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Abstract

The Transdermal Drug Delivery Project in the BioInstrumentation Laboratory
involves the design of a device to deliver drugs through the human skin using micro
needles. It is crucial to characterize the insertion of micro needles into biological tissues.
Hence, instrumentation will be designed and fabricated for the characterization of micro
needle insertion. This thesis focuses on the design and fabrication of such
instrumentation. The instrument is multi-modal, multi-axis, mobile and compact. It is

capable of precise insertion positioning and acquiring accurate insertion force data.
Characterization of micro needle insertion into biological tissues is done successfully
using the data acquired by this instrument and an existing physical force model.
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Title: Hatsopoulos Professor of Mechanical Engineering and Professor of BioEngineering
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Chapter 1
Introduction and Background

1.1 Introduction

The objective of the Transdermal Drug Delivery Project in the BioInstrumentation

Laboratory is to build a device that will delivery drugs through the human skin using

micro needles [11]. These stainless steel needles are approximately 100 pm in outer

diameter and approximately 60 gm in inner diameter. It is crucial to know the

characteristics of micro-needle insertion into skin. It is also important to measure the

maximum insertion force required for a micro-needle to puncture the skin. With the

knowledge of a micro-needle's penetration force and behavior during an insertion, an

appropriate injecting device can then be designed.

In view of this, instrumentation needs to be designed and fabricated so that micro-

needle insertion into biological tissues can be characterized. The design and fabrication

of the appropriate instrumentation will be described and discussed in Chapter 2 of this

thesis.

There is also a need to investigate whether or not different insertion angles and

velocities affect the required penetration force into skin. The experimental procedure will

be described in Chapter 3. Results and discussion will be in Chapter 4. Lastly, conclusion

and future work will be in Chapter 5.
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Figure 1-1. Structure of human skin (image taken from [6]).

It is important to understand the structure of the human skin prior to

characterizing micro needle insertion into skin. Figure 1-1 shows the structure of the

human skin.

The skin is made up of 2 main parts. The epidermis is the outer, thinner portion of

the skin. The epidermis is connected to the inner, thicker part called the dermis [20]. The
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thickness of epidermis varies from about 0.06 mm to 0.09 mm in the eyelid to about 0.5

mm to 0.8 mm, in the palm and sole [10].

The epidermis consists of 5 layers. From the deepest to the outer most layer, they

are the stratum basale, stratum spinosum, stratum granulosum, stratum lucidum and

stratum corneum. It is useful to know that the stratum corneum is a layer of about 30

rows of flat, dead cells. The stratum corneum of the skin of the forehead and cheeks

averages about 0.02 to 0.04 mm in thickness, whereas on the palm and sole it is about 0.4

to 0.7 mm [10].

The dermis is made up of connective tissue containing collagen and elastic fibers.

The combination of collagen and elastic fibers gives the skin its strength, extensibility

(ability to stretch), and elasticity (the ability to return to original form after deformation)

[20]. This knowledge is useful for characterizing the behavior of skin during a needle

insertion.
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1.2.2 Existing Instrumentation

858 Mini Bionix H testing system

The 858 Mini Bionix® II testing system (MTS Corporation, Eden Prarie, MN) is

being used commercially to conduct biomechanical testing (Figure 1-2) such as needle

insertion tests [9].

Figure 1-2. 858 Mini Bionix* II testing system (image taken from [9]).

The apparatus has force transducers of 15 kN and 25 kN capacity. The force range

is too large for the kind of expected insertion force for the micro needles used in this

project (50-300 mN). The device functions only on a single axis in the z-direction and

therefore is limited in terms of degrees of freedom. The instrumentation is bulky, takes up

a lot of space and is very costly. However, its flexibility and versatility make it easy to be

modified to conduct different kinds of tests such as soft tissue strain measurement and

spine loading experiments.

9



JHU Steady Hand Robot

The Steady Hand Robot designed in John Hopkins University (JHU) is used for

microsurgical tasks such as needle insertions into organs [17].

Figure 1-3. Steady hand robot from JHU (image taken from [17]).

This robot is designed for "steady hand" microsurgery so as to extend human

ability to perform micromanipulation. It is being used in the Department of Mechanical

Engineering at JHU to conduct needle insertion into organs for haptic modeling [19]. It is

integrated with a needle holder and load cell to carry out needle insertion experiments.

The load cell has a range of 10 N so it is appropriate for accurately measuring micro

needle insertion force. The robot has 7 degrees-of-freedom, capable of performing needle

insertion in various axes and directions. The disadvantage of this robot is that there is
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human intervention during needle insertion experiments and hence velocity control is

very limited.

Summary

In view of existing instrumentation, there is a need to design and build a highly

versatile, and compact apparatus that is capable of performing precision micro needle

insertion experiments, acquiring accurate results, having multi degrees of freedom,

desired velocities control and having no human manipulation of the needle during

insertion.
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Chapter 2
Design and Fabrication of Instrumentation

To characterize needle insertion into biological tissue, such as skin,

instrumentation with a high degree of precision and accuracy is needed. In this chapter,

the design and fabrication of such a measurement system is discussed in detail. The

design of this single semi-automated multi-modal instrument is divided into three main

systems, namely the precision motion system, data acquisition and measurement system

and the optical system. Figure 2-1 shows the assembled version of the multi-modal

apparatus.

Figure 2-1. Multi-modal instrument.
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2.1 Precision Motion System

In this section, details of the precision motion system of the instrumentation are

discussed. The precision motion system consists of micro stepping linear stages,

controllers, and stepper motors. The use of computer control for this system is presented

as well.

2.1.1 Micro Stepping Linear Stages, Micro Stepping Motors and Controllers

The precision motion system is made up of five micro stepping linear stages

(Parker Daedal Division Model no. 404150ZRMP, Hudson, NH) to provide five axes of

motion: one Z-axis, two X-axes (XI and X2 axis) and two Y-axes (Y1 and Y2 axis). The

optical system is mounted on the Z-axis. Figure 2-2 shows a single linear stage. Each

linear stage is attached to a micro stepper motor (Parker Compumotor ZETA57-83-MO,

Hudson, NH) and provides a resolution of motion of 50 nm. One controller (Parker

Compumotor ZETA 6104, Hudson, NH) is used to control each micro stepper motor.

Figure 2-3 shows the ZETA 6104 controllers.

Encoder

Micro Stepper
Motor

Figure 2-2. A single micro stepping linear stage with micro stepping motor.
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Figure 2-3. ZETA 6104 controllers.
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Figure 2-4. Integration of precision motion system.

14

F



Figure 2-5. Actual precision motion system mounted on optical table.

Figure 2-4 shows the schematic layout of how the linear stages, micro stepper

motors, controllers, and the computer are integrated. The computer communicates with

the controllers via RS232 serial port connections. The actual precision motion system set

up is shown in Figure 2-5. Each controller is connected to a single RS232 cable, which is

in turn connected to an RS232-to-USB (Universal Serial Bus) connector (Edgeport,

Austin, Texas) linked to the computer via USB [8].

