each location is written exactly once

the anti- and output-dependences are eliminated [57]. Renaming improves the

throughput of the example loop from one loop iteration every six cycles to one

loop iteration every five cycles.

Figure 1-4 shows the results of applying control dependence analysis [40, 30].

This eliminates the flow-dependence between the branch statement on variable

s and later code (e.g., the statement "i = j (i) ") that execute irrespective of

whether the branch is taken or not. The combination of renaming and control

dependence analysis improves the throughput of the example loop from one loop

iteration every six cycles to one loop iteration every three cycles.

Figure 1-5 illustrates what happens when two of the remaining dependences

are eliminated using speculation techniques. While there is a true control de-

pendence between the branch at the end of the first iteration and the execution

of the code in the second iteration we can use traditional branch speculation tech-

niques [103, 132] to parallelize across this dependence with high probability. The

dependence between the stores in the two iterations is necessary in a conservative

sense, in that the addresses in t 7 and t 8 could be the same under some program

execution, but using memory dependence speculation [44] we can take advantage of

the idea that probabilistically the addresses in t 7 and t 8 are different.

These speculative dependences are monitored at runtime. The system check-

points the state occasionally and executes code in parallel, even though this may

cause dependence violations that produce inconsistent states. The runtime system

later checks for (dynamic) violations. If the runtime system finds any violations,

execution is temporarily halted, the system state is restored to and restarted at the

most recent checkpoint. If such violations are rare then the system achieves the

parallelization benefits.
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Figure 1-5 demonstrates that the combination of renaming, control dependence

analysis and speculation have found a substantial amount of parallelism in the

original code. While each iteration of the original loop includes eight operations,

we can (conceptually) improve the throughput to one loop iteration every cycle, or

eight instructions per cycle.

This thesis addresses the issues involved in the above example, in the context

of SUDS (the Software Un-Do System), an "all-software" automatic parallelization

system for the Raw microprocessor. SUDS performs explicit dynamic renaming by

closure-converting C programs. SUDS exploits control independence by mapping

control-independent code to independent branch units on Raw. Finally, the SUDS

runtime system speculates past loop control dependence points, which tend to be

highly predictable, and allows memory operations to speculatively execute out of

order.

1.3 Contributions

The main contribution of this thesis is a compiler transformation called scalar queue

conversion. Scalar queue conversion is an instruction reordering algorithm that

simultaneously renames scalar variables. Scalar queue conversion has at least five

unique features.

1. Scalar queue conversion works on flow graphs with arbitrary control flow.

The flow graph can be unstructured, or even irreducible.

2. Scalar queue conversion can move instructions out of loops with bounds that

can not be determined until runtime.

3. Scalar queue conversion guarantees the elimination of all scalar anti- and

output- dependences that might otherwise restrict instruction reordering.
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Thus scheduling algorithms based on scalar queue conversion can make in-

struction ordering decisions irrespective of register storage dependences.

4. Scalar queue conversion, unlike Tomasulo's algorithm, can rename and re-

order instructions across mispredicted branches whenever the reordered in-

structions are not control dependent on that branch.

5. Scalar queue conversion is a speculative compiler transformation, in that it

inserts dynamic memory allocation operations into code that might not oth-

erwise dynamically allocate memory. We describe an efficient software based

checkpoint repair mechanism that safely applies speculative compiler opti-

mizations.

In addition to describing scalar queue conversion this thesis makes the follow-

ing additional contributions.

1. It shows how to move the renaming operations introduced by scalar queue

conversion to minimize the runtime overheads introduced by scalar renam-

ing.

2. It shows how to use scalar queue conversion to implement a generalized

form of loop distribution that can distribute loops that contain arbitrary inner

loops.

3. It describes the pointer and array analysis issues that needed to be addressed

when using scalar queue conversion in a practical context.

4. It describes the SUDS software runtime system, which performs memory de-

pendence speculation while only increasing the latency of memory opera-

tions by about 20 machine cycles.
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5. It provides a demonstration that the SUDS system effectively schedules and

exploits parallelism in the context of a complete running system on the Raw

microprocessor.

It is my hope that the work in this thesis will serve as a starting point for the re-

search that I believe needs to be done to enable the next several generations of high

performance microprocessors. Tomasulo's algorithm issues instructions out of or-

der, but its ability tofetch out of order is limited by mispredicted branch points. To

overcome this fetch limit the microprocessor must somehow transform a sequen-

tial thread into multiple, concurrent, threads of control. The research in this thesis

demonstrates the kinds of problems that need to be overcome when the sequential

thread is both imperative and has completely arbitrary control flow.

1.4 Road Map

The rest of this thesis is structured as follows. Chapter 2 defines the relatively

standard graph-theoretic terms widely used in the compiler community. Readers

with a strong background in compiler design can profitably skip Chapter 2.3

The next four chapters describe scalar queue conversion. Chapter 3 describes

the transformation, and explains why scalar queue conversion is able to, provably,

eliminate all the scalar anti- and output- dependences that might otherwise inhibit

a particular schedule. Chapter 4 discusses an optimization that improves scalar

queue conversion's placement of copy instructions. Chapter 5 describes several

extensions and improvements that widen the applicability of scalar queue conver-

sion. Chapter 6 describes the generalized loop distribution transformation that
3But please keep in mind the difference between the value dependence graph (the graph compris-

ing the scalar def-use chains, control dependence arcs, and memory dependences) and the conser-
vative program dependence graph (the graph comprising the value dependence graph with additional
edges for the scalar use-def and def-def chains). Both of these graphs are sometimes called "pro-
gram dependence graphs" in the literature, but the difference is important in the work described
in subsequent chapters.
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scalar queue conversion enables.

Several practical questions with regard to scalar queue conversion are ad-

dressed in Chapter 7. The first problem is that scalar queue conversion introduces

dynamic memory allocation operations into loops that might not otherwise allo-

cate memory dynamically. Thus, scalar queue conversion is unsafe in the sense

that it does not provide strict guarantees on the memory footprint of the trans-

formed program. Chapter 7 describes an efficient software based checkpoint re-

pair mechanism that we use to eliminate this problem. The SUDS Software Un-

Do System described in Chapter 7 allows scalar queue conversion to be applied

speculatively. If scalar queue conversion introduces a dynamic memory allocation

error then SUDS rolls back execution to a checkpointed state and runs the original

version of the code. SUDS performs an additional important task in that it imple-

ments a memory dependence speculation system that breaks (speculatively and at

runtime) memory dependences that would otherwise forbid the parallelization of

many loops.

Chapter 8 describes the inter-relationship of the work described in Chapters 3

through 7 in the context of a working system. Several case studies describe, in

some detail, how, and why, the transformations are applied to specific loops.

Chapter 9 describes the relationship of scalar queue conversion and general-

ized loop distribution to previous work in program slicing, scalar expansion, loop

distribution, thread-level parallelization, critical path reduction and data specula-

tion. Chapter 10 concludes.
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Chapter 2

The Dependence Analysis Framework

As stated in Section 1.2 the SUDS approach to finding parallelism rests on three

principles:

1. Dynamic renaming eliminates anti- and output-dependences.

2. Control dependence analysis eliminates conservative flow-dependences.

3. Speculation eliminates some dynamically predictable true- and control-

dependences.

In this chapter we define basic terms and describe what we mean by a dependence.

2.1 The Flow Graph

To start with, let us define some basic terms. We will use the term program to refer

to the finite set of instructions that specifies the set of operations that we wish

to perform. For the purposes of the conceptual development in this chapter we

choose a simple "control flow graph" representation of programs. An example of

some code is shown if Figure 2-1. The resulting control flow graph is shown in

Figure 2-2.
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sum = 0
i = 0
do

partialsum = 0

j = 0
use(i, sum)

do

use2(sum, partial-sum, i, j)
partialsum = partialsum + 1

j = next(j)

ci = condl(i, j)
while ci

i = i +
sum sum + partialsum
c2 = cond2(i)

while c2

use (sum)

Figure 2-1: An example program with a doubly nested loop.

The nodes in the control flow graph representation represent instructions. Each

instruction specifies an operation that changes some part of the underlying ma-

chine state. The control flow graph has two additional nodes, labeled begin and

end that correspond to the initial and final states of the program execution. The

edges in the control flow graph represent (programmer specified) temporal con-

straints on the order of operations. More specifically, if there is a directed path

from instruction A to instruction B in the control flow graph, then there may be

a correct sequence of (dynamic) state transitions where transition A occurs before

transition B. Note that Figure 2-2 includes an edge that flows directly from the be-

gin node to the end node. This edge represents the possibility that the program

will not executed at all. We will call the control flow graph edgesflow dependences.

The kinds of instructions permitted in our representation include

1. 3-Address operations (e.g., a = b + c, where "a" is a register name, "b"

and "c" are register names or constants, and" + " is a binary operation with no

side effects. The semantics are that the contents of register a are replaced with
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BEGIN

1: sum =0

2: i = 0

3: partial-sum = 0

4: j = 0

5: use(i, sum)

6: use2(sum, partial-sum, i, j)

7: partial-sum =partial-sum + 1

8: j = next(j) (ci = true)

Fg r 1-= cond(i, D

10 flbranch cl

(c1 false)

1:i=i +1

12: sum =sum + partial_sum

[13: c2 = cond2(i)

14: branch c2 (c2 =true)

; (c2 = false) 
(2 tre

15: use (sum)

Figure 2-2: The control flow graph corresponding to the program in Figure 2-1.
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the value produced by performing the specified operation on the contents of

registers b and c. We call a the destination operand and b and c source operands.

2. Load instructions, x = *y, where "x" and "y" are register names. The se-

mantics are that the current contents of the memory location with address y

are loaded into the x register.

3. Store instructions, *y = x, where "x" and "y" are register names. The se-

mantics are that the current contents of register x overwrite the value in the

memory location with address given by register y.

4. Branch instructions, branch c, where "c" is a register name. The semantics

are that of a dynamic decision point with respect to which of two output

edges we take out of the node.1

5. Call instructions, call p, where "p" is a register or constant containing the

identifier of some node in some flow graph. The call instruction implicitly

places the identifier of its own node on an implicit stack, so that it can be

used by the return instruction.

6. Return instructions, return, that pop the identifier of a node off the top of

the implicit stack, and return flow of control to the successor of that node.

7. Jump instructions, jump c, where "c" is a register name. It is assumed the

register contains the identifier of some flow graph node, and control flow is

rerouted to that node. This permits "multiway" branches, such are required

to efficiently implement C swi tch statements.

1We could have made state transitions on a program counter an explicit part of the representa-
tion, but have chosen not to because control flow graphs are standard. Control flow graphs rep-
resent transitions on the program counter implicitly through the flow dependences, with branches
representing the only points at which runtime information effects transitions on the program
counter state.
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Figure 2-3: The sequential ordering of the state transitions produced by two itera-
tions of the outer loop of the flow graph in Figure 2-2. The inner loop executes
three times during the first outer loop iteration and twice during the second.

The semantics of a particular program can be determined (operationally) by

starting with a predetermined machine state with one register for each named reg-

ister in the program, and a memory, and then stepping through the control flow

graph, performing the state transitions specified by each instruction one at a time.

We call the sequence of state transitions produced by this process the sequential

order. A sequential order for two iterations of the outer loop of the flow graph in

Figure 2-2 is shown in Figure 2-3. In this example, the inner loop executes three

times during the first outer loop iteration and twice during the second. There are

39 total instructions shown in this total order.

The question we are trying to address is whether there are sequences of state

transitions, other than the sequential order, in which we can execute the state tran-

sitions and get the same final state. That is, the sequential order is a total order on

the set of state transitions. We would like to find less restrictive partial orders that

produce the same final state.

2.2 The Conservative Program Dependence Graph

The first observation we make is that the flow dependences on individual instruc-

tions are overly conservative with respect to register operands. A combination of

31



standard dataflow analyses can produce less restrictive orderings.

We say that given nodes d and n in a control flow graph d dominates n if every

directed path from begin to n passes through d [75]. Every node dominates itself.

For example, in Figure 2-2 node 14 dominates nodes 14 and 15, but not end. This

is because every path from begin to node 15 goes through node 14, but there is a

path (begin -> end) that does not go through node 14. The postdominance relation

is defined similarly, with the flow graph reversed. Node d postdominates n if d is

on every path from n to end. In Figure 2-2 node 15 postdominates every node in

the flow graph except nodes begin and end.

We can also define the set of dominators of a node n, Dom[n], recursively as

the least fixed point of the set of simultaneous equations:

Dom[n] = {n} U (fepredw] Dom[p]) Vn,

where we work downwards in the lattice of sets from full sets towards empty sets.

The dominance relation introduces a well defined partial order on the nodes in

a flow graph. Thus, we can define a backward dependence edge as any edge from a

node n to a node d that dominates n. We will informally refer to any edge that

is not a backward edge as a forward edge. (Note that this overloads the word "for-

ward" somewhat since it includes edges x -> y where neither x nor -y dominate the

other). For example, in Figure 2-2 node 6 dominates node 10 so the edge 10 -> 6 is

a backedge in the flow graph.

The intuitive reason that the dominance relation is central to our analysis (as

it is in most modern compiler optimizations) is that it summarizes information

about all possible sequential orderings of state transitions, no matter the initial

state at the beginning of execution. That is, if node d dominates node n in the flow

graph, then every sequential ordering generated from the flow graph will have the
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Figure 2-4: The control dependences corresponding to the flow graph in Figure 2-2.

property that the first appearance of d will come before the first appearance of n.

If node d does not appear in the sequential ordering, then node n can not appear

either.

Given two nodes, we say that x strictly dominates w iff x dominates w and x # w.

The dominancefrontier of a node x is the set of all edges v -* w such that x dominates

v, but does not strictly dominate w [75]. (The original work on dominance frontiers

used the set of nodes w, but the edge formulation is more accurate and more useful.

See, for example, [921.) In Figure 2-2 node 6 dominate nodes 10, 14 and 15, but does

not strictly dominate any of nodes 6, 3 or end, so the dominance frontier of node

6 is the edges 10 -4 6, 14 -> 3 and 15 -> end. The postdominance frontier of node

x is the set of all edges v -* w such that x postdominates w, but does not strictly

postdominate v (note that we have, essentially, reversed the edge).

The postdominance frontier gives us information about control depen-

dence [40, 30]. In particular we say that a node n is control dependent on edge x -a -y

iff the edge is in the postdominance frontier of n. The intuitive reason for this is

that the postdominance frontier represents the set of edges that cross from regions

of the program where n is not guaranteed to execute to regions of the program

where n is guaranteed to execute. The nodes x in the control dependence edges

are thus the branch points that decide whether or not node n should execute. For
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example, in Figure 2-2 the postdominance frontier of node 7 is the set of edges

begin -+ 1, 10 -+ 6 and 14 -> 3, and indeed, it is exactly the begin node and the

branches at nodes 10 and 14 that determine how many times node 7 will execute.

(Recall that one should think of the begin node as a branch that decides whether

or not the program will execute at all.) The complete set of control dependences

for the flow graph from Figure 2-2 is shown in Figure 2-4.

For each node x that contains an instruction that has register r as a destination

operand we call x a definition of r. For each node y that contains an instruction that

uses register r as a source operand we call -j a use of r. For example, in Figure 2-2

nodes 4 and 8 define the variable j, while nodes 6, 8 and 9 use the variable j.

We say that a definition (use) x of register r reaches a node tj if there exists a

path from x to -y in the flow graph such that there is no other definition of register

r on that path. For example, the definition of variable j at node 4 reaches node 8,

because there is a path from 4 to 8 with no other definition of j, but the definition

at node 4 does not reach node 9 because every path from 4 to 9 goes through the

definition at node 8.

More generally, given any directed graph (N, E) and subsets Gen c N and

Pass c N, we define the Reaching relation on the graph with respect to Gen and

Pass as the set of nodes -y E N such that there is a path from a node x E Gen

to -y such that all the intermediate nodes on the path are in Pass. Techniques for

efficiently generating the reaching relation can be found in any standard under-

graduate compiler textbook [4]. Typically it is found as the least fixed point of the

equation

Reaching = Succs(Gen U (Reaching n Pass)).

Where Succs(X) ={n E N Ix e X A (x -- n) E E}.

Then we can more specifically define the reaching definitions relation for a node x

that defines a register r as the solution to the Reaching relation where Gen = {x} and
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3: partialsum = 0

7: partial_Bum =partial_sum + I

6 use2(sum, partial_sum, i, j) 12: sum= sum + partial -u

1: sum = 0

12: sum = sum + partial_sum

5: use(i, sum) 15: use(um) 6: use2(sum, prtial sum, i, j)

Figure 2-5: The du-webs corresponding to variables par tial-sum and sum for the
flow graph from Figure 2-2.

Pass is the set of nodes that do not define r. Likewise the reaching uses relation for a

node x that uses a register r is the solution to the Reaching relation where Gen ={x}

and Pass is the set of nodes that do not define r. For example, in Figure 2-2, the

definition of variable j in node 8 reaches node 6 (through the path, 8, 9, 10, 6). But

the definition at node 8 does not reach node 5, because node 4 is not in the Pass set.

Of particular interest to us is the subset of the reaching definitions relation that

relates the definitions to the uses of a particular register T. This subset of the reach-

ing definitions relation is typically called the def-use-chains or du-chains for the vari-

able r. A maximally connected subset of the du-chains for a particular register r is

called a du-web. The du-chains for variable j in Figure 2-2 are 4 -> 6, 4 -+ 8, 8 --> 9,

8 -+ 6 and 8 -- 8. This set of du-chains is also a du-web, since it is a connected

set. The du-webs for variables partial-sum and sum are shown in Figure 2-5.

Given the du-chains for a register r, the du-webs can be efficiently calculated by

computing the connected components (e.g., using depth first search) on the graph

of du-chains [68].

Similarly, the def-def-chains relation for the register r is the subset of the reaching

defs relation that relates the definitions of r to other definitions of r. For example,

8 --> 4 is a def-def chain for variable j in Figure 2-2. The use-def-chains for a variable

r are the subset of the reaching uses of r that are also definitions. Note that the

use-def chains are not simply the def-use chains turned around backwards. For
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example, in Figure 2-2 7 -+ 12 is a def-use chain for variable partial-sum, but

12 -- 7 is not a use-def chain, because every path from node 12 to node 7 must go

through node 3, which redefines partial-sum.

We have defined the def and use chains with respect to registers only. We will

also define a particularly conservative set of dependences with respect to memory

operations (load and store instructions). We say that any memory operation, x,

reaches memory operation, y, if there is a path from x to y in the control flow graph.

(Pass is the set of all nodes). We say there is a memory dependence from x to -y if at

least one of x and y is a store instruction. (That is, we don't care about load-load

dependences).

Now we are ready to define the conservative program dependence graph, and

relate the conservative program dependence graph (which is a static representation

of the program) to the allowable dynamic orderings of instructions.

We define the conservative program dependence graph as the graph constructed by

the following procedure. Take the nodes from the control flow graph. For every

pair of nodes, x, 1j, insert an edge, x -> -y, if there is either a def-use-chain from x to

-y, a use-def-chain from x to iy, a def-def-chain from x to -y, a memory dependence

from x to -y or a control dependence from x to y.'

Suppose the sequential execution of a control flow graph on a particular ini-

tial state produces a particular sequential (total) ordering of state transitions (as

described above for the semantics for control flow graphs). Now for every pair

of dynamic instruction nodes x, y, such that x comes before -Y in the sequential

ordering, we insert an edge from x to y if there is an edge in the conservative pro-

gram dependence graph between the corresponding (static) instruction nodes. We

call the resulting graph the conservative dynamic dependence graph. The conserva-

tive dynamic dependence graph corresponding to the sequential order shown in
2We defined control dependence from edges to nodes, (i.e., (b -* d) -+ n). Here we are using the

standard node definition of control dependence, b -+ n for simplicity.
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Figure 2-6: The conservative dynamic dependence graph for two iterations of the outer
loop of the flow graph in Figure 2-2. The inner loop executes three times during
the first outer loop iteration and twice during the second. The depth of the graph
has been reduced to 26 instructions, from the 39 instructions in the sequential order
shown in Figure 2-3.

Figure 2-3 is shown in Figure 2-6.

The edges in the conservative dynamic dependence graph have standard

names [57], which we will also use. If the edge on the dynamic ordering was

created because there was def-def-chain or use-def-chain in the conservative pro-

gram dependence graph we call the edge in the dynamic ordering a register storage

dependence. We will sometimes distinguish between these two types by calling

them output-dependences and anti-dependences, respectively. If the edge on the

dynamic ordering was created because there was a def-use-chain in the conser-

vative program dependence graph we call the edge in the dynamic ordering a

value-dependence, or less formally, a "true-dependence". If the edge on the dynamic

ordering was created because there was a memory dependence from a store to a

load we will call it a memory value dependence. If the edge on the dynamic order-

ing was created because there was a memory dependence from a load to a store
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we will call it a memory anti-dependence. If the edge on the dynamic ordering was

created because there was a memory dependence from a store to a store we will

call it a memory output-dependence. Finally, if the edge on the dynamic ordering

was created because there was a control dependence in the conservative program

dependence graph we will call it a dynamic control dependence.

Note that the conservative dynamic dependence graph is a directed acyclic

graph, and thus defines a partial order on the state transitions during the execution

of the program. The value of the conservative program dependence graph comes

from the fact that any sequence of these state transitions that obeys the partial ordering

demanded by the conservative dynamic dependence graph will produce the same final state

as the sequential ordering. This can be argued informally by noticing that we have

1. Placed a total order on changes to the memory state (through memory-

dependences).

2. Guaranteed that every instruction executes after the branches in the sequen-

tial order that control whether or not that instruction executes (through

control-dependences).

3. Placed a total order on changes to each individual register state (through def-

def-chains).

4. Guaranteed that source operands always receive the value they would have

received in the sequential order by placing each use of register r in the con-

servative dynamic dependence graph between the same two defs of register

r that it was between in the sequential order (through def-use and use-def

chains).

We have gained some parallelization flexibility by moving from the control

flow graph to the conservative program dependence graph, because we have
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moved from the total order on state transitions imposed by the sequential order,

to the somewhat less restrictive partial order given by the conservative dynamic

dependence graph. For example, in Figure 2-6 we have reduced the dependence

distance to 26 nodes from the 36 nodes shown in the sequential order from Fig-

ure 2-3.

2.3 The Value Dependence Graph

One of the main constraints to further parallelization of the conservative program

dependence graph is the existence of a large number of storage dependences. In

Chapter 3 we will describe scalar queue conversion, a compiler transformation that

can always add copies to the flow graph that eliminate all register storage depen-

dences. Thus, instruction scheduling algorithms can make instruction ordering

decisions irrespective of register storage dependences. In particular, instruction

scheduling algorithms can work on a less restrictive graph than the conservative

program dependence graph.

To differentiate this graph from the conservative program dependence graph

we will call it the value dependence graph. We define the value dependence graph

as the graph constructed by the following procedure. Take the nodes from the

control flow graph. For every pair of nodes, x, y, insert an edge, x -+ y, if there is

either a def-use-chain from x to -y, a memory dependence from x to ij or a control

dependence from x to y. Thus the value dependence graph is the subgraph of

the conservative program dependence graph created by removing the use-def and

def-def chains from the conservative program dependence graph.

