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ABSTRACT

In this thesis we address the problem of estimating changes in surface reflectance in
hyperspectral image cubes, under unknown multiplicative and additive illumination noise.
Rather than using the Empirical Line Method (ELM) or physics-based approaches, we assumed
the presence of a prior reflectance image cube and ensembles of typical multiplicative and
additive illumination noise vectors, and developed algorithms which estimate reflectance using
this prior information. These algorithms were developed under the additional assumptions that
the illumination effects were band limited to lower spatial frequencies and that the differences in
the surface reflectance from the prior were small in area relative to the scene, and have defined
edges. These new algorithms were named Surface Prior Information Reflectance Estimation
(SPIRE) algorithms.

Spatial SPIRE algorithms that employ spatial processing were developed for six cases
defined by the presence or absence of the additive noise, and by whether or not the noise signals
are spatially uniform or varying. These algorithms use high-pass spatial filtering to remove the
noise effects. Spectral SPIRE algorithms that employ spectral processing were developed and
use zero-padded Principal Components (PC) filtering to remove the illumination noise.
Combined SPIRE algorithms that use both spatial and spectral processing were also developed.
A Selective SPIRE technique that chooses between Combined and Spectral SPIRE reflectance
estimates was developed; it maximizes estimation performance on both modified and unmodified
pixels.

The different SPIRE algorithms were tested on HYDICE airborne sensor hyperspectral data,
and their reflectance estimates were compared to those from the physics-based ATmospheric
REMoval (ATREM) and the Empirical Line Method atmospheric compensation algorithms.
SPIRE algorithm performance was found to be nearly identical to the ELM ground-truth based
results. SPIRE algorithms performed better than ATREM overall, and significantly better under
high clouds and haze. Minimum-distance classification experiments demonstrated SPIRE's
superior performance over both ATREM and ELM in cross-image supervised classification
applications. The taxonomy of SPIRE algorithms was presented and suggestions were made
concerning which SPIRE algorithm is recommended for various applications.

Thesis Supervisor: David H. Staelin
Title: Professor of Electrical Engineering
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Chapter 1

Introduction

1.1 A Simple Experiment

The research in this thesis was inspired by a simple experiment first done over thirty

years ago (Land, 1964). Figure 1.1 depicts this experiment. Take adjacent red and blue pieces

of paper and illuminate them with a controlled white light. A human observer viewing both

pieces of paper simultaneously will see the red paper as red and the blue paper as blue. Measure

the optical radiation coming from the red paper in the short, middle, and long wavelength

channels of the human eye color receptors (Kaiser and Boynton, 1996, Spillman and Werner,

1990, Dowling, 1987). Next, adjust the source illumination so that the reflected light from the

blue paper in these three channels becomes identical to what was previously reflected by the red

paper under the white light. Now ask the human observer what color the two pieces of paper

have. The observer will still see the blue paper as blue and the red paper as red, despite the fact

that the blue paper is now radiating the exact same three channel spectrum which the red paper

had radiated previously.

These surprising results (at the time), spurred the development of human vision color

perception models and algorithms to emulate them. These "color constancy" algorithms all

reduce to a high-pass spatial filtering operation in each wavelength band, that eliminates low

spatial frequencies where the illumination effects are most pronounced, while retaining the

higher spatial frequency content of the surface edges in the scene (Hurlbert, 1986, Horn, 1986).

While low spatial frequencies of the surface are lost, the mean of the surface reflectance is

restored from a global average mean of all possible scenes, assumed to be built into humans by
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Figure 1.1. A simple experiment in human color constancy. In (a), a white illumination source
irradiates adjacent blue and red pieces of paper in the three human eye spectral channels at
short (s), medium (m), and long (1) wavelengths (A). The reflected radiances seen by the human
eye from each piece ofpaper are depicted next to them. In (b), the source illumination has been
changed so that the reflected radiance from the blue paper is the same as that of the red paper in
(a). In both (a) and (b), a human observer sees the blue paper as having the color blue, and the
red paper as having the color red
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Figure 1.2. Block diagram of lightness algorithm emulating human color constancy processing.
Each of the three short (s), medium (m), and long () spectral wavelength channels are processed
independently to estimate reflectance. In each channel, the radiance image is spatially high-
pass filtered in log space to remove illumination effects which tend to be confined to low spatial
frequencies. To restore at least some of the reflectance low frequency information lost in the
filtering, the mean (zero spatial frequency) is restored using a global mean for all scenes. At
each point in the image, the three channel reflectance values can be mapped to a color space.
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evolution. This is depicted in Figure 1.2. At each point in the scene, the resulting three

reflectance values can be mapped to a three dimensional color space to identify the color of each

material in the scene.

Such color constancy algorithms have historically been referred to as "lightness"

algorithms since they calculate the lightness and darkness of materials relative to each other in

each channel. Physically, this lightness is determined by the reflectance, with high reflectance

corresponding to high lightness. Intuitively we can see how such algorithms work in Figure 1.1.

In both (a) and (b), blue is brighter, or lighter than red in the s-channel, blue and red are equal in

the m-channel, and blue is darker than red in the 1-channel. These relative lightness ratios are

used to identify the colors, independent of the spectral content of the source illumination.

Today, sensors exist which collect images in far more spectral channels than the three of

the human eye. These multispectral and hyperspectral sensors are used in many important

remote sensing applications in which the surface spectral reflectance must be estimated.

Currently, the utility of such sensors is limited because varying illumination conditions,

analogous to those in the simple experiment described above, make it difficult to estimate

surface reflectance. Color, as perceived by humans, is essentially a three-channel measure of

surface spectral reflectance. Therefore, one can pose the question:

Can the principles embodied by color constancy algorithms be used in remote sensing

applications to estimate surface reflectance?

We note that color constancy algorithms employ prior knowledge to restore information

about the surface reflectance that is lost in the spatial filtering. As more and more spacebased
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and airborne sensor systems are deployed in remote sensing applications, we are approaching a

time when all parts of the Earth's surface will be routinely imaged. In such a situation, the

problem becomes one of detecting and estimating changes in reflectance, with prior information

available in the form of previous images and estimates of reflectance based on them. Therefore,

a second question can be posed:

How can we best make use of prior estimates of surface reflectance to estimate changes

in the current reflectance of a newly sensed image?

Given that the human visual system has only three spectral channels, it is not surprising

that our color constancy processing relies on spatially filtering each spectral channel image

independently of the others. However, since modern sensors employ hundreds or even

thousands of spectral channels, this leads to a third question:

How can we make use of the information in the spectral dimension, along with that in the

spatial dimension, to filter out the illumination effects and estimate reflectance?

We note that estimating changes in reflectance in a current image with respect to a prior

reflectance image is equivalent to estimating the reflectance of the entire new image and then

comparing it to the prior reflectance. Therefore, these three questions can be combined into one

central question to be addressed by this thesis:

How can we best estimate the surface reflectance of an image using spatial processing,
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spectral processing, and a prior estimate of the surface reflectance?

In the remainder of this introductory chapter, we will briefly review remote sensing

applications and sensors, and describe the specific research goals and organization of this thesis.

1.2 Estimation of Surface Spectral Reflectance in Sensed Images

A fundamental problem in many imaging and remote sensing problems is the estimation

of the surface reflectance of objects and materials in an imaged scene. The scene radiance

measured by a sensor is generated by complex physical interactions between the source

illumination, material surfaces, and the intervening atmosphere. The solar angle and often

unpredictable atmospheric conditions introduce multiplicative and additive noise effects on top

of the reflectance signal of interest. If theses noise effects were always static, then it would be a

simple matter to measure them once and use them to solve for the reflectance in all future

images. Unfortunately, the temporally varying state of the atmosphere due to changing weather

causes these noise effects to vary unpredictably. These illumination effects must therefore be

compensated and removed in order to estimate the surface reflectance of the scene.

In remote sensing applications, this problem area is usually referred to as atmospheric

compensation ("atmospheric correction" is also used in the literature), since most unpredictable

effects are caused by the intervening atmosphere. In other applications, such as mobile robotics,

the unpredictable variability of the illumination conditions can be caused by unknown changes in

the source illumination intensity, spectral content, or geometry. In applications where temporal

changes in surface reflectance are to be identified and measured, one must separate changes in

the sensed image caused by varying multiplicative and additive (e.g. due to scattering)

illumination effects, from those caused by changes in surface reflectance. Also, the scene
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reflectance and illumination can vary both spatially across the scene and across the spectral

channels of the sensor.

1.3 Remote Sensing

Remote sensing covers a broad range of applications as well as a broad range of the

electromagnetic spectrum from visible to microwave bands, including thermal infrared

(Schowengerdt, 1997; Richards, 1993; Lillesand and Kiefer, 1994, Schott, 1997). Remote

sensing applications include:

* Monitoring and assessing changes in the Earth's environment such as global

warming, ozone depletion, land use, urban growth, etc.

" Monitoring and assessing agricultural crops

* Exploration for non-renewable resources such as oil, minerals, etc.

" Management of renewable natural resources such as forests and wetlands

" Meteorology and weather forecasting

* Military surveillance and reconnaissance

There is often a distinction made between passive and active remote sensing. Passive

remote sensing is usually defined as using a sensor that measures natural radiation reflected or

emitted by the scene. In active remote sensing, pulsed radar or laser sources are used by the

sensor, and the reflected or scattered radiation measured. There are also applications where a

steady artificial light source is used by the sensor. Such sensors technically must be considered

active sensors since the sensor controls the light source, but the data processing problem is nearly

identical to that of passive remote sensing. In this thesis we will consider remote sensing and

imaging applications where the sensor measures reflected illumination from a scene, where the
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illumination can be either natural or artificial and controlled by the sensor or not, but is steady

during the collection of the image, and not pulsed as in radar applications.

This thesis will deal with applications that utilize the visible through short wave infrared

(SWIR) wavelengths of 0.4-2.5 pm, where the radiation reaching the sensor from the surface is

due mostly to reflected source illumination, as opposed to surface thermal emissions. In most of

these applications change detection is of crucial importance. The detection of changes requires

the accurate estimation of the surface reflectance over the entire scene so that changes can be

detected in comparison to a prior reflectance image. Accurate estimation of the spectral

reflectance of the changes is needed to correctly measure, identify, and classify them in

downstream processing and analysis.

1.3.1 Airborne Remote Sensors

In airborne sensing applications, a sensor is carried by an aircraft to some altitude above

the terrain scene to be imaged. This sensed image can then be processed to estimate surface

reflectance and provide knowledge of the materials on the ground. Sensors which include

channels covering the atmospheric absorption bands can use these data to extract information

about the state of the atmosphere between the sensor and the scene. In airborne remote sensing

there is the complication that no information is typically available about the state of the

atmosphere above the sensor. This can adversely affect solution approaches that attempt to

estimate the state of the atmosphere using information extracted from the sensed image and

radiative transfer physics (known as physics-based approaches), or at least restrict them to

operating under conditions where the atmospheric state above the sensor is within certain

bounds. Existing physics-based techniques do not work well in operational scenarios where an

airborne sensor is flown below clouds or haze.
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The airborne remote sensing application is therefore the most general and difficult

application area and will be the specific problem area of this research.

1.3.2 Satellite Based Remote Sensing

This application is very similar to airborne remote sensing except that the sensor is

mounted on a satellite or spacecraft in orbit around the Earth. Since all of the atmosphere is

below the sensor, the problem of unknown atmospheric state above the sensor is not present.

However, unknown changes in solar illumination at the top of the atmosphere due to small

changes in solar output can introduce a similar problem.

1.4 Other Applications

1.4.1 Mobile Robotics

In mobile robot applications, machine vision systems need to identify objects for

navigation, inspection, and task completion. Color, a three-channel measure of surface

reflectance, is often used to help identify objects and surroundings. While mobile robot

technologies are still mainly limited to research environments, envisioned applications involve

operations under a variety of different illumination conditions. Many applications would involve

operating indoors under artificial lighting which may change due to lights aging, being replaced,

turned on and off, and failing. Others could involve outdoor operations under varying natural

lighting conditions or at night with artificial illumination where the illumination spectral content

or geometry is not known. Inspection and repair operations under hazardous conditions, such as

inside a nuclear reactor or power plant after an accident, would involve unpredictable

illumination conditions, possibly with smoke or suspended particulates in the air. Unmanned

airborne vehicle applications flying at low altitude are similar to the airborne remote sensing
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application. There are also many applications for robotic inspection systems in manufacturing or

contamination detection in which the illumination conditions may not be well known.

1.4.2 Solar System Remote Sensing

This application includes fly-by and orbiting spaceprobes, and possibly air vehicles (on

planets with atmospheres) that perform remote sensing over other planets, moons, or asteroids in

the solar system. Mars is currently the focus of several such missions. The problems here are

similar to those of airborne and space-based remote sensing of the Earth, but with a different

atmosphere and solar illumination.

1.5 Research Goals

The goal of the research described in this thesis was to develop reflectance estimation

algorithms that will be applicable to a broad set of problems. In the varied applications

discussed above, the illumination effects are caused by different types of source illumination and

intervening atmosphere which may be difficult to model. For example, shadows, aerosol

scattering, and humidity variations have multiplicative effects while aerosol backscattering

introduces additive spectral noise. All of these applications, however, have in common a surface

with a spectral surface reflectance function that reflects incident radiation, and the possibility of

having a prior estimate of the surface reflectance. In addition, controlled test observations can be

used to generate ensembles of the multiplicative and additive effects encountered in a particular

application, even if it is difficult to predict the illumination conditions for a particular image.

Therefore, this research concentrated on reflectance estimation algorithms that use prior

information about the surface spectral reflectance and a general model of the multiplicative and

additive noises that was not wed to any particular source illumination or atmospheric model. For
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algorithms that use spectral processing, prior ensembles of multiplicative and additive

illumination effects were also used. Since all of the algorithm variants developed rely on prior

surface reflectance information, these algorithms were named Surface Prior Information

Reflectance Estimation (SPIRE) algorithms. To advance the state of the art, the intent was to

develop algorithms that will work under operational conditions in which current state-of-the-art

algorithms fail.

1.6 Organization of Thesis

This thesis is organized into six main chapters beyond this introduction. Chapter 2

formulates the problem, describes the current state of the art, and introduces the taxonomy of

SPIRE algorithms developed. Chapter 3 describes the development and testing of Spatial SPIRE

algorithms which rely on spatial filtering to remove the multiplicative and additive noise effects.

Chapter 4 discusses Principal Components analysis and the degrees of freedom in the

multiplicative and additive noise ensembles of the test data set used, laying the foundation for the

spectral filtering used in later chapters. Chapter 5 covers Spectral SPIRE algorithms that make

use of spectral Principal Components filters to remove the noise effects. Chapter 6 covers

Combined SPIRE algorithms that utilize both spatial and spectral filtering to take advantage of

the strengths of each while overcoming their respective weaknesses. Chapter 7 reviews the

SPIRE algorithm taxonomy and gives suggestions for which SPIRE algorithm to use for

different applications. Chapter 7 also explores the use of SPIRE algorithms in a simple

classification application and presents a Selective SPIRE technique that makes use of Spectral

and Combined SPIRE reflectance estimates to achieve the best classification performance.

Chapter 8 provides a summary, conclusions, and recommendations for further work. Various

appendices supporting these chapters then follow.
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Chapter 2

Problem Statement and State of the Art

In this chapter we define the problem to be solved and review the current state of the art.

Our goal is to define the problem of reflectance estimation in a simple and generic manner that

will be applicable to a large array of imaging applications, independent of the specific

illumination and sensor scenarios. We will also discuss a simple classification application as an

example of how the reflectance estimates could be used. Our review of the state of the art will

be confined to airborne remote sensing since it is the example application explored here. We

also present the SPIRE algorithm approach developed in this thesis and a taxonomy of the

various SPIRE algorithms developed.

2.1 Image Formation Model

Figure 2.1 depicts a generic imaging scenario with an intervening atmosphere. A sensor

is located some distance from the surface, with an optical system that focuses radiation from a

portion of the surface onto a detector. Illumination sources radiate upon the scene, such as

natural solar illumination or artificial lights. In the imaging scenarios considered in this thesis,

all radiation components received at the sensor are due to the illumination sources, and not due

to thermal radiation emitted from the surface itself.

The scene radiance measured by the sensor is generated by complex physical interactions

between the source illumination, material surfaces, and the intervening atmosphere. Radiation

from a source encounters absorption and scattering due to atmospheric molecules and aerosols

along the atmospheric path to the surface. Radiation reflected by the surface also encounters

absorption and scattering in its path to the sensor. Secondary illumination from scattered light
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Figure 2.1. Generic imaging scenario. Radiation from both natural and artificial illumination
sources undergo absorption and scattering in the atmosphere. Radiation reaching the surface is
reflected towards the sensor, and is affected by absorption and scattering as well. Upscattered
radiation that never interacts with the surface also enters the sensor.

that reaches the surface also encounters absorption and further scattering along its paths to the

surface and the sensor. These interactions all have multiplicative effects on the sensed radiation

image i generated by the sensor and can be collected into a single multiplicative effect m on the

reflectance r.

Light that reaches the sensor without interacting with the surface causes additive effects

on the radiation received at the sensor. This includes both radiation scattered into the sensor, as

well as illumination from sources within the field of view of the sensor. Note that the additive

radiation is also modified from its original source nature by absorption and scattering. Additive

sensor noise also affects the received signal. All such additive effects at the sensor can be

collected into a single additive effect a. Non-linear effects due to multiple reflections off of

ground objects and terrain (Schott, 1997) and non-linear sensor effects are ignored.

In airborne remote sensing applications (Schowendgert, 1997), the source illumination is
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the top-of-the-atmosphere solar irradiance which has a characteristic spectral shape of a black

body radiator at a temperature of 5,900 degrees Kelvin at a distance of 1 AU. Various

atmospheric absorption bands modify this source radiation throughout the visible and IR

spectrum, due mainly to absorption by water vapor and carbon dioxide. Water vapor absorption

can vary spatially across a scene based on the water conditions of the surface. Variable

cloudiness across a scene can have an even larger effect on the spatial variation of the radiance

reaching the surface. Up and down scatter are both caused by molecular Rayleigh scattering and

aerosol and particulate Mie scattering. Mie scattering can vary across a scene, for example,

between rural and urban areas. For an example derivation of how such atmospheric and

illumination effects in an airborne remote sensing application can be reduced to a single

multiplicative noise m and a single additive noise a, please see Appendix A.

Figure 2.2 represents a simplified, general image formation model consisting of a

formation function F which operates on the reflectance r, multiplicative effect m, and additive

effect a. The function F for a single sensor detector in the generic imaging scenario of Figure 2.1

is given by:

i= rm + a (2.1)

Imaging sensors typically image a scene as a two-dimensional array of pixels, and often

record multiple, hundreds, or thousands of spectral channels at each spatial pixel location.

Therefore, each of the variables in (2.1) is a three dimensional array indexed by two spatial

variables and one spectral variable. In this thesis we assume digitized data, and use n, and n, as
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Figure 2.2. General image formation model. The reflectance r, multiplicative noise m, and
additive noise a are input to the model F, which then generates the radiance image i received at
the sensor.

the two discrete spatial variables, and nA as the discrete spectral variable. Therefore, at the single

pixel array location [nX, n n, n2 ] (2.1) becomes:

i[n_ , nyo, n,1]= r[nx ,ny , n2 ]m[nx , n. ,n2 ] + a[nx , ny , n2 ] (2.2)

All four quantities i, m, r, and a are therefore assumed to be three dimensional and can

vary both spatially and spectrally. As such, they can be treated as three-dimensional vectors i,

m , r , and a. Equation (2.2) then becomes:

i=rOm+a (2.3)

Where the D symbol represents the direct product (also known as the Hadamard

product) operation of element-by-element multiplication between two vectors. For the purposes

of this thesis, we will use the notation of (2.1) to represent the relationships expressed by (2.2)

and (2.3). All italicized variables (i, m, r, and a) are assumed to be three dimensional, and

products between them are assumed to be direct products. When vector concepts are required,

the vector notation of (2.3) will be used.

Our problem, therefore, is to estimate r, given i. Modem hyperspectral sensors provide
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both high spatial and high spectral resolution of r, m, and a, suggesting approaches that involve

both spatial and spectral techniques for estimating r.

Two comments regarding nomenclature are required. The first is the use of the terms

channel and band. A band is defined as a range of wavelengths or frequencies. A sensor channel

will always cover some finite band of spectral frequencies, with a channel response function that

weights the individual frequencies of the band. In much of the hyperspectral literature, such a

sensor channel is often referred to as a sensor band. In this thesis, we will use the term sensor

channel. The term band will be used to refer to ranges of frequencies covered by sensor

channels.

The second nomenclature issue is the definition of the word noise. From a signal

processing and estimation point of view, noise is most commonly thought of as unwanted

stochastic variations that complicate the detection and estimation of the signal of interest. In this

thesis we will use a broader definition of noise being any unwanted signal that impedes the

estimation of a desired signal. For example, in one application, remote sensing data can be used

to estimate surface reflectance. In another, the data can be used to estimate the state of the

atmosphere for weather monitoring. In the first application, the surface reflectance is the signal

of interest and the atmospheric effects are noise. In the second application, the atmospheric

effects are the signal and surface effects are noise. Therefore, the multiplicative and additive

illumination effects m and a on the signal of interest r will be referred to as noises in this thesis,

even though they may be unknown constant values. Note that random sensor noise is still noise

in both applications.

2.2 Classification Applications

In defining our problem of estimating surface reflectance and considering solutions for it,
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it is valuable to keep in mind the downstream processing problems for which reflectance

estimates will be useful. One such problem is that of classification, in which all of the pixels of

an image are to classified into a thematic map, where each pixel is identified as belonging to a

distinct class of materials such as grass or road. Supervised classification utilizes the expertise of

a human analyst to identify the example, or training pixels, from an image that are used to train a

classifier algorithm. Unsupervised classifiers attempt to cluster and partition the pixels

autonomously, after which the assignment of the clusters to known material classes is performed

by a human analyst (Schowendgert, 1997, Fukunaga, 1990, Jain and Dubes, 1988).

Figure 2.3 depicts a simple supervised classification processes. A human analyst

identifies training pixels for the material classes to be identified. Next, a classifier algorithm is

trained using the training pixels. The classifier is then applied to the rest of the pixels in the

image and the thematic map generated.

Historically, classification has been done using the radiance spectra directly from the

image i without estimating reflectance, mostly due to lack of robust techniques for estimating

reflectance in single and multispectral channels. Classifying in radiance space suffers from two

significant problems. The first is that spatial variations in illumination conditions across the

scene can make pixels of the same material type have different radiance spectra at different

locations in the scene. Second, scene to scene changes in illumination conditions prevent

training in one image and then applying the classifier successfully to other images.

Both of these problems can be solved by estimating reflectance and then training and

classifying in reflectance space instead. By removing the in-scene and scene-to-scene

illumination variations, these noises no longer impede the classifier. Using reflectance
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Figure 2.3. Supervised classification processing. A human analyst identifies training pixels for
the material classes to be identified Next, a classifier algorithm is trained using the training
pixels. The classifier is then applied to the rest of the pixels in the image and the thematic map
generated

spectra also opens the possibility of selecting training spectra from a spectral library without the

need for an analyst to identify training pixels in an image. Therefore, classification applications

can benefit greatly from robust reflectance estimation algorithms. In Chapter 7 we shall see the

superior performance of SPIRE algorithms over a state-of-the-art physics-based algorithm as a

preprocessing step in such a classification example.

2.3 Hyperspectral Sensors

There are currently two airborne hyperspectral sensors in use whose data sets are in wide

use by the scientific community. The first is the Airborne Visible-InfraRed Imaging

Spectrometer (AVIRIS) (Vane, et al., 1984, Vane, 1987, Vane, et al., 1993) which has 224

spectral channel detectors, each with a spectral bandwidth of approximately 0.01 ptm, covering

the visible and near-infrared from 0.38 tm to 2.5 pLm. The AVIRIS sensor is a scanning

pushbroom sensor and collects 614 cross- path pixels in each scan. Figure 2.4(a)
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(a) (b)

Figure 2.4. Pushbroom sensors. A scanning pushbroom sensor (a) collects data at a single
pixel location at a time. This field of view is scanned side to side to collect a line of pixels
perpendicular to the sensor's flight path. As the sensor moves along the flight path, the
collected lines form a rectangular image. A non-scanning pushbroom sensor (b) collects data
on a line of pixels at the same time. As the sensor moves along the flight path, the collected
lines form a rectangular image.

depicts how a scanning pushbroom sensor collects image data one pixel at a time, scanning

perpendicular to the flight path. At each pixel, the sensor collects data in all of the spectral

channels, yielding a radiance spectrum at that location. As the sensor moves along the flight

path, the successive lines form a rectangular image in each spectral channel, resulting in a

hyperspectral image cube. AVIRIS is carried by an ER-2 airplane at a typical altitude of 20 km,

which yields a 10-km cross-path swath with 20m-square pixels on the ground.

The second airborne sensor is the HYperspectral Digital Imagery Collection Experiment

(HYDICE) sensor (Rickard, et al., 1993, Basedow, et al., 1995). HYDICE has a bi-prism

dispersing element and a two-dimensional focal plane detector array which allows it to operate as

a non-scanning pushbroom type sensor. Figure 2.4(b) depicts how a non-scanning pushbroom

sensor collects image data by collecting a single line of pixels at a time perpendicular to the

flight path. The focal plane array has 320 pixels in the spatial cross-path direction and 210 pixels

in the spectral dimension, yielding 210 spectral channels that cover 0.4 pm to 2.5 pm. HYDICE
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is carried by a CV 580 airplane with an altitude range of 1.5 to 8 km, yielding spatial ground

resolutions of 0.8 to 4 meters. Data from the HYDICE airborne sensor was used for the

algorithm testing in this thesis due to its availability and higher spatial resolution, since both

spatial and spectral processing techniques were to be used. For both HYDICE and AVIRIS data,

there exists state of the art physics-based algorithms (see Section 2.5.2) that estimate reflectance,

whose results can be compared to the newly developed algorithms described in this thesis.

At the writing of this thesis, only two space-based hyperspectral sensor were operational:

the HYPERION sensor on board the Earth Observer - I spacecraft (Pearlman, et al., 2000) and

the Fourier Transform Hyper-Spectral Imager (FTHSI) onboard the MightySat 11.1-SINDRI

spacecraft (Otten, et al., 1998). While operational, calibrated data were not yet available for use.

2.4 Solution Approaches

When given i and (2.1), the problem of estimating r is under-constrained since there are three

unknowns and only one equation. Ancillary information regarding r, m, and/or a is required to

estimate r. Figure 2.5 depicts a general estimator E for r and the four types of ancillary

information, in addition to i, that can be used to estimate r. At the top left of the estimator box is

Kp(r) which denotes prior knowledge of the surface reflectance r. In this notation, K represents

knowledge or information, the subscript P denotes prior information, and the (} brackets indicate

a set of information that could take several different forms. Examples of possible Kp(r} include a

complete map of the surface spectral reflectance rp of the scene from an earlier time, or global

statistics on the mean and covariance of a typical scene's reflectance. At the top right is Kj(r),

current information about the reflectance in the scene, an example of which would be the

location and ground truth spectra of known materials in the current scene.
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Figure 2.5. General reflectance estimator. The estimated scene reflectance is foundfrom the
sensed image i using ancillary information. Prior knowledge about the reflectance (Kp{r}) and
the multiplicative and additive noise terms (Kp{m,a}), and current information about the
reflectance (Ke{r}) and the multiplicative and additive noise terms (Kc{m,a]) may be used
individually or in various combinations to estimate reflectance.

Since m and a are both caused by interactions between the illumination and the

atmosphere, knowledge about them both are grouped together. Prior information about m and a,

Kp(m,a), is at the lower left and could include representative ensembles of m and a, radiative

transfer physics, and typical atmospheric profiles, such as temperature, humidity and aerosols

concentrations, which can be used in simulations to predict m and a. At the lower right is

Kj(m,a), current knowledge regarding m and a in the scene, an example of which would be

absorption line ratios from current hyperspectral image data that allow the estimation of the

water vapor absorption component of m. Table 2.1 lists more possible examples of what would

be considered types of current and prior information about r, m, and a.

2.5 State of the Art

Currently, the two main techniques for performing atmospheric compensation are the

Empirical Line Method and the atmospheric physics-based approach.
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Knowledge Type Scene Specific Global
Prior Reflectance: Complete rp (estimated from prior Typical scene mean, covar, low spatial
Kp {r) observations or simulations) frequency power content, and r stats

Stats on rp: mean, covariance Spectral reflectance library or ensemble of
Low spatial frequency content possible {r}
Statistics on change in r since the prior rp

was collected: &=r-rp
Variations due to recent weather conditions

and season
Current Reflectance: Location and ground truth spectra of known N/A
Kjr} materials

Size of r changes
Mean, var, low spatial frequency content

from other sensors
Weather conditions and season.
Known events: landslide, etc.

Prior Illumination: Scene statistics on m and a: mean, Ensembles of possible {m} and {a} spectra
Kp(m, a) covariance Global statistics on m and a: mean,

Scene spatial frequency power of m and a covariance
Global spatial frequency power of m and a
Radiative transfer physics Atmospheric

models
Aerosol models
Typical visibility
Total column water vapor look up table for

band ratios
Top of atmosphere solar radiation model

Current Illumination: Groundbased downwelling irradiance N/A
K,{m, a) sensor data

Groundbased visibility meter data
Hyperspectral water vapor absorption line

measurements
Hyperspectral based aerosol and visibility

estimates
Date and time
Viewing geometry
Weather and seasonal conditions
Knowledge of the presence of clouds, haze,

precipitation, smoke, volcanic eruption,
etc.

Table 2.1. Examples ofprior and current information about r, m, and a.

2.5.1 The Empirical Line Method

The Empirical Line Method (ELM) (Griffin, et al., 1999, Kruse, et al., 1990, ENVI Users

Guide, 1997) uses ground truth reflectance spectra for materials and the locations of those

materials in the current image, to compensate for illumination changes. Therefore, ELM uses
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Figure 2.6. Reflectance estimators for Empirical Line Method (ELM) (a), Physics-Based (PB)
approach (b), and Surface Prior Information Reflectance Estimation (SPIRE) approach (c).
ELM uses current knowledge about the reflectance r (Kj~r}) of calibrated test panels in the scene
to estimate the entire scene's reflectance from the sensed image i. PB uses both prior and
current information (Kp{m,a}, K{m,a}) about the state of the atmosphere to estimate the
multiplicative and additive effects and then compensate for them. SPIRE uses prior information
in the form of an earlier estimate of the scene's reflectance, plus prior ensembles of
multiplicative and additive effects.

only current information about the reflectance in the scene Ke(r), as depicted in Figure 2.6(a).

ELM uses the ground truth reflectance spectra and the corresponding pixel values from the

sensed image to estimate the multiplicative and additive noise effects of the atmosphere over the

ground truth pixels. Well calibrated, uniform test panels that cover multiple pixels are ideal.

The corrections calculated are then applied to the rest of the pixels in the image, which assumes

that the multiplicative and additive noises are uniform across the scene. The ELM typically
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yields good estimates of the surface reflectance of the image. However, if there are spatially

varying effects over parts of the image where there are no ground truth points, then the estimates

in these areas will be worse. In other words, the atmospheric compensation will be best over and

near the ground truth points, and potentially worse in other parts of the image.

Operationally, the ELM also suffers from the problem that most scenes do not contain well

calibrated test panels. Even if a prior reflectance image exists from which "truth" spectra could

be used, the random location of changes to r in subsequent images makes it difficult to

automatically select which spectra to use. Also, if a ground truth spectrum is misregistered with

a point on the ground containing a different material, then the resulting estimates for m and a will

be incorrect.

2.5.2 Atmospheric Modeling Physics-Based Approaches

In the atmospheric physics-based (PB) approach, models of the atmosphere and radiation

transfer physics, combined with data extracted from the current image, are used to estimate the

effects of the atmosphere on the sensed scene and then to compensate for them in order to

recover surface reflectance. Therefore, the PB approach uses both prior and current information

about m and a: Kp(m,a}, and Kj(m,a), as depicted in Figure 2.6(b). These techniques do not need

information regarding the surface reflectance, but they do require information regarding the state

of the atmosphere so that its effect on solar radiation can be modeled. Some of the atmospheric

state information is extracted from the hyperspectral data itself. For example, the effects of

water vapor are estimated by using the ratios of certain channels near and in water absorption

bands (Kaufman and Sendra, 1988; Kaufman and Gao, 1992). Typically, other information such

as the type of aerosol model to use and the visibility must be input by an analyst, which often

requires iteration for best results. Whether or not all needed atmospheric state information can
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eventually be extracted from hyperspectral data to fully automate such algorithms is a current

area of research. Most atmospheric physics-based codes assume a clear, cloudless day, and their

performance degrades on days when there are overcast clouds or haze above the sensor. This

problem is an obstacle to making operational physics-based atmospheric compensation

algorithms for use with an airborne sensor.

There were two commonly used physics-based atmospheric compensation codes

available to the author: the ATmospheric REMoval (ATREM) (ATREM Users Guide, 1997)

program, and Air Force Research Lab (AFRL)/MODTRAN code (Adler-Golden, et al., 1998).

Both operate in a similar manner and differ mainly in the fidelity of the radiative transfer code

used. ATREM uses the 6S (Second Simulation of the Satellite Signal in the Solar Spectrum)

(Vermote, et al., 1997) scattering code and ATREM specific radiative transfer modules, while

the AFRL code uses the newer MODTRAN (Berk, et al., 1998) radiative transfer code.

MODTRAN uses somewhat higher fidelity techniques to estimate water absorption than

ATREM and accounts for the effects light scattered by the atmosphere into the pixel from

adjacent areas. ATREM was used in this research since it has been more widely used by other

researches than the newer AFRL/MODTRAN code.

2.5.3 Other Approaches and Research

In this section we will review possible approaches and techniques other than the ones

already discussed. The techniques listed here are not used widely operationally, but represent the

thrusts of other research efforts into solving this problem.

Barnes (Barnes, 1995) reviews several techniques for performing atmospheric correction

in multispectral imagery. These include ELM, a physics-based approach, and several Dark

Object Subtraction (DOS) techniques which include the Histogram Minimum Method, Pairwise
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Regression Matrix, and Covariance Matrix method. All of theses DOS techniques rely on the

assumption that the darkest material in a scene has 0% reflection, which often is not the case and

leads to erroneous results. Barnes also discussed the Shadow and Scene Color Standard

Technique which makes use of pixels of the same material in and out of shadow, which is only

applicable to images with identifiable shadows.

Healy, et al. (Healy, et al.,1999) have developed a maximum-likelihood (ML) (VanTrees,

1968, Helstrom, 1999, Schowengerdt, 1997) classification approach which classifies each

radiance spectra from hyperspectral HYDICE data as one of 498 material reflectance spectra in a

standard spectral reflectance library. This ML classifier-based "invariant material-identification"

algorithm was trained using spectra obtained by combining MODTRAN simulated illumination

effects over many atmospheric conditions with the library material spectra to generate

approximately 18,000 radiance spectra. Fairly good results were achieved on HYDICE data

under clear sky conditions as compared to a Spectral-Angle Mapper algorithm which attempts to

classify pixels based on the angle between spectra. However, this approach cannot estimate the

reflectance of unknown materials, and is limited to operating within the atmospheric and

illumination conditions used to train the classifier.

Like the ML classifier, other well established non-random vector estimation techniques

exist in which one can treat the surface reflectance as a parameter vector to be estimated. In

addition, one could also try various other statistical estimation and filtering approaches that rely

on the statistical relationships between the reflectance r and the radiance i received at the sensor.

The main weakness of these approaches is that they assume that we can effectively predict and

model the illumination conditions and know all of the possible materials that will be seen.

In many applications this is not feasible. New materials are continuously being
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developed and used, and detection of them is often the goal of remote sensing. Unexpected and

unpredictable atmospheric conditions due to smoke, volcanic eruptions, and clouds can be

extremely difficult, if not impossible, to model and predict. In mobile robotic applications,

unpredictable changes in artificial illumination conditions, or the effects of scatter from terrain,

walls, and buildings can be very difficult to model. Even if complex models and simulations for

these conditions can be developed, each application would require a different simulation to

generate the measurement model, which often involves costly modeling and software

development. Indeed, the development of the physics-based radiative transfer code MODTRAN

has been a large multi-decade effort.

Given these issues, and given the plausible availability of prior reflectance information in

a scene, we chose instead to pursue a new approach, inspired by the color constancy algorithms

introduced in Chapter 1. The resulting algorithms require very little information about the

illumination conditions, limited to either the maximum spatial variability of the illumination, or

ensembles of empirical illumination noise spectra only large enough to capture the few degrees

of freedom present in them. In either case, no modeling or simulation of the atmosphere or

illumination conditions is required. Instead, these algorithms rely primarily on the prior surface

reflectance information to estimate surface reflectance and are therefore called Surface Prior

Information Reflectance Estimation (SPIRE) algorithms.

2.6 Surface Prior Information Reflectance Estimation Algorithms

The research described in this thesis had the goal of developing atmospheric compensation

algorithms that make use of prior information about the surface reflectance of a scene, and

limited prior information about m and a. Figure 2.6(c) depicts this use of only Kp{r} and

Kp(m, a).
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We assume that Kp{r} consists of a scene-specific prior reflectance map rp, and global

information consisting of an ensemble of all known reflectance spectra {r}. The scene prior rp

can be used to derive scene specific prior statistics and spatial frequency content as needed (if the

scene specific rp is not available, then a global average r, could be used instead, but at the cost of

lower performance). We assume that Kp{m,a) consists of the global prior ensembles of

multiplicative and additive noise vectors {m} and {a}, where a vector inside curly brackets

denotes an ensemble of such vectors. In addition, other ensembles such as {log r}, {log m}, and

{rm} can be derived. Typical spatial frequency contents of m and a are also assumed to be

known.

The motivation for this approach was threefold. First, such an approach would likely work

better than an atmospheric physics-based one when using airborne sensors since it is not

dependent on the unknown state of the atmosphere above the sensor platform. Second, the

repetitive and ever increasing amount of remote sensing data collected and processed around the

world promises eventually to provide frequently updated maps of surface reflectance as well as

ensembles of r, m, and a that could serve as the source of the needed prior information. Third,

approaches to atmospheric compensation that utilize prior information about the surface

reflectance have been largely unexplored.

A typical operational use of SPIRE algorithms is depicted in Figure 2.7. First, an initial

prior image i, is collected during the best possible conditions to allow for the estimation of a

prior reflectance r, using a physics-based code, or ELM if ground truth spectra are available. If a

physics-based code is used, then this initial image must be collected with a hyperspectral imager.

For example, a hyperspectral sensor on board a satellite could be used repeatedly to update a

prior reflectance cube on clear days, using a physics-based code to process the data. This then
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serves as the source of the needed prior reflectance information, as well as the reference from

which changes will be measured. This process may be part of larger effort to build and maintain

a larger reflectance map. The ensembles for {m} and {a} and their typical spatial frequency

content have already been determined from previous images using ELM or physics-based codes.

Once this prior information is in place, subsequent images collected at a later time can be

processed using SPIRE algorithms, independent of cloud cover or availability of test panels.

Continuing our example from the previous paragraph, an airborne sensor could be used on

overcast days in between the clear days when the satellite images were collected, and these

airborne collected images can be processed using SPIRE algorithms.

Note that some applications of SPIRE algorithms may not require the collection of a prior image

to generate the prior reflectance data. For example, in an inspection application, a geometric

model of the object to be inspected could be combined with laboratory spectra measurements of

materials to generate a prior reflectance map for the object. This prior could then be used for

comparison in SPIRE processing to detect either material changes or contamination.

In many applications, one could use a "pseudo" prior reflectance as input to SPIRE without

requiring ELM or a physics-based algorithm to generate a prior. One example of a pseudo prior

would be to simply scale a prior radiance image using its maximum radiance so that all of the

pixel values fall between zero and some number less than or equal to one. This pseudo prior can

then be used as the prior reflectance when running SPIRE on the current and subsequent images.

The reflectance estimates for these images will be incorrect in an absolute sense, but all images

processed using the same pseudo prior will have the same systematic errors. The resulting

pseudo-reflectance image cubes can then be used for performing change detection, since the

errors introduced by using the pseudo prior would be same in all. More importantly, any
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Figure 2.7. Operational use of SPIRE algorithms in airborne remote sensing applications: At
the top, images are routinely collected whenever the best or optimum conditions present
themselves for physics-based or Empirical Line Method (ELM) algorithms. The latest estimated
reflectance image from this process is then used as a prior for operational conditions where

physics-based and ELM techniques do not work, but where SPIRE does.

classifier trained on one of the image cubes can then be applied to all other image cubes that

were processed using the same pseudo prior, allowing successful classification across images in

which illumination conditions have changed. This important result will be discussed further in

Chapter 7.

Figure 2.8 depicts the research scope of thesis. On the left of the figure are the various
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processes and techniques that could be utilized to generate prior information K,(r} and Kpfm,a).

On the right is the estimation of surface reflectance using this prior information and the current

image. This thesis will concentrate on the estimation process on the right of Figure 2.8 and

assumes that some process has already generated Kp{r) and Kp{m,a).

Before continuing on to the derivation and testing of SPIRE algorithms, two issues

regarding the use of a prior reflectance for change detection should be addressed. They are the

Bi-directional Reflectance Distribution Function and specular reflections.

2.6.1 Bi-directional Reflectance Distribution Function and Prior Reflectance Information

The reflectance of a real material is expressed by its Bi-directional Reflectance Distribution

Function (BRDF) which describes the reflectance for different incident illumination and sensor

viewing geometries (Schowengerdt, 1997). If the prior reflectance is obtained from a single

sensor viewing geometry that is different from the current viewing geometry, then there can be a

differences in reflectance due to BRDF that will appear as a changes in reflectance with respect

to the prior. Under such circumstances, a BRDF and geometry induced change in reflectance

will be indistinguishable from a change in surface material. Such changes affect all reflectance

estimation algorithms used in change detection applications, including ELM, PB, and SPIRE.

For the purposes of this thesis, all surfaces were assumed to be Lambertian, i.e. having

uniform reflectance in all geometries. In the test data set used in this thesis, the sensor viewing

geometries were similar in all images used (including the one used to generate the prior images),

but the incident illumination geometry did vary. It is possible that prior reflectance generation

techniques could be developed that incorporate BRDF information to take into account the

viewing and illumination geometry to generate a prior reflectance that includes the BRDF effect,

but they are beyond the scope of this thesis.
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Figure 2.8. Research scope of thesis. On the left of the figure are the various processes and
techniques that could be utilized to generate prior information about the reflectance r and

multiplicative and additive noise terms m and a (Kp{r}, Kp(m, a}). On the right is the estimation
of surface reflectance using this prior information and the current image. This thesis

concentrates on the estimation process on the right.

2.6.2 Specular Reflections and Reflectance Estimation

A specular reflection is a bright mirror like reflection of the incident source illumination

that occurs under certain geometries. Similar to changes caused by BRDF and viewing

geometry, specular reflections will also appear as changes in surface reflectance. Again, this is
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true of ELM, PB, and SPIRE algorithms and must be handled in a post processing step after

initial surface reflectance estimation.

2.7 SPIRE Algorithm Taxonomy

SPIRE algorithms were developed in this thsihat use spatial processing (Spatial

SPIRE), spectral processing (Spectral SPIRE), and combined spatial-spectral processing

(Combined SPIRE). Different SPIRE algorithms were developed for different illumination noise

cases. Since no useful signal will reach the sensor without the multiplicative noise m, all cases

considered assume that m is present. Given that a may or may not be present, depending on the

application, there are six possible permutations of a being present or not, and whether or not m

and a are each spatially varying or uniform. 2.2 lists these permutations and the SPIRE

algorithm identifications for each case. For Spatial SPIRE, the solution algorithms for these six

cases are identified numerically as the Case 1-6 algorithms. For Spectral SPIRE, the solution

algorithms for these six cases are identified alphabetically as the Case A-F algorithms. For

Combined SPIRE, the solution algorithms are identified with Roman numerals as the Case I-VI

algorithms.

Figure 2.9 depicts the SPIRE algorithm taxonomy for the algorithms developed and

tested in this thesis, organized by the spatial variability of the multiplicative noise m and additive

m a Spatial Spectral Combined
Uniform 0 Case 1 Case A Case I
Uniform Uniform Case 2 Case B Case II
Varying 0 Case 3 Case C Case III
Varying Uniform Case 4 Case D Case IV
Uniform Varying Case 5 Case E Case V
Varying Varying Case 6 Case F Case VI

Table 2.2. SPIRE algorithm case designations.
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noise a. Spatially varying m and a are assumed to be band-limited to low spatial frequencies as

will be discussed in Chapter 3. At the top of the tree in Figure 2.9 is the most general case

considered with spatially varying m and spatially varying a, for which the Spatial SPIRE Case 6

algorithm was developed. No Spectral SPIRE solution for Case F was found, as is discussed in

Chapter 5. The Combined Case VI algorithm, while feasible, is left as a suggestion for future

work, since a can be treated as spatially uniform in most airborne remote sensing applications.

On the left branch are algorithms that work when the additive noise is a zero and we have only a

spatially varying multiplicative noise, which includes the Spatial Case 3, Spectral Case C, and

Combined Case III algorithms. For the case where the multiplicative noise m is spatially

uniform (and the additive noise a is zero), a computationally efficient Spatial Case 1 algorithm

was developed that differs significantly from the Spatial Case 3 algorithm. For Spectral and

Combined SPIRE, the Case A and Case I algorithms are identical to the Case C and Case III

algorithms respectively, so no separate Case A or Case I algorithms were developed. Note that

Spatial Case 3 and 6 algorithms can also solve the Case 1 problem, since a uniform m is

contained within the same low spatial frequency band as a slowly varying m.

On the center branch is the condition where the multiplicative noise m is spatially uniform but

the additive noise a is spatially varying. The Spatial Case 5 algorithm solves this case in a

computationally efficient manner. No Spectral Case E solution was found. Like the Combined

Case VI algorithm, the Combined Case V is feasible, but is left as a suggestion for future work,

since a can be treated as spatially uniform in most airborne remote sensing applications.

On the right branch are algorithms that work when the multiplicative noise m is spatially
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Figure 2.9. SPIRE algorithm taxonomy based on the spatial variability of the multiplicative
noise m and additive noise a. Spatially varying m and a are assumed to be band-limited to lower
spatialfrequencies. Algorithms outlined in dashed lines were not developed and are suggestions
for further work. For Spectral and Combined, algorithms for cases where m is uniform are
identical to those for when m is varying.

varying and the additive noise a is spatially uniform, which includes the Spatial Case 4, Spectral

Case D, and Combined Case IV algorithms. For the case were the multiplicative noise is

spatially uniform as well, the computationally efficient Spatial Case 2 algorithm can be used.
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For Spectral and Combined SPIRE, the Case B and Case II algorithms are identical to the Case D

and Case IV algorithms respectively, so no separate Case B or Case IV algorithms were

developed. Again, note that Spatial Case 4 and 6 algorithms can also solve the Case 2 problem,

since a uniform m is contained within the same low spatial frequency band as a slowly varying

m.

2.8 Summary

In this chapter we defined our problem as that of estimating the surface reflectance r

given an image i with multiplicative m and additive a noise terms. This general model is

applicable to most remote sensing and imaging applications, since it is independent of the

specifics of the physics that generate m and a. The general reflectance estimator for this problem

requires either prior or current ancillary information about the reflectance or noise terms in order

to sufficiently constrain the problem so that it can be solved. The current state-of-the-art ELM

algorithm and physics-based approaches both suffer from problems that limit their operational

use. The SPIRE approach, using prior reflectance information and representative ensembles of

the multiplicative and additive noise terms, holds the promise of performing well under

operational conditions that ELM and physics-based approaches do not.

With our problem defined and an understanding of the strengths and weakness of the

existing state of the art in hand, we now proceed to developing SPIRE algorithms. As part of a

structured research effort, we will first pursue Spatial SPIRE algorithms that utilize spatial

information and processing, then Spectral SPIRE algorithms that utilize spectral information and

processing, followed by Combined SPIRE algorithms that use combined spatial-spectral

processing. Therefore, in the next chapter we will derive and test Spatial SPIRE algorithms

which use spatial filtering to remove illumination noise and estimate surface reflectance.
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Chapter 3

Spatial SPIRE Algorithms

3.1 Introduction

In this chapter, we begin our development of SPIRE reflectance estimation algorithms by

developing Spatial SPIRE algorithms that make use of spatial filtering to remove the

multiplicative and additive noise effects caused by varying illumination and atmospheric

scattering. These algorithms operate on a single spectral channel image at a time, making no use

of relationships between spectral channels.