The five controllers can communicate in another way with the computer by

connecting a single RS232 cable to the first controller and linking the rest of the

controllers using a Daisy-chain technique. Figure 2-6 shows the schematic of the Daisy-

chain connections among the five controllers.
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The Flow of Command and Information

RS232
cable to 2345
computer

Cables to Individual Micro Stepping Motors

Figure 2-6. Daisy-chain connection schematic of the five controllers.

In this Daisy-chain connection, communication speed is slower because the

information sent back and forth from the last controller has to pass through the first few

controllers. For example, commands from the computer sent to controller number 5 have

to pass through controller number 1, 2, 3 and 4 and vice versa. The Daisy-chain technique

is undesirable because of the time delays during communication.

2.1.2 Encoders and Limit Switches

Three of the micro stepping linear stages (Z-axis, X2-axis and Y2-axis) are

mounted with displacement encoders (Renishaw Model No.RGH22 X30FOO) and limit

switches. Figure 2-2 shows the encoders and limit switches mounted on the linear stage.

The displacement encoders are installed to determine the actual displacements

made by the linear stages. The readings of these encoders are also used to ensure accurate

analysis of needle insertions into biological tissue. The encoders are connected to the

16



same controllers used to control the micro stepping motors and the readings can be

retrieved from the controllers. 1 mm of travel corresponds to 250 counts on the encoder

reading:

x
Displacement = mm, (2.1)

250

where x is number of counts from the start point.

The limit switches are used to ensure the lead screws in the micro stepping motors

are not damaged by jamming at the end of travel. The limit switches consist of: forward

limit switch, home limit switch and backward limit switch. The limit switches are also

connected to the controllers. Both the forward and backward switches (end-of-travel limit

switches) are activated when a metal probe from the linear stage moves over the

proximity sensors on the switches. Figure 2-7 shows the metal probe and a limit switch.

Once the end-of -travel limit switches are activated, the controller will stop the linear

stage from moving in the intended direction. However, the opposite direction of travel is

valid. In this way, the lead screws in the micro stepping motors will not be damaged.

Limit switch

Metal probe

Sensor

Figure 2-7. Limit switch and metal probe.
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2.1.3 Computer Controlled Motion System

The precision motion system is computer controlled using the Visual Basic

Program. Figure 2-8 shows the Graphics User Interface (GUI) of the program to control

the linear stages. The same GUI is also used for the data acquisition and measurement

system. The Microsoft Visual Basic 6.0 [13] code for the GUI is shown in the Appendix.

Precision Motion Control and Data Acquisition Interface By Wilson Chan

Enter Step Size (mm) Sprin-

AufntAic-
X1I -Axis__

Backward

Y1 -Axis---

Go Backwardl

Z -Axis

Go Backward

X2 -Axis--

Go Backward

Y2 -Axis---

Go Backward

Go Forward

Go Forward

Go Forward

Go Forward

Go Forward

---

Figure 2-8. Graphics user interface used in precision motion control and data acquisition.
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2.2 Data Acquisition and Measurement System

In this section, the details of the data acquisition and measurement are discussed.

The integration of the data acquisition and measurement system with the precision

motion system is also shown. The data acquisition and measurement system consists of

force transducers, a displacement transducer, a voice-coil actuator, data acquisition unit,

signal conditioning amplifier, power amplifier, function generator, low pass filters, and

power supply.

2.2.1 Force Transducers

In this experiment, two types of force transducers, Entran and Omega load cells,

are used to make needle insertion forces measurements. The Entran load cell (ELFS-

T3M-10N) is shown in Figure 2-9. It can measure both tensile and compressive forces

within the full-scale of 10 N (between -5 N and +5 N). It activates at an excitation

voltage of 15 V DC and operates well at temperatures between -40 'C and 120 'C. It also

has M5 thread shafts from both sides for easy mounting. It has been calibrated to 1 N/V.

Figure 2-9. Entran ELFS-T3M-1ON load cell.
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The Omega load cell (Model LCCA-200) is shown in Figure 2-10. This is a more

robust force transducer and has a full-scale range of 900 N (between -450 N to +450 N).

Although the range is high, the Omega load cell is capable of accurately detecting very

small forces (resolution of 0.1 mN) such as needle insertion forces. The excitation

voltage is 15 V DC and operates well at a temperature between 0 *C to 53 *C. The

Omega load cell is calibrated to 10 N/V.

Angle- Omega
varying Load Cell

Platform
for skin
specimens

Figure 2-10. Omega model LCCA-200 load cell.

2.2.2 Voice-Coil Actuator

The Voice-Coil Actuator is also known as the Type 4810 mini-shaker from Brael

& Kjaer [2]. Figure 2-11 shows the mini-shaker. The mini-shaker is used for the dynamic

excitation of lighter objects. It is of the electrodynamic type with a permanent field

magnet. A coil, which is an integral part of the table structure, is flexibly suspended in

one plane in the field of the permanent magnet. A sinusoidal current signal, provided by

an external oscillator such as a function generator, is passed through the coil to produce a

20



vibratory motion at the table. This will be used to vibrate the needle in the axis of

insertion for one of the experiments.

An object to be vibrated can be attached to the mini-shaker's table by means of a

10-32 UNF screw. The frequency range is DC to 18 kHz and maximum peak-to-peak

displacement of table is 6 mm. The dynamic stiffness of flexures holding the table is 2

kN/m.

- Table

Electrical
Input

Figure 2-11. BrUel & Kjaer Type 4810 mini-shaker.

2.2.3 Displacement Transducer

The Fastar LD100-20 displacement transducer (from Omega) is shown in Figure

2-12. It is mounted on the table of the mini-shaker to determine the distance of the

flexures being pushed back when a force is exerted during needle insertion. It is crucial to

know this distance because the actual displacement reading from the encoder of the micro

21



stepping linear stage needs to be compensated with the distance recorded by the Fastar

displacement transducer.

The Fastar displacement transducer operates and measures displacement with an

aluminum core moving inside a polyimide encased coil. It is ideal for measuring

oscillating linear displacement with frequencies as high as 15 kHz. It measures

displacement up to 19 mm and has a resolution of 0.19 tm. It operates well at

temperatures ranging from -50 0C to 125 0C.

The output of the displacement transducer is recorded in the high-speed signal

conditioner (Fastar SP200A from Omega) shown in Figure 2-12.

Mini-
shaker

Fastar
displacement
transducer

Figure 2-12. Fastar displacement transducer mounted on mini-shaker.

2.2.4 Data Acquisition

Outputs from the Entran and Omega load cells are fed into signal conditioning

amplifiers (2300 System from Measurements Group, Inc.) [1]. These signal conditioning

22



amplifiers help calibrate the load cells to a desirable value. The Entran load cell is

calibrated to 1 N/V while the Omega load cell is calibrated to 10 N/V.