Suppose the sequential execution of a control flow graph on a particular initial

state produces a particular sequential (total) ordering of state transitions (as de-

scribed above for the semantics for control flow graphs). Now for every pair of
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Figure 2-7: The dynamic value graph for two iterations of the outer loop of the flow
graph in Figure 2-2. The inner loop executes three times during the first outer loop
iteration and twice during the second. The depth of the graph has been reduced to
10 instructions, from the 39 instructions in the sequential order shown in Figure 2-
3.

dynamic instruction nodes x, y, such that x comes before -y in the sequential order-

ing, we insert an edge from x to y if there is an edge in the value dependence graph

between the corresponding (static) instruction nodes. We call the resulting graph

the dynamic value graph. The dynamic value graph corresponding to the sequential

order shown in Figure 2-3 is shown in Figure 2-7.

Renaming scalars to avoid register storage dependences produces substantial

concurrency gains. This concurrency comes at the cost of increasing the number of

simultaneously live values, and thus the required storage space. For example, in

Figure 2-7 we have reduced the dependence distance to 10 nodes from the 26 nodes

in the conservative dynamic dependence graph from from Figure 2-6. As a result

the graph is, informally, both "shorter" and "fatter." In the following chapters we

will describe scalar queue conversion, a compiler transformation that effects this

renaming.
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Chapter 3

Scalar Queue Conversion

As described in the last chapter, scalar renaming is one of the most effective tech-

niques known for exposing instruction concurrency in a program. In this section

we will show that the compiler can restructure the code to eliminate all register

storage dependences. The ability to eliminate any register storage dependence

means that instruction scheduling algorithms can make instruction ordering decisions ir-

respective of register storage dependences. The increased flexibility results in schedules

that would otherwise be impossible to construct.

We call this transformation to eliminate register storage dependences scalar

queue conversion, because it completely generalizes the traditional technique of

scalar expansion [68] to arbitrary unstructured (even irreducible) control flow, and

provably eliminates all register anti- and output-dependences that would violate a

particular static schedule. In Chapter 6 we show how to use scalar queue conver-

sion as the key subroutine to enable a generalized form of loop distribution. Loop

distribution is best viewed as a scheduling algorithm that exposes the available

parallelism in a loop [68]. The loop distribution algorithm in Chapter 6 general-

izes previous scheduling techniques by scheduling across code with completely

arbitrary control flow, in particular, code with inner loops. This generalization is
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possible only, and exactly, because scalar queue conversion guarantees the elimi-

nation of all register anti- and output-dependences.

3.1 Motivation

Consider node 6 in the flow graph in Figure 2-2. Suppose we want to run this

instruction out of order. For example, execution of the operation "use2 (sum,

partial-sum, i, j ) "might consume many cycles, and we might wish to start

execution of node 7 before node 6 completed its work. Unfortunately there is a use

of variable partial-sum in node 6 and a definition of partial-sum in node 7,

so dynamically executing an instance of node 6 out of order with the immediately

following instance of node 7 could produce incorrect results. If, however, we were

to make a copy of the variable partialsum into a new variable, called, for exam-

ple part ial-sum-tmp, then we could execute nodes 6 and 7 in either order. This

transformation is demonstrated in Figure 3-1.

Suppose, however, that we want to defer execution of all dynamic instances of

node 6 until after execution of all the dynamic instances of node 7. In this case

we need to generalize the transformation so that rather than saving the values

required by node 6 in a (statically allocated) register, we save the values in dynam-

ically allocated storage. By this process we can simultaneously save the machine

states required to execute an arbitrary number of dynamic instances of node 6.

More concretely, we turn node 6 into a closure. A closure can be thought of as

a suspended computation [72, 107]. It is typically implemented as a data structure

that contains a copy of each part of the state required to resume the computation,

plus a pointer to the code that will perform the computation. There are then a set

of operations that we can perform on a closure:

1. We can allocate a closure by requesting a portion of memory from the dy-
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BEGIN

1: sum =0

4: j = 0

5: use(i, sum)

6': partialsum tmp partial sum

7: partialsum = partialsum + 1

6: use2(sum, partialsum-tmp, i, j)

(cl = true)

8: j = next(j)

9: ci = condl(i, j)

10: branch c1

(cl = false)

1 :i =i + 1

12: sum =sum + partial-sum

13: c2 =cond2(i)

14: branch c2 (c2 = true)

(c2 = false)

15: use(sum)I_

END

Figure 3-1: Copying the value of the variable partial-sum allows reordering of
nodes 6 and 7.
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/BEGIN

1: sum = 0

2: i = 0

3: partial-sum = 0

4: j = 0

5: use(i, sum)

6a: c = new closure16f, partial-sum, j)

6b: q.push(c)

E 7 partial rsum =rpartial-sum +

(cl = true)

8: j next(j)

9: cl = cond (i, j)

10: branch cl

(c1 false)

6c: c =q.pop()1

6d: c->invoke()

6e: while (!q.empty())

12: sum =esum + partial-sum

13: c2 = cond2(i)

14: bransbu qa (c2 = true)

(c2 =false)

15: usesm BEGIN

aEon d6fe: patialsum = c->partiansse d

1 1 44

6g: j =c->j

F6h: use2(sum, partial-sum, i, j)

return

Figure 3-2: Copying the value of variables partial-sum and jto the dynam-ic
storage represented by closure-queue allows us to defer executions of instanti-
ations of node 6 past an arbitrary number of instantiations of nodes 7 and 8.
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namic memory allocator that is sufficient to hold the required state plus code

pointer.

2. We can fill a closure by copying relevant portions of the machine state into

the allocated memory structure.

3. We can invoke a closure by jumping to (calling) the closures code pointer and

passing a pointer to the associated data structure that is holding the relevant

machine state.

Closures will be familiar to those who have used lexically scoped programming

languages. For example, in C++ and Java closures are called objects. In these

languages closures are allocated by calling operator new, filled by the constructor

for the object's class, and invoked by calling one of the methods associated with the

object's class.

In the general case we can defer execution of some subset of the code by creating

a closure for each deferred piece of code, and saving that closure on a queue. Later

we can resume execution of the deferred code by invoking each member of the

queue in FIFO order. For example, Figure 3-2 demonstrates how we use queues

of closures to defer execution of every dynamic instance of node 6 until after the

execution of every dynamic instance of node 7.

The intuition behind this result is that every imperative program is semantically

equivalent to some functional program [72, 58, 7]. Since a functional program never

overwrites any part of an object (but rather creates an entirely new object) there

are no storage dependences. Another way to view the result is in terms of the dy-

namic register renaming performed by Tomasulo's algorithm [117,57,104,83,105].

Tomasulo's algorithm performs a dynamic mapping of "virtual" register names to

"physical" registers, each of which is written only once. After this renaming all

register storage dependences are eliminated, because (conceptually) no physical
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register ever changes its value. Thus, the instruction scheduling algorithm is less

constrained by register storage dependences.

Tomasulo's algorithm, however, fetches branches in the order they are given

by the flow dependences from the control flow graph. Similarly, existing tech-

niques for proving the equivalence of imperative to functional programs [58, 7]

rely on continuation passing style. Conversion to continuation passing style re-

quires that continuations nest in an order corresponding to flow dependences [6].

Scalar queue conversion, in contrast, places closure allocation and fill operations

only where they are required in the value dependence graph. As a result, scheduling

algorithms based on scalar queue conversion (such as the generalized loop dis-

tribution algorithm described in Chapter 6), are not restricted to fetching a single

sequential flow of control.

3.2 Road Map

The remainder of this chapter addresses the questions of when it is legal to defer

execution of a region of code, and where closures need to be created to perform the

renaming required by the requested code deferment. In Sections 3.3, 3.4, 3.5 and 3.6

we demonstrate that scalar queue conversion can defer any set of instructions that

does not violate the dependences in the value dependence graph. The additional

register storage dependences of the conservative program dependence graph can

be completely ignored.

Subsequent chapters deal with a number of practical issues surrounding scalar

queue conversion. In Chapter 4 we give an eager dead-copy elimination algorithm,

motivated by algorithms that convert to SSA form, that optimizes (in a minimax

sense) the number of dynamic copy operations introduced by scalar queue conver-

sion.
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Section 5.1 demonstrates how to extend the results from this chapter from re-

gions with single exits to regions with multiple exits. Section 5.2 shows how to

use the closures created by scalar queue conversion as a basic unit of concurrency.

Scalar queue conversion eliminates scalar anti- and output- dependences, but does

not eliminate memory dependences. Chapter 5 also describes a set of program

transformations that reduce or eliminate memory dependences, thus extending

the applicability of scalar queue conversion.

Chapter 6 additionally shows how to use scalar queue conversion as the key

enabling technology for a generalized form of loop distribution. In particular, the

generalized loop distribution transformation described in Chapter 6 relies on the

ability of scalar queue conversion to place closure allocation and fill operations

only at points where they are required by the value dependence graph, rather than

the more restrictive control flow graph.

A key practical question with regard to scalar queue conversion is addressed

in Chapter 7. The problem is that scalar queue conversion introduces dynamic

memory allocation operations (i.e., closure allocations) into loops that might not

otherwise allocate memory dynamically. Thus, scalar queue conversion is unsafe

in the sense that it does not provide strict guarantees on the memory footprint of

the transformed program. In particular, a scalar queue converted program could,

potentially, try to allocate more memory than is available in the system, and thus

create an error condition that would not have occured in the untransformed pro-

gram.

Chapter 7 describes an efficient software based checkpoint repair mechanism

that we use to eliminate this problem. The SUDS Software Un-Do System de-

scribed in Chapter 7 allows scalar queue conversion to be applied speculatively.

If scalar queue conversion introduces a dynamic memory allocation error condi-

tion then SUDS rolls back execution to a checkpointed state and runs the original
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version of the code.

The relationship of scalar queue conversion to program slicing, scalar expan-

sion, loop distribution, Tomasulo's algorithm and thread level speculation is de-

scribed in Chapter 9.

Running Example

The concepts, definitions and proofs in the rest of this chapter are all illustrated

with respect to an example based on the program shown in Figure 2-2. I have done

my best to choose the example such that it illustrates the relationships between the

relevant ideas, but so that it is not so complicated as to overwhelm the reader.

The example problem is as follows. Suppose we wish to reschedule the loop in

Figure 2-2 into two loops, one that does the work corresponding to nodes 2, 3, 4, 7,

8, 9, 10, 11, 13 and 14, and one corresponding to nodes 1, 5, 6, 12 and 15. Is there a

legal way to restructure the code to effect this rescheduling? In this chapter we will

demonstrate that this transformation is legal exactly because the flow of value and

control dependences across the partitioning of nodes in the region is unidirectional.

Consider a connected, single-entry, single-exit region R of the flow graph. We

induce the region flow graph by taking the set of nodes in the region and all the

edges x -+ -y such that both x and - are in the region. With the begin node we

associate a set of definitions for variables that correspond to the def-use chains

that reach from nodes - V R to nodes r E R. With the end node we associate

a set of uses for variables that correspond to the def-use chains that reach from

nodes r E R to nodes i V R. On the resulting region flow graph we calculate

the value dependence graph. Recall that this is the def-use chains, the memory

dependence chains, and the control dependences calculated on the flow graph.

Note that we have explicitly used the value dependence graph, rather than the

conservative program dependence graph, which also includes use-def and def-def
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1: um =0

2: i =0

3:artito subt2378

5: ... i, sm

6f h e 2fi partial_sum, id )

7: partialom= partil su + 1

8 etd() (cl true)

9s cca condq(i, D)

10: brach cl

123 sum + partial_ea

3: 2 = ond2(i) .

I&: branh c2

i(2 fel-e)
15: use(su=)

Figure 3-3: Partitioning the outer loop into the two subsets, 2, 3, 4, 7, 8, 9, 10, 11,
13, 14 and 1, 5, 6, 12, 15 produces a unidirectional cut becaus e B andence edges
flow from the second subset into the first. Cut dependence edges are shown in
dotted lines. They all flow from the first subset into the second.

chains, because these are exactly the dependences that will be eliminated using

scalar queue conversion.

3.3 Unidirectional Cuts

Now we define a cut of the set of nodes in a region, R, as a partitioning of the set

of nodes into two subsets, A, B such that A n B = 0 and A U B =- R. We say that a

cut is unidirectional iff there are no edges x -+ 4 y such that x E B and -j E A. That is,

all the edges either stay inside A, stay inside B or flow from A to B, and no edges

flow from B to A. For example, given the region corresponding to the outer loop

in Figure 3-3, the partition {2, 3,4, 7,8,9, 10,11, 13, 14} and {1, 5,6 612,15} is a unidi-

rectional cut because there are no def-use chains, memory or control dependences
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flowing from the second set to the first.

In the following sections we will demonstrate that by the process of queue con-

version we can always transform a unidirectional cut A-B of a single-entry single-

exit region into a pair of single-entry single-exit regions, that produce the same

final machine state as the original code, but have the feature that all of the in-

structions from partition A execute (dynamically) before all the instructions from

partition B.

Any particular value dependence graph might have many different unidirec-

tional cuts. The criteria for choosing a specific cut will depend on the reasons for

performing the transformation. In Section 5.1 and Chapter 6 we will discuss two

different applications in which unidirectional cuts appear naturally. In particular,

we will present two different methods for finding a unidirectional cut efficiently,

each depending on a different set of goals.

3.4 Maximally Connected Groups

First we will show that we can create a "reasonable" flow graph that consists only

of the nodes from subset A of a unidirectional A-B cut. The property that makes

this possible is that every maximally connected group of the nodes from subset B

will have only a single exit. Thus we can remove a maximally connected subset

of nodes from subset B from the region flow graph and "fix-up" the breaks in the

flow graph by connecting the nodes that precede the removed set to the (unique)

node that succeeds the removed set.

Given a unidirectional cut A-B of a flow graph then we will call a subset of

nodes 1 c B in the graph a maximally connected group iff every node in P is

connected in the flow graph only to other nodes of s or to nodes of A. That

is, given 1 = B - P and nodes b E B, b E 1 there are no edges b -> b or
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b -+ b. For example, given the unidirectional cut shown in Figure 3-3 where

A = {2, 3, 4,7,8,9, 10,11,13,14} and B = {1, 5, 6,12,15}, the maximally connected

groups are the subsets {1}, {5, 6},{12} and {15} of B.

But now suppose that we are given a unidirectional cut A-B. This means that

there can be no control dependences from B to A. Informally, there are no branches

in B that can in any way determine when or if a node in A is executed. Now

suppose that we are given a maximally connected group 13c B. If 3 has an exit

edge b -* a (an edge where b E P, a V P), then, because 3 is maximally connected

it must be the case that a E A. The node a can not be in B because then 3 would

not be maximally connected.

If there are two (or more) such exit edges, bo -- ao and b, -+ a,, where bo b,

then it must be the case that there is a branch or set of branches in 1 that causes

the flow graph to fork. In particular, bo and b1 must have different control depen-

dences, and at least one of those control dependences must be on a node inside s.
But a, and ao can not be control dependent on any node inside 1, because they are

on the wrong side of the A-B cut.

Consider node ao. There is an edge from bo to ao, thus there is at least one path

from bo to exit that passes through ao. But ao is not control dependent on bo,

so every path from bo to exit must pass through ao. Thus ao postdominates bo.

Similarly, for every node bi E 1 such that there is any path from bi to bo, it must

be the case that ao postdominates bi.

Consider this set of bi E 1 that are on a path to bo. Now, ( is connected, thus

there must either be a path from bi to b, or there must be a path from bi to bi.

If there is a path from b, to bi then there is a path from b, to bo and thus ao also

postdominates b1. Suppose there is no path from b, to bo, then there must be a

path from one of the bi to bl. But we already know that every path from bi to

exit goes through ao, so every path from bi to exit must go through ao. Thus
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BEGIN

1: branch x

(x = true) (x = false)

2: ...

3: ..

4: branch y

(y =true) (y = false)

5: ... (z =true)

7: branch z

(z = false)

8:: ...

Figure 3-4: Any maximally connected subset of nodes from the bottom of a unidi-
rectional cut always exits to a single point. In this case (an irreducible loop) if either
node 4 or 7 is in the bottom of a unidirectional cut then so must all the nodes 2, 4,
5, 6, 7, 8 and 9. Thus a maximally connected subset containing node 4 or node 7
will exit to node 10.

ao postdominates both bo and bl.

By a similar argument a, postdominates both b1 and bo. More specifically, a,

immediately postdominates b1, because there is a flow graph edge bI --> a,. Thus ao

must postdominate a, if it is to also postdominate bl. A similar argument shows

that a, must postdominate ao. Postdominance is a partial order, thus ao = a,. So

the maximally connected group P exits to a unique node in A.

As an example, consider Figure 3-4. This figure shows a flow graph contain-

ing an irreducible loop. Suppose that we would like to include node 4 (a branch

instruction) in set B of a unidirectional A-B cut. We will demonstrate that any
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BEGIN

1: branch x 10: . .. 11: .. .

4: branch y 3:.

7: branch z 9:... 5:... 6: ...

2: ... 8 .

Figure 3-5: The control dependence graph for the flow graph in Figure 3-4 has
a cycle between nodes 4 and 7. Thus both nodes must be on the same side of a
unidirectional cut of the flow graph.

maximally connected group P c B that contains node 4 must also contain nodes 8

and 9, and will, therefore, exit through node 10. We can see this by examining Fig-

ure 3-5, which shows control dependence graph corresponding to the flow graph

in Figure 3-4. There is a cycle in the control dependence graph between the two

exit branches in nodes 4 and 7. Thus if either of the exit branches for the irreducible

loop is included on one side of the unidirectional cut, then the other must as well,

because we require that no control dependences in a unidirectional cut flow from

B to A.

Given a unidirectional cut A-B of a flow graph we can efficiently find all the

maximally connected groups 0 c B as follows. First we scan the edges of the flow

graph to find all the edges bj --+ ci where b5 E B and aQ E A. By the argument

above the set of nodes a found in this manner represent the set of unique exits of

maximal groups Pi c B. Then for each aQ we can find the associated maximally

connected group f3 by performing a depth first search (backwards in the flow

graph by following predecessor edges) starting at aj, and where we follow only

edges that lead to nodes in B.

For example, recall that in Figure 3-3 the maximally connected subgroup {5, 6}

exits to node 7. A backwards search from node 7 finds nodes 5 and 6 from set B but

does not find node 12, because that would require traversing intermediate nodes
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BEGIN

2: i = 0

3: partial-sum = 0

7: partial3sum = partialsu + 1

8:j=next(j)

9: c1 = condr(i, j) t e (c2 =dtrue)

10: branch c1

(c = false)

11: i =i +1

13: c2 = cond2(i)

14: branch c2

(c2 = false)

END

Figure 3-6: The sliced flow graph for nodes 2, 3, 4, 7, 8, 9, 10, 11, 13 and 14. For
example, nodes 4 and 10 (the entries to the maximal group consisting of nodes 5
and 6) are connected to node 7, (the single exit node for group 5, 6).

(e.g., node 4) that are in set A.

Now we can create a flow graph that performs exactly the work correspond-

ing to part A of the unidirectional A-B cut by removing each of the maximally

connected groups of B one by one. Given a maximally connected group Pj c B

with entry edges ay -+ by, . .., a - by and exits b -4 , . . ., b - -> ati to the

unique node 0f, then we can remove Pj from the flow graph by removing all the

nodes of PX from the flow graph, and inserting the edges ay --> 0, . . . , ay -+ a.

We call the resulting flow graph the slicedflow graph for partition A.

Figure 3-6 shows the sliced flow graph for the partition

{2, 3,4,7,8,9, 10,11,13, 14}. The maximal groups in the original flow graph

(Figure 3-3) were the sets {5, 6}, and {12}. The entry edges to {5, 6} were {4 -- 5}
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and {10 -* 6}, while the exit edge was {6 -+ 74. Thus in the sliced flow graph we

remove nodes 5 and 6 and insert edges {4 -+ 74 and {10 -+ 74. Node 12 is removed

and the edge {11 -> 134 is inserted. Similarly, nodes 1 and 15 have been removed

and edges connecting their entries to their exits have been inserted.

3.5 The Deferred Execution Queue

In addition to creating a flow graph that performs exactly the work corresponding

to part A of a unidirectional A-B cut, we can also annotate the flow graph so that

it keeps track of exactly the order in which the maximal groups $3 c B will be

executed. We do this by creating a queue data structure at the entry point of the

region flow graph. We call this queue the deferred execution queue.

Every edge ay -- by, . E A., b E Pi in the flow graph represents a point

at which control would have entered the maximal group P3. Likewise, every edge

b' -+ ci, b E PI, '4 E A, represents exactly the points at which control would

have returned to region A.

Thus, after creating the sliced flow graph for partition A, by removing the re-

gions $1 from the flow graph (as described in the previous section), we can place

an instruction along each edge ay --> a that pushes the corresponding code pointer

for the node by on to the deferred execution queue. The edges ay -* a execute in

exactly the order in which the sis would have executed in the original flow graph.

Thus after execution of the sliced flow graph for partition A, the deferred execu-

tion queue will contain all of the information we need to execute the code from

partition B in exactly the correct order and exactly the correct number of times.

We can accomplish this by converting each I into a procedure that contains

a flow graph identical to the flow graph that corresponds to the original I, but
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BEGIN

1': push(i)

2: i = 0

3: partial-sum 0

4: j = 0

5': push(5)

7: partial-sum = partial-zum + 1

8: j = next (j)

9: c1 = condl(i, j)

10: branch cl

(ci = false) cl= true)

11: i = i+ 1 6': push(6)

12': push(12)

13: c2 = cond2(i)

14: branch c2

... false)

15': push(15) BEGIN

END 1: sum 0

BEGIN return

12: sum = sum + partialsum END

retur BEGIN

END 5: use(i, sum)

BEGIN 6: use2(sum, partials

. S5 use (sum) return

return END

END

Figure 3-7: Queue conversion annotates the sliced flow graph for A with instruc-
tions that record which maximal groups of B would have executed, and in what
order. Each maximal group of B is converted into its own procedure.
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returns at each exit point of P1. Then we can recreate the original execution se-

quence of partition B by popping each code pointer b off the front of the deferred

execution queue and calling the corresponding procedure.

The queue conversion of our example program is shown in Figure 3-7. Push

instructions for the appropriate maximal group entry points have been inserted

along the edges begin -* 2,4 -4 7, 10 --+ 7, 11 -+ 13 and 14 -> end. The maximal

groups {1}, {5, 6}, {12} and {15} are each converted into a procedure.

Closure Conversion

If it were the case that there were no register storage dependences flowing from

B to A then the deferred execution queue would be sufficient. Our definition of a

unidirectional A-B cut did not, however, exclude the existence of use-def or def-def

chains flowing from region B to region A. Thus, we must solve the problem that

partition A might produce a value in register x that is used in region B but then

might overwrite the register with a new value before we have a chance to execute

the corresponding code from partition B off the deferred execution queue.