3.2 Spatial SPIRE Algorithm Derivation

3.2.1 Algorithmic Approach

For the remainder of this thesis, we assume that the prior surface reflectance information

is derived from an earlier observation of the scene. Therefore, our goal is the estimation of local

surface spectral reflectance changes from multiple observations under varying multiplicative and

additive noise. We make the following assumptions:

1) The first observation, or sensed scene, has been processed to estimate the surface

reflectance. This will be referred to as the prior.

2) Any changes or new objects in the scene consist of a few relatively small changes

with defined edges, thereby causing changes mostly to the high spatial frequency

content of the image.

3) The spatial frequency content of the multiplicative and additive illumination noises
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across the scene are band limited to lower spatial frequencies.

In effect we are assuming that the illumination noises and changes in reflectance are

separated into distinct spatial frequency bands, but there is no constraint on the frequency

content of the image reflectance itself. In other words, both the illumination noises and the

surface reflectance function can have overlapping spatial frequency content, but the illumination

noises and reflectance changes cannot.

A subsequent observation is made on the scene after the changes have occurred. The

sensed image formation model is given by:

i[n, n,, 2 ] = r[n,, n,,n. ]m[n,,n,, + a[n,, n,, n..] (3.1)

Where i[n,, n,, ] is the sensed image, r[n , n,n, ] is the current surface reflectance and

signal of interest, m[n,,n,, ] is the multiplicative noise, and a[n, ,n,, n] is the additive noise.

Each of these terms is a three dimensional array (often referred to as an image "cube" in the

literature, though it is typically the shape of a brick) where nx and n, are spatial dimension

indices and nA is the spectral dimension index. All data are assumed to be discrete in space and

wavelength.

Our problem is to recover an estimate of r[nx,nynj] given the sensed image

i[n,, y. n] and the prior reflectance r, [nx,,n, n2 ]. Six distinct cases will be considered. In all

six cases, the multiplicative noise will be present. The six permutations are formed by including

the additive noise or not, and by allowing the multiplicative and additive noise terms to be either

spatially varying or constant.

Table 3.1 summarizes the six cases and their solution techniques. Using the notation of
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i =i[n, fln,, n], we denote that all variables are assumed to be varying in all three dimensions,

including the prior r,. The only exceptions are spatially uniform variables that only vary in the

spectral dimension, which are denoted using a subscripted naught: c, = c,[n,]. All solution

derivations are done for a single spectral channel image and will be independently applied to

each spectral channel of the image cube. Therefore, operations such as mean and variance refer

to operations done spatially across the image. The h refers to the impulse response of a linear

low pass filter, which is also often referred to as hLPF in the text. The est function is an estimator

described for Cases 4 and 6 in their corresponding sections below.

Note that Case 1 is a subset of Case 3 in that both have only multiplicative noise present,

so that Case 1 can be considered to be Case 3 with a noise that has only a zero-frequency (DC)

component. Similarly, Cases 2, 4, and 5 are simplifications of Case 6. Rather than first

discussing Case 6 and Case 3 first, and then discussing the other cases, we discuss them all in

order of increasing complexity, since the solution algorithms for the more complex cases tend to

build upon the solutions to the simpler cases, yielding an easier to understand progression.

3.2.2 Case 1: Spatially Uniform Multiplicative Noise Only

In this first case the additive noise a is zero and the multiplicative noise m, is constant

across the scene:

i= rm (3.2)

Our problem, therefore, is to estimate mo and divide the sensed image i by it to recover

an estimate of the surface reflectance:
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11
r=z-=rm -=~r (3.3)

m0 m

The simplest solution to (3.2) is to estimate mo as the ratio of the mean of the sensed

image to the mean of the prior image:

mean rp
r = i - (3.4)

mean i

This relies on the assumption that any changes to the scene are small enough to not

change the mean of r appreciably from that of the prior rp. Formally, we can derive this

solution by first moving (3.2) into log space to linearize the problem:

log i= log r +log mo (3.5)

Next we subtract the log of the mean of i from both sides of (3.5):

log i - log(mean i) = log r + log mo - log(mean r)

-log(meanmo) = log r -log(meanr)

We see in (3.6) that, since mo is a constant, it is eliminated from the equation, but with

the complication that the log of the mean of the surface reflectance is also subtracted. Under the

assumption that any changes to the image are small and have a negligible effect on the mean, we

can add back in the mean of the prior reflectance image to both sides, take the exponential, and

solve for an estimate of the reflectance, obtaining (3.4). Alternatively, we can reverse the order

of the spatial mean and log functions in the subtracted term in (3.6). This results in a similar, but

more computationally complex solution:
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r = i exp((mean(log r,) - mean(log i))

Case m a Problem Egn Solution Egn
1 Uniform None i = rmo (3.2) , .mean r, (3.4)

r =
meani

2 Uniform Uniform i = rm, + a, (3.8) var r (3.11)

var i
3 Varying None i=rm (3.13) Fexp(logi-logi*h+logr,*h) (3.15)

4 Varying Uniform i = rm + a, (3.17) log (i - mean i + est(mean(rm))) (3.19)

= exp -log (i -mean i + est(mean(rm)) h
+Iogr, *hJ

5 Uniform Varying i=rm, +a (3.20) i-h*i (3.23)
r +h*r

var(i-h*i)

var(r, -h*r,)

6 Varying Varying i= rm+ a (3.24) "log (i - hi *i+est(hi *(rm))) (3.28)

i = exp -log(i- h *i+est(hA *(rm)))* h2

\+Iog r, *kh

Table 3.1. Six cases considered with the problem equations to solve and the solution
equations.

3.2.3 Case 2: Spatially Uniform Multiplicative and Spatially Uniform Additive Noise

In this case, both the additive noise ao and the multiplicative noise mo are constant

across the scene:

i = rmo + a0 (3.8)

We begin by subtracting the spatial mean of the sensed image from the image itself:

i - mean(i) = rmo + a0 - mean(rmo + a0) = mo (r - mean r) (3.9)

This eliminates the constant additive noise since its mean is equal to itself. By taking the
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spatial variance of (3.9) and recognizing that the variance does not change if the mean is

subtracted before calculating the variance, we can estimate m, using:

m = (3.10)
var r

Substituting this back into (3.9), replacing the mean of r and with that of r, as in Case 1,

and solving for the estimate of the reflectance, we obtain:

varr
r= P (i -mean i)+mean r, (3.11)

var i

In effect, we are scaling the zero mean sensed image to achieve the variance of the prior

reflectance image, and then adding in the prior reflectance mean. As expected, this solution also

works for Case 1. If we assume that ao = 0 and that the ratio m/mo = 1, then (3.11) can be

reduced to the same form of equation as (3.4) and (3.7), where (3.10) is the estimate of m:

varrp (3.12)
var i

3.2.4 Case 3: Spatially Varying Multiplicative Noise Only

In this third case, the additive noise a is zero but we have a multiplicative noise varying

spatially across the scene:

i = rm (3.13)

As in Case 1, we first move to log space to linearize the problem as in (3.5). In Case 1,
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we were able to remove the constant log m, by subtracting the mean of the sensed image from

itself. In this case, log m is not a constant across the scene, but a spatially varying term confined

to low spatial frequencies. By analogy, we can eliminate it by subtracting a spatially low pass

filtered version of the sensed image from itself, where the filter h has support over the same

bandwidth as log m:

log i-h *log i= log r -h *log r +log m -h *log m = log r -h *log r (3.14)

This approach is similar to Case 1 since the mean function can be viewed as a filtering

operation. The subtracted filtered version of log m cancels the unfiltered log m, but at the

expense of subtracting the low frequency components of log r in the process. This is equivalent

to a high pass filtering operation. Given our assumption that any small changes present in the

scene have a negligible effect on the low frequency content of the image, we can recover these

lost low frequency components from the prior by adding back a low pass filtered version of the

prior image to both sides. We then take the exponential and solve for an estimate of the surface

reflectance, resulting in:

r = exp(log i -log i * h+log r, * h) (3.15)

To illustrate this processing, we take the Discrete Time Fourier Transform (DTFT)

(Oppenheim, et al., 1997; 1999) of the log of (3.15) to obtain (3.16), in which the subscript log

denotes that the term is the DTFT of the log of the variable, and $=[#,, #,]:

R10g ($) = Ic, ($) - H(#)IOg ($) + H($)RPlo, (#) (3.16)

Figure 3.1. depicts a one dimensional example of Case 3 processing in the spatial
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Figure 3.1. Spatial Case 3 problem and algorithm depicted in the log spatial frequency domain.
In (a) the sensed image ,og ($) is formed by adding the Discrete Time Fourier Transform

(DTFT) of the log of reflectance R10g ($) and DTFT of log of the multiplicative effect Mo0g ($)

which is band limited to spatial frequencies below $co_,0g,. In (b), the log image IZQg ($) is high

pass filtered to remove the low frequency components containing the multiplicative effect

M 0g($). In (c), the low frequencies of the reflectance lost in the filtering operation are

estimated and restored by low pass filtering the prior R P 0jg ($) and adding it to the result of (b),

resulting in the estimated current reflectance.

frequency domain. In Figure 3.1(a), the sensed image is shown as the sum (in log space) of the

reflectance and the multiplicative noise which is band limited to frequencies below the cut-off

frequency #co-Iog m. In Figure 1(b), the log of the sensed image is high pass filtered (by

subtracting a low-pass filtered version of itself). In Figure 1(c), the missing low frequencies of

the reflectance are restored using the low frequency content of the log of the prior, with a small

difference due to the effect of any changes in the image. Note that high-frequency differences

between the prior reflectance and the new reflectance do not affect the processing.
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Cutoff Frequency
Prior Information log

K,{m, a}

Log Image (m-only) High log r - log r * hLPF log r
logr+logm 0 Pass Merge exp

Filter

Prior Information Estimate log r * hLPF

K,{r}, K,{m, a} - - log r*hPF Estimated
lost in filtering Reflectance

r
(a)

log r -log r*hLPF
logr+logm hHPF

Oco-iogm

log rp hLPF

+

I log r, * hLPF

log r^

exp

r

(b)

Figure 3.2. Spatial Case 3 generalized processing block diagram (a) and specific
implementation tested (b). In (a), the m-only image is high-pass filtered using the #co-ogm spatial
cutofffrequency from the prior information about the multiplicative noise m (Kp(m,a}). The low-
pass filtered log r lost in the filtering operation is then estimated using prior information Kp{r}
and Kp{m,a} and merged with the filtered signal. Finally, the exponential is taken to estimate
reflectance. In (b), the lost low pass filtered log r is estimated by low pass filtering the log of the
prior reflectance log rp, and the merge operation is a simple addition.
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Figure 3.2(a) depicts the generalized processing block diagram for the Case 3 solution

algorithm, while Figure 3.2(b) depicts the specific algorithm implemented and tested in this

thesis. Figure 3.2(a) depicts a generic block for estimating log r * hLPF based on prior

information, since there may be other approaches than the low-pass filtering of the prior used in

Figure 3.2(b). Similarly, a generic merge block is used in place of the addition used in this

thesis, since strategies that weight the high-passed image and the estimate of log r * hLPF

differently may be useful in some applications.

3.2.5 Case 4: Spatially Varying Multiplicative and Spatially Uniform Additive Noise Case

In this case, we have multiplicative noise that varies spatially across the scene, plus

additive noise that is uniform across the scene:

i = rm + a0  (3.17)

This case may be the most important one for solving practical remote sensing problems,

since the additive upscatter radiation can usually be assumed to be uniform across a scene. This

case is similar to Case 3, but with a constant additive noise term added to the image. Since we

no longer have a purely multiplicative situation, we cannot immediately move to the log domain

to linearize the problem. The solution approach involves removing the additive noise ao as we

did in Case 2, estimating and adding back in the mean(rm) lost in the process, and then using the

algorithm for Case 3 to complete the solution. We begin by subtracting the global mean of the

sensed image from itself, whereby the additive noise ao is removed since it is constant:

i - mean i = rm+ ao - mean(rm+ ao)= rm - mean(rm) (3.18)
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This, however, is not the form that we need to utilize the algorithm for Case 3. In order

to do so, we must estimate and add back in the single number mean(rm). In order to estimate

this number, we first use the sensed image values to place bounds on its possible values, making

use of the fact that reflectance values only range between 0 and 1. We then step through the

range of possible values for mean(rm), adding them back into (3.18), and then estimating the

reflectance using the Case 3 algorithm. The final value of mean(rm) used is the one that

minimizes the mean square error (MSE) between the prior reflectance and the estimated

reflectance. The block diagram for this algorithm is depicted in Figure 3.3. Once we have found

the best estimate for mean(rm), we then use the Case 3 algorithm with that value to estimate the

surface reflectance. The equation for this final estimate is given by:

A log (i - mean i + est(mean(rm)))
-exp clog (i - mean i + est(mean(rm)) * h + log r, * h) (3.19)

3.2.6 Case 5: Spatially Uniform Multiplicative and Spatially Varying Additive Noise Case

In this case, we have a uniform multiplicative noise across the scene, plus additive noise

that is spatially varying across the scene:

i = rmo + a (3.20)

To derive the solution algorithm for this case, we begin by subtracting a low-pass

filtered version of the image from itself:

i-h*i=rmo -h *(rme)+a-h*a=mo(r -h*r) (3.21)

Using the same arguments as in Case 3 (except now we are not in the log domain) that
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Figure 3.3. Case 4 processing block diagram. The mean of the sensed image is subtracted to
remove the additive noise ao. A loop is then entered to estimate the mean(rm) lost, with the
sensed image used to set bounds on the range of mean(rm). As different values of mean(rm) are
stepped through, they are added back in and the Spatial Case 3 algorithm run to estimate
reflectance. This reflectance is then compared to the prior reflectance and the mean squared
error (MSE) calculated The estimate of mean(rm) with the minimum MSE is then used to
calculate the final estimated reflectance.
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the additive noise is band limited to low frequencies over which the low-pass filter has support,

this operation eliminates the additive noise, while also subtracting the term h*(rm). However,

unlike Case 4, we do not have to estimate this term and add it back in. Instead, we can use a

similar technique as in Case 2. Taking the variance of both sides of (3.21) and using the prior

image as the argument of the filtering operation (since it has the same low frequency content as

the new reflectance) allows us to estimate mo as:

var (i- h * i)
r h = (3.22)

var (r, - h * r, )

Substituting (3.22) into (3.21) and solving for an estimate of the reflectance yields:

i-h*i
r = +h*r (3.23)

var(i-h*i) 
(

var(r, -h* rp

3.2.7 Case 6: Spatially Varying Multiplicative and Spatially Varying Additive Noise

In this case, we have multiplicative noise varying across the scene, plus additive noise

that is also varying spatially across the scene:

i= rm +a (3.24)

This is the most general case, and each of Case 1-Case 5 represents a simplification of

this one. We begin with the same approach as in Case 5: subtracting a low pass filtered version

of the image from itself. The low pass filter used at this stage will be referred to as hl. As in

Case 5, this eliminates the additive noise at the expense of subtracting the term hi*(rm), a low
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pass filtered version of the reflectance times the multiplicative noise.

i -hj *i= rm+a -h4 *(rm+a)= rm - 4 *(rm) (3.25)

At this point we have a situation similar to Case 4 equation (3.18), in that we must

estimate the term rm * hj and add it back in to (3.25). Once this is accomplished, we will have a

new problem equivalent to Case 3, which can then be solved using the Case 3 algorithm, just as

was done in Case 4. In Case 4, we estimated a single number to add back in, finding the number

that minimized the mean squared error of the resulting solution when compared to the prior. In

this case, we must estimate a two-dimensional function across the image. By describing this

two-dimensional spatial function as a summation of weighted orthogonal basis functions, we can

repeatedly use the same technique as in Case 4 to find the weighting coefficient CE (ks, k) for

each basis function, one at a time. For this paper, the Discrete Cosine Transform (DCT) (Lim,

1990) was used; other possibilities exist, such as Lapped Orthogonal Transforms (LOT) (Malvar,

1992). We express the function to add back in as a DCT as follows:

SN(k,)w (k)CE( ) k, (2nx + 1),
N ,Ny, ,=0 ky,=0 2NX 2N,

est(h *(rm))= for 0 ! n. ! N, -1, 0 ! n, NY -1 (3.26)

0, otherwise

Where:

W (k){0 Nk =0
W,(k) 2 k, ,w,(k,) = 2' (3.27)

L 1 1: s k, 5 Nx -I L, I < k, < NY -1I

66



The estimate of the surface reflectance associated with the est(rm * hj) that minimizes the

mean square error between r and rp can then be written in the form of the solution to Case 3,

where a second low pass filter h2 is used in the log domain, and is given by:

log (i - p *i+est(A *(rm)))
r = exp( (3.28)

- log (i - *i+est(hA *(rm)))* k +log r*

Figure 3.4 depicts the flow diagram for this algorithm. Since est(rm*h 1) is restricted to

lower spatial frequencies, only those DCT coefficients passed by h, need be used in the estimate.

3.2.8 Relationship of Spatial SPIRE to Homomorphic, Retinex, and Lightness
Algorithms

Homomorphic algorithms have been used to achieve simultaneous contrast enhancement

and dynamic range compression in image processing applications (Oppenheim, et al., 1975, Lim,

1990). Under the same assumptions as Case 3 of a slowly varying illuminant (low spatial

frequency) and a rapidly varying reflectance (high spatial frequency), these algorithms separate

the two components in log space using high and low pass filters in the spatial frequency domain.

The two components are recombined after attenuating the log illuminant and enhancing the log

reflectance. Any low frequency reflectance content is also attenuated. Versions of this

algorithm that handle a limited amount of backscatter from clouds are able to enhance images

using an adaptive technique that enhances the local contrast using the local mean (Lim, 1990).

These algorithms are aimed at image enhancement for viewing and not for estimating

reflectance.

Edwin Land developed the Retinex "lightness" algorithm that simulates the color

constancy processing of the human visual system (Land, 1964; Land, 1986; Land, 1986). Color
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Figure 3.4. Case 6 processing block diagram. The sensed image is first high pass filtered to
remove the additive noise a. A loop is then entered to estimate the rm * h lost using a Discrete
Cosine Transform (DCT). The number of DCT coefficients needed is derived from the band limit
of a #c-a. For each DCT coefficient, a Case 4 MSE loop is used to estimate the correct value (as

in Figure 3.3). Once all the coefficients are estimated, the estimate of rm * h is added back in
and the Spatial Case 3 algorithm is run to obtain the final estimated reflectance.
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constancy can be interpreted as estimating the reflectance in three spectral channels which, when

combined, define a vector color in a Red-Green-Blue type space which is consistent under

varying illumination conditions. Lightness algorithms process images in the three channels

corresponding to the short, middle, and long wavelength cone receptors of the human eye, to

yield a lightness value for each point in the scene in each channel. These three lightness values

then serve as coordinates in a three dimensional color space. The term lightness is used because

in each channel, the relative lightness or gray level of each pixel, when compared to all other

pixels in the image, is calculated. The color constancy of this algorithm, as well as similar

lightness algorithms subsequently developed, did approach that of human vision. Hurlbert

(Hurlbert, 1986, Hurlbert, 1989) reviewed and drew formal mathematical connections between

Land's lightness algorithms and those developed by other researchers. However, these lightness

algorithms are all dependent on three assumptions regarding the image being processed.

Lightness Assumption 1:

Lightness Assumption 2:

Lightness Assumption 3:

The imaged area is a so called "Mondrian" scene, meaning that it is

composed of flat patches of uniform reflectance. A typical

Mondrian scene would be a collage of different colored rectangles

of random sizes that may overlap. The different colors are

typically randomly distributed across the scene.

That the effective irradiance varies slowly across the scene and is

everywhere independent of the viewer's position.

That the surface reflectance averages to a gray value in each

wavelength channel, which is the same for all scenes. This is often

69



referred to as the gray world assumption.

All lightness algorithms attempt to solve the problem presented in Case 3, where there is

no additive illumination noise and only a multiplicative illumination effect on the surface

reflectance signal of interest. Lightness algorithms cannot solve Cases 2, 4, 5, and 6 which

involve an additive term. Lightness Assumption 2 is the same as the Spatial SPIRE assumption

that the illumination is band limited to low spatial frequencies. Like the SPIRE algorithm for

Case 3, lightness algorithms move into log space and effectively use a high-pass filter to

eliminate the illumination. However, lightness algorithms differ from Spatial SPIRE algorithms

in that the solution of (3.13) requires being able to estimate h*log r and adding it back in. In the

Case-3 Spatial SPIRE algorithm, this estimate is found by simply filtering the log of the prior

reflectance. In lightness algorithms, there is no prior information available, other than that

implied by Lightness Assumption 3. Effectively, Lightness Assumption 3 allows one to add

back in an estimate of only the DC component, or mean, of log r. However, this estimate is

fixed ahead of time as the average surface reflectance for all images. If the particular image

being processed doesn't contain a statistically similar distribution of surface reflectances as that

of the rest of the world, then the restored DC component will be incorrect. Therefore, in the best

case, the lightness algorithms can restore only the DC component of the image, losing lower

spatial frequency information that occupies the same spatial frequency band as the spatially

varying illumination. If the material content of the scene is not similar to the whole world, then

the estimated DC component will be incorrect as well. Lightness algorithms work well on

Mondrian images because the random distribution of color patches across the image assured by

Lightness Assumption 1 reduces the amount of low-frequency power in the image and forces the
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mean to be similar in all images generated using the same probability distribution.

3.3 Algorithm Testing and Results

3.3.1 Test Data Description

The Spatial SPIRE algorithms were tested on three types of image data: simulated single

channel, simulated hyperspectral, and real hyperspectral. The use of simulated data allowed for

complete control of both the surface reflectance and the multiplicative and additive illumination

effects, thereby eliminating uncertainties in the data when measuring the absolute performance

of the algorithms. The use of real data demonstrated the true validity of the algorithms by

ensuring that no real world effects not included in the simulated data adversely affect the

algorithms. The use of real hyperspectral data also allowed the comparison of Spatial SPIRE

algorithm performance to physics-based atmospheric compensation algorithms which require

hyperspectral data.

Data from the widely used HYDICE airborne hyperspectral sensor (Basedow, et al., 1995)

was selected for use in this thesis. The Department of Energy (DOE) operates the Southern

Great Plains Site (SGPS) Atmospheric Radiation Measurement (ARM) and Cloud and Radiation

Testbed (CART) facility located southeast of Lamont, Oklahoma. HYDICE data was collected

over this site during 23 to 28 June 1997 as part of the Atmospheric Compensation Investigation

(ACI) data collection (Lockheed-Martin, 1997). The ACI data collection over the ARM Site was

carried out for the express purpose of collecting a set of hyperspectral data that could then be

used for the development and testing of atmospheric compensation algorithms. Various test

panels were in place on the ground, and ground truth data was collected over these panels using a

spectroradiometer. Various other instruments were used to measure meteorological conditions,
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including all-sky photographs (Lockheed-Martin, 1997).

3.3.2 Single Channel Image Testing

Since the SPIRE algorithms work on a single channel basis, their performance can be

tested using single channel images. A single-channel sub-image 256 pixels square was extracted

from HYDICE ARM site data from Run 07 of 24 June 1997 from the 0.468 pim channel. The

selected sub-image contains a variety of image features, including test panels (near the top),

grass, mowed grass, roads, buildings, and vehicles. This single radiance image was then scaled

to bring all pixel values to between 0 and 1 to simulate a reflectance image. This approach

ensured that the image used contained typical ground features and pixel value variability found

in real data.

Since the SPIRE algorithms are intended for use in applications where small changes in

surface reflectance have occurred since a prior image collection and reduction to reflectance, a

second single-channel test image was generated from the original by making a small

modification to it. The modified reflectance image is depicted in Figure 3.5(a). The

modification made was to replace a 4x5 pixel area in the grass near image coordinates [152,218]

with a 4x5 pixel area copied from the road in the lower left of the image. A close-up of the

modification is shown in Figure 3.5(b). Figure 3.5(c) shows a vertical profile along the dashed

line at n,=152, where the modification is centered around the gray line at ny=218. Test panels,

road, parking lot, and grass are all evident in the profile.

To test each of the algorithms developed for the six cases described in Section 3.2, the

modified test image was subjected to multiplicative and additive effects appropriate to each case.

Figure 3.5(d) shows the same profile as Figure 3.5(c), but through the Case-6 test image which

was generated from the modified reflectance image by multiplying it with a horizontal ramp
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Figure 3.5. Modified surface reflectance single channel test image (a) with closeup of
modification made in area surrounding [152,218] (b), with vertical (c) profile through n,=152
plotted. The modification simulates a change in the image of a material similar to the road
being placed in the grass field. For testing the Case 6 algorithm, the reflectance image of (a)
was multiplied by a horizontal ramp image going from 1.0 to 3.0 across the image, and then a
vertical ramp going from 2.0 to 4.0 was added. The vertical profile through this test image is
plotted in (d).

image ranging in value from 1 to 3, and then adding a vertical ramp image ranging in value from

2 to 4. Table 3.2 describes the multiplicative and additive images applied to the modified
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reflectance image to generate the test images for Cases 1-6.

Case Multiplicative Image Additive Image
Case 1 Constant=5.0 None
Case 2 Constant=5.0 Constant=3.0
Case 3 Horizontal Ramp=1.0-3.0 None
Case 4 Horizontal Ranp=.0-3.0 Constant=3.0
Case 5 Constant=5.0 Vertical Ramp=2.0-4.0

Cae6 Horizontal Ramp=1.0-3.0 Vertical Ramp=2.0-4.0

Table 3.2. Multiplicative and additive images applied to modified
reflectance image to generate single channel test images.

3.3.3 Single Channel Image Processing Results

The resulting test images for Cases 1-6 were processed through their respective

algorithms described in Section 3.2. In all cases, the original, unmodified reflectance image was

used as the prior reflectance image from which prior spatial information needed by the

algorithms was extracted. For each case, the absolute percent error image between the estimated

reflectance image and the modified reflectance image used to generate the test image was

calculated using:

absolute percent error =100* r -i|lr (3.29)

Where r represents the modified reflectance image used to generate the case test image

and P represents the estimated reflectance recovered from the test image. A 32x32 square low-

pass filter kernel was used for all cases where the algorithm performs spatial filtering.

Figure 3.6 depicts the profiles at n,=152 through the absolute percent error image for each

of the six cases. The profiles exclude a 16-pixel border lost to edge effects as described below.

In Case 1, the percent error is very small and uniform across the image. No extra error is
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Figure 3.6. Single channel image test results for Cases 1-6.
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induced by the modification. In Case 2, the percent error is still quite small, with higher error

over brighter pixels. Again, no extra error is induced by the modification. In case 3, the error is

less than 0.2 percent for most of the image, but is larger (1.1 percent at its maximum) in the area

near the modification where the filter kernel overlaps it. Case 4 has similar performance to Case

3, but with slightly higher errors (a few tenths of one percent higher), and more variability. Case

5 has overall more percent error than the previous cases, but with errors of 1.6 percent or less.

Brighter pixels tend to have less error than dimmer ones. Finally, Case 6 has errors similar to

Case 4, though slightly higher around the modified portion of the image. In all cases, errors are

less than 2.2 percent, indicative of good performance. Testing was repeated in the face of

additive Gaussian noise (AGN) of different variances and performance was found to be robust,

with errors being dominated by the AGN as its variance dominated the Spatial SPIRE algorithms

errors described above.

When implementing and applying the Spatial SPIRE algorithms that involve applying a

low-pass filter, one will encounter two types of edge effects. The first is from the filtering

operation itself, which can be viewed in the spatial domain as being caused by the convolution

kernel extending beyond the edges of the image, or in the spectral domain due to the saw tooth

effect that occurs when using FFTs to implement convolution, due to repeating the image as a

two-dimensional discrete time Fourier series that will tend to have discontinuities at the edges

between periods. This first edge effect can be minimized by simply extending or mirroring the

edge pixels in a border around the image.

The second edge effect comes from the window function that cuts the sensed image from

the observed scene. A slowly varying illumination across the scene will gain high frequencies

components when windowed (Oppenheim, et al., 1999). Since the SPIRE algorithms in effect
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use only low spatial frequencies to estimate the illumination, the lack of higher frequencies to

meet the window edges will cause higher errors at the edges of the image. The solution to this is

to collect an image larger than needed and then only use the portion of the estimated reflectance

image inside an appropriate border (based on the size of the image and the bandwidth of the low

pass filter) as the final result.

3.3.4 Comparison of ELM, ATREM, and Spatial SPIRE Algorithms

A third set of experiments was carried out to compare the performance of Spatial SPIRE

algorithms to the ELM and ATREM atmospheric compensation algorithms. Since pixels of

known reflectance are typically not available under operational conditions, this comparison is

mainly aimed at comparing SPIRE to ATREM, with ELM used as a ground truth derived

baseline. While SPIRE can work under conditions that ATREM cannot (single or multiple

channels, cloudy conditions above sensor), the author felt it important to compare the Spatial

SPIRE algorithm performance to that of an established technique known to the community. The

ARM Site HYDICE radiance dataset was used directly for these experiments. Six HYDICE

ARM Site data runs were selected from three different days of the ARM Site data collect.

Run Date Time (Local) Altitude
07 6/24/97 12:26-12:28 6,087'
13 6/24/97 13:13-13:16 11,433'
26 6/24/97 14:24-14:27 11,410'
06 6/26/97 11:43-11:46 5,994'
22 6/27/97 07:37-07:39 6,077'
31 6/27/97 08:19-08:22 11,333'

Table 3.3. ARM Site runs selected

Table 3.3 shows the times and altitudes of the six runs. All runs covered the area

containing the test panels and buildings visible in Figure 3.4(a). Figure 3.7 shows single channel
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Figure 3.7. Location ofpanels and other objects at ARM Site. Single channel images from runs

on two different days are used to show the movement of the truck and other objects.
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images from Runs 07 and 06, with the locations of the various panels and materials of interest

identified. Note that runs were done at different times of day including morning, noon, and mid-

afternoon, which introduced shadows and different solar illumination angles in the data. The

different altitudes of the runs caused image scale differences of a factor of two between some

images. Also, the flight paths differed so that the images were rotated with respect to each other.

In addition, the truck carrying the spectroradiometer appeared in different locations in each run,

which introduced small changes from the prior, making this a suitable dataset to test SPIRE

algorithms on. Some runs contained shadows due to low sun angle. While estimation of

reflectance within the shadows was not tested, their effect on estimating the reflectance of non-

shadowed areas was. Appendix B contains band images of each run.

3.3.4.1 ELM Processing of Test Data Set

ELM processing requires known spectra for pixels in the image. Ground truth

measurements of spectra over the test panels were available with the ARM site image data.

Ground truth spectra for the 2 percent and 64 percent panels, collected on 24 June 1997, were

used to perform the ELM calibration. Sub-image cubes similar in spatial extent to the image in

Figure 3.5(a) were extracted from the original radiance cubes. The sub-cubes were pre-

processed to remove artifacts involving integer wrapping of some bright pixels into negative

numbers. For each calibration panel, all interior pixels were selected and input to ENVI's

Empirical Line Calibration (ELM) routine, which performs a linear regression to minimize the

effects of noise across the uniform panels (ENVI User's Guide, 1997). All six run cubes were

processed to estimate reflectance. Channels affected by water vapor absorption and negative

radiance values were removed leaving a total of 73 spectral channels, as described in Chapter 4.

79



3.3.4.2 ATREM Processing of Test Data Set

ATREM Version 3.0 was used to estimate reflectance from each of the six run cubes.

For each run, the entire image cube was processed with all 210 original HYDICE sensor

channels included. The atmospheric parameters used in the input files for all six runs were:

1 channel ratio parameters (0 or 1)
0.8650 3 1.030 3 0.940 7 .94 um water vapor band ratio parameters
1.050 3 1.235 3 1.1375 7 1.14 um water vapor band ratio parameters
2 atmospheric model (2=midlat sum)
1 1 1 1 1 11 !gas selectors
0.34 total column ozone amount (atm-cm)
1 23 aerosol model and visibility (km)

After the estimated reflectance cubes were generated, sub-cubes matching the same

spatial area of the ELM sub-cubes were extracted, and the channels affected by water vapor

absorption and negative radiance values were removed as described in Chapter 4, leaving 73

channels.

3.3.4.3 Spatial SPIRE Processing of Test Data Set

Spatial SPIRE processing was preformed on the same sub-cubes extracted and integer

wrap undone during the ELM processing. Channels affected by water vapor absorption and

negative radiance values were removed before SPIRE processing, leaving a total of 73 spectral

channels as described in Chapter 4. In addition, any negative radiance values were set to the

minimum positive value in that channel.

Analysis of the ELM results from different days showed that both additive and

multiplicative effects were essentially spatially uniform. This analysis involved measuring the

differences between the low frequency components of the ELM images, as well as registering the

images and measuring differences between them. Since ELM assumes uniform illumination

conditions, any deviations from this assumption would show up as spatially varying differences
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in the ELM images of the same scene. The differences found were very small, meeting Case 2

conditions. However, the Case 4 algorithm was used with a mean filter kernel instead of the

non-iterating Case 2 algorithm, to allow comparison against similar iterative Spectral and

Combined SPIRE algorithms in subsequent chapters.

A full-size-run 07 ELM generated reflectance cube was used as the source of prior

information for the Case 4 SPIRE algorithm. To generate the actual prior cubes needed to

process each of the six runs, ENVI's image-to-image warping routine using ground control points

was used (ENVI Users Guide, 1997), utilizing the RST (Rotation, Scaling, and Translation)

warping method with nearest neighbor re-sampling. Prior sub-cubes were then cut from the

warped full-size-run 07 ELM cube, covering the same pixel values as the other run sub-cubes.

No warping of the prior was needed for run 07. Appendix B contains channel images from each

of the prior cubes.

3.3.4.4 Processing Results and Comparisons

Having run ELM, ATREM, and Spatial SPIRE on each of the six test data cubes from the

six runs, we can now compare the results for individual pixels from each image of the same

material. Figure 3.8(a)-(r) shows the estimated reflectance spectra generated by the ELM,

ATREM, and Spatial SPIRE algorithms for 19 different types of pixels. Many of these pixels

were selected from uniform materials such as panels, others are from materials such as grass and

road which are fairly uniform but do display some mottled variation that could influence the run-

to-run repeatability of reflectance estimates, since the pixels from each image are not registered

exactly and have different ground coverage due to altitude variations.

For each pixel type, ELM reflectance estimates for the six runs are plotted at the top, with

ATREM's estimates in the middle, and Spatial SPIRE at the bottom. Note that the vertical axis
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of each reflectance plot is different from pixel to pixel, and was chosen to best highlight the

variance between runs for that pixel and to compare the performance of the three algorithms.

Similar plots with the vertical axis scaled from 0 to 1 can be found in Appendix C as Figure C. 1,

and provide a sense of how the performance on different pixels compared to each other. In each

plot, five vertical dashed lines are drawn where channels were removed due to water absorption

and other effects discussed in Chapter 4. The bands of channels between the vertical lines will

be referred to as Bands 1-6, as denoted in Figure 3.8 (a).

Figure 3.8 (a)-(f) are of the six spectroradiometric calibration panels. These panels were

intended to have spectrally uniform reflectance of 2, 4, 8, 16, 32, and 64 percent. Each panel

consisted of a Dacron TM substrate with an acrylic top coating. Both field and laboratory spectral

reflectance data were collected from these panels. Immediately following deployment, the

panels were cleared of accumulated dust using a leaf blower. Prior to the start of the 26 June

overflights the panels were cleaned, following a thunderstorm which occurred on 25 June 1997.

Cleaning was accomplished using a pressure washer provided by the ARM Site, and

accumulated water was removed using a leaf blower.

The actual percent reflectance of these panels are often not the exact value of their name.

For example, the 2 percent panel's actual reflectivity is approximately 5 percent. This is also true

for the 15, 41, and 57 percent panels described below. These discrepancies are due to either

inaccurate manufacturing or inaccurate ground truth collection by the spectroradiometer, and are

not an artifact of the reflectance estimation algorithms used. The ELM estimates of Run 07

come closest to matching the ground truth spectra for these panels since the ground truth was

collected close in time to the Run 07 data collection.

Figure 3.8 (g) depicts the results for the spectral panel, which was designed to provide
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Figure 3.8 (a) and (b). ELM, A TREM, and Spatial SPIRE spectral reflectance estimates for all
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bands of contiguous channels left after dropping problem channels, defined as Bands 1-6 as
depicted in the upper left plot of ELM 2 percent panel reflectance. Spatial SPIRE's poor
performance at longer wavelengths is due to errors in estimating the additive noise a under low
SNR conditions.
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Figure 3.8 (c) and (d). ELM, A TREM, and Spatial SPIRE spectral reflectance estimates for all
six runs for a single pixel on the 8 percent panel (c) and the 16 percent panel (d).
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Figure 3.8 (e) and (f). ELM, A TREM, and Spatial SPIRE spectral reflectance estimates for all
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Figure 3.8 (g) and (h). ELM, A TREM, and Spatial SPIRE spectral reflectance estimates for all
six runs for a single pixel on the spectral panel (g) and the 15 percent panel (h).
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Figure 3.8 (i) and (j). ELM, A TREM, and Spatial SPIRE spectral reflectance estimates for all
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Figure 3.8 (k) and (1). E LM, A TR EM, and Spatial SPIR E spectral reflectance estimates for all
six runs for a single pixel on grass (k) and mowed grass (1).
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Figure 3.8 (m) and (n). ELM, ATREM, and Spatial SPIRE spectral reflectance estimates for all
six runs for a single pixel on the road (m) and the parking lot (n).
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Figure 3.8 (o) and (p). ELM, A TREM, and Spatial SPIRE spectral reflectance estimates for all
six runs for a single pixel on the building roof (o) and the resolution panel (p).
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Figure 3.8 (q) and (r). ELM, A TREM, and Spatial SPIRE spectral reflectance estimates for all
six runs for a single pixel on emissivity panel 1 (q) and emissivity panel 4 (r).
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Figure 3.8(s). ELM, A TREM, and Spatial SPIRE spectral reflectance estimates for all
six runs for the modified pixel. The modified pixel was a truck in Run 07, and changed to
mowed grass in all subsequent Runs. For Run 07, a similar mowed grass pixel is plotted
for comparison.
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several sharp absorption features at known wavelengths for testing hyperspectral sensors. The

panel was comprised of a natural polyester substrate with a nominally 64 percent reflective

pigmented acrylic underlayer, and a non-pigmented acrylic top coat containing a suspended rare

earth compound. This panel was also cleaned with a leaf blower following its initial deployment

on 23 June 1997. The panel was cleaned with a pressure washer following the thunderstorm that

occurred the evening of 25 June 1997.

Figure 3.8 (h)-(j) are of the three "unknown" reflectance panels, which were estimated to

have uniform reflectances of 15, 41, and 57 percent. These panels were composed of an acrylic

coating on a canvas fabric substrate that provides a uniform reflectance over the near ultraviolet

to the short-wave infrared spectral region. The three panels were initially deployed on 23 June

1997 and remained throughout the collection period. Following the thunderstorm on 25 June

1997, each panel was pressure washed to remove accumulated dirt, then dried using a leaf

blower and cotton rags.

Figure 3.8 (k) and (1) depict grass and mowed grass. Figure 3.8 (m)-(p) depict estimates

for pixels on the gravel road, a parking lot, a building roof, and the resolution panel, which was a

small panel intended to assess a sensor's spatial resolution capabilities. Figure 3.8 (q) and (r) are

of the two emissivity panels. These panels were manufactured from materials that vary in

emissivity and provide a flat spectral response over the 1-to 14-micrometer region. The basic

coating is acrylic, over a canvas substrate. Nominal emissivity ranges from 0.6 to 0.9. The

emissivity panels were cleaned using a pressure washer on 26 June 1997, with drying

accomplished using a leaf blower and cotton rags. Finally, Figure 3.8 (s) depicts a pixel where a

truck was present in the Run 07 image used to generate the priors, but which moved and left

mowed grass in its place. This pixel will be referred to as the "modified" pixel.
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The relative performance of ELM, ATREM, and Spatial SPIRE can best be measured in

two ways. The first is to measure the variance or standard deviation of the estimates at each

pixel for the six runs. This provides insight into the repeatability of the estimates. Second, if we

treat the ELM results as ground truth, we can measure the error between the mean of the six

ELM estimates and the mean of the six estimates from either ATREM or Spatial SPIRE to obtain

insight into any bias or mean error in their estimates.

Figure 3.9 shows the scatter plot of mean and standard deviation performance of Spatial SPIRE,

ELM, and ATREM for estimation of surface spectral reflectance for all of the 19 pixel types

selected. The horizontal axis represents the average standard deviation over all the spectral

channels, where the standard deviation in each channel was calculated over the reflectance

estimates of all six runs (Runs 06-31). The vertical axis is the root mean squared (RMS) error

over all the spectral channels for the mean reflectance estimate minus the mean reflectance

estimate of ELM as ground truth, which is why ELM has zero RMS error. We see that in

general, Spatial SPIRE has better standard deviation and better RMS error performance than

ATREM. Spatial SPIRE also has about the same standard deviation performance as ELM. In

Appendix C, Table C.1 lists the average channel standard deviation over the six runs in each

band for each algorithm and Table C.2 lists the same values but as a percentage of the mean

estimated reflectance over the six runs.

Several interesting results are also demonstrated by the plots in Figure 3.8(a)-(s). For

nearly all of the pixels, including the modified pixel, the Spatial SPIRE reflectance estimates

agree much better with the ELM than do the ATREM results. If we consider ELM as ground

truth, then Spatial SPIRE consistently demonstrates better performance than ATREM. Note that

the ATREM estimates tend to group into two clusters with the three spectra from runs 06, 22,
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Figure 3.9. Scatter plot of mean and standard deviation performance of Spatial SPIRE
(diamonds), ELM (*), and A TREM (+) for estimation of surface spectral reflectance for all of the
19 pixel types selected The horizontal axis represents the average standard deviation over all
the spectral channels, where the standard deviation in each channel was calculated over the
reflectance estimates of all six runs (Runs 06, 07, 13, 22, 26, and 31). The vertical axis is the
RMS error over all the spectral channels for the mean reflectance estimate minus the mean
reflectance estimate of ELM as ground truth, which is why ELM has zero RMS error. The larger
symbols represent the mean of the points plotted with that symbol. We see that Spatial SPIRE
has better standard deviation and RMS error performance than A TREM

and 31 significantly lower than the other three.

The performance of ATREM caused some concern so the same runs were processed

using the AFRL/MODTRAN code, which confirmed the ATREM results. All-sky photographs

ATREM reflectance estimates on these days due to the reduced illumination reaching the ground.
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This also underscores the problems physics-based codes can have with overcast clouds, which do

not affect the SPIRE algorithms. Similar problems with ATREM were noted in (Sanders, et al.,

1998).

The second result of interest is apparent in the plots of the low reflectivity panels such as

the 2, 4, and 8 percent panels. While there is excellent agreement between ELM and Spatial

SPIRE in Bands 1 and 2, Spatial SPIRE has high variance in Bands 3-6. For pixels with higher

reflectance, this is not true. This variance in the Spatial SPIRE results are due to errors in

estimating a by the Case 4 algorithm that disproportionally affect low signal values. This is

discussed further in section 3.4.4.

3.4 Noise Analysis

HYDICE sensor data contains noise from several different sources (Nischan, et al. 1999).

These include detector noise, periodic background "heartbeat", calibration errors, channel center

wavelength (spectral) drift and jitter, and interaction between the spectral jitter and the HYDICE

thermal background suppression filter. In addition, noise in the prior and due to registration

errors, deviations from the assumptions of small area reflectance changes, and slowly varying

multiplicative and additive noises also affect SPIRE algorithms. A detailed analysis of each type

of noise and it's effects on Spatial SPIRE algorithms is beyond the scope of this thesis.

Instead our goal in this section is to understand which general types of noise (sensor,

calibration, prior, etc.) affect Spatial SPIRE reflectance estimates, and for those that do,

understand the behavior well enough to make recommendations for overcoming or minimizing

the effects. For those noises that do have a significant effects, we will assume simple models for

the noise sources and derive equations for reflectance estimation errors based on these models.

When appropriate, we will generate numerical results from these equations to demonstrate the
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effects on Spatial SPIRE algorithm performance. These error equations and results provide

guidance for how to perform specific noise analyses for different sensors and applications. We

will also gauge the effect of the actual total noise in the HYDICE data and priors by presenting

results from running the Spatial SPIRE with the normal (noisy) prior and a perfect prior based on

ELM results.

3.4.1 Registration Noise

Imperfect registration of the image and its prior introduces noise that can effect

reflectance estimation. If we view the spectrum at each pixel as a vector in a normed vector

space (one in which a notion of length is defined for the elements of the space), then we can

define the distance between the pixels at [n,,n, ] from two different images as the length of the

vector difference between the two pixel vectors. For two reflectance images r, and r2 , the

distance d[n, , na ] between the pixel spectra r, [n, , n, ] and r2 [n,,, , n,] is defined as:

d[nx.,ny,]= L r[nx, nn^]-r2 n, , na 2 (3.30)

Performing this calculation at each [n ,n] results in a distance image. In Figure

3.10(a), we see the distance image between the prior used for Run 06 and the ELM estimated

reflectance for Run 06. Brighter pixels correspond to large distances, we see that misregistration

errors generate larger distances at the edges of the test panels. In addition, bright differences are

apparent where the truck to the left of the calibration panels has moved, and in some of the grass

and road areas, that cause of which is not understood due to lack of ground truth at those

locations. If the ELM reflectance estimates are regarded as ground truth, then this distance
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(a) (b)

Figure 3.10. Distance images ofprior reflectance with respect to ELM estimated reflectance
(a) for Run 06. The distance value at each pixel is equal to the length of the vector difference
between the pixel spectra of the two images at that pixel. Brighter distance image pixels
have longer distances and highlight changes since the prior and registration errors in (a).
The distance image between Spatial SPIRE and ELM estimated r for the same run is shown
in (b), where misregistration errors did not affect the results.

image represents the registration errors present in the prior reflectance.

In Figure 3.10(b) is depicted the distance between the Spatial SPIRE reflectance

estimates and ELM estimated reflectance. We see that the misregistration noise has not affected

the Spatial SPIRE results. This is because misregistration noise will contain mostly high spatial

frequencies and be localized to object edges. Since only low spatial frequencies are used from

the prior, misregistration noise will not affect Spatial SPIRE algorithms, so long as the

misregistration does not cause major changes in the low spatial frequency content of the prior

compared to the current scene. Since misregistration noise does not have a significant impact on

Spatial SPIRE results, there is no need to develop equations for the errors involved.

3.4.2 Prior, Sensor, and Calibration Noise

In this section we derive the effects of prior and sensor noise sources and give some
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examples of their effects. We are working in a single channel image, so all variables are a

function of only n, and n . We assume that there are three main types of noise: sensor,

calibration, and prior. A single noise free, calibrated radiance image i is given by:

i= rm + a (3.31)

Where r is surface reflectance and m and a are the multiplicative and additive

illumination effects. We assume that there is an additive sensor noise s which is typically the

sum of several noise sources. We will assume that s is a random Gaussian variable across n,

and n, with mean p., and variance a, across the image: s ~ N(ps, of). Calibration noise is

assumed to consist of an additive offset noise, or error, coje, and a multiplicative gain noise cgai .

With calibration and sensor noise sources taken into account, our single calibrated radiance

image can be viewed as:

=cgain(rm+a+ s)+ cfe,, (3.32)

Typically, a single gain and offset correction for each detector is applied to each

individual image. In a single detector (per spectral channel), scanning push-broom sensor,

cgain and cuse, will tend to be constant across the image, with slowly varying changes possible due

to drifts away from any in flight calibration data collection.

In a push-broom sensor with a linear array, cgam, and coset are constant or slowly varying

in the in-flight spatial dimension by the same arguments as above, but could vary in the cross

track due to individual detector differences. Assuming that such differences can be well

compensated for using laboratory measurements, any calibration noise across a linear array will
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tend to be constant, or slowly varying if changing thermal conditions cause optical variations or

geometric effects.