The outputs of these signal conditioning amplifiers are in turn fed into the data

acquisition unit (Agilent 34970A, Hewlett-Packard Company) through a 1 kHz first-order

low pass filter to minimize noise. The readings from the Fastar displacement transducer

are fed directly into the data acquisition unit. The data acquisition unit is set to scan and

sample readings from these transducers during experiments. Readings from the output

buffer will be retrieved using a Visual Basic program.

A function generator (HP 3314A, Hewlett-Packard Company) is used to supply a

sinusoidal current signal into the mini-shaker to create oscillatory motion. A power

supply (HP E3631A, Hewlett-Packard Company) and a power amplifier are used to

power up the mini-shaker and the low pass filter.

Figure 2-13 shows the signal conditioning amplifiers, data acquisition unit,

function generator, power supply, power amplifier and low pass filter.

Function
generator Signal

Power conditioning

supply amplifier

Power
ipjy amplifier

Low passI
filter

Data
acquisition
unit

Figure 2-13. Data acquisition system.
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Figure 2-14 shows the schematic of the Integration of Data Acquisition System.

Mini-Shaker
DC to 18 kHz Fastar

Displacement
Transducer

Sinusoid
Current
Signal

~

Entran
Load Cell

1 N/V

Omega
Load Cell

10 N/V

Figure 2-14. Schematic of data acquisition system.
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2.2.5 Integration of Data Acquisition System with Precision Motion System

The micro testing instrumentation is a multi-modal one. It can be readily modified

to conduct different experiments on needle insertions. Figure 2-15 shows how the mini-

shaker, Fastar displacement transducer and the Entran load cell are integrated with the

precision linear stages.

Figure 2-15. Integration of voice-coil, displacement transducer and load cell with linear
stages.

The above module was used to conduct experiments on both the linear needle

insertions and linear needle insertions with vibratory motion in the axis of insertion.

2.2.6 Simple Experiments to Test Instrumentation

Two simple experiments were conducted to test the capabilities of the multi-

modal instrumentation before performing any needle insertion experiments. The first

experiment involved compressing rubber blocks of different stiffness as shown in Figure

2-16 and obtaining the force versus deformation curves using the data acquisition system.
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These blocks were compressed in 10 pm steps until a maximum force of 50 N, then

returned to the uncompressed state. The Omega load cell measured the forces at every

step. The results of this experiment are shown in Figure 2-17. Hysteresis occurs for all

blocks [18].

The second experiment involved stretching a spring as shown in Figure 2-18. The

force versus extension curves are shown in Figure 2-19. The spring was stretched in steps

of 1 mm to a total extension of 10 mm. Results show a linear relationship between spring

force and extension of spring with spring constant k of 1.27 kN/m, thus obeying Hooke's

law.

Omega
load cells

Rubber block
under
compression

Figure 2-16. Rubber blocks compression experimental rig.
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Figure 2-17. Force versus deformation results for rubber blocks (increasing numbers
corresponds to increasing stiffhess).

Spring

Figure 2-18. Spring extension experimental rig.
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Figure 2-19. Force versus extension results for a spring (k = 1.27 kN/m).

2.3 Optical System

Part of the instrumentation includes an optical system. The optical system was

integrated to image needle insertions into biological tissue. In this section, the details of

the optical system are discussed. The optical system includes a CCD camera, microscope

objectives, beam splitter, light sources, and imaging software.

2.3.1 Integration of the Optical System

The schematic of the optical system is shown in Figure 2-20. A CCD camera

(1280 x 960 resolution Sony DFW-SX900) was used to capture images of needle

insertions, using an IEEE 1394 Digital Interface [7] at a frame rate of 7.5 frames/s.

Mitutoyo [4] infinity-corrected microscope objectives (M Plan Apo series with

magnification of 2X, 5X and 20X) were used to magnify the images of needle insertion.

28



The InfiniTubeTM in-line assembly unit [3] allowed the Mitutoyo objectives to be

coupled with the Sony CCD camera. It had an effective secondary lens system of focal

length of 200 mm, providing IX magnification onto the CCD image plane for the

Mitutoyo objectives. It utilized an in-path beam splitter and a side port illumination tube

to allow light from light sources to be directed to the Mitutoyo objectives and the Sony

CCD camera.

Two light sources were used in the optical system. The Zeiss KL1500 electronic

light source is used to provide illumination in the InfiniTubeTM in-line assembly unit. The

Mille Luce fiber optic illuminator M1000 light source is used to provide illumination for

the ring guide around the Mitutoyo objectives. The ring guide supplied a radial

illumination on the objects to be imaged and created 'shadow' effects to produce distinct

features.

Microsoft Direct X8A [5] provided a video capturing and imaging software to

record needle insertion videos and images captured by the Sony CCD camera.
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IEEE 1394
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M1000

Light Source

Micro Needle

-V

KL1500
Light Source

Image captured
By

Direct X8A
Software

itutoyo Objective

Ring Guide for Light Source

Light Beam

Figure 2-20. Schematic of optical system. The image on the right is of a stainless steel
needle with 100 pm OD and 60 pm ID.

Figure 2-21 shows the optical system mounted on the Z-axis of the precision

motion system. Figure 2-22 shows an image of a micro needle.
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Figure 2-21. Optical system mounted on Z-axis of precision motion system.

100 pm

Figure 2-22. Image of micro needle taken by optical system.
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Chapter 3
Experimental Procedure

The objective of the instrumentation was to characterize micro needle insertions

into biological tissue. The relationship of insertion forces and insertion displacements of

micro needles will be investigated. In this chapter, the procedure for this experiment is

described.

3.1 Specimen

The biological tissue used for the needle insertion experiment is skin from the

shoulder of a pig. It is selected based on its similar characteristics to human skin and is

readily available in supermarkets.

3.2 Experiment to Characterize Micro Needle Insertions

In this experiment, there were 2 methods of insertion: 1) the linear insertion and

2) the linear insertion with oscillatory motion (frequency of 5 kHz and amplitude of 20

mV) in the axis of insertion. This was done to investigate whether the oscillatory motion

has a significant effect on lowering insertion forces or ease of puncture into skin.

Illustrations of methods of insertion are shown in Figure 3-1 and Figure 3-2.

Intuitively, higher insertion speeds should generate higher insertion forces.

Therefore, in this experiment, two different speeds of linear insertion: 1) 0.1 mm/s and 2)

1 mm/s were used to investigate the effect of insertion velocity on insertion force.

Investigation of whether a smaller angle of insertion would generate a lower

insertion force was also done. There were two different angles of insertion into the skin:

1) 90* and 2) 15* in this experiment (angles measured from the surface of the skin to the

shaft of the needle).
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Similar experiments were conducted on a 24-Gauge (OD = 570 ptm) surgical

needle to compare results with the micro needle.

Direction of insertion

To Load
cell /7

Micro needle
150

in

Angle-
varying

platform

Epoxy

Figure 3-1. Linear insertion method with insertion angle of 15'.