The problem is that the objects we are pushing and popping on to the deferred

execution queue are merely code pointers. Instead, we should be pushing and

popping closures. A closure is an object that consists of the code pointer together

with an environment (set of name-value pairs) that represents the saved machine

state in which we want to run the corresponding code. Thus a closure represents a

suspended computation.2

Consider the registers (variables) associated with the set of def-use chains that

'If the underlying infrastructure does not support multiple-entry procedures, then each maxi-
mal group Pi can be further partitioned into a set of subprocedures, each corresponding to a max-
imal basic block of Pi. Each subprocedure that does not exit Pi tail calls [107] its successor(s) from

2Closures that take no arguments, as is the case here, are sometimes called thunks, but typically
only in the context of compiling call-by-name languages, which is not the case here.
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3: partial_sum =

7: part-i- sum = partial-sum + I

6: use2<sum, partial-sum, i, j 12: sum =sum + partia7--um

1: sum = 0

12: sum = sum + par tial-sum

5: use(i, sum)) 6: use2(sum, partialsum, i, j)

2: i 0

11 +1

5: use(i, sum) F : use2(sum, partial su, i, j) 9: c1 cond1(i, j)

4: j = 0

, : j = next(j)

6: se (um prtil~um i 9j n~d1(i, j)

Figure 3-8: Cuts in the du-webs for variables i, j, sum and partial-sum given
the cut from nodes 2, 3, 4, 7, 8, 9, 10, 11, 13, 14 to nodes 1, 5, 6, 12, 15 (shown in
bold). Def-use chains that cross the cut are shown as dotted edges.

reach into a maximal group Pi c B. If we save a copy of the values associated

with each of these registers along with the code pointer, then we can eliminate all

the use-def chains that flow from B to A, and replace them, instead, with use-def

chains that flow only within partition A.

To convert each maximal group Pi c B into a closure we transform the code as

follows.

1. Consider the graph of nodes corresponding to P3. For each of the entry

nodes bg' of this graph find the set of nodes PI, c I reachable from b. For

each set Pj, find the set of variables, Vj= {Vijk} such that there is a def-use

chain flowing from partition A into Bi,. (That is, there is a definition of Vijk

somewhere in A and a use of vijk somewhere in Pj,). Figure 3-8 shows that

this set can be easily derived from the du-webs corresponding to the flow

graph. For example, 12} = {partialsum} and V15= 0. The maximal

group B{5,6, has two entry points, (at 5 and 6). In this case it happens that

V ,6>,5 = 5 6 ,6 = {i, j,partial-sum}.
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BGIN

1': cl new closure~l}

I'': push(c1)

2: i =0

3: partial sum = 0

4: j = 0

5': c56 =new closure(5a, i, j, partia1_8um}

5' push(c56)

7: partialsum partial-sum + 1

B: j = next(j)

9: cl = condl(i, j)

10: branch cl

I.. = false) (c1 = true)

11 i = i + 1 ' 6':c56-=n closura6a, i, j, partialrm}

12': c12 = new closure12a, partial sum) 6': push(c56)

12'': push(cl2)

13: c2 =cond2 (i

L14 branch c2

(c2 =false)

15' c15 = new closure(15}

15'': push(cl5)

,c =pop()

.' .al . .

while (!quaueempty()

END

BEGIN

6a i =c

:b j c = >

5b:: j = ->j

5c: partial-sum = c->partialsum

Ec: partialsUM = c->partial._sum
5 . . . . . . . . . . .

5: use(i, sum

6: use2(sum, partial_sum, i, j)

return

END

BEGIN

1: um =0

(c2 = true) return

END

BEGIN

BEGIN

15: esu um+)

return

END

Figure 3-9: Closure conversion ensures that each value crossing the cut gets copied
into a dynamically allocated structure before the corresponding register gets over-
written.

59



2. Consider each edge a -> a in the sliced flow graph for partition A that

corresponds to entry point by of maximal group Pi. Along this edge we

place an instruction that dynamically allocates a structure with JVij I +I1 slots,

then copies the values (by , vi.. , vijIv 1 ) into the structure, and then pushes

a pointer to this structure onto the deferred execution queue. Figure 3-9

demonstrates this process. For example, along the edge 4 --> 7 we have

placed instructions that allocate a structure containing the values of the code

pointer, "5", and the copies of the values contained in variables, i, j and

partial-sum.

3. For each i we create a procedure that takes a single argument, c, which

is a pointer to the structure representing the closure. The procedure has the

same control flow as the original subgraph for Pi except that along each entry

we place a sequence of instructions that copies each entry from each slot of

the closure into the corresponding variable vi,. Figure 3-9 shows that the

two entries to the procedure corresponding to the maximal group {5, 6} have

been augmented with instructions that copy the values of variables i, j and

partial-sum out of the corresponding closure structure.

4. To invoke a closure from the deferred execution queue we pop the pointer

to the closure off the front of the queue. The first slot of the corresponding

structure is a pointer to the code for the procedure corresponding to j. Thus

we call this procedure, passing as an argument the pointer to the closure

itself. In Figure 3-9 this process is shown towards the bottom of the original

procedure, where we have inserted a loop that pops closures off the deferred

execution queue, and invokes them.

This completes the basic scalar queue conversion transformation. Because a

copy of each value reaching a maximal group Pi is made just before the point in
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the program when it would have been used, the correct set of values reaches each

maximal group, even when execution of the group is deferred. Additionally, since

the copy is created in partition A, rather than partition B, we have eliminated any

use-def chains that flowed from partition B to partition A. In the next section we

will demonstrate how to generalize the result to eliminate def-def chains flowing

from B to A. In Chapter 4 we will show how to move the closure creation points

so that they least restrict further transformations to partition A.

3.6 Unidirectional Renaming

In the previous section we demonstrated that we could transform a unidirectional

A-B cut on a single-entry single-exit region into an equivalent piece of code such

that all the instructions in partition A run, dynamically, before all the instructions

in partition B. Further we demonstrated that we could do this even in the pres-

ence of use-def chains flowing from partition B to partition A. In this section we

will show that the result can be generalized, in a straightforward way, to A-B cuts

where there are additionally def-def chains flowing from partition B to partition

A.

The result depends on the fact that given a unidirectional A-B cut, we can insert

a new instruction anywhere in the flow graph, and that if we give that instruction a

labeling that includes it in partition B, then we will not introduce any new control

dependences that flow from partition B to partition A. (The opposite is not true.

That is, if we place a new instruction in partition A at a point that is control depen-

dent on an instruction in partition B, then we will introduce a control dependence

edge that will violate the unidirectionality of the cut.)

For the remainder of the thesis we will assume that each du-web in the pro-

gram has been given a unique name. This transformation is already done by most
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BEGIN

1: sum = 0

2: i = 0

2'::i''= i

3: partial-sum = 0

3': partial-sum' =partial- sum

4: j, =

5: use(i', sum)

6: use2(sum, partialsum', i', j')

7: partialsum = partial-sum + 1

7': partialsum' = partial;sum

8: j = next(j) (ci = true)

8': j'

9: cl = condl(i, j)

10: branch ci

(c1 = false)

11: i =ji + 1

11: i' = i.

12: sum = sum + partial-sum'

13: c2 = cond2(i)

14: branch c2 (c2 = true)

(c2 = false)

15 : use (sum)

END

Figure 3-10: An example of statically renaming the variables i, j and par-
tial-sum.
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optimizing compilers because it is so common for programmers to reuse variable

names, even when the variables are completely independent. For example, many

programmers reuse the variable name i for the index of most loops. Once the

du-webs are calculated, as described in Section 2.2, we iterate through the set of

du-webs for each variable x, renaming all the uses and definitions in each node in

the ith web to xi. Thus we can, without loss of generality, talk about the du-web

for a particular variable.

Now consider the du-web for variable x on a unidirectional cut A-B where

some of the definitions of x are in A and some of the uses of x are in B. Thus,

there is a value dependence flowing from A to B. It may be the case that there are

definitions of x in B and uses of x in A, but, because A-B is a unidirectional cut,

it cannot be the case that there are any def-use chains reaching from B to A. Thus

the du-web has a unidirectional structure, just as the value dependence graph did.

(In fact, another way of seeing this is to observe that each du-web is an induced

subgraph of the value dependence graph). For example, in the du-webs shown in

Figure 3-8 one can observe that the def-use chains crossing the cut (shown with

dotted edges) all flow in one direction.

The du-web for variable x thus has a structure that is almost renameable, except

for those edges in the web that cross the cut. Suppose, however that we were to

place a copy instruction "x' = x" directly after each of the definitions of x from A

that reach a use in B. Then we could rename all the definitions and uses of x in B to

x'. The program will have exactly the same semantics, but we will have eliminated

all of the def-def chains flowing from B to A. We will call such a renaming of of a

du-web that crosses a unidirectional cut a unidirectional renaming.

An example of a unidirectional renaming is shown in Figure 3-10. Each time

one of the variables i, j and partial-sum is modified it is copied to a corre-

sponding variable i', j' or partial-sum'. The uses of i, j and partial-sum
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3: partial sum-=

7: partial-sum partialsum +1

3' partial-sum' partialsum 7': partial-sum' partial-sum

6: use2(sum, partials i, ) 12: sum = sum + partial-sum'

2: i = 0

11: i i + 1 9: cl = cond1(i, j)

S'11

5: use(i', s ) 6: use2(sum, partial sum',

4: j = 0

4': j' = j 8: j = next(j)

9: cl = cond1(i, j) ':j '

6: use2(sum, partialsum', i', j')

Figure 3-11: The unidirectionally renamed du-webs for variables i, j and par-
tial-sum.

in partition B are then renamed to i', j' and partial-sum'. The du-webs for

this unidirectional renaming are shown in Figure 3-11.

To see how unidirectional renaming eliminates backwards flowing def-def

chains, consider Figure 3-12. We examine the cut from the set of nodes

{1, 2, 3, 4, 6, 7} to the set {5, 8}. This is a unidirectional cut because all of the value

and control dependences flow from the first set to the second. Figure 3-13 shows

the corresponding du-web for variable x. There is, however, a def-def chain flow-

ing from node 5 to node 7 (against the cut direction).

Unidirectionally renaming the flow graph, as shown in Figures 3-14 and 3-15

solves this problem. After placing copy instructions "x' = x" after the defini-

tions that reach across the cut, and renaming x to x' in nodes 5 and 7, all of the

definitions of x are on one side of the cut while all of the definitions of x' are on

the other side of the cut. Thus there are no def-def chains flowing across the cut.

All the def-def chains are now contained within one partition or the other.

Placing the copy instructions for the unidirectional renaming directly after the
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BEGIN

1: x = 1

2: branch

3: x = x + 3

4: branch

5: x x + 5

6: branch (def ef
chain)

7: x = 7

8: use x

END

Figure 3-12: The cut separating nodes 1, 2, 3, 4, 6 and 7 from nodes 5 and 8 is unidi-
rectional because all the value and control dependences flow unidirectionally. The
def-def chain flowing from node 5 to node 7 does not violate the unidirectionality
of the cut.

1: x = 1

5: x = x + 5 7: x 7

8: use x

Figure 3-13: The du-web for variable x from the flow graph in Figure 3-12. The cut
is unidirectional because all the def-use chains flow in one direction across the cut.
Dotted edges show cut edges.
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BEGIN

1: x = 1

1': x' = x

2: branch

3: x = x + 3

3' x' = x

4: branch

5: x' = x' + 5

- 6: branch

(def -def
chain)

S 7:x 7

7': x' = x

8: use x'

END

Figure 3-14: After unidirectionally renaming the variable x the def-def chain be-
tween nodes 5 and 7 is eliminated, and replaced instead with a def-def chain from
node 5 to node 7'. The new def-def chain does not cross the cut because node 5
and 7' are both in the same partition (indicated by nodes with a bold outline).
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8: use x

Figure 3-15: The du-web for variables x and x' from the flow graph in Figure 3-14.
The cut is still unidirectional because all the def-use chains flow in one direction
across the cut. Dotted edges show cut edges. Now, however, there is no def-def
chain crossing the cut because definitions of variable x happen in one partition,
while definitions of variable x' happen in the other.

corresponding definition of each variable produces a correct result, but, in fact, we

can do better. We can maintain the program semantics and eliminate the output

dependences if we place the copy instructions along any set of edges in the pro-

gram that have the property that they cover all the paths leading from definitions

of x in A that reach uses of x in B and are not reached by any of the definitions of

x in B. In the next section we will show how to derive such a set of edges that is

optimal, in the sense that they will execute only as often as the innermost loop that

contains both the definitions and the uses.

Thus given any unidirectional cut A-B we can insert copy instructions into each

du-web that has edges flowing from A to B and derive a semantically equivalent

flow graph with the property that there are no def-def chains flowing from B to A.

There is a second, perhaps more important, benefit of performing unidirec-

tional renaming on the du-webs that cross the cut. This is that after renaming,

closure conversion and a single pass of local copy propagation, all the uses of a

variable will be entirely contained on one side of the cut or the other. That is, all

communication across the cut will occur through the deferred execution queue.
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There will be no "shared" scalar variables. Because of this property we perform

unidirectional renaming on all du-webs that cross the cut, even when there are no

def-def chains that need to be broken. Specific examples are given in Chapter 4

and Section 5.2.

3.7 Wrapup

In this chapter we demonstrated that, through the process of scalar queue conver-

sion, we can restructure any unidirectional cut of the true scalar dependences in

any program, and reschedule the code so that all of the instructions in the top half

of the cut run (dynamically) before all of the instructions in the bottom half. Scalar

queue conversion completely eliminates scalar anti- and output-dependences that

might otherwise make this rescheduling impossible.

In this chapter we described how to apply scalar queue conversion to a single-

entry single-exit region of code. Chapter 5 demonstrates how to extend the re-

sult to regions of code with multiple exits, by a single application of scalar queue

conversion to a somewhat larger region of code. Chapter 5 also describes a set

of transformations that eliminate memory dependences from the program depen-

dence graph, thus exposing unidirectional cuts in a wider variety of circumstances.

Chapter 6 describes how to use scalar queue conversion as a subroutine of a gen-

eralized version of loop distribution that can reschedule regions of code with arbi-

trary control flow (including inner loops).

Chapter 7 describes the SUDS Software Un-Do System, which complements

scalar queue conversion in two ways. First, as mentioned above, scalar queue

conversion is unsafe in the sense that it does not strictly guarantee the amount

of dynamic memory the transformed program will allocate. The SUDS system

solves this problem by allowing scalar queue conversion to be applied speculatively.
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SUDS checkpoints the system state, and then runs the transformed program. If the

transformation causes a memory allocation error, then the execution can be rolled

back to the checkpointed state, and resumed with the original (untransformed)

code.

SUDS additionally complements scalar queue conversion by providing mem-

ory dependence speculation. Memory dependence speculation allows scalar

queue conversion to work across memory dependences that can not be handled

by the techniques in Chapter 5, and that would otherwise hide unidirectional cuts.
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Chapter 4

Optimal Unidirectional Renaming

In Chapter 3 we demonstrated that, through the process of scalar queue conver-

sion, we could transform a unidirectional cut A-B on a single-entry single-exit re-

gion into an equivalent piece of code such that all the instructions in partition A

run, dynamically, before all the instructions in partition B. Further, in Section 3.6,

we demonstrated that, through a process of static unidirectional renaming, we

could do this even in the presence of use-def or def-def chains flowing from par-

tition B to partition A. In this section we will demonstrate that we can move the

unidirectional renaming points to a position in the flow graph that is optimal, in

the sense that we place them at the legal points in the graph such that they are in

the outermost possible loop.

We do this by implementing an eager form of partial dead code elimina-

tion [64]. The algorithm takes advantage of two additional facts. First, that the

copy instructions we inserted for unidirectional renaming (Section 3.6) can be

moved or replicated at any point in the graph that is not reached by any other

definition that is not a copy instruction. Additionally, we take advantage of a use-

ful property of the static single assignment (SSA) flow graph. After conversion

to SSA every use of a variable in the program will be reached by only a single
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definition, and, further, that definition will dominate the use [30].

Informally, the algorithm moves copy instructions downward through join

points in the flow graph until it reaches a join point that dominates a use. This

node has the property that it is the earliest (static) point in the program where we

can determine exactly the value that reaches the use. Then we use the partial dead

code elimination algorithm to move the copy instruction through the intervening

branches in the flow graph that might make the copy instruction less likely to exe-

cute at all.

4.1 "Least Looped" Copy Points

The objective of optimal unidirectional renaming is similar to the objective of con-

version to static single assignment form [30]. That is, we desire to connect each

use of a variable with a single copy statement. The only place where this condition

might be violated is at join points in the flow graph. That is, places in the flow

graph that two different definitions might reach. But recall the definition of the

dominance frontier of a node x. This is the set of edges in the flow graph that flow

between nodes iL and z where all paths to y go through x, but where there are paths

to z that do not go through x. In other words, z is a join node in the flow graph

such that a definition at node x will no longer be unique. Consider, for example,

the definitions of variable j in the flow graph in Figure 4-1. The definition at node

8 dominates nodes 9 and 10, but not node 6. So node 6 is on the dominance frontier

of node 8, and indeed, two definitions of j can reach node 6. One from node 8 and

the other from node 4.

The key to the construction of static single assignment form is that it places

copy instructions on the iterated dominance frontier of each definition. A straight-

forward method of constructing the iterated dominance frontier for a set of defi-
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BEGIN

1: sum = 0

2: i = 0

2'::i' ==i

j' j
ptial_sum' = partial-sum

partial-sum = 0

3': artial_sum' = Partial-sum

4: L=

j:ueism

6: j' j
artial-sum' = partial-sum
use2(sum, partial-sum',

7: partialsum = partial-sum + 1

i', A')

7': partial-sum' = partial-sum

8: j = next(j) (ci = true)

8': j' = j

9: ci = condl(i, j)

10: branch ci

(ci = false)

11: i = i + 1

1:i =+

12: sum =sum + partialE;um'

F13: c2 = cond2(i)

14: branch c2 (c2 =true)

(c2 = false)

15 : use (sum)

Figure 4-1: After unidirectional renaming we place replicas of each copy instruc-
tions at all the join points reachable by that copy instruction.
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nitions that are already copy instructions is as follows. For each copy instruction

"x' I= x", replicate the instruction at each node in the dominance frontier of the

definition that has not already been marked. Since the new instruction is also a

new definition for the variable, the procedure must iterate until it reaches a fixed

point [30]. The caveat, in this case, is that we must not place instruction replicas at

any point in the graph that is also reached by a "real" definition of the variable x'.

In Figure 4-1 we show how replicas of the copy instructions "i ' = i", " j' =

j" and "partial-sum' = partial1sum" are placed at the iterated dominance

frontier of the unidirectionally renamed flow graph from Figure 3-10.

More concretely, we proceed as follows. We are given a du-web for variable

x over a unidirectional cut A-B. As described in Section 3.6 we give this web a

unidirectional renaming by renaming x to x' in all nodes belonging to B, and then

inserting new copy instructions, x' = x in the flow graph directly after the defini-

tions of x in the original flow graph that both belong to A and reach one of the uses

in B. The new copy instructions are included in partition B, rather than A, and thus

we are left with a semantically equivalent flow graph that is still unidirectionally

cut, but is guaranteed not to have any def-def chains flowing from B to A.

We now define five subsets of the nodes in the unidirectionally renamed du-

webs with original variable x and renamed variable x'. The set Copy ,, consists

of the set of nodes that contain newly inserted copy instructions x' = x. The set

Defx is the set of nodes that define x. The set Defx, is the set of nodes that define

x' minus the set Copy, The set Usex is the set of nodes that use x minus the set

Copy ,,. The set Usex, is the set of nodes that use x'.

Now recall the definition, from page 34 of the Reaching relation for subsets Gen

and Pass of the set of nodes in a flow graph. This was the set of nodes for which

there is a path in the flow graph from some node in Gen, passing only through

nodes in Pass. We then let Illegalx / be the set of nodes reached by Defx,. That
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is, we generate the Reaching relation with Gen = Defy, and Pass = Defx, U Def.

Illegal, , is then the set of points in the program at which inserting an instruction

x = x might cause the program to produce incorrect results.

Now let ItDomx',, be the set of nodes that corresponds to the iterated dom-

inance frontier of Copyx,,. If we place copy instructions at all the nodes in

AllCopies = (ItDom',+x U Copyx,s,) - Illegalx,, we will have, by the properties

of the iterated dominance frontier [30], found exactly the set of join nodes through

which it would be legal to move the copy instructions.

4.2 Lazy Dead Copy Elimination

Now let Livex, be the set of nodes for which there is a path to a use of x', that

does not pass through a definition of x' [4]. We can generate Livex, by generating

Reaching on the reverse flow graph with Gen = Usex, and Pass = Defy, U Copyx,,.

We can eliminate any dead copies by keeping only those on nodes in AllCopies n

Livex,, and deleting the rest, since the value they produce will never be used by

any instruction. For example, in Figure 4-1 the copies of i at nodes 2', and 11' are

dead. Additionally, the copies of j at nodes 3, 4' and 8' are dead, and the copies of

par t ia1_sum are dead at nodes 3 and 3'. Removal of these dead copy instructions

is shown in Figure 4-2.

Finally, following Knoop et al [64], we define ReachingUses , as the set of nodes

that can be reached by a use of x' without passing through a definition of x'.

("ReachingUses" corresponds to the complement of the set that Knoop et al call

"Delayed"). Then if we let BadNodesx, = ReachingUses , U Illegall ,s we can sink

the copy instructions to the frontier between BadNodesx, and BadNodess,. That is,

to edges m -+ n in the flow graph where m E BadNodesx, and n E BadNodes,.

Iteration of dead copy elimination and copy sinking produces the optimal re-
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BEGIN

1: sum = 0

2: i =0

partialsum = 0

4: i = 0

5: use(i', sum)

6: j' = j
artial sum' = partial-sum

use2 (sum, partialsum', i

7: partial_sum = partialsum + 1

7': partialsum' = partialsum

(ci = true)

8: j = next(j)

9: cl = condl(i, j)

10: branch ci

(ci = false)

11: i= i + 1

12: sum = sum + partial-sum'

13: c2 cond2(i)

14: branch c2 (c2 = true)

(c2 = false)

15: use(sum)

END

Figure 4-2: After placement of copies on the iterated dominance frontier at most
one copy instruction will reach each use, and the remaining copy instructions can
be dead-code eliminated.
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BEGIN

1: sum = 0

2: i =

3: partialsum = 0

4: j = 0

i'= i
use~i', sum)

j

artial-sum' = partial sum
use2(sum, partial-sum', i', j')

7: partial-sum = partial-sum + 1

8: j = next(j) (ci =

9: cl = condl(i, j)

10: branch cl

(ci = false)

11: i = i + 1

I
true)

7': partial-sum' = partial-sum

12: sum = sum + partial-su'

13: c2 = cond2(i)

14: branch c2 (c2 = true)

(c2 = false)

15: use(sum)

END

Figure 4-3: We can "sink" the copy instruction in node 7' out of the inner loop.

77



sult. Figure 4-3 shows the sinking of the copy instruction partial1sum' = par-

tial-sum at node 7' from inside the inner loop to a position in the outer loop just

before the corresponding use.

Figure 4-4 shows what happens when optimal unidirectional renaming pre-

cedes scalar queue conversion. We point out two things when comparing Fig-

ure 4-4 to Figure 3-9. First, the scalars used by the two halves of the partitioning

are entirely distinct. The sliced flow graph corresponding to the top of the cut

defines and uses only variables i, j and partial-sum. The flow graphs for the

closures produced by scalar queue conversion define and use only variables i',

j ', par t ial-sum' and sum. Second, note that unidirectional renaming has made

it possible to avoid the extra queueing and dequeuing of variable i that occurs in

the inner loop in Figure 3-9.

Finally, we note one additional feature of optimal unidirectional renaming. It

tends to be the case that optimal unidirectional renaming makes du-webs sparser.