Since the Spatial SPIRE algorithms employ spatial filtering that removes low spatial

frequencies, we can discuss just the case where m, a, cgain and coff e, are constant across the

image without loss of generality (so long as the low spatial frequency support of cgain and Coffse, is

within that of m and a). Therefore, we will assume that both cgain and coffse are unknowns that are

constant across the image.

The removal of a is accomplished by subtracting the mean of i from itself (high pass

filtering):

i - mean(i) = cgain(rm+ a+s)+ coffset

-mean(cgain (rm + a + s)) - mean(coffse,)

= C gain (rm + sz, - mean(rm))

(3.33)

Where sz, - N(0, o') is simply a zero mean version of s. Assuming that we have found

the best value of mean(rm) to add back in (using the iterative Case 4 algorithm), we proceed to

take the log and use the Case 3 algorithm to solve the multiplicative-only case. If there is an

error in our estimation of mean(rm), then this adds a constant error ea to the resulting estimated

rm image:

rm = i - mean(i)+est(mean(rm)) (3.34)
= Ca.. (rm + Szm + ea)

Next we move into log space in an attempt to separate r and m:
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log rm = log cgain + log(rm + sm + e,)~ log r + log m

The addition of szm and eo to rm causes a non-linear effect on the image in log space that

can be treated as an added noise log e :

log en, = log(rm+sz +ea)-log rm (3.36)

So that:

log(rm + sz, + ea) = log rm + log esan, (3.37)

Substituting (3.37) into (3.35) yields:

log rm = log cgan + log rm + log esan

= log r +log m+log cgain + log esani

(3.38)

We now high pass filter in log space to remove the log m term, which is equivalent to

subtracting the mean:

log rm- mean(log rm) = log r + log m + log cg,,, + log ean,

- mean(log r + log m + log cgain log esa,)

= log r - mean(log r) + log en, - mean(log esn,)

(3.39)

Since log m and log cgain are both constant, they are eliminated by this filtering step. At

this point it is noteworthy that all of the calibration noise, both gain and offset, have been

removed. Therefore, calibration noise does not affect the Spatial-Only SPIRE algorithms single

image reflectance estimation, a trait shared with the Empirical Line Method (ELM). Physics-
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based codes such as ATREM require radiometrically calibrated data and are therefore sensitive

to such calibration noises.

Note that in (3.39), the last two terms on the right are equivalent to a zero-mean version

of log e,,. We therefore define a new error term:

log e.,,, = log e,n/ - mean(log esan1 ) (3.40)

And (3.39) becomes:

log rm- mean(log rm) = log r - mean(log r) + log esanl_m (3.41)

The next step is to restore our best estimate of mean(log r) by adding mean(log r,) to

(3.41), where r, is the prior reflectance. If we assume that there have been no changes in the

imaged scene since obtaining r,, then the prior r, will have some noise, or error, e, with respect

to the true reflectance:

e, = rp -r (3.42)

We therefore are restoring:

mean(log r,) = mean(log(r + e,)) (3.43)

Again, the subtraction of ep will have a nonlinear effect on the term mean(log r,) which

we define as a second nonlinear noise which is spatially constant:

log epn = mean(log(r + e,)) - mean(log r) (3.44)

102



So that:

mean(log rp) = mean(log(r + e,)) = mean(log r) + log eni

Adding (3.45) to (3.41) yields:

log rm- mean(log rm) + mean(log r,)

= log r - mean(log r)+log e,_-,,, + mean(log r,)

= logr -mean(log r)+log e,,,,, + mean(log r) + log e

(3.45)

(3.46)

= log r + log esaniz, + log epn

After taking the exponential, we solve for reflectance, which as expected, is the

exponential of the log of r, perturbed by two multiplicative noise terms:

r= exp(log r +±log e ,,_,z +log e,(3

= resan,zmepn,

Expressing the reflectance error as an additive noise, we have:

e, = r -r = resanlmepn - r = r (esanI-zmepn -1)

Where the two noise terms are defined as:

esanlzm = exp(log eani - mean(log esan,))

= exp(log(rm + sm + ea) - log rm

-mean(log(rm + szm + ea)-log rm)

epn = exp (mean(log(r + e,)) - mean(log r))

(3.48)

(3.49)

(3.50)

Both esanlzm and epnl cause no error in P if they are equal to 1 (0 in log space). Figure
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Figure 3.11. Spatial SPIRE reflectance error at a single pixel of reflectance r=0.20 caused by
sensor noise standard deviation , (sigmas) versus signal-to-noise ratio (SNR=rm/-s) in the
multiplicative noise only case (a=O). The effect of the sensor noise is non-linear and plots for
the noise s=+ -s and s=-q- are shown. A value of m=600 Watts/m2/sr/pm was used at all pixels.

3.11 depicts e, as a function of SNR =rm/o-, when epnll , so that e, is caused purely by

sensor noise s via esanl,_m. We have assumed that a = 0 and therefore ea = 0, and that r = 0.20

and m = 600 Watts/m 2/sr/ptm for all pixels in the image. The two curves represent the effect on

a single pixel at [n,,n,]of s[n,,n,]=+o-,and s[n,,n,]=-o-since these will have different

nonlinear effects on e,. We see that errors cause by sensor noise can be overcome by increasing

SNR. For the Run 06, SNR (see Figure 3.15) is above 3000 for most channels in Bands 1 and 2,

above 1000 in Bands 3 and 4, and above 100 in Bands 5 and 6, resulting in reflectance errors less

than 0.005.

Figure 3.12 plots the effect of the prior noise ep on e, when esanl_, =1. Again, r = 0.20
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Figure 3.12. Reflectance error at a single pixel of reflectance r=0.20 caused by prior noise
variance u, in the multiplicative noise only case (a=O). A value of m=600 Watts/m2/sr/pum was
used at all pixels and the prior noise was assumed to be Gaussian with zero mean.

and m = 600 Watts/m 2/sr/tm for all pixels in the image. In Figure 3.12 we assume that

p =0 so that e, N(0, o7). Since r, = r + ep would have been forced to have values between 0

and 1, our range of standard deviations considered is up =0 to 0.8. For the priors used in this

thesis, up =0.005, causing very small reflectance errors. For the case when a mean error p

exist in r,, this results in the same error being introduced into r.

3.4.3 Violation of Spatial SPIRE Assumptions

The two basic assumptions that Spatial SPIRE relies on are that any changes since the

prior are small in area compared to the scene and that the multiplicative and additive noise

effects are band limited to lower spatial frequencies. Together, these two assumptions are
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equivalent to having no overlap between the spatial frequency content of the illumination noise

and reflectance changes in the image.

Figure 3.13 shows the effect of violating these assumptions by having increasingly larger

and larger reflectance changes until they effect the mean of the image. A simulated single

channel prior image of uniform 0.30 reflectance was modified with a new reflectance of value

0.40. The size of this modification was varied from 0-100 percent of the image area to generate

101 test images. This was then repeated with modification reflectances values of 0.50 and 0.60.

A uniform multiplicative noise of m=5 was then applied to all of the test images. The resulting

simulated radiance images were processed using the Case 1 algorithm with the original uniform

0.30 reflectance image as the prior image. The absolute percent error in the estimation of one of

the modified reflectance pixels is plotted in Figure 3.13 versus the percent area of the change.

We see that the percentage error quickly grows to several percent as the area covered by the

change grows to 5-10 percent of the scene area.

3.4.4 Perfect versus Normal Priors

To gain insight into the overall effects the noise sources present in the prior on the results

of Figure 3.8, the Spatial SPIRE processing of Section 3.3.4.3 was redone using perfect priors

consisting of the ELM reflectance estimate for each test cube. In addition, the ELM-estimated

additive a vectors were subtracted to create "m-only" test cubes which were also processed with

perfect priors and those generated from Run 07. (In the multiplicative-noise-only case, Spatial

SPIRE duplicates ELM performance exactly when run with a perfect prior.) Figure 3.14(a)

shows these four results for the 2 percent panel. Here we see direct confirmation that the

excessive variance in Bands 3-6 for low reflectance materials is directly related to the presence

of prior noise, and that the problem is introduced when estimating a.
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Figure 3.13. Absolute percent error in estimated reflectance for a change from 0.3 reflectance
to 0.4 (---), 0.5 (), and 0.6 (-) versus percentage change in area. The unmodified image had a
uniform reflectance of 0.3 for all pixels.

Any error in estimating a has a larger percentage effect on a low reflectivity material than

a higher one. Upon moving into log space, this will have a much larger effect on a low

reflectivity material's log reflectance value. In channels with very low signal-to-noise ratio

(SNR), prior noise will have a large effect on the log of the prior reflectance as well. These two

effects combine to create the large errors seen in the longer wavelength channels for low

reflectivity materials. Figure 3.15 shows the SNR of each channel as measured over the 64

percent panel on Run 06. We see that the SNR is lower in Bands 3-6 than in Bands 1 and 2, and

will be especially low for a low reflectance material like the 2 percent panel. The fact that the

effect is worse on the runs with cloud and haze indicates that the problem is caused by low SNR,

which can be overcome by a sensor design that achieves higher SNR. In Figure 3.14(b) the
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(a) and the spectral panel (b). The longer wavelength errors on the 2 percent panel are
caused by errors in estimating the additive noise a under low SNR conditions.
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Figure 3.15. Signal-to-noise ratio (SNR) over the 64 percent spectroradiometric calibration
panel during Run 06. The SNR was calculated in each channel as the mean divided by the
standard deviation over all pure (non-edge) pixels on the panel. The SNR is lower in the longer
wavelengths of Bands 3-6 than in Bands ] and 2.

same plots are shown for the spectral panel. We see an increase in variance overall due to a

noisy prior, but it is not related to the estimation of a.

3.4.5 Multiple Images

For this section we assume that several images have been collected over the same scene,

and that no changes have occurred in r between images and since the generation of the prior.

Our goal is to determine if multiple such images can be used to reduce the effects of noise.

In Section 3.4.2 we established that calibration noise does not affect r in the single

image case, so it is not an issue in the multiple images case.

If we assume that the same prior is used when processing all of the multiple images, and
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we assume perfect registration, then each P image pixel will have the same prior noise induced

error, and therefore can not be reduced by processing multiple images.

The only noise effect that could be reduced by having multiple images is the one due to

sensor noise. In Figure 3.11 it is apparent that the reflectance error caused by a positive one-

sigma noise sample is nearly the same in magnitude as the negative error caused by a negative

one-sigma noise sample. Therefore, averaging the estimated reflectance images will eliminate

most of the sensor noise induced reflectance errors. For SNR>150, the reflectance error is

already less than 0.01, and averaging would reduce it by approximately a factor of 10.

3.5 Summary and Conclusions

In this chapter we derived Spatial SPIRE algorithms that estimate surface reflectance

using a prior reflectance image and spatial filtering to remove the multiplicative and additive

illumination noise effects. Unlike traditional lightness algorithms which can only compensate

for multiplicative noise, we demonstrated that SPIRE algorithms compensate for both

multiplicative and additive noise. We compared the performance of the Spatial SPIRE

algorithms to ELM and ATREM on six HYDICE airborne sensing hyperspectral image cubes

from the ARM Site data collect. Based on these experiments we can make the following

conclusions:

" Performance of Spatial SPIRE was very similar ELM.

* Performance of Spatial SPIRE was consistently far better than ATREM, mostly due

to clouds affecting ATREM's performance on three of the runs.

" Spatial SPIRE algorithms are insensitive to calibration noise and can therefore be

applied to uncalibrated sensor data.
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" Spatial SPIRE algorithms are insensitive to misregistration noise between the prior

and current image.

" The effects of sensor and prior noise can be overcome with adequate SNR.

" Non-iterating, computationally efficient algorithms were developed for Cases 1, 2,

and 5 and can be used if the spatial uniformity conditions on the noises are met.

* The Spatial SPIRE Case 4 algorithm performs poorly on low reflectivity materials

under low SNR conditions.

In the next chapter, we develop Spectral SPIRE algorithms which use filtering techniques

similar to Spatial SPIRE, but in the spectral dimension.

III
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Chapter 4

Principal Components Analysis of Multiplicative and Additive Noise
Ensembles

4.1 Introduction

In this chapter, we lay the groundwork for the Spectral SPIRE algorithms developed in

Chapter 5 and the spectral processing used in the Combined SPIRE algorithms developed in

Chapter 6. We begin by discussing Principal Components Analysis (PCA) and then apply it to

ensembles of HYDICE noise and reflectance pixel spectral vectors to determine the number of

degrees of freedom in r, m, and a in the HYDICE test data set presented in Chapter 3. We next

develop two techniques that make use of PCA to "focus", or collect the majority of the

multiplicative and additive noise into a small number of principal components (PCs) called

Abutted Principal Components (APC) analysis and Zero-Padded Principal Components (ZPC)

analysis. These focused PCA techniques are required for effective Spectral and Combined

SPIRE algorithms. We end the chapter with a discussion of the HYDICE channels dropped due

to negative radiance values, water vapor absorption, and spectral channel center wavelength drift

at edges of water absorption bands, since problems in these bands have a detrimental effect on

PCA and are generally not of use by applications using surface reflectance.

4.2 Principal Components Analysis

Principal Components Analysis (PCA) utilizes the Principal Components Transform

(PCT) to remove spectral redundancy, or correlation between spectral channels (Schowendgert,

1997, Richards, 1993, Lillesand and Kiefer, 1994). The PCT is mathematically equivalent to the

Karhunen-Lodve Transform (Van Trees, 1968, Papoulis, 1991) and the Hotelling Transform
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(Richards, 1993) for discrete data. By viewing each pixel spectrum as a vector in an orthogonal

N-dimensional space, where N is the number of spectral channels, then the PCT can be

understood as a rotation into a new set of N-dimensional coordinate axes in which all of the data

are uncorrelated. Since independent variables in the data will be uncorrelated, decorrelating the

data with a PCT will tend to separate independent variables and collect them into different PC

dimensions.

For discrete data, the PCT can be defined mathematically as follows. If the original

ensemble of pixel vectors is denoted by {x}, then we seek a rotation matrix D such that the

covariance matrix of the rotated ensemble {y} is diagonal, indicating that {y} are uncorrelated:

y = (Dx

AY =FA DT => AY is diagonal (1.1)

In such a PCT, the rows of the matrix (D are the eigenvectors p, of the covariance matrix

AX and the diagonal elements of AY are the corresponding eigenvalues Aj. The eigenvectors

and eigenvalues satisfy (Strang, 1998):

Axq, = A,, (1.2)

By convention, the new N-dimensional vector's dimensions, referred to as Principal

Components (PCs), are ordered in descending eigenvalue magnitude. In this thesis we will use

the convention that the first PC, corresponding to the largest eigenvalue, will be PC number 1.

Thereby, the first, or lowest, principal component will have the largest variance, while the last, or

highest PCs will typically contain only low variance random noise, especially if there are far

fewer total degrees of freedom in the data than there are dimensions. This typically happens in
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sensor datasets where spectral channels are correlated. In datasets containing linear

combinations of independent variables (degrees of freedom), the PCT will tend to collect these

degrees of freedom into separate PCs to the extent that they are uncorrelated. While this

separation is seldom perfect, it can be a powerful tool in signal analysis. Finding the PCT for an

ensemble is often referred to as Principal Components Analysis (PCA)

4.2.1 PCT Implementation

Since the PCT is defined using an ensemble's covariance matrix, the mean vector P, can

be subtracted from the ensemble before PCA without affecting the rotation. This is due to the

fact that the covariance is defined as:

cov(x, x) = E[(x - px)(x - ptx)T] (1.3)

In many applications of PCA, the mean vector is not only subtracted before calculating

the ( rotation matrix, but it is also done prior to rotating any vector into PC space. In this

thesis, we will eventually be dealing with combined spatial and spectral filtering techniques that

filter out low spatial frequency components from specific PCs, and then restore them from a

prior. Therefore, we need to keep the mean (zero spatial frequency) information in the data, so

our PCA will be done without subtracting the mean.

The estimation of the D and AY from a vector ensemble in this thesis was done by using

the envi statsdoitO ENVI routine (ENVI User's Guide, 1997) which calculates the covariance

matrix AX, its eigenvectors (p,, and its eignevalues. Treating the eigenvectors as column

vectors, they were then used to construct the PC rotation matrix D as follows:
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TI

D= 2 (1.4)

S(PNT~

4.3 Degrees of Freedom of m, a, and r in HYDICE Data Set

In this thesis we are using data from the HYDICE airborne hyperspectral sensor which

has 210 spectral channels. We can use PCA to analyze this dataset to determine the approximate

number of degrees of freedom present in the multiplicative and additive noises, as well as in the

reflectance signal of interest. This information will be useful when designing our Spectral and

Combined SPIRE algorithms, which rely on PCTs that collect noise terms into a few PCs,

effectively band limiting them to a few PCs so that "spectral" band pass filters can be applied in

PC space.

4.3.1 Empirical Ensembles of m and a

Ensembles of additive and multiplicative m and a vectors were required to define the PC

rotations needed by the Spectral and Combined SPIRE algorithms to concentrate the a and log m.

noise terms into a few low PCs for removal. We will show in Chapters 5 and 6 that Spectral and

Combined SPIRE algorithms will be insensitive to calibration noise if ensembles derived from

calibrated sensor data are used to define the PC rotations, since any calibration noise will also be

collected into low PCs and removed along with the multiplicative and additive noises caused by

illumination effects. Therefore, calibrated HYDICE data were used as the source of the

ensembles of m and a.
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4.3.1.1 Pre-computed ELM Gain and Offset Files

Several HYDICE data sets were available in addition to the 1997 ARM Site data set

discussed in Chapter 3. For each of these data sets, ELM and ground truth measurement of

calibration panels had been used to generate gain (multiplicative noise m) and offset (additive

noise a) vectors for each image. Twenty five pairs of such m and a vectors were obtained from

the HYDICE Forest Radiance I, Urban Radiance I, and Desert Radiance II campaigns. Such pre-

computed vectors were not available for the 1997 ARM Site campaign.

4.3.1.2 ELM m and a Vectors from ARM Site Images

Since we are now dealing with pixel vectors, we will use bold variable names to denote

vector quantities. To obtain m and a vectors from the ARM Site dataset, 8 of the 14 image cubes

in the ARM Site data collect were processed using ELM, excluding the 6 test cubes used in

Chapter 3 for testing Spatial SPIRE, so that the PCT would not be defined by the blind data it

would be tested on. For each image cube, ground truth spectra for the 64% and 2% panels were

re-sampled into the 210 HYDICE channels defined by the channel center wavelength file for that

cube. Radiance values from all non-edge pixels on the 64% and 2% panels were input to the

ELM algorithm, along with the ground truth spectra, generating an m and an a vector for each

ARM Site image cube. These were combined with the gain and offset vectors from the other

HYDICE campaigns, to create {m} and {a} ensembles of 33 vectors each. The log was then

taken of the {m} ensemble to generate a {log m} ensemble, which will be used for PC based

filtering in log space. Spectral channels were dropped as described later in this chapter to

remove channels affected by water vapor absorption and negative radiance values, and then PCA

was performed on the {log m} and {a} ensembles.
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Figure 4.1. Principal component eigenvalue plots for empirical log m (a) and a (b) ensembles.
Each ensemble contains 33 vectors obtained from ELM processing of calibrated HYDICE data.
Using the Lee and Staelin scree-plot technique, both {log m} and (a) empirical ensembles are
estimated to contain 3 degrees offreedom each.

Figure 4.1 shows PC eigenvalue plots for {log m} and {a}. Using these data we can

estimate the number of degrees of freedom (DOF) present in the data. The "scree-plot"

technique (Lee and Staelin, 2001, Lee, 2000) was used to estimate the number of degrees of

freedom. In geophysical terms, a scree is loose rock that slopes up to the base of a mountain and

is the junction between a mountain and a plain. PCs containing mostly noise will tend to

increase gradually in eigenvalue (a scree) until the PCs containing degrees of freedom are

reached, at which point the eigenvalues increase faster (a mountain). The scree-plot technique

developed by Lee and Staelin to estimate the number of DOF uses a least squares linear

regression to estimate the slope and intercept of a line that runs through the scree of noise

dominated PCs when the eigenvalues are plotted on a log axis. Where the scree-plot deviates

from this line is the start of the "mountain" and corresponds to the PC of the last DOF. Using

this technique, the empirical {log m} and {a} ensembles were each estimated to contain 3 DOE.
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4.3.2 MODTRAN Simulated Ensembles

To verify that the empirically derived ensembles were representative and contained

reasonable degrees of freedom, simulated ensembles were generated using the MODTRAN 4.0

atmospheric radiation transfer and simulation code (Adler-Goldem, et al., 1998).

First, 5 sets of 8 input runs were done to generate m and a vectors similar to those

encountered in the ARM Site data set. All were run with the Mid-Latitude Summer atmospheric

model, a RURAL aerosol extinction model with 23 km visibility, multiple scattering, and surface

spectral reflectance set to one for all wavelengths. The five sets each stepped through eight runs

of:

* Sensor altitudes ranging from 0.5 to 4.0 km

" Solar zenith angles ranging from 10 to 80 degrees

" Column water vapor scaling factors of 0.15 to 1.90 times the default value in the

model

* Day of year during the months appropriate for the model ranging from day 151 to 242

" Random combinations of the above four variables

In addition, three additional sets of eight runs were done of the random combinations but

with:

" Mid-Latitude Summer atmospheric model and URBAN aerosol model with 5 km

visibility

" Mid-Latitude Winter atmospheric model and RURAL aerosol model with 23 km

visibility (with appropriate winter days)

" Mid-Latitude Winter atmospheric model and URBAN aerosol model with 5 km

visibility (with appropriate winter days)
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The above simulation runs yielded a total of 64 m and 64 a vectors. Each a vector was

calculated as the sum of the PTH THERM (path thermal) and SING SCAT (single scattering)

outputs. Each m vector was calculated as the TOTAL RAD (total radiation) output minus the

calculated a vector. PCA analysis was performed on the simulated ensembles of {log m} and

{a}. Spectral channels were dropped as described later in this chapter to remove channels

affected by water vapor absorption and negative radiance values, and PCA was performed on the

resulting reduced channel {log m} and {a} ensembles.

Figure 4.2 shows PC eigenvalue plots for the simulated {log m} and {a}. Using the

scree-plot technique to estimate the number of DOF, the {log m} ensemble was estimated to

contain 4 DOF, and {a} was estimated to contain 2. This is consistent with the fact that four

variables were varied, and that the day of year and column water vapor had very little effect on

the a vectors.

Figure 4.3 plots the PC eigenvalues for both the empirical and simulated ensembles,

simultaneously plotting the data from Figures 4.1 and 4.2. The disparity of the empirical and

MODTRAN plots at higher PCs is due to sensor noise in the empirical data not present in the

MODTRAN simulation. While the log m plots match well at lower PCs, the difference between

the two a plots at lower PCs is most likely due to limitations of the MODTRAN aerosol models.

Based on these plots and the scree-plot analysis, we conclude that the {log m} ensemble

contains 3-4 DOF and the {a} contains 2-3. This is plausible given the physics involved.

Absorption related multiplicative effects will vary with altitude and solar zenith angle as the

amount of atmosphere to be traversed changes. Varying water vapor absorption will also vary

the multiplicative noise. Also, varying the day of year varies the amount of top-of-the-
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Figure 4.2. Principal component eigenvalue plots for MODTRAN simulated log m (a) and a (b)
ensembles. Each ensemble contains 33 vectors obtained from ELM processing of calibrated
HYDICE data. Using the Lee and Staelin scree-plot technique, the {log m} MODTRAN
ensemble is estimated to contain 4 degrees of freedom while the {a} modtran ensemble is
estimated to contain 2 degrees offreedom.
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Figure 4.3. Principal component eigenvalue plots for both empirical and MODTRAN simulated
{log m} (a) and {a} (b) ensembles. These plots combine the plots from Figures 4.1 and 4.2.
The disparity of the empirical and MODTRAN plots at higher PCs is due to sensor noise not
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difference between the two a plots at lower PCs is most likely due to limitations of the
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121

-2

-4

-6

-8

0'

0

-J

20

2

d)

0

0'
M

-j

0

-2

-4

M0DTRAN

0D
-10

2



atmosphere solar radiation due the non-circular orbit of the earth about the sun, which will have

a multiplicative effect. Additive noise is affected mostly by variations in aerosol scattering,

which are most affected by altitude and solar zenith angle which vary the length of the radiative

path through the atmosphere and thereby the amount of scattering constituents encountered. The

additive noise is also affected a lesser extent by the type of aerosols present over different land

types.

4.3.3 Empirical Ensemble of Reflectance

To get a sense of the number of degrees of freedom in the surface reflectance of the ARM

Site data, the ELM reflectance estimate for Run 07 was analyzed using PCA (after removing

water vapor and other bad channels) by treating the pixel vectors as an ensemble of reflectance

spectra {r}. Figure 4.4 shows the PC eigenvalue plot this {r}. Using the scree-plot technique,

the {r} ensemble is estimated to have 6 degrees of freedom.

4.4 Abutted Principal Components Analysis

In a normal PCA, the mean of the ensemble of vectors being analyzed does not affect the

PC rotation since the mean does not affect the covariance. Therefore, normal PCA will not

collect all of the mean or DC component into the low PCs (though the lower PCs with high

variances often tend to have higher means than other PCs). If all of a quantity such as log m

needs to be removed, including its mean, then normal PCA will not achieve the desired goal of

collecting all of log m into a few low PCs to band limit log m in PC space, so that they can be

spectrally filtered out.

Two techniques were used in this thesis to "focus", or collect the mean of a noise

ensemble into low PCs along with the rest of the ensemble. The first is called Abutted Principal
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Figure 4.4. Principal component eigenvalue plot for an ensemble of ELM estimates of r

vectors in the Run 07 HYDICE image. Using the Lee and Staelin scree-plot technique, this {r}

ensemble is estimated to contain 6 degrees offreedom.

Components (APC) analysis and will be developed in this section.

We begin with our vector notation, multiplicative-noise-only image formation model:

i=rOm (1.5)

We then move into log space:

log i = log r + log m (1.6)

Next we spatially abut the log image cube and the log prior reflectance cube, which is

simply a union of the two ensembles, and is shown in Figure 4.5:

{j} = abut({log i},{log r,}) = {log i}U{log r,} (1.7)

Note that the spatial locations of these pixels do not matter for the analysis. In other

words, we could now spatially scramble all of the pixel vectors and the principal components
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Figure 4.5. Abutted Principal Components (APC) flow diagram. The log radiance image is
spatially abutted with the log prior reflectance. This union of the two pixel ensembles is then
subjected to Principal Components analysis (PCA). Note that spatial abutting is being used here
to make the results of the PCA clearer in Figure 4.6. Any union of the ensembles will result in
the same PC rotationfrom the PCA. In other words, the spatial positions of the pixels relative to
one another do not affect the PCA and resulting Q1og..

analysis and resulting rotation matrix would be the same. We use the spatial abutting approach

because it makes it easier to understand the APC technique as depicted in Figure 4.6, and

because it was easy to implement algorithmically. The final step is to calculate the rotation

matrix (Di that decorrelates the abutted ensemble {j} per (1. 1)-(1.4).

In Figure 4.6(a) the log prior reflectance log rp is spatially abutted with the log image log

i. Each single channel abutted image has only log rp on the left but both log m and log r on the

right half. In Figure 4.6(b) we have performed the PC rotation, collecting the log m into the low

PCs, along with a small amount of log r, and log r, leaving the rest in the higher PCs. In effect,

the presence or absence of log m has been turned into a degree of freedom in the data.

Reflectance values vary between 0 and 1. By selecting a larger numerical value for the scale of

the illumination, the variance of log m across the abutted image will be much higher than the

variance of reflectance within the ensemble. This will force the degrees of freedom in the data

associated with log m to be collected in the lowest PCs, along with whatever portion of log r

that happens to be randomly correlated with them.
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Figure 4.6. Abutted Principal Components (APC) details. In (a), the log prior reflectance log rp
is spatially abutted with the log image log i. Each single channel abutted image has only log rp
on the left but both log m and log r on the right half In (b) we have performed the PC analysis,

collecting the log m into the low PCs, along with a small amount of log rp and log r, leaving the

rest in the higher PCs. In effect, the presence or absence of log m has been turned into a degree

offreedom in the data. Since log m's magnitude is much larger than the variance in log r, it

ends up in the lowest PCs. In (c), an example cube with uniform log m has had nearly all log m

collected into PC 1, with almost none remaining in PC 2 and higher.
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In Figure 4.6(c), an example cube with uniform log m has been analyzed using APC.

Since log m is uniform, it represents only a single degree of freedom, and is essentially all

collected into PC 1, with none remaining in PC 2 and higher. We see in the PC images and

horizontal profiles that PC 1 has a large horizontal step corresponding to the absence and

presence of log m in the original abutted cube of Figure 4.6(a), while this step is essentially not

present in PC 2. With normal PCA, a uniform log m would be completely missed since it is all

in the mean.

One major strength of APC is that it does not require any knowledge about log m . No

prior ensembles are needed of log m for this to work. Also, the spatial variability of log m is not

an issue, it will all be collected into low PCs. Deciding where the PC cutoff is for significant

log m requires a separate algorithm and this is addressed in Appendix D. For our application,

APC is limited to the multiplicative only case, since we do not have a prior ensemble of rm with

which to abut an image with both multiplicative and additive noise. Therefore, APC is of little

use in remote sensing applications where both m and a are present. In the next section, we

develop a related technique called Zero-padded Principal Components, which is applicable to

removing both a and log m , but requires prior ensembles of them..

4.5 Zero-Padded Principal Components Analysis

Figure 4.7 shows the flow diagram for performing Zero-padded Principal Components

(ZPC). We assume that we have ensembles of noise vectors such as {log m}. If we were to

perform PCA on them, then the mean would not be collected into the low PCs. To make the

mean a degree of freedom, we pad the noise ensemble of log m with an image of zero vectors by

spatially abutting them:
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Figure 4.7. Zero-padded Principal Components (ZPC) flow diagram. The log m ensemble is
spatially abutted with an image cube of zero vectors. This union of the two pixel ensembles is
then subjected to Principal Components analysis (PCA). This is similar to Abutted Principal
Components of Figures 4.5 and 4.6, but uses a zero vector image cube abutted to the log m
ensemble.
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Figure 4.8. Zero-padded Principal Components (ZPC) details. In (a), the log multiplicative
noise ensemble of log m is padded with zero vectors. Each single channel image has zero
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collecting the log m into the low PCs, leaving noise in the high PCs. In effect, the presence or
absence of log m has been turned into a degree of freedom in the data, which turns the zero
spatialfrequency (DC) of log m into a DOF, which it is not in normal PCA.
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{z} = abut({log m},{0}) = {log m}U{} (1.

We then perform PCA on this zero padded image. In Figure 4.8(a) we see this

graphically depicted. Each single channel image now has zero values on the left and log m on

the right half In Figure 4.8(b) we have performed a normal PC analysis, collecting the logInm

into the low PCs, leaving noise in the high PCs. This technique is applicable to both the {log m}

and {a} noise ensembles, and can be pre-computed from prior noise ensembles.

4.6 Comparison of PCA, APC, and ZPC

Figure 4.9 plots the mean of the log m ensemble in PC space after rotating with normal

Principal Components analysis (PCA) (a), Abutted Principal Components (APC) analysis (b),

and Zero-padded Principal Components (ZPC) analysis (c). The APC rotation was defined using

the m-only image for Run 07 after subtracting the ELM derived a vector for the image. ZPC is

clearly better than PCA for concentrating mean log m noise into the lowest PCs. The APC plot

is of the mean of the whole ensemble, which is not a fair comparison since APC is focused only

on the Run 07 image for which it was defined, and not the entire ensemble. All three means are

plotted together in (d)-(f), with the first 20 PCs plotted in (f) with full value scale, and all the PCs

plotted in (e) with the value scale zoomed in near the origin.

In Figure 4.10 is plotted the ELM calculated log m spectrum in PC space for the Run 07

image after rotating with normal Principal Components analysis (PCA) (a), Abutted Principal

Components (APC) analysis (b), and Zero-padded Principal Components (ZPC) analysis (c).

ZPC is again clearly better than PCA at focusing the mean log m signal into the low PCs. APC

is the best, since it was defined on the Run 07 image. However, the PC rotation and PC cutoff

128

(1.8)



PCA - log m Ensemble Mean
2

0

20 4-0
PC

(c)

60

loq m Ensemble Mean
20 '. '

15

10

0

PC

(a)
APC - l-g m Ensemble Mean

20 40 60

PC

(b)
ZPC - log m Ensemble Mean,

20 40 0

20

15

10

0

0-4

0.2

I)

0 0.0

-0.2

-0.4

20 40
20 40

PC

(d)

60

loq m Ensemble Mean

5 10 15 2
PC

(e)
loq m Ensemble Mean

20 40
20 413

PC

(f)

60

PCA
APC

PCA
APC

PCA
APC
-~

Figure 4.9. Mean of log m ensemble in PC space after rotating with normal Principal
Components analysis (PCA) (a), Abutted Principal Components (APC) analysis (b), and Zero-
padded Principal Components (ZPC) analysis (c). ZPC is clearly better than PCA for
concentrating mean log m noise into the lowest PCs. The APC plot is of the mean of the whole
log m ensemble, which is not a fair comparison since the APC rotation matrix is intended to be
used only on the pixels of the image for which it was defined, which is Run 07 in this case. All
three means are plotted together in (d)-(f), with the first 20 PCs plotted in (e) with full value
scale, and all the PCs plotted in (f) with the value scale zoomed in near the origin. See Figure
4. 10 for plots ofperformance on just Run 07.
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Figure 4.10. ELM calculated log m spectrum for Run 07 in PC space after rotating with normal
Principal Components analysis (PCA) (a), Abutted Principal Components (APC) analysis (b),
and Zero-padded Principal Components (ZPC) analysis (c). ZPC is clearly better than PCA at
focusing the log m signal into the low PCs. APC is the best, since it was defined on the Run 07
image. However, the ZPC rotation and PC cutoff can be pre-computed from a prior ensemble of
log m, while both must be computed for each image using APC. We see that 5-6 PCs in ZPC
contain significant mean signal, vs. less than 5 in APC. All three spectra are plotted together in
(d)-(f), with the first 20 PCs plotted in (e) with full value scale, and all the PCs plotted in (f) with
the value scale zoomed in near the origin.
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can be pre-computed for ZPC from a prior ensemble of log m , while both must be computed for

each current image using APC. We see that approximately 5 PCs in ZPC contain significant

mean signal, vs. less than 5 in APC. All three spectra are plotted together in (d)-(f), with the

first 20 PCs plotted in (e) with full value scale, and all the PCs plotted in (f) with the value scale

zoomed in near the origin.

Figures 4.9 and 4.10 tell us that APC will do the best at focusing the log m noise into a

few PCs for the image from which it was defined, does not require an ensemble of log m

vectors, but will not work well on other images or for cases with additive noise. ZPC will not

work quite as well as APC for a particular image, but ZPC will work well enough on all images,

can be precomputed, and works for cases with additive noise, though it requires ensembles of

noise vectors. Since we do have cases with additive noise and we have ensembles of noise

vectors, we will use ZPC in the rest of this thesis. Also, the 5 PCs containing significant signal

in Figure 4.10(c) is an independent confirmation of the scree-plot analysis result of 4 DOFs in

the m ensemble, since ZPC theory that predicts that we will add a DOF by zero-padding and

need to process 4+1=5 DOF to remove the multiplicative noise.

Figure 4.11 shows the effect on the eigenvalue plot for the log m and a ensembles for

going from normal PCA to ZPC. We see that in the low PCs there is very little difference. The

noise floor of the higher PCs drops under ZPC, indicating that more significant DOF signal has

been transferred to the lower PCs as well. Using the scree-plot technique, the zero-padded

ensembles were found to contain one more DOF than the original empirical ensembles, serving

as an additional confirmation that we correctly understand the number of DOF in our noise

ensembles.
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was found to add one degree offreedom to both ensembles, as would be expected

4.7 HYDICE Spectral Channels Used

Not all of the HYDICE sensors 210 channels provide useful data for estimating spectral

reflectance of the ground using SPIRE. Many channels are in water vapor absorption bands and

do not receive any reflected radiation from the ground. Other channels suffer for sensor non-

linearities at low signals which can generate physically impossible negative calibrated radiance

values. These channels had to be removed to ensure that there was reflectance information in

each channel used, and that no negative numbers would affect the results.

Figure 4.12 shows typical multiplicative noise m vectors from both empirical ELM

results (a) and MODTRAN simulation (b). The water vapor absorption lines are apparent near

channels 70, 90, 100-110, and 140-150. Analysis of the ELM gain and offset vector available

from non-ARM Site HYDICE campaigns showed additional bands which consistently did not

have valid ELM solutions due to these effects. These channels had to be removed since the lack

of numbers in these channels would affect Principal Components analyses.

The HYDICE sensor suffers from non-linearities at low SNR for some of its channels,
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Figure 4.12. Typical m vectors from empirical ELM results (a) and from MODTRAN simulation
results (b). Water vapor absorption bands are apparent near channels 70, 90, 100-110, and
140-150. Such channels were removed from the data before testing SPIRE algorithms. This was
required for techniques that make use of spectral processing, since empirical vectors of m and a
had undefined values in these channels.

especially the longer wavelength ones. This can result in negative radiance values in these

channels. In the six ARM test image cubes used for SPIRE algorithm testing, Runs 13, 26, and

31 had very few negative numbers in any channels. In Figure 4.13(a) are plotted the percent of

pixels with negative radiance in each channel for Runs 06, 07, and 22. In Figure 4.13(b), we

have selected on Run 22 since it has the most negative values. The two central peaks near

channels 110 and 150 correspond to water vapor absorption bands. The peaks on the left and

right extremes are due to sensor non-linearities at low signal-to-noise ratios (SNR). All of the

channels with over 2% of pixels less than zero in Run 22 were dropped, leaving two channels

near 170. Any negative pixels remaining in the data were set to the smallest positive pixel value

in its spectral channel.

The HYDICE sensor also suffers from a slow drift in the center wavelength of all of its

spectral channels, which causes each channel's center wavelengths to vary from image to image.

(A faster spectral jitter of the center wavelengths also occurs during a single image collection
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Figure 4.13. Percent of pixels less than zero in the radiance images from Runs 06, 07, and 22
(a). In (b), we have selected Run 22 since it has the most negative values. The two central peaks
near channels 110 and 150 correspond to water vapor absorption bands. The peaks on the left
and right extremes are due to sensor non-linearities at low signal-to-noise ratios (SNR). All of
the channels with over 2% ofpixels less than zero in Run 22 were dropped, leaving two channels
near 170.
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Figure 4.14. Empirical log m ensembles before (a) and after (b) removing channels at the edges

of water vapor absorption bands. In (a), center channel wavelength drift was causing spiking

near channels 53 and 65 where drift in the center wavelength caused channel radiance values to

rise or fall as the channels moved in and out of the water vapor absorption bands. In (b), these

channels have been removed After removal there are still discontinuous transitions where

channels have been removed, but the transitions do not vary in size with center wavelength drift

as they did in (a).
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Figure 4.15. First three PCs of empirical log m ensembles plotted in spectral space, before (a)
and after (b) removing channels at the edges of water vapor absorption bands. In (a), center
channel wavelength drift was causing spiking near channels 53 and 65 where drift in the center
wavelength caused channel radiance values to rise or fall as the channels moved in and out of
the water vapor absorption bands. In (b), these channels have been removed After removal the
spiking is reduced, especially in PCs 2 and 3.

contributing to sensor noise). Near the edges of water absorption bands, this drift can make the

measured radiances fall and rise as the center wavelength drifts in and out of the absorption

band. This introduces a false degree of freedom into the noise ensembles which affect Principal

Components analyses.

Figure 4.14 shows the empirical log m ensembles before (a) and after (b) removing

channels at the edges of water vapor absorption bands. In Figure 4.14(a), center channel
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Figure 4.16. Empirical a ensembles before (a) and after (b) removing channels at the edges of
water vapor absorption bands. In (a), center channel wavelength drift was causing spiking near
channel 53 where drift in the center wavelength caused channel radiance values to rise or fall as
the channels moved in and out of the water vapor absorption bands. In (b), these channels have
been removed After removal there are still discontinuous transitions where channels have been
removed, but the transitions do not vary in size with center wavelength drift as they did in (a).
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Figure 4.17. First three PCs of empirical a ensembles plotted in spectral space, before (a) and
after (b) removing channels at the edges of water vapor absorption bands. In (a), center channel
wavelength drift was causing spiking near channels 53 and 65 where drift in the center
wavelength caused channel radiance values to rise or fall as the channels moved in and out of
the water vapor absorption bands. In (b), these channels have been removed After removal the
spiking is reduced, especially in PCs 1 and 2.

wavelength drift was causing spiking near channels 53 and 65. In (b), these channels have been

removed. After removal there are still discontinuous transitions where channels have been

removed, but the transitions do not vary in size with center wavelength drift as they did in (a). In

Figure 4.15 are plotted the first three PCs of the empirical log m ensembles plotted in spectral

space, before (a) and after (b) removing channels at the edges of water vapor absorption bands.
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Figure 4.18. First six PCs of the Run 07 ELM estimated reflectance cube. A value of one in
each PC was rotated back into spectral space using the PC rotation matrix derived from a PCA
of the ELM estimated reflectance cube. Note that PCs 1 and 3 have features (inverted) related
to the grass that dominates the scene.

In Figure 4.15(a), center channel wavelength drift was causing spiking near channels 53 and 65

where drift in the center wavelength caused channel radiance values to rise or fall as the channels

moved in and out of the water vapor absorption bands. In Figure 4.15(b), these channels have

been removed. After removal the spiking is reduced, especially in PCs 2 and 3. Figures 4.16

and 4.17 show similar plots for the empirical a ensembles before and after removing channels at

the edges of water vapor absorption bands.

The water absorption and edge channels, channels with greater than 2% of pixels with
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negative numbers in Run 22, additional channels that did not have valid ELM solutions in the

non-ARM Site HYDICE campaigns were dropped, and one channel that exhibited a striping

artifact (channel 19) were removed from the data: 1-6, 19, 60-79, 82-92, 100-117, 130-170, 173-

210, leaving 73 spectral channels.

Figure 4.18 plots the first six PCs of reflectance in spectral space after removal of the

bands described above. For each PC, the value of one in the PC and 0 in all others was rotated

back into spectral space using the PC rotation matrix generated by a standard PCA of the Run 07

ELM estimated reflectance. Note that PCs 1 and 3 have features (inverted) related to the grass

that dominates the scene.

4.8 Summary and Conclusions

In this chapter we laid the ground work for developing Spectral and Combined SPIRE

algorithms which rely on Principal Components Analysis. We developed two techniques for

focusing noise signal mean into low principal components. The first, Abutted Principal

Components, uses the prior reflectance to turn the log multiplicative noise mean into a degree of

freedom. Second, Zero-padded Principal Components uses zero vectors in a similar way to force

the mean of a noise ensemble into low principal components. We also discussed the HYDICE

channels dropped from the data due to water vapor absorption, negative radiance values, and

channel center wavelength drift.

From this chapter we draw the following conclusions:

" APC has slightly better performance in a given image than ZPC and requires no prior

knowledge about the illumination noise.

" However, APC only works for the multiplicative-noise-only case, and a new PC

rotation matrix must be calculated for each image.
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" ZPC works almost as well as APC, and the PC rotation can be precomputed from the

required prior noise ensembles.

" ZPC works for multiplicative and additive noise cases. Therefore, ZPC is most

appropriate for airborne remote sensing applications and will be used in this thesis.

" The HYDICE multiplicative noise m ensemble contains 3-4 degrees of freedom while

the additive noise a ensemble contains 2-3 degrees of freedom. Approximately 6

degrees of freedom are present in the reflectance r vectors in the HYDICE test data

set.

" Using ZPC, approximately 5 log m-PCs and 4 a-PCs should be filtered to eliminate

the illumination noise effects.

We are now prepared to move on to the development of Spectral SPIRE algorithms in the

next chapter.
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Chapter 5

Spectral SPIRE Algorithms

5.1 Introduction

In this chapter, we develop Spectral SPIRE reflectance estimation algorithms that filter in

the spectral dimension, operating on a single pixel at a time and making no use of spatial

relationships between pixels. In Chapter 3 we developed Spatial SPIRE algorithms under the

assumptions that the multiplicative and additive noises were band limited to lower spatial

frequencies, and that any changes since the prior were band limited to higher spatial frequency.

This led to a spatial frequency filtering strategy that removed the lower frequency noise terms

without removing the higher frequency changes. In this chapter we develop analogous spectral

Principal Component filtering techniques to remove the multiplicative and additive noise.

5.2 Spectral Principal Component Filtering

The multiplicative and additive noise vectors are not limited to any specific spectral

bands or sensor channels. Therefore, we cannot directly perform a spectral filtering operation

analogous to the high-pass spatial filtering done in Chapter 3 for Spatial SPIRE. Instead we

must use the zero-padded principal components (ZPC) or abutted principal components (APC) to

collect the multiplicative or added noise into a few low PCs. This has the effect of band limiting

the noise in the rotated spectral PC space. Once this is done, we can perform the desired filtering

analogous to that done in Spatial SPIRE.

To perform this spectral filtering, we define the concept of a Principal Components Filter

(PC filter or PCF). Figure 5.1 defines a high pass PCF denoted by PCFH, using the m-only case
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Figure 5.1. High pass PCfilter. PCFH input and output definition (a) and detailed processing
block diagram (b). The image pixel vector is first rotated into PC space using the 010g. PC
rotation matrix. The low PCs numbered 1 through the pcco.1ogm PC cutoff index contain log m
and are zeroed (rejected), removing log m along with a portion of log r : Alog r. The higher
PCs are passed through and finally rotated back into the original spectral space.

were we have already moved to log space so that our image pixel vector consists of:

log i = log r + log m (5.1)

The PC rotation matrix O1ogm and PC filter cutoff pcco-oigm comes from a ZPC analysis of

{log m} or APC analysis of the abutted log image and log prior log i u log r, as described in

Chapter 4. In the PCF the original N-channel vector is first rotated into the log m PC space:
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(Fiogm log i = (1ogm (log r + log m)= DIogm log r + (Fiogm log m (5.2)

We assume that this perfectly collects all of the rotated 4FIOg m log m noise into the lower

PCs (PCs l-pcco-iogm) which are shown in Figure 5.1 as being at the top of the N PC vector.

Some portion of Ologm log r, denoted as (Diogm (A log r), also ends up in the log m PCs (1-

pcco-iogm). A boxcar high pass PC filter is now applied which zeroes out the lower PCs

containing 4D,.g. (log m + A log r), and passes the higher PCs containing 4'Iogm (log r - A log r).

This filtered PC vector is then rotated back into the original spectral space. Note that the rotated

login log m signal will typically not all be collected into the lower numbered PCs, so a term

A log m will be present in the final filtered vector in real applications. Figure 5.2 defines a low

pass PC filter, PCFL, in a similar manner. The final filtered vector is assumed to contain all of

the log m signal and A log r, but will be missing a small A log m in real applications.

We note at this point, to be perfectly analogous to the processing done in Spatial SPIRE,

we need to assume that any changes in log r since the prior will end up in the higher number PCs

above pcco-iog .) so that a high pass PCF does not eliminate them. If this is true, then we can

perform a filtering operation that removes the band limited noise, yet does not remove the

changes in reflectance. For now, we will proceed on the assumption that this is true, or if

violated, only a small amount of the changes in log r are lost so that it has a small effect on the

estimated reflectance.
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Figure 5.2. Low pass PCfilter. PCFL input and output definition (a) and detailed processing
block diagram (b). The image pixel vector is first rotated into PC space using the Qiog. PC
rotation matrix. The low PCs numbered ] through the pcco-Iogm PC cutoff index contain log m
and are passed, along with a portion of log r : Alog r. The higher PCs containing the rest of
log r are zeroed (rejected). The filtered PCs are then rotated back into the original spectral
space.

5.3 Spectral SPIRE Algorithm Derivation

5.3.1 Algorithmic Approach and Issues

Our overall approach is very similar to that described in Chapter 3 for Spatial SPIRE

algorithms. The same assumption of an existing prior is still in force. The Spatial SPIRE

assumptions that the multiplicative noise is slowly spatially varying and that changes are small in
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area with respect to the scene, are not required for the solution of the Spectral SPIRE m-only

case. However, for the solution of the multiplicative and additive noise case, Spectral SPIRE

algorithms are limited to cases where reflectance changes are small relative to the scene, since

we remove the additive noise a with a technique similar to the Spatial SPIRE Case 4 and 6

algorithms, where the minimum mean square error (MSE) of the estimated reflectance with

respect to the prior is used. This also limits us to cases where the additive noise a is the same for

all pixels in the image ensemble, (equivalent to a being spatially uniform) since the minimum

MSE technique can only estimate a single value at a time.