Direction of insertion

Oscillatory motion produced by
mini-shaker (5 kHz, 20 mV)

To Load
cell

Micro needle

Pig skin

Angle-
varying
platform

Epoxy

Figure 3-2. Linear insertion with oscillatory motion with insertion angle of 900.
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3.3 Experimental Procedure

A piece of 40 mm x 40 mm pig skin was cut using a surgical scalpel. The skin was

attached with epoxy onto a platform mounted on the instrumentation, which allows the

user to vary the angle of insertion.

The micro needle was soldered onto a M5 stainless steel nut. The nut was then

screwed directly onto the Entran load cell so that the micro needle is parallel to the axis

of insertion. The 24-Gauge needle was threaded with M5 threads, and was screwed

directly onto the Entran load cell.

At the beginning of each test, each needle was located approximately 0.5 mm

away from the skin. During each experiment, each needle was advanced to a total

displacement of 2.5 mm, penetrating the skin to an approximate depth of 2.0 mm. The

needle was held in the punctured skin for about 5 seconds, and then pulled out from the

skin to its original position. Insertion force readings were registered by the load cell

during each test and recorded by the computer via the data acquisition unit. Insertion

force data were collected corresponding the displacement readings from the encoders

from the linear stages. A plot of insertion force against displacement could be obtained

for each needle insertion test.

Figure 3-3 and Figure 3-4 show the micro needle inserting into pig skin at angles

of 90* and 15*, respectively. Figure 3-5 and Figure 3-6 show the 24-Gauge surgical

needle inserting into pig skin at angles of 90* and 15', respectively.
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Figure 3-3. Micro needle inserting into pig skin at 90*.

Figure 3-4. Micro needle inserting into pig skin at 150*.
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Figure 3-5. 24-Gauge surgical needle inserting into pig skin at 900.

Figure 3-6. 24-Gauge surgical needle inserting into pig skin at 15'.
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There were a total of 16 tests in each experiment. Table 3-1 shows the 16 different

tests in each experiment. Tests were conducted in the order listed.

Table 3-1. 16 different tests in each experiment.

No. Method of Insertion Angle Speed Needle type
1 Linear 15 degrees 0.1 mm/s 100 pm
2 Linear 15 degrees 1 mm/s 100 pm
3 Linear 15 degrees 0.1mm/s 570 pm
4 Linear 15 degrees 1 mm/s 570 pm
5 Linear 90 degrees 0.1mm/s 100 ptm
6 Linear 90 degrees 1 mm/s 100 ptm
7 Linear 90 degrees 0.1 mm/s 570 pm

8 Linear 90 degrees 1 mm/s 570 pm

9 Linear with Oscillatory Motion 15 degrees 0.1 mm/s 100 pm
10 Linear with Oscillatory Motion 15 degrees 1 mm/s 100 pm
11 Linear with Oscillatory Motion 15 degrees 0.1mm/s 570 pm
12 Linear with Oscillatory Motion 15 degrees 1 mm/s 570 pm
13 Linear with Oscillatory Motion 90 degrees 0.1mm/s 100 pm
14 Linear with Oscillatory Motion 90 degrees 1 mm/s 100 pm
15 Linear with Oscillatory Motion 90 degrees 0.1 mm/s 570 pm
16 Linear with Oscillatory Motion 90 degrees I mm/s 570 pm

Each set of experiments is conducted on the same piece of specimen pig skin to

avoid skin variation. The tests in each experiment were conducted in a rapid succession

in order to obtain consistent results, since the texture of the pig skin changes after

prolonged exposure to the air. Each experiment took about 30 minutes to conduct. Ten

sets of experiments were performed to verify repeatability of this experiment. Each

experiment uses a different pig skin sample.
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Chapter 4
Results and Discussion

In this chapter, the various needle insertion force results are presented and

discussed. The micro needle insertion is also characterized using existing models.

4.1 Results and Discussion

Ten experiments were conducted and data were collected. A typical set of needle

insertion force results are shown in Figure 4-1 and Figure 4-2. All experiments

demonstrate a general trend and therefore verify the repeatability of the experiments.

The results show that the micro needle requires lower insertion force (peak force

from plots) than the 24-Gauge (570 pm) surgical needle. Since the 24-Gauge needle is

larger in diameter, it makes sense that more force would be required to push the larger

needle into skin.

Results also show that the insertion force of a micro needle into skin at 150 angle

of insertion is lower than that of a 90* one.

A higher speed of needle insertion does not appear to have a significant effect on

insertion force. There is no significant difference in the shape of the plots. The

mechanical behavior of the skin is not affected by higher insertion speed.

The results also show that the method of linear insertion with oscillatory motion

(frequency of 5 kHz and amplitude of 20 mV) has no significant effect on lowering

insertion forces into skin.

The following pages show the plots and an analysis of the results follows.
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Figure 4-1. Insertion force versus displacement results using linear insertion method.
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Figure 4-2. Insertion force versus displacement results using linear insertion with

oscillatory motion method.
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4.2 Characterization of Micro Needle Insertion into Skin

In this section, a detailed data analysis of one of the needle insertion tests is made.

Data are also fitted to an existing physical model.

4.2.1 Data Analysis

0.2,

First point of
puncture (peak
force = 164 mN)

Needle
deforming
skin

Needle slips
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Needle
deforming
second layer

Skin deforming
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ps again
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Figure 4-3. Typical insertion force versus displacement curve for linear insertion of micro
needle into skin for insertion angle of 150 and insertion speed of 0.1 mm/s.
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A typical insertion versus displacement plot is shown in Figure 4-3. Figure 4-4

illustrates how the skin behaves when a micro needle penetrates it. As the micro needle

approaches the skin, it touches the tissue and deforms the elastic portion (due to collagen

and elastic fibers of dermis) of the skin (see Figure 4-4(A)). The initial nonlinear portion

of Figure 4-3 shows the deformation of skin. The skin deforms until a point where the

needle first punctures the skin. This is shown at the first peak (point of puncture) in the

Figure 4-3. After the needle punctures the first layer (epidermis), it slips, and this is

evident in the sudden drop in insertion force after the first peak. As the needle slips, it

comes in contact with an internal layer (possibly the dermis) and continues to deform the

internal layer (see Figure 4-4(B)). The deformation continues until the needle punctures

the internal layer of skin. This is shown in the sudden drop of insertion force after the

second point of puncture.

42



Needle deforming first layer of skin Needle punctured first layer of skin
and deforming second layer

C D

Needle punctured second layer Skin deforming as needle
and penetrating skin withdraws from skin

Figure 4-4. Illustration showing the mechanics of micro needle insertion into skin.