This is intuitively reasonable, given that the optimal unidirectional renaming pro-

cess, like conversion to SSA form, puts copy instructions at the iterated dominance

frontier of each definition. The result is that most (but not all) of the unidirec-

tionally renamed uses will be reached by only a single definition. Compare, for

example, the du-chains for partial-sum and partial-sum' after optimal uni-

directional renaming (Figure 4-5) with the du-chains shown in Figure 3-11. After

optimal unidirectional renaming the chains for partial-sum' actually form two

independent webs, and can thus be given different static names.
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1': cl new closure(1)

1'': push(c1)

2:i = 0

3: partial sum = 0

4: j = 0

5': c56 new closure(5a, i, j, partial-sum)

5'': push(c56)

7: partial_sum= partialsum +

B: j =next (j)

9: cl = condi, j)

10: branch cl

(cl = false) (cl = true)

11: = + 1 6': c56 =new closure6a, j, partial_-u)

12': c12 new closure(12a, partial_sum) 6 : push(c56)

12' : push(c12) .

13: c2 cond2(i)

14: branch c2

(c2 = false)

15't c15 new closure(15)

15': push(cl5)

c= pop()

call t

*while I!queu.-.nvty())

BEGIN

Sa: i'= c-i

6b: j' =C->j

5b: j' = cE

6c: partial-sum' c-partialsum

5c: partial sum' = ->partial sum

5! u..(i', sum)

6: use2(sum, partial_.sum', i', j'F

END

LBEGIN

1: aum = 0

(c2 = true)

BEGIN

12a: partial-Gum' c->partialsum

12: Eum = + partial- u'

return

15: use(sum)

END

Figure 4-4: After scalar queue conversion of the optimally renamed flow graph
from Figure 4-3 and a pass of local copy propagation there are neither any uses or
definitions of variables i, j or partial-sum in any of the closures produced by
scalar queue conversion.
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3: partialsum = 0

7: partialsum + partial-sum + 1

7': partial:sum' = partialsum

F12: sumn= sumn+ partial_sum'

6' : partial_sum' = partial-sum

6: use2(sum, partialsum', i', j

Figure 4-5: Optimal unidirectional renaming introduces additional opportunities
for static renaming. The du-chains for the variables partial-sum and par-
tial-sum' have been cut in such a way that the du-chains for partial-sum'
actually form two independent webs.
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Chapter 5

Extensions and Improvements to

Scalar Queue Conversion

Scalar queue conversion provides the basic mechanism for renaming and

rescheduling any unidirectional cut of a single-entry single-exit value dependence

graph. In this chapter we discuss five practical extensions to scalar queue con-

version. In Section 5.1 we demonstrate how to extend scalar queue conversion to

single-entry multiple-exit regions of a flow graph. A particularly interesting fea-

ture of this extension is that it is also an application of scalar queue conversion, be-

cause we use scalar queue conversion itself to separate the multi-exit region from

its successors in the flow graph. Section 5.2 further demonstrates how to localize

scalars to the closures created by scalar queue conversion thereby enabling con-

current execution.

Scalar queue conversion guarantees that we can reschedule any unidirectional

cut of the value dependence graph. In Chapters 2, 3 and 4 we took a conservative

view of memory dependences by inserting edges in the value dependence graph

for all load-after-store, store-after-load and store-after-store dependences. These,

extra, conservative dependences may restrict the applicability of scalar queue con-
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version because they might create cycles in the value dependence graph across

what would otherwise be unidirectional cuts. In Sections 5.3, 5.4 and 5.5 we dis-

cuss three methods of improving the quality of memory dependence information

in the value dependence graph, widening the applicability of scalar queue conver-

sion.

5.1 Restructuring Loops with Multiple Exits

The scalar queue conversion transformation given in Chapter 3 is described only in

terms of single-entry single-exit regions of flow graph. It turns out, however, that

a single application of scalar queue conversion to a single-exit region can be used

to extract a multiple exit subloop of that region. The main intuition is that scalar

queue conversion makes the continuations of each loop iteration explicit. That is,

we can treat a region of code as a computation that, along with the rest of the work

it does, also explicitly computes a "next program counter."

Given a flow graph we can identify a natural loop using standard techniques.

Recall that a back edge in the flow graph is any edge b -+ h where h dominates b.

Then h is called the loop header, b is called the loop branch, and every reducible loop

can be uniquely identified by its back edge. The natural loop associated with a back

edge is defined to be the set of nodes that can reach b without going through h [4].

Further the loop exits are exactly those edges x -+ y where node x is a node in the

loop and node -y is a node outside the loop.

Consider the flow graph in Figure 5-1. Here the back edge is the edge from

node 8 to node 1. The natural loop associated with that back edge is the set of

nodes {1, 2, 3, 5, 6, 7, 8}. The loop exits are the edge from node 3 to node 4 and the

edge from node 8 to node 9.

Given a natural loop with more than one exit, we transform that loop into a
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0: i = 0

1: block 1

3: branch cl

(cl = true) (c1 =-false)

15: block 5 (c2 =true)

6: i =i + 1

7: c2 =i < N

8: branch c2

(c2 = false)

9bloc k 9

Figure 5-1: The flow graph for a loop with multiple exits.
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single exit loop, using a stripped-down version of scalar queue conversion, as fol-

lows. We create a variable, k, and initialize it to 0 at the top of the loop. We create a

new loop branch b' that branches to the top of the loop if k = 0 and exits the loop

otherwise. Then for every loop exit x -* iy in the original loop we redirect the edge

as x -4 ij' -4 b' where y' is a new node that sets k to the label of node 1J. Finally,

we insert a new node b" after the exit from b' where b" is a multiway branch that

jumps to the label stored in variable k.

This transforms the example flow graph as shown in Figure 5-2. Node 1' ini-

tializes the continuation variable k. To exit from the loop nodes 3 and 8 now con-

ditionally set k to the correct non-zero value and then go to node 8'. Node 8' is

now the only loop exit, and exits only when k is non-zero. Finally, when the loop

is exited, node 8" uses the value stored in the continuation variable k to jump to

the correct code, either block 4 or block 9, depending on whether node 3 or node 8

caused the loop to exit.

In the expected common case, where the loop is not exited, control flows the

same way it would have in the original code. The continuation variable k is ini-

tialized to zero at the top of the loop iteration. Neither loop exit is taken, so nodes

5, 6, 7 and 8 execute while nodes 4' and 9' do not, and the value of k will be zero

when node 8' is reached. Thus, node 8' branches back to node 1' at the top of the

loop.

A similar transformation has been implemented previously in the loop distri-

bution phase of the IBM PTRAN compiler [51]. The SUDS compiler implements

the additional optimization that in the frequently observed case that all exit nodes

xi exit to the same node y along edges xi -4 -y, then b' can simply exit to y and the

multiway branch b" can be omitted. This optimization is particularly desirable,

because it allows the continuation variable, k to be treated as private to the loop

body during subsequent compiler phases.
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BEGIN

1': k = 0

1: block 1

2: cl =cond(i)

3: branch c1

(c1 true) (cl false)

5: block 5

4' : k =4 (k =0)

6: i7= i +1

7: c2 = 7<N]

8 : branch c2

(c ase)

(c2 = true) 
9'2 : k =9

8' : branch ak

I (k !=0)

8'': jumpk

4:bock 4 (k = 9)

9: block 9

Figure 5-2: The loop of Figure 5-1 transformed so that it has only a single exit.
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5.2 Localization

We assume that each closure is given a unique activation record when it is in-

voked. This requires heap allocation of activation records [71]. In practice this

requires only a straightforward change to the code generator, and produces code

that is competitive with stack allocated activation records [9]. In this section we

describe how to localize scalars to a particular activation record. More specifically,

we show that through this localization process we can eliminate register storage

dependences between invocations of closures, enabling concurrent execution of

the closures produced by scalar queue conversion.

In Chapter 4 we noted that optimal unidirectional renaming tends to produce

more static renaming opportunities. As a result it tends to be the case that few

du-chains flow between the closures produced by scalar queue conversion. We

take advantage of this by introducing a notion of scope and, when possible, assign

variables to a scope smaller than the entire program. By scope we simply mean the

lifetime of an activation record, and thus we assign variables to scopes by associ-

ating variables with activation records.

We follow the straightforward rules that

1. If all the nodes of the du-web for a particular variable x fall into partition A

of a unidirectional A-B cut. Then x is assigned the scope associated with the

procedure containing the sliced flow graph for A.

2. If all the nodes of the du-web for a particular variable x fall into the same

procedure, PI, produced by scalar queue conversion, then x is assigned the

scope associated with that procedure.

3. If the nodes of the du-web for a particular variable x fall into different proce-

dures, then x is assigned the scope of B. (This is the scope containing the set

of procedures Bj c B.)
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Note that it is not necessary to have a global scope to cover the case that some of the

nodes of a du-web are part of A and some part of B, because after unidirectional

renaming and scalar queue conversion each du-web is guaranteed to be entirely

contained on one side of the cut or the other.

For example, consider Figure 4-4. In this case the variables i, j and par-

tialsum can be localized to the procedure on the left. The variables i', j ' and

partialsum' can be localized to the procedure corresponding to nodes 5 and 6.

An independent version of variable partial-sum' can be localized to the proce-

dure corresponding to node 12. Finally, the variable sum can be localized to the

scope containing the set of procedures on the right side of the figure.

The result of this localization process is the elimination of anti-dependences

between different invocations of the same procedure. For example, each closure

for the procedure corresponding to nodes 5 and 6 in Figure 4-4 will have its own,

private, copies of variables i ', j ' and par t ialsum' in its own activation record,

and thus these closures can be invoked concurrently.

5.3 Equivalence Class Unification

Our current compiler uses a context-sensitive inter-procedural pointer analy-

sis [129, 97] to differentiate between memory accesses to different data structures.

The result of the pointer analysis is a points-to set for each load, store and call site

in the flow graph. The points-to set is a conservative list of all the possible allocation

sites that could be responsible for allocating the memory touched by the operation

in question. (Examples of "allocation sites" include points in the flow graph that

call the mall oc () routine, declarations of global aggregates, and declarations of

any global scalars that might be aliased.)

The points-to sets resulting from the pointer analysis will be conservative in
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the sense that if the points-to sets for two instructions do not intersect, then the

pointer analysis has proved that there is no situation under which the two instruc-

tions might access the same memory location. As a result, we can remove from

the value dependence graph any memory dependence chain between instructions

having non-intersecting points-to sets.

This technique is now widely used in parallelizing compilers whenever a de-

cent pointer analysis is available [108, 14, 191.

5.4 Register Promotion

The renaming operations of scalar queue conversion work only for unaliased scalar

variables. It is often the case, however, that in some region of code some invariant

pointer will be repeatedly loaded and stored. When this is the case we can register

promote [26, 791 the memory location to a scalar for the duration of the region. Reg-

ister promotion is a generalization/combination of partial redundancy elimination

and partial dead code elimination, targeted at load and store operations. When

register promotion can be applied, especially when it can be applied to loops, it

turns memory references into scalar references, which can then be renamed and

rescheduled by scalar queue conversion.

Consider the following example of summing an array into a memory location

(similar to an example given by Cooper and Lu [261):
*p = 0

for (i = 0; i < N; i++)

x =*p

pA = &A[i]

y = *pA

z =x + y

*p= z
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If the pointer analysis can guarantee that p and pA always point to different

memory locations then we know that (a) the pointer p is invariant during the exe-

cution of the loop and (b) memory references to the location pointed to by pA will

never interfere with memory references to the location pointed to by p.

Thus we can transform the code by allocating a "virtual register" (scalar), rp,

loading *p into rp before the start of the loop, storing rp back to *p after the end

of the loop and replacing all references to *p inside the loop with references to rp.

The resulting code is:
*p= 0

rp =*p

for (i = 0; i < N; i++)

x = rp

pA = &A[i]

y = *pA

z = x + y

rp = z

*p = rp

This enables scalar queue conversion on the new scalar variable rp.

The idea of using register promotion to improve parallelism has been previ-

ously investigated in [19].

5.5 Scope Restriction

Scope restriction is an analysis performed at the front end of the compiler that

uses scoping information on aggregates (arrays and structures) to restrict the live

ranges of the aggregates to the scope they were originally declared in. The front

end passes this information to the back end by changing the stack allocated data

structure into a heap allocated data structure, with a call to a special version of
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malloc at the point where the object comes in to scope, and a call to a special

version of f ree at the point(s) where the object goes out of scope.

The back end is augmented so that when it generates the reaching relation for

memory dependence chains it recognizes that the special version of f ree kills (i.e.,

does not pass) definitions and uses of the corresponding pointer. Thus memory

anti- and output- dependence chains that otherwise would have reached back-

wards through loops can be eliminated before scalar queue conversion. At code

generation time if the calls to matching versions of mal loc and free are still

in the same procedure, then they can be turned back into stack pointer incre-

ment/decrement operations.

This transformation relies on the programmer to declare each aggregate in the

innermost scope in which it might be accessed. While this programmer behavior

is desirable, from a software engineering standpoint, popular programming lan-

guages, like ANSI-C, have only (relatively) recently started supporting automatic

allocation of aggregates. Thus, scope restriction is not applicable to "dusty deck"

codes. If it is desired to support parallelization of such programs then one should

consider incorporating an array privatization analysis in the compiler [77, 82, 118].
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Chapter 6

Generalized Loop Distribution

In this chapter we describe how to apply scalar queue conversion to enable a gen-

eralized form of loop distribution that can reschedule any region of code with ar-

bitrary control flow, including arbitrary looping control flow. The goal of loop dis-

tribution is to transform the chosen region so that any externally visible changes to

machine state will occur in minimum time. Roughly speaking, then, we begin by find-

ing externally visible state changes for the region in question, which we call critical

definitions. We then find the smallest partition of the value dependence graph that

includes the critical node, yet still forms a unidirectional cut with its complement.

Finally we apply scalar queue conversion to create a provably minimal (and hope-

fully small) piece of code that performs only the work that cyclically depends on

the critical definition. For simplicity we will present the transformation in terms

of a single-entry single-exit region, R, of the value dependence graph. The trans-

formation can be extended to multiple exit regions by applying the transformation

from Section 5.1.

Section 6.4 discusses the relationship of generalized loop distribution to recur-

rences, (roughly speaking, recurrences are loop carried dependences that are up-

dated with only a single associative operator (e.g., addition)). In particular, we
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BEGIN

1: sum =0

2: i = 0

3: partial-sum = 0

4: j = 0

5: use(i, sum)

6: use2(sum, partial-sum, i, j)

7: partial-sum =partial-sum + 1

8: j = next(j) (ci = true)

F9 c-1= cond(i, j)

10: branch cl

(cu e= false)

1:i=i +1

12: sum =sum + partial-sum

13: c2 =cond2(i)

demonstrate that generalized loop distribution enables a broader class of recur-

rences to be reassociated than can be handled with less powerful scheduling tech-

niques.

Loop distribution is closely related to a variety of recently proposed scheduling

techniques called "critical path reductions." Section 9.2 describes this relationship,

and how the generalized loop distribution technique also extends critical path re-

duction transformations.
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12: sum sum + partial sum 12: sum =sum + partial-sum

Figure 6-2: The critical node graph (left) and the critical node dag (right) for the
outer loop of the flow graph in Figure 6-1.

6.1 Critical Paths

Consider again the example used throughout Chapters 2 and 3, which we repli-

cate in Figure 6-1 for ease of reference. Roughly speaking, this loop has two loop

carried dependences, on the variables i and sum. The other variables, (e.g., j,

partial-sum, ci and c2) are private to each loop iteration, and thus are not part

of the state changes visible external to the loop.

Following this intuitive distinction, we more concretely identify the critical def-

initions of a region. We do this by finding all uses (anywhere in the program) such

that at least one definition dR within the region R reaches the use and at least one

definition from outside the region dp reaches the use. Then we call the definition

dR (the one inside region R) a critical definition. To reiterate, intuitively, the critical

definitions represent changes to the part of the state that is visible from outside the

region. Critical definitions represent points inside the region at which that visible

state is changed. (As opposed to region (loop) invariant and externally invisible

(private) state).

For the region corresponding to the outer loop in Figure 6-1 the critical defini-

tions are the nodes 11 and 12. Nodes 5, 6, 9 and 11, for example, are reached both

by node 11 (inside the loop) and node 2 (outside the loop), so node 11 is a critical

definition for the loop. Likewise, nodes 5, 6 and 12 are reached both by node 12 (in-

side the loop) and node 1 (outside the loop), so node 12 is also a critical definition

for the loop.

Next we construct the critical node graph. The nodes of the critical node graph
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are the critical definitions as defined above. There is an edge in the critical node

graph between nodes do and d, exactly when there is a path from do to di in the

value dependence graph. The critical node graph for the outer loop of the flow

graph from Figure 6-1 is shown on the left side of Figure 6-2. There is a critical

node graph edge from node 11 to node 12 because there is a path in the depen-

dence graph 11 -4 13 -4 14 -+ 12. (The dependence from node 14 to node 12 is

a control dependence, while the other edges in the path are due to scalar value

dependences.)

Finally, we construct the critical node dag by collapsing cycles in the critical node

graph. This isn't strictly necessary, but a cycle in the critical node graph repre-

sents a sequence of state changes that is mutually dependent, and thus can't be

reordered. Thus we gain no flexibility by not collapsing, and the collapsed result

is easier to deal with. Note that a dag is just a pictorial representation of a partial

ordering. That is we say that given two nodes a and b in the dag a < b if there a

path from a to b in the dag. This partial ordering is well defined since there are no

cycles in the critical node dag. The critical node dag for the outer loop of the flow

graph from Figure 6-1 is shown on the right side of Figure 6-2.

6.2 Unidirectional Cuts

We use the critical node dag to prioritize the instructions in the value dependence

graph into a sequence of unidirectional cuts (see Chapter 3). There will be twice as

many priorities as there are levels in the critical node dag.

We start by giving each critical node a priority corresponding to its level in

the critical node dag. Next, for each critical node we find all nodes in the value

dependence graph that have a cyclic dependence with the critical node. That is, given

critical node d and node n, if there is a path from d to n in the value dependence
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11: i= i + 1

13: c2 = cond2(i)

14: branch c2

3: partial-sum = 0

4: j = 0

7: partial-sum = partial-sum + 1

8: j next(j)

9: ci = condl(i, j)

10: branch cli

12: sum = sum + partial-sum

6: use2(sum, partial-sum, i, j) 5: use(i, sum)

Figure 6-3: The Prioritization of the nodes in the outer loop of the flow graph in

Figure 6-1.

graph and a path from n to d in the value dependence graph, then we give n the

same priority as d. For example, in the loop in Figure 6-1 the cyclic path 11 -+

13 --+ 14 -- 11 in the value dependence graph indicates that nodes 13 and 14 form

a cycle with the critical node 11.

All remaining nodes will receive priorities between the critical node priorities.

That is, for each node n find the critical node del,, with the highest priority, such

that there is a path from n to dbeIow in the value dependence graph. Then give n a

priority higher than dlelow's priority, but just lower than the priority of del0W's parent.

For example, in Figure 6-1 node 12 depends on node 7. Node 7, in turn, is de-
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pendent on nodes 3, 4, 7, 8, 9 and 10. (There exists, for example, the dependence

path 4 -> 8 -> 9 -+ 10 -* 7.) None of these nodes has a path in the value depen-

dence graph leading to any of nodes 11, 13 or 14. Thus we give nodes 3, 4, 7, 8, 9

and 10 a priority between the priority of node 11 and the priority of node 12. The

prioritization of the nodes from the outer loop of the flow graph of Figure 6-1 is

shown in Figure 6-3.

More generally one can also solve the dual problem: find the critical node daoe,

with the lowest priority such that there is a path from dbove to n, and then give n

any priority between that of dabe,, and dbeow. Note that for any node n with cyclic

dependences with a critical node drit it is the case that d.be, = delow dcrit and

thus the priority of these nodes will be set consistently with the above criteria. In

the transformation described below, it will turn out that cross-priority dependence

edges are more expensive to handle than dependence edges within a priority, and

the dual information could be used, in combination with a maxflow/mincut algo-

rithm to minimize the number of cross-priority dependence edges. This will be

investigated in future work. In any case both the primal and dual problems can be

individually solved by a simple dataflow analysis based on depth-first search. The

implemented algorithm uses only the primal information.

6.3 Transformation

For each priority we have a unidirectional cut from the higher priorities to this pri-

ority and those below. Thus we perform scalar queue conversion on each priority

(from the bottom up) to complete our code transformation.

There are, however, two subtleties. The first is that as we perform scalar queue

conversion on a unidirectional A-B cut we must place instructions to create, and

fill, closures into the graph of partition A for each maximally connected group
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Bi c B. The question then arises as to which priority the closure creation and

fill instructions for each maximal group should belong to. We solve this problem

by running the prioritization algorithm from Section 6.2 on the instructions intro-

duced by each pass of scalar queue conversion. Note that because we are working

with unidirectional cuts we never introduce nodes that can "undo" any of the pri-

ority decisions we have already made.

The second, practical, problem is that we are trying to use loop distribution to

schedule concurrency. That concurrency exists in the non-critical priority groups

produced by the prioritization scheme in Section 6.2. The problem is that the con-

currency we have exposed is between iterations of the outer loop that we are dis-

tributing. Thus we would like to create a thread for each outer loop iteration, even

if that thread invokes many closures. We solve this problem by running scalar

queue conversion twice for the non-critical priority groups.

In the first pass we run scalar queue conversion with respect to the loop body

(i.e., not including the loop backedge). This packages the entire work done for

that priority group in each iteration into a deferred execution queue (one deferred

execution queue per iteration), which is then invoked. Figure 6-4 shows the results

of performing this scalar queue conversion on the lowest priority group (nodes 5

and 6) of the example loop. A deferred execution queue (qO) is created, and the

correct closures are pushed on to qO to perform the low priority work from the

entire inner loop of a single iteration of the outer loop.

In the second pass we run scalar queue conversion with respect to the en-

tire loop (including the loop backedge). This creates a second deferred execu-

tion queue with one closure per loop iteration. The closures in this deferred ex-

ecution queue can be invoked in parallel because the prioritization analysis from

Section 6.2 has already determined that there are no dependences between these

closures. This second transformation is shown in Figure 6-5. A deferred execution
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( (c2 = true)

1:i = i V 1

sum sum + partial-sum
2= cond2(i)

invoke qO
free qO

branch c2

BEGIN

* '= c->i
um' = c->sum
use(i', sum')

6: j' = c->j
partialsum' = c->p
use2 (sum', partial_

retu

7: partialsum = partialsum + 1
j next j)

1 b condlri, j)
branch cl

(cl = false) (cl = true)

6 c67 =6nalloc (12)
c67->k =6

c67->j = j
c67->partial sum = partial-sum

qO.push(c67)

(c2 = false)

15: use(sum)

END

Figure 6-4: The example loop after using scalar queue conversion to move the
lowest priority group (nodes 5 and 6) to the bottom of the loop body.
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B:- 

s u m = 0

5-i 

= 0

3 : qO = new queue
partial-sum = 0
j = 0
::57 = malloc (20)
c57->k = 5
c57 ->i = i
c57->sum = sum
c57->j = j
c57->partial-sum = partial-sum

qO.push(c57)

artialsum
sum' , i' ,' )
rn



((c2 = true)

11: i = i + 1

sum = sum + partial-sum
:!2 = cond2(i)
z13 = malloc(8)
13->k =13

13->qO =qO

l.push(c13)
branch c2

:partial_sum = partialsum + 1
next (j)

In condl(i, c)
branch ci

(ci = false) (ci = true)

5': c67 = malloc(12)
,67->k = 6
767->j = j
67->partial-sum = partialsum

qO.push(c67)

(c2 = false)

15: par invoke q1
free qi

use (sum)

END

BEGIN

: ' c->i
um' = c->sum
use(i', sum')

j' = c->j
artial sum' = c->p
se2(sum', partial_

retu

END

BEGIN

13: invoke c->qO
free c->qO

return

Figure 6-5: The example loop after a second use of scalar queue conversion to move
the lowest priority group (nodes 5 and 6) out of the loop.
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BEGIN

1:-sum = 0
i7=>0

q-1 = new queue

3 : qO = new queue
partial_sum = 0
i = 0
=57 = malloc(20)
c57->k = 5
c57->i = i
257->sum = sum
257 ->j = j
257->partial-sum = partial_sum

IqO.push(c57)

irtial-sum
sum', i', ')
rn



queue (qi) is created. The closures (c13) on this queue receive the deferred exe-

cution queue, qO, created in the first pass as a parameter. Then after the loop exits,

the closures on deferred execution queue q1 can be invoked in concurrently.