We begin with the image formation equation (2.2) presented in Chapter 2 expressed in

vector notation:

i= rOm+a (5.3)

We shall again consider two cases, one where a is present, the other where it is not.

Since the spatial variability of m is not an issue, we shall not differentiate between the Spectral

SPIRE Cases A and C (spatially uniform and slowly varying m, respectively) and simply refer to

both m-only cases, and also ones in which m is quickly or arbitrarily spatially varying, as Case

C. We shall consider only one case with both m and a, in which m can be arbitrarily varying

while a is the same for all pixels. This constraint on a, along with the assumption that

reflectance changes are small in area, are necessary to employ the iterative MSE algorithmic

approach developed in Chapter 3 for Spatial SPIRE Cases 4 and 6. This will be referred to as

Case D. Case D is similar to Spatial SPIRE Case 4, but m can be arbitrarily varying. No

Spectral SPIRE solutions have yet been developed for cases where both m and a are spatially

varying as is discussed in the Section 5.7.

147



5.3.2 Case C: Multiplicative Noise Only

The Spectral SPIRE Case C algorithm is now derived. We note that the Spectral Case A

algorithm would be identical to the Spectral Case C, since the spatial variability of m does not

affect the spectral processing for either case. In this case the additive noise a is zero. Our image

formation model (5.3) then becomes:

i= r O m (5.4)

We first move to log space to linearize the problem:

log i = log r + log m (5.5)

Figure 5.3(a) depicts the generalized processing block diagram for the Case C solution

algorithm. This algorithm is analogous to the Case 3 general Spatial SPIRE algorithm of Figure

3.2(a). Figure 5.3(b) depicts the specific algorithm implemented in this thesis and tested upon

the same HYDICE test data set as the Spatial SPIRE algorithms. Note the similarity between

Figure 5.3 and Figure 3.2.

In Spatial SPIRE each spectral channel image was processed independently. In Spectral

SPIRE, each image pixel is processed independently. Each pixel is passed through the high-pass

PC filter PCFH to zero the log m PCs and thereby eliminate log m. We denote such a PC

filtering operation as PCFHI-Var( ), so that:

log r - A log r = PCFH-IOgm (log r + log m) (5.6)

Where PCFH-logm( ) performs a low pass PCF using the Iog. rotation matrix and the PC

cut off pcco-iogm. Note that by using this notation we do not need Diogm or pcco-ogm explicitly in
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Figure 5.3. Spectral Case C generalized processing block diagram (a) and specific
implementation tested (b). In (a), the m-only image is high-pass PC filtered using the (Diog. PC
rotation and pcco.Iog. PC cutoff index from the prior information about the multiplicative noise m
(Kpfm,a}). The low-pass PC filtered log r lost in the filtering operation is then estimated using
prior information Kp(r} and Kp{m,a} and merged with the filtered signal. Finally, the
exponential is taken to estimate reflectance. In (b), the lost low pass PC filtered log r is estimated
by low-pass filtering the log of the prior reflectance log rp, and the merge operation is a simple
addition.
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our equations. We must now estimate A log r, which we do by low pass PC filtering the prior

log r,:

A log r = A log rp = PCFL-logm (log r,) (5.7)

This estimate of A log r is then merged with log r - A log r through a simple addition to

estimate log r:

log r= logr-Alogr+ A log r (5.8)
= PCFH-Iog. (log r + log m) + PCFL-Ogm (log rp)

And finally take the exponential to estimate reflectance:

r = exp(log ^) (5.9)

5.3.2.1 Matching Against A Prior Spectral Library to Restore A log r

There is an alternative technique for restoring the A log r lost in the high pass PC

filtering in the Case C Spectral SPIRE algorithm other than low pass PC filtering log r, and

adding it back in. Figure 5.4 depicts this alternative algorithm. If a prior spectral library of

known materials {log r, } is available, then it can be low pass PC filtered instead of log rp . Then,

each log r - A log r vector can be matched against this filtered library using a minimum vector

distance criteria. Once the closest match is found, the original library spectrum log r, is then

used to replace the log r - A log r vector, effectively restoring the lost A log r. An additional

benefit of such an algorithm is that it can handle large area changes.
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Figure 5.4. Spectral Case C implementation using matching against a prior spectral library to
restore lost Alog r. Both the image and the spectral library of known materials (log r,} are high
pass PC filtered and exponentiated Matching is then done using a minimum distance criteria
where distance is measured as the length of the difference vector between the filtered image pixel
vector and each filtered library spectrum. Once the closest match is identified, the unfiltered
library spectrum is then used as the estimate of reflectance at that pixel.

Such an approach can work well, but only if spectral reflectance vectors of all materials,

including mixed vectors of materials that may be in the same pixel, are in the spectral library. If

a material is not present in the spectral library, then large errors can result. Also, such an

approach can be computationally intractable, especially if the number of materials in the library

is large and there are many different percentages and permutations of mixing between them.

Figure 5.5 depicts the results from a test of this algorithm using simulated data. A

simulated reflectance cube was generated with large area changes, including one that is of an

"unknown" material with 50 percent uniform spectral reflectance. A multiplicative noise

containing high spatial frequency steps and ramps between the steps was simulated and applied
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Figure 5.5. Example of Spectral SPIRE Case C algorithm using spectral library matching and

abutted-PC analysis. (a) Modified reflectance test image cube with quickly varying multiplicative
noise. Estimated reflectance (b) has perfect performance using unmodified reflectance cube as

spectral library, except at unknown panel at [92,140]. Matching distance image (c) shows the

distance to the best match in the spectra library for each pixel, with horizontal profiles through

n,=15 and n,=140 (d) and (e). Variation in (d) is due to small amounts of log m noise in higher

PCs, but matching overcomes this noise. The unknown panel has highest distance and large

error since its material is not present in the spectral library.
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to the reflectance image as shown in Figure 5.5(a).

Abutted PC analysis was used to generated the PC rotation matrix (DI.g The estimated

reflectance image shown in Figure 5.5(b) was generated using the prior reflectance cube as the

prior spectral library. It matches perfectly the true reflectance of the scene, except for the

unknown material that was not present in the library. Figure 5.5(c) shows the minimum distance

image, which displays the distance to the best match in the spectral library, where brighter color

indicates longer distance. Figure 5.5(d) and (e) show profile plots through the distance image.

Note the large distance for the unknown material at [nx,ny]=[100,140]. Note that there was no

noise present in the spectral library, which is an idealized condition. Further details about this

experiment can be found in Appendix D.

One can consider such a matching against a spectral library part of the post processing

that is done after estimating reflectance. In many remote sensing applications, the estimates of

reflectance are run through a classifier to identify material types. In this case, our classifier is

using each spectrum in the spectral library as a class, and we are using only the information in

the higher PCs to do the classification. One could also run the results of Spatial SPIRE through

such a classifier as well, to fine tune the reflectance estimates of known materials.

Since such an approach can be regarded as post-processing classification, it will not be

further pursued in this thesis. We recognize that some classifiers can work on the subset of non-

log m PCs created by a high-pass PC filter, and their performance would need to be compared

against the results of Spatial SPIRE for classification. Such efforts are beyond the scope of this

thesis but fall under possible areas of further research.
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5.3.3 Case D: Multiplicative and Ensemble Uniform Additive Noise

The Spectral SPIRE Case D algorithm is now derived. We note that the Spectral Case B

algorithm would be identical to the Spectral Case D, since the spatial variability of m does not

affect the spectral processing for either case. To solve this case we continue with our approach

of developing spectral PC filtering techniques analogous to the Spatial SPIRE techniques. The

solution technique derived in this section is similar to the Spatial SPIRE Case 4 algorithm, which

estimate the amount of rm to restore after filtering out a by selecting the rm amount to minimize

the mean squared error between the estimated reflectance and the prior reflectance.

Since we make no use of spatial relationships between pixels, we are limited to using

information within the single image pixel being processed, and information that can be derived

from the ensemble of image pixels as a whole, independent of their spatial relationships.

We begin with the image formation equation (5.3), but with an additive noise that is the

same for all pixels in the image, which will be referred to as ensemble uniform, (which is

equivalent to being spatially uniform):

i= r O m + a (5.10)

The solution algorithm for this case is depicted in Figure 5.6. The full image ensemble of

pixels is first rotated into a-PC space using (1a:

Dai = Da (r O m+a)=Da (r D m)+Da (5.11)

Then, each of the a-PCs from 1 to pcco-a is stepped through one at a time, the current PC

being denoted by a subscripted n (PCn). In Figure 5.6 the Do loops are denoted using standard

FORTRAN flow chart notation where "Do NNN" sets up a loop down to the step with the label
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Figure 5.6. Spectral Case D processing block diagram. Based on the additive noise a PC cutoff
pcco-a, all of the a-PCs are looped through. For each a-PCn, the ensemble mean of the the PC is
subtracted to remove the a in that PC. An inner loop then steps through the possible values for
the lost mean of r 0 m in PCn, using the Spectral Case C algorithm and MSE minimization as in
the Spatial Case 4 algorithm. Once all of the a-PCs have been processed, then the Case C
algorithm is run one last time to estimate the reflectance.

155

I



NNN. For each a-PC, the mean of the PC over the ensemble is subtracted to eliminate the

rotated constant a term in that PC, which also removes the ensemble mean of r 0 m from that

PC. In addition, estimates of the ensemble mean of r 0 m from previous PCs have been

restored, resulting in the following intermediate term at this point:

= .a(rom+a)- mean((D. (rOm +a)){

{ n}= k= (5.12)
+ est (mean{((a (r 0 m))k

k=1

Where {} denotes that we are dealing with an ensemble of pixels and the following

notation is used:

X Ox 1  0~

0.*

Xk-1 0 Xk-1 0

X= xk , Xk-: 1 : xk =Xk (5.13)

Xk+1 0 Xk+1 0

XN 0 ... 0 XN 0

Which defines the vector xk as a vector with all zero elements except for the k-th

element, which is equal to the k-th element of x. Based on the assumption that all of the rotated

a is collected into the lowest pcco-a PCs and none is present in the higher PCs we can write:

L (Ga) =0 (5.14)
k=pcco-a+1

So that:
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(Daa = 1:((aa),
k=1

n

= J((aa)
k=1

+ L (Gaa)
k=n+1

PCcO-a

+ I (4D),a)k
k=n+1

(5.15)

We therefore can rewrite (5.12) as:

PQCO-a

Da (r 0 m) + I (Ik a)
k=n+1

n

- mean (Da (r
k=1

M))k}}

(5.16)

+ est (mean ((a (r O m))}
k=1

Assuming that the restored estimates of the previous PCs means of r 0 m are correct, we

can simplify (5.16) to:

{ } = {a (r O m)- mean (4), (r 0 m)) +

Where the second term is the lost rotated r 0 m to be estimated and restored in the

current PC and the third term is simply the rotated a remaining in the processed PCs not yet

processed. This is the "Intermediate Result" in Figure 5.6, in which an over bar signifies the

ensemble mean:

I ((D, (r 0 m)) = mean {eFD (r m) (5.18)

Each of the values represented by (5.18) is a single number that must be estimated and

restored for each PC processed:
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b = mean ((D. (r D m)), (5.19)

We therefore use an algorithm very similar to the Spatial SPIRE Case 4 algorithm to

restore each b, in which we step through a range of possible values for the number. For each

candidate value of b, we add the number back into all the pixels of PC, rotate the pixel ensemble

back into the original spectral space, and run the Spectral SPIRE Case C algorithm described in

Section 5.3.2. As in the Spatial Case 4 algorithm, we then calculate the MSE with respect to the

prior reflectance and eventually select the value of b that minimizes the MSE and use it as the

estimate of b. This results in:

(D (r O m)- mean{( (r O m))}
{k}= { PCCOa (5.20)

+ 1 (4).a), + est (mean I~ (D (ro m))
k=n+1

Assuming that this is an accurate estimate of b, the net result of processing the nth PC is:

{k} = {Da (r 0 m)+ Pa (0aa)k (5.21)

In which we have eliminated a from the PCs processed so far. This is repeated for each

of the pcco-a PCs to be processed. After processing all of the pccoa a-PCs, the third term is

eliminated. After restoring the last estimate of the second term, and assuming that such

estimates are accurate, we end up with:

{k} ={ 4a(r O m)} (5.22)
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We then rotate this back into spectral space as:

{r o m} = (1<{k} = ({a (r 0 m)} (5.23)

Finally we run the Spectral Case C algorithm one last time to estimate reflectance.

5.3.4 Spectral SPIRE Case E and F Algorithms

We did not develop Spectral SPIRE Case E and F algorithms that could handle spatially

varying additive a noise. By analogy to the Spatial Case 5 and 6 algorithms, we would begin by

high-pass PC filtering i to remove a. This would leave us with the task of estimating and

restoring the lost Arm at every pixel. Since we do not know m, we do not have a prior rm from

which to restore this information. While this is certainly an area for further work, the results of

this thesis provide no obvious direction for proceeding.

5.4 Algorithm Testing and Results

The test data set of six ARM Site image cubes used for testing Spatial SPIRE in Chapter

3 was used to test the Case 4 Spectral SPIRE algorithm developed in this chapter. The same

ELM and ATREM processing results from Chapter 3 were also compared with the Spectral

SPIRE results. The same pixels from the images were used as well. Please refer to Section

3.3.4.4 for a description of the different pixel types used. Based on the results of Chapter 4 and

preliminary experiments, 5 log m - PCs and 5 a-PCs were processed (pcco-ogm&pcco-a=5).

Processing fewer PCs resulted in noticeable errors in a few spectral channels, and processing

more showed little improvement.

Figure 5.7 depicts the scatter plot of mean and standard deviation performance of

Spectral SPIRE, ELM, and ATREM for estimation of surface spectral reflectance for all of the
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19 pixel types selected. This figure is directly analogous to Figure 3.9 for Spatial SPIRE. The

horizontal axis represents the average standard deviation over all the spectral channels, where the

standard deviation in each channel was calculated over the reflectance estimates of all six Runs

(06-31). The vertical axis is the RMS error over all the spectral channels for the mean

reflectance estimate minus the mean reflectance estimate of ELM as ground truth, which is why

ELM has zero RMS error. We see that Spectral SPIRE has better standard deviation and RMS

error performance than ATREM, except for a single pixel which has far worse performance than

ATREM, denoted by the triangle in the upper right. This data point corresponds to the modified

pixel. Spectral SPIRE also has about the same standard deviation performance as ELM.

Figure 5.8 (a)-(s) is directly analogous to Figure 3.8 (a)-(s) for comparing Spectral SPIRE

performance against that of ELM and ATREM. Similar plots with the vertical axis scaled from 0

to 1 can be found in Appendix E as Figure E. 1. Appendix E also contains Tables E.1 and E.2

which are analogous to Tables C.1 and C.2 for Spatial SPIRE and present the average channel

standard deviation values in each band for the ELM, ATREM, and Spectral SPIRE results

plotted in Figure 5.8.

Again we note the clustering of the ATREM spectra into two distinct sets due to clouds

and haze on three of the runs, as was discussed in Chapter 3. We also note that for all but the

modified pixel, Spectral SPIRE performs better than ATREM and very similar to ELM. In fact,

the performance of Spectral SPIRE is better than that of Spatial SPIRE on the unmodified pixels.

In addition, Spectral SPIRE performs better than Spatial in the longer wavelength channels for

the 2, 4, and 8 percent panels. Also, Spectral SPIRE often has lower variance than ELM for

pixels like the 15 percent panel.
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Figure 5.7. Scatter plots of mean and standard deviation performance of Spectral SPIRE
(triangles), ELM (*), and A TREM (+) for estimation of surface spectral reflectance for 19 pixel
types. In both (a) and (b) the horizontal axis represents the average standard deviation over all
the spectral channels, where the standard deviation in each channel was calculated over the
reflectance estimates of all six Runs (Runs 06-31). The vertical axis is the RMS error over all
spectral channels for the mean reflectance estimate minus the ELM mean reflectance estimate,
which is why ELM has zero RMS error. The triangle in the upper right corresponds to the
modified pixel. (b) is the same as (a), but with a log horizontal axis. The larger symbols
represent the mean of the points plotted with that symbol. We see that Spectral SPIRE performs
similarly to ELM in standard deviation and better than ATREM in both RMS and standard
deviation performance.
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Figure 5.8 (a) and (b). ELM, A TREM, and Spectral SPIRE spectral reflectance estimates for all
six runs for a single pixel on the 2 percent panel (a) and the 4 percent panel (b).
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Figure 5.8 (c) and (d). ELM, A TREM, and Spectral SPIRE spectral reflectance estimates for all
six runs for a single pixel on the 8 percent panel (c) and the 16 percent panel (d).
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Figure 5.8 (e) and (). ELM, A TREM, and Spectral SPIRE spectral reflectance estimates for all
six runs for a single pixel on the 32 percent panel (e) and the 64 percent panel (f).
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Figure 5.8 (g) and (h). ELM, A TREM, and Spectral SPIRE spectral reflectance estimates for all
six runs for a single pixel on the spectral panel (g) and the 15 percent panel (h).
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Figure 5.8 (i) and (j). ELM, ATREM, and Spectral SPIRE spectral reflectance estimates for all
six runs for a single pixel on the 41 percent panel (i) and the 57 percent panel U).
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Figure 5.8 (k) and (). ELM, A TREM, and Spectral SPIRE spectral reflectance estimates for all
six runs for a single pixel on grass (k) and mowed grass ().
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Figure 5.8 (m) and (n). ELM A TREM and Spectral SPIRE spectral reflectance estimates for
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Figure 5.8 (o) and (p). ELM, A TREM, and Spectral SPIRE spectral reflectance estimates for all
six runs for a single pixel on the building roof (o) and the resolution panel (p).
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Figure 5.8 (q) and (r). ELM, ATREM, and Spectral SPIRE spectral reflectance estimates for all
six runs for a single pixel on emissivity panel 1 (q) and emissivity panel 4 (r).
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Figure 5.8(s). ELM, ATREM, and Spectral SPIRE spectral reflectance estimates for all six Runs
for the modified pixel. The modified pixel was a truck in Run 07, and changed to mowed grass in
all subsequent Runs. For Run 07, a similar mowed grass pixel is plotted for comparison.
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These last two effects are caused by the fact that the PC information replaced from the

prior reflectance cube PCs tends to drive the Spectral SPIRE solution towards replacing the

current image pixel with that of the prior. We are only replacing some PCs, but there is enough

energy in these PCs to drive down the variation in the Spectral SPIRE solution to less than that

of ELM, and to overcome the problems with low SNR at longer wavelengths. If we were to

process all PCs, then the spectral solution would be equal to the prior and have the same

variation as the prior across runs. If the prior reflectance significantly deviates from the truth,

then this would introduce a bias in the estimates.

Another way to understand why the variance is less than that of ELM, is that for

unmodified pixels, we are removing sensor and registration noise (along with the current

reflectance) from the low PCs of each image and replacing them with the sensor noise sequence

from the prior in those PCs (along with the prior reflectance). Since the same prior is used for all

of the images, the variance is reduced.

Figure 5.8(s) shows the reflectance estimates for the modified pixel. We see that Spectral

SPIRE performance on this pixel is far worse than ATREM and ELM. The Spectral SPIRE

algorithm combines the top PCs from the prior that are derived from a pixel with a truck in it,

with lower PCs from the current image with PCs from mowed grass. The result is a very poor

estimate of the current reflectance.

The main reason for this poor performance on modified pixels is that changes in log r,

when rotated into log m PC space, overlap the low log m PCs that are removed in the PC

filtering. This violates our original assumption that no significant amount of the changes in log r

ends up in the log m PCs. In Spatial SPIRE algorithms, the assumptions of log m noise being

band limited to lower spatial frequencies and changes in log r being limited to high spatial
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frequencies, allowed us to remove the noise without removing any of log r. However, in

Spectral SPIRE, the change in log r since the prior is not naturally excluded from the low log m

PCs, so the low pass PC filtering removes part of the change in log r which cannot be restored

from the prior. While this is a major problem in using Spectral SPIRE algorithms, we shall see

in Chapter 6 that this can be overcome using combined spatial-spectral filtering.

Figure 5.9 demonstrates how much signal energy in the change in log r associated with

the modified pixel goes into the low PCs with log m. In Figure 5.9(a), the log of the ELM

estimate of a truck pixel reflectance spectrum from the Run 07 image is plotted rotated into

log m PC space as defined by Zero-padded Principal Components. In (b) is plotted the same

type of spectrum for mowed grass. The difference between (a) and (b) is plotted in (c) and

corresponds to the change in log r experienced by the modified pixel of Figure 5.8(s). We see in

(c) that much of this change falls in the lowest 5 PCs processed by Spectral SPIRE,

demonstrating that there is not a clean separation in PC space of log m illumination noise and

changes in log r. In (d) is plotted the mean log r of the ELM reflectance estimate for Run 07,

showing that much of the zero spatial frequency component of log r ends up in the lowest 5 PCs

as well and must be restored from the prior log reflectance. Note the similarity between (b) and

(d), which is caused by the fact that most of the image is grass and mowed grass, so that the

mean closely resembles these materials.

While a study of all possible material changes may show that some changes end up

mainly in the higher non-log m PCs so that Spectral SPIRE will correctly estimate them, we

must conclude that the PC rotations that collect log m also collects a significant portion of any
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Figure 5.9. Changes in log r plotted in log m PCs. In (a), the log of the ELM estimate of
a truck pixel reflectance spectrum from the Run 07 image is plotted rotated into log m PC
space as defined by Zero-padded Principal Components. In (b) is plotted the same type of
spectrum for mowed grass. The difference between (a) and (b) is plotted in (c) and
corresponds to the change in log r experienced by the modified pixel of Figure 5.8(s). We
see in (c) that much of this change falls in the lowest 5 PCs processed by Spectral SPIRE,
demonstrating that there is not a clean separation in PC space of log m illumination noise
and changes in log r. In (d) is plotted the mean log r of the ELM reflectance estimate for
Run 07, showing that much of the zero spatialfrequency component of log r ends up in the
lowest 5 PCs as well and must be restored from the prior log reflectance. Note the
similarity between (b) and (d), which is caused by the fact that most of the image is grass
and mowed grass, so that the mean closely resembles these materials.
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changes in log r. Further research may develop other spectral filtering techniques that better

separate these two quantities, but the results of this Chapter indicate that the two quantities

inherently overlap in spectral space.

5.5 Computational Cost of Spectral and Spatial SPIRE

While Spectral SPIRE performs worse on modified pixels (changes in reflectance) than

Spatial SPIRE, Spectral SPIRE is far more computationally efficient. If we have an (NxN xnb)

image cube to be processed and only multiplicative noise, then the following computational cost

estimates apply:

5.5.1 Spatial SPIRE Computational Cost Estimate

We assume that all spatial filtering is done using Fast Fourier Transforms (FFT)

(Oppenheim, et al., 1999) and that the filter kernels are pre-computed. We assume that a

complex, length-N FFT requires 6*N*log 2(N) floating point operations (FLOPS) (Oppenheim, et

al., 1999). Then each image filtering operation requires one FFT of the image, one product of

the NxN image FFT with the NxN kernel FFT, and one inverse FFT of the product. Therefore,

each two-dimensional spatial filtering operation requires:

(2)(6)(N 2 ) log 2(N 2 ) + N 2  FLOPS (5.24)

In the Spatial SPIRE Case 3 algorithm, we first move to log space. Empirical

experiments indicate that a log or an exponential operation takes approximately 2 FLOPS.

Therefore, the following operations are required to process a single channel image using the

Spatial Case 3 algorithm:
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rm -> log rm: 2N 2

r, ->log r, :

log rm* hHPF:

log r,* hpF :

2N 2

12N 2 lg 2 (N 2 ) + N 2

12N 2 10g 2 ( N 2 ) + N 2
(5.25)

log rm* hHPF logr * hLPF : N 2

exp(log r): 2N 2

Performing this processing on an image cube with nb spectral channels, yields a total cost

function of:

Spatial SPIRE Cost = (9N2 +24N 2 log 2 (N2))nb

=N 2 (9+24log 2 (N2))nb (5.26)

= 48(nb)N 2 10 2 (N)

For an (NxNxnb) = (I00xI00x100) (N=100, nb=100) image cube, the Spatial SPIRE cost

would be 3.28x108 FLOPS

5.5.2 Spectral SPIRE Computational Cost Estimate

We assume that the Dlogrm rotation matrix is pre-computed and that the rotation of each

pixel requires 2(nb) FLOPS, so rotating a whole image cube requires 2(nb)N 2 FLOPS. We

assume that replacing a PC requires N 2 FLOPS.

SPIRE above, the following operations are required:

Using the same assumptions as for Spatial
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{rm} ->{log rm}: 2N 2

{r,} -> log r, : 2N 2

{Qiogrm log rm}: 2(nb)N 2

{G1ogrm log r,}: 2(nb)N 2  (5.27)

Replace pcciogm PCs: ( Pcco-logm )N2

{Q-?Dj'-m log r}: 2 (nb) N 2

exp({log r}): 2N 2

Yielding a total cost function of:

Spectral SPIRE Cost = 6N 2 +6(nb)N 2 +(pcc-iogm )N 2

= N 2 (6(1 + nb) + pcco-iogm) (5.28)

=6(nb) N 2

For a (I00xI00x 100) image cube with pcco-iogm = 5, the Spectral SPIRE cost would be:

6.1 x106 FLOPS, which makes Spatial SPIRE over 50 times more computationally expensive

than Spectral SPIRE.

Comparing Spatial SPIRE Case 4 algorithm to Spectral SPIRE Case C where both

multiplicative and additive noise are present, the disparity is even greater. Assuming that the

same number of iteration steps are required for each spatial band or PC to be processed to

remove the additive noise, and assuming that 5 a-PCs must be processed versus all channels in

Spatial SPIRE, then there is an additional factor of 20 favoring Spectral SPIRE, making the Case

4 algorithm over 1000 times slower than the Case C.

5.6 Noise Analysis

In this section we perform similar noise analyses as was done in Chapter 3 for Spatial
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(a) (b)

Figure 5.10. Distance images ofprior reflectance with respect to ELM estimated reflectance (a)

for Run 06. The distance value at each pixel is equal to the length of the vector difference

between the pixel spectra of the two images at that pixel. Brighter distance image pixels have

longer distances and highlight changes since the prior and registration errors in (a). The

distance image between Spectral SPIRE and ELM estimated r for the same run is shown in (b),
where mis-registration errors do affect the results.

SPIRE algorithms.

5.6.1 Registration Noise

Imperfect registration of the image and its prior introduces noise that can effect

reflectance estimation. Figure 5.10 is analogous to Figure 3.9 and shows distance images that

measure the magnitude of the vector difference between the corresponding pixels of two images.

For two reflectance images r, and r2 , the distance d[n, ,ny] between the pixel spectra

r[n_, ns , n2 ] and r2[n, , n,, n2 ] is defined as:

d[nzo,nyo]= L r,[nxO,ny,9n,]-r2[nXO.,, n,,] (5.29)

In Figure 5.10(a), we see the distance image between the prior used for Run 06 and the

ELM estimated reflectance for Run 06, just as in Figure 3.9(a). In Figure 5.10(b) is depicted the
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distance between the Spectral SPIRE reflectance estimates and ELM estimated reflectance. We

note that this distance image is nearly identical to the one in (a). This is because much of the

prior reflectance has been incorporated into the Spectral SPIRE reflectance estimate.

For true changes in the image, such as where the truck moves to and from, the large

distances are due to Spectral SPIRE's poor performance on modified pixels and not due to

registration noise. True registration noise, as seen at the edges of panels, does degrade the

Spectral SPIRE reflectance estimates at these locations, more so than they affect Spatial SPIRE.

The remaining differences are due to a variety of other noise sources which ELM does not

handle perfectly (such as sensor noise and BRDF issues) and makes the ELM reflectance

estimates deviate from true ground truth.

The actual effect of misregistration noise in Spectral SPIRE results will depend on

several factors. Such noise will only affect pixels at the edges of uniform materials, or pixels

over mottled surfaces, unless the misregistration errors are many pixel widths in magnitude. The

magnitude of the reflectance error introduced will be dependent on the different materials that

are shifted into and out of the pixel in question. This makes it unfeasible to develop a single

equation that predicts the Spectral SPIRE estimated reflectance errors based on a given

misregistration amount. However, registration can typically be done to within a fraction of a

pixel, which will limit errors due to misregistration to edge pixels. Using sensors with adequate

spatial resolution to resolve objects of interest so that they have at least one spectrally pure pixels

between edge pixels will allow classification and spectral analysis to be done on the pure pixels

free of any effects from misregistration.

5.6.2 Prior, Sensor, and Calibration Noise

We shall now derive the effects of sensor, calibration, and prior noise sources on the
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Spectral SPIRE Case D algorithm and give some examples of their effects. Since we are dealing

with Spectal SPIRE, we will concentrate on the effects at a single pixel. Again, we have

restricted ourselves to dealing with additive noise that is the same for all pixels in the image. We

assume that there are three main types of noise: sensor, calibration, and prior.

In spectral processing we use spectral Principal Component Analysis to define a rotation

that collects all of a or log m in a few low PCs so that only those PCs need to be processed.

Such rotations will not tend to collect sensor noise into the low PCs, since it will tend to be

uncorrelated with a or log m. However, it also will not tend to reject it from these PCs either.

Since only the low log m PCs have information from the prior restored to them, prior noise is

only introduced to these PCs. This noise will then be spread out into the spectral channels when

the inverse PC rotation is applied.

If the ensembles of a and log m used to define rotations contain representative

calibration noise, then calibration noise will be collected along with a and log m into the top

PCs that will be spatially filtered. Therefore, it is important to use a and log m ensembles from

empirical data that have been through the calibration process so that they contain representative

calibration noise. If this is done, then multiplicative and additive calibration noise will be

collected into the low PCs along with a and log m, and will then be removed by the Spectral

SPIRE algorithm. With these comments regarding calibration noise in mind, we now derive

expressions for reflectance estimation errors caused by noise, similar to those derived in Chapter

3 for Spatial SPIRE.

A noise free, calibrated radiance image i is given by:

i= r 0 m+ a (5.30)
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Where r is the surface reflectance and m and a are the multiplicative and additive

illumination noise effects. We assume that there is an additive sensor noise vector s which is

typically the sum of several noise sources. We will assume that s is a random Gaussian vector

with mean vector p, and covariance A,: s ~ N(p,, A). Calibration noise is assumed to consist

of an additive offset noise vector, or error, cqfjise, and a multiplicative gain noise vector cga,,n As

in Chapter 3, we will assume that cos, and cgan are uniform across the image and therefore the

same for all pixels. With calibration and sensor noise sources taken into account, our single

calibrated radiance pixel can be viewed as:

i = Cgain O(rOm+a+s)+ coje, (5.31)

The removal of a is accomplished in the Case D algorithm by first rotating i into a-PC

space using the PC rotation matrix Da :

(Dai = Da (cgin O(r D m + a+s))+ acjt,,, (5.32)

To remove the additive noise a we subtract the mean of the pixel ensemble {DaD} from

itself in the lowest pco_. PCs. If we assume that all of a was collected into the low a-PCs

processed, then using the notation defined in (5.13) we have:

PCco-a

Oaii- E mean ((D4i)k = 0 (Cgan O(r Om+a+s))+0 c
k=1

PCCO-a

- P mean (a (c,,, D(r Om+a+s))),} (5.33)
k=1

PCco-a

- 2 mean (Facofet )}
k=1
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If empirical ensembles were used as described above to determine (D, then we can

assume that all of the constant Coffse will be collected into the lowest pcc,_a PCs along with a, so

that:

a-co-a

offset,, = 1 (0,Cofse,)k =
k=1

P-'co-a

2 mean {(DCof,,

k=1

pcco-8

li- I mean(ai)k}
k=1

= 4Da (c,,,, O(r O m+ a+s))

- Pa mean ( a(cgaO(rOm+a+s)))}
k=1

Which can be expanded to:

PCco-a

Dai - 1 mean {((Iai)k}
k=1

= Da ( Cgain Or O m)+4a (cgain O a )+a (cgain O s)

- PCC2 mean

I~- mean 4bk=1

PCCO-a

- P mean 40
k=1

PCCo-a

-I mean 44,
k=1

(cgain Or Om ))}

(cginO aO))k}

(Cgan 0 ) s }

Using the same argument that all of a is collected into the a-PCs, this can be reduced to:

pOC 0 a
mean () -Ok I = (Da (C~r O - 1: mea (Cgan

k=1 n

+V a (Cgn 0 s) - IPC=1a
k=1

mean {(Da (C gain

O r 0 m)) }
(5.37)

Os)) }
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Giving us:

)k
(5.34)

(5.35)

(5.36)

PCCO,-a
pcDa~ iI

k=1



Note that if the sensor noise s is zero mean, then the last term in (5.37) equals zero.

Using the iterative Case D algorithm, we estimate the lost means of {(4a (Cgain O r

add them back in, undo the PC rotation, and estimate r 0 m :

I mean ((D.ai),}+
k=1

O m) and

Iest (mean 4( (c ga or O m))})) (5.38)
k=1

r O m = D-1<

Substituting in (5.37) yields:

Oa ( Cgain O(r O
M))- I

k=1

PCCO-a /

+ Z est meantI(ba
k=1

ean 40a (c 0 (r gi I)

(cgain O(r Om)) (5.39)

+(D -~Pcco-a O
+a (Cgain0,S), s mean {(Da ( gain O))

k=1

Let us define the modified sensor noise represented by the last two terms in (5.38) as:

PCO-am

Imean 4(a (Cgan
k=1

Smod =aI a (Cgain S
S k

(5.40)

Equation (5.40) only modifies the mean vector of the sensor noise, so its covariance is

unaffected. If the mean vector p, of the original sensor noise s equals the zero vector, then the

operation defined by (5.40) has no affect on s, then smod = S .

Assuming that we have found the best value of the lost means of ( (D (cg,,,, O (r 0M))

to add back in, we proceed to take the log and use the Case C algorithm to solve the

multiplicative-noise-only case. If there are errors in our estimates of the lost means of
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{ (, (c,,n o (r O m))) } , then this adds an error vector ea defined as:

aCO- Ie

\k=1

st (mean {(a (C gain

mean f ((D (Cragn (r n m

O (r O m)))

Substituting (5.41) and (5.40) into (5.39) gives us the following estimate of r 0 m :

rOm = cgain ((rom)+ e, +s mod

Next we move into log space in an attempt to separate r and m:

log r o m = log (cgan Or Om+ea +smod log r +log m

(5.42)

(5.43)

If smod and ea are both small and can be ignored, then cgain causes a constant offset effect

in log space:

log rOm ~ log (cgan O r 0 m) = log cgan+logr+logm (5.44)

If smod and ea cannot be ignored, then the addition of smod and ea to Cga,, 0 r 0 m causes

non-linear effects on the pixel vector in log space that can be treated as an added noise log esai :

log esnl =log (cgan r O m +ea +Smod) -log (cn o r O m)

= log (cgan O r m + Ca + smod ) -log Cgan +log r +logim
(5.45)

Substituting (5.44) and (5.45) into(5.43) yields:

184

(5.41)

)



log (r om)= log r+ log m +log cgain + log es] (5.46)

We now apply the rest of the Case C algorithm to (5.46). We first low-pass PC filter the

estimate of log(r o m) to remove logm. If empirical ensembles were used to determine

0og., then we can assume that all of the constant log Cgain will be collected into the lowest

pcco-logm PCs along with log m so that the PCFL-ogm filtering operation will also remove the

log Cgain term. The result of this filtering operation is then:

PCF-logm log (r 0 M)= log r -A log r +log esanl-HPC

Where we have defined a new noise log esanI-HPc which is the high-pass PC filtered

version of log esani :

log esani-HPC = PCFH-logm (log esani) (5.48)

The nest step is to low-pass PC filter the rotated log prior reflectance to estimate and

restore Alogr. We assume that the prior has a random Gaussian noise vector e, with mean

vector p and covariance A,: ep ~ N(Fp,,A,). This noise vector is also low pass PC filtered:

A log r = PCFL-logm (log r, + log e,,, )

Where the log operation forces us to define a second non-linear noise term:
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(5.50)

So that:

A log r = PCF -1g (log r, + log e-., = A log r- + A log e--,

Adding (5.51) to (5.47) to estimate log r, and assuming that A log r, = A log r we obtain:

log r = log r + log esanl-HPC + A log epni (5.52)

the same notation as we did for log esanI-HPC, we can write that

log epnl-LPC =A log e, 11 and (5.52) becomes:

logr = logr +logesan-HPC + log epnI-LPC (5.53)

Taking the exponential yields:

r = exp(logr +logesanl-HPC + og epnl-LPC

= r 0 Csanl-HPC 0 Cpn-LPC

(5.54)

Which is directly analogous to Equation (3.47). We can define an overall error vector as

follows:

ei = r -r = r 0 esani-HPC 0pnI-LPC -r = r 0 (esani-HPC Opni -LPC ) (5.55)

Where the two noise terms are defined as:
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Utilizing

log epnI =-log (r, + e,) -log r,



e -exn (PCF (log esn)
sanl-HPC = p C H-logm sang ))( .56

Sexp (PCFH-Ogm log (Cgan O r 0 m + ea + Smod - log C gan + log r + log m

epnl-LPC = e (PCFL-Iogm (log rp + log pn1) - A log rp )

= exp (PCF-logm (log r, + log epn) - PCFL-Og m (log rp))
(5.57)

We see that the use of the prior to replace the reflectance information in the low log m

PCs also replaces the (Dlogm log esan, in those PCs with the DiOn log epni in those PCs. We also

note that esanl-HPC is independent of calibration noise Cgain even though it appears in (5.56), since

the high pass PC filtering operation removes egain .

Both esanl-HPC and epnl-LPC cause no error in r if they are equal to 1 (0 in log space).

Figure 5.11 depicts e, as a function of SNR = rm/, at a single pixel in the first spectral channel

(~0.41 pm) when epnl-LPC =1, so that e, is caused purely by sensor noise s via esani-PC . We have

assumed that a = 0 and that r [1] = 0.20 and m [n 2 ] = 600 Watts/m 2/sr/pLm for all pixels in the

image. The two curves represent the effect on a single pixel for s [1] = +o- and s [1] = -Ur since

these will have different nonlinear effects on e,. We see that errors cause by sensor noise can be

overcome by increasing SNR. For the Run 06, SNR (see Figure 3.15) is above 65 for most

channels in Bands 1 and 2, above 30 in Bands 3 and 4, and above 5 in Bands 5 and 6, resulting in

absolute reflectance errors ranging between 0.005 in Bands 1 & 2 and 0.04 in bands 5 and 6.

Figure 5.12 plots the effect of the prior noise epn.-LPC on e, when esani-HPC = 1. Again,

r[1]=0.20 and m[n2]=600 Watts/m 2/sr/tm for all pixels in the image.

assume that s, =0 so that e, ~N(0,A,).

In Figure 5.12 we

Since rp = r + e, would have been forced to have
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Figure 5.11. Spectral SPIRE reflectance error at a single pixel of reflectance r=0.20 caused by
sensor noise standard deviation o (sigmas) versus signal-to-noise ratio (SNR=rm/-,) in the
multiplicative noise only case (a=O). The effect of the sensor noise is non-linear and plots for
the noise s=+-, and s=--, are shown. A value of m=600 Watts/m2/sr/um was used at all pixels.
Effects of sensor noise can be overcome by increasing SNR.

values between 0 and 1, our range of standard deviations considered is u- = 0 to 0.008. For the

priors used in this thesis, o- = 0.005, causing very small reflectance errors. Since the priors

used in the algorithm testing in this thesis are derived from ELM estimates that we can consider

ground truth, the prior noise means are all effectively zero and do not cause any reflectance error.

5.6.3 Perfect versus Normal Priors

To gain insight into the overall effects of these noise sources on the results of Figure 5.8,

the Spectral SPIRE processing of Section 5.4 was redone using a "perfect prior" consisting of the

ELM reflectance estimate for each test cube. In addition, the ELM-estimated additive a vectors

were subtracted to create "m-only" test cubes which were also processed with perfect
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Spectral SPIRE Error Due to Prior Noise Variance
0.20

0.15 -

LJ

o0.10

0.00 0.05 0.10 0.15 D.20
Prior Noise Standord Deviation

Figure 5.12. Reflectance error at a single pixel of reflectance r=0.50 caused by prior noise
variance opr in the multiplicative noise only case (a=O). A value of m=600 Watts/m2/sr/pn was
used at all pixels and the prior noise was assumed to be Gaussian with zero mean.

priors and those generated from Run 07. Figure 5.13(a) shows these four results for the 2

percent panel while 5.13(b) shows these results for the spectral panel. Here we see that the prior

noise on these unmodified pixels does not affect the Spectral SPIRE results.

5.7 Summary and Conclusions

In this chapter we developed Spectral SPIRE algorithms that estimate surface reflectance

using a prior reflectance image, prior ensembles of m and a, and PC filtering to remove the

multiplicative and additive noise effects. We developed them for the multiplicative-noise-only

case, and for the case where a constant additive noise term is present. We compared the

performance of the Spectral SPIRE algorithms to ELM and ATREM on six HYDICE

hyperspectral image cubes from the ARM Site data collect.
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Figure 5.13. Spectral SPIRE Case C (M-only) and Case D (m & a) reflectance estimates for all
six runs using a perfect prior and a normal (noisy) prior, for the 2 percent panel (a) and the
spectral panel (b).
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From these experiments we can draw the following conclusions:

" Performance of Spectral SPIRE was very similar to that of ELM on unmodified

pixels.

" Performance of Spectral SPIRE was consistently far better than ATREM on

unmodified pixels.

" Performance of Spectral SPIRE was better than Spatial SPIRE on unmodified pixels.

" Spectral SPIRE performance does not suffer on unmodified low reflectivity materials

during low SNR conditions like Spatial SPIRE does.

* Spectral SPIRE algorithms are computationally less costly than Spatial SPIRE.

* Like Spatial SPIRE, Spectral SPIRE algorithms are insensitive to calibration noise if

the ensembles of m and a used are derived empirically from real sensor data.

" The effects of sensor and prior noise can be overcome with adequate SNR.

" However, Spectral SPIRE performed far worse than either Spatial SPIRE, ELM, or

ATREM on modified pixels.

" Also, Spectral SPIRE algorithms are sensitive to prior misregistration noise.

We now move on to Combined SPIRE algorithms that utilize combined spatial-spectral

processing. Our challenge is to combine the Spatial SPIRE algorithms of Chapter 3 with the

Spectral SPIRE algorithms of this chapter, to take advantage of 1) Spectral SPIRE's low

computational cost and superior performance on unmodified pixels and 2) Spatial SPIRE's

superior performance on modified pixels.
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Chapter 6

Combined SPIRE Algorithms

6.1 Introduction

In this chapter, we develop SPIRE reflectance estimation algorithms that make use of

both spatial and spectral filtering. The goal is to merge the superior performance of Spatial

SPIRE algorithms for estimating reflectance of modified pixels, with the superior performance

on unmodified pixels and computational efficiency of Spectral SPIRE algorithms, to develop an

algorithm with the positive attributes of each.

6.2 Combining Spatial and Spectral Principal Component Filtering

There are many ways to combine the spatial and spectral filtering used in Chapters 3 and

5. Given our goal of combining Spatial SPIRE's ability to estimate the reflectance of modified

pixels and Spectral SPIRE's performance and computational efficiency, one approach stands out.

Using the Spectral SPIRE technique of collecting log m into a few low PCs, we can spatially

filter only those PCs, dramatically reducing the number of channels to spatially filter. This

should also eliminate the problem Spectral SPIRE has with estimating the reflectance of

modified pixels, since we would again be replacing only low spatial frequency information from

the prior reflectance.

To perform this combined filtering, we define the concept of a combined spectral-PC,

spatial-frequency filter (CF). Given that we want first to collect the illumination noise into a few

PCs, we will restrict our attention to those combined filters that perform the PC rotation first.

Although only certain variations are of interest here, the general operation of such a CF is to:
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Image (m-only)
Pixel Ensemble
{log r+log m}

PC Rotation, PC Cutoff,
& Cutoff Frequency
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Filter cc
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(a)

Cutoff Frequency Filtered Image
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-- 9log M tog. (log r - A log r)J - (D o
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N Channel
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(b)

Figure 6.1. Combined filter type cc (CF,): high PC pass, low PC spatial high-pass filter. At the
top (a) is the input and output definition, while (b) is the detailed processing block diagram. The
net effect of this filter is to collect the log m noise into a few low PCs, an then remove it by
spatially filtering only those PCs. This filter is similar to the high-pass PC Filter PCFH of
Figure 5.1, except that the low PCs are spatially high-pass filtered instead of being zeroed.

" Separate an ensemble of vectors ({i} or {log rmr}) in PC space (a or log m ) into high

and low PCs

* Reject (multiply by zero) or pass either the low or high PCs

" Perform spatial high or low pass filtering on the PCs that were not rejected
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There are many possible permutations of the above three operations, and the specific

options selected will depend on the objective of the filtering operation. Two permutations will

be useful to our problem. The first type of combined filter will be referred to as CFa, and is

defined in Figure 6.1. The CF, filter can be described as a high PC pass, low PC spatial low-

pass filter. Figure 6.1(a) depicts the input and output definition, while Figure 6.1(b) depicts the

detailed processing block diagram. Essentially, this filter is similar to the high-pass PCF of

Figure 5.1, but instead of completely rejecting the low PCs, they are spatially high-pass filtered

to reject just the low spatial frequencies containing illumination noise in these PCs. Note that

unlike Spectral SPIRE where each pixel can be processed independently, the entire ensemble

must be PC filtered before the spatial filtering can be applied, hence the use of curly brackets to

denote ensembles.

The second type of combined filter will be referred to as CFp, and is defined in Figure

6.2. The CFp filter can be described as a high PC reject, low PC spatial low-pass filter. Figure

6.2(a) depicts the input and output definition, while Figure 6.2(b) depicts the detailed processing

block diagram. Essentially, this filter is similar to the low-pass PCF of Figure 5.2, but the low

PCs are spatially low-pass filtered. Also, this filter is applied to the prior reflectance ensemble,

while the filter of Figure 5.2 is applied to a log rm pixel.

The subscripted a, and p have no significance other than to distinguish between the two

types of combined filters employed in this thesis, and were chosen so that there designations

would not be confused with the various SPIRE Case identifiers.
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Figure 6.2. Combined filter type P (CF ): high PC reject, low PC spatial low-pass filter. At the
top (a) is the input and output definition, while (b) is the detailed processing block diagram. The
net effect of this filter as shown is to pass only the high spatial frequencies of the input image
(prior reflectance is used in this example) in the low log m PCs. This filter is similar to the low-
pass PC Filter PCFL of Figure 5.2, except that the low PCs are spatially low-pass filtered
instead of simply being passed Also, this filter is applied to the prior reflectance ensemble,
while the filter of Figure 5.2 is applied to a log rm pixel.

6.3 Combined SPIRE Algorithm Derivation

6.3.1 Algorithmic Approach and Issues

Our overall approach is a combination of Spectral SPIRE and Spatial SPIRE approaches.
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Consider the multiplicative-only case. Our goal is to use a PC rotation to concentrate the log m

noise into a few PCs, and then spatially high-pass filter them to remove the log m, rather than

simply setting the PCs to zero. This should preserve any reflectance changes in A log r and

improve performance on modified pixels, while avoiding the higher computational costs of

spatially filtering all bands. We then spatially low-pass filter the same low PCs from the prior, to

restore what is lost from filtering A log r.

The same assumption of an existing prior is still in force. The assumptions regarding the

slow spatial variation of the multiplicative noise and that changes are small in area with respect

to the scene, must be used as well since we are now employing spatial filtering. Since the two

variants of combined filters applicable to our problem both perform the PC filtering first, we will

begin with the image formation equation expressed in vector notation:

i=rOm+a (6.1)

We shall again consider two cases, one where a is present, the other where it is not.