After penetrating the skin to a certain depth, the micro needle is held in place for

5 seconds before it is withdrawn from the skin. At this point, the skin slides up and this is

shown in the drop in insertion force after the second peak in Figure 4-3 (see illustration in

Figure 4-4(C)). From the negative force results in the removal portion of the plot in

Figure 4-3, its can be shown that the skin deforms in the opposite direction as the needle

is withdrawing out of the skin (see illustration in Figure 4-4(D)). This is due to elastic

nature of skin and friction between the skin and the shaft of needle. When the needle

punctures and penetrates the skin, the skin springs back radially and exerts a radial force

on the needle [16]. This increases the friction force experienced by the needle and thus

when the needle is pulling out of the skin, the skin deforms in the direction of withdrawal
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until the friction force acting on the walls of the needle is insufficient to stretch and hold

the skin any longer. At this point, the skin slips from the needle and returns to the

unstretched position. The analysis of the skin mechanics during needle insertions is based

on results and verified by physical observations of behavior of the skin.

4.2.2 Physical Model

From Figure 4-3, it can be shown that force data collected is a summation of

stiffness, friction, and cutting forces, as shown in Equation 4.1 [19]. The stiffness force is

pre-puncture, and the friction and cutting forces (penetration force) are post-puncture.

fneedle ( = fstfness (X ) + ffrictio X2 ) + feutting (X2 ) , (4.1)

where x is the displacement of needle, x, is the pre-puncture displacement of needle and

X2 is the post-puncture displacement of needle.

The stiffness force is due to the elastic properties of the skin. The elasticity of the

skin can be identified from the pre-puncture force data in Figure 4-3. Biological tissue is

linearly elastic for small deformations [14]. However, it is clear from Figure 4-3 that the

deformation is significant, so the force must be modeled by a nonlinear method.

Assuming a quasi-static stiffness response, a nonlinear spring model demonstrated by

d'Aulignac in modeling deformation of a human thigh is used [12]. The graphical

representation of this nonlinear model is shown in Figure 4-5.
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Linear Spring

Nonlinear Spring

Figure 4-5. Nonlinear model of human thigh.

The nonlinear force model is given by

fsness (x) = , (4.2)
ax + b

where x is the difference in the length of the nonlinear springs with respect to their

original, resting length. The nonlinear stiffness parameters a and b are fitted to match the

deformation measured on skin.

Based on deformation of skin from five tests on the linear insertion of micro

needles into skin at an angle of 90' and a speed of 0.1 min/s, the average values of

stiffness parameters a and b were found and are shown in Table 4-1.
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Average Values of Nonlinear Stiffhess Parameters

Parameter a [1/NJ Parameter b [m/N]

-152.67 0.15035

Figure 4-6 shows the fit of the physical model to a typical deformation result

during a linear insertion of micro needle into skin at an angle of 90' and a speed of 0.1

mm/s.
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Figure 4-6. The fit of physical model to a typical experimental deformation result.
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The penetration force is made up of the friction and cutting forces. The friction

force occurs along the length of the needle, and is due to tissue adhesion and damping.

The friction force can be modeled as

friction = bpvneedle, (4.3)

where bp is the damping coefficient per unit length, 1 is the length of needle in the skin

and vneedle is the velocity of the needle tip.

Within the limits of this experiment, only vneedle can be determined accurately. The

damping coefficient per unit length, bp, is not known accurately, and varies from

specimen to specimen. This is especially true when the properties of skin specimen

change over time due to exposure to the atmosphere. The length of needle in skin, 1, also

cannot be accurately determined within the limits of this experiment because the position

of the skin surface is not measured. Hence, the friction force cannot be accurately

modeled.

The cutting force is that which is necessary to slice through the skin. This force

exists as a combination of cutting forces and tissue stiffness at the tip of the needle, since

the needle encounters stiffness as it cuts through new tissue. The cutting force can be

calculated by subtracting the friction force from the total penetration force. However, in

this experiment, the friction force cannot be accurately modeled. Thus, it is difficult to

model cutting force of a needle through a skin, although ideally, cutting forces will be

constant and unrelated to the needle depth.

4.3 Limitations

One of the limitations of this experiment is the instrumentation's inability to

detect the actual length of needle into skin during an insertion. This limits the ability to
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model the friction force and cutting force in skin. Another limitation is that the properties

of skin specimen change over time after it is exposed to the atmosphere, probably due to

the loss of moisture. There was no test chamber where humidity could be controlled and

thus the change in properties may have affected the insertion force results. It is also

difficult to compare results from one insertion to another because skin properties are

different at different spots of insertions.
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Chapter 5
Conclusion

5.1 Summary

Instrumentation was designed and fabricated to characterize micro needle

insertion into biological tissues. Maximum force of micro needles puncturing skin at

various insertion angles and velocities were also measured and quantified. Higher

insertion speed does not have a significant effect insertion force. A smaller angle of

insertion requires less force for the micro needle to puncture skin. The micro needle (100

ptm OD) requires less insertion force than a 24-Gauge (570 Im OD) surgical needle. The

linear insertion method with an oscillatory motion, when compared to a regular linear

insertion method, does not have a significant effect on lowering insertion force. The

lowest force required to puncture skin is when insertion angle is 150 and insertion speed

is 0.1 mm/s. This force ranges from 120 to 200 mN. For physical model representation,

only the stiffness force can be modeled accurately. The friction and cutting force of micro

needle cannot be modeled due to the limitation of the instrumentation. All these pieces of

information are crucial for a micro needle injection transdermal drug delivery project.

5.2 Future Work

Although the instrumentation is able to measure and quantify micro needle

insertion forces successfully, there are certain aspects of it that need improvement.

5.2.1 Temperature and Humidity Control Chamber

One of problems faced when conducting the experiment was that the properties of

the skin specimen changed over time during exposure to the atmosphere. If the test is
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conducted in an enclosed chamber where temperature and humidity can be controlled, the

skin specimen properties may be maintained for a longer time.

5.2.2 Rotational Insertion Module

A linear insertion with rotational motion about the axis of insertion method may

reduce micro needle insertion force [15]. A module may be included in the

instrumentation to performed rotational needle insertion into skin.

Direction of insertion

Rotation about
insertion axis 1800
back and forth

To Load
cellAngle- cell varying

platform

Micro needle

Pig skin
Epoxy

Figure 5-1. Rotational insertion method.

Similar analysis can be made with this new method of insertion, and then

compared with the experiments presented here.

5.2.3 X-ray Imaging System

Because the exact penetration length of micro needle in the skin is not known

during insertion, an x-ray imaging system may be integrated with the present
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instrumentation to generate radiographs to reveal actual length of needles in skin. With

the x-ray imaging, deflection of needles in skin can also be studied [15].