Figure 6-6 shows the result of running scalar queue conversion on the lower

priority critical path. Note that while the original critical path consisted only of

the node "12: sum = sum + partial-sum," the prioritization algorithm has

determined that the closure filling operation "c57 ->sum = sum" must be sched-

uled at the same priority. Thus a pointer to the c57 closure is passed as a param-

eter to the c12 closure so that c12 can fill in the current value of the sum variable

before it is modified.

Figure 6-7 shows the end result of running generalized loop distribution. After

another two passes of scalar queue conversion the work corresponding to the inner

loop of the original code has been moved into a deferred execution queue, q3, the

closures of which can be invoked concurrently.

6.4 Generalized Recurrence Reassociation

A common problem in the doubly nested loops that are handled by the generalized

loop distribution algorithm described in Sections 6.1, 6.2 and 6.3 is that critical

paths (loop carried dependences) of the outer loop will often also contain nodes

in the inner loop. Since critical paths represent cycles in the code that must be run

sequentially, we would like to reduce the length of these paths when ever possible.

This section describes how we leverage generalized loop distribution to shorten

critical paths when the update operator in the critical path is associative.1 When

the update operator is associative we can often transform the code to make the

1The most common associative operator is addition. Associative operators are binary operators
with the property that (a + b) + c = a + (b + c). Other common programming operators having
this property are multiplication, "max" and "min."

100



BEGIN

1: sum = 0
i=0
1 = new queue

3:q2 = new queue

.artial-sum = 0
= 0

:57 = malloc(20)
=57->k = 5

57->i = i
57->j = j
257-->partial-sum = partial-sum

IqO.push(c57)

(c2 = true) V:
11: i = i + 1
c12 = malloc(12)
c12->k = 12
1l2->c57 = c57
12->partial-sum = partial-sum

q2.push(c12)
c2 = cond2(i)

c13 = malloc(8)
c13->k = 13

c13->qO qO
q1.push(c13)

branch c2

(c2 = false)

15: invoke q2
free q2
;ar-invoke q1
free q1

use (sum)

END

BEGIN

i' = >
um' = c->sum
use ( i' , sum')

j= c->j
artial-sum' = c->p
se2(sum', partial_

retu

END

BEGIN

13: invoke c->qO
free c->qO

eturn

partialsum = partiaLsum + 1
= next (j)

= condl(i, j)
branch ci

(ci = false) (ci = true)

6': c67 malloc(12)
c67->k 6
c67->j = j
c67->partial-sum = partial-sum

qO.push(c67)

BEGIN

12: c57' =

artialsum
c57'->sum
um = sum +

END

c->c57
= c->partial-sum

sum
partial-sum'
return

irtial-sum
sum', i', j')
rn

Figure 6-6: The example loop after using scalar queue conversion to move the
lower priority critical path (corresponding to node 12) out of the loop. Note that a
pointer to the c 57 closure (which initializes sum') is passed as a parameter to the
closure c12 so that c12 can fill in the current value of the sum variable before it is
modified.
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3: i' =c->i
12'-> = c>2

r13'a c->ca3
qO = new queue
artial-sum = 0

1 2od~ij
brnc . 0

c57 malloc(20)
c57->k = 5

c57->i = i'

357->j =j
257->partial-sum =partial-sum

qO.push(c57)

7 partial-sum 
= partial-sum 

+ 1

:1=cond1(i', j)1=branch cl
(ci = false)

11: c12'->k = 12
c12'->c57 = c57
l12'->partial-sum = partial-sum
c13'->k = 13
h13'->qO qO

return

1(c = true)

5': c67 = malloc(12)
67->k = 6
67->j j

267->partial sum = partial sum
I qO.push(c67)

BEGIN

: i' = c->i

usei' >sum)

S:M' = c->j

oartial sum' = c->p
jse2(sum', partial_

retu

END

artial-sum
sum', i', j')
rn

BEGIN

1: sum = 0

1 =new queue
2 =new queue
q3 = new queue

11: c12 = malloc(12)
13 =malloc(8)
3 = malloc(16)
3->k = 3
3->i = i

3->c12 = c12
3->c13 = c13

q3.push(c3)
i = i + 1
z2.push(c12) C2 = true)

c2 = cond2(i)
q1.push(c13)

branch c2

(c2 false)

15: parjinvoke q3
free q3
invoke q2
free q2
par-invoke q1
free q1

use (sum)

END

BEGIN

13: invoke c->qO
free c->qO

return

END

BEGIN

12: c57' = c->c
partialsum' =
c57'->sum = sum
sum = sum + par

r

END

57
c->partial-sum

tial-sum'
eturn

Figure 6-7: The example loop after using scalar queue conversion to reschedule
and move the group 3, 4, 7, 8, 9 and 10 out of the loop. The outer loop of the
original flow graph corresponds to the flow graph in the lower left corner of the
figure. The inner loop of the original flow graph corresponds to the flow graph in
the upper right of the figure.
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dependence graph more "treelike."

Consider the following code:

for (int i = 0; i < N; i++)

for (int j 0; j < M; j++)

use (sum)

sum = sum + f [i] [j]

The loop carried dependent variable sum is traditionally called a recurrence [68].

The critical path for this recurrence contains the instruction "sum = sum +

f [i] [ j ] " in the inner loop. Using a combination of static renaming and forward

substitution [68] we will demonstrate that because the update operator here is as-

sociative we can move this critical node out of the inner loop, into the outer loop.

Briefly, recurrence reassociation introduces a temporary variable that sums the

values in the inner loop, and then adds the temporary to the original recurrence

variable only in the outer loop. This transformation produces the following code:

for (int i = 0; i < N; i++)

int partialsum = 0

for (int j = 0; j < M; j++)

use(sum + partialsum)

partialsum = partialsum + f [i [i]

sum = sum + partialsum

Note that we have simultaneously introduced the temporary variable partial-sum

and forward substituted the expression sum + partial-sum into the inner loop

statement use (sum), creating the new inner loop statement use (sum + par-

tial-sum).

The basic idea is that while any scheduling algorithm has to honor all the

value dependences, generalized loop distribution, with scalar queue conversion,

will eliminate all the anti-dependences. Thus recurrence reassociation takes ad-
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Figure 6-8: The dynamic dependence graph between updates to the sum recur-
rence variable in the original code.

vantage of operation associativity to turn loop-carried true-dependences into anti-

dependences. Generalized loop distribution then eliminates the anti-dependence

during scheduling.

In this context we define reassociatable recurrence variables to be loop-carried true-

dependences that are modified only with a single associative operator. Note, in

particular that in the example sum is both used and modified inside the inner

loop, but is still considered to be a recurrence variable. Figure 6-8 shows sum's

dependence pattern.

In the example, shown above, a temporary, partial-sum has been introduced

above the inner loop. Each use of sum has been converted to a use of sum + par-

tial-sum. The update of sum in the inner loop has been changed to an update

of partial-sum and finally, partial-sum is added to sum after the inner loop is

finished. At first glance it would appear that we have not improved the situation.

But in fact, we are no longer modifying the variable sum in the inner loop. From

the perspective of the outer loop, this separates the modification of sum from its

use. Figure 6-9 shows how sum's dependence pattern has changed.
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Figure 6-9: The dynamic dependence graph between updates to the sum variable
after recurrence reassociation has been performed.

Traditionally, reassociatable recurrence variables are considered to be those that

are

1. Loop-carried true-dependences.

2. Updated only with a single associative operator (e.g., plus, times or max).

3. Unused except in the update operation(s) [68].

The simultaneous application of static renaming and forward substitution described

above allows the third requirement to be circumvented in the case that we want to

move a critical update out of an inner loop.
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Chapter 7

SUDS: The Software Un-Do System

Since scalar queue conversion can only break scalar anti- and output- dependences,

additional solutions are required to parallelize around memory dependences. The

transformations described in Chapter 5 are a necessary component to solving the

memory dependence problem, but they are not sufficient. More specifically, any

transformation that relies only on information available at compile time can not

legally remove edges from the memory dependence graph that are only usually

irrelevant.

In this chapter we describe SUDS, the Software Un-Do System, which specula-

tively eliminates edges from the dependence graph. Informally, SUDS checkpoints

the machine state and then runs a piece of code that has been parallelized assum-

ing that certain dependences "don't matter." Once the code is done running SUDS

checks that the parallel execution produced a result consistent with sequential se-

mantics. If the result is found to be consistent, SUDS commits the changes and

continues. If the result is found inconsistent, SUDS rolls back execution to the last

checkpoint and re-runs the code sequentially.

As shown in Figure 7-1, SUDS partitions Raw's tiles into two groups. Some

portion of the tiles are designated as compute nodes. The rest are designated as
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Figure 7-1: An example of how SUDS allocates resources on a 72 tile Raw machine.
The 64 gray tiles are memory nodes. The 8 white tiles, approximately in the mid-
dle, are worker nodes, the gray hatched tile near the center is the master node.
Loop carried dependences are forwarded between compute nodes in the pattern
shown with the arrow.

memory nodes. One of the compute nodes is designated as the master node, the rest

are designated as workers and sit in a dispatch loop waiting for commands from

the master. The master node is responsible for running all the sequential code.

SUDS parallelizes loops by cyclically distributing the loop iterations across the

compute nodes. We call the set of iterations running in parallel a speculative strip.

Each compute node runs the loop iterations assigned to it, and then all the nodes

synchronize through the master node.

In the next section we describe speculative strip mining, the technique SUDS

uses to checkpoint and run a portion of a loop. In Section 7.2 we describe the SUDS

runtime system component that efficiently checks the correctness of a particular

parallel execution.
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do

(LOOP BODY)

while !c

Figure 7-2: An arbitrary loop.

do

checkpoint machine state

error = false

for i = 0; i < 32; i++

(LOOP BODY)

error 1= c
if (error)

roll back to checkpointed state

for i = 0; (i < 32) && !c; i++

(LOOP BODY)

while !c

Figure 7-3: The same loop after speculative
strip mining. Machine state is checkpointed.
A strip of 32 iterations is run. After the strip
completes the error variable is checked. It
running the strip caused any kind of misspec-
ulation, (early exit from the loop, out-of-order
memory access or a deferred execution queue
dynamic memory allocation error), then ma-
chine state is rolled back to the checkpoint,
and the original code is run non-speculatively
for up to 32 iterations to get past the misspec-
ulation point.

7.1 Speculative Strip Mining

Speculative strip mining is the technique SUDS uses to checkpoint and run a por-

tion of a loop. Like traditional strip mining techniques [11, speculative strip mining

turns a loop into a doubly nested loop, where each invocation of the newly created

inner loop iterates a fixed number of times.

Speculative strip mining differs from traditional strip mining in that it gener-

ates the control structure shown in Figure 7-3. After the transformation, the outer

loop body starts by checkpointing machine state. Then a speculative strip of 32 iter-

ations are run. This inner loop is the loop that generalized loop distribution will be

applied to, and that the SUDS system will try to run speculatively and in parallel.

A new variable, error, is introduced that is used to keep track of any misspec-

ulation that might happen during the speculative strip. This variable can get set in
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any of three ways. First, the speculative strip runs for exactly 32 iterations. If dur-

ing any one of those 32 iterations the loop condition variable, c, becomes set, then,

semantically, the inner loop should have exited in fewer than 32 iterations, and

thus the error variable gets set. Second, the error variable is implicitly set if any of

the memory operations sent to the SUDS memory dependence speculation system

(described below) are found to have executed out of order. Third the error variable

will be set if any of the dynamic memory allocation operations (those introduced

by generalized loop distribution) fail because of an out of memory condition.

After the speculative strip runs, the error condition is checked. If it is not set

(hopefully the common case), then the outer loop iteration is finished, and a new

outer loop iteration will start. The process of checkpointing, running a speculative

strip, and checking the error condition will be repeated. If, on the other hand,

the error condition is set, then the code rolls back to the checkpointed state, and

a different copy of the inner loop is run.

In this case, the inner loop runs the original (unoptimized) loop body code.

This "nonspeculative strip" runs for at most 32 iterations, but unlike the spec-

ulative strip, this strip runs sequentially and the original loop conditional, c, is

checked on every iteration for early exit. Since generalized loop distribution is not

applied, the nonspeculative strip can not take an out-of-memory exception (un-

less the semantics of the original code would have done so). Since the loop is run

sequentially, the memory operations can not execute out-of-order.

Speculative strip mining, as described here, works only on loops with a single

exit. If we wish to apply speculative strip mining to a loop with multiple exits

then the transformation from Section 5.1 is applied first. Note that speculative

strip mining assumes that the loop conditional, c will be false if the loop is to

continue, and non-false if the loop is to exit. The transformation from Section 5.1,

which turns multiple exit loops into single exit loops, produces condition variables
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that have this property. If the loop was single exit to begin with, and has a loop

conditional with the opposite boolean sense, then a new loop conditional must be

introduced, before applying speculative strip mining.

The "checkpoints" that speculative strip mining introduces need to be handled

carefully. There are two parts to this. The first has to do with "checkpointing"

the memory state of the machine. The memory state is typically enormous, and

checkpointing the entire memory would be too costly. What the SUDS memory

dependence speculation system (described below) does instead, is to log all of the

modifications to memory requested during the speculative strip. Then, if rollback

is required, the log is "run backwards" to restore the original memory state. If,

after running the speculative strip, rollback is not required, then the log is erased

and reused.

The second part of checkpointing has to do with the register (scalar) state of

the machine. Speculative strip mining makes a copy of every scalar whose state

might visibly change during the running of the speculative strip. But, these vari-

ables are exactly the "loop carried dependences" that generalized loop distribution

recognizes in its critical path analysis. Thus speculative strip mining performs the

critical definition analysis described in Section 6.1. Any scalars identified as criti-

cal during this analysis are copied into temporaries before the speculative strip. If

rollback is required the values in the temporaries are copied back to the original

scalars. If the speculative strip runs with no errors the temporaries are discarded.

Speculative strip mining allows generalized loop distribution to legally intro-

duce dynamic memory allocations into the program. Because all memory op-

erations are logged during a speculative strip, and speculative strip mining also

makes copies of the (visible) register state, any dynamic memory allocation error

introduced by generalized loop distribution can be fixed. This checkpoint/repair

mechanism allows a second, important, performance optimization. Because all
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Figure 7-4: A conceptual view of Basic Timestamp Ordering. Associated with ev-
ery memory location is a pair of timestamps that indicate the logical time at which
the location was last read and written.

memory operations are logged, we can speculatively execute memory operations

out-of-order. Thus, after speculative strip mining, and before generalized loop dis-

tribution, we remove from the value dependence graph all of the memory depen-

dences that are carried on the outer loop. These memory dependences can be re-

moved from the value dependence graph by generating reaching information for

memory operations on the region flow graph for the loop body, with the loop back

edge removed.

In addition to logging memory operations, if memory operations are issued

out-of-order, then the memory access pattern must also be checked. The SUDS

runtime memory dependence speculation system does this logging and checking.

The memory dependence speculation system is described in the next section.

7.2 Memory Dependence Speculation

The memory dependence speculation system is in some ways the core of the sys-

tem. It is the fallback dependence mechanism that works in all cases, even if the

compiler cannot analyze a particular variable. Since only a portion of the depen-

dences in a program can be proved by the compiler to be privatizable or loop car-

ried dependences, a substantial fraction of the total memory traffic will be directed

through the memory dependence speculation system. As such it is necessary to

minimize the latency of this subsystem.
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7.2.1 A Conceptual View

The method we use to validate memory dependence correctness is based on Basic

Timestamp Ordering [15], a traditional transaction processing concurrency control

mechanism. A conceptual view of the protocol is given in Figure 7-4. Each mem-

ory location has two timestamps associated with it, one indicating the last time

a location was read (last-read) and one indicating the last time a location was

written (las twritten). In addition, the memory is checkpointed at the begin-

ning of each speculative strip so that modifications can be rolled back in the case

of an abort.

The validation protocol works as follows. As each load request arrives, its

timestamp (read-time) is compared to the last-written stamp for its memory

location. If read-time > last-written then the load is in-order and lastread

is updated to read-time, otherwise the system flags a miss-speculation and aborts

the current speculative strip.

On a store request, the timestamp (write-time) is compared first to the

last-read stamp for its memory location. If write-time > last-read then

the store is in-order, otherwise the system flags a miss-speculation and aborts the

current speculative strip.

We have implemented an optimization on store requests that is known as the

Thomas Write Rule [15]. This is basically the observation that if write-time

< last-written then the value being stored by the current request has been

logically over-written without ever having been consumed, so the request can

be ignored. If write-time > last-written then the store is in-order and

last-written is updated as write-time.
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data
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lastreader
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addr: data timestamp
cache

hash-entry
checkpoint

data log

Figure 7-5: Data structures used by the memory dependence speculation subsys-
tem.

7.2.2 A Realizable View

We can't dedicate such a substantial amount of memory to the speculation system,

so the system is actually implemented using a hash table. As shown in Figure 7-5,

each processing element that is dedicated as a memory dependence node contains

three data structures in its local memory. The first is an array that is dedicated

to storing actual program values. The next is a small hash table that is used as a

timestamp cache to validate the absence of memory conflicts. Finally, the log con-

tains a list of the hash entries that are in use and the original data value from each

memory location that has been modified. At the end of each speculative strip the

log is used to either commit the most recent changes permanently to memory, or

to roll back to the memory state from the beginning of the speculative strip.

The fact that SUDS synchronizes the processing elements between each spec-

ulative strip permits us to simplify the implementation of the validation protocol.

In particular, the synchronization point can be used to commit or roll back the

logs and reset the timestamp to 0. Because the timestamp is reset we can use the

requester's physical node-id as the timestamp for each incoming memory request.
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Operation Cost
Send from compute node 1
Network latency 4 + distance
Memory node 8
Network latency 4 + distance
Receive on compute node 2
Total 119 + 2 x distance

Figure 7-6: The round trip cost for a load operation is 19 cycles + 2 times the man-
hattan distance between the compute and memory node. The load operation also
incurs additional occupancy of up to 40 cycles on the memory node after the data
value is sent back to the compute node.

In addition, the relatively frequent log cleaning means that at any point in time

there are only a small number of memory locations that have a non-zero times-

tamp. To avoid wasting enormous amounts of memory space storing 0 times-

tamps, we cache the active timestamps in a relatively small hash table. Each hash

table entry contains a pair of last-read and last-written timestamps and a

cache-tag to indicate which memory location owns the hash entry.

As each memory request arrives, its address is hashed. If there is a hash conflict

with a different address, the validation mechanism conservatively flags a miss-

speculation and aborts the current speculative strip. If there is no hash conflict the

timestamp ordering mechanism is invoked as described above.

Log entries only need to be created the first time one of the threads in a spec-

ulative strip touches a memory location, at the same time an empty hash entry is

allocated. Future references to the same memory location do not need to be logged,

as the original memory value has already been copied to the log. Because we are

storing the most current value in the memory itself, commits are cheaper, and we

are able to implement a fast path for load operations. Before going through the

validation process, a load request fetches the required data and returns it to the

requester. The resulting latency at the memory node is only 8 cycles as shown in
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Figure 7-6. The validation process happens after the data has been returned, and

occupies the memory node for an additional 14 to 40 cycles, depending on whether

a log entry needs to be created.

In the common case the speculative strip completes without suffering a miss-

speculation. At the synchronization point at the end of the speculative strip, each

memory node is responsible for cleaning its logs and hash tables. It does this by

walking through the entire log and deallocating the associated hash entry. The

deallocation is done by resetting the timestamps in the associated hash entry to 0.

This costs 5 cycles per memory location that was touched during the speculative

strip.

If a miss-speculation is discovered during the execution of a speculative strip,

then the speculative strip is aborted and a consistent state must be restored. Each

memory node is responsible for rolling back its log to the consistent memory state

at the end of the previous strip. This is accomplished by walking through the entire

log, copying the checkpointed memory value back to its original memory location.

The hash tables are cleaned at the same time. Rollback costs 11 cycles per memory

location that was touched during the speculative strip.

The synchronization between speculative strips helps in a second way. Hash

table entries are only deleted in bulk, during the commit or rollback phases. Thus,

we are guaranteed that between synchronization points the hash table will only

receive insertion and lookup requests. As a result, the hash table can be imple-

mented using open addressing with double hashing [65]. (That is, if a hash of a

key produces a conflict, then we deterministically rehash the key until we find an

open entry). The SUDS implementation does up to sixteen rehashes. Open ad-

dressing with double hashing has the properties that it avoids the costs of linked

list traversal but still keeps the average number of hashes low.1

'For example, when the hash table is half full, the average number of rehashes will be 1 and the
probability of not finding an open entry within sixteen rehashes will be 63.

116



7.2.3 Implementation

The SUDS memory dependence speculation system is designed to run on Raw mi-

croprocessors [123]. A Raw microprocessor can roughly be described as a single-

chip, distributed-memory multiprocessor. Unlike traditional distributed-memory

multiprocessors, however, the Raw design is singularly focused around providing

low-latency, register-level communication between the processing units (which we

call tiles). In particular, the semantics of the network and network interface are

carefully designed to remove message dispatch overheads [74, 115] and deadlock

avoidance/recovery overheads [67] from the critical path. Because of these con-

siderations, a single-word data message can be sent from one tile to a neighboring

tile, and dispatched, in under six 4.44ns machine cycles.

Each Raw tile contains an eight-stage single-issue RISC microprocessor, about

96 Kbyte of SRAM caches, an interface to the on-chip interconnect, and one of

the interconnect routers. The tiles on each chip are arranged in a two-dimensional

mesh, or grid, similar to the structure shown in Figure 7-1. While each tile contains

a general-purpose RISC microprocessor pipeline, it is sometimes more appropriate

to view this microprocessor as a deeply pipelined programmable microcontroller for

a set of hardware resources that include an ALU and some SRAM memory. This,

in any case, is the view I adopted for the implementation of the SUDS memory

dependence speculation system.

As shown in Figure 7-1, SUDS partitions Raw's tiles into two groups. Some

portion of the tiles are designated as compute nodes. The rest are designated as

dedicated memory nodes. The memory nodes work together to implement a logi-

cally shared memory on top of Raw's physically distributed memory. Each time a

compute node wishes to make a memory request from the logically shared mem-

ory it injects a message into the on-chip interconnect directed at the memory node

that owns the corresponding memory address. The owner is determined by a sim-
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ple xor-based hash of the address, similar to that used in some Li caches [46]. Thus,

if there are 64 tiles dedicated as memory nodes, the logically shared memory can

be viewed as being banked 64 ways.