These cases will be analogous to Cases C and D for Spectral SPIRE, but with the added

constraint that the multiplicative noise m is spatially slowly varying, while a is still spatially

uniform. This makes these two new cases identical to Spatial SPIRE Cases 3 and 4. However,

to preserve our ability to refer to different algorithms based on their case designations, the

combined algorithms for solving Spatial SPIRE Cases 3 and 4 will be referred to as Combined

SPIRE Cases III and IV, the Roman numerals denoting combined processing. Since there is no

Combined SPIRE unique solution techniques for Cases I and 2 as there was for Spatial SPIRE,

these are included into Cases III and IV. Combined SPIRE for Cases VI (spatially varying

additive noise, with Case V as a subset) will not be addressed in this thesis, since it cannot be
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compared to both Spatial and Spectral SPIRE algorithms, since no Spectral SPIRE algorithm was

developed for that case. Also, the Case IV algorithm will be the most useful algorithm for

remotes sensing, since the additive noise a can be assumed to be spatially uniform in most

applications.

6.3.2 Case III: Slowly Spatially Varying Multiplicative Noise Only

The Combined SPIRE Case III algorithm is now derived. In this case the additive noise a

is zero. Our image formation model (6.1) then becomes:

i =r Om (6.2)

We first move to log space to linearize the problem:

log i = log r + log m (6.3)

Figure 6.3(a) depicts the generalized processing block diagram for the Case III solution

algorithm. This algorithm is analogous to the Case 3 general Spatial SPIRE algorithm of Figure

3.2(a) and Case C general Spectral SPIRE algorithm of Figure 5.3(a). Figure 6.3(b) depicts the

specific algorithm implemented in this thesis and tested upon the same HYDICE test data set as

the Spatial and Spectral SPIRE algorithms. Note the similarity between Figures 6.3, 5.3, and 3.2.

The Case III algorithm is very similar to the Spectral Case C algorithm of Figure 5.3, the main

difference being that the low PCs of the image are high-pass filtered rather than zeroed to

remove log m .

In Combined SPIRE, the entire image pixel ensemble is processed together. All pixels

are passed through the combined filter CFa to spatially high-pass filter the log m PCs and
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Figure 6.3. Combined Case III generalized processing block diagram (a) and specific
implementation tested (b). In (a), the m-only image is combined afiltered using the (Dogm PC
rotation, PCco-Iogm PC cutoff index, and the 1 co-1ogm spatial cutoff frequency from the prior
information about the multiplicative noise m (K{rm,a)). The filtered {log r} lost in the
operation is then estimated using prior information Kp(r} and Kp{m,a} and merged with the
filtered signal. Finally, the exponential is taken to estimate reflectance. In (b), the lost
combined filtered log r is estimated by combined /3filtering the log of the prior reflectance {log
rp}, and the merge operation is a simple addition.
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the subscripts a and p define the type of combined filter as defined in Section 6.2, and the -var

thereby eliminate log m. We denote such a combined filtering operation as CFa/p-var( ), where

subscript describes the variable from which the PC rotation was defined which is used in the

combined filter. For example, CFa-Iogm( ) is a CFa combined filter that uses the PC rotation

matrix (Diogm and PC cutoff pccO-10 gm . Applying such a filter to log i yields:

CFaiogm({log i}) = CFa-logm({log r +log m}) = {logr - A logr *hLPF } (6.4)

We must now estimate the lost {A log r* hLPF}, by applying a CFp filter to the prior

{logr,}:

{Alogr* hPF} = {Alogr * hLPF }= CF,_Iogm ({log rp}) (6.5)

This estimate of {Alogr * hLPF} is then added to {logr - Alogr * hLPF} to estimate

{logr}:

{logi} = {logr} -{Alogr* hLPF} +{Alogr*hLPF
=PCF-iogm({log r + log m}) + PCFjIOgm({log r,})

Lastly, we take the exponential to estimate reflectance:

{i.} = exp({log i})

(6.6)

(6.7)

We note that the Combined Case I algorithm would be identical to the Combined Case III

algorithm, except that a spatial mean filter could be used in place of a low-pass filter if desired.
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Figure 6.4. Combined Case IV processing block diagram. Based on the additive noise a-PC
cutoff pc 0o., all of the a-PCs are looped through. For each a-PCn, the ensemble mean of the PC
is subtracted to remove the a in that PC. An inner loop then steps through the possible values

for the lost mean of rom in PC, using the Case C algorithm and MSE minimization as in the

Spatial Case 4 algorithm. Once all of the a-PCs have been processed, then the Combined Case
III algorithm is run one last time to estimate the reflectance. This algorithm is similar to the
Spectral Case D algorithm (Figure 5.6) except that the Combined Case III algorithm (Figure
6.3) is used in place of the Spectral Case C (Figure 5.3).

201

P



6.3.3 Case IV: Slowly Spatially Varying Multiplicative and Spatially Uniform Additive
Noise

The solution algorithm for this case is depicted in Figure 6.4. This combined Case IV

algorithm and Figure 6.4 are nearly identical to the Spectral SPIRE Case B algorithm depicted in

Figure 5.6. The only difference is that the Combined Case III algorithm is used in place of the

spectral Case C algorithm. Please refer to Section 5.3.3 for the detailed description of this

algorithm. We note that the Combined Case II algorithm would be identical to the Combined

Case IV, except that a spatial mean filter could be used in place of a low-pass filter to remove log

m noise in the Case III algorithm.

6.4 Algorithm Testing and Results

The test data set of six ARM Site image cubes used for testing Spatial SPIRE in Chapter

3 and Spectral SPIRE in Chapter 5 was used to test the Combined SPIRE Case IV algorithm

developed in this chapter. The same ELM and ATREM processing results from Chapter 3 were

also compared with the Combined SPIRE results against. The same pixels from the images were

used as well. Please refer to Section 3.3.4.4 for a description of the different pixel types used.

As in the Spectral SPIRE Case D processing in Chapter 5, 5 log m -PCs and 5 a-PCs were

processed (pccoiogm=pcco-a=5) in the Combined SPIRE Case IV processing.

Figure 6.5 is a scatter plot of mean and standard deviation performance of Combined

SPIRE, ELM, and ATREM for estimation of surface spectral reflectance for all of the 19 pixel

types selected. This figure is directly analogous to Figure 3.9 for Spatial SPIRE and Figure 5.7

for Spectral SPIRE. The horizontal axis represents the average standard deviation over all the

spectral channels, where the standard deviation in each channel was calculated over the

reflectance estimates of all six Runs (06-31). The vertical axis is the RMS error over all the
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Figure 6.5. Scatter plot of mean and standard deviation performance of Combined SPIRE
(squares), ELM (*), and A TREM (+) for estimation of surface spectral reflectance for all of the
19 pixel types selected The horizontal axis represents the average standard deviation over all
the spectral channels, where the standard deviation in each channel was calculated over the
reflectance estimates of all six Runs (06-31). The vertical axis is the RMS error over all the
spectral channels for the mean reflectance estimate minus the mean ELM reflectance estimate,
which is why ELM has zero RMS error. The larger symbols represent the mean of the points
plotted with that symbol. We see that Combined SPIRE has better standard deviation and RMS
error performance than A TREM

spectral channels for the mean reflectance estimate minus the mean reflectance estimate of ELM

as ground truth, which is why ELM has zero RMS error. We see that Combined SPIRE has

better standard deviation and RMS error performance than ATREM, and nearly as good standard

deviation as ELM.
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Figure 6.6 (a) and (b). ELM, A TREM, and Combined SPIRE spectral reflectance estimates for
all six runs for a single pixel on the 2 percent panel (a) and the 4 percent panel (b).

204

ELM: 4% Panel

- I I I 

.42 .45 .48 .50 .54 .57 .B2 .67 1.0 1.3 1.6 1.72.2

Wavelength um

ATREM; 4% Panel

I II I

I II I

.42 .45 .48 .50 .54 ,57 .52 .67 1.0 1,3 1,6 1.72,2

Wavelength urn

Combined SPIRE: 4% Panel

.4 .1 . . . .7 . . 1 1 .3 . .
.42 .45 .4S .50 .54 .57 .132 .--7 1.0 1.3 1.8 1.72.2

ti

'U

(U

U

U

.42 .45 .48 .50 .54 .57 .62 .67 10 1. 3 1.6 1.72

Wavelength um

ATREM; 2% Panel

0-08

0.06

0.02

0.00,

0.10

0.08

0.-06

0.04

0.02

0.00



0.15

0.,10

0.05

0.00

0.40

'U
(4
C
0

TI
NJ

a.-
03

0!

ELM: 8% Panel

I II I

. I . . . . . . I I I . I

.42 .45 .48 .50 .54 .57 .12 .67 1,0 1.3 1,61.72

Wavelength um

Combined SPIRE: 8% Panel

(U

(U
t3
Fk

.42 .45 .40 .50 .54 .57 .52 .57 1.0 1.3 1.61.72

0.301

0.20

0.10

0-00

0.40

0.30

0.40

0.30

0.10

0.00

ELM: 16% Ponel

I II I I:
I II I

I I II Ii

I II 1 I-

.42 45 .48 .50 .54 .57 .62 .67 1.0 1.3 1.6 1,72.2

Wavelength um

ATREM: 16% Panel

I II I I
SII I I

I II I

.42 .45 .48 .50 .54 ,57 .62 .67 1.0 1.3 1.6 1.72.2

Wavelength um

Combined SPIRE: 16% Panel

.. . . . . II .1 . .1
.42 .45 .40 .50 .54 .57 .52 .67 1.0 1.3 1.6 1.72.2

Wavelength um

(c)

Run 06
........ Run 07
- - - - Run 13
---- Run 22
-- Run 26
- - Run 31

Wavelength um

(d)

Figure 6.6 (c) and (d). ELM, A TREM, and Combined SPIRE spectral reflectance estimates for
all six runs for a single pixel on the 8 percent panel (c) and the 16 percent panel (d).
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Figure 6.6 (e) and (). ELM, ATREM, and Combined SPIRE spectral reflectance estimates for
all six runs for a single pixel on the 32 percent panel (e) and the 64 percent panel (f).

206

a)
U
C
0

a)
'LI
0!

(U

0

a6
A)
It

as

U
(U

l0
wi

0.6

0.6
0-6

0-4

0-2

0.0

0.4

0.2

0.0

S
- -. , II iY~':y ~ II

"I:
~*

I



ELM: Specirol Panel

.112 .45 .A8 .50 .54 .57 .62 .67 1.0 1.3 1.61.72

Wavelength um

ATREM; Spectral Panel

* I
i-fl-..

& */

<9 V

I I

-: II I i

KLl

(U
w

l.A
C
0
73

A)

'. .I . . . .. 1 .1. . 1
.42 .45 .48 .50 .54 ,57 .62 .57 1.0 1,3 1,61.72

Wavelength um

Combined SPIRE: Spectral Panel

I II I I

v Il I i

. I II .I . I:
.42 .45 A .50 .54 .57 .52 .67 1.0 1.3 1.6 1.72

a)U
C
a
U
as
Cs

0,25

0-10

0 .05

0.00

0-25

0.20

0.15

0.10

0.05
0.00G

0.25

0.20

0.15

0.10

6. 05

0.001

qJ

(U
M

Wavelength um

(g)

Run 06
........- Run 07

Run 13
----- - Run 22

Run 26
- - - Run 31

Wavelength urn

(h)

Figure 6.6 (g) and (h). ELM, A TREM, and Combined SPIRE spectral reflectance estimates for
all six runs for a single pixel on the spectral panel (g) and the 15 percent panel (h).
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Figure 6.6 (1) and (). ELM, A TREM, and Combined SPIRE spectral reflectance estimates for
all six runs for a single pixel on the 41 percent panel (i) and the 57 percent panel ().
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Figure 6.6 (m) and (n). ELM, A TREM, and Combined SPIRE spectral reflectance estimates for
all six runs for a single pixel on the road (m) and the parking lot (n).
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Figure 6.6 (o) and (p). ELM, A TREM, and Combined SPIRE spectral reflectance estimates for
all six runs for a single pixel on the building roof (o) and the resolution panel (p)..
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Figure 6.6 (q) and (r). ELM, ATREM, and Combined SPIRE spectral reflectance estimates for
all six runs for a single pixel on emissivity panel ] (q) and emissivity panel 4 (r).
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ELM: Modified Pixel
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Figure 6.6(s). ELM, A TREM, and Combined SPIRE spectral reflectance estimates for all six
runs for a single pixel on the modified pixel. The modified pixel was a truck in Run 07, and
changed to mowed grass in all subsequent Runs. For Run 07, a similar mowed grass pixel is
plotted for comparison.
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Figure 6.6(a)-(s) is directly analogous to Figure 3.8(a)-(s) and Figure 5.8(a)-(s) for

comparing Combined SPIRE performance against that of ELM and ATREM. Similar plots with

the vertical axis scaled from 0 to 1 can be found in Appendix F as Figure F. 1. Appendix F also

contains Tables F.1 and F.2 which are analogous to Tables C.1 and C.2 for Spatial SPIRE and

Tables E.2 and E.2 for Spectral SPIRE and present the average channel standard deviation values

in each band for the ELM, ATREM, and Spectral SPIRE results plotted in Figure 6.6.

Again we note the clustering of the ATREM spectra into two distinct sets due to clouds

and haze on three of the runs, as was discussed in Chapter 3. We also note that for all pixels,

including the modified pixel, Combined SPIRE performs better than ATREM and very similar to

ELM. We shall compare the relative performance of Spatial, Spectral, and Combined SPIRE in

more detail in Chapter 7, but we note here that unlike Spectral SPIRE, Combined SPIRE has

good performance on both modified and unmodified pixels. The addition of spatial filtering to

the Spectral SPIRE algorithm dramatically improved the performance on the modified pixel, as

can be seen in Figure 6.6(s). In addition, Combined SPIRE has better performance than Spatial

SPIRE on the low reflectance panels, which can best be seen in Figure F. 1(a) and (b).

6.5 Computational Cost of Spatial, Spectral, and Combined SPIRE

6.5.1 Combined SPIRE Computational Costs Estimate

Here we make the same assumptions as in Section 5.5, where we have a spatially square

image cube with N spatial samples and nb spectral channels. We therefore have an NxNxnb

image cube to be processed and only multiplicative noise present. The computational cost

estimate for the Combined SPIRE Case III algorithm is:
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{rm} -+ {log rm}:

{r,} -> log r, :

{ (1ogrm log rm}:

{ logrm log r}:

{A log rm *hHPF}:

{A log r, *hLPF :

2N 2

2N 2

2(nb)N 2

2(nb)N 2

l2(pcco-logm)N 2 10g 2(N 2 )+ N 2

12(pcco-logm)N 2 10g 2 (N 2 ) + N 2

{A log rm* hHpF Alogr, *hLPF } :

{Iogrm log ri}:

exp({log r}):

(PCcoiogm )N 2

2(nb)N 2

2N 2

Yielding a total cost function of:

Combined SPIRE Cost = 6N 2 + 6(nb)N 2 +(PCco-iogm)N 2

+(pcoiogm )[24N 2 10 2(N 2 )+ 2N 2

= Spectral SPIRE Cost + (PCCOIogm)24N 2 10g 2 (N 2 ) +2N 2 ] (6.9)

= N 2 (6 + 6(nb) + (pcco-iogm)[24log2 (N 2) +3])

= 6(nb)N 2 +240N 2 10 2(N)

Where the total costs functions for Spatial and Spectral SPIRE were:

Spatial SPIRE Cost = (9N2 + 24N 2 log2 (N 2 )) nb

= N2 (9+24log 2 (N2))nb

= 48(nb)N 2 10g 2 (N)

Spectral SPIRE Cost = 6N 2 +6(nb)N 2 + (pcCOo~gM )N 2

= N 2 (6(1 + nb) + pcco-logm )

(6.10)

(6.11)

=6(nb) N 2

For a (00xI00xl100) image cube with pcco-iogm = 5, the Combined SPIRE cost would be:
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2.22x10 7 FLOPS, as compared to 6.1 xI106 FLOPS for Spectral SPIRE and 3.28x103 FLOPS for

Spatial SPIRE. This makes Combined SPIRE 3.6 times slower than Spectral SPIRE while

Spatial SPIRE is 50 times slower than Spectral SPIRE for m-only. This makes Spatial SPIRE 15

times slower than Combined SPIRE as well. For Spatial Cases 4 and Combined Case IV where

a is present, and assuming a 20 times difference in iteration time as in Section 5.4.2, Spatial

SPIRE is 300 times slower than Combined SPIRE.

Comparing Spatial SPIRE Case 4 algorithm to Spectral SPIRE Case C where both

multiplicative and additive noise are present, the disparity is even greater. Assuming that the

same number of iteration steps are required for each spatial band or PC to be processed to

remove the additive noise, and assuming that 5 a-PCs must be processed versus all channels in

Spatial SPIRE, then there is an additional factor of 20 favoring Spectral SPIRE, making the Case

C algorithm 200 times faster than the Case 4.

Figure 6.7 shows a scatter plot of the average channel standard deviation across all runs

for the modified pixel versus the computational load for each SPIRE algorithm. We see that

Spatial SPIRE has high computational cost but low RMS error, Spectral SPIRE has low cost but

high RMS error, and Combined SPIRE has nearly as low cost as spectral with nearly as low error

as Spatial. When we also take into account Combined SPIRE's improved performance on low

reflectivity materials under low SNR conditions, Combined SPIRE stands out as the best all

around individual SPIRE algorithm, combining high performance on all pixel types with low

computational cost.

6.5.2 Computational Costs of Spatial, Spectral, and Combined SPIRE Versus Image

Cube Size

Computer processing power has been steadily increasing over time. As technology
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Figure 6.7. Scatter plot of standard deviation performance and computational cost of Spatial,
Spectral, and Combined SPIR E on the modified pixel. The horizontal axis represents the
computational costs of the multiplicative noise only algorithms (Spatial SPIR E Case 3, Spectral
SPIRE Case A, and Combined SPIRE Case III) in Floating Point Operations (FLOPS). The
vertical axis represents the average standard deviation over all the spectral channels, where the
standard deviation in each channel was calculated over the reflectance estimates of all six Runs

(06-31). We see that Spectral SPIRE has low computational cost but high standard deviation,
Spatial SPIR E has high computational cost and low standard deviation, and Combined SPIR E
has nearly as low computational costs as Spectral SPIR E and almost as good standard deviation

performance as Spatial SPIR E.

advances, so has the spatial resolution, spectral resolution, and image size of hyperspectral image

cubes. As the dimensions of a hyperspectral image cube grow, so do the computational costs of

each SPIRE algorithm. If we are to estimate the reflectance of modified pixels well, and we are

dealing with high SNR applications where Spatial SPIRE does well on low reflectivity materials,
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then our choices are between Spatial and Combined SPIRE. If computational costs are a factor

in the choice, then we must trade off the slightly better performance of Spatial SPIRE on

modified pixels versus its computational cost compared to Combined SPIRE.

Figure 6.8 plots the computational costs for processing an NxNxO0 pixel image cube

with m-only Spatial (Case 3), Spectral (Case C), and Combined (Case III) SPIRE algorithms, as

the spatial dimension N increases. From this plot we see that Spatial SPIRE's computational

costs grow much faster than either Spectral or Combined SPIRE as the spatial dimension

increases. This is due to the fact that Spatial SPIRE costs grow at approximately

4800N 2 log 2 (N), versus approximately 600N 2 for Spectral and 600N 2 + 240N 2 0g 2 (N) for

Combined SPIRE.

Figures 6.9 plots a similar cost curve but for a lOOxlOOx nb image cube as the spectral

dimension nb increases. As expected, Spatial SPIRE costs increase linearly with nb with the

slope being determined by the cost of processing a single (100xl00) channel image:

48(1002)log2 (100)nb. Spectral and Combined costs also increase nearly linearly, their slope

equal to 60000 as nb gets large.

Figure 6.10(a) plots a similar cost curve but for an NxNxN image cube as all three

dimension increase at the same time. Figure 6.10(a) plots the same curve as in (a) but with a log

computational cost axis to make the behavior of Spectral and Combined SPIRE more apparent.

These plots combine the effects plotted in Figures 6.8 and 6.9. As all dimensions increase

simultaneously, Spectral and Combined both increase at approximately 6N 3 while Spatial

increases even faster, at approximately 48N 3 log 2 (N).
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Figure 6.8. Computational costs for processing an (NxNx] 00) pixel image cube with m-only
Spatial, Spectral, and Combined SPIRE algorithms, as the spatial dimension N increases.
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Figure 6.9. Computational costs for processing a (I 00x] 00xnb) pixel image cube with m-only
Spatial, Spectral, and Combined SPIR E algorithms, as the spectral dimension nb increases.
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Figure 6.10. Computational costs for processing an (NxNxN) pixel
Spatial, Spectral, and Combined SPIRE algorithms, as the all
simultaneously (a) and with log axis for computational cost (b).
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6.6 Noise Analysis

In this section we perform similar noise analyses as was done in Chapter 5 for Spectral

SPIRE algorithms.

6.6.1 Registration Noise

Imperfect registration of the image and its prior introduces noise that can effect

reflectance estimation. Figure 6.11 is analogous to Figures 3.10 and 5.10 and shows distance

images that measure the magnitude of the vector difference between the corresponding pixels of

two images. For two reflectance images r and r2 , the distance d[n., ,na,] between the pixel

spectra r[n ,n, ,nf] and r2[n , n , n,] is defined as:

d[n,,ns]= j(ri[nnY,nn-r2[n,n,n], (6.12)
nA=1

In Figure 6.11(a), we see the distance image between the prior used for Run 06 and the

ELM estimated reflectance for Run 06, just as in Figures 3.9(a) and 5.8(a). In Figure 6.11(b) is

depicted the distance between the Combined SPIRE reflectance estimates and ELM estimated

reflectance. We see that the misregistration noise has not carried over and affected the

Combined SPIRE results, just as in Spatial SPIRE. Therefore, the introduction of the spatial

filtering has eliminated the effects of misregistration noise that caused errors in Spectral SPIRE.

This is because only low spatial frequencies are restored from the prior, so that no high

frequency prior misregistration noise is introduced into the reflectance estimate. Since

misregistration noise does not have a significant impact on Spatial SPIRE results, there is no

need to develop equations for the errors involved.
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(a) (b)

Figure 6.11. Distance images of prior reflectance with respect to ELM estimated reflectance

(a) for Run 06. The distance value at each pixel is equal to the length of the vector difference

between the pixel spectra of the two images at that pixel. Brighter distance image pixels have

longer distances and highlight changes since the prior and registration errors in (a). The

distance image between Combined SPIRE and ELM estimated rfor the same run is shown in (b),

where misregistration noise did not affect the results.

6.6.2 Prior, Sensor, and Calibration Noise

We shall now derive the effects of sensor, calibration, and prior noise sources on the

Combined SPIRE Case IV algorithm and give some examples of their effects. The Combined

SPIRE Case IV algorithm is nearly identical to the Spectral SPIRE Case B algorithm with the

exception that the Spatial SPIRE Case III algorithm is used to eliminate the log m noise instead

the Spectral SPIRE Case C. In other words, both algorithms use the same technique for

eliminating the additive noise a. Because of this, the derivation of the effects of sensor,

calibration, and prior noise for the Combined Case IV algorithm is identical to that for the

Spectral Case D algorithm as developed in Section 5.3.3, up to the point where the Combined

Case III algorithm is about to be applied to remove the log m noise rather than the Spectral Case

C. The remaining derivation is similar to the last portion of the same derivation for Spatial
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SPIRE in Section 3.4.2, and we will again limit ourselves to assuming that the spatial filtering

takes the form of a mean filter.

We begin with equation (6.13) which corresponds to (5.46):

log(r om) = logr + logm+ logcgain + log esani (6.13)

We now apply the Combined filter CFa-.iogm to (6.13), which begins by rotating the

estimate of log (r o m) to into log m PC space. If empirical ensembles were used to determine

DIogmn then we can assume that all of the constant log cgain will be collected into the lowest

PCs along with log m. Next we apply a high-pass spatial filtering operation

(subtraction of the mean) to remove log m and which will also remove the log cgain term. The

result of this filtering operation is:

CFa-iogm (log (r 0m)J = log r -mean{A log r} + log esani-HPC -mean {log Csanl-LPC } (6.14)

Where noise log esani-HPC was present only in the high log m PCs, while log esani-LPC was

present only in the low log m PCs so that:

log esani-HPC = PCFH-]ogm (log esani)

log esani-LPC = PCFL-iogm (log esani)

(6.15)

(6.16)

As in Section 5.6.2, we assume that the prior has a random Gaussian noise vector e, with

mean vector p, and covariance A,: e, ~ N(sp,,A,). We need to restore mean {A log r} and do

so by applying the CFx-iogm filter to the log prior reflectance and its associated prior noise:
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mean {A log r} = CFlIogm (log rp + log en,) (

Where the log operation forces us to define a second non-linear noise term:

log epn, =log (r, +e,)-log r, (6.18)

So that:

mean{A log r} = mean A log r, + mean {A log ep,}

= mean A log r, } + mean {log epni-LPC }
(6.19)

Adding (6.19) to (6.14) to estimate log r we obtain:

log r = log r - mean {A log r} + log esanl-HPC - mean {log esani-LPC }
+ mean {A log r, I + mean {log epfl-LPC }

And assuming that mean {A log r,}= mean {A log r} we obtain:

(6.20)

log r = log r + log esanIl-HPC -mean {log esanl-LPC } + mean {log epnI-LPC } (6.21)

We can now define a new noise term:

log esanl-mod = log esanl-HPC -mean {log esanl-LPC } + mean {log epnl-LPC} (6.22)

Which is simply log esani but with its mean in the low log m PCs replaced by those of
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log ep,, in those same PCs. Equation (6.21) becomes:

log r = log r + log esa.I-mo d

Taking the exponential yields:

r = exp (log r + log esani-mod)

= r 0 esanil-mod

We can define an overall error vector as follows:

er - r rO esani-mod r - r (esani-mod -1)

Where the noise term is defined as:

esani-mod = exp (log esani-HPC - mean {log esani-LPC } + mean {log epnl-LPC

PCFH-logm (log esanl)- mean { PCF -ogm (log esani
(exp

+manPCL-logmlo e0ni

= exp

I-

PCF ~log (cgain rOm+ea +
H-logi -log Cgain+logr+logm

-mean PCF log g(gain Or 0

m -- log Cgan +logi

smod)]

m+ea+Smod

r+logm

+mean {PCFaIgm (log epi)I

'I

While (6.26) appears formidable, its behavior is very similar to effects of the two noise

terms derived for Spectral SPIRE. The reflectance error due to sensor noise with respect to SNR
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Figure 6.12. Combined SPIRE reflectance error at a single pixel of reflectance r=0. 20 caused
by sensor noise standard deviation a, (sigma _s) versus signal-to-noise ratio (SNR=rm/o-,) in the
multiplicative noise only case (a=0). The effect of the sensor noise is non-linear and plots for
the noise s=+-cr and s=-o- are shown. A value ofm=600 Watts/m2/sr/pm was used at all pixels.
Effects of sensor noise can be overcome by increasing SNR.

behaves nearly identically to the Spectral SPIRE sensor error term plotted in Figure in 5.11 and

is plotted in Figure 6.12. The plot is for the error at a single pixel of reflectance r=0.20 caused

by sensor noise standard deviation cs (sigma s) versus signal-to-noise ratio (SNR=rm/Ts) in the

multiplicative noise only case (a=0). A value of m=600 Watts/m 2/sr/tm was used at all pixels,

and we see that the effects of sensor noise can be overcome by increasing SNR.

The reflectance error due to prior noise variance behaves similarly to the prior noise error

for the Spectral SPIRE prior noise term plotted in Figure 5.12, but is dependent on only the

variance which is passed by the low pass filtering operation. Since we have assumed mean

filtering in this section, the Combined SPIRE reflectance error due to prior noise is only due to
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Figure 6.13. Reflectance error at a single pixel of reflectance r=0.50 caused by prior noise

mean ,u in the multiplicative noise only case (a=O). A value of m=600 Watts/m2/sr/pm was used

at all pixels and the prior noise was assumed to be Gaussian with zero mean.

prior mean error. Since the priors used in the algorithm testing in this thesis are derived from an

ELM estimates that we can consider ground truth, the prior noise means are all effectively zero

and cause no error. To provide guidance for applications where there is non-zero prior mean

error, Figure 6.13 plots the Combined SPIRE reflectance error for a single pixel with r=0.50 in

the multiplicative noise only case (a=0), with a value of m=600 Watts/m 2/sr/pm was used at all

pixels.

6.6.3 Perfect versus Normal Priors

To gain insight into the overall effects of these noise sources on the results of Figure 6.6,

the Combined SPIRE processing of Section 6.4 was redone using a "perfect prior" consisting
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Figure 6.14. Combined SPIRE Case III (M-only) and Case IV (m & a) reflectance estimates for
all six runs using a perfect prior and a normal (noisy) prior, for the 2 percent panel (a) and the
spectral panel (b).
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of the ELM reflectance estimate for each test cube. In addition, the ELM estimated additive a

vectors were subtracted to create "m-only" test cubes which were also processed with perfect

priors and priors generated from Run 07. Figure 6.14(a) shows these four results for the 2

percent panel while 6.14(b) shows these results for the spectral panel; they can be compared

directly to Figures 5.13 and 3.14. We see that the introduction of spatial filtering did not

reintroduce the high variations at longer wavelengths for low reflectance materials like the 2

percent panel experienced under Spatial SPIRE. Prior noise did slightly affect the Combined

SPIRE results for the spectral panel by increasing the variance to more than that of either the

Spatial or Spectral results.

6.7 Summary and Conclusions

In this chapter we developed Combined SPIRE algorithms that estimate surface

reflectance using a prior reflectance image, prior ensembles of m and a, and combined PC and

spatial frequency filtering to remove the multiplicative and additive noise effects. We developed

Combined SPIRE algorithms for the slowly-spatially-varying multiplicative-noise-only case and

for the case where a spatially uniform additive noise is present as well. We compared the

performance of the Combined SPIRE algorithms to ELM and ATREM on six HYDICE

hyperspectral image cubes from the ARM Site data collect.

From these experiments we can draw the following conclusions:

" Performance of Combined SPIRE was very similar to that of ELM on all pixels.

" Performance of Combined SPIRE was consistently far better than ATREM on all

pixels.

" Performance of Combined SPIRE was slightly worse than Spatial SPIRE on all
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pixels, except low reflectivity materials, where Combined SPIRE performance does

not suffer as much during low SNR conditions.

" Performance of Combined SPIRE was slightly worse than Spectral SPIRE on

unmodified pixels.

" Combined SPIRE algorithms are computationally less costly than Spatial SPIRE, and

only slightly more costly than Spectral.

" As image cube dimensions grow, Combined and Spectral SPIRE computational costs

grow slower than Spatial SPIRE computational costs.

" Combined SPIRE algorithms are insensitive to calibration noise if the ensembles of m

and a used are derived empirically from real sensor data.

" The effects of sensor and prior noise can be overcome with adequate SNR.

Based on these conclusions, we were successful in combining Spatial SPIRE's superior

performance on modified pixels with Spectral SPIRE's superior performance on unmodified

pixels while maintaining Spectral SPIRE's low computational cost. In addition, we were also

able to reduce Spatial SPIRE's errors under low SNR conditions and maintain its insensitivity to

misregistration noise.

We now move on to Chapter 7 in which we review the taxonomy of SPIRE algorithms

developed in this thesis, and explore an example classification application using the reflectance

estimates from SPIRE, ELM, and ATREM algorithms. We also develop a Selective SPIRE

technique which chooses between different SPIRE reflectance estimates to maximize

classification performance.
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Chapter 7

Taxonomy of SPIRE Algorithms and their Use in Applications

7.1 Introduction

In this chapter we review the overall SPIRE algorithm taxonomy and the performance of

the individual SPIRE reflectance estimation algorithms developed in this thesis. Based on these

results we develop a "Selective" SPIRE technique that utilizes reflectance estimates from

different SPIRE algorithms to maximize overall classification performance. We then investigate

an example classification application, in which we compare classification performance on

reflectance estimates from ELM, ATREM, and SPIRE. We also investigate the use of SPIRE

algorithms when no prior reflectance information is available and demonstrate that such pseudo-

reflectance SPIRE results can be used successfully in classification and change detection

applications, eliminating the need for physics-based or ELM algorithms to generate the prior

reflectance image. We then provide final guidance on which SPIRE algorithm to use for

different applications, and what type of prior information is required by each.

7.2 Review of SPIRE Algorithm Taxonomy

Before we make suggestions on which SPIRE algorithm to use in different applications,

we will review the different SPIRE algorithms available to us. Figure 7.1 is identical to Figure

2.9 and depicts the SPIRE algorithm taxonomy for the algorithms developed and tested in this

thesis, organized by the spatial variability of the multiplicative noise m and additive noise a.

Spatially varying m and a are assumed to be band-limited to low spatial frequencies as was be

discussed in Chapter 3. This figure is repeated here for the reader's convenience.
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Figure 7.1. SPIRE algorithm taxonomy based on the spatial variability of the multiplicative
noise m and additive noise a. Spatially varying m and a are assumed to be band-limited to lower
spatial frequencies. Algorithms outlined in dashed lines were not developed and are suggestions
for further work. For Spectral and Combined, algorithms for cases where m is uniform are
identical to those for when m is varying.

At the top of the tree is the most general case considered with spatially varying m and

spatially varying a, for which only the Spatial SPIRE Case 6 algorithm was developed. As

discussed in Chapter 6, a Combined SPIRE Case VI algorithm should be feasible, though this is
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left as a suggestion for further work. A comparable Spectral SPIRE Case F algorithm is

certainly a possible area of further work, but as discussed in Chapter 5, the results of this thesis

do not provide any guidance for how to proceed.

On the left branch are algorithms that work when the additive noise is zero. The trio of

Spatial Case 3, Spectral Case C, and Combined Case III algorithms all handle this case. For the

case where the multiplicative noise m is spatially uniform (and additive noise a is zero), a

computationally efficient Spatial Case 1 algorithm was developed. On the center branch is the

condition where the multiplicative noise m is spatially uniform but the additive noise a is

spatially varying, solved by the computationally efficient Spatial SPIRE Case 5 algorithm. This

case appears to be an unusual one in that no practical applications have yet to be identified for it,

though one can envision certain future robotic applications. On the right branch are algorithms

that work when the multiplicative noise m is spatially varying and the additive noise a is spatially

uniform, which includes the Spatial Case 4, Spectral Case D, and Combined Case IV algorithms.

For the case where the multiplicative noise is spatially uniform as well, the computationally

efficient Spatial Case 2 algorithm can be used.

7.3 Review of Individual SPIRE Algorithm Performance

Having reviewed the SPIRE algorithms available to us, it is also appropriate to review

and summarize their relative performance. We will concentrate on the Spatial Case 4, Spectral

Case D, and Combined Case IV algorithms for comparison purposes, since they are the most

useful for airborne remote sensing applications, and were analyzed in detail in this thesis.

Figure 7.2(a) shows a scatter plot of mean and standard deviation performance of Spatial

(diamonds), Spectral (triangles), and Combined (squares) SPIRE algorithms for estimation of

surface spectral reflectance for all of the 18 unmodified pixel types selected. The horizontal axis
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Figure 7.2. Scatter plot of mean and standard deviation performance of Spatial (diamonds),
Spectral (triangles), and Combined (squares) SPIRE algorithms for estimation of surface
spectral reflectance for all of the 18 unmodified pixel types selected (a). The horizontal axis
represents the average standard deviation over all the spectral channels, where the standard
deviation in each channel was calculated over the reflectance estimates of all six Runs (06-31).
The vertical axis is the RMS error over all the spectral channels for the mean reflectance
estimate minus the mean reflectance estimate of ELM as ground truth. The larger symbols
represent the mean of the points plotted with that symbol. We see that Spectral SPIRE has better
standard deviation and RMS error performance than Spatial or Combined on unmodified pixels.
In (b), the modified pixel is included and log axes are used, showing Spectral's poorer
performance on it.
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represents the average standard deviation over all the spectral channels, where the standard

deviation in each channel was calculated over the reflectance estimates of all six Runs (06-31).

The vertical axis is the RMS error over all the spectral channels for the mean reflectance estimate

minus the mean reflectance estimate of ELM as ground truth. We see that in aggregate, Spectral

SPIRE has better standard deviation and RMS error performance than Spatial or Combined on

unmodified pixels. In Figure 7.2(b), the modified pixel is included, showing Spectral's poorer

performance on it.

To gain insight into the relative performance of Spatial, Spectral, and Combined SPIRE

on individual pixel types, Figure 7.3 (a)-(s) plots the reflectance estimates for each of the 19

pixel types plotted in Chapters 3, 5, and 6. For each pixel type, the reflectance estimates for all

runs are plotted for Spatial SPIRE, Spectral SPIRE, Combined SPIRE, ELM, and ATREM. In

addition, a scatter plot of the average channel standard deviation across runs versus the RMS

error of the mean of the estimates with respect to the mean for the ELM estimates is shown, and

is the same information plotted for SPIRE in Figure 7.2, but for a single pixel. This scatterplot

can be interpreted as a measure of the two errors related to the mean and variance of the

reflectance estimates by each algorithm, where the best performance is at the (0,0) origin. In

Appendix G, Table G. 1 lists the average channel standard deviation across all six runs for each

Band for all five estimators, and Table G.2 list the same information as a percentage of the

channel mean across the six runs.

In Figure 7.3, we see that the scatterplot performance of Spectral SPIRE is often the best

on all the unmodified pixels, with the exception of grass and the resolution panel where it is

slightly poorer than Spatial SPIRE, and the emissivity panels where it is on par with the Spatial

and Combined. In the case of grass and mowed grass, one can argue that these represent pixels
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Figure 7.3(a). Reflectance estimates for Spatial SPIRE, Spectral SPIRE, Combined SPIRE,
ELM, and ATREM, for all runs for the 2 percent panel, with a scatter plot of average channel
standard deviation from the mean for all six runs versus the RMS error of the mean estimate with
respect to the mean ELM estimate.
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Figure 7.3(b). Reflectance estimates for Spatial SPIRE, Spectral SPIRE, Combined SPIRE,
ELM, and A TREM, for all runs for the 4 percent panel, with a scatter plot of average channel
standard deviation from the mean for all six runs versus the RMS error of the mean estimate with
respect to the mean ELM estimate.
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Figure 7.3(c). Reflectance estimates for Spatial SPIRE, Spectral SPIRE, Combined SPIRE,
ELM, and ATREM, for all runs for the 8 percent panel, with a scatter plot of average channel
standard deviation from the mean for all six runs versus the RMS error of the mean estimate with
respect to the mean ELM estimate.
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Spotial SPIRE: 16% Panel
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Figure 7.3(d). Reflectance estimates for Spatial SPIRE, Spectral SPIRE, Combined SPIRE,
ELM, and A TREM, for all runs for the 16 percent panel, with a scatter plot of average channel
standard deviation from the mean for all six runs versus the RMS error of the mean estimate with
respect to the mean ELM estimate.
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Spotiol SPIRE: 32% Panel
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Figure 7.3(e). Reflectance estimates for Spatial SPIRE, Spectral SPIRE, Combined SPIRE,
ELM, and ATREM, for all runs for the 32 percent panel, with a scatter plot of average channel
standard deviation from the mean for all six runs versus the RMS error of the mean estimate with
respect to the mean ELM estimate.
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Spatial SPIRE: 64% Panel
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Figure 7.3(f). Reflectance estimates for Spatial SPIRE, Spectral SPIRE, Combined SPIRE,
ELM, and ATREM, for all runs for the 64 percent panel, with a scatter plot of average channel
standard deviation from the mean for all six runs versus the RMS error of the mean estimate with
respect to the mean ELM estimate.
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Spatial SPIRE: Spectral Ponel
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Figure 7.3(g). Reflectance estimates for Spatial SPIRE, Spectral SPIRE, Combined SPIRE,
ELM, and A TREM, for all runs for the spectral panel, with a scatter plot of average channel
standard deviation from the mean for all six runs versus the RMS error of the mean estimate with
respect to the mean ELM estimate.
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Spatial SPIRE: 15% Panel
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Figure 7.3(h). Reflectance estimates for Spatial SPIRE, Spectral SPIRE, Combined SPIRE,
ELM, and A TREEM, for all runs for the 15 percent panel, with a scatter plot of average channel
standard deviation from the mean for all six runs versus the RMS error of the mean estimate with
respect to the mean ELM estimate.
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Spotiol SPIRE: 41% Panel
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Figure 7.3(i). Reflectance estimates for Spatial SPIRE, Spectral SPIRE, Combined SPIRE,
ELM, and ATREM, for all runs for the 41 percent panel, with a scatter plot of average channel
standard deviation from the mean for all six runs versus the RMS error of the mean estimate with
respect to the mean ELM estimate.
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Spatial SPIRE: 57% Panel
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Figure 7.3(). Reflectance estimates for Spatial SPIRE, Spectral SPIRE, Combined SPIRE,
ELM, and A TREM, for all runs for the 57 percent panel, with a scatter plot of average channel
standard deviation from the mean for all six runs versus the RMS error of the mean estimate with
respect to the mean ELM estimate.
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Spotial SPIRE: Crass
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Figure 7.3(k). Reflectance estimates for Spatial SPIRE, Spectral SPIRE, Combined SPIRE,
ELM, and A TREM, for all runs for the grass, with a scatter plot of average channel standard
deviation from the mean for all six runs versus the RMS error of the mean estimate with respect
to the mean ELM estimate.
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Spatial SPIRE: Mowed Cross
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Figure 7.3(l). Reflectance estimates for Spatial SPIRE, Spectral SPIRE, Combined SPIRE,
ELM, and ATREM, for all runs for mowed grass, with a scatter plot of average channel
standard deviation from the mean for all six runs versus the RMS error of the mean estimate with
respect to the mean ELM estimate.
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Spotial SPIRE: Rood
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Figure 7.3(m). Reflectance estimates for Spatial SPIRE, Spectral SPIRE, Combined SPIRE,
ELM, and A TREM, for all runs for the road, with a scatter plot of average channel standard
deviation from the mean for all six runs versus the RMS error of the mean estimate with respect
to the mean ELM estimate.
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Spotiol SPIRE: Parking Lot
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Figure 7.3(n). Reflectance estimates for Spatial SPIRE, Spectral SPIRE, Combined SPIRE,
ELM, and ATREM, for all runs for the parking lot, with a scatter plot of average channel
standard deviation from the mean for all six runs versus the RMS error of the mean estimate with
respect to the mean ELM estimate.
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Spolial SPIRE: Building Roof
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Figure 7.3(o). Reflectance estimates for Spatial SPIRE, Spectral SPIRE, Combined SPIRE,
ELM, and ATREM, for all runs for the building roof with a scatter plot of average channel
standard deviation from the mean for all six runs versus the RMS error of the mean estimate with
respect to the mean ELM estimate.
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Spatial SPIRE: Resolution Panel
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Figure 7.3(p). Reflectance estimates for Spatial SPIRE, Spectral SPIRE, Combined SPIRE,
ELM, and ATREM, for all runs for the resolution panel, with a scatter plot of average channel
standard deviation from the mean for all six runs versus the RMS error of the mean estimate with
respect to the mean ELM estimate.
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Spatial SPIRE: Emissivity Panel 1
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Figure 7.3(q). Reflectance estimates for Spatial SPIRE, Spectral SPIRE, Combined SPIRE,
ELM, and A TREM, for all runs for the emissivity panel 1, with a scatter plot of average channel
standard deviation from the mean for all six runs versus the RMS error of the mean estimate with
respect to the mean ELM estimate.
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Spatial SPIRE: Emissivity Panel 4
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Figure 7.3(r). Reflectance estimates for Spatial SPIRE, Spectral SPIRE, Combined SPIRE,
ELM, and A TREM, for all runs for the emissivity panel 4, with a scatter plot of average channel
standard deviation from the mean for all six runs versus the RMS error of the mean estimate with
respect to the mean ELM estimate.
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Spotiol SPIRE: Modified Pxel
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Figure 7.3(s). Reflectance estimates for Spatial SPIRE, Spectral SPIRE, Combined SPIRE,
ELM, and A TREM, for all runs for the modified pixel, with a scatter plot of average channel
standard deviation from the mean for all six runs versus the RMS error of the mean estimate with
respect to the mean ELM estimate. The modified pixel was a truck in Run 07, and changed to
mowed grass in all subsequent Runs. For Run 07, a similar mowed grass pixel is plotted for
comparison.
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that may have changed, since the grass is not uniform and has a mottled appearance. Therefore

one would expect Spatial SPIRE to do better. The resolution panel also can be considered a

changed, or modified pixel in the images collected at higher altitude, because the panel then was

so small that the best pixel selected was likely not pure. The high variance of the emissivity

panels for all algorithms may have been caused by the fact that they were not initially cleaned

upon deployment, but were cleaned after the thunderstorm on 25 June 1997.

We now summarize the salient performance differences between the Spatial Case 4,

Spectral Case D, and Combined Case IV SPIRE algorithms:

" Spectral SPIRE works the best on unmodified pixels, and poorly on modified pixels.

" Spatial SPIRE works the best on modified higher reflectivity pixels, and on modified

low reflectivity pixels if there is adequate SNR

* Combined SPIRE works almost as well as Spatial on modified higher reflectivity

pixels, and better than Spatial on modified low reflectivity pixels under low SNR

conditions.

7.4 Use of SPIRE in an Example Classification Application

Many classification applications involve a human analyst who studies a hyperspectral

image and identifies known or interesting pixels in the image. These pixels are then used as

training samples to train a classifier algorithm that can be used to classify other pixels in the

image. Such supervised classifiers (Schowengerdt, 1997) are often applied to a subset of

Principal Components after a PCA has been performed, to limit the dimensionality of the

problem. Figure 7.4 depicts the logical flow of such a supervised classification process done in

a PC subset. This figure is similar to Figure 2.3, with the main difference being that the
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Figure 7.4. Supervised classification processing in a PC subset. A principal components
analysis is performed on the original image cube. A subset of the lowest PCs is selected which
contain the significant degrees offreedom in the data. A human analyst then identifies training
pixels for the material classes to be identified. Next, a classifier algorithm is trained using the
training pixels from the PC subset. The classifier is then applied to the rest of the pixels in the
PC subset cube and the thematic map generated.

classification is done in just the low PCs (with highest variance) which contain the significant

degrees of freedom present in the data.

As discussed in Chapter 2, classification can be done using the radiance spectra directly

from the image i without estimating reflectance. Classifying within the same radiance image that

the training pixels were drawn from suffers if the illumination noises vary within the image, and

applying the classifier to other images suffers if illumination conditions change between images.

Both of these problems can be solved by estimating reflectance and then training and classifying

in reflectance space instead. By removing the in-scene and scene-to-scene illumination

variations, these noises no longer impede the classifier.
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(a) (b) (c)

Figure 7.5. Breakdown of supervised classification within a radiance image cube. A simulated

hyperspectral radiance cube (a) was generated with a multiplicative noise m that varied

horizontally as a ramp across the image and a uniform additive noise a. A minimum distance
classifier was trained on 15 pixel types in the radiance image and then applied, with the results
in (b). We see in (b) that the varying multiplicative noise confused the classifier. In (c), the
radiance image has been processed using the Spatial SPIRE Case 4 algorithm and the training
and classification redone in the estimated reflectance cube. By removing the spatially varying
illumination noise, classification performance was improved.

Figure 7.5 illustrates how classification can break down in a single radiance image if the

illumination noise m varies across the scene. A simulated hyperspectral reflectance image was

multiplied by a horizontal ramp to simulate a spatially varying multiplicative noise, and then a

spatially uniform additive noise vector was added to each pixel. A single channel image is

shown in Figure 7.5(a) where the gradient in illumination is apparent from left to right. ENVI's

minimum distance classifier (ENVI User's Guide, 1997) was then trained on 15 pixel classes and

applied to the image, with the classification results shown Figure 7.5(b). We see that the

classification performance is poor due to the spatially varying illumination. In Figure 7.5(c), we

have processed the simulated radiance cube using the Spatial SPIRE Case 4 algorithm, retrained

the classifier, and reapplied it. We see that by using SPIRE to estimate reflectance, the varying

illumination noise has been eliminated and classifier performance has been greatly improved.

To demonstrate a similar improvement in classification across multiple images, a series
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of nine classification experiments were performed on the six test image cubes processed in the

previous chapters (Runs 06-31). The nine experiments consisted of classifying in the nine types

of cubes listed in Table 7.1.