5.2.4 Synthetic Skin Specimen

Synthetic "skin" specimen of known stiffness and damping properties can be used

to replace real skin samples. The problem of skin variation will be reduced if the needle

insertions are made on synthetic "skin" specimens. In this way, it can be known for sure

whether or not the variations in insertion forces are due to different methods, angles, and

velocities of needle insertions.
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Appendix
Visual Basic 6.0 Code for Precision Motion Control and Data
Acquisition

Option Explicit

'Precision Motion Control and Data Acquisition Interface by Wilson Chan

Dim i As Double 'Loop Iteration
Dim data 1 As String 'Voltage Text from Channel 1
Dim data2 As String 'Voltage Text from Channel 2
Dim data3 As String 'Voltage Text from Channel 3
Dim data4 As String 'Voltage Text from Channel 4
Dim Vdatal As Double 'Voltage data in numeric form from Channel 1
Dim Vdata2 As Double 'Voltage data in numeric form from Channel 2
Dim Vdata3 As Double 'Voltage data in numeric form from Channel 3
Dim Vdata4 As Double 'Voltage data in numeric form from Channel 4
Dim ml As New sleep
Dim MotorSteps As Long 'steps made by stage
Dim MotorSteps 1 As Long 'steps made by rotation stage
Dim Distance As Double 'distance in mm
Dim velocityl As Double 'velocity in rev/s
Dim Speed As Double 'velocity in mm/s
Dim angle 1 As Double 'angle in degrees
Dim Forward2 As Boolean 'Represent Postive Direction if True
Dim StepsPerRev As Long 'Steps Per Revolution
Dim DistPerTurn As Double ' Distance in mm per Revolution

Private Sub FormLoad()

'Initial Values

StepsPerRev = 25000
DistPerTurn =5
Speed = 1
Distance = 0.001
Forward2 = True

'Initialize RS-232 Serial Ports when Form Loads

PortA.PortOpen = True
PortB.PortOpen = True
PortC.PortOpen = True
PortD.PortOpen = True
PortE.PortOpen = True
PortF.PortOpen = True
PortG.PortOpen = True
PortH.PortOpen = True

'Disable travel limits
PortH.Output = "l1LHO" + vbCr

'Turn the timer off
Timerl.Enabled = False
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End Sub

Private Sub cmddistClicko
Distance = CDbl(txtDist.Text)

End Sub

Private Sub velocityClick()
Speed = CDbl(txtvel.Text)

End Sub

Private Sub GOForwardX _Click() 'Move Stage in the Positive XI Direction

velocityl = Round(Speed / DistPerTurn, 5)
PortA.Output = "1 V" + CStr(velocityl) + vbCr
MotorSteps = Round(Distance * StepsPerRev / DistPerTurn, 0)
PortA.Output = "1 D" + CStr(MotorSteps) + vbCr
PortA.Output = "i GO" + vbCr

End Sub

Private Sub GOBackwardX IClick() 'Move Stage in the Negative XI Direction

velocityl = Round(Speed / DistPerTurn, 5)
PortA.Output = "1 V" + CStr(velocityl) + vbCr
MotorSteps = Round(Distance * StepsPerRev / DistPerTurn, 0)

Forward2 = False
If Forward2 = False Then

MotorSteps = -1 * MotorSteps
End If

PortA.Output = "ID" + CStr(MotorSteps) + vbCr
PortA.Output = "1_GO" + vbCr

End Sub

Private Sub GOForwardYl Click() 'Move Stage in the Positive Y1 Direction

velocityl = Round(Speed / DistPerTurn, 5)
PortB.Output = "2_V" + CStr(velocityl) + vbCr
MotorSteps = Round(Distance * StepsPerRev / DistPerTurn, 0)
PortB.Output = "2_D" + CStr(MotorSteps) + vbCr
PortB.Output = "2_GO" + vbCr

End Sub

Private Sub GOBackwardYl Clicko 'Move Stage in the Negative Y1 Direction

velocityI = Round(Speed / DistPerTurn, 5)
PortB.Output = "2 V" + CStr(velocityl) + vbCr
MotorSteps = Round(Distance * StepsPerRev / DistPerTurn, 0)

Forward2 = False
If Forward2 = False Then
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MotorSteps = -1 * MotorSteps
End If

PortB.Output = "2_D" + CStr(MotorSteps) + vbCr
PortB.Output = "2_GO" + vbCr

End Sub

Private Sub GOForwardZClickO 'Move Stage in the Positive Z Direction

velocityI = Round(Speed / DistPerTurn, 5)
PortC.Output = "3_V" + CStr(velocityl) + vbCr
MotorSteps = Round(Distance * StepsPerRev / DistPerTurn, 0)
PortC.Output = "3_D" + CStr(MotorSteps) + vbCr
PortC.Output = "3_GO" + vbCr

End Sub

Private Sub GOBackwardZClicko 'Move Stage in the Negative Z Direction

velocityl = Round(Speed / DistPerTurn, 5)
PortC.Output = "3 V" + CStr(velocityl) + vbCr
MotorSteps = Round(Distance * StepsPerRev / DistPerTum, 0)

Forward2 = False
If Forward2 = False Then

MotorSteps = -1 * MotorSteps
End If

PortC.Output = "3 D" + CStr(MotorSteps) + vbCr
PortC.Output = "3_GO" + vbCr

End Sub

Private Sub GOForwardX2_Click() 'Move Stage in the Positive X2 Direction

velocityI = Round(Speed / DistPerTurn, 5)
PortD.Output = "4 V" + CStr(velocityl) + vbCr
MotorSteps = Round(Distance * StepsPerRev / DistPerTurn, 0)
PortD.Output = "4 D" + CStr(MotorSteps) + vbCr
PortD.Output = "4_GO" + vbCr

End Sub

Private Sub GOBackwardX2_ClickO 'Move Stage in the Negative X2 Direction

velocityI = Round(Speed / DistPerTurn, 5)
PortD.Output = "4_ V" + CStr(velocityl) + vbCr
MotorSteps = Round(Distance * StepsPerRev / DistPerTurn, 0)

Forward2 = False
If Forward2 = False Then

MotorSteps = -1 * MotorSteps
End If

PortD.Output = "4D" + CStr(MotorSteps) + vbCr
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PortD.Output = "4_GO" + vbCr

End Sub

Private Sub GOForwardY2_Click() 'Move Stage in the Positive Y2 Direction

velocityI = Round(Speed / DistPerTurn, 5)
PortE.Output = "5 V" + CStr(velocityl) + vbCr
MotorSteps = Round(Distance * StepsPerRev / DistPerTurn, 0)
PortE.Output = "5_D" + CStr(MotorSteps) + vbCr
PortE.Output = "5_GO" + vbCr

End Sub

Private Sub GOBackwardY2_Click() "Move Stage in the Negative Y2 Direction

velocityl = Round(Speed / DistPerTurn, 5)
PortE.Output = "5_V" + CStr(velocityl) + vbCr
MotorSteps = Round(Distance * StepsPerRev / DistPerTurn, 0)

Forward2 = False
If Forward2 = False Then

MotorSteps = -1 * MotorSteps
End If

PortE.Output = "5 D" + CStr(MotorSteps) + vbCr
PortE.Output = "5_GO" + vbCr

End Sub

Private Sub insertI05_Click()