After the request is injected, it travels through Raw's on-chip interconnect at

one machine cycle per hop (except when the message turns, which takes two ma-

chine cycles). Messages are handled, at their destination, in the order they are

received, and atomically. The Raw network interface provides support so that if,

when a request arrives, the tile processor is still busy processing a previously re-

ceived request, the new request is queued in a small buffer local to the destina-

tion tile.2 Protocol replies are sent on a network logically distinct from that used

to send protocol requests, and storage to sink reply messages is preallocated be-

fore requests are made, so the communication protocol is guaranteed not to dead-

lock [67].

The hand optimized code at the memory node uses the header of each arriving

request to dispatch to the appropriate request handler in just two cycles in the

case of a load request, and seven cycles for store requests or control messages.

The dispatch loop and load request handler are optimized to minimize load reply

latency, at the expense of slightly poorer overall bandwidth. The load handler thus

accesses the requested memory location and injects the data reply message to the

requesting compute node before accessing the timestamp cache or log. As a result,

the total end-to-end latency observed by a compute node making a load request

is 19 machine cycles + 2x the manhattan distance between the compute node and

the memory node. (Unless there is contention at the memory node or the memory

node takes a cache miss while accessing the requested memory location).

Consider, for example, the 72 node Raw system shown in Figure 7-1, and as-

2Raw's network provides flow-control support so that if a destination node becomes heavily
contended the sending nodes can be stalled without either dropping packets or deadlocking the
network [33, 321.
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sume the 225MHz clock speed of the existing Raw prototype. The end-to-end

memory latency would be between 21 and 39 4.44ns machine cycles, or between

93ns and 174ns. If we assume that each Raw tile has a 64Kbyte data cache, then

the effective size of the logically shared memory accessible with this latency is

about 4Mbytes. (Actually, slightly less, since the data cache on each memory tile

is used to store the timestamp cache and log in addition to any memory locations

accessed.)

Given that half to three-fourths of this latency (between 44ns and 125ns) is in

Raw's highly tuned interconnect, it is difficult to imagine that a dedicated, custom

designed, cache controller could deliver significantly lower latency in this technol-

ogy.

A dedicated, custom designed, cache controller might, however, deliver higher

bandwidth. Each transaction handled by the SUDS memory dependence specu-

lation protocol requires access to, at least, one 64-bit timestamp cache entry, one

64-bit log entry, and a 32-bit data memory access. One might improve the trans-

action rate by accessing these data structures simultaneously. In addition, each

transaction must make at least four decisions in the timestamp cache, based on the

requested address and timestamp. (Two of these decisions are to check that the

correct hash entry has been found, the other two are for timestamp comparisons).

One might additionally improve the transaction rate by simultaneously generat-

ing, and dispatching on, these conditions.

Even without these optimizations, the SUDS memory dependence speculation

system delivers sufficient (although in no way superb) bandwidth. In the current

system each of the eight worker nodes is allowed at most four outstanding store

operations or one outstanding load operation. Thus there can be at most thirty-two

requests simultaneously active in the sixty-four memory banks. The maximum

probability of observing contention latency at a memory bank is thus less than
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50%. Each transaction generates a total of between 22 and 53 machine cycles of

work at the memory node (including the cost of commit), depending on whether

or not a timestamp cache entry needs to be allocated during the request. Thus, the

SUDS memory dependence speculation system can deliver an average throughput

of better than one transaction per machine cycle.

7.2.4 The Birthday Paradox

This section explains a fundamental limit of parallelism on essentially randomly

generated dependence graphs (such as one sees in many sparse matrix algorithms).

The limitation basically boils down to the "birthday paradox" argument that with

only 23 people in a room, the probability that some pair of them have the same

birthday is greater than 50%.? As demonstrated here, the same argument shows

that a memory dependence speculation system can expect to achieve a maximum

speedup proportional to C/n when randomly updating a data structure of size n.

Suppose we have b different processors, each of which is updating a randomly

chosen array element, Bj E 1 ... n. What is the probability that every processor

updates a different array element?

We have n ways of choosing the first array element, n - 1 ways of choosing the

second array element, so that it is different from the first, n-2 ways of choosing the

third array element so that it is different than the first two, and so on. Thus there

are n_ ways of assigning n array elements to b processors, so that the updates

do not interfere. Yet there are a total of nb ways of assigning n array elements to b

processors randomly. Thus the probability, p, that all b accesses are non-interfering

is

n!= (7.1)P nb (n - b)!' 71

3The origin of the birthday paradox is obscure. Feller [39] cites a paper by R. von Mises, circa
1938, but Knuth [65], believes that it was probably known well before this.
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Figure 7-7: Speedup curves for speculatively parallelizing a loop that randomly
updates elements of an array of length n as we change the number of processors
that are running in parallel. The stars show the points at which parallelism equals
/f, as described in Equation 7.5.

Let us optimistically assume that, if a sequential processor can run b iterations

in time b, that running in parallel on b processors, we can run b iterations in time

1 if none of the accesses conflict (which occurs with probability p), and time 1 + b

if there is an access conflict (which occurs with probability 1 - p). The average

speedup, S, will be

b bS . (7.2)
p +(1 -p)(1+ b) 1 +b(1 -p)(

Note that the assumption that each speculative strip of parallel work is rerun

from the beginning on misspeculation, rather than from the point of failure, affects

the result only by a small constant factor, since the point of failure will, on average,

be about halfway into the speculative strip.

Speedup curves for a variety of n are shown in Figure 7-7. As b varies on the x

axis, the speedup increases nearly linearly to some optimal point, but then falls off

121



dramatically as the probability of conflicting iterations starts to increase.

Now let us find the point at which speedup is maximized as a function of b.

This will occur when dS/db = 0. We work this out as follows. Let v = 1 b (1 - p).

Then S = b/v,
dv bdp +I
db db

dS v - ba

dbv
1 - bg + b(1 -p)

(1 + b(1 - p)) 2

I + b 2

(1 +b(1 -p)) 2

Setting dS/db 0 yields
dp 

(7.3)
db b2

Equation 7.1 defines p using factorials, an integer function for which the deriva-

tive is not well defined. But we can approximate dp/db by recalling the definition

of the derivative.4 We examine the function (p(b + h) - p(b))/h. Letting h = 1 we

get:

dp p(b+1)-p(b)
db

nb+l(n - (b + 1))! nb(n - b)!
-bn!

nnb(n - b)!
-b

- p.n

4I am indebted to my father, David L. Frank, for suggesting this approach.
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Solving this differential equation yields

b ~~e_2/2nP "e/n (7.4)

Combining the condition on dp/db given by Equation 7.3 with this approximation

we get
-1 -be -b 2 /2n

or

= Teb2 /2n

Let us approximate the solution to this equation as b* = cn/ii. The error from

this approximation is n(c3 _ ec2 /(2 >). If c = 1 then the error is negative for all

n > 0. For c > 1 note that the error is positive whenever c3 > ec2 /(2 r), or taking

logarithms, when n > c6/8(In c3) 3 . If c = e/6 ~ 1.18136 then the error is positive

for all n > e. Thus for all n > e,

/n < b* < 1.19/i. (7.5)

This approximation is demonstrated in Figure 7-7, with stars placed at the opti-

mal points, as calculated by Equation 7.5. Every time the array size is multiplied by

a factor of 8, the maximum parallelism increases by a factor of only 2. The intuition

behind this cubic result is that as b increases, the probability of success decreases

approximately proportional to b2 while the cost of failure increases approximately

as b.
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7.3 Discussion

Another way to think about a speculative concurrency control system is to break it

into two subsystems. The first subsystem is the checkpoint repair mechanism. The

second subsystem checks that a particular concurrent execution produced a result

consistent with a sequential ordering of the program. In the SUDS system, the

log provides checkpoint repair functionality, while the timestamp cache performs

concurrency checking.

Section 7.2.4 discussed the fundamental limits inherent to any system that

uses speculation to discover concurrency in essentially randomly generated de-

pendence graphs. This section describes two implementation choices made with

respect to the design of the SUDS log and the qualitative impact those implementa-

tion choices had on system performance. First, the log implements a bulk commit

mechanism instead of a rolling commit mechanism. Second, the log design permits

only a single version of each memory location to exist at any one time, rather than a

more sophisticated approach where multiple values may be stored simultaneously

at a particular memory location.

The impact of several other design and implementation choices is discussed in

Chapters 8 and 10. One of the main themes of Chapter 8 involves an implemen-

tation mistake with regard to the caching structure implemented above the SUDS

system. In fact, the SUDS concurrency control subsystem is designed in such a way

that implementing a better cache above SUDS would have been particularly easy,

and Chapter 8 explains why I failed to do so. Chapter 10 discusses a longer term

issue having to do with flat versus nested transaction models. In particular SUDS,

like all existing memory dependence speculation and thread level speculation sys-

tems implements an inherently flat transaction model. Chapter 10 explains why I

believe that future concurrent computer architectures will require nested transac-

tion models.
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Bulk Commit

The SUDS log is designed in such a way that commit only happens, in bulk, at the

end of a speculative strip. Many other memory dependence speculation systems,

especially those based directly on Franklin and Sohi's Multiscalar Address Resolu-

tion Buffer [43, 44], permit commits to occur on a rolling basis. That is, Multiscalar

systems contain an implicit "commit token" that is passed from thread to thread

as each completes. When a thread receives the token, the log entries correspond-

ing to that thread are committed and flushed. Thus, in Multiscalar systems, the

log commit operations occur concurrently with program execution, as long as no

misspeculations occur.

SUDS, in contrast, runs a set of threads corresponding to a speculative strip,

and then barrier synchronizes the entire system before committing the logs. The

cost of this barrier synchronization step is not overlapped with program execution,

and one might worry that the synchronization cost could overwhelm speedup

gains. A simple implementation trick, however, amortizes the synchronization

cost across several thread invocations, making the effective cost nearly irrelevant.

The trick is that, in the SUDS implementation, a speculative strip contains four

times as many threads as there are execution units in the system (thirty-two versus

eight). As a result, the runtime system only needs to synchronize one-fourth as

often, and the synchronization costs are significantly amortized.

While the cost of bulk synchronization is easily amortized, the benefit is sub-

stantial. In particular, the work required for log entry allocation and garbage col-

lection becomes nearly trivial. In SUDS, log entries are allocated from a memory

buffer in-order (with respect to the arrival of write requests). This can be accom-

plished simply by incrementing a pointer into this buffer. Deallocation of buffer

entries is even more trivial. The pointer is just reset to point to the beginning of the

buffer.
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With a rolling commit scheme, on the other hand, log entries would be commit-

ted in a different order than they were received. Thus the log manager either needs

to keep log entries sorted in timestamp order, or else deallocation creates "holes"

in the log buffer, forcing the log manager to keep and manage an explicit free list.

Single Version Concurrency Control

The second design choice with respect to the SUDS log is that the SUDS concur-

rency control system is based on basic timestamp ordering [15], and thus makes

only a single version of each memory location available at any time. Memory de-

pendence speculation systems based on the Multiscalar Address Resolution Buffer,

in contrast, essentially implement multiversion timestamp ordering [94].

This choice involves a tradeoff. On the one hand, multiversion timestamp or-

dering is capable of breaking the memory anti-dependence between a load and the

following store to the same memory location. On the other hand, since there may

be multiple versions associated with each memory location, each load operation

must now perform an associative lookup to find the appropriate value.

The empirical question, then, becomes the relative importance of load latency

to the cost of flagging some memory anti-dependences as misspeculations. Load

latency is almost always on the critical path, and is particularly important in the

SUDS runtime, since every load operation goes through the software implemented

concurrency control system. How frequent, then, are memory anti-dependences

between threads in the same speculative strip?

The key empirical observation is that most short-term memory anti-dependences are

caused by the stack allocation of activation frames, (rather than heap allocation). That

is, if two "threads" are using the same stack pointer, then register spills by the

two threads will target the same memory locations. Most contemporary computer

systems allocate activation frames on a stack, rather than the heap, because stacks
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provide slightly lower cost deallocation than does a garbage collected heap [9].

The SUDS compiler allocates activation frames on the heap, rather than a stack,

simply because it was the most natural thing to do in a compiler that was already

closure converting.5 Thus, in the SUDS system every thread in the speculative strip

gets its own, distinct, activation frame, and register spills between threads never

conflict.

This separation of concerns between concurrency control, on the one hand, and

memory renaming, on the other, enables the SUDS memory system to implement

a particularly low latency path for loads. The SUDS log is specifically, and only,

a mechanism for undoing store operations. That is, for each store operation, the

store writes directly to memory, and the previous value at that memory location

is stored in the log so that the store can be "backed out," if necessary. Thus load

operations can read values directly from the memory without touching the log at

all.

Caching

Finally, we note the relationship of the SUDS concurrency control mechanism to

caching. Unlike other proposals for memory dependence speculation systems,

SUDS does not integrate the concurrency control mechanism with the cache co-

herence mechanism. More specifically, the SUDS concurrency control system sits

below the level of the cache coherence protocol in the sense that it assumes re-

quests for each particular memory location arrive in a globally consistent order.

Thus decisions about caching can be made almost independently of the concur-

rency control mechanism. The caveat is that most caching mechanisms are imple-

mented at the level of multi-word cache lines, while the SUDS concurrency control

5"We should forget about small efficiencies, say about 97% of the time: premature optimization
is the root of all evil," Knuth, Computing Surveys, 6(4), 1974.
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mechanism is implemented at the level of individual memory words.
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Chapter 8

Putting It All Together

In this chapter we describe how all of the parts described in Chapters 3 through

7 fit together in the context of a working prototype SUDS system. The prototype

system is described in Section 8.1. Section 8.2 describes, in some detail, several

case studies of the use of generalized loop distribution to find concurrency.

SUDS is designed to run on Raw microprocessors. A Raw microprocessor can

roughly be described as a single-chip, distributed-memory multiprocessor. Unlike

traditional distributed-memory multiprocessors, however, the Raw design is sin-

gularly focused around providing low-latency, register-level communication be-

tween the processing units (which we call tiles). In particular, the semantics of

the network and network interface are carefully designed to remove message dis-

patch overheads [74, 115] and deadlock avoidance/recovery overheads [67] from

the critical path. Because of these considerations, a single-word data message can

be sent from one tile to a neighboring tile, and dispatched, in under six 4.44ns ma-

chine cycles.

As reported elsewhere [113, 114], each Raw chip contains a 4 by 4 array of tiles;

multiple chips can be composed to create systems as large as 32 by 32 tiles. A com-

plete prototype single chip Raw system, running at 225 MHz, has been operational
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since February 2003. The processor was designed and implemented at MIT over a

period of six years by a team that included several dozen students and staff mem-

bers (although there were probably never more than a dozen people on the project

at any one time). The processor was fabricated by IBM in their 0.15 micron SA-27E

ASIC process.

8.1 Simulation System

We wanted to understand the properties of SUDS in the context of systems with

sizes of 72 tiles, rather than the 16 available in the hardware prototype. Thus,

the results in this thesis were generated on a system level simulator of the Raw

microprocessor, called usstdl.1 The simulator is both relatively fast, allowing

us to run big programs with large data sets, and accurate, providing cycle counts

that are within about 10% of the cycle counts provided by the hardware prototype.

(usstdl is more than 100x faster than the completely cycle accurate behavioral

model used by the hardware designers).

There are a few minor functional differences between the simulator and the

hardware prototype. First, the simulator does not model interconnect network

contention. This is of little consequence to the results reported here, since the total

message traffic in the system is sufficiently low compared to the available network

bandwidth on the prototype. Although the simulator does not simulate contention

inside the interconnect, it does simulate contention at the network interfaces to the

tile processors.

The second functional difference between us stdl and the hardware prototype

is the addition of a second set of load/store instructions. These instructions make

'The name usstdl is an acronym for "Unified SUDS Simulator and Transactional Data Li-
brary," because (for no particularly good reason) both the simulator and library are checked in to
the same subtree of the local version control system.
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it possible to compile, and use, the C library routines (e.g., s trcpy ( )) so that they

will work with either arrays stored in the local memory of a tile, or in the SUDS

logically-shared, speculative memory described in Section 7.2.2 and 7.2.3.

These load/store instructions work as follows. They examine the high bit of the

requested address. If that bit is a 0, then the the request is destined for one of the

software-based memory nodes described in Section 7.2.3. For these requests the

machine constructs, and sends, an appropriate message to the memory node, with

the same instruction latencies that would be experienced if the message were constructed

in software on the hardware prototype. This variety of load instruction (called "giw")

does not have a destination register. Instead, the requested data is returned by a

message arriving in the register-mapped network interface.

The code generator is thus designed so that, whenever the semantics of a load

instruction are required, two instructions are generated. The first instruction is

a giw instruction, which has one register operand specifying the address to be

loaded. The second instruction copies the result out of the network interface regis-

ter to one of the general purpose registers. (Raw's network interface registers are

designed so that accesses to a register stall the processor until a message arrives in

that register).

If the high bit of the address in a giw instruction is a 1, on the other hand, then

the address is accessed from the tile's local data cache and the data is fed back to

the network input register as if a data message had arrived from the interconnect.

Because of this functionality, loads and stores in the C library can be compiled

using giw and gsw instructions, instead of the normal load and store instructions.

As a result, library routines can access data from both the local data cache or from

the logically shared memory without recompilation.

Since the latency of local loads is somewhat higher when a library is compiled

with this scheme, the C library routines are slightly slower when running under
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SUDS than they are when running on a conventional microprocessor. On the other

hand, the convenience of not having to compile multiple versions of the library,

and then determine which version should be used in each circumstance amply

makes up for the small loss in performance. (Consider, for example, the s trcpy

routine from the C library. Without the giw and gsw instructions we would have

to compile four different versions, one for each possible combination of the source

and destination strings being in remote memory or on the local stack. Worse, we

would then need to determine, for each call, where the two parameters were lo-

cated, which would require whole program analysis.)

The final, and most important, functional difference between usstdl and the

Raw hardware prototype is the addition of a set of eight additional dedicated reg-

isters for receiving messages from Raw's dynamic network. Each message header

includes an index into this register file, and when a message arrives it is directed

to the register corresponding to that index. This simply extends the "zero-cycle"

message dispatch concept from Raw's other networks so that it works with the

particular network that is used by SUDS [115]. (The Raw hardware prototype

implements zero-cycle message dispatch on its "static" network, but not on the

"dynamic" network that SUDS uses).

Microarchitecturally, adding zero-cycle dispatch to Raw's dynamic network

would be a straightforward change, in that it involves changes only in the reg-

ister fetch stage of the local tile processor pipelines. From a performance stand-

point, on the other hand, this change was critical. For example, Section 7.2 gave

a breakdown of the 21 cycle round trip cost of performing a load in the SUDS

speculative transactional memory system. Without usstdl's zero-cycle message

dispatch support, the critical path cost of performing a load increases by more than

12 cycles. This greater than 50% cost increase for each message received at the com-

pute nodes is due entirely to the cost of message dispatching in software. Without
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zero-cycle dispatch the 2 to 3x SUDS speedup numbers reported below would be

impossible to achieve. Instead SUDS would get slowdowns.

Programs running with the SUDS system are parallelized by a prototype SUIF

based compiler that outputs SPMD style C code. The transformations performed

by this compiler are described in Chapters 3, 4, 5, 6 and 7. The resulting code is

compiled for the individual Raw tiles using gcc version 2.8.1 with the -03 flag.

Raw single-tile assembly code is similar to MIPS assembly code, so our version

of the gcc code generator is a modified version of the standard gcc MIPS code

generator.

Comparison Systems

For comparison purposes I implemented simulators for two additional systems.

The first is a baseline, single-issue 8-stage pipelined RISC processor with a MIPS

ISA (similar to a single Raw tile). Programs are compiled directly to this system

using the MIPS version of gcc 2.8.1 with the -03 flag. The second comparison sys-

tem is an eight-way issue superscalar running an idealized version of Tomasulo's

algorithm. This processor also has a MIPS ISA and programs are compiled directly

to the system using the MIPS version of gcc 2.8.1 with the -03 flag.

The superscalar simulation is "idealized" in the sense that (a) the trace-fetch

mechanism permits traces to be contained in multiple arbitrary cache lines (i.e., the

instruction cache is arbitrarily multi-ported), (b) the processor has an effectively

infinite set of physical registers, (c) the processor has an effectively infinite set of

functional units and (d) the processor has "perfect" zero-latency and infinite band-

width, bypass networks, scheduling windows and register-file write back paths.

The four ways in which the comparison superscalar is not idealized are (a) it is

limited to fetching a trace of at most eight instructions per cycle, (b) a branch mis-

prediction causes fetch to stall for two cycles, (c) the instruction scheduler obeys
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register value dependences and (d) only a single data store operation can occur in

each cycle. The store buffer implements load bypassing of stores with forwarding.

The cache to memory interface permits an effectively infinite number of simul-

taneous overlapping cache misses. Both the baseline, in-order, and comparison,

out-of-order, models use a 32 Kbit gshare branch predictor.

Memory Systems

The memory systems for the baseline (in-order) and comparison (out-of-order)

processors include a 4-way associative 64KByte combined I&D L1, 4 MByte L2

with 12 cycle latency and 50 cycle cost for L2 misses to DRAM. The memory sys-

tem for the SUDS simulations is less idealized.

For the SUDS simulations we use a 72-tile Raw microprocessor. Eight of these

tiles are dedicated as "workers" and the other sixty-four are dedicated as "memory

nodes." Each of the worker tiles has a 4-way associative 64Kbyte combined I&D

Li cache that is used only for caching instructions and thread-local stacks.

In the SUDS system the sixty-four memory tiles work together, as described in

Section 7.2.2, to provide a logically shared, speculative, L2 cache accessible to the

eight worker nodes. Since this L2 cache is implemented in software on the sixty-

four memory nodes, it has an effective size of slightly less than 64x64Kbyte = 4

MBytes. This is because the instructions for the memory dependence speculation

software, the hash table data structures, and the log data structures, all compete for

use of the 64Kbyte SRAM cache local to each memory tile. In the SUDS simulations

Li cache misses are assumed to take 50 cycles (this is equivalent to the L2 cache

miss penalty for the baseline and superscalar systems).

As described, above and in Section 7.2.2, the worker nodes do not cache poten-

tially shared data in their local Li caches. Rather every access to potentially shared

data is forced to undergo the relatively expensive process of remotely accessing
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the software based memory dependence mechanism on one of the memory nodes.

usstdl simulates every aspect of this process in full detail.

I chose all of these parameters simply because I was trying to see whether,

in the context of a large and complex system, generalized loop distribution was

making a difference. In all cases I have tried to bias the results slightly toward the

superscalar. The superscalar's 4 Mbyte L2 cache is of similar size to the 4 Mbytes

of cache collectively available on the SUDS memory system, thus any particular

program has about the same off-chip miss rates on both systems. The L2 cache

latency on the superscalar is lower (by a factor of almost two) than the minimum

latency of a SUDS access to the software based memory dependence system. The

superscalar L2 cache bandwidth is effectively unlimited, while the SUDS logically

shared L2 cache has 64 banks, each of which is limited (by the software based

protocol) to servicing approximately one request every 53 cycles (see Section 7.2.3).