Image cube type 1 is the original radiance cube. Types 2 and 3 are the ELM and

ATREM reflectance estimates. Types 4, 5, and 6 are the reflectance estimates from Spatial,

Spectral, and Combined SPIRE algorithms. Type 7 is the prior reflectance generated from Run

07 ELM reflectance estimates that was used in the SPIRE processing for types 4-6. These prior

cubes were included mainly as a reference and should all experience excellent classification

results. Type 8 is the result of a "Selective" SPIRE technique that chooses between different

SPIRE algorithm outputs to optimize classification performance which is described in Section

7.4.1. Type 9 is the result of Spatial SPIRE processing without a prior reflectance to generate

"pseudo" reflectance from a pseudo prior reflectance which is described in Section 7.4.2.

Type Description
1 Original i radiance cubes
2 ELM estimated reflectance cubes
3 ATREM estimated reflectance cubes
4 Spatial SPIRE estimated reflectance cubes
5 Spectral SPIRE estimated reflectance cubes
6 Combined SPIRE estimated reflectance cubes
7 Run 07 ELM derived prior reflectance cubes used in 3)-5)
8 Reflectance cubes created using the Selective SPIRE technique
9 Case 2 Spatial SPIRE estimated reflectance cubes generated using a pseudo prior

reflectance

Table 7.1. Image cube types tested in classification experiments.

7.4.1 Selective SPIRE Technique For Classification Applications

Thematic maps output by a classifier are used by analysts to interpret the meaning and

impact of changes in an image. Therefore, analysts need both the modified and unmodified
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pixels classified properly to allow proper interpretation of the results. An image that shows only

the modified pixels and their locations does not allow the analyst to properly relate the changes

to the rest of the image. We will now develop a technique that selects between the different

SPIRE algorithm's reflectance estimates in a way that optimizes the classification performance.

The first step is to chose a technique for detecting changes. Any change detection must

be done by comparing one of the SPIRE reflectance estimates against the prior reflectance.

While Spectral SPIRE will have very low differences between its estimates and the prior on

unmodified pixels, it will also tend to have small differences at the modified pixels since much

of the prior information ends up in the reflectance estimates. This is the cause of Spectral

SPIRE's poor performance on modified pixels and makes it less suitable as a change detector

than Spatial or Combined SPIRE. In the absence of low SNR conditions and restrictions on

computational cost, Spatial SPIRE is the best choice for use in change detection since its good

performance on both modified and unmodified pixels lets changes stand out. If low SNR

conditions are present, then Combined SPIRE will have better performance overall than Spatial.

If computational costs are an issue, then Combined SPIRE is also the correct choice, since it will

have almost as good performance as Spatial but at far less cost.

Once we have a technique for detecting and estimating reflectance changes, then these

results can be combined with either the prior reflectance or Spectral SPIRE reflectance estimates

for the unmodified pixels, and then classification run on the resulting cube. One could argue that

if a pixel is unmodified, then one should simply use the prior reflectance for such a pixel. There

are, however, reasons to use the Spectral SPIRE reflectance estimate instead.

Assume, for example, that we use a vector distance threshold for detecting changes, that

allows for some amount of noise to be present without generating a false alarm. With such a
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threshold, there will be some pixels with small changes that will slip through and be labeled as

unmodified. If we simply use the prior reflectance, then these changes will be completely lost.

If we use the Spectral SPIRE result, only the part of the reflectance change that ends up in the

log m noise PCs will be lost. As we saw in Figure 5.9, significant amounts of signal from a

change in reflectance still remains in the higher, non-log m PCs. A classifier could be trained to

identify pixels that experience such changes based on the information in the higher PCs.

In the absence of low SNR conditions, Spatial SPIRE has the best classification

performance on modified, or changed, pixels while Spectral SPIRE performs the best on

unmodified pixels. However, if computational costs are an issue, then Combined SPIRE has

nearly the same performance as Spatial, with much lower computational costs. When low SNR

conditions exist, as they do in the test data set used in this thesis, Combined SPIRE has the best

classification performance on modified, low reflectivity pixels.

Therefore, our Selective SPIRE strategy is to use Spatial or Combined SPIRE to detect

changes, then use Spectral SPIRE reflectance estimates on unmodified pixels and Spatial or

Combined SPIRE reflectance estimates for modified pixels. The choice between Spatial and

Combined will depend on the whether or not Spatial SPIRE is hampered by low SNR conditions

and the importance of computational costs.

Figure 7.6 depicts the processing block diagram for the Selective SPIRE technique. Due

to the presence of low SNR conditions in our data set, we have chosen to use Combined SPIRE

for both change detection and reflectance estimation of modified pixels. Use of Combined

SPIRE also keeps the Selective SPIRE technique computationally efficient. Combined SPIRE is

first run on the image to generate a reflectance estimate which is used to identify modified

260



Prior Reflectance
Image

r,

Radiance
Image

i

re
Run A

S Combined -- ,
SPIRE

D
Combined

SPIRE d
Reflectance

Estimate

If d> t then
select Combined

Ifd < t then
select Spectral

Selective SPIRE
Reflectance

Estimate
A

sel

Figure 7.6. Processing block diagram for Selective SPIRE technique. Combined SPIRE is first
run on the image to generate a reflectance estimate which is used to identify modified pixels.
The identification is done using a distance calculation which is the magnitude of the difference
between the estimated pixel reflectance vector and the prior reflectance vector for each pixel.
The distance at each pixel is then used to select between Combined and Spectral reflectance
estimates, where modified pixels with distances above the threshold use the Combined SPIRE
estimates, and unmodified pixels use the Spectral SPIRE estimate. For high SNR conditions and
when computational costs are not an issue, Spatial SPIRE can be substituted for Combined.

pixels. The identification is done using a distance calculation which is the magnitude of the

difference between the estimated pixel reflectance vector and the prior reflectance vector for

each pixel. For two reflectance images r, and r2 , the distance d[n., ny ] between the pixel

spectra r, [n , n, , n, ] and r2[n , ny,, n2 ] is defined as:
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reflectance estimates, where modified pixels with a distance above the threshold use the

Combined SPIRE estimates, and unmodified pixels use the Spectral SPIRE estimate.

The selective SPIRE technique was run on all six test data cubes, using a threshold of 1.0,

which was selected after analyzing the distances between the Combined SPIRE and ELM

reflectance estimates for the cubes, and using knowledge of where changes had actually occurred

in the images, such as the truck moving. The optimum technique for setting such a threshold

was not explored and is left as an area for further work. The resulting Selective SPIRE

reflectance estimates were used in the classification experiments.

7.4.2 Classification with SPIRE Pseudo Reflectance

Spatial SPIRE algorithms replace the low spatial frequency reflectance information in an

estimated reflectance image with that from the prior reflectance. This causes no problems so

long as our assumption that any changes since the prior have been at higher frequencies is not

violated. However, if there are errors or differences in these prior low spatial frequency

components, then these errors are introduced into the new estimated reflectance. If many images

are processed with this same prior, then the same low frequency errors are introduced into all of

the images.

One can take advantage of this behavior to effectively use Spatial SPIRE algorithms

without prior reflectance information for certain applications. If we select a fairly arbitrary prior
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reflectance, which we will call a pseudo prior, and process images with it, then the output of the

SPIRE algorithm will be a reflectance estimate that has the same incorrect low spatial frequency

content as the pseudo prior. We will refer to such reflectance estimates as pseudo reflectance.

One example of a pseudo prior would be to simply scale a prior radiance image using its

maximum radiance so that all of the pixel values fall between zero and some number less than or

equal to one. This pseudo prior can then be used as the prior reflectance when running SPIRE on

subsequent images. The reflectance estimates for these later images will be incorrect in an

absolute sense, but all images processed using the same pseudo prior will have the same

systematic errors. The resulting pseudo-reflectance image cubes can then be used for performing

change detection, since the errors introduced by using the pseudo prior would be the same in all

of them. More importantly, any classifier trained on one of the image cubes can then be applied

to all other image cubes that were processed using the same pseudo prior, allowing successful

application of the classifier across images in which illumination conditions have changed, just as

with SPIRE results using a real prior.

Figure 7.7 depicts the processing flow of such a cross-image classification using SPIRE

with a pseudo prior reflectance. The first radiance image is scaled so that all of its pixel values

are between zero and one. This pseudo prior is then used to process the first image with a Spatial

SPIRE algorithm to generate a pseudo reflectance image. A supervised classifier is then trained

using selected pixels from the pseudo reflectance generated from the first image. A second

radiance image collected under different illumination conditions is then processed with Spatial

SPIRE using the same pseudo prior. The resulting second pseudo reflectance image can then be

successfully classified using the classifier trained from the first image. The first pseudo
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Figure 7.7. Cross-image classification using SPIRE with a pseudo prior reflectance. The first
radiance image is scaled so that all of its pixel values are between zero and one. This pseudo
prior is then used to process the first image with a Spatial SPIRE algorithm to generate a pseudo
reflectance image. A supervised classifier is then trained using selected pixels from the pseudo
reflectance from the first image. A second radiance image collected under different illumination
conditions is then processed with Spatial SPIRE using the same pseudo prior. The resulting
second pseudo reflectance image can then be successfully classified using the classifier trained
from the first image. The first pseudo reflectance image can also be successfully classified, even
if the illumination noise varies across the image.

reflectance image can also be successfully classified, even if the illumination noise varies across

the image. This pseudo reflectance SPIRE processing was applied to all six test data cubes,

using the Spatial Case 2 algorithm, to generate the pseudo reflectance cubes used in the

classification experiments.

Currently, tests of using a pseudo prior have been limited to Spatial SPIRE algorithms.

Since the PC rotations used by Spectral and Combined SPIRE algorithms are defined using

ensembles of m and a vectors independently of prior reflectance, it is expected that the use of

pseudo priors will work with Spectral and Combined SPIRE algorithms, and Selective SPIRE as

well. Confirmation of this is left as a suggestion for further work.
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7.4.3 Classification Experiment Results

For each type of image cube, a PCA was performed on the cube for Run 07 and the

resulting PC rotation applied to the other five cubes. Next, new cubes were generated from each

PC cube containing only PCs 1-20 from each cube, since PCs 20-73 contained mostly noise.

Training pixels were then collected from the Run 07 cube that corresponded to the 19 pixel types

studied in Chapters 3, 5, and 6. For each pixel type, or class, only a single training pixel was

used. ENVI's minimum distance classifier (ENVI User's Guide, 1997) was then trained using the

19 pixel classes and applied to all six test image cubes of each type. Many other classifiers exist,

including ones that use ensembles of training pixel to capture natural variations within each

class, but a thorough exploration of how they all perform with the different reflectance estimates

is beyond the scope of this thesis.

Figure 7.8 plots the PC spectra of the 19 pixels used to train the ELM classifier with the

legend depicting the colors assigned to each pixel class. For black and white copies of this

thesis, these colors will appear as shades of gray, but the resulting thematic maps will still show

qualitative relative performance. For color copies, we must note that a limitation in the ENVI

software only supported 17 colors, so that the white and red colors are reused. White is assigned

to both the 64 percent and resolution panels, while red is assigned to both the 4 percent panel and

the parking lot.

Figure 7.9 shows the classification results for all nine image variants of the Run 07

image cube. The results are depicted as thematic maps which display the color from Figure 7.8

of the class to which each pixel was assigned by the classifier. Since these cubes were

themselves used to train the nine instances of the classifier, classification performance is very
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Figure 7.8. Spectra used to train minimum distance classfler for Empirical Line Method (ELM)
reflectance results. The material spectra are in Principal Components space as defined by
Principal Components analysis of the ELM reflectance estimates for the Run 07 reflectance
cube. Note that the colors of white (64 percent and resolution panels) and red (4 percent panel
and parking lot) were each assigned to two material classes due to a finite set of colors
available. These same material-to-color assignment were also used for the classification tests of
ATREM and SPIRE reflectance estimates.

good in all of them. The results for classifying directly in the radiance image cube shown in

Figure 7.9(a) shows slightly poorer classification results than the rest, with some of the lower left

mowed grass misclassified, and more of the road misclassified than the others. Note that in all of

the different types of cubes, mixed pixels (such as those at the edges of panels) will tend to be

misclassified, since the classifier was not trained on them.

Figures 7.10-7.14 depict classification results from applying the Run 07 trained

classifiers to the other five Runs (Runs 13, 26, 06, 22, and 31). The results shown in Figures

7.10 (Run 13) and 7.11 (Run 26) are very similar. Both of these runs were collected on the same
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Radiance (a) Run 07 Derived Prior (b)

Spatial SPIRE (d) Spectral SPIRE (e) Combined SPIRE (f)

ATREM (g) ELM (h) Selective SPIRE (i)

Figure 7.9. Classification results for the Run 07 PC subset image cubes. In each of the nine
types of image cubes tested, training pixels were selected from the Run 07 image cube for 19
material classes. A minimum distance classifier was then trained and applied to the rest of the
Run 07 image cube. We see that classification performance was good for all nine types of cubes,
with the Radiance cube (a) showing slightly poorer results than the rest.
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Run 07 Derived Prior (b)

Spatial SPIRE (d) Spectral SPIRE (e) Combined SPIRE ()

ATREM (g) ELM (h) Selective SPIRE (i)

Figure 7.10. Classification results for the Run 13 PC subset image cubes. In each of the nine
types of image cubes tested, the minimum distance classifier trained on the Run 07 image cube
was to the Run 13 PC subset image cube. Classification performance was good for all nine types
of cubes, since the illumination conditions for Run 13 were very similar to those of Run 07. Note
that the Run 07 prior image in (b) has the truck parked at the edge of the mowed grass to the left
of the 2 percent panel. The truck has moved, leaving grass at this location in Run 13. Spectral
SPIRE (e) does not correctly classify this area as mowed grass.
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Radiance (a) Run 07 Derived Prior (b)

Spatial SPIRE (d) Spectral SPIRE (e) Combined SPIRE (f)

ATREM (g) ELM (h) Selective SPIRE (i)

Figure 7.11. Classification results for the Run 26 PC subset image cubes. In each of the nine
types of image cubes tested, the minimum distance classifier trained on the Run 07 image cube
was applied to the Run 26 PC subset image cube. Classification performance was good for all
nine types of cubes and similar to those for Run 13, since the illumination conditions for Run 26
were very similar to those of Run 07 and Run 13.
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Run 07 Derived Prior (b)

Spatial SPIRE (d) Spectral SPIRE (e) Combined SPIRE (1)

ATREM (g) ELM (h) Selective SPIRE (i)

Figure 7.12. Classification results for the Run 06 PC subset image cubes. In each of the nine
types of image cubes tested, the minimum distance classifier trained on the Run 07 image cube
was applied to the Run 06 PC subset image cube. Run 06 was collected on a different day than
Run 07. Classification performance was poor in both the Radiance (a) and ATREM reflectance
(g) cubes. The Selective SPIRE (i) results are the best overall.
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Run 07 Derived Prior (b)

Spatial SPIRE (d) Spectral SPIRE (e) Combined SPIRE ()

ATREM (g) ELM (h) Selective SPIRE (i)

Figure 7.13. Classification results for the Run 22 PC subset image cubes. In each of the nine
types of image cubes tested, the minimum distance classifier trained on the Run 07 image cube

was applied to the Run 22 PC subset image cube. Run 22 was collected on a different day than

Run 07. Classification performance was poor in both the Radiance (a) and ATREM reflectance

(g) cubes. The Selective SPIRE (i) results are the best overall.
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Run 07 Derived Prior (b)

Spatial SPIRE (d) Spectral SPIRE (e) Combined SPIRE (1)

ATREM (g) ELM (h) Selective SPIRE (i)

Figure 7.14. Classification results for the Run 31 PC subset image cubes. In each of the nine
types of image cubes tested, the minimum distance classifier trained on the Run 07 image cube
was applied to the Run 31 PC subset image cube. Run 31 was collected on a different day than
Run 07. Classification performance was poor in both the Radiance (a) and ATREM reflectance
(g) cubes. The Selective SPIRE (i) results are the best overall.
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day as Run 07, under very similar illumination conditions. This allowed unmodified pixels to be

classified well in all of the cubes, again with slightly poorer performance in the Radiance (a)

cubes. This performance difference is due to the fact that the shape of the solar spectrum in the

radiance cubes amplifies shorter wavelengths more than longer ones. Because of this, small

differences between classes in the longer wavelengths contribute less to the distance calculation

used by the classifier. In fact, the four classes on which the Radiance classifier has difficulty are

grass, mowed grass, road, and parking lot which have their main inter-class differences at longer

wavelengths. For the purposes of this discussion, we will refer to the failure of the Radiance

classifier to correctly classify the road, as exemplified in Figure 7.11(a), as the "Road" failure.

In the Run 07 derived prior classification results of Figures 7.10(b) and 7.11(b), we can

see that the truck was parked at the left edge of the mowed grass next to the 2 and 4 percent

panels. In both Runs 13 and 26, the truck has been moved closer to the panels. The newly

exposed mowed grass pixels that were under the truck in Run 07 are now modified pixels in

subsequent runs. In Figures 7.10 and 7.11, we see that all of the other classifiers except for the

Spectral SPIRE (e), correctly identified these pixels as grass. This is an excellent example of the

impact of Spectral SPIRE's poor performance on modified pixels can have on downstream

processing. In comparison, Pseudo Prior SPIRE (c), Spatial SPIRE (d), Combined SPIRE (f),

ATREM (g), ELM (h), and Selective SPIRE (i) all performed well on these modified pixels. For

the purposes of this discussion we will refer to the failure of the Spectral SPIRE classifier to

correctly classify modified pixels as the "Change" failure.

In Figures 7.12-7.14 are shown the classification results for Runs 06, 22, and 31, all of

which were collected on different days than Run 07, with different illumination conditions. Note

the shadows cast by the truck (and a trailer) in Figures 7.13 and 7.14 at the left edge of the
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mowed grass due to very low solar angles. What is striking about these three figures is the

extremely poor classification performance on the Radiance (a) and ATREM (b) cubes. This is

due to the cloud and haze induced illumination changes ignored when using the radiance images

and not properly handled by ATREM. We will refer to this failure as the "Cloud" failure.

In Figures 7.12-7.14 we note that misclassification of grass and mowed grass occurred in

Pseudo Prior SPIRE (c), Spatial SPIRE (d), Combined SPIRE (e) and ELM (h). These two

classes are very close to each other, with the main differences in the longer wavelengths. Any

Spatial SPIRE low SNR errors or other noise in these wavelengths (where SNR tends to be low)

will tend to cause such misclassifications. Note that both Spectral SPIRE (e) and Selective

SPIRE (i) do not suffer from this failure (nor does Run 07 Derived Prior (b), which should have

excellent classification results since it is the same image merely rotated and shifted for each run).

We will refer to this failure as the "Grass" failure.

Run 22 was the day of lowest SNR, causing problems for Spatial SPIRE and introducing

larger noise errors in the longer wavelength channels. Consistent with our conclusions from

Chapter 3, the Spatial SPIRE classification results in Figure 7.13(d) suffer the most under these

conditions, misclassifying several panels and much of the mowed grass as grass. This is less of a

problem in Figures 7.12(b) and 7.14(b), though the 2 percent panel is misclassified as a 4 percent

panel. Similarly, the cloud shadows are classified as grass, though they are closer to the 2

percent panel in reflectivity (and should be misclassified as such). We will refer to such low-

SNR induced failure as "SNR" failures.

Spectral SPIRE (e) and Selective SPIRE (i) consistently do the best on unmodified pixels

in all the runs, while Spectral misclassifies modified pixels such as the grass that had been under

the truck in Run 07. It is interesting to note that Spatial SPIRE (d) and Combined SPIRE (f)
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perform better than ELM (h) in Figures 7.12 and 7.14, even though all three suffer from Grass

failures. This is due to the fact that replacing the DC reflectance component with that from the

prior eliminates the random variation between images of this component which is not removed

by ELM. These variations in the DC component can have several sources, including sensor

noise, errors in the ground truth spectra, and BRDF effects. Since the DC component has a large

effect on distance measurements, minimum distance classification performance is affected. So

for classification, SPIRE tends to not only do better than physics-based approaches such as

ATREM, but surprisingly, it also does better than a ground truth based approach such as ELM.

Whether or not SPIRE's superior performance over ELM will extend to more sophisticated

classifiers is an area for further work.

The selective SPIRE technique has the best and most consistent classification results of

all of the techniques tested. By combining Combined SPIRE's performance on modified pixels

and Spectral SPIRE's performance on unmodified pixels, we achieved a higher performance than

any of the techniques alone. We note in Figures 7.10(i)-7.14(i) that there are some red pixels

that show up in every Selective SPIRE thematic map just to the left of the 4 percent pixel. These

are mixed pixels that in the prior were mostly mowed grass with some of the truck's

spectroradiometer boom in them. They are, therefore pixels with a small change in them, but the

change was below the Selective SPIRE change detection threshold, as discussed in Section 7.4.1.

While no longer mixed in the spatial sense of having two different materials within the same

pixel, they are now mixed due to the Spectral SPIRE PC processing. Like all mixed pixels, they

tend to be misclassified. An area of suggested further work would be to train a classifier to

correctly identify them, or to develop a change detector to detect them as changed and use the

Combined SPIRE results estimates in place of Spectral's.
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We also note the similarity between Pseudo Prior SPIRE (c) and Combined SPIRE (f)

results in Figures 7.9.7.14. The Pseudo Prior SPIRE results were generated with the Spatial

SPIRE Case 2 algorithm, which is not quite as susceptible to the low SNR as the Spatial SPIRE

Case 4 algorithm used to generate the Spatial SPIRE (d) results. Pseudo Prior SPIRE (c)

performance did, however, suffer in Run 22 of Figure 7.13, where several panels also had poor

classification performance. However, on the good SNR runs, classification performance was

quite good. In fact, the classification performance was identical to running the Spatial Case 2

algorithm with the real priors of Figures 7.9(b)-7.14(b), showing that the use of a pseudo prior

has no effect on change detection or classification results.

Table 7.2 is a failure elimination table for the eight of the nine classifiers discussed in this

section. The classifier used for the Run 07 Derived Prior cubes is not included since it is not a

useful classifier and was only included for comparison purposes. Solid circles indicate a full

failure while open circles indicate a partial failure. The Radiance classifier exhibited the worst

Road failure while ELM and Spatial SPIRE exhibited partial ones. Spectral SPIRE fails on

modified, or changed pixels, while ELM, Spatial, Combined, and Pseudo Prior SPIRE all exhibit

Grass failures. Radiance and ATREM suffer from fatal Cloud failures that ruin the classification

results over the whole image. Spatial SPIRE also suffers from the low SNR induced SNR

failures. Selective SPIRE is the only classifier that avoids all of these failures.

Failure Radiance ELM ATREM Spatial Spectral Combined Selective Pseudo Prior
SPIRE SPIRE SPIRE SPIRE SPIRE

Road 0 0
Change _

Grass 0 0 0

Cloud _ __

SNR

Table 7.2. Failure elimination table for classifier performance.
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Figure 7.15. Relative performance of reflectance estimators. This qualitative plot assumes
operational conditions with sensor noise, prior noise, registration errors, and low SNR
conditions present. Also, overhead clouds may be present, and no calibrated panels are in the
scenes, eliminating ELM as an option. ATREM performs poorly when clouds are present, and
Spatial SPIRE performs poorly on low reflectance materials due to low SNR.

These results confirm the individual SPIRE performance conclusions reached in Chapters

3, 5, and 6 reviewed and summarized in Section 7.3. In addition, the consistent performance of

the Selective SPIRE technique indicates that it is the best choice for classification applications.

For applications where Pseudo Prior SPIRE is appropriate, classification and change detection

can be done without relying on ELM or ATREM to generate a suitable prior reflectance.

Finally, Figure 7.15 qualitatively plots the performance of each of the reflectance

estimation algorithms investigated in this thesis on both modified and unmodified pixels. This
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Figure 7.16. Expected relative performance of reflectance estimators under moderately high
SNR conditions. Assumptions for this plot are the same as for Figure 7.15 except that
moderately high SNR is present in all channels. The higher SNR conditions lets Spatial SPIRE
perform better than Combined SPIRE on modified pixels. Selective SPIRE would therefore use
Spatial SPIRE estimates for modified pixels.

plot assumes real world conditions where sensor noise, prior noise, registration errors, and low

SNR conditions are present, based on our experience with the HYDICE test data set used in this

thesis. We also assume that we are dealing with an operational airborne remotes sensing

scenario, in which some scenes will have overcast skies and calibrated test panels are not

available. This last condition means that ELM is not an option so it is not included in the plot.

In Figure 7.15 Selective SPIRE (using Combined SPIRE) is plotted as the best for both

modified and unmodified pixels, with Combined SPIRE second overall. Spatial SPIRE works

278



well on higher reflectivity materials, but poorly on lower reflectivity ones because of SNR

problems. Spectral SPIRE only works well on unmodified pixels and ATREM exhibits poor

performance on all pixels if there is overhead clouds or haze, but can exhibit good performance

on clear days. Under certain conditions the relative positions in Figure 7.15 can change. For

example, the absence of low-SNR conditions would place Spatial SPIRE slightly better than

Combined for modified pixels and just below Selective SPIRE for unmodified ones. Figure 7.16

shows a similar plot of expected relative performance if moderately high SNR is present in all

channels. Under these conditions, Spatial SPIRE performs better than Combined on modified

pixels so that Spatial SPIRE would be used by Selective SPIRE instead of Combined on

modified pixels.

7.5 SPIRE Algorithm Recommendations for Different Applications and
Conditions

In this section we provide guidance on which SPIRE algorithm to use for different

applications and under different conditions. The Spectral SPIRE algorithms are not

recommended due to their poor performance on modified pixels, except when used in the

Selective SPIRE technique.

For a hyperspectral sensor, Table 7.2 supports the recommendation of using Selective

SPIRE to generate the best possible reflectance estimates for all pixels. This is true for any

application requiring estimates of reflectance, including classification and change detection. The

Selective SPIRE technique can be used with either Spatial or Combined SPIRE, depending on

the presence of low SNR conditions and the importance of computational cost. We recommend

the use of the Selective SPIRE technique utilizing Combined SPIRE for change detection and

estimation of modified pixel reflectance, with Spectral SPIRE estimates for unmodified pixels.

279



This algorithm is computationally efficient and robust under noise and low SNR. These

recommendations are summarized in Table 7.3. For hyperspectral change detection or

classification applications where no prior information is available, the use of a pseudo prior with

SPIRE is recommended.

Computational Low SNR Change Detection Modified Pixel Unmodified Pixel
Costs Importance Conditions Reflectance Reflectance

High N/A Combined Combined Spectral
N/A Present Combined Combined Spectral

Medium Absent Combined Spatial Spectral
Low Absent Spatial Spatial Spectral

Table 7.3. Recommended SPIRE algorithms to use in Selective SPIRE depending on
computational cost and SNR.

For single channel and multispectral applications, only Spatial SPIRE algorithms are

appropriate, since there is not enough spectral information to utilize the PC techniques of

Spectral and Combined SPIRE. Computational cost is less of an issue in such applications, since

the number of channel images to be processed is small. However, low SNR channels should be

avoided in the design of such sensors if Spatial SPIRE algorithms are to be used with the data.

For classification applications under the stressing conditions of no available prior

reflectance information, no calibrated panels in the scene, and either overhead clouds or

multispectral data (so physics-based techniques cannot be used), only SPIRE run with a pseudo

prior reflectance will allow successful cross-image classification.

When using only Spatial or Combined SPIRE techniques, there are several algorithms

from which to choose based on the spatial variability of the multiplicative m and additive a noise

terms. Table 7.4 lists various applications and conditions, and which Spatial or Combined

algorithms are recommended based solely on the spatial variability of m and a. Under the
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Application Conditions m a Recommended Comments
Algorithm

Remote Sensing Small scene size Uniform Uniform Spatial Case 2 Spatial Cases 4, 5,
relative to atmosphere and 6 will work

too
Remote Sensing Large scene size Varying Uniform Spatial Case 4 Spatial Case 6

relative to atmosphere Combined Case IV will work too
Remote sensing Significant spatial Varying Uniform Spatial Case 6 Combined Case

variability in upscatter VI could be
developed

Manufacturing or Controlled lighting Uniform None Spatial Case 1 Typically 1-3
inspection spectral channels
Mobile robotics Unknown lighting Varying None Spatial Case 3 Shadows often

Combined Case III present, could be
Spectral Case D handled by
with library Spectral Case D
matching

Table 7.4. Recommended type of Spatial and Combined SPIRE algorithm based on
spatial variability of m and a.

Prior Spatial Spectral Combined Source
Information SPIRE SPIRE SPIRE

Prior Reflectance rp rp rp ELM, ATREM,
Simulation, Pseudo Prior

Spatial variability of a a- Oa Scene Size, Application

Spatial variability of log m O - go,, Scene Size, Application

PC cutoff for a - pcco-a pcco-a Empirical ensemble {a}
PC cutoff for log m - pcco-logm pcco-.ogm Empirical ensemble {m}
PC rotation into a-PCs (Da _Da Empirical ensemble {a}

PC rotation into log m-PCs bDiogm (Dio m Empirical ensemble {m}

Table 7.5. Prior Information required by SPIRE algorithms.

Conditions heading, the size of the scene "relative to the atmosphere" is defined as whether or

not the size of the scene is small or large relative to the atmosphere induced spatial variation of m

and a. If the scene is small, then we can assume that m and a are spatially uniform. If the scene

is large, then we should assume that m is spatially varying. In most airborne or spaceborne
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remote sensing applications, a can be assumed to be spatially uniform, though some scenes may

have varying upscatter due to smoke or transitions from rural to urban areas in the scene.

Applications where there are cloud or other terrain shadows are not addressed. See Chapter 8 for

suggestions of how SPIRE algorithms may be extended to handle such applications. Finally,

Table 7.5 lists the types of prior information required by each type of SPIRE algorithm.

7.6 Summary and Conclusions

In this chapter we reviewed the overall taxonomy of SPIRE algorithms that were

developed as part of this thesis work and reviewed the relative performance of Spatial, Spectral,

and Combined SPIRE algorithms. We then developed the Selective SPIRE technique that

combines the good performance of Spatial and Combined SPIRE on modified pixels with

Spectral SPIRE's good performance on unmodified pixels, while maintaining computational

efficiency. We also explored using a pseudo prior as input to Spatial SPIRE when no prior

reflectance is available, to generate pseudo reflectances that can be used in change detection and

classification applications.

The minimum distance classification experiments demonstrated that reflectance estimates

from SPIRE algorithms allow cross-image classification in situations where ATREM reflectance

estimates do not. This means that SPIRE algorithms allow classification to be done under

operational conditions where both physics-based (overhead clouds) and ELM (no calibrated test

panels) fail. Use of a pseudo-prior with SPIRE algorithms further extends the operational use of

SPIRE into applications and conditions where no prior reflectance information is available. This

is especially important for single channel and multispectral sensor systems where physics-based

approaches are unable to generate prior reflectance data, and calibrated test panels are not

typically present in the scene.
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Chapter 8

Summary, Conclusions, and Suggestions for Further Work

In this chapter, we summarize the work presented in this thesis, discuss the conclusions

reached, and make suggestions for possible further work.

8.1 Summary

In this thesis we addressed the problem of estimating changes in surface reflectance in

hyperspectral image cubes, under unknown multiplicative and additive illumination noise.

Rather than using the Empirical Line Method or the physics-based approach discussed in

Chapter 2, we assumed the presence of a prior reflectance image cube and ensembles of typical

multiplicative and additive illumination noise vectors, and developed algorithms which estimate

reflectance using this prior information. These algorithms were developed under the additional

assumptions that the illumination effects were band limited to lower spatial frequencies and that

the differences in the surface reflectance from the prior were small in area relative to the scene,

and have defined edges. These new algorithms were named Surface Prior Information

Reflectance Estimation (SPIRE) algorithms.

In Chapter 3, we developed Spatial SPIRE algorithms for six cases defined by the

presence or absence of the additive noise, and by whether or not the noise effects are spatially

uniform or varying. For the multiplicative-noise-only cases, high-pass spatial filtering was used

in log space to remove the illumination effects, followed by restoration of the lost low spatial

frequency reflectance components using the prior reflectance. For cases with both additive and

multiplicative noise, two-step iterative algorithms filter out the additive noise, move to log space,

and then filter out the multiplicative noise, using a mean squared error (MSE) criterion to drive
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the iteration to convergence. For the cases where the additive and multiplicative illumination

noises are uniform across the scene, non-iterative solutions were developed that are very

computationally efficient. With good SNR, Spatial SPIRE algorithms demonstrate very good

performance in estimating the reflectance of both unmodified and modified pixels where local

surface reflectance changes have occurred since the prior was collected. They operate on a

single band basis, so are also applicable to single and multi-channel sensor data. The Spatial

SPIRE Case 4 algorithm tested on the HYDICE test data set has problems estimating the

reflectance of low reflectance materials under low SNR conditions.

In Chapter 4, we analyzed the degrees of freedom in the empirical HYDICE

multiplicative and additive illumination noise ensembles, and compared them to the degrees of

freedom in simulated noise ensembles generated using MODTRAN. We also performed a

similar analysis on the reflectance spectra present in the HYDICE data used in our algorithm

testing. We explored the need for zero-padding each illumination noise ensemble to force the

DC component to be a degree of freedom so that it ends up in a top PC for effective removal.

We also compared this Zero-padded PC technique to the Abutted-PC technique which does not

require illumination ensembles to collect the illumination noise into top PCs. We discussed the

effect of channel center wavelength drift at the edges of water vapor absorption bands on the

principal components analysis and degrees of freedom in the ensembles. We also presented

which spectral channels were dropped from the HYDICE data because of water vapor

absorption, negative radiance values, and channel center wavelength drift.

In Chapter 5, we developed Spectral SPIRE algorithms that use low-pass Principal

Component filters (PCF) to remove the illumination noises, followed by restoration of the lost

high PC reflectance components using the prior reflectance. As in Chapter 3, this was done in
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log space for the case where only multiplicative noise is present. When additive noise is also

present, a two step iterative algorithm similar to that developed for Spatial SPIRE was

developed. Such PCF based spectral SPIRE algorithms require significantly less computation

than their Spatial SPIRE counterparts, since only those top PCs containing the bulk of the noise

need to be processed. This, however, comes at the cost of poor performance in estimating the

reflectance of modified pixels, while exhibiting superior performance in estimating the

reflectance of unmodified pixels. We also briefly discussed an algorithm that uses the abutted-

PC technique and matching against a spectral library to solve a multiplicative-noise-only

problem with large area changes and quickly varying illumination noise.

In Chapter 6, we developed a combined spatial-spectral SPIRE algorithm that takes

advantage of Spectral SPIRE's reduction in computational costs and Spatial SPIRE's ability to

estimate the reflectance of modified pixels. We can view Combined SPIRE algorithms as being

very similar to Spatial SPIRE algorithms, but with a reduction in problem complexity achieved

by spectrally rotating the data so that only a few channel (PC) images need to be spatially

filtered. These Combined SPIRE algorithms have nearly as good performance as Spatial SPIRE

under good SNR conditions on all pixels, and do better than Spatial SPIRE on low reflectance

materials during low SNR conditions. Combined SPIRE algorithms are also almost as

computationally efficient as Spectral SPIRE, making them superior to Spatial SPIRE when low

SNR conditions exist.

In Chapter 7, we reviewed the overall taxonomy of SPIRE algorithms that were

developed as part of this thesis work and the relative performance of the individual Spatial,

Spectral, and Combined algorithms. Based on these results, we developed a Selective SPIRE

technique that combines the superior performance of Combined SPIRE on modified pixels, with
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Spectral SPIRE's superior performance on unmodified pixels. We also explored using a pseudo

prior as input to Spatial SPIRE when no prior reflectance is available, to generate pseudo

reflectances that can be used in change detection and classification applications. We then

performed minimum distance classification experiments on radiance cubes and reflectance

estimated from ELM, ATREM, and the various SPIRE algorithms. All SPIRE algorithms were

found to work better than ATREM with the Selective SPIRE algorithm having the best

classification performance overall. Recommendations were made for which SPIRE algorithm to

use for different applications and conditions.

8.2 Conclusions

8.2.1 Comparison of SPIRE to ELM and Physics Based Approaches

Treating ELM results as ground truth, we found that SPIRE algorithms perform better

than the ATREM physics-based code, especially on days when clouds or haze were present

above the sensor. SPIRE performance was similar to ELM's, without requiring calibrated test

panels in the scene. However, SPIRE algorithms require a prior reflectance image cube in order

to estimate reflectance in the current image. Like ELM, SPIRE algorithms are insensitive to

calibration noise and errors, so that SPIRE algorithms work just as well on uncalibrated sensor

data, while physics-based codes require accurate radiometric calibration for acceptable

performance.

For hyperspectral applications we recommend the use of the Selective SPIRE technique

utilizing Combined SPIRE for change detection and estimation of modified pixel reflectance,

with Spectral SPIRE estimates for unmodified pixels. This algorithm is computationally

efficient and robust under sensor noise, prior noise, misregistration, and low SNR.
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In classification experiments, all SPIRE algorithms performed significantly better than

ATREM. Classification broke down completely in ATREM estimated reflectance image cubes

due to ATREM's poor performance when overhead clouds or haze was present. Combined and

Selective SPIRE performed slightly better than ELM in classifying grass on lower SNR data, due

to SPIRE's ability to reduce noise across images via use of the prior reflectance. For

classification applications under the stressing conditions of no available prior reflectance

information, no calibrated panels in the scene, and either overhead clouds or multispectral data

(so that physics-based techniques are not an option), only SPIRE run with a pseudo prior

reflectance will allow successful cross-image classification. Running the Spatial Case 2

algorithm with a pseudo prior was found to have identical classification performance as running

the Spatial Case 2 algorithm with an ELM based prior.

8.2.2 Comparison of Spatial, Spectral, and Combined SPIRE Algorithms

For hyperspectral data, Spatial SPIRE is computationally expensive, but performs the

best on both modified pixels of moderate to high reflectance materials, and performs better than

Combined SPIRE on moderate to high reflectance pixels. However, Spatial SPIRE has problems

estimating the reflectance of low reflectivity materials in images with low SNR in the longer

wavelength channels.

Spectral SPIRE is computationally very efficient when compared to Spatial SPIRE, and

performs better on unmodified pixels than Spatial SPIRE or Combined SPIRE, because the

reflectance information replaced from the prior reduces the overall noise in the Spectral SPIRE

reflectance estimates. However, for modified pixels, this replacement introduces large

reflectance errors since changes in reflectance and the multiplicative noise are not well separated
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in PC space.

Combined SPIRE performs nearly as well as Spatial SPIRE on both modified and

unmodified pixels, and is far less sensitive to low SNR conditions. Combined SPIRE is also

nearly as computationally efficient as Spectral SPIRE, and performs nearly as well on

unmodified pixels as Spectral SPIRE. These attributes make Combined SPIRE the best

compromise between computational efficiency and performance. However, if high SNR

conditions are present, then Spatial SPIRE will out-perform Combined SPIRE on both modified

and unmodified pixels, at the expense of higher computational costs.

The Selective SPIRE technique combines the superior performance of Combined (or

Spatial) SPIRE on modified pixels with the superior performance of Spectral SPIRE on modified

pixels. This results in the best possible estimates of reflectance.

8.2.3 General Applicability of SPIRE Algorithms

For single-band sensor data only Spatial SPIRE is applicable. For multispectral sensor

data in which there is little or no correlation between channels, Spatial SPIRE is still the logical

choice since the processing and noise reduction from a PCA rotation will be small.

In applications where both m and a are spatially uniform in all channels, the non-iterating

Spatial Case 1 and Case 2 algorithms yield computationally efficient solutions with good

accuracy. However, these could still benefit from being used in the Selective SPIRE technique if

Spectral SPIRE estimates are available.

For practical hyperspectral applications involving change detection, Spectral SPIRE

alone would never be used due to its poor performance on modified pixels. When computational

costs are an issue, the Selective SPIRE algorithm using Combined and Spectral SPIRE

algorithms is typically the best choice. If computational costs are not an issue, and low SNR
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conditions are not present in the data, then a Selective SPIRE algorithm using Spatial instead of

Combined SPIRE algorithms would be the best choice.

8.2.4 Degrees of Freedom of m, a, and r in HYDICE Data

The empirical ensembles of m and a used in this thesis were derived from several

HYDICE data collection campaigns over varied conditions. It was found that there were 2-3

DOF in the additive noise a ensemble and 3-4 in the multiplicative noise m ensemble, both of

which are consistent with MODTRAN simulation results and consideration of the physics

involved. Zero-padded or Abutted Principal Components is required to force the DC of each

ensemble into the lowest PCs so that they could be removed by replacing or filtering as few PCs

as possible.

Channel center frequency drift in the HYDICE sensor causes large changes in response in

those channels near the edges of water absorption bands. This showed up as an additional degree

of freedom in the m and a ensembles data during PC analysis. By eliminating these channels

from the m and a spectra, fewer PCs need to be processed to achieve good performance, since

one PC was associated in each ensemble with the effects of this drift. Future sensor designers

should endeavor to avoid such drift.

8.2.5 Noise Performance

In general, SPIRE algorithms degrade gracefully under increasing levels of sensor and

prior noise. Any adverse effects from sensor noise can typically be overcome through adequate

SNR. In addition, increasingly larger violations of the assumption that the high spatial frequency

content of small area reflectance changes and the low frequency content of the slowly varying

illumination noise do not overlap in frequency space, also induce graceful performance
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degradations.

SPIRE algorithms are insensitive to radiometric calibration noise. This assumes that any

calibration noise is of low spatial frequency within the band limits of the illumination noise, so

that it is filtered out with the illumination noise. This means that once a prior is available, SPIRE

algorithms can be applied directly to uncalibrated sensor data, greatly simplifying operational

data processing. For this to be true for Spectral and Combined SPIRE algorithms, the m and a

spectra must be empirically derived from data the same level (amount of calibration done) of

data that is to be processed by SPIRE, so that the calibration noise is present and placed in the

top PCs to be processed.

8.3 Suggestions for Further Work

8.3.1 Optimal Estimation and Filtering Techniques

We noted in Section 2.5.3 that there are many well established estimation techniques that

rely on the statistical relationship between a measured signal and the desired parameter vector or

random vector to be estimated. Such techniques include Wiener filters (Linear Least-Squares

estimators), Maximum Likelihood estimators, and Bayesian Least Squares estimators. These

techniques could be applied to the problem of estimating the reflectance r based on the radiance

signal i. This requires the generation of a measurement model that statistically characterizes r

and i. Such a measurement model is difficult to generate for the non-linear remote sensing

problem, but could be done through an extensive measurement campaign, simulation, or a

combination of the two. There may be successful strategies that combine the results of such

estimators with SPIRE algorithms to improve performance overall. Other techniques applicable

to non-linear problems such as Neural Networks and Expectation-Maximization (EM) may also
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prove useful.

All three of the multiplicative-noise-only algorithms (Spatial Case 3, Spectral Case C,

and Combined Case III) share the same general form in which the log m noise is first filtered out,

and then the log r lost in this filtering is estimated from prior information and restored. In the

algorithms developed and tested in this thesis, simple linear filters were used to both remove the

noise and to estimate the lost signal from the prior, and a simple addition operation was used to

merge the two. These simple techniques generated good results and demonstrated the utility of

the SPIRE approach. SPIRE algorithms could therefore be improved by using optimal noise

filtering, optimal estimation of lost r, and optimally weighted merging strategies.

Optimal spatial filters could be developed for filtering out illumination noise, including

situations where the illumination noise and reflectance changes have some overlap in the spatial

frequency domain. In PC space where there currently exists significant overlap, optimal PC

filters that weight each PC differently are worth exploring. Statistical estimation techniques such

as those described above for estimating r based on i, could also be used to estimate the lost log r

(lost during the noise filtering) from the prior reflectance. Optimal weighting techniques for

merging the filtered image with the estimated lost log r would be embodied in a combination of

weighting strategies in the noise filtering, lost-log-r estimation, and merge operations.

8.3.2 Spectral Rotation Matrices for Separating Illumination Noise and Changes in
Reflectance

While Zero-padded PC analysis effectively collects the illumination noise into a few low

PCs for removal, it does not exclude changes in reflectance from these PCs. If a spectral

transformation could be developed that more cleanly separates reflectance and illumination

variations, then Spectral and Combined SPIRE would benefit. Since the ZPC analysis was done
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only using the noise vector, strategies that also include likely or possible changes in surface

reflectance may improve the separation. Modified Principal Components Analysis or

Independent Components Analysis may be useful for defining such rotations.

8.3.3 Prior Information Generation and Collection

One of the main foundations of the work in this thesis is the assumption that prior

estimates of reflectance and prior ensembles of noise vectors will be available for use in SPIRE

processing. Given the encouraging results of this thesis, further work could be done into this

area, working on the left side of Figure 2.8.

8.3.4 Atmospheric Spatial Filter Development

Since our HYDICE test image cubes did not contain illumination noises with significant

spatial variability, very simple spatial filters proved effective. For applications and data with

noises that have more spatial variability, work would need to be done to characterize the spatial

frequency content of the illumination variations and design optimum filters to remove them.

8.3.5 Use of Low Spatial Resolution Prior Reflectance Data

Since Spatial and Combined SPIRE algorithms restore only the low spatial frequency

components from the prior reflectance, it may be possible to use prior reflectance information

that is of lower spatial resolution than the image being processed. This could have operational

benefits in that the sensor system used to generate prior information would not need as high

spatial resolution as the operational sensor on whose data we run SPIRE. For example, we could

imagine using a satellite with a hyperspectral sensor with the high spectral resolution needed for

physics-based reflectance estimation, but only the low spatial resolution needed for the SPIRE

prior. The operational sensor could then be a low-altitude multispectral sensor with low spectral
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resolution but high spatial resolution. Since there is often a trade between spatial and spectral

resolution in sensor design, this could result in an optimized system.

8.3.6 Extension of SPIRE to Rapidly Varying Illumination Effects and Large Area
Changes

In this thesis, we concentrated on applications where the spatial variability of the noise

terms was band limited to lower frequencies and in which changes in the surface reflectance

were small in relation to the area of the scene. It is important to note that both the Spectral Case

C and Case D algorithms will work even if the multiplicative noise m is not band limited to

lower frequencies, which is not reflected in the SPIRE taxonomy of Figure 7.1. In addition, their

poor performance on modified pixels can potentially be improved by matching against a prior

spectral library. However, as discussed in Chapter 5, such matching begins to enter the area of

classification of reflectance values which, except for the simple classification example discussed

in Chapter 7, is beyond the scope of this thesis. Further work exploring the large space of

possible classification strategies should consider it as a valid possibility.

While the Spectral Case D algorithm requires that changes in reflectance since the prior

are small with respect to the area of the scene, Case C does not. Therefore, in applications where

there is no additive noise, Case C has the potential of being a general solution algorithm that can

handle arbitrarily varying multiplicative noise such as shadows, and large area reflectance

changes. This, however, requires matching against a spectral library to restore log reflectance

lost in the PC filtering. This approach is applicable to problems in mobile robotics in which

there is no appreciable additive noise, but it was not appropriate for the airborne remote sensing

application explored in this thesis. In addition, this approach could be used in other applications

if the additive noise is removed using some other technique.
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In most practical applications where the illumination noises can be considered to be

arbitrarily spatially varying (have high spatial frequency content), they tend to vary due to

shadows which introduce sharp boundaries in the radiance image. In the regions between these

boundaries the noises will tend to be slowly spatially varying or uniform. This suggests an

approach in which the image is spatially segmented at sharp boundaries and then one of the

Spatial SPIRE algorithms run within the segments. In other words, in an image with large

shadowed and lit areas, one would run Spatial SPIRE independently within each area, and then

combine the results. One may even be able to use the prior reflectance to discriminate between

boundaries in the reflectance from shadow induced boundaries.

8.3.7 Matching Against a Prior Spectral Library

Spectral SPIRE demonstrates poor performance over modified pixels. However,

matching the non-noise PCs against the same PCs of a prior spectral library could improve the

estimates of the changes in reflectance, provided the library contains the new spectra. This is

computationally expensive if the prior spectral library is large, which will be the case if fine

resolution of many permutations of mixed material pixels are required to be in the library.

Further work is required to understand if such an approach is feasible when realistic sized

spectral libraries are employed.