'Micro Needle Insertion Experiment

'channel 105 scan for Entran Force Transducer

Dim aStr As String
Dim cnt As Long
Dim TotalScans As Long
Dim TimerIntSeconds As Double
Dim Nstored As Long
Dim firstcomma As Integer
Dim secondcomma As Integer

Const Chan = 105
Dim aStr2 As String

Dim vel As Double 'velocity in rev/second
Dim SpeedLocal As Double 'speed in mm/s
Dim DistanceLocal As Double 'total travel distance in mm

Dim Data() As Double 'col 1: time, col 2:chan 105
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'Variables for the needle insertion:

TimerIntSeconds = CDbl(txttime.Text) 'seconds
DistanceLocal = CDbl(txtdisp.Text) 'mm
SpeedLocal = CDbl(txtspeed.Text) 'mm/s

'Stage moves by a total of 2.5 mm'

Open "c:\Users\Wilson\data\pigshoulder2\sine\ch" & CStr(Chan) & "_" & txtfile.Text & ".txt" For
Output As #1

TotalScans = (DistanceLocal / SpeedLocal) / TimerIntSeconds 'Number of data points taken per
direction

ReDim Data(1 To TotalScans, 1 To 2) As Double

'Open file for data storage:

'Insertion

vel = Round(SpeedLocal / DistPerTurn, 5) 'Convert to rev/second
PortB.Output = "2 V" + CStr(vel) + vbCr
MotorSteps = Round(DistanceLocal * StepsPerRev / DistPerTurn, 0)
Forward2 = False
If Forward2 = False Then
MotorSteps = -1 * MotorSteps
End If
PortB.Output = "2_D" + CStr(MotorSteps) + vbCr 'Do not start stepper motors yet.

'Before starting motion, we need to initialize the force measurement.

PortF.Output = "*RST" + vbCrLf
Call ml.SleepMS(100)

PortF.Output = "CONF:VOLT:DC 10,0.00003,(@105)" + vbCrLf
Call ml.SleepMS(100)
PortF.Output = "ROUT:CHAN:DELAY " & CStr(TimerIntSeconds) & ",(@105)" & vbCrLf
Call ml.SleepMS(100)

PortF.Output = "ROUT:SCAN (@" & CStr(Chan) & ")" + vbCrLf
Call ml.SleepMS(100)

PortF.Output = "TRIG:COUN " & CStr(TotalScans) + vbCrLf
Acquisition scanning

Call ml.SleepMS(100)

PortB.Output = "2_GO" + vbCr

'Number of scans for the Data

'Start the motors
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PortF.Output = "INIT" + vbCrLf 'Start Scan
Call ml.SleepMS(100)

Call ml.SleepMS(CLng(TimerlntSeconds * TotalScans * 1000 + 1000))

'Retrieve data
PortF.Output = "FORM:READ:ALAR OFF" + vbCrLf
Call ml.SleepMS(50)
PortF.Output = "FORM:READ:CHAN ON" + vbCrLf
Call ml.SleepMS(50)
PortF.Output = "FORM:READ:TIME ON" + vbCrLf
Call ml.SleepMS(50)
PortF.Output = "FORM:READ:UNIT OFF"
Call ml.SleepMS(50)

'Output Alarm Status Off

'Output Channel Number On

'Output Time On

'Output Units Off

Nstored = TotalScans 'Number of data points that should have been taken

For i = 1 To Nstored
PortF.Output = "R? 1" + vbCrLf
Call ml.SleepMS(100)
aStr = PortF.Input 'Read O
cnt = 0
Do While cnt < 100 And Left(aStr, 1) <> "#"

cnt = cnt + 1
PortF.Output = "R? 1" + vbCrLf
Call ml.SleepMS(100)
aStr = PortF.Input 'Read O

Loop

itput Buffer as data

itput Buffer as data

aStr = Right(aStr, Len(aStr) - 4)
firstcomma = InStr(1, aStr, ",")
secondcomma = InStr(firstcomma + 1, aStr, ",")

aStr2 = Left(aStr, firstcomma - 1)
Data(i, 2) = CDbl(aStr2)
aStr2 = Mid(aStr, firstcomma + 1,
Data(i, 1) = CDbl(aStr2)

Next i

'Read channel
secondconima - firstcomma - 1)

'time data

Print #1, "Channel 105"
Print #1, "Force Sample Time "+ CStr(TimerlntSeconds)
Print #1, "TravelDistance " + CStr(DistanceLocal)
Print #1, "Velocity " + CStr(SpeedLocal)

Print #1, "Time(s)" + " " + "Force(N)"

For i = 1 To Nstored
Print #1, CStr(Data(i, 1)) +"

Next i
" + CStr(Data(i, 2))

Call ml.SleepMS(5000)
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'Removal

vel = Round(SpeedLocal / DistPerTurn, 5)
PortB.Output = "2_V" + CStr(vel) + vbCr
MotorSteps = Round(DistanceLocal * StepsPerRev / DistPerTurn, 0)

PortB.Output = "2_D" + CStr(MotorSteps) + vbCr 'Don't start yet.

'Before starting motion, we need to initialize the force measurement.

PortF.Output = "*RST" + vbCrLf
Call ml.SleepMS(1000)

PortF.Output = "CONF:VOLT:DC 10,0.00003,(@105)" + vbCrLf
Call ml.SleepMS(100)
PortF.Output = "ROUT:CHAN:DELAY " & CStr(TimerlntSeconds)
Call ml.SleepMS(100)

PortF.Output = "ROUT:SCAN (@" & CStr(Chan) & ")" + vbCrLf

PortF.Output = "TRIG:TIM " & CStr(TimerlntSeconds) + vbCrLf
scans

Call ml.SleepMS(100)

PortF.Output = "TRIG:COUN " & CStr(TotalScans) + vbCrLf
Acquisition scanning

Call ml.SleepMS(100)

PortB.Output = "2_GO" + vbCr
PortF.Output = "INIT" + vbCrLf

& ",(@105)" & vbCrLf

'Use the internal timer to trigger

'Number of scans for the Data

'Start the motors
'Start the Scan

Call ml.SleepMS(CLng(TimerlntSeconds * TotalScans * 1000 + 1000))

Nstored = TotalScans

'Retrieve Data
PortF.Output = "FORM:READ:ALAR OFF" + vbCrLf
Call ml.SleepMS(50)
PortF.Output = "FORM:READ:CHAN ON" + vbCrLf
Call ml.SleepMS(50)
PortF.Output = "FORM:READ:TIME ON" + vbCrLf
Call ml.SleepMS(50)
PortF.Output = "FORM:READ:UNIT OFF"
Call ml.SleepMS(50)

For i = 1 To Nstored
PortF.Output = "R? 1" + vbCrLf
Call ml.SleepMS(75)
aStr = PortF.Input 'Read Output Buffer as data