Both systems can fetch at most eight useful, user-program, instructions per cy-

cle. The superscalar model is permitted to issue, dispatch, and execute an effec-

tively unlimited number of operations each cycle. usstdl accurately simulates

the eight in-order pipelines that SUDS has at its disposal. The scalar operand

matching/bypass network on the superscalar has no latency. usstdl accurately

models the interconnect latencies of the implemented Raw hardware prototype.

The superscalar model automatically, and in zero cycles, renames every scalar

in to an effectively infinite and zero-latency physical register file. The SUDS sys-

tem renames, in software, into the deferred execution queues created by the loop

distribution compiler pass. These queues are stored in the Li caches of the worker

nodes, must be accessed by load and store instructions, and can even suffer cache

misses.

The same back end code generator is used for both systems (gcc 2.8.1) and is,

at least, decent. Even this, however, slightly favors the superscalar since the giw
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and gsw instructions are inserted by the parallelizing compiler as volatile gcc inline

assembly directives. The semantics of these directives are unknown to the gcc back

end, and thus somewhat restrict the compiler's ability to optimize or reorder code.

I have tried, for every architectural parameter that I could think of, to either

model that parameter the same way (e.g., off chip memory access latency), or to

bias the comparison towards the idealism of Tomasulo's algorithm and against the

realistically implementable version of Raw and SUDS. The Raw group at MIT has

demonstrated that the Raw hardware prototype, in IBM's SA-27E ASIC process,

can be clocked at 225 MHz. It is doubtful whether the idealized superscalar could

be clocked at a similar rate, especially given the (zero-cycle) latency chosen for its

scalar bypass network.

Thus I feel justified in making the qualitative claim that, when running the

same program under the idealized superscalar model and under SUDS on the

usstdl simulator, then if the two runs have similar cycle counts, generalized loop

distribution is finding at least as much concurrency, if not more, than does Tomasulo's

algorithm. In fact, for two out of the three programs discussed below, the result is

unequivocal, because the cycle counts for SUDS are better than the cycle counts for

the idealized version of Tomasulo's algorithm.

8.2 Case Studies

This section describes how generalized loop distribution, the SUDS speculation

system, and the other transformations described in this thesis interact in the con-

text of three applications. We describe the application of generalized loop distribu-

tion to a molecular dynamics simulation program, a decompression program and

a program that makes heavy use of recursion.
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ComputeForces (vector<particle> molecules,
real cutoffRadius)

epot = 0.0

foreach m in molecules

foreach m' in m.neighbors()

if (distance(m, m') < cutoffRadiusSquare)

forcet force = calc_force(m, m')

m.force += force

m' .force -= force

epot += calc-epot(m, m')

return epot

Figure 8-1: Pseudocode for ComputeForces, the Moldyn routine for computing
intermolecular forces. The neighbor sets are calculated every 20th iteration by call-
ing the BuildNeigh routine (Figure 8-2).

8.2.1 Moldyn

Moldyn is a molecular dynamics simulation, originally written by Shamik

Sharma [102], that is difficult to parallelize without speculation support. Rather

than calculate all 0(N 2 ) pairwise force calculations every iteration, Moldyn only

performs force calculations between particles that are within some cutoff distance

of one another (Figure 8-1). The result is that only 0(N) force calculations need to

be performed every iteration.

The original version of Moldyn recalculated all 0(N2 ) intermolecular distances

every 20 iterations. This made it impossible to run the program on any reasonably

large data set. We rewrote the distance calculation routine so that it would also

run in 0(N) time. This is accomplished by chopping the space up into boxes that

are slightly larger than the cutoff distance, and only calculating distances between

particles in adjacent boxes (Figure 8-2). This improved the speed of the application

on a standard workstation by three orders of magnitude.

Generalized loop distribution and SUDS can parallelize each of the outer loops

(those labeled "f oreach m in molecules" in Figures 8-1 and 8-2). Although

the ComputeForces routine accounts for more than 90% of program runtime on a

standard workstation, each loop has different characteristics when run in parallel,
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BuildNeigh(vector<list<int>> adjLists,

vector<particle> molecules,

real cutoffRadius)

vector<list<particle>> boxes

foreach m in molecules

int mBox = box-of(m.position())

boxes [mBox] .push-back (m)

foreach m in molecules
int mBox = box-of(m.position())

foreach box in adjLists[mBox]

foreach m' in box

if (distance(m, m') <

(cutoffRadius * TOLERANCE))

m.neighbors() .pushback(m');

Figure 8-2: Pseudocode for Bui 1ldNeigh, the Moldyn routine for recalculating the
set of interacting particles. adj Li s ts is a pre-calculated list of the boxes adjacent
to each box.

and it is thus instructive to observe the behavior of the other two loops as well.

The first loop in the BuildNeigh routine moves through the array of

molecules quickly. For each molecule it simply calculates which box the molecule

belongs in, and then updates one element of the (relatively small) boxes array.

This loop does not parallelize well on the SUDS system because updates to the

boxes array have a relatively high probability of conflicting when run in parallel.

The second loop in the BuildNeigh routine is actually embarrassingly paral-

lel, although potential pointer aliasing makes it difficult for the compiler to prove

that this loop is parallel. (The list data structures, "m. neighbors ()," are dy-

namically allocated, individually, at the same program point, and thus the pointer

analysis package we are using puts them in the same equivalence class). SUDS, on

the other hand, handles the pointer problem by speculatively sending the pointer

references to the memory nodes for resolution. Since none of the pointer refer-

ences actually conflict, the system never needs to roll back, and this loop achieves

scalable speedups.
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The ComputeForces routine consumes the majority of the runtime in the pro-

gram. For large problem sizes, the molecules array will be very large, while the

number of updates per molecule stays constant, so the probability of two parallel

iterations of the outer loop updating the same element of the molecules array

is relatively small. Unfortunately, while this loop parallelizes well up to about

a dozen compute nodes, speedup falls off for larger numbers of compute nodes

because of the birthday paradox problem with memory dependence speculation

described in Section 7.2.4. (Recall that this is a fundamental limitation of data

speculation systems, not one unique to the SUDS system.)

Despite its small size and seemingly straight-forward structure, parallelization

of the ComputeForces routine required nearly every compiler transformation

and analysis described in Chapters 5, 6 and 7. The recurrence on the epo t variable

is reassociated as described in Section 6.4. The memory accesses for the updates

specified by the statement "m. force += force" are register promoted to the

outer loop, as described in Section 5.4. Equivalence class unification (Section 5.3)

is used to discover that there is no memory dependence between the distance and

force calculations (which require the position of each molecule), and the updates

to the force vector associated with each molecule.

Speculative strip mining (Section 7.1) speculatively breaks the (true) memory

dependences between outer loop iterations caused by the force updates. Finally,

generalized loop distribution (Section 6) finds two critical nodes in the outer loop.

One critical node corresponds to the "index variable" m and the other corresponds

to the reassociated updates of the epot variable. The memory dependences be-

tween iterations of the outer loop are (speculatively) removed by speculative strip

mining, so generalized loop distribution identifies the rest of the work in the outer

loop (the distance and force calculations and force updates) as parallelizable.

Figure 8-3 shows the speedups of running Moldyn with an input dataset of
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SUDS 3.38
idealized superscalar 3.16

Figure 8-3: Comparison of speedups over an inorder pipeline for Moldyn running
on SUDS versus a superscalar.

256,000 particles on SUDS and the idealized superscalar. The baseline in order

MIPS R4000 design achieves an average of only 0.223 instructions per cycle (IPC).

This is largely due to poor Li cache behavior. As is common with many numer-

ical/scientific workloads, the working set of this program is considerably larger

than the caches. Thus the program gets cache miss rates of about 5% during

BuildNeigh and 3% during ComputeForces.

The idealized superscalar design achieves an IPC of about 0.705, or about 3.16x

speedup over the single issue in-order processor. This improvement is achieved

largely because the superscalar is able to overlap useful work with some of the

cache miss latency.

The SUDS system achieves a speedup of about 3.38x over the single issue in-

order processor. This despite the fact that on the superscalar more than 95% of

memory accesses are to the Li cache, while in the SUDS system only about one

third of the memory accesses are to stack-allocatable values that can be stored in

the L1. The other two thirds of the SUDS memory accesses are routed directly to

the logically shared L2 cache, and the SUDS L2 cache is roughly 2x slower than

the superscalar L2 cache, because it is implemented in software. Thus, we can con-

clude that the SUDS system is, somehow, managing to overlap a great deal more

work with the long latency memory operations than is the idealized superscalar.

The key to understanding the difference lies in a closer examination of the dou-

bly nested loops that consume most of the program running time. In both cases

the number of times that the innermost loop will execute is almost completely un-

predictable. Thus, even though the prediction rate for this loop branch is very high
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(greater than 99%) the superscalar will take a branch misprediction during almost

every iteration of the outer loop. The superscalar is thus restricted to finding par-

allelism in the inner loop, while the SUDS system exploits parallelism in the outer

loop. In fact, the conditional inside the ComputeForces loop makes things even

worse for the superscalar. This branch is not particularly predictable, and thus

the superscalar is restricted to looking for parallelism over only a relatively small

number of iterations of the inner loop. The SUDS system is finding more concur-

rency largely because it is able to exploit the control independence of the outer

loop upon the inner loop branches.

8.2.2 LZW Decompress

Compression is a technique for reducing the cost of transmitting and storing data.

An example is the LZW compression/decompression algorithm [126], widely used

in modems, graphics file formats and file compression utilities. Example pseu-

docode for the version of LZW decompress used in the Unix compress utility is

shown in Figure 8-4. Each iteration of the outer loop reads a symbol from the in-

put data stream, and traverses an adaptive tree data structure to output a (variable

length) output string corresponding to the input symbol.

Note that the input data stream has been engineered to remove redundant (easy

to predict) patterns. Thus, while the branch prediction rate for any particular static

branch is relatively good, the probability of performing an entire iteration of the

outer loop without any branch mispredictions is close to 0. As a result, Tomasulo's

algorithm is limited to searching for concurrency in a relatively small window of

instructions.

Generalized loop distribution and memory dependence speculation, on the

other hand, can be used to search for concurrency between iterations of the outer

loop. The structure of this loop is much more complex than is that of the program
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outptr = 0
incode = getcode(&input-buf)
while ( incode > EOF

int stackp = 0

codeint code = incode

chartype the-stack[l<<BITS]

if (incode == CLEAR)

freeent = FIRST

if (checkerror(&input-buf))

break; /* untimely death! */

incode = getcode(&input-buf);

/* Special case for KwKwK string. */
if ( code >= freeent )

thestack[stackpl = finchar

stackp = stackp + 1

code = oldcode

/* Generate output characters
in reverse order *7

while ( code >= 256

thestack[stackp] = tabsuffix[code]

stackp = stackp + 1
code = tab-prefix[codel

thestack[stackp] = tabsuffix[code]
stackp = stackp + 1

/* And put them out in forward order */

do

stackp = stackp - 1
outstream[outptr] = the_stack[stackp]

outptr = outptr + 1

while ( stackp > 0 )

/* Generate the new tree entry. */
if ( freeent < maxcode )

tab prefix[free_ent] = oldcode
tabsuffix[free_ent] = tabsuffix[code]
freeent = free-ent + 1

if (check_error(&input-buf)

break; /* untimely death! */

finchar = tabsuffix[code]
oldcode = incode
incode = getcode(&input-buf)

Figure 8-4: Pseudocode for lzw decompress.
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described in the previous section, and thus a considerable amount of analysis and

transformation needed to be done to expose this outer-loop concurrency.

First, several of the scalar variables (e.g., outptr) are globals and one is a call-

by-reference parameter (inputlbuf). Since these scalars would normally be ref-

erenced through loop carried dependent loads and stores, they must be register

promoted before generalized loop distribution runs. The input-buf variable is

referenced inside the getcode subroutine, and thus to enable register promotion,

this subroutine needed to be inlined.

The local array variable, thes tack, must be privatized. In this case the array

privatization is performed using the scope restriction technique described in Sec-

tion 5.5. The equivalence class unification (Section 5.3) analysis proves that mem-

ory accesses to the tab-pref ix, tab-suf f ix and out-stream data structures

are mutually independent.

Both the tab-pref ix and tab-suf f ix data structures are read and written

in a data-dependent fashion during every iteration of the outer loop. This creates

true memory dependences between iterations of the outer loop. Speculative strip

mining and memory dependence speculation are used to dynamically break these

dependences when the data-dependent access pattern allows it.

Next the outptr recurrence variable is reassociated, because it is updated with

an associative operator in the second inner loop. Recall that this variable was orig-

inally a global, and thus register promotion has already been run to turn the refer-

ences from memory operations into register accesses.

Finally, generalized loop distribution finds six critical nodes in the loop. These

correspond to updates to the variables incode, finchar, outptr, oldcode,

f ree-ent and input-buf. When collapsing to the critical node dag we discover

that the updates to incode, inputbuf, and f ree-ent form a cyclic critical path.

The updates to these variables are "intertwined" in the sense that they depend
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SUDS 1.81
idealized superscalar 2.0

Figure 8-5: Comparison of speedups over an inorder pipeline for 1 zw running on
SUDS versus a superscalar.

upon one another. incode is data dependent on inputbuf (through the get-

code routine). The updates to inputbuf, in turn, are control dependent on the

outer loop branch, which is data dependent upon incode. Control dependences

form a cycle between f ree-ent and incode.

Generalized loop distribution thus creates four sequential loops corresponding

to the four cyclic critical paths. The first sequential loop updates incode, in-

putbuf and f ree-ent, and creates deferred execution queues for all subsequent

loops. The second sequential loop corresponds to updating oldcode.

The next loop can be (speculatively) parallelized, and corresponds to evaluat-

ing the parts of the first inner loop and the conditional for the "special case" that

updates the, private, code and stackp variables, and to the conditional updates

to tab-pref ix and tab-suf f ix.

The third sequential loop corresponds to updating f inchar. This is followed

by another parallelizable loop that corresponds to all the updates to the private

array, the-s tack. The iterations of this loop are provably independent of one an-

other, but the code in this loop has also been reordered with respect to the updates

to tab-su f f ix performed in the previous speculatively parallel loop. This is what

makes speculative strip mining necessary. Both parallel loops are part of the same

strip, so the reordering of the code between the two loop bodies can be checked

and, if necessary, corrected.

The fourth sequential loop corresponds to updating outptr. This enables the

final parallelizable loop, which corresponds to the writes to outstream.

Figure 8-5 shows the speedups for the idealized superscalar and for SUDS com-
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pared to running lzw decompress on the in-order single-issue pipeline. Neither

system does particularly well. The superscalar only achieves a speedup of 2x,

while SUDS achieves a speedup of 1.8x. Again the superscalar is limited by its

inability to predict past the exits of the inner loops.

Generalized loop distribution actually finds a great deal more concurrency in

this case than does the idealized version of Tomasulo's algorithm. On the other

hand, this code is particularly memory intensive, and, on the in-order micropro-

cessor, almost all of these memory operations hit in the Li cache. The SUDS mem-

ory dependence speculation system, on the other hand, dramatically increases the

latency of accessing the tab-pre f ix and tab-suf f ix data structures. While gen-

eralized loop distribution is finding enough concurrency to cover a substantial por-

tion of this additional latency, it is not finding quite enough to completely make

up for the lack of Li caching in this case.

8.2.3 A Recursive Procedure

Recursive procedural calls are another way of organizing the control flow in a pro-

gram. Procedural calls, however, are semantically equivalent to jumps, and thus

can be automatically transformed to jumps using generalizations of tail recursion

elimination [107]. In particular, this generalization creates explicit trees of acti-

vation records, and saves continuations to and restores continuations from this

tree [111, 107, 8].

If it is known that sibling procedure calls in the activation tree do not depend

upon one another, then it is legal to traverse the tree in either depth first or breadth

first order [18, 96, 98]. The breadth first traversal tends to execute sibling nodes

in the tree concurrently, but does so at the cost of pushing continuations on to the

front, and popping continuations from the back, of a FIFO queue. Each of the

pointers (to the front and back of the queue) thus forms an implicit critical node in
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Traverse (node)

read (node->parent)

modify (node)

foreach c in node->children

spawn Traverse(c)

Figure 8-6: Pseudocode for the tree traversal routine from the health program.
The spawn keyword is simply an annotation that indicates that sibling calls to
Traverse are guaranteed to correctly run concurrently.

the resulting program. An additional issue with this breadth first implementation

is that a child node may (but will not usually) execute concurrently with its parent,

thus violating a true memory dependence.

I wanted to make sure that generalized loop distribution and the SUDS mem-

ory dependence speculation system were capable of handling these implicit de-

pendences. For this purpose I chose a program called health, written by Martin

Carlisle, that was already annotated with information about the legal concurrency

between sibling calls in its recursive tree traversal routine [20, 135].

Highly simplified pseudocode for the tree traversal routine in heal th is shown

in Figure 8-6. The spawn keyword annotation was inserted by the author to indi-

cate that it is legal to run sibling calls to the Traverse subroutine concurrently.

Note that while it is legal to run sibling calls concurrently, it is not legal to run a

child concurrently with its parent, because the child call will read a memory loca-

tion that may also be modified by the parent. Also, note that, again, Tomasulo's

algorithm will be limited to searching for concurrency within a single call to the

Traverse routine, because the probability of executing an entire call to Traverse

without any branch mispredictions is near 0.

Figure 8-7 demonstrates how the code in Figure 8-6 is transformed to contin-

uation passing style, and then converted to breadth first traversal, by introducing

the explicit f if o array, and head and tail pointers into that array. Note that

this transformation has not improved (or particularly degraded) the performance
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while head < tail

node = fifo[head++]

read (node ->parent)

modify (node)

foreach c in node->children

fifo[++tail] = c

Figure 8-7: After conversion of the recursive Traversal routine to "continuation
passing style," and introduction of a fifo to make traversal breadth-first rather than
depth-first. The routine now has the structure of a loop that can be handled by
generalized loop distribution.

SUDS 2.22
idealized superscalar 1.92

Figure 8-8: Comparison of speedups over an inorder pipeline for health running
on SUDS versus a superscalar.

of Tomasulo's algorithm, because it is still the case that, due to branch mispredic-

tions, it can only search for concurrency within a single iteration of the outer loop.

After speculative strip mining on this loop the two critical nodes found by gen-

eralized loop distribution correspond to the updates to head and tail. In addi-

tion, the tail variable is updated in the inner loop, and thus must be reassociated

by generalized recurrence reassociation.

When the loop distributed code is run concurrently under the SUDS memory

dependence speculation system it tends to be the case that there are very few mem-

ory misspeculations. There do tend to be a few memory misspeculations when the

loop first starts to execute, because the root of the tree attempts to execute concur-

rently with its immediate children. After getting past this initial misspeculation

phase however, the tree branches out widely enough that no more memory sys-

tem conflicts occur.

As a result of these factors, the SUDS system runs this code about 15% faster

than does the idealized model of Tomasulo's algorithm. Again, this is despite the

fact that only about 50% of the memory accesses in this program are spills to ac-

tivation frames that the SUDS system is capable of Li caching. This program is
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particularly memory intensive because the operations performed on each node

involve linked list traversals. The working set for this program, moreover, is rel-

atively small, and fits completely in the superscalar's Li cache, so the superscalar

is paying almost no latency for L2 cache accesses, while SUDS is paying L2 cache

latencies for approximately 50% of the loads operations it performs.

8.3 Discussion

In this section I discuss three limitations of the SUDS prototype system, and ways

in which they might be addressed in future work. The first limitation is that SUDS

lacks an effective Li cache. I will discuss subsequently why I believe this to be an

implementation error, rather than a more fundamental design flaw. The second

limitation has to do with the scalability of the required compiler support. In par-

ticular, both the 1zw and health applications required inter-procedural analysis

and inlining to perform the required register promotion transformation described

in Section 5.4. It is not clear that the inlining transformation, in particular, will ef-

fectively scale to applications that are significantly larger than the ones described

here. Finally, I will discuss limitations on the parallel scalability of the SUDS sys-

tem.

An additional limitation of the SUDS system, as with all existing memory de-

pendence speculation systems, is that it implements a flat, rather than nested,

transaction protocol. As a result, only one granularity of parallelism can be ex-

ploited at a time. This limitation, and some issues that need to be solved before it

can be addressed, are discussed in Chapter 10.

148



Li Caching

In all three of the applications discussed above, SUDS achieved speedups approx-

imately equal to, or better than, those achieved by the idealized model of Toma-

sulo's algorithm. In all cases the SUDS system was particularly handicapped by

its lack of Li caching. The lack of Li caching in the SUDS system, however, is not

fundamental. As was mentioned briefly at the end of Section 7.3, it is relatively

straight forward to add a caching system on top of SUDS, and in fact a software

based Li cache was implemented on top of an earlier version of SUDS [128].

The basic idea behind adding caching on top of SUDS would be to implement a

standard directory based cache coherence scheme [21, 10, 2]. The key to a directory

based cache coherence scheme is that the directory is guaranteed to see all the traf-

fic to a particular memory location, and in the same global order that is observed

in all other parts of the system. Thus, the directory controller can simply forward

the list of requests to the concurrency control system, which can then process the

information out-of-band.

This would all work fine, but our initial studies showed that the temporal lo-

cality exploitable by this scheme is extremely low. This is true for several reasons.

First, because the Li caches are distributed among eight execution units, an Li

fetch by one execution unit does not improve the cache hit rate of any of the seven

other execution units. There is another issue, which is not a problem, but that

severely limits the temporal locality exploitable by an Li cache implemented over

the SUDS runtime. This is that the SUDS system is already directing between 30%

and 50% of the memory traffic to the Li cache in the form of (non-shared) accesses

to activation frames. (Primarily for register spills). While the register spill traf-

fic does have a high temporal locality of reference, the rest of the memory traffic,

which would be directed to the cache coherence system, does not [128].

The reason that the idealized superscalar is getting Li cache miss rates signif-

149



icantly better than is the SUDS system lies in the superscalar's 8-word wide Li

cache lines. Essentially, the superscalar is able to prefetch useful data before it is

required. The SUDS system, without Li caching, is not able to leverage this ad-

vantage.

There are three reasons I did not implement coherent Li caches for SUDS. The

first had to do with my misunderstanding the importance of the spatial locality

exploited by wide cache lines. After the initial studies showing the low tempo-

ral locality available in the memory system (both in Wilson's thesis [128] and in

several informal studies we never published), I became mistakenly convinced that

caching wouldn't really buy much.

The second reason I did not implement coherent Li caches for SUDS was that

I wasn't sure how to reconcile word-level concurrency control with multi-word

cache lines. I now believe that information about the specific words in a line that

have been accessed can probably be piggy-backed on the standard coherence mes-

sages, but more work will need to be done to make this efficient.

The third reason I did not implement coherent Li caches for SUDS had to do

with an, arguably, unreasonable fixation that I had on implementing cache con-

trollers in software. It turned out that while this can be spectacularly successful

in specific cases [84], it works rather less well for random access data memories.

Thus, as described in Wilson's thesis [128], we were unable to implement an Li

data cache with latencies that were significantly lower than the observed latencies

in the transactional L2 cache implemented in the final SUDS prototype. In the fu-

ture I plan to address this deficiency in the context of a hardware implemented Li

cache coherence scheme.
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Compiler Scalability

A second question with regard to the SUDS prototype has to do with the scala-

bility of the compiler analyses and transformations. The scalar queue conversion

transformation, unidirectional renaming transformation and generalized loop dis-

tribution transformations are all intra-procedural. Although I have not done any

complexity analysis on these algorithms, several of the control flow graphs in the

programs I looked at are relatively large (hundreds of nodes), and on the occasions

when I made the mistake of implementing O(N 3 ) algorithms, I noticed immedi-

ately, and was forced to reimplement.