8.3.8 Combined/Spectral SPIRE Testing on Spatially Slowly Varying Illumination Data

Since the HYDICE images used in this thesis for testing contained spatially uniform

multiplicative and additive illumination effects, they did not provide an opportunity to test spatial

filtering beyond mean filtering. Further testing and development of SPIRE algorithm on datasets

containing spatially slowly varying illumination would be a logical next step.
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8.3.9 Classification and SPIRE

Our Chapter 7 classification example leads to many suggestions for further work in using

SPIRE reflectance estimates in classification:

" Classification could be done on just the higher non-log m PCs created by a high-pass PC

filter. This would be equivalent to running Spectral SPIRE, then ignoring the low PC into

which prior information was replaced.

" Develop optimum techniques for setting the threshold in Selective SPIRE based on the

classifier used.

" Test the use of pseudo priors with Spectral, Combined, and Selective SPIRE.

" Research how to handle modified pixels that fall below the distance threshold in Selective

SPIRE and are mislabeled as unmodified. This could be either a more sophisticated change

detection algorithm or a classifier trained to identify them.

8.3.10 Combining SPIRE and Physics Based Algorithms

Since SPIRE algorithms require iteration to eliminate additive noise effects, a fruitful

research area may be to use physics based approaches to only estimate the additive upscatter

effects, and then use a multiplicative-noise-only SPIRE algorithm to remove the multiplicative

noise. In many applications it may be possible to use a look-up table of precomputed additive

noise vectors to choose from based on variables such as season, geography, altitude, and solar

zenith angle.

8.3.11 Miscellaneous Suggestions

In this section we will discuss several varied suggestions for work that represent small

extensions of the SPIRE algorithms developed.
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* Develop Combined Case VI algorithm for spatially varying m and spatially varying a. This

would require building DCT expansions of the multiplicative noise to remove in each

processed PC, similar to the Spatial Case 6 algorithm. The Combined Case V algorithm

would likely be a simplification of the Case VI.

* Develop other possible Selective SPIRE permutations such as choosing between Spatial and

Combined reflectance estimates based on the material reflectivity of the Combined estimates.

With such a strategy, higher reflectivity materials would use the Spatial estimates, while low

reflectivity materials would use the Combined estimates. This would avoid the low-SNR

problems of Spatial SPIRE on low reflectivity materials, while taking advantage of Spatial

SPIRE's superior performance on higher reflectivity materials.
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Appendix A

Multiplicative and Additive Atmospheric Effects In Visible-Near IR
Ground Remote Sensing

In this appendix we give an example of how all the physical effects in a typical remote

sensing scenario can be reduced to a single multiplicative and a single additive effect on the

surface reflectance so that we can use the following image formation model:

i = rm+ a (A.1)

To do this we first derive the image formation equations for a spacebased Visible-Near

IR ground remote sensing application as is done in (Schowendgert, 1997). In this application,

the sensor is carried by a satellite above the atmosphere looking down at the surface of the Earth

as depicted in Figure A. 1(a). The sun is the only illumination source and there is an intervening

atmosphere. In the visible-near IR bands, we can assume that all radiation that reaches the

sensor is due to reflected and scattered solar illumination, and not due to surface thermal

emissions.

There are three main components to the radiation reaching the sensor. The first is the

unscattered, surface-reflected component described by:

L (x, y, 1) = p(x y, A) v (2)r, (A1)E 0 ( cos [O(x, y)] (A.2)
7'.

L, (x, y, A) is caused by the top of the atmosphere solar radiation E" (A) passing through

the atmosphere to the ground, and then being reflected into the field of view of the sensor, as

depicted in Figure A. 1(a). The downward solar path transmittance r ,(A) is a multiplicative
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L. (x,y,2) LSd (x, y, ) L, (x, y, 2)
(a) (b) (c)

Figure A.J. Three radiation components reaching sensor. The first component Lu(xy,A) (a) is
solar radiation that has been reflected by the surface into the sensor. The second component
Lsd(x,y, 2) (b) is the atmospheric downscattered radiation that has been reflected by the surface
into the sensor. The third component Lsp(xy, 2) (c) is the atmospheric upscattered radiation that
has not interacted with the surface but is scattered into the sensor. The first too effects are
multiplicative noise on the surface reflectance signal while the third is additive noise.

effect that describes the fraction of the solar radiation that reaches the surface, where any

reductions are due to atmospheric absorption and scattering. Terrain effects embodied by

cos [O(x, y)] alter the incoming radiation, which we assume is reflected by a Lambertian surface

(1 /;T ) with diffuse spectral reflectance p(x, y, 2). For a non-Lambertian surface, p(x, y, 2)/;r

would be replaced by the BRDF function. The reflected radiation must once again pass through

the atmosphere. The view-path transmittance r, (A) describes the fraction of the reflected

radiation reaching the sensor, with any reductions again due to atmospheric absorption and

scattering.

The second radiation component reaching the sensor is the surface reflected-atmosphere

scattered component:

Lsd(x, y, 2) = F(x, y)p(x, y,2) v (A)Ed (2)
217

(A.3)
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Lsd (x, y, A) is caused by sunlight that is scattered downward (skylight) by the atmosphere

and then reflected by the surface into the sensor field of view as depicted in Figure A. 1(b). The

skylight irradiance Ed (A) at the surface is also assumed to be reflected by a Lambertian surface

with diffuse spectral reflectance p(x,y,A) and experiences reductions on the way to the sensor

as described by the view-path transmittance r, (A). The factor F(x,y) accommodates the

possibility that the sky may not be entirely visible by the surface pixel due to intervening

topography.

The third radiation component reaching the sensor is the path-scattered component:

L,,(x, y, A) (A.4)

L,,(x, y, A) is the radiation at the sensor due to molecular Rayleigh scattering and aerosol

and particulate Mie scattering. Both of these scattering effects scatter light into the sensor's field

of view that has not been directly reflected by the surface, as depicted in Figure A.I(c).

Summing theses three components yields the total upwelling radiance at the sensor:

L, (x, y, 2) = L (x, y, 2) + Ld (X, Y, 2) + LP (x, y, 2)

Which can be expanded using (A.2), (A.3), and (A.4) into:

L,(x, y, A) = p(x, Y, A) (A.6)

±F(x,y) z(A)E (A)
if j

We now define effective multiplicative and additive effects m(x, y, A) and a(x, y, A) as:
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m(xyA) = r,(A)r, (A)E"(A) r (A)Ed(A)m~x y,-)=cos[(x, y)]+±F(x, y)
ii?

Substituting (A. 7)i and (A.8) into (A.6) gives us:

L, (x, y, A) = p(x, y, A)m(x, y, /) + a(x, y, A) (A.9)

Switching to our notation of i being the radiance at the sensor, r the surface reflectance,

and dropping the three dimensional notation we obtain:

i(x, y, A) = r(x, y, 2)m(x, y, A) + a(x, y, A)

i = rm + a
(A.10)

Which has the same form as our desired model in (A. 1).
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Appendix B

Radiance and Prior Reflectance Single Channel Images

This appendix consists of Figures B.1 and B.2 which show single channel images from

the radiance and prior reflectance images used to test SPIRE algorithms in this thesis. Figure B. 1

shows the images from Runs 07, 13, and 26 while Figure B.2 shows them for Runs 06, 22, and

31. All of the images are from the same channel near 0.5 ptm. All of the prior reflectance cubes

were derived from the Run 07 ELM reflectance estimates. Images collected from higher

altitudes have larger pixel sizes and appear less sharp.
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Run 07 Radiance Run 07 Prior Reflectance

Run 13 Radiance Run 13 Prior Reflectance

Run 26 Radiance Run 26 Prior Reflectance

Figure B.1. Radiance and prior reflectance single channel images for Runs 07, 13, and 26 from

the HYDICE test data set used in this thesis. All images are from a channel near 0.5 pm. The

prior reflectance images are all derived from the Run 07 ELM reflectance estimate.
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Run 06 Radiance Run 06 Prior Reflectance

Run 22 Radiance Run 22 Prior Reflectance

Run 31 Radiance Run 31 Prior Reflectance

Figure B.2. Radiance and prior reflectance single channel images for Runs 06, 22, and 31 from
the HYDICE test data set used in this thesis. All images are from a channel near 0.5 pn. The
prior reflectance images are all derived from the Run 07 ELM reflectance estimate.
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Appendix C

Additional Spatial SPIRE Results

This appendix consists of Figure C.1 and Tables C.1 and C.2. Figure C.1 is identical to

Figure 3.8 that shows ELM, ATREM, and Spatial SPIRE reflectance estimates for the 19

example material pixels, except that the reflectance axes have a fixed range between 0 and 1.

The reflectance axes in Figure 3.8 are set to the range appropriate for the data plotted to show the

maximum amount of detail in each individual plot. The fixed range used in Figure C. 1 is better

suited for comparing the results of different pixels. Table C. 1 lists the Spatial SPIRE average

channel standard deviation over the six runs in each band for each algorithm and Table C.2 lists

the same values but as a percentage of the mean estimated reflectance over the six runs.
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Figure C.1 (a) and (b). ELM, A TREM, and Spatial SPIRE spectral reflectance estimates for all
six runs for a single pixel on the 2 percent panel (a) and the 4 percent panel (b). There are six
bands of contiguous channels left after dropping problem channels, defined as Bands 1-6 as
depicted in the upper left plot of ELM 2 percent panel reflectance. Spatial SPIRE's poor
performance at longer wavelengths is due to errors in estimating the additive noise a under low
SNR conditions.
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Figure C.1 (c) and (d). ELM, A T REM, and Spatial SPIR E spectral reflectance estimates for all
six runs for a single pixel on the 8 percent panel (c) and the 16 percent panel (d).
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Figure C.1 (e) and (). ELM, A TREM and Spatial SPIRE spectral reflectance estimates for all
six runs for a single pixel on the 32 percent panel (e) and the 64 percent panel ().
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Figure C.J (g) and (h). ELM, A TREM, and Spatial SPIRE spectral reflectance estimates for all
six runs for a single pixel on the spectral panel (g) and the 15 percent panel (h).
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Figure C.] (i) and (0). ELM, A TREM, and Spatial SPIRE spectral reflectance estimates for all
six runs for a single pixel on the 41 percent panel (i) and the 57 percent panel ().
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Figure C.1 (k) and (1). ELM, A TREM, and Spatial SPIRE spectral reflectance estimates for all
six runs for a single pixel on grass (k) and mowed grass (I).
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Figure C.1 (M) and (n). ELM, A TREM, and Spatial SPIRE spectral reflectance estimates for all
six runs for a single pixel on the road (m) and the parking lot (n).
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Figure C.1 (o) and (p). ELM, ATREM, and Spatial SPIRE spectral reflectance estimates for all
six runs for a single pixel on the building roof (o) and the resolution panel (p).
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Figure C.1 (q) and (r). ELM, ATREM and Spatial SPIRE spectral reflectance estimates for all
six runs for a single pixel on emissivity panel I (q) and emissivity panel 4 (r).
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Figure C.1(s). ELM, A TREM, and Spatial SPIRE spectral reflectance estimates for all six runs
for the modified pixel. The modified pixel was a truck in Run 07, and changed to mowed grass in
all subsequent Runs. For Run 07, a similar mowed grass pixel is plottedfor comparison.
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Pixel Band ELM ATREM Spatial SPIRE
Band 1 0.005 0.029 0.005
Band 2 0.002 0.020 0.005

2% Panel Band 3 0.001 0.019 0.085
Band 4 0.002 0.018 0.080
Band 5 0.002 0.020 0.058
Band 6 0.004 0.023 0.044

Table C.1(a). Spatial SPIRE Spatial SPIRE average channel standard deviation from the mean
over all runs for the 2 percent panel.

Pixel Band ELM ATREM Spatial SPIRE
Band 1 0.006 0.039 0.007
Band 2 0.003 0.028 0.004

4% Panel Band 3 0.002 0.025 0.080
Band 4 0.002 0.023 0.077
Band 5 0.005 0.024 0.056
Band 6 0.012 0.028 0.044

Table C.1(b). Spatial SPIRE Spatial SPIRE average channel standard deviation from the mean
over all runs for the 4 percent panel.

Pixel Band ELM ATREM Spatial SPIRE
Band 1 0.008 0.054 0.010
Band 2 0.005 0.041 0.008

8% Panel Band 3 0.006 0.037 0.071
Band 4 0.007 0.033 0.071
Band 5 0.008 0.035 0.055
Band 6 0.012 0.038 0.039

Table C.1(c). Spatial SPIRE Spatial SPIRE average channel standard deviation from the mean
over all runs for the 8 percent panel.

Pixel Band ELM ATREM Spatial SPIRE
Band 1 0.007 0.072 0.013
Band 2 0.012 0.065 0.012

16% Panel Band 3 0.013 0.071 0.045
Band 4 0.014 0.067 0.050
Band 5 0.020 0.071 0.043
Band 6 0.017 0.065 0.028

Table C.1(d). Spatial SPIRE average channel standard deviation from the mean over all runs for
the 16 percent panel.
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Table C.1(e). Spatial SPIRE averagechannel standard deviation from the
the 32 percent panel.

mean over all runs for

Pixel Band ELM ATREM Spatial SPIRE
Band 1 0.007 0.161 0.032
Band 2 0.006 0.194 0.034

64% Panel Band 3 0.010 0.217 0.079
Band 4 0.011 0.221 0.065
Band 5 0.022 0.214 0.048
Band 6 0.019 0.134 0.051

Table C.1(f). Spatial SPIRE average channel standard deviation from the mean over all runs for
the 64 percent panel.

Pixel Band ELM ATREM Spatial SPIRE
Band 1 0.016 0.125 0.028
Band 2 0.014 0.165 0.029

Spectral Panel Band 3 0.009 0.201 0.064
Band 4 0.007 0.190 0.042
Band 5 0.013 0.173 0.025
Band 6 0.032 0.115 0.034

Table C.1(g). Spatial SPIRE average channel standard deviation from the mean over all runs for
the spectral panel.

Pixel Band ELM ATREM Spatial SPIRE
Band 1 0.020 0.077 0.020
Band 2 0.013 0.069 0.012

15% Panel Band 3 0.009 0.067 0.046
Band 4 0.009 0.059 0.052
Band 5 0.017 0.059 0.045
Band 6 0.036 0.057 0.035

Table C.1(h). Spatial SPIRE average channel standard deviation from the mean over all runs for
the 15 percent panel.
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Pixel Band ELM ATREM Spatial SPIRE
Band 1 0.009 0.108 0.021
Band 2 0.014 0.118 0.019

32% Panel Band 3 0.017 0.134 0.007
Band 4 0.017 0.134 0.005
Band 5 0.031 0.133 0.024
Band 6 0.030 0.094 0.027



Table C.1(i). Spatial SPIRE averagechannel standard deviation from the
the 41 percent panel.

mean over all runsfor

Pixel Band ELM ATREM Spatial SPIRE
Band 1 0.024 0.165 0.040
Band 2 0.022 0.197 0.039

57% Panel Band 3 0.016 0.220 0.082
Band 4 0.020 0.222 0.070
Band 5 0.054 0.226 0.070
Band 6 0.087 0.163 0.096

Table C.1J). Spatial SPIRE average channel standard deviation from the mean over all runsfor
57 percent panel.

Pixel Band ELM ATREM Spatial SPIRE
Band 1 0.006 0.027 0.005
Band 2 0.009 0.029 0.008

Grass Band 3 0.035 0.104 0.020
Band 4 0.033 0.112 0.021
Band 5 0.017 0.104 0.024
Band 6 0.021 0.063 0.018

Table C.1(k). Spatial SPIRE average channel standard deviation from the mean over all runs for
grass.

Pixel Band ELM ATREM Spatial SPIRE
Band 1 0.007 0.034 0.005
Band 2 0.010 0.040 0.008

Mowed Grass Band 3 0.040 0.124 0.011
Band 4 0.030 0.145 0.012
Band 5 0.042 0.161 0.024
Band 6 0.054 0.101 0.027

Table C.1(l). Spatial SPIRE average channel standard deviation from the mean over all runs for
mowed grass.
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Pixel Band ELM ATREM Spatial SPIRE
Band 1 0.019 0.130 0.031
Band 2 0.020 0.146 0.022

41% Panel Band 3 0.020 0.158 0.029
Band 4 0.018 0.157 0.019
Band 5 0.018 0.165 0.028
Band 6 0.038 0.129 0.058



Pixel Band ELM ATREM Spatial SPIRE
Band 1 0.011 0.074 0.015
Band 2 0.022 0.114 0.023

Road Band 3 0.032 0.184 0.050
Band 4 0.025 0.191 0.044
Band 5 0.054 0.210 0.029
Band 6 0.126 0.172 0.031

Table C.1(m). Spatial SPIRE average channel standard deviation from the mean over all runs
for the road.

Pixel Band ELM ATREM Spatial SPIRE
Band 1 0.012 0.071 0.013
Band 2 0.010 0.082 0.005

Parking Lot Band 3 0.018 0.109 0.016
Band 4 0.018 0.107 0.023
Band 5 0.040 0.113 0.033
Band 6 0.077 0.090 0.035

Table C.J(n). Spatial SPIRE average channel standard deviation from the mean over all runs for
parking lot.

Pixel Band ELM ATREM Spatial SPIRE
Band 1 0.037 0.108 0.035
Band 2 0.047 0.126 0.043

Building Roof Band 3 0.058 0.137 0.017
Band 4 0.056 0.124 0.018
Band 5 0.058 0.114 0.038
Band 6 0.081 0.088 0.048

Table C.1(o). Spatial SPIRE averagechannel standard deviation from the
the building roof

mean over all runs for

Pixel Band ELM ATREM Spatial SPIRE
Band 1 0.030 0.079 0.036
Band 2 0.029 0.079 0.032

Resolution Band 3 0.023 0.090 0.040
Panel Band 4 0.022 0.085 0.047

Band 5 0.025 0.083 0.042
Band 6 0.027 0.067 0.032

Table C.J(p). Spatial SPIRE average channel standard deviation from the mean over all runs for
the resolution panel.
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Pixel Band ELM ATREM Spatial SPIRE
Band 1 0.052 0.131 0.052
Band 2 0.054 0.140 0.048

Emissivity Band 3 0.071 0.174 0.048
Panel 1 Band 4 0.069 0.180 0.050

Band 5 0.053 0.198 0.048
Band 6 0.028 0.174 0.067

Table C.1(q). Spatial SPIRE average channel standard deviation from the mean over all runs for
emissivity panel 1.

Pixel Band ELM ATREM Spatial SPIRE
Band 1 0.046 0.098 0.041
Band 2 0.049 0.098 0.039

Emissivity Band 3 0.066 0.123 0.027
Panel 4 Band 4 0.067 0.125 0.032

Band 5 0.070 0.141 0.031
Band 6 0.075 0.134 0.055

Table C.J(r). Spatial SPIRE average channel standard deviation from the mean over all runs for
emissivity panel 4.

Pixel Band ELM ATREM Spatial SPIRE
Band 1 0.006 0.032 0.005
Band 2 0.011 0.038 0.010

Modified Pixel Band 3 0.017 0.139 0.015
Band 4 0.016 0.154 0.020
Band 5 0.033 0.156 0.021
Band 6 0.034 0.094 0.016

Table C.1(s). Spatial SPIRE average channel standard deviation from the
the modified pixel.

mean over all runs for
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Table C.2(a). SpatialSPIRE average channel standard deviation from the mean, as a percentage
of the mean, over all runs for the 2 percent panel.

Pixel Band ELM ATREM Spatial SPIRE
Band 1 8.5 132.2 9.3
Band 2 5.1 70.8 6.8

4% Panel Band 3 2.9 48.7 66.6
Band 4 2.9 49.2 66.6
Band 5 8.3 57.3 53.2
Band 6 20.0 76.3 43.4

Table C.2(b). Spatial SPIRE average channel standard deviation from the mean, as a percentage
of the mean, over all runs for the 4 percent panel.

Pixel Band ELM ATREM Spatial SPIRE
Band 1 6.4 80.1 9.1
Band 2 4.8 54.3 7.5

8% Panel Band 3 5.7 45.8 48.0
Band 4 6.9 45.1 49.3
Band 5 8.2 49.5 39.5
Band 6 10.7 62.7 28.4

Table C.2(c). Spatial SPIRE average channel standard deviation from the
of the mean, over all runs for the 8 percent panel.

mean, as a percentage

Table C.2(d). Spatial SPIRE average channel
of the mean, over all

standard deviation from the
runs for 16 percent panel.

mean, as a percentage
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Pixel Band ELM ATREM Spatial SPIRE
Band 1 11.2 677.0 11.1
Band 2 4.5 98.4 11.2

2% Panel Band 3 2.0 48.5 77.2
Band 4 3.4 49.4 75.2
Band 5 4.0 56.5 59.0
Band 6 8.4 74.1 47.4

Pixel Band ELM ATREM Spatial SPIRE
Band 1 3.9 59.1 7.3
Band 2 6.4 47.7 6.8

16% Panel Band 3 7.2 46.4 21.0
Band 4 7.3 46.3 23.3
Band 5 9.7 49.4 19.5
Band 6 8.1 57.7 12.8



Table C.2(e). Spatial SPIRE average channel standard deviation from the
of the mean, over all runs for the 32 percent panel.

mean, as a percentage

Table C.2(). Spatial SPIRE average
of the mean,

channel standard deviation from the
over all runs for 64 percent panel.

Table C.2(g). Spatial SPIRE average channel standard deviation from the
of the mean, over all runs for the spectral panel.

mean, as a percentage

Table C.2(h). Spatial SPIRE average channel
of the mean, over all

standard deviation from the
runs for 15 percent panel.

mean, as a percentage
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Pixel Band ELM ATREM Spatial SPIRE
Band 1 2.6 46.9 7.1
Band 2 4.0 43.6 6.0

32% Panel Band 3 4.5 43.7 2.1
Band 4 4.6 45.9 1.4
Band 5 8.1 49.5 6.8
Band 6 9.2 53.8 8.8

Pixel Band ELM ATREM Spatial SPIRE
Band 1 1.3 42.6 6.5
Band 2 1.1 42.2 6.3

64% Panel Band 3 1.5 42.1 14.3
Band 4 1.8 45.8 11.6
Band 5 3.8 51.8 9.0
Band 6 4.3 55.8 12.6

mean, as a percentage

Pixel Band ELM ATREM Spatial SPIRE
Band 1 4.6 49.8 8.6
Band 2 3.2 45.1 6.8

Spectral Panel Band 3 1.7 44.2 13.0
Band 4 1.4 47.5 8.7
Band 5 2.9 53.4 5.9
Band 6 9.8 61.6 10.7

Pixel Band ELM ATREM Spatial SPIRE
Band 1 11.2 66.9 12.1
Band 2 7.5 53.6 7.2

15% Panel Band 3 5.8 48.3 23.0
Band 4 5.7 47.6 26.5
Band 5 10.2 50.7 23.6
Band 6 21.1 60.0 18.5



Table C.2(i). Spatial

Table C.2(). Spatial

Table C.2(k). Spatial

SPIRE average channel standard deviation from the
of the mean, over all runs for the 41 percent panel.

SPIRE average channel standard deviation from the
of the mean, over all runs for 57 percent panel.

SPIRE average channel standard deviation from the
of the mean, over all runs for grass.

mean, as a percentage

mean, as a percentage

mean, as a percentage

Pixel Band ELM ATREM Spatial SPIRE
Band 1 17.5 1843.8 10.3
Band 2 10.5 70.2 8.7

Mowed Grass Band 3 11.5 42.7 3.2
Band 4 7.7 47.2 3.2
Band 5 12.6 62.5 7.0
Band 6 24.7 74.6 11.3

Table C.2(l). Spatial SPIRE average channel standard deviation from the mean, as a percentage
of the mean, over all runs for mowed grass.
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Pixel Band ELM ATREM Spatial SPIRE
Band 1 5.0 48.4 8.9
Band 2 4.9 46.3 6.0

41% Panel Band 3 4.8 44.3 7.3
Band 4 4.3 46.5 4.7
Band 5 4.2 53.1 7.0
Band 6 9.8 59.2 15.8

Pixel Band ELM ATREM Spatial SPIRE
Band 1 4.7 46.0 8.8
Band 2 3.9 45.5 7.8

57% Panel Band 3 2.7 44.0 15.3
Band 4 3.3 47.5 12.8
Band 5 10.2 56.6 13.9
Band 6 20.4 65.1 23.3

Pixel Band ELM ATREM Spatial SPIRE
Band 1 16.0 238.9 12.5
Band 2 11.6 78.7 11.3

Grass Band 3 10.2 37.3 6.0
Band 4 9.2 41.1 6.1
Band 5 6.5 54.4 8.6
Band 6 12.8 67.4 9.5



Pixel Band ELM ATREM Spatial SPIRE
Band 1 6.4 64.3 9.3
Band 2 7.6 52.9 9.1

Road Band 3 7.2 48.5 11.8
Band 4 5.1 49.9 9.6
Band 5 9.4 50.6 5.5
Band 6 19.9 51.9 5.7

Table C.2(m). Spatial SPIRE average channel standard deviation from the mean, as a
percentage of the mean, over all runs for road

Pixel Band ELM ATREM Spatial SPIRE
Band 1 7.2 67.3 8.5
Band 2 4.9 51.4 2.9

Parking Lot Band 3 6.6 47.8 5.6
Band 4 6.4 47.6 7.6
Band 5 12.2 48.5 10.0
Band 6 21.3 48.3 10.7

Table C.2(n). Spatial SPIRE average channel standard deviation from the
of the mean, over all runs for the parking lot.

mean, as a percentage

Table C.2(o). Spatial SPIRE average channel standard deviation from the
of the mean, over all runs for building roof

mean, as a percentage

Pixel Band ELM ATREM Spatial SPIRE
Band 1 13.6 54.5 17.7
Band 2 12.7 46.8 15.3

Resolution Band 3 9.8 46.6 16.0
Panel Band 4 9.8 48.1 19.3

Band 5 11.4 52.7 17.9
Band 6 13.5 59.9 15.3

Table C.2(p). Spatial SPIRE average channel standard deviation from the mean, as a percentage
of the mean, over all runs for the resolution panel.

324

Pixel Band ELM ATREM Spatial SPIRE
Band 1 13.3 56.1 13.9
Band 2 15.3 52.1 15.3

Building Roof Band 3 19.6 53.2 5.3
Band 4 20.1 54.9 6.1
Band 5 21.4 57.1 13.4
Band 6 30.8 60.8 18.1



Table C.2(q). Spatial SPIRE average channel standard deviation from the
of the mean, over all runs for emissivity panel 1.

Table C.2(r). Spatial SPIRE average channel standard deviation from the
of the mean, over all runs for emissivity panel 4.

Table C.2(s). Spatial SPIRE average channel standard deviation from the
of the mean, over all runs for the modified pixel.

mean, as a percentage

mean, as a percentage

mean, as a percentage
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Pixel Band ELM ATREM Spatial SPIRE
Band 1 17.9 63.2 19.5
Band 2 18.9 59.9 18.2

Emissivity Band 3 21.6 59.3 13.9
Panel I Band 4 18.9 60.1 13.4

Band 5 12.7 61.8 11.7
Band 6 5.6 61.3 14.6

Pixel Band ELM ATREM Spatial SPIRE
Band 1 27.7 86.1 26.3
Band 2 29.9 73.3 25.5

Emissivity Band 3 34.6 69.7 11.5
Panel 4 Band 4 32.2 69.8 13.3

Band 5 29.1 71.8 11.9
Band 6 25.4 73.8 18.3

Pixel Band ELM ATREM Spatial SPIRE
Band 1 11.9 151.4 10.6
Band 2 10.2 58.8 9.8

Modified Pixel Band 3 4.5 44.7 4.3
Band 4 3.9 47.5 4.9
Band 5 9.5 59.0 6.0
Band 6 14.5 67.9 6.3
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Appendix D

Spectral SPIRE Case C Algorithm with Spectral Library Matching

In this appendix we provide details on the experiment briefly discussed in Chapter 5 with

results shown in Figure 5.5 using the algorithm depicted in Figure 5.4. This experiment involves

using the Spectral SPIRE Case C algorithm with matching against a spectral library to restore the

A log r lost in the high pass PC filtering. Please refer to Section 5.3.2.1 for a description of the

algorithm in Figure 5.4.

D.1 Generation of Simulated Reflectance Cube

The HYDICE ARM site data from Run 07 of 24 June 1997 was selected for use in

generating the test reflectance images which were used to simulate the hyperspectral reflectance

cube. A 200x200 pixel sub-cube was cut from the large image cube of Run 07. The selected

sub-cube contains a variety of image features, including test panels, grass, mowed grass, roads,

buildings, and vehicles. A single band image from this sub-cube is shown in Figure D. 1(a).

ELM calibration was then done to reduce the sub image cube to an estimate of

reflectance. ELM processing requires known spectra for pixels in the image. Ground truth

measurements of spectra over the test panels were available with the ARM site image data.

Ground truth spectra for the 2 percent and 64 percent panels, collected on 24 June 1997, were

used to perform the ELM calibration. The sub-cube was pre-processed to remove artifacts

involving integer wrapping of some bright pixel into negative numbers. Using ENVI 3.1's

Empirical Line Calibration (ELM) routine, the Run 07 sub-cube was processed to estimate

reflectance.

However, the ELM calibration was not perfect. The ELM algorithm does not make any
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Figure D.J. Original (a) and modified (b) reflectance band images. Horizontal (c) and spectral

(d) profiles of multiplicative noise image (e), and resultant simulated radiance

image (f) for testing the Case C algorithm using spectral library matching.
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physical assumptions about the reflectivity of the scene, but simply performs a linear regression

to estimate the multiplicative and additive effects. This means that inaccuracies in the ground

truth spectra and spatial variations in illumination effects can cause estimates of the reflectance

to be negative or greater than unity. The ELM reflectance estimates for some of the Run 07

pixels were slightly negative or slightly greater than unity. To compensate for this effect, all

channels containing negative reflectance values were shifted by adding the absolute value of the

smallest pixel value plus a small offset of 0.001 so that logarithms could be applied. Next, each

channel with a reflectance greater than one was scaled so that the maximum reflectance became

0.99. Finally, noisy spectral channel images within the water absorption bands were removed

from the sub-cube, as were other channels containing striping artifacts, leaving 162 of the

original 210 HYDICE spectral channel images in the sub-cube.

D.2 Simulated Reflectance Changes

The reflectance cube generated using ELM in the previous section served as both the

prior spectral library as well as the prior reflectance image cube for SPIRE processing. A

reflectance cube containing changes from the original was needed to generate the simulated

radiance cube to simulate a subsequent data collection to be processed. This was generated by

modifying the original reflectance cube with copies of spectra from one portion of the image to

another. This corresponds to changes occurring in the image which are contained in spectral

library. Figure D.1(b) depicts a single band image from the modified reflectance cube. The

parking lot from the lower right has been copied to the upper left, a portion of the mowed (lighter

shade) grass has been copied to the unmowed grass in the lower left, and the spectral panel test

has been copied to the upper right corner of the image. In addition, a simulated test panel with

spectrally uniform 50 percent reflectance was introduced below the other test panels. This
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simulated 50 percent reflectance spectrum is not present in the spectral library.

D.3 Simulated Radiance Cube Generation

To generate a simulated radiance cube for this case, a multiplicative noise cube was

generated and multiplied times the modified reflectance cube of Figire 0.1 (h) A single band

image form the multiplicative noise cube used is shown in Figure D.1(e), with a horizontal

profile across it plotted in Figure D. 1(c), showing that spatially it contains a square wave with a

superimposed horizontal ramp. In the spectral dimension, the high and low portions of the

square wave had the high and low spectral shapes shown in Figure D.1(d), which are actual

radiance spectra measured over the 2 percent and 64 percent spectral panels, so they contain

typical solar spectrum shape and atmospheric absorption features. The net effect is a

multiplicative noise effect that varies both spectrally and spatially across the image, with both

high and low spatial frequency components. A single band image from the resulting simulated

radiance cube is shown in Figure D.I(f).

D.4 Results of Processing Simulated Radiance Test Cube

The radiance cube from Figure D.1(f) was process using the Spectral SPIRE Case D

algorithm depicted in Figure 5.4 that uses spectral library matching. Abutted Principal

Components (APC) analysis was used to generate the PC rotation matrix. It was determined

using the graphical technique described in Section D.5 that there were nine log m PCs that

needed to be zeroed to remove the spatially varying illumination noise. Figure D.2(a) shows a

single band image from the estimated reflectance cube output by the algorithm. Reflectance

estimation was perfect except for over the simulated 50 percent test panel whose spectra is not in

the spectral library. Figure D.2(b) shows the distance image resulting from the classification
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Figure D.2. Estimated reflectance channel image (a), identical to modified reflectance image in
Figure D. 1(b), except for the unknown simulated 50 percent test panel. Distance image from
library classification is shown in (b) with horizontal profiles through n,=15 (c) and n,=140 (d).
Variation in (d) is due to small amounts of log m noise in higher PCs, but matching overcomes
this noise. The unknown panel has highest distance and large reflectance error since its
material is not present in the spectral library.

step. Figure D.2(c) shows a horizontal profile through the distance image at n,=15 where all

materials were in the spectral library. Figure D.2(d) shows a similar profile but through the 50

percent test panel at ny=140. Since the 50 percent panel was not in the spectral library, its

distance to the closest spectrum in the library is high. In Figures D.2(c) and (d) one can see the
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Figure D.3. Mini-cubes cropped from the original (a) and modified (b) reflectance cubes.

Plot of average spectral distance versus pCco-Iog., both distance (c) and log distance (d). Plot of

absolute percent error vs pCco-logm. In (d), the correct value to use for pCco-ogm is at the pinch

point where the plots converge.
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residual multiplicative noise effects not completely eliminated by dropping the top PCs.

However, these effects were small enough to still allow correct classification of all the known

spectra.

D.5 Graphical Determination of the Number of PCs to Drop

To highlight the details of determining the number of top PCs to drop, two mini image

cubes were extracted from the original reflectance cube of Figure D.1(a), and a simulated

radiance cube generated by multiplying the modified reflectance cube of Figure D.1(b) by a

horizontal ramp. The 1Ox1Ox162 mini-cubes were extracted from the upper right of the image

covering a corner of the copied spectral reflectance panel as depicted in Figure D.3(a) and (b).

The radiance mini-cube therefore contained both modified and unmodified pixels. The radiance

mini-cube was processed several times through the Case C algorithm varying the number

pcco-iogm value for in each run. The pcco-logm value was varied from 1 to 10, and in each run, the

mini-cube from Figure D.3(a) was used as the prior reflectance cube, while the full reflectance

cube of Figure D. 1(a) was used as the spectral library.

The classification distance of all the pixels in the mini-cube was calculated and plotted

versus pcco-logm and is shown in Figure D.3(c), including the mean, min, max, and plus and minus

standard deviation about the mean. By plotting the log of the distance in Figure D.3(d), the

details of the transition near pcco-Iogm = 2 is brought out. In Figure D.3(e), the absolute percent

error between each pixel of the estimated reflectance cube and the actual modified reflectance

cube is plotted versus pcco-iogm, again with mean, min, max, and plus and minus one standard

deviation. We see from Figure D.3(e) that the mean, min, and max converge and the standard

deviation drops to zero at pcco-logm = 5. This corresponds to the pinch point in Figure D.3(d)

where its five curves converge as well. This is the point where the graphical analysis determines
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the correct value for pCco-Iogm using a plot similar to the one in Figure D.3(d), generated from a

set of sample spectra. The absolute percent error plot in Figure D.3(e) cannot be used for this

since the actual reflectance is not known a priori.
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Appendix E

Additional Spectral SPIRE Results

This appendix consists of Figure E.1 and Tables E.1 and E.2. Figure E.1 is identical to

Figure 5.8 that shows ELM, ATREM, and Spectral SPIRE reflectance estimates for the 19

example material pixels, except that the reflectance axes have a fixed range between 0 and 1.

The reflectance axes in Figure 5.8 are set to the range appropriate for the data plotted to show the

maximum amount of detail in each individual plot. The fixed range used in Figure E. 1 is better

suited for comparing the results of different pixels. Table E. 1 lists the Spectral SPIRE average

channel standard deviation over the six runs in each band for each algorithm and Table E.2 lists

the same values but as a percentage of the mean estimated reflectance over the six runs.
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Figure E.1 (a) and (b). ELM, A TREM, and Spectral SPIRE spectral reflectance estimates for all
six runs for a single pixel on the 2 percent panel (a) and the 4 percent panel (b).
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Figure E.1 (c) and (d). ELM, A TREM, and Spectral SPIRE spectral reflectance estimates for all
six runs for a single pixel on the 8 percent panel (c) and the 16 percent panel (d).
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Figure E.1 (e) and (f). ELM, ATREM, and Spectral SPIRE spectral reflectance estimates for all
six runs for a single pixel on the 32 percent panel (e) and the 64 percent panel ().
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Figure E.J (g) and (h). ELM, ATREM, and Spectral SPIRE spectral reflectance estimates for
all six runs for a single pixel on the spectral panel (g) and the 15 percent panel (h).
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Figure E.1 (i) and (j). ELM, ATREM, and Spectral SPIRE spectral reflectance estimates for all
six runs for a single pixel on the 41 percent panel (i) and the 57 percent panel ().
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Figure E.1 (k) and (). ELM, A TREM, and Spectral SPIRE spectral reflectance estimates for all
six runs for a single pixel on grass (k) and mowed grass (I).
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Figure E.1 (m) and (n). ELM, ATREM and Spectral SPIRE spectral reflectance estimates for
all six runs for a single pixel on the road (m) and the parking lot (n).
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Figure E.1 (o) and (p). ELM, ATREM, and Spectral SPIRE spectral reflectance estimates for all
six runs for a single pixel on the building roof (o) and the resolution panel (p).
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Figure E.1 (q) and (r). ELM, ATREM, and Spectral SPIRE spectral reflectance estimates for all
six runs for a single pixel on emissivity panel ] (q) and emissivity panel 4 (r).
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Figure E.1(s). ELM, ATREM, and Spectral SPIRE spectral reflectance estimates for all six Runs
for the modified pixel. The modified pixel was a truck in Run 07, and changed to mowed grass in
all subsequent Runs. For Run 07, a similar mowed grass pixel is plotted for comparison.
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Pixel Band ELM ATREM Spectral SPIRE
Band 1 0.005 0.029 0.004
Band 2 0.002 0.020 0.002

2% Panel Band 3 0.001 0.019 0.006
Band 4 0.002 0.018 0.003
Band 5 0.002 0.020 0.004
Band 6 0.004 0.023 0.011

Table E.1(a). Spectral SPIRE Spectral SPIRE average channel standard deviation from the
mean over all runs for the 2 percent panel.

Pixel Band ELM ATREM Spectral SPIRE
Band 1 0.006 0.039 0.006
Band 2 0.003 0.028 0.003

4% Panel Band 3 0.002 0.025 0.009
Band 4 0.002 0.023 0.004
Band 5 0.005 0.024 0.004
Band 6 0.012 0.028 0.013

Table E.1(b). Spectral SPIRE average channel standard deviation from the mean over all runs
for the 4 percent panel.

Pixel Band ELM ATREM Spectral SPIRE
Band 1 0.008 0.054 0.007
Band 2 0.005 0.041 0.004

8% Panel Band 3 0.006 0.037 0.011
Band 4 0.007 0.033 0.006
Band 5 0.008 0.035 0.005
Band 6 0.012 0.038 0.015

Table E.J(c). Spectral SPIRE average channel standard deviation from the mean over all runs
for the 8 percent panel.

Pixel Band ELM ATREM Spectral SPIRE
Band 1 0.007 0.072 0.006
Band 2 0.012 0.065 0.004

16% Panel Band 3 0.013 0.071 0.017
Band 4 0.014 0.067 0.010
Band 5 0.020 0.071 0.009
Band 6 0.017 0.065 0.020

Table E.1(d). Spectral SPIRE average channel standard deviation from the mean over all runs
for the 16 percent panel.
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Pixel Band ELM ATREM Spectral SPIRE
Band 1 0.009 0.108 0.009
Band 2 0.014 0.118 0.009

32% Panel Band 3 0.017 0.134 0.026
Band 4 0.017 0.134 0.022
Band 5 0.031 0.133 0.017
Band 6 0.030 0.094 0.029

Table E.1(e). Spectral SPIRE average channel standard deviation from the mean over all runs
for the 32 percent panel.

Pixel Band ELM ATREM Spectral SPIRE
Band 1 0.007 0.161 0.014
Band 2 0.006 0.194 0.013

64% Panel Band 3 0.010 0.217 0.041
Band 4 0.011 0.221 0.031
Band 5 0.022 0.214 0.025
Band 6 0.019 0.134 0.041

Table E.1(). Spectral SPIRE average channel standard deviation from the mean over all runs
for the 64 percent panel.

Pixel Band ELM ATREM Spectral SPIRE
Band 1 0.016 0.125 0.012
Band 2 0.014 0.165 0.017

Spectral Panel Band 3 0.009 0.201 0.048
Band 4 0.007 0.190 0.027
Band 5 0.013 0.173 0.023
Band 6 0.032 0.115 0.039

Table E.1(g). Spectral SPIRE average channel standard deviation from the mean over all runs
for the spectral panel.

Pixel Band ELM ATREM Spectral SPIRE
Band 1 0.020 0.077 0.007
Band 2 0.013 0.069 0.005

15% Panel Band 3 0.009 0.067 0.016
Band 4 0.009 0.059 0.008
Band 5 0.017 0.059 0.007
Band 6 0.036 0.057 0.022

Table E.1(h). Spectral SPIRE average channel standard deviation from the mean over all runs
for the 15 percent panel.
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Pixel Band ELM ATREM Spectral SPIRE
Band 1 0.019 0.130 0.011
Band 2 0.020 0.146 0.009

41% Panel Band 3 0.020 0.158 0.032
Band 4 0.018 0.157 0.017
Band 5 0.018 0.165 0.019
Band 6 0.038 0.129 0.042

Table E.1(i). Spectral SPIRE average channel standard deviation from the mean over all runs
for the 41 percent panel.

Pixel Band ELM ATREM Spectral SPIRE
Band 1 0.024 0.165 0.019
Band 2 0.022 0.197 0.014

57% Panel Band 3 0.016 0.220 0.048
Band 4 0.020 0.222 0.024
Band 5 0.054 0.226 0.026
Band 6 0.087 0.163 0.060

Table E.-10). Spectral SPIRE average channel standard deviation from the mean over all runs
for 57 percent panel.

Pixel Band ELM ATREM Spectral SPIRE
Band 1 0.006 0.027 0.004
Band 2 0.009 0.029 0.006

Grass Band 3 0.035 0.104 0.032
Band 4 0.033 0.112 0.024
Band 5 0.017 0.104 0.022
Band 6 0.021 0.063 0.032

Table E.1(k). Spectral SPIRE average channel standard deviation from the mean over all runs
for grass.

Pixel Band ELM ATREM Spectral SPIRE
Band 1 0.007 0.034 0.006
Band 2 0.010 0.040 0.007

Mowed Grass Band 3 0.040 0.124 0.048
Band 4 0.030 0.145 0.024
Band 5 0.042 0.161 0.018
Band 6 0.054 0.101 0.033

Table E.1(). Spectral SPIRE average channel standard deviation from the mean over all runs
for mowed grass.
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Pixel Band ELM ATREM Spectral SPIRE
Band 1 0.011 0.074 0.009
Band 2 0.022 0.114 0.010

Road Band 3 0.032 0.184 0.023
Band 4 0.025 0.191 0.032
Band 5 0.054 0.210 0.028
Band 6 0.126 0.172 0.046

Table E.J(m). Spectral SPIRE average channel standard deviation from the mean over all runs
for the road.

Pixel Band ELM ATREM Spectral SPIRE
Band 1 0.012 0.071 0.010
Band 2 0.010 0.082 0.006

Parking Lot Band 3 0.018 0.109 0.021
Band 4 0.018 0.107 0.018
Band 5 0.040 0.113 0.012
Band 6 0.077 0.090 0.022

rable E.1(n). Spectral SPIRE average channel standard deviation from the mean over all run
for parking lot.

Pixel Band ELM ATREM Spectral SPIRE
Band 1 0.037 0.108 0.012
Band 2 0.047 0.126 0.012

Building Roof Band 3 0.058 0.137 0.034
Band 4 0.056 0.124 0.023
Band 5 0.058 0.114 0.014
Band 6 0.081 0.088 0.037

rable E.J(o). Spectral SPIRE average channel standard deviation from the mean over all run
for the building roof

Pixel Band ELM ATREM Spectral SPIRE
Band 1 0.030 0.079 0.065
Band 2 0.029 0.079 0.058

Resolution Band 3 0.023 0.090 0.043
Panel Band 4 0.022 0.085 0.037

Band 5 0.025 0.083 0.027
Band 6 0.027 0.067 0.030

s

Table E.1(p). Spectral SPIRE average channel standard deviation from the mean over all runs
for the resolution panel.
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Pixel Band ELM ATREM Spectral SPIRE
Band 1 0.052 0.131 0.022
Band 2 0.054 0.140 0.017

Emissivity Band 3 0.071 0.174 0.040
Panel 1 Band 4 0.069 0.180 0.041

Band 5 0.053 0.198 0.027
Band 6 0.028 0.174 0.052

rable E.J(q). Spectral SPIRE average channel standard deviation from the mean over all run
for emissivity panel 1.

Pixel Band ELM ATREM Spectral SPIRE
Band 1 0.046 0.098 0.009
Band 2 0.049 0.098 0.010

Emissivity Band 3 0.066 0.123 0.021
Panel 4 Band 4 0.067 0.125 0.015

Band 5 0.070 0.141 0.026
Band 6 0.075 0.134 0.034

rable E.1(r). Spectral SPIRE average channel standard deviation from the mean over all rum
for emissivity panel 4.

Pixel Band ELM ATREM Spectral SPIRE
Band 1 0.006 0.032 0.276
Band 2 0.011 0.038 0.260

Modified Pixel Band 3 0.017 0.139 0.246
Band 4 0.016 0.154 0.208
Band 5 0.033 0.156 0.087
Band 6 0.034 0.094 0.074

s

Table E.1(s). Spectral SPIRE average channel standard deviation from
for the modified pixel.

the mean over all runs
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Pixel Band ELM ATREM Spectral SPIRE
Band 1 11.2 677.0 8.4
Band 2 4.5 98.4 5.0

2% Panel Band 3 2.0 48.5 13.2
Band 4 3.4 49.4 6.4
Band 5 4.0 56.5 7.8
Band 6 8.4 74.1 21.1

Table E.2(a). Spectral SPIRE average channel standard deviation from the mean, as a
percentage of the mean, over all runs for the 2 percent panel.

Pixel Band ELM ATREM Spectral SPIRE
Band 1 8.5 132.2 8.0
Band 2 5.1 70.8 4.7

4% Panel Band 3 2.9 48.7 15.7
Band 4 2.9 49.2 6.4
Band 5 8.3 57.3 6.6
Band 6 20.0 76.3 22.0

Table E.2(b). Spectral SPIRE average channel standard deviation from the mean, as a
percentage of the mean, over all runs for the 4 percent panel.

Pixel Band ELM ATREM Spectral SPIRE
Band 1 6.4 80.1 5.7
Band 2 4.8 54.3 3.6

8% Panel Band 3 5.7 45.8 12.8
Band 4 6.9 45.1 6.4
Band 5 8.2 49.5 5.1
Band 6 10.7 62.7 14.3

Table E.2(c). Spectral SPIRE average channel standard deviation from the mean, as a
percentage of the mean, over all runs for the 8 percent panel.

Pixel Band ELM ATREM Spectral SPIRE
Band 1 3.9 59.1 3.3
Band 2 6.4 47.7 2.5

16% Panel Band 3 7.2 46.4 10.5
Band 4 7.3 46.3 5.8
Band 5 9.7 49.4 4.6
Band 6 8.1 57.7 10.3

Table E.2(d). Spectral SPIRE average channel standard deviation from the mean, as a
percentage of the mean, over all runs for 16 percent panel.
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Pixel Band ELM ATREM Spectral SPIRE
Band 1 2.6 46.9 2.9
Band 2 4.0 43.6 2.6

32% Panel Band 3 4.5 43.7 7.3
Band 4 4.6 45.9 6.3
Band 5 8.1 49.5 4.8
Band 6 9.2 53.8 9.4

Table E.2(e). Spectral SPIRE average channel standard deviation from the mean, as a
percentage of the mean, over all runs for the 32 percent panel.