'Output alarm status Off

'Output channel number On

'Output time On

'Units output Off
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cnt = 0 'if read is wrong, try again...
Do While cnt < 100 And Left(aStr, 1) <> "#"

cnt = dnt + 1
PortF.Output = "R? 1" + vbCrLf
Call ml.SleepMS(100)
aStr = PortF.Input 'Read Output Buffer as data

Loop

aStr = Right(aStr, Len(aStr) - 4)
firstcomma = InStr(l, aStr, ",")
secondcomma = InStr(firstcomma + 1, aStr, ",")

aStr2 = Left(aStr, firstcomma - 1)
Data(i, 2) = CDbl(aStr2) 'channel
Data(i, 1) = CDbl(Mid(aStr, firstcomma + 1, secondcomma - firstcomma + 1)) 'time data

Next i

'Save the removal data:
For i = 1 To Nstored

Print #1, CStr(Data(i, 1)) +"
Next i

Close #1

End Sub

Private Sub measureClick()

" + CStr(Data(i, 2))

Open "c:\Users\Wilson\data\spring.txt" For Output As #1

Print #1, "Displacement (mm)" + " "+ "Force 1 (N)" + " " + "Force 2 (N)"

For i= 1 To 10

'Moves Stage by 1 Step for each loop

velocityl = Round(Speed / DistPerTurn, 5)
PortB.Output = "2_V" + CStr(velocityl) + vbCr
MotorSteps = Round(Distance * StepsPerRev / DistPerTurn, 0)
PortB.Output = "2_D" + CStr(MotorSteps) + vbCr
PortB.Output = "2_GO" + vbCr

'Measure Output Voltage from HP 34970A Data Acquisition Unit Channel 1

PortF.Output = "CONF:VOLT:DC
Call ml.SleepMS(100)
PortF.Output = "INIT" + vbCrLf
Call ml.SleepMS(100)
PortF.Output = "FETC?" + vbCrLf
Call ml.SleepMS(50)

10,0.00003,(@101)" + vbCrLf

datal = PortF.Input 'Read Output Buffer as data
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Vdatal = CDbl(datal) 'Change data from string to double
Vdatal = Vdatal * 10 'Converts voltage value to Force Using ION/V Calibration

'Measure Output Voltage from HP 34970A Data Acquisition Unit Channel 2

PortF.Output = "CONF:VOLT:DC 10,0.00003,(@102)" + vbCrLf
Call ml.SleepMS(100)
PortF.Output = "INIT" + vbCrLf
Call ml.SleepMS(100)
PortF.Output = "FETC?" + vbCrLf
Call ml.SleepMS(50)

data2 = PortF.Input 'Read Output Buffer as data
Vdata2 = CDbl(data2) 'Change data from string to double
Vdata2 = Vdata2 * 10 'Converts voltage value to Force Using ION/V Calibration

Print #1, CStr(i) + " " + CStr(Vdatal) +" "+ CStr(Vdata2)

Call ml.SleepMS(100)

Next i

End Sub

Private Sub measureblockClickO

'Compression

Open "c:\Users\Wilson\data\block80a.txt" For Output As #1

Print #1, "Displacement (um)" + " "+ "Force 1 (N)" +" " + "Force 2 (N)"

Distance = 0.01 'Stage moves by 10 um'
i= 0

Do
'For i = 1 To 100

'Moves Stage by 1 Step for each loop

i=i+ 1

velocityl = Round(Speed / DistPerTurn, 5)
PortB.Output = "2_V" + CStr(velocityl) + vbCr
MotorSteps = Round(Distance * StepsPerRev / DistPerTurn, 0)

Forward2 = False
If Forward2 = False Then
MotorSteps = -1 * MotorSteps
End If

PortB.Output = "2_D" + CStr(MotorSteps) + vbCr
PortB.Output = "2_GO" + vbCr

'Measure Output Voltage from HP 34970A Data Acquisition Unit Channel 1
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PortF.Output = "CONF:VOLT:DC 10,0.00003,(@101)" + vbCrLf
Call ml.SleepMS(100)
PortF.Output = "INIT" + vbCrLf
Call ml.SleepMS(100)
PortF.Output = "FETC?" + vbCrLf
Call ml.SleepMS(50)

data 1 = PortF.Input 'Read Output Buffer as data
Vdatal = CDbl(datal) 'Change data from string to double
Vdatal = Vdatal * 10 'Converts voltage value to Force Using ION/V Calibration

'Measure Output Voltage from HP 34970A Data Acquisition Unit Channel 2

PortF.Output = "CONF:VOLT:DC 10,0.00003,(@102)" + vbCrLf
Call ml.SleepMS(100)
PortF.Output = "INIT" + vbCrLf
Call ml.SleepMS(100)
PortF.Output = "FETC?" + vbCrLf
Call ml.SleepMS(50)

data2 = PortF.Input 'Read Output Buffer as data
Vdata2 = CDbl(data2) 'Change data from string to double
Vdata2 = Vdata2 * 10 'Converts voltage value to Force Using ION/V Calibration

Print #1, CStr(i * 10) +" "+ CStr(Vdatal) +" "+ CStr(Vdata2)

Call ml.SleepMS(50)

Loop Until Vdatal >= 50 And Vdata2 >= 50 'Loop stops when Max force of 50 N is reached

'Extension

Do
'Moves Stage by 1 Step for each loop

i=i- 1

velocityI = Round(Speed / DistPerTurn, 5)
PortB.Output = "2_V" + CStr(velocityl) + vbCr
MotorSteps = Round(Distance * StepsPerRev / DistPerTurn, 0)
PortB.Output = "2_D" + CStr(MotorSteps) + vbCr
PortB.Output = "2_GO" + vbCr

'Measure Output Voltage from HP 34970A Data Acquisition Unit Channel 1

PortF.Output = "CONF:VOLT:DC 10,0.00003,(@101)" + vbCrLf
Call ml.SleepMS(100)
PortF.Output = "INIT" + vbCrLf
Call ml.SleepMS(100)
PortF.Output = "FETC?" + vbCrLf
Call ml.SleepMS(50)

datal = PortF.Input 'Read Output Buffer as data
Vdatal = CDbl(datal) 'Change data from string to double
Vdatal = Vdatal * 10 'Converts voltage value to Force Using ION/V Calibration
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'Measure Output Voltage from HP 34970A Data Acquisition Unit Channel 2

PortF.Output = "CONF:VOLT:DC 10,0.00003,(@102)" + vbCrLf
Call ml.SleepMS(100)
PortF.Output = "INIT" + vbCrLf
Call ml.SleepMS(100)
PortF.Output = "FETC?" + vbCrLf
Call ml.SleepMS(50)

data2 = PortF.Input 'Read Output Buffer as data
Vdata2 = CDbl(data2) 'Change data from string to double
Vdata2 = Vdata2 * 10 'Converts voltage value to Force Using 1 ON/V Calibration

Print #1, CStr(i * 10)+" " + CStr(Vdatal) +" "+ CStr(Vdata2)

Call ml.SleepMS(50)

Loop Until i = 0

End Sub
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