The equivalence class unification and register promotion algorithms described

in Sections 5.3 and 5.4, on the other hand, require inter-procedural pointer analysis.

For this analysis I relied on Radu Rugina's span tool, which is believed to scale, in

practice, to programs that are relatively large [97].

A potentially more severe problem was that several of these programs (and

in particular lzw decompress) were written using global (scalar) variables that

were modified inside subprocedures. In order to perform scalar queue conversion

on these variables it was necessary to promote them to registers used and modified

within the loop being transformed. To perform this register promotion, however,

required inlining the corresponding subprocedures.

It is unlikely that such inlining will scale to programs much larger than sev-

eral tens of thousands of lines of code. It is an open question (and as far as I

know, an unexamined question), whether there is a way of performing efficient

inter-procedural register promotion. One approach might be to, on an procedure-

by-procedure basis, promote globals to call-by-reference parameters, and then pro-

mote call-by-reference to copy-in-copy-out. Effecting such a scheme would be an

interesting direction for future research.
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Parallel Scalability

A third question with regard to the SUDS prototype has to do with the ability of

the system to scale to larger degrees of parallelism. The answer to this question

actually depends on the application one is looking at. In the case of the three

applications discussed in this chapter, the answer is that they do not scale beyond

about eight compute nodes.

The reasons are threefold. First, parallel speedups are limited by Amdahl's

law, and all of the applications considered here are "do-across" loops, rather than

"do-all" loops. That is, these loops contain scalar loop carried dependences (the

"critical nodes" identified by generalized loop distribution), and these loop carried

dependences limit the available parallelism. For example, the 1 zw program has

six critical nodes, and the fraction of execution time spent in the sequential code

corresponding to these critical nodes grows as parallelism is increased. Informal

experimentation showed that 1 zw sped up by only an additional 2% when run on

a system with 16 compute nodes instead of the 8 node system described above.

The second impediment to speedup involves the "birthday paradox" problem

described in Section 7.2.4. Recall that this is a problem fundamental to all memory

dependence speculation systems, not one specific to the SUDS system. For exam-

ple, the moldyn program modifies a sparse-matrix data structure in an effectively

random pattern. Informal experimentation showed that moldyn exhibits speedup

curves qualitatively similar to those shown in Figure 7-7. In fact, the speedup

curves for moldyn are worse than those shown in the figure, because the figure

models only a single update per thread, while in moldyn each thread makes, on

average, several hundred updates to the shared data structure. For the problem

size of 256,000 particles described in Section 8.2.1 maximum speedup occured in a

system with eight compute nodes. A sixteen compute node system exhibited less

speedup due to an increased number of concurrency violations versus the eight
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node system.

The final impediment to parallel speedup involves the fundamentally dis-

tributed nature of the memory system, as described in Section 1.1. That is, as the

size of the memory system grows, the average latency to access a random element

in the memory system grows as the square root of the memory size. This problem

does not place any maximum limit on the speedup achievable by any application,

but it does mean that one can not expect performance to scale linearly as problem

size grows.
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Chapter 9

Related Work

This chapter describes the relationship of the work in this thesis to previous work

in scalar expansion, loop distribution, program slicing, thread-level speculation,

critical path reduction and data speculation.

9.1 Scalar Queue Conversion

The idea of renaming to reduce the number of storage dependences in the depen-

dence graph has long been a goal of parallelizing and vectorizing compilers for

Fortran [68]. The dynamic closure creation done by the queue conversion algo-

rithm in Section 3 can be viewed as a generalization of earlier work in scalar expan-

sion [68, 29]. Given a loop with an index variable and a well defined upper limit on

trip count, scalar expansion turns each scalar referenced in the loop into an array

indexed by the loop index variable. The queue conversion algorithm works in any

code, even when there is no well defined index variable, and no way to statically

determine an upper bound on the number of times the loops will iterate. More-

over, earlier methods of scalar expansion are heuristic. Queue conversion is the

first compiler transformation that guarantees the elimination of all register storage

dependences that create cycles across what would otherwise be a unidirectional
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cut.

Given a loop containing arbitrary forward control flow, loop distribution [68]

can reschedule that graph across a unidirectional cut [59, 51], but since loop dis-

tribution does no renaming, the unidirectional cut must be across the conserva-

tive program dependence graph (i.e., including the register storage dependences).

Queue conversion works across any unidirectional cut of the value dependence

graph. Because scalar queue conversion always renames the scalars that would

create register storage dependences, those dependences need not be considered

during analysis or transformation. It is sometimes possible to perform scalar ex-

pansion before loop distribution, but loop distribution must honor any register

storage dependences that are remaining.

Moreover, existing loop distribution techniques only handle arbitrary forward

control flow inside the loop, and do so by creating arrays of predicates [59, 51]. The

typical method is to create an array of three valued predicates for each branch con-

tained in the loop. Then on each iteration of the top half of the loop a predicate is

stored for each branch (i.e., "branch went left", "branch went right" or "branch was

not reached during this iteration"). Any code distributed across the cut tests the

predicate for its closest containing branch. This can introduce enormous numbers

of useless tests, at runtime, for predicates that are almost never true.

Queue conversion, on the other hand, creates and queues closures if and only if

the dependent code is guaranteed to run. Thus, the resulting queues are (dynami-

cally) often much smaller than the corresponding set of predicate arrays would be.

More importantly, queue conversion works across inner loops. Further, because

queue conversion allocates closures dynamically, rather than creating static arrays,

it can handle arbitrary looping control flow, in either the outer or inner loops, even

when there is no way to statically determine an upper bound on the number of

times the loops will iterate.

156



Feautrier has generalized the notion of scalar expansion to the notion of array

expansion [38]. As with scalar expansion, Feautrier's array expansion works only

on structured loops with compile time constant bounds, and then only when the

array indices are affine (linear) functions of the loop index variables. Feautrier's

technique has been extended to the non-affine case [62], but only when the trans-

formed array is not read within the loop (only written). The equivalence class uni-

fication and register promotion techniques described in Chapter 5 extend scalar

queue conversion to work with structured aggregates (e.g., C structs), but not

with arrays. Instead, scalar queue conversion relies on the memory dependence

speculation system described in Chapter 7 to parallelize across array references

(and even arbitrary pointer references).

The notion of a unidirectional cut defined in Section 3.3 is similar to the no-

tion, from software engineering, of a static program slice. A static program slice is

typically defined to be the set of textual statements in a program upon which a

particular statement in the program text depends [125]. Program slices are often

constructed by performing a backward depth first search in the value dependence

graph from the nodes corresponding to the statements of interest[90]. This pro-

duces a unidirectional cut.

In Section 3.4 we proved that we could produce an executable control flow

graph that includes exactly the nodes from the top of a unidirectional cut of the

value dependence graph. Yang has proved the similar property, in the context of

structured code, that an executable slice can be produced by eliding all the state-

ments from the program text that are not in the slice [131]. Apparently it is un-

known, given a program text with unstructured control flow, how to produce a

control flow graph from the text, elide some nodes from the graph and then ac-

curately back propagate the elisions to the program text [13].' Generalizations of

'A potential solution, of which I am unable to find any mention in the literature, would be to
associate information about goto statements with edges in the control flow graph, rather than nodes.
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Yang's result to unstructured control flow work only by inserting additional de-

pendences into the value dependence graph [13, 24], making the resulting slices

larger and less accurate. The proof in Section 3.4 demonstrates that when work-

ing directly with control flow graphs (rather than program texts) this extra work is

unnecessary, even when the control flow is irreducible.

Further, program slicing only produces the portion of the program correspond-

ing to partition A of a unidirectional cut A-B. In Sections 3.5 and 3.6 we demon-

strated how to queue and then resume a set of closures that reproduce the execu-

tion of partition B as well.

The reason queue conversion generalizes both loop distribution and program

slicing is that queue conversion makes continuations [111, 107, 81 explicit. That is, any

time we want to defer the execution of a piece of code, we simply create, and

save, a closure that represents that code, plus the suspended state in which to run

that code. It is standard to compile functional languages by making closures and

continuations explicit [107, 8], but this set of techniques is relatively uncommon in

compilers for imperative languages.

In fact, the SSA based static renaming optimization in Chapter 4 was antici-

pated by work from formal programming language semantics that demonstrates

that continuation passing style representations and SSA form flow graphs of im-

perative programs are semantically equivalent [58]. Based on this work, Appel has

suggested that a useful way of viewing the 4 nodes at the join points in SSA flow

graphs is as the point in the program at which the actual parameters should be

copied into the formal parameters of the closure representing the code dominated

by the 4 node [7]. This roughly describes what the algorithm given in Chapter 4

does.

That is, given a maximal group 3 containing a use of variable x for which we

Hopefully, this will be investigated in the future.
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are going to create a closure, we rename x to x' (which can be viewed as the formal

parameter). Then we introduce a new closure, containing the instruction x' = x, at

the 4 point which shares an environment containing x' with P. It is useful to view

the new closure as simply copying the actual parameter, x, to the formal parameter

x'.

Traditional superscalar micro-architectures do renaming only at the top of the

stack by having the compiler register allocate automatic variables and then re-

naming the registers at runtime [117, 57, 104, 83, 105]. This technique is used

ubiquitously in modern architectures because it performs at least enough renam-

ing to reach the parallelism limits imposed by flow dependences [124]. Unfortu-

nately, the renamed registers are an extraordinarily constrained resource, making

it impossible for superscalars to exploit flow dependences that can be eliminated

through control dependence analysis [40].

Dataflow architectures [35, 34, 91, 28] do as much (or more) renaming as does

queue conversion, but at the cost of insisting that all programs be represented

purely functionally. This makes converting to dynamically allocated closures easy

(because loops are represented as recursive procedures), but substantially restricts

the domain of applicability. Queue conversion works on imperative programs,

and, at least for scalar variables, performs renaming in a similar way.

Even more troubling than the inability of dataflow architectures to execute im-

perative programs, was that they contained no provision for handling overflow

of renaming buffers [27]. Recently, work on efficient task queue implementa-

tions for explicitly parallel functional programming languages [85] has been ex-

tended to provide theoretical bounds on the renaming resources required by such

systems [18, 17]. SUDS provides constant bounded resource guarantees through

its checkpoint repair mechanism. This mechanism allows SUDS to rollback and

sequentially reexecute any program fragment that exhausts renaming resources
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when run in parallel. Further, the SUDS memory dependence speculation mech-

anism allows SUDS to automatically parallelize sequential programs, written in

conventional imperative programming languages, rather than relying on program-

mers to explicitly parallelize their programs.

The original motivation for queue conversion comes from previous work in

micro-optimization. Micro-optimization has two components. The first, interface

decomposition involves breaking up a monolithic interface into constituent primi-

tives. Examples of this from computer architecture include Active Messages as a

primitive for building more complex message passing protocols [121], and inter-

faces that allow user level programs to build their own customized shared memory

cache coherence protocols [22, 70, 951. Examples of the benefits of carefully chosen

primitive interfaces are also common in operating systems research for purposes as

diverse as communication protocols for distributed file systems [99], virtual mem-

ory management [50], and other kernel services [16, 55].

The second component of micro-optimization involves using automatic com-

piler optimizations (e.g., partial redundancy elimination) to leverage the decom-

posed interface, rather than forcing the application programmer to do the work.

This technique has been used to improve the efficiency of floating-point opera-

tions [31], fault isolation [122], shared memory coherence checks [100], and mem-

ory access serialization [37, 14]. On Raw, micro-optimization across decomposed

interfaces has been used to improve the efficiency of both branching and mes-

sage demultiplexing [74], instruction cache tag checks [84, 80], and data cache tag

checks [86, 130].

Queue conversion micro-optimizes by making the renaming of scalar variables

an explicit operation. Because queue conversion renames into dynamic memory,

rather than a small register file, instructions can be scheduled over much longer

time frames than they can with Tomasulo's algorithm. On the other hand, queue
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conversion can limit the costs of renaming to exactly those points in a program

where an anti- dependence or output- dependence might be violated by a specific

schedule. Further, we will show in Chapter 4 that, because scalar queue conversion

makes renaming an explicit operation, the compiler can move the renaming point

to a point in the program between the production of a value and its consumption,

thus minimizing the number of times the renaming must occur.

9.2 Loop Distribution and Critical Path Reduction

As described above, generalized loop distribution generalizes loop distribu-

tion [68, 59, 511, by using scalar queue conversion to guarantee the elimination

of all scalar anti- and output- dependences. Thus, generalized loop distribution

simultaneously does the work of scalar expansion and loop distribution. In addi-

tion, generalized loop distribution distributes loops that contain arbitrary control

flow, including inner loops.

A transformation similar to loop distribution, called critical-path reduction has

been applied in the context of thread-level speculative systems [120, 109, 133].

Rather than distribute a loop into multiple loops, critical-path reduction attempts

to reschedule the body of the loop so as to minimize the amount of code executed

during an update to a critical node. While the transformation is somewhat differ-

ent than that performed by loop distribution, loop distribution and critical-path

reduction share the goal of trying to minimize the time observed to update state

visible outside the loop body.

Schlansker and Kathail [101] have a critical-path reduction algorithm that op-

timizes critical paths in the context of superblock scheduling [53], a form of trace

scheduling [41]. Vijaykumar implemented a critical-path reduction algorithm for

the multiscalar processor that moves updates in the control flow graph [120]. Stef-
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fan et al have implemented a critical-path reduction algorithm based on Lazy Code

Motion [63] that moves update instructions to their optimal point [109, 133]. As

with previous loop distribution algorithms, none of these critical-path reduction

algorithms can reschedule loops that contain inner loops.

9.3 Memory Dependence Speculation

Timestamp based algorithms have long been used for concurrency control in trans-

action processing systems. The memory dependence validation algorithm used in

SUDS is most similar to the "basic timestamp ordering" technique proposed by

Bernstein and Goodman [15]. More sophisticated multiversion timestamp order-

ing techniques [94] provide some memory renaming, reducing the number of false

dependences detected by the system at the cost of a more complex implementation.

Optimistic concurrency control techniques [69], in contrast, attempt to reduce the

cost of validation, by performing the validations in bulk at the end of each trans-

action.

Memory dependence speculation is even more similar to virtual time systems,

such as the Time Warp mechanism [54] used extensively for distributed event

driven simulation. This technique is very much like multiversion timestamp or-

dering, but in virtual time systems, as in data speculation systems, the assignment

of timestamps to tasks is dictated by the sequential program order. In a transac-

tion processing system, each transaction can be assigned a timestamp whenever it

enters the system.

Knight's Liquid system [61, 60] used a method more like optimistic concurrency

control [69] except that timestamps must be pessimistically assigned a priori, rather

than optimistically when the task commits, and writes are pessimistically buffered

in private memories and then written out in serial order so that different processing

162



elements may concurrently write to the same address. The idea of using hash

tables rather than full maps to perform independence validation was originally

proposed for the Liquid system.

Knight also pointed out the similarity between cache coherence schemes and

coherence control in transaction processing. The Liquid system used a bus based

protocol similar to a snooping cache coherence protocol [47]. SUDS uses a scalable

protocol that is more similar to a directory based cache coherence protocol [21, 10,

2] with only a single pointer per entry, sometimes referred to as a DiriB protocol.

The ParaTran system for parallelizing mostly functional code [116] was another

early proposal that relied on speculation. ParaTran was implemented in software

on a shared memory multiprocessor. The protocols were based on those used in

Time Warp [54], with checkpointing performed at every speculative operation. A

similar system, applied to an imperative, C like, language (but lacking pointers)

was developed by Wen and Yelick [127]. While their compiler could identify some

opportunities for privatizing temporary scalars, their memory dependence spec-

ulation system was still forced to do renaming and forward true-dependences at

runtime, and was thus less efficient than SUDS.

SUDS is most directly influenced by the Multiscalar architecture [43, 106]. The

Multiscalar architecture was the first to include a low-latency mechanism for ex-

plicitly forwarding dependences from one task to the next. This allows the com-

piler to both avoid the expense of completely serializing do-across loops and

also permits register allocation across task boundaries. The Multiscalar validates

memory dependence speculations using a mechanism called an address resolution

buffer (ARB) [43, 44] that is similar to a hardware implementation of multiversion

timestamp ordering. From the perspective of a cache coherence mechanism the

ARB is most similar to a full-map directory based protocol.

More recent efforts have focused on modifying shared memory cache coher-
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ence schemes to support memory dependence speculation [42, 48, 110, 66, 56, 49].

SUDS implements its protocols in software rather than relying on hardware mech-

anisms. In the future SUDS might permit long-term caching of read-mostly values

by allowing the software system to "permanently" mark an address in the times-

tamp cache.

Another recent trend has been to examine the prediction mechanism used by

dependence speculation systems. Some early systems [61, 116, 49] transmit all de-

pendences through the speculative memory system. SUDS, like the Multiscalar,

allows the compiler to statically identify true-dependences, which are then for-

warded using a separate, fast, communication path. SUDS and other systems in

this class essentially statically predict that all memory references that the compiler

can not analyze are in fact independent. Several recent systems [87, 119, 25] have

proposed hardware prediction mechanisms, for finding, and explicitly forward-

ing, additional dependences that the compiler can not analyze.

Memory dependence speculation has also been examined in the context of fine-

grain instruction level parallel processing on VLIW processors. The point of these

systems is to allow trace-scheduling compilers more flexibility to statically reorder

memory instructions. Nicolau [891 proposed inserting explicit address compar-

isons followed by branches to off-trace fix up code. Huang et al [52] extended

this idea to use predicated instructions to help parallelize the comparison code.

The problem with this approach is that it requires m x n comparisons if there

are m loads being speculatively moved above n stores. This problem can be al-

leviated using a small hardware set-associative table, called a memory conflict

buffer (MCB), that holds recently speculated load addresses and provides single

cycle checks on each subsequent store instruction [451. An MCB is included in the

Hewlett Packard/Intel IA-64 EPIC architecture [12].

The LRPD test [93] is a software speculation system that takes a more coarse
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grained approach than SUDS. In contrast to most of the systems described here,

the LRPD test speculatively block parallelizes a loop as if it were completely data

parallel and then tests to ensure that the memory accesses of the different process-

ing elements do not overlap. It is able to identify privatizable arrays and reduc-

tions at runtime. A directory based cache coherence protocol extended to perform

the LRPD test is described in [134]. SUDS takes a finer grain approach that can

cyclically parallelize loops with true-dependences and can parallelize most of a

loop that has only a few dynamic dependences.
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Chapter 10

Conclusion

I believe that the time is right for a revival of something similar to the "dataflow"

architectures of the last decade. The dataflow machines of the past, however, had

two problems. Fortunately, a system like SUDS can help to address these problems.

The first problem was that dataflow machines did not run imperative pro-

grams, but only programs written in functional programming languages [35, 34,

91, 85, 28, 18, 17].1 Scalar queue conversion can help address this problem because

it converts scalar updates into function (closure) calls.

The second problem with dataflow machines was that their renaming mecha-

nisms were not fundamentally deadlock free [27]. Checkpoint repair mechanisms,

like that provided by the SUDS transactional memory speculation system, can help

address this problem by rolling back to a checkpointed state whenever the renam-

ing mechanism overflows the available buffers.

On the other hand, dataflow machines have a desirable property that the

SUDS system does not. This is that dataflow machines allow the expression

of concurrency at the finest granularity, while the runtime system can be made
1More recent dataflow languages, like Cilk [18], permit imperative state updates. Unfortunately,

the programmer is still forced to write their parallel code in terms of recursive calls to stateless
functions. This actually makes the problem worse, since unlike the pure functional languages used
in early dataflow machines, Cilk provides no way for the compiler to automatically check that
programmers have not unwittingly inserted data races into their programs.
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responsible for choosing the granularity most appropriate for the available re-

sources [85, 18, 17].

SUDS, like all existing memory dependence speculation and thread specula-

tion systems, implements a flat transaction model, and thus allows only one level

of parallelism to be expressed in any particular loop. Consider the example pro-

gram used throughout Chapters 2, 3 and 4 (shown in Figure 2-2). In this example

we decided to use generalized loop distribution to parallelize the outer loop, but,

depending on the relative trip counts of the inner and outer loops this choice could

have been disastrous. If the outer loop iterates many times while the inner loop

iterates only a few times then generalized loop distribution on the outer loop will

work quite well. Most of the concurrency would be discovered and exploited. The

deferred execution queues, created by scalar queue conversion, would have stayed

relatively small because the size of these queues is proportional to the trip count

of the inner loop.

On the other hand, if the outer loop iterates only a few times and the inner loop

iterates many times, then applying generalized loop distribution to the outer loop

would produce poor results. The system would try to exploit concurrency only in

the outer loop. Meanwhile, each iteration of the outer loop would correspond to

a thread, and that thread would create a deferred execution queue corresponding

to the work in the inner loop. Since the inner loop executes many times, the de-

ferred execution queues grow large, and could potentially overflow the available

memory resources. This overflow would invoke the (relatively expensive) check-

point recovery mechanism. Thus, the loop would end up executing completely

sequentially with the added cost of attempting and then aborting each speculative

strip.

One solution to this problem has been to develop heuristic compiler analyses

to try to guess which loops will be most profitable to parallelize [133]. Another
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(not very attractive) solution would be to apply speculative strip mining and gen-

eralized loop distribution to every loop, and then use a runtime predictor to decide

which loop in each loop nest should be speculatively parallelized.

Combining dataflow with scalar queue conversion and transactional concur-

rency control might provide an attractive alternative. In this case scalar queue

conversion could be applied to every unidirectional cut in an imperative program

that might expose concurrency. The result would be that (except for memory de-

pendences) the program would be, essentially, transformed into a fine grain, func-

tional, dataflow program. The runtime system could then, as in lazy task sys-

tems [85, 18, 17] dynamically choose to invoke each closure either as a conventional

procedure call or as a concurrent thread as parallel resource become available.

To actually build such a system one would have to solve a number of problems.

There are at least two problems that seem particularly difficult (and therefore, fun)

to me. The first is how to reconcile the nested concurrency exposed by the system

with the speculative transactional model. SUDS, like all other existing memory

dependence and thread speculation systems, implements a flat transaction model.

Theoretical nested transaction processing protocols have been proposed [88, 541,

but actual, efficient, implementations of such systems seem to be in short supply.

In nested transaction systems even seemingly simple problems, like efficient times-

tamp implementation, seem to require baroque solutions (see, for example, [116]).

A second problem has to do with how one could extend the existing work on dy-

namic memory dependence prediction [87, 119, 25] to nested transaction systems.

Perhaps then, this dissertation, in the end, raises more questions than it an-

swers. In the introduction I stated that the SUDS system was built on three tech-

niques. They were dynamic scalar renaming, control dependence analysis, and

speculation. I believe that these three techniques are necessary for finding and ex-

ploiting concurrency. On the other hand, I have not shown, (and do not believe),
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that these three techniques are sufficient for finding and exploiting concurrency. I

like to think that this dissertation brings us a step closer to the goal of building a

microprocessor that effectively finds and exploits concurrency in the kinds of pro-

grams that programmers really write. Reaching that goal will, I think, require a

journey that is both long and enjoyable.
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