Pixel Band ELM ATREM Spectral SPIRE
Band 1 1.3 42.6 2.8
Band 2 1.1 42.2 2.2

64% Panel Band 3 1.5 42.1 6.6
Band 4 1.8 45.8 5.1
Band 5 3.8 51.8 4.5
Band 6 4.3 55.8 9.7

Table E.2(). Spectral SPIRE average channel standard deviation from the mean, as a
percentage of the mean, over all runs for 64 percent panel.

Pixel Band ELM ATREM Spectral SPIRE
Band 1 4.6 49.8 3.4
Band 2 3.2 45.1 3.6

Spectral Panel Band 3 1.7 44.2 8.9
Band 4 1.4 47.5 5.4
Band 5 2.9 53.4 5.3
Band 6 9.8 61.6 11.5

Table E.2(g). Spectral SPIRE average channel standard deviation from the mean, as a
percentage of the mean, over all runs for the spectral panel.

Pixel Band ELM ATREM Spectral SPIRE
Band 1 11.2 66.9 3.5
Band 2 7.5 53.6 2.7

15% Panel Band 3 5.8 48.3 10.1
Band 4 5.7 47.6 5.2
Band 5 10.2 50.7 4.5
Band 6 21.1 60.0 13.3

Table E.2(h). Spectral SPIRE average channel standard deviation from the mean, as a
percentage of the mean, over all runs for 15 percent panel.
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Pixel Band ELM ATREM Spectral SPIRE
Band 1 5.0 48.4 2.9
Band 2 4.9 46.3 2.2

41% Panel Band 3 4.8 44.3 7.7
Band 4 4.3 46.5 4.1
Band 5 4.2 53.1 4.3
Band 6 9.8 59.2 10.7

Table E.2(i). Spectral SPIRE average channel standard deviation from the mean, as a
percentage of the mean, over all runs for the 41 percent panel.

Pixel Band ELM ATREM Spectral SPIRE
Band 1 4.7 46.0 3.6
Band 2 3.9 45.5 2.5

57% Panel Band 3 2.7 44.0 8.0
Band 4 3.3 47.5 4.0
Band 5 10.2 56.6 4.5
Band 6 20.4 65.1 13.1

Table E.26). Spectral SPIRE average channel standard deviation from the mean, as a
percentage of the mean, over all runs for 57 percent panel.

Pixel Band ELM ATREM Spectral SPIRE
Band 1 16.0 238.9 11.9
Band 2 11.6 78.7 9.4

Grass Band 3 10.2 37.3 10.0
Band 4 9.2 41.1 7.5
Band 5 6.5 54.4 8.9
Band 6 12.8 67.4 21.6

Table E.2(k). Spectral SPIRE average channel standard deviation from the mean, as a
percentage of the mean, over all runs for grass.

Pixel Band ELM ATREM Spectral SPIRE
Band 1 17.5 1843.8 11.9
Band 2 10.5 70.2 7.1

Mowed Grass Band 3 11.5 42.7 13.9
Band 4 7.7 47.2 6.3
Band 5 12.6 62.5 5.0
Band 6 24.7 74.6 14.0

Table E.2(). Spectral SPIRE average channel standard deviation from the mean, as a
percentage of the mean, over all runs for mowed grass.
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Pixel Band ELM ATREM Spectral SPIRE
Band 1 6.4 64.3 4.9
Band 2 7.6 52.9 3.5

Road Band 3 7.2 48.5 5.0
Band 4 5.1 49.9 6.9
Band 5 9.4 50.6 5.1
Band 6 19.9 51.9 8.6

Table E.2(m). Spectral SPIRE average channel standard deviation from the mean, as a
percentage of the mean, over all runs for road.

Pixel Band ELM ATREM Spectral SPIRE
Band 1 7.2 67.3 5.8
Band 2 4.9 51.4 3.1

Parking Lot Band 3 6.6 47.8 8.3
Band 4 6.4 47.6 6.7
Band 5 12.2 48.5 3.9
Band 6 21.3 48.3 6.9

Table E.2(n). Spectral SPIRE average channel standard deviation from the mean, as a
percentage of the mean, over all runs for the parking lot.

Pixel Band ELM ATREM Spectral SPIRE
Band 1 13.3 56.1 4.2
Band 2 15.3 52.1 3.6

Building Roof Band 3 19.6 53.2 11.2
Band 4 20.1 54.9 8.4
Band 5 21.4 57.1 5.1
Band 6 30.8 60.8 14.7

Table E.2(o). Spectral SPIRE average channel standard deviation from the mean, as a
percentage of the mean, over all runs for building roof

Pixel Band ELM ATREM Spectral SPIRE
Band 1 13.6 54.5 31.7
Band 2 12.7 46.8 28.9

Resolution Band 3 9.8 46.6 21.5
Panel Band 4 9.8 48.1 19.3

Band 5 11.4 52.7 14.0
Band 6 13.5 59.9 16.2

Table E.2(p). Spectral SPIRE average channel standard deviation from the mean, as a
percentage of the mean, over all runs for the resolution panel.

354



Pixel Band ELM ATREM Spectral SPIRE
Band 1 17.9 63.2 7.0
Band 2 18.9 59.9 5.4

Emissivity Band 3 21.6 59.3 11.0
Panel I Band 4 18.9 60.1 10.7

Band 5 12.7 61.8 5.9
Band 6 5.6 61.3 10.2

Table E.2(q). Spectral SPIRE average channel standard deviation from the mean, as a
percentage of the mean, over all runs for emissivity panel 1.

Pixel Band ELM ATREM Spectral SPIRE
Band 1 27.7 86.1 4.9
Band 2 29.9 73.3 5.5

Emissivity Band 3 34.6 69.7 10.1
Panel 4 Band 4 32.2 69.8 6.8

Band 5 29.1 71.8 9.3
Band 6 25.4 73.8 10.3

Table E.2(r). Spectral SPIRE average channel standard deviation from the mean, as a
percentage of the mean, over all runs for emissivity panel 4.

Pixel Band ELM ATREM Spectral SPIRE
Band 1 11.9 151.4 50.5
Band 2 10.2 58.8 47.1

Modified Pixel Band 3 4.5 44.7 35.7
Band 4 3.9 47.5 31.2
Band 5 9.5 59.0 21.0
Band 6 14.5 67.9 24.5

Table E.2(s). Spectral SPIRE average channel standard deviation from the mean, as a
percentage of the mean, over all runs for the modified pixel.
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Appendix F

Additional Combined SPIRE Results

This appendix consists of Figure F.1 and Tables F.1 and F.2. Figure F.1 is identical to

Figure 6.6 that shows ELM, ATREM, and Combined SPIRE reflectance estimates for the 19

example material pixels, except that the reflectance axes have a fixed range between 0 and 1.

The reflectance axes in Figure 6.6 are set to the range appropriate for the data plotted to show the

maximum amount of detail in each individual plot. The fixed range used in Figure F.1 is better

suited for comparing the results of different pixels. Table F. 1 lists the Combined SPIRE average

channel standard deviation over the six runs in each band for each algorithm and Table F.2 lists

the same values but as a percentage of the mean estimated reflectance over the six runs.

357



KNJ

C
0
t
0i

iJ

.42 .45 A .50 .54 .57 .B2 .67

0

1 .0

0.8

0.6

0.4

0.0

ELM: 4% Panel

I II I I

I II I I

I IA I I
I I I I I

.42 .45 .48 .50 .54 .57 .B2 .67 1.0 13 1.6 1.72..2

1.0

0.8

0 .6
0.4

0.0

ELM: 2% Panel

I II I I
I II I | 0

. I II I L
I II I I

- I I I I I

.42 ,45 .48 .50 .5A .57 .62 .67 1.0 1.3 1.6 1.72

Wavelength um

ATREM; 2% Panel

I II I I
I II I I
I 11 I L

I II I I

- I II I -

42 .45 ,48 .50 .54 ,57 .£2 ,67 1.0 1,3 1,6 1.72

Wovelength um

Combined SPIRE: 2% Panel

I II I I
I I I I
I II I I
I II I I
I II I I
I II I E

1 ,0

0.8

0.6

0-4

0.2

0.0

ATREM; 4% Panel

I II I I
I II I

. II
I II I I
I II I I

.?wII I

.42 .45 .48 .50 .54 .57 ,62 .67 1.0 1,3 1,6 1.72,2

Wavelength um

(U

(U

1.0 1.3 1.61.72

1.0

0.8

0._6

0.4

0.2

00

Combined SPIRE: 4% Panel

I II I I

- I II I
I I II I I

I I 5 I II I I I

.42 .45 .48 .50 .54 .57 .62 .8-7 1.0 1.3 1.61.72.2

Wavelength um Ru
Ru
Ru
Ru
Ru
Ru

(a)

Wavelength umn 06
n 07
n 13
n 22
n 26
n 31

(b)

Figure F.1 (a) and (b). ELM, A TREM, and Combined SPIRE spectral reflectance estimates for
all six runs for a single pixel on the 2 percent panel (a) and the 4 percent panel (b).
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Figure F.1 (e) and (/). ELM, ATREM, and Combined SPIRE spectral reflectance estimates for
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Figure F.1 (i) and j). ELM, ATREM, and Combined SPIRE spectral reflectance estimates for
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Figure F.1 (m) and (n). ELM, A TREM, and Combined SPIRE spectral reflectance estimates for
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Figure F.1 (o) and (p). ELM, A TREM, and Combined SPIRE spectral reflectance estimates for
all six runs for a single pixel on the building roof (o) and the resolution panel (p).
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Figure F.1 (q) and (r). ELM, A TREM, and Combined SPIRE spectral reflectance estimates for
all six runs for a single pixel on emissivity panel 1 (q) and emissivity panel 4 (r).
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Figure F.(s). ELM, ATREM, and Combined SPIRE spectral reflectance estimates for all six
runs for a single pixel on the modified pixel. The modified pixel was a truck in Run 07, and
changed to mowed grass in all subsequent Runs. For Run 07, a similar mowed grass pixel is
plotted for comparison.
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Pixel Band ELM ATREM Combined SPIRE
Band 1 0.005 0.029 0.006
Band 2 0.002 0.020 0.005

2% Panel Band 3 0.001 0.019 0.004
Band 4 0.002 0.018 0.005
Band 5 0.002 0.020 0.010
Band 6 0.004 0.023 0.013

Table F.(a). Combined SPIRE average channel standard deviation from the mean over all runs
for the 2 percent panel.

Pixel Band ELM ATREM Combined SPIRE
Band 1 0.006 0.039 0.009
Band 2 0.003 0.028 0.005

4% Panel Band 3 0.002 0.025 0.006
Band 4 0.002 0.023 0.005
Band 5 0.005 0.024 0.015
Band 6 0.012 0.028 0.026

Table F.1(b). Combined SPIRE average channel standard deviation from the mean over all runs
for the 4 percent panel.

Pixel Band ELM ATREM Combined SPIRE
Band 1 0.008 0.054 0.012
Band 2 0.005 0.041 0.009

8% Panel Band 3 0.006 0.037 0.009
Band 4 0.007 0.033 0.010
Band 5 0.008 0.035 0.028
Band 6 0.012 0.038 0.026

Table F.(c). Combined SPIRE average channel standard deviation from the mean over all runs
for the 8 percent panel.

Pixel Band ELM ATREM Combined SPIRE
Band 1 0.007 0.072 0.020
Band 2 0.012 0.065 0.012

16% Panel Band 3 0.013 0.071 0.021
Band 4 0.014 0.067 0.015
Band 5 0.020 0.071 0.057
Band 6 0.017 0.065 0.080

Table F.(d). Combined SPIRE average channel standard deviation from the mean over all runs
for the 16 percent panel.
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Pixel Band ELM ATREM Combined SPIRE
Band 1 0.009 0.108 0.036
Band 2 0.014 0.118 0.021

32% Panel Band 3 0.017 0.134 0.047
Band 4 0.017 0.134 0.026
Band 5 0.031 0.133 0.097
Band 6 0.030 0.094 0.156

Table F.1(e). Combined SPIRE average channel standard deviation from the mean over all runs
for the 32 percent panel.

Pixel Band ELM ATREM Combined SPIRE
Band 1 0.007 0.161 0.050
Band 2 0.006 0.194 0.035

64% Panel Band 3 0.010 0.217 0.093
Band 4 0.011 0.221 0.055
Band 5 0.022 0.214 0.105
Band 6 0.019 0.134 0.176

Table F.I(/). Combined SPIRE average channel standard deviation from the mean over all runs
for the 64 percent panel.

Pixel Band ELM ATREM Combined SPIRE
Band 1 0.016 0.125 0.026
Band 2 0.014 0.165 0.031

Spectral Panel Band 3 0.009 0.201 0.089
Band 4 0.007 0.190 0.040
Band 5 0.013 0.173 0.071
Band 6 0.032 0.115 0.072

Table F.1(g). Combined SPIRE average channel standard deviation from the mean over all runs
for the spectral panel.

Pixel Band ELM ATREM Combined SPIRE
Band 1 0.020 0.077 0.019
Band 2 0.013 0.069 0.012

15% Panel Band 3 0.009 0.067 0.027
Band 4 0.009 0.059 0.016
Band 5 0.017 0.059 0.034
Band 6 0.036 0.057 0.038

Table F.1(h). Combined SPIRE average channel standard deviation from the mean over all runs
for the 15 percent panel.
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Table F.1(i). Combined SPIRE average channel standard deviation from
for the 41 percent panel.

Table F.1q). Combined SPIRE average channel standard deviation from
for 57 percent panel.

the mean over all runs

the mean over all runs

Pixel Band ELM ATREM Combined SPIRE
Band 1 0.006 0.027 0.005
Band 2 0.009 0.029 0.009

Grass Band 3 0.035 0.104 0.029
Band 4 0.033 0.112 0.038
Band 5 0.017 0.104 0.048
Band 6 0.021 0.063 0.022

Table F.(k). Combined SPIRE average channel standard deviation from the mean over all runs
for grass.

Pixel Band ELM ATREM Combined SPIRE
Band 1 0.007 0.034 0.006
Band 2 0.010 0.040 0.010

Mowed Grass Band 3 0.040 0.124 0.034
Band 4 0.030 0.145 0.023
Band 5 0.042 0.161 0.031
Band 6 0.054 0.101 0.031

Table F.1(). Combined SPIRE average channel standard deviation from the mean over all runs
for mowed grass.
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Pixel Band ELM ATREM Combined SPIRE
Band 1 0.019 0.130 0.036
Band 2 0.020 0.146 0.018

41% Panel Band 3 0.020 0.158 0.055
Band 4 0.018 0.157 0.031
Band 5 0.018 0.165 0.075
Band 6 0.038 0.129 0.126

Pixel Band ELM ATREM Combined SPIRE
Band 1 0.024 0.165 0.044
Band 2 0.022 0.197 0.036

57% Panel Band 3 0.016 0.220 0.101
Band 4 0.020 0.222 0.058
Band 5 0.054 0.226 0.071
Band 6 0.087 0.163 0.138



Pixel Band ELM ATREM Combined SPIRE
Band 1 0.011 0.074 0.016
Band 2 0.022 0.114 0.022

Road Band 3 0.032 0.184 0.083
Band 4 0.025 0.191 0.036
Band 5 0.054 0.210 0.133
Band 6 0.126 0.172 0.351

Table F.(m). Combined SPIRE average channel standard deviation from the mean over all
runs for the road

Pixel Band ELM ATREM Combined SPIRE
Band 1 0.012 0.071 0.012
Band 2 0.010 0.082 0.007

Parking Lot Band 3 0.018 0.109 0.038
Band 4 0.018 0.107 0.018
Band 5 0.040 0.113 0.100
Band 6 0.077 0.090 0.243

Table F.1(n). Combined SPIRE average channel standard deviation from the mean over all runs
for parking lot.

Pixel Band ELM ATREM Combined SPIRE
Band 1 0.037 0.108 0.033
Band 2 0.047 0.126 0.047

Building Roof Band 3 0.058 0.137 0.085
Band 4 0.056 0.124 0.062
Band 5 0.058 0.114 0.062
Band 6 0.081 0.088 0.076

Table F.1(o). Combined SPIRE average channel standard deviation from
for the building roof

the mean over all runs

Pixel Band ELM ATREM Combined SPIRE
Band 1 0.030 0.079 0.044
Band 2 0.029 0.079 0.032

Resolution Band 3 0.023 0.090 0.033
Panel Band 4 0.022 0.085 0.024

Band 5 0.025 0.083 0.063
Band 6 0.027 0.067 0.092

Table F.1(p). Combined SPIRE average channel standard deviation from the mean over all runs
for the resolution panel.
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Pixel Band ELM ATREM Combined SPIRE
Band 1 0.052 0.131 0.040
Band 2 0.054 0.140 0.047

Emissivity Band 3 0.071 0.174 0.097
Panel I Band 4 0.069 0.180 0.071

Band 5 0.053 0.198 0.038
Band 6 0.028 0.174 0.168

Table F.1(q). Combined SPIRE average channel standard deviation from the mean over all runs
for emissivity panel 1.

Pixel Band ELM ATREM Combined SPIRE
Band 1 0.046 0.098 0.031
Band 2 0.049 0.098 0.040

Emissivity Band 3 0.066 0.123 0.079
Panel 4 Band 4 0.067 0.125 0.064

Band 5 0.070 0.141 0.047
Band 6 0.075 0.134 0.061

Table F.1(r). Combined SPIRE average channel standard deviation from the mean over all runs
for emissivity panel 4.

Pixel Band ELM ATREM Combined SPIRE
Band 1 0.006 0.032 0.006
Band 2 0.011 0.038 0.012

Modified Pixel Band 3 0.017 0.139 0.052
Band 4 0.016 0.154 0.031
Band 5 0.033 0.156 0.031
Band 6 0.034 0.094 0.032

Table F.(s). Combined SPIRE average channel standard deviation from the mean over all runs
for the modified pixel.
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Pixel Band ELM ATREM Combined SPIRE
Band 1 11.2 677.0 12.3
Band 2 4.5 98.4 11.0

2% Panel Band 3 2.0 48.5 9.6
Band 4 3.4 49.4 9.5
Band 5 4.0 56.5 18.9
Band 6 8.4 74.1 25.1

Table F.2(a). Combined SPIRE average channel standard deviation from the mean, as a
percentage of the mean, over all runs for the 2 percent panel.

Pixel Band ELM ATREM Combined SPIRE
Band 1 8.5 132.2 12.0
Band 2 5.1 70.8 7.4

4% Panel Band 3 2.9 48.7 10.2
Band 4 2.9 49.2 8.5
Band 5 8.3 57.3 23.0
Band 6 20.0 76.3 42.0

Table F.2(b). Combined SPIRE average channel standard deviation from the mean, as a
percentage of the mean, over all runs for the 4 percent panel.

Pixel Band ELM ATREM Combined SPIRE
Band 1 6.4 80.1 10.8
Band 2 4.8 54.3 8.2

8% Panel Band 3 5.7 45.8 9.6
Band 4 6.9 45.1 10.2
Band 5 8.2 49.5 25.5
Band 6 10.7 62.7 21.5

Table F.2(c). Combined SPIRE average channel standard deviation from the mean, as a
percentage of the mean, over all runs for the 8 percent panel.

Pixel Band ELM ATREM Combined SPIRE
Band 1 3.9 59.1 11.6
Band 2 6.4 47.7 7.0

16% Panel Band 3 7.2 46.4 11.8
Band 4 7.3 46.3 7.9
Band 5 9.7 49.4 25.5
Band 6 8.1 57.7 32.4

Table F.2(d). Combined SPIRE average channel standard deviation from the mean, as a
percentage of the mean, over all runs for 16 percent panel.
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Pixel Band ELM ATREM Combined SPIRE
Band 1 2.6 46.9 11.8
Band 2 4.0 43.6 6.2

32% Panel Band 3 4.5 43.7 13.0
Band 4 4.6 45.9 6.9
Band 5 8.1 49.5 23.4
Band 6 9.2 53.8 39.1

Table F.2(e). Combined SPIRE average channel standard deviation from the mean, as a
percentage of the mean, over all runs for the 32 percent panel.

Pixel Band ELM ATREM Combined SPIRE
Band 1 1.3 42.6 10.5
Band 2 1.1 42.2 6.1

64% Panel Band 3 1.5 42.1 15.2
Band 4 1.8 45.8 8.8
Band 5 3.8 51.8 17.0
Band 6 4.3 55.8 33.2

Table F.2(). Combined SPIRE average channel standard deviation from the mean, as a
percentage of the mean, over all runs for 64 percent panel.

Pixel Band ELM ATREM Combined SPIRE
Band 1 4.6 49.8 8.4
Band 2 3.2 45.1 6.8

Spectral Panel Band 3 1.7 44.2 16.6
Band 4 1.4 47.5 7.9
Band 5 2.9 53.4 14.6
Band 6 9.8 61.6 18.7

Table F.2(g). Combined SPIRE average channel standard deviation from the mean, as a
percentage of the mean, over all runs for the spectral panel.

Pixel Band ELM ATREM Combined SPIRE
Band 1 11.2 66.9 11.8
Band 2 7.5 53.6 7.1

15% Panel Band 3 5.8 48.3 16.9
Band 4 5.7 47.6 10.0
Band 5 10.2 50.7 19.3
Band 6 21.1 60.0 19.7

Table F.2(h). Combined SPIRE average channel standard deviation from the mean, as a
percentage of the mean, over all runs for 15 percent panel.
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Pixel Band ELM ATREM Combined SPIRE
Band 1 5.0 48.4 10.3
Band 2 4.9 46.3 4.7

41% Panel Band 3 4.8 44.3 13.2
Band 4 4.3 46.5 7.2
Band 5 4.2 53.1 16.1
Band 6 9.8 59.2 27.2

Table F.2(i). Combined SPIRE average channel standard deviation from the mean, as a
percentage of the mean, over all runs for the 41 percent panel.

Pixel Band ELM ATREM Combined SPIRE
Band 1 4.7 46.0 9.5
Band 2 3.9 45.5 6.8

57% Panel Band 3 2.7 44.0 17.2
Band 4 3.3 47.5 9.8
Band 5 10.2 56.6 12.3
Band 6 20.4 65.1 27.5

Table F.20). Combined SPIRE average channel standard deviation from the mean, as a
percentage of the mean, over all runs for 57 percent panel.

Pixel Band ELM ATREM Combined SPIRE
Band 1 16.0 238.9 13.0
Band 2 11.6 78.7 12.2

Grass Band 3 10.2 37.3 8.7
Band 4 9.2 41.1 10.4
Band 5 6.5 54.4 16.6
Band 6 12.8 67.4 12.1

Table F.2(k). Combined SPIRE average channel standard deviation from the mean, as a
percentage of the mean, over all runs for grass.

Pixel Band ELM ATREM Combined SPIRE
Band 1 17.5 1843.8 12.8
Band 2 10.5 70.2 10.5

Mowed Grass Band 3 11.5 42.7 10.0
Band 4 7.7 47.2 5.8
Band 5 12.6 62.5 8.4
Band 6 24.7 74.6 12.9

Table F.2(). Combined SPIRE average channel standard deviation from the mean, as a
percentage of the mean, over all runs for mowed grass.

375



Pixel Band ELM ATREM Combined SPIRE
Band 1 6.4 64.3 9.7
Band 2 7.6 52.9 8.2

Road Band 3 7.2 48.5 18.9
Band 4 5.1 49.9 7.5
Band 5 9.4 50.6 20.9
Band 6 19.9 51.9 45.0

Table F.2(m). Combined SPIRE average channel standard deviation from the mean, as a
percentage of the mean, over all runs for road

Pixel Band ELM ATREM Combined SPIRE
Band 1 7.2 67.3 8.2
Band 2 4.9 51.4 3.5

Parking Lot Band 3 6.6 47.8 14.6
Band 4 6.4 47.6 6.2
Band 5 12.2 48.5 27.4
Band 6 21.3 48.3 53.6

Table F.2(n). Combined SPIRE average channel standard deviation from the mean, as a
percentage of the mean, over all runs for the parking lot.

Pixel Band ELM ATREM Combined SPIRE
Band 1 13.3 56.1 13.2
Band 2 15.3 52.1 15.9

Building Roof Band 3 19.6 53.2 28.7
Band 4 20.1 54.9 22.1
Band 5 21.4 57.1 21.1
Band 6 30.8 60.8 26.0

Table F.2(o). Combined SPIRE average channel standard deviation from the mean, as a
percentage of the mean, over all runs for building roof

Pixel Band ELM ATREM Combined SPIRE
Band 1 13.6 54.5 21.1
Band 2 12.7 46.8 14.6

Resolution Band 3 9.8 46.6 14.6
Panel Band 4 9.8 48.1 10.6

Band 5 11.4 52.7 25.9
Band 6 13.5 59.9 38.0

Table F.2(p). Combined SPIRE average channel standard deviation from the mean, as a
percentage of the mean, over all runs for the resolution panel.
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Pixel Band ELM ATREM Combined SPIRE
Band 1 17.9 63.2 15.2
Band 2 18.9 59.9 17.1

Emissivity Band 3 21.6 59.3 29.7
Panel I Band 4 18.9 60.1 19.5

Band 5 12.7 61.8 8.5
Band 6 5.6 61.3 27.8

Table F.2(q). Combined SPIRE average channel standard deviation from the mean, as a
percentage of the mean, over all runs for emissivity panel 1.

Pixel Band ELM ATREM Combined SPIRE
Band 1 27.7 86.1 20.5
Band 2 29.9 73.3 25.7

Emissivity Band 3 34.6 69.7 41.8
Panel 4 Band 4 32.2 69.8 30.9

Band 5 29.1 71.8 18.5
Band 6 25.4 73.8 18.2

Table F.2(r). Combined SPIRE average channel standard deviation from the mean, as a
percentage of the mean, over all runs for emissivity panel 4.

Pixel Band ELM ATREM Combined SPIRE
Band 1 11.9 151.4 12.2
Band 2 10.2 58.8 11.0

Modified Pixel Band 3 4.5 44.7 14.3
Band 4 3.9 47.5 7.5
Band 5 9.5 59.0 8.2
Band 6 14.5 67.9 11.7

Table F.2(s). Combined SPIRE average channel standard deviation from the mean, as a
percentage of the mean, over all runs for the modified pixel.
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Appendix G

Additional Chapter 7 Results

This appendix consists of two tables that support Figure 7.3. Table G. 1 lists the average

channel standard deviation across all six runs for each Band for the ELM, ATREM, Spatial

SPIRE, Spectral SPIRE, and Combined SPIRE estimators for the reflectance estimates on the 19

selected pixels shown in Figure 7.3. Table G.2 list the same information as a percentage of the

channel mean across the six runs.

Pixel Band ELM ATREM Spatial Spectral Combined
SPIRE SPIRE SPIRE

Band 1 0.005 0.029 0.005 0.004 0.006
Band 2 0.002 0.020 0.005 0.002 0.005

2% Panel Band 3 0.001 0.019 0.085 0.006 0.004
Band 4 0.002 0.018 0.080 0.003 0.005
Band 5 0.002 0.020 0.058 0.004 0.010
Band 6 0.004 0.023 0.044 0.011 0.013

Table G.I(a). Average channel standarddeviation from
panel.

the mean over all runsfor the 2 percent

Pixel Band ELM ATREM Spatial Spectral Combined
SPIRE SPIRE SPIRE

Band 1 0.006 0.039 0.007 0.006 0.009
Band 2 0.003 0.028 0.004 0.003 0.005

4% Panel Band 3 0.002 0.025 0.080 0.009 0.006
Band 4 0.002 0.023 0.077 0.004 0.005
Band 5 0.005 0.024 0.056 0.004 0.015
Band 6 0.012 0.028 0.044 0.013 0.026

Table G.J(b). Average channel standard deviation from the mean over all runs for the 4 percent
panel.
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Pixel Band ELM ATREM Spatial Spectral Combined
SPIRE SPIRE SPIRE

Band 1 0.008 0.054 0.010 0.007 0.012
Band 2 0.005 0.041 0.008 0.004 0.009

8% Panel Band 3 0.006 0.037 0.071 0.011 0.009
Band 4 0.007 0.033 0.071 0.006 0.010
Band 5 0.008 0.035 0.055 0.005 0.028
Band 6 0.012 0.038 0.039 0.015 0.026

Table G.1(c). Average channel standard deviation from the mean over all runs for the 8 percent
panel.

Pixel Band ELM ATREM Spatial Spectral Combined
SPIRE SPIRE SPIRE

Band 1 0.007 0.072 0.013 0.006 0.020
Band 2 0.012 0.065 0.012 0.004 0.012

16% Panel Band 3 0.013 0.071 0.045 0.017 0.021
Band 4 0.014 0.067 0.050 0.010 0.015
Band 5 0.020 0.071 0.043 0.009 0.057
Band 6 0.017 0.065 0.028 0.020 0.080

Table G.1(d). Average channel standard deviation from the mean over all runs for the 16
percent panel.

Pixel Band ELM ATREM Spatial Spectral Combined
SPIRE SPIRE SPIRE

Band 1 0.009 0.108 0.021 0.009 0.036
Band 2 0.014 0.118 0.019 0.009 0.021

32% Panel Band 3 0.017 0.134 0.007 0.026 0.047
Band 4 0.017 0.134 0.005 0.022 0.026
Band 5 0.031 0.133 0.024 0.017 0.097
Band 6 0.030 0.094 0.027 0.029 0.156

Table G.J(e). Average channel standard deviation from the mean over all runs for the 32 percent
panel.
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Pixel Band ELM ATREM Spatial Spectral Combined
SPIRE SPIRE SPIRE

Band 1 0.007 0.161 0.032 0.014 0.050
Band 2 0.006 0.194 0.034 0.013 0.035

64% Panel Band 3 0.010 0.217 0.079 0.041 0.093
Band 4 0.011 0.221 0.065 0.031 0.055
Band 5 0.022 0.214 0.048 0.025 0.105
Band 6 0.019 0.134 0.051 0.041 0.176

Table G.1(f). Average channel standard deviation from the mean over all runs for the 64 percent
panel.

Pixel Band ELM ATREM Spatial Spectral Combined
SPIRE SPIRE SPIRE

Band 1 0.016 0.125 0.028 0.012 0.026
Band 2 0.014 0.165 0.029 0.017 0.031

Spectral Band 3 0.009 0.201 0.064 0.048 0.089
Panel Band 4 0.007 0.190 0.042 0.027 0.040

Band 5 0.013 0.173 0.025 0.023 0.071
Band 6 0.032 0.115 0.034 0.039 0.072

Table G.J(g). Average channel standard deviation from the mean over all runs for the spectral
panel.

Pixel Band ELM ATREM Spatial Spectral Combined
SPIRE SPIRE SPIRE

Band 1 0.020 0.077 0.020 0.007 0.019
Band 2 0.013 0.069 0.012 0.005 0.012

15% Panel Band 3 0.009 0.067 0.046 0.016 0.027
Band 4 0.009 0.059 0.052 0.008 0.016
Band 5 0.017 0.059 0.045 0.007 0.034
Band 6 0.036 0.057 0.035 0.022 0.038

Table G.J(h). Average channel standard deviation from the mean over all runs for the 15
percent panel.
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Pixel Band ELM ATREM Spatial Spectral Combined
SPIRE SPIRE SPIRE

Band 1 0.019 0.130 0.031 0.011 0.036
Band 2 0.020 0.146 0.022 0.009 0.018

41% Panel Band 3 0.020 0.158 0.029 0.032 0.055
Band 4 0.018 0.157 0.019 0.017 0.031
Band 5 0.018 0.165 0.028 0.019 0.075
Band 6 0.038 0.129 0.058 0.042 0.126

Table G.1(i). Average channel standard deviation from the mean over all runs for the 41 percent
panel.

Pixel Band ELM ATREM Spatial Spectral Combined
SPIRE SPIRE SPIRE

Band 1 0.024 0.165 0.040 0.019 0.044
Band 2 0.022 0.197 0.039 0.014 0.036

57% Panel Band 3 0.016 0.220 0.082 0.048 0.101
Band 4 0.020 0.222 0.070 0.024 0.058
Band 5 0.054 0.226 0.070 0.026 0.071
Band 6 0.087 0.163 0.096 0.060 0.138

Table G.1(I). Average channel standard deviation from the mean over all runs for 57 percent
panel.

Pixel Band ELM ATREM Spatial Spectral Combined
SPIRE SPIRE SPIRE

Band 1 0.006 0.027 0.005 0.004 0.005
Band 2 0.009 0.029 0.008 0.006 0.009

Grass Band 3 0.035 0.104 0.020 0.032 0.029
Band 4 0.033 0.112 0.021 0.024 0.038
Band 5 0.017 0.104 0.024 0.022 0.048
Band 6 0.021 0.063 0.018 0.032 0.022

Table G.1(k). Average channel standard deviation from the mean over all runs for grass.
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Pixel Band ELM ATREM Spatial Spectral Combined
SPIRE SPIRE SPIRE

Band 1 0.007 0.034 0.005 0.006 0.006
Band 2 0.010 0.040 0.008 0.007 0.010

Mowed Band 3 0.040 0.124 0.011 0.048 0.034
Grass Band 4 0.030 0.145 0.012 0.024 0.023

Band 5 0.042 0.161 0.024 0.018 0.031
Band 6 0.054 0.101 0.027 0.033 0.031

Table G.1(l). Average channel standard deviation from the mean over all runs for mowed grass.

Pixel Band ELM ATREM Spatial Spectral Combined
SPIRE SPIRE SPIRE

Band 1 0.011 0.074 0.015 0.009 0.016
Band 2 0.022 0.114 0.023 0.010 0.022

Road Band 3 0.032 0.184 0.050 0.023 0.083
Band 4 0.025 0.191 0.044 0.032 0.036
Band 5 0.054 0.210 0.029 0.028 0.133
Band 6 0.126 0.172 0.031 0.046 0.351

Table G.1(m). Average channel standard deviation from the mean over all runs for the road.

Pixel Band ELM ATREM Spatial Spectral Combined
SPIRE SPIRE SPIRE

Band 1 0.012 0.071 0.013 0.010 0.012
Band 2 0.010 0.082 0.005 0.006 0.007

Parking Band 3 0.018 0.109 0.016 0.021 0.038
Lot Band 4 0.018 0.107 0.023 0.018 0.018

Band 5 0.040 0.113 0.033 0.012 0.100
Band 6 0.077 0.090 0.035 0.022 0.243

Table G.1(n). Average channel standard deviation from the mean over all runs for parking lot.
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T1

Pixel Band ELM ATREM Spatial Spectral Combined
SPIRE SPIRE SPIRE

Band 1 0.037 0.108 0.035 0.012 0.033
Band 2 0.047 0.126 0.043 0.012 0.047

Building Band 3 0.058 0.137 0.017 0.034 0.085
Roof Band 4 0.056 0.124 0.018 0.023 0.062

Band 5 0.058 0.114 0.038 0.014 0.062
Band 6 0.081 0.088 0.048 0.037 0.076

able G.1(o). Average channel standard deviation from the mean over all runs for the buildin
roof

Pixel Band ELM ATREM Spatial Spectral Combined
SPIRE SPIRE SPIRE

Band 1 0.030 0.079 0.036 0.065 0.044
Band 2 0.029 0.079 0.032 0.058 0.032

Resolution Band 3 0.023 0.090 0.040 0.043 0.033
Panel Band 4 0.022 0.085 0.047 0.037 0.024

Band 5 0.025 0.083 0.042 0.027 0.063
Band 6 0.027 0.067 0.032 0.030 0.092

g

Table G.1(p). Average channel standard deviation from the mean over all runs for the resolution
panel.

Pixel Band ELM ATREM Spatial Spectral Combined
SPIRE SPIRE SPIRE

Band 1 0.052 0.131 0.052 0.022 0.040
Band 2 0.054 0.140 0.048 0.017 0.047

Emissivity Band 3 0.071 0.174 0.048 0.040 0.097
Panel I Band 4 0.069 0.180 0.050 0.041 0.071

Band 5 0.053 0.198 0.048 0.027 0.038
Band 6 0.028 0.174 0.067 0.052 0.168

Table G.1(q). Average channel standard deviation from the mean over all runs for emissivity
panel 1.
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Pixel Band ELM ATREM Spatial Spectral Combined
SPIRE SPIRE SPIRE

Band 1 0.046 0.098 0.041 0.009 0.031
Band 2 0.049 0.098 0.039 0.010 0.040

Emissivity Band 3 0.066 0.123 0.027 0.021 0.079
Panel 4 Band 4 0.067 0.125 0.032 0.015 0.064

Band 5 0.070 0.141 0.031 0.026 0.047
Band 6 0.075 0.134 0.055 0.034 0.061

Table G.1(r). Average channel standard deviationfrom the mean over all runs for emissivity
panel 4.

Pixel Band ELM ATREM Spatial Spectral Combined
SPIRE SPIRE SPIRE

Band 1 0.006 0.032 0.005 0.276 0.006
Band 2 0.011 0.038 0.010 0.260 0.012

Modified Band 3 0.017 0.139 0.015 0.246 0.052
Pixel Band 4 0.016 0.154 0.020 0.208 0.031

Band 5 0.033 0.156 0.021 0.087 0.031
Band 6 0.034 0.094 0.016 0.074 0.032

Table G.1(s). Average channel standard deviation from the mean over all runs for the modified
pixel.
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Pixel Band ELM ATREM Spatial Spectral Combined
SPIRE SPIRE SPIRE

Band 1 11.2 677.0 11.1 8.4 12.3
Band 2 4.5 98.4 11.2 5.0 11.0

2% Panel Band 3 2.0 48.5 77.2 13.2 9.6
Band 4 3.4 49.4 75.2 6.4 9.5
Band 5 4.0 56.5 59.0 7.8 18.9
Band 6 8.4 74.1 47.4 21.1 25.1

Table G.2(a). Average channel standard deviation from the mean, as a percentage of the mean,
over all runs for the 2 percent panel.

Pixel Band ELM ATREM Spatial Spectral Combined
SPIRE SPIRE SPIRE

Band 1 8.5 132.2 9.3 8.0 12.0
Band 2 5.1 70.8 6.8 4.7 7.4

4% Panel Band 3 2.9 48.7 66.6 15.7 10.2
Band 4 2.9 49.2 66.6 6.4 8.5
Band 5 8.3 57.3 53.2 6.6 23.0
Band 6 20.0 76.3 43.4 22.0 42.0

Table G.2(b). Average channel standard deviation from the mean, as a percentage of the mean,
over all runs for the 4 percent panel.

Pixel Band ELM ATREM Spatial Spectral Combined
SPIRE SPIRE SPIRE

Band 1 6.4 80.1 9.1 5.7 10.8
Band 2 4.8 54.3 7.5 3.6 8.2

8% Panel Band 3 5.7 45.8 48.0 12.8 9.6
Band 4 6.9 45.1 49.3 6.4 10.2
Band 5 8.2 49.5 39.5 5.1 25.5
Band 6 10.7 62.7 28.4 14.3 21.5

Table G.2(c). Average channel standard deviation from the mean, as a percentage of the mean,
over all runs for the 8 percent panel.
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Pixel Band ELM ATREM Spatial Spectral Combined
SPIRE SPIRE SPIRE

Band 1 3.9 59.1 7.3 3.3 11.6
Band 2 6.4 47.7 6.8 2.5 7.0

16% Panel Band 3 7.2 46.4 21.0 10.5 11.8
Band 4 7.3 46.3 23.3 5.8 7.9
Band 5 9.7 49.4 19.5 4.6 25.5
Band 6 8.1 57.7 12.8 10.3 32.4

Table G.2(d). Average channel standard deviation from the mean, as a percentage of the mean,
over all runs for 16 percent panel.

Pixel Band ELM ATREM Spatial Spectral Combined
SPIRE SPIRE SPIRE

Band 1 2.6 46.9 7.1 2.9 11.8
Band 2 4.0 43.6 6.0 2.6 6.2

32% Panel Band 3 4.5 43.7 2.1 7.3 13.0
Band 4 4.6 45.9 1.4 6.3 6.9
Band 5 8.1 49.5 6.8 4.8 23.4
Band 6 9.2 53.8 8.8 9.4 39.1

Table G.2(e). Average channel standard deviation from the mean, as a percentage of the mean,
over all runs for the 32 percent panel.

Pixel Band ELM ATREM Spatial Spectral Combined
SPIRE SPIRE SPIRE

Band 1 1.3 42.6 6.5 2.8 10.5
Band 2 1.1 42.2 6.3 2.2 6.1

64% Panel Band 3 1.5 42.1 14.3 6.6 15.2
Band 4 1.8 45.8 11.6 5.1 8.8
Band 5 3.8 51.8 9.0 4.5 17.0
Band 6 4.3 55.8 12.6 9.7 33.2

Table G.2(f). Average channel standard deviation from the mean, as a percentage of the mean,
over all runs for 64 percent panel.
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Pixel Band ELM ATREM Spatial Spectral Combined
SPIRE SPIRE SPIRE

Band 1 4.6 49.8 8.6 3.4 8.4
Band 2 3.2 45.1 6.8 3.6 6.8

Spectral Band 3 1.7 44.2 13.0 8.9 16.6
Panel Band 4 1.4 47.5 8.7 5.4 7.9

Band 5 2.9 53.4 5.9 5.3 14.6
Band 6 9.8 61.6 10.7 11.5 18.7

Table G.2(g). Average channel standard deviation from the mean, as a percentage of the mean,
over all runs for the spectral panel.

Pixel Band ELM ATREM Spatial Spectral Combined
SPIRE SPIRE SPIRE

Band 1 11.2 66.9 12.1 3.5 11.8
Band 2 7.5 53.6 7.2 2.7 7.1

15% Panel Band 3 5.8 48.3 23.0 10.1 16.9
Band 4 5.7 47.6 26.5 5.2 10.0
Band 5 10.2 50.7 23.6 4.5 19.3
Band 6 21.1 60.0 18.5 13.3 19.7

Table G.2(h). Average channel standard deviation from the mean, as a percentage of the mean,
over all runs for 15 percent panel.

Pixel Band ELM ATREM Spatial Spectral Combined
SPIRE SPIRE SPIRE

Band 1 5.0 48.4 8.9 2.9 10.3
Band 2 4.9 46.3 6.0 2.2 4.7

41% Panel Band 3 4.8 44.3 7.3 7.7 13.2
Band 4 4.3 46.5 4.7 4.1 7.2
Band 5 4.2 53.1 7.0 4.3 16.1
Band 6 9.8 59.2 15.8 10.7 27.2

Table G.2(i). Average channel standard deviation from the mean, as a percentage of the mean,
over all runs for the 41 percent panel.
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Pixel Band ELM ATREM Spatial Spectral Combined
SPIRE SPIRE SPIRE

Band 1 4.7 46.0 8.8 3.6 9.5
Band 2 3.9 45.5 7.8 2.5 6.8

57% Panel Band 3 2.7 44.0 15.3 8.0 17.2
Band 4 3.3 47.5 12.8 4.0 9.8
Band 5 10.2 56.6 13.9 4.5 12.3
Band 6 20.4 65.1 23.3 13.1 27.5

Table G.2(j). Average channel standard deviation from the mean, as a percentage of the mean,
over all runs for 57 percent panel.

Pixel Band ELM ATREM Spatial Spectral Combined
SPIRE SPIRE SPIRE

Band 1 16.0 238.9 12.5 11.9 13.0
Band 2 11.6 78.7 11.3 9.4 12.2

Grass Band 3 10.2 37.3 6.0 10.0 8.7
Band 4 9.2 41.1 6.1 7.5 10.4
Band 5 6.5 54.4 8.6 8.9 16.6
Band 6 12.8 67.4 9.5 21.6 12.1

Table G.2(k). Average channel standard deviation from the mean, as a percentage of the mean,
over all runs for grass.

Pixel Band ELM ATREM Spatial Spectral Combined
SPIRE SPIRE SPIRE

Band 1 17.5 1843.8 10.3 11.9 12.8
Band 2 10.5 70.2 8.7 7.1 10.5

Mowed Band 3 11.5 42.7 3.2 13.9 10.0
Grass Band 4 7.7 47.2 3.2 6.3 5.8

Band 5 12.6 62.5 7.0 5.0 8.4
Band 6 24.7 74.6 11.3 14.0 12.9

Table G.2(). Average channel standard deviation from the mean, as a percentage of the mean,
over all runs for mowed grass.
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Pixel Band ELM ATREM Spatial Spectral Combined
SPIRE SPIRE SPIRE

Band 1 6.4 64.3 9.3 4.9 9.7
Band 2 7.6 52.9 9.1 3.5 8.2

Road Band 3 7.2 48.5 11.8 5.0 18.9
Band 4 5.1 49.9 9.6 6.9 7.5
Band 5 9.4 50.6 5.5 5.1 20.9
Band 6 19.9 51.9 5.7 8.6 45.0

Table G.2(m). Average channel standard deviation from the mean, as a percentage of the mean,
over all runs for road

Pixel Band ELM ATREM Spatial Spectral Combined
SPIRE SPIRE SPIRE

Band 1 7.2 67.3 8.5 5.8 8.2
Band 2 4.9 51.4 2.9 3.1 3.5

Parking Band 3 6.6 47.8 5.6 8.3 14.6
Lot Band 4 6.4 47.6 7.6 6.7 6.2

Band 5 12.2 48.5 10.0 3.9 27.4
Band 6 21.3 48.3 10.7 6.9 53.6

Table G.2(n). Average channel standard deviation from the mean, as a percentage of the mean,
over all runs for the parking lot.

Pixel Band ELM ATREM Spatial Spectral Combined
SPIRE SPIRE SPIRE

Band 1 13.3 56.1 13.9 4.2 13.2
Band 2 15.3 52.1 15.3 3.6 15.9

Building Band 3 19.6 53.2 5.3 11.2 28.7
Roof Band 4 20.1 54.9 6.1 8.4 22.1

Band 5 21.4 57.1 13.4 5.1 21.1
Band 6 30.8 60.8 18.1 14.7 26.0

Table G.2(o). Average channel standard deviation from the mean, as a percentage of the mean,
over all runs for building roof
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Pixel Band ELM ATREM Spatial Spectral Combined
SPIRE SPIRE SPIRE

Band 1 13.6 54.5 17.7 31.7 21.1
Band 2 12.7 46.8 15.3 28.9 14.6

Resolution Band 3 9.8 46.6 16.0 21.5 14.6
Panel Band 4 9.8 48.1 19.3 19.3 10.6

Band 5 11.4 52.7 17.9 14.0 25.9
Band 6 13.5 59.9 15.3 16.2 38.0

Table G.2(p). Average channel standard deviation from the mean, as a percentage of the mean,
over all runs for the resolution panel.

Pixel Band ELM ATREM Spatial Spectral Combined
SPIRE SPIRE SPIRE

Band 1 17.9 63.2 19.5 7.0 15.2
Band 2 18.9 59.9 18.2 5.4 17.1

Emissivity Band 3 21.6 59.3 13.9 11.0 29.7
Panel 1 Band 4 18.9 60.1 13.4 10.7 19.5

Band 5 12.7 61.8 11.7 5.9 8.5
Band 6 5.6 61.3 14.6 10.2 27.8

Table G.2(q). Average channel standard deviation from the mean, as a percentage of the mean,
over all runs for emissivity panel 1.

Pixel Band ELM ATREM Spatial Spectral Combined
SPIRE SPIRE SPIRE

Band 1 27.7 86.1 26.3 4.9 20.5
Band 2 29.9 73.3 25.5 5.5 25.7

Emissivity Band 3 34.6 69.7 11.5 10.1 41.8
Panel 4 Band 4 32.2 69.8 13.3 6.8 30.9

Band 5 29.1 71.8 11.9 9.3 18.5
Band 6 25.4 73.8 18.3 10.3 18.2

Table G.2(r). Average channel standard deviation from the mean, as a percentage of the mean,
over all runs for emissivity panel 4.
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Pixel Band ELM ATREM Spatial Spectral Combined
SPIRE SPIRE SPIRE

Band 1 11.9 151.4 10.6 50.5 12.2
Band 2 10.2 58.8 9.8 47.1 11.0

Modified Band 3 4.5 44.7 4.3 35.7 14.3
Pixel Band 4 3.9 47.5 4.9 31.2 7.5

Band 5 9.5 59.0 6.0 21.0 8.2
Band 6 14.5 67.9 6.3 24.5 11.7

Table G.2(s). Average channel standard deviation from the mean, as a percentage of the mean,
over all runs for the modified pixel.
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