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Abstract

Microscopic Traffic simulators can be effectively used to analyze various transportation
strategies (especially ITS related). However, microscopic traffic simulators need to be
calibrated in order to yield meaningful results. Calibration is the process of adjusting the
model parameters to closely replicate the observed behavior. In this thesis, a module for
joint calibration of a microscopic traffic simulator along with estimation of Origin-
Destination (OD) flows has been developed. The developed framework takes into
account the interactions between the various model parameters and the OD flows. An
optimization-based framework has been proposed for the joint calibration of model
parameters and estimation of dynamic OD flows. A systematic search approach based on
the Box algorithm is adopted for calibration of the parameters. Depending on the problem
size, a sequential or a simultaneous OD estimation algorithm is employed. Since the
calibration of the parameters depends on the estimated OD flows and vice versa, the
proposed framework is iterative. The developed framework has been implemented in
MITSIMLab, a microscopic traffic simulation laboratory. Case studies on three networks
with varying levels of complexity illustrate the potential of the calibration approach.
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Chapter 1

Introduction

The use of traffic simulation models in traffic operations and traffic impact studies is

increasing as technology provides traffic engineers and transportation planners with an

ever-increasing variety of user-friendly software and fast computers. Traffic simulation

models have drawn significant attention in evaluating the impact of changes in network

infrastructure (e.g. adding a lane to an existing roadway or adding a road to a network),

traffic control devices (e.g. retiming of traffic signal settings or installing a ramp

metering scheme), and application of Intelligent Transportation Systems (ITS). Traffic

simulation models provide several advantages over traditional analysis tools, such as the

Highway Capacity Software (HCS), in that they can provide an analysis of entire

roadway systems and a visual simulation of the results. However, the reliability of such

models hinges on how field conditions are best captured by the parameters in the

simulation models-achieving the best reproducibility of field conditions entails

calibration of the simulation model, followed by validation of the calibrated system.

Calibration is the process by which the parameters of various components of the

simulation model are estimated so that the model will accurately replicate observed

traffic conditions. Validation of the system refers to the verification of the model's

capability to reproduce field conditions represented by the data.

Traffic simulators are broadly classified into three categories: macroscopic, microscopic

and mesoscopic. Macroscopic traffic simulators simulate traffic at an aggregate level.

Vehicles are moved according to average speed-density relationships. Macroscopic

models are therefore capable of modeling large-scale networks, at the expense of

sacrificing vehicle-to-vehicle or vehicle-to-traffic-control interactions. On the other hand,

microscopic traffic simulators model individual vehicles and their trajectories at
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disaggregate level. Representation of car-following and lane-changing characteristics of

each individual vehicle permits microscopic models to consider the non-homogenous

flow of different vehicle types in individual lanes. The advantage of microscopic level of

detail becomes significant if the models are utilized to evaluate various traffic control,

ramp metering, variable message signs (VMS), and other type of ITS applications at the

operational level. Mesoscopic simulation models are a hybrid of microscopic simulation

models and macroscopic simulation models. This thesis focuses on microscopic traffic

simulation models and calibration of the model parameters.

1.1 Overview of Calibration of Microscopic Simulation Models

Microscopic simulation models incorporate detailed modeling of merging, diverging,

weaving, lane changing, turning and other behavioral characteristics reflecting real-life

traffic conditions. There is extensive use of route choice models and driving behavior (car

following and lane-changing) models to capture the network-specific traffic dynamics. In

order to take the temporal variation of traffic conditions into account, the microscopic

simulation models use time-dependent OD matrices. The microscopic simulator uses

these models to predict drivers' behavior, such as selection of interspacing from the

leading car, acceleration, deceleration, lane change decision, and route decision etc. in

response to a stimulus.

Any evaluation framework for a microscopic traffic simulator would consist of

calibration and validation. Calibration is the process of determining the modification of

default model parameters so that the simulator output rightly reflects the local traffic

conditions being modeled. Model validation is considered to be the process of

determining the extent to which the model's underlying fundamental concepts and

relationships capture the consequent behavior, as specified by the relevant theory and as

recorded in field data records. Validation of a model aims to test the extent to which the

calibrated model can accurately replicate traffic behavior.

Common calibration elements include the following:

* OD flows.

" Route Choice and Driving Behavior models.

18



0 Steady State Travel Time.

Two broad procedures commonly used for model calibration (Kurian[l]) are:

1. Rational technique involving direct measurements of parameters.

2. Indirect technique in which the parameter values are inferred by comparing

model outputs to the real world observations.

The first technique uses estimation methods based on econometric models to directly

estimate the individual parameter values. The disadvantage of this technique is the large

amount of detailed data required. For instance, the data required for estimating the

parameters for the car-following and lane-changing models include position, speed,

acceleration, and length of the vehicle. Ahmed [2] applied this technique to calibrate

mandatory lane changing and discretionary lane changing model parameter of

Microscopic Traffic Simulator (MITSIM). He used vehicle trajectories data at each

second for calibration.

The indirect technique uses the simulation model itself to predict the parameter values.

Calibration is performed by minimizing an objective function that captures the deviation

between the observed and simulated values (flow, speed, density or combination of these

values). The advantage of this technique is that it uses aggregate data that are more

readily available. Flow, speed, occupancy data can be easily measured across a network

at sensor locations and can be used for calibration.

1.2 Thesis Motivation

The output generated by a microscopic traffic simulator is determined by the various

parameters governing the simulation models. The crux of the calibration problem thereby

lies in the validity of these parameters. The OD matrices are also an important input to

the simulation model. There are interactions between the OD matrices with the various

models of the simulator and these interactions govern the traffic conditions depicted by

the simulator. Hence it is important that these matrices are also estimated with the model

parameters. Furthermore, in view of the increasingly important role that traffic simulation
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models play in the evaluation of ITS, it is important that a systematic procedure for

calibration be developed.

The objective of this thesis is to develop a systematic procedure for calibration of

microscopic traffic simulation model parameters and estimation of the OD matrices using

aggregate data (such as speed, flow counts etc. at sensor locations) and seed OD matrices

(usually at the planning level). The resulting output consists of a time-dependent OD

matrix and calibrated parameters as depicted in Figure 1-1.

Seed OD Matrix -- - Calibration Module Field Data

Calibrated
Parameters + OD

M a trix

Figure 1-1: Inputs and Outputs of the Calibration Module

A challenging task in developing such a procedure is the use of appropriate solution

methods. This is essential since optimization of model performance involves the selection

of the "best" set of values for the parameters. Problems such as these pose a great

challenge due to the large parametric space to be searched. The search is usually a

multidimensional one where the values of the parameters can be conceived as coordinates

and the "fitness" representing goodness of fit as a hilly surface. The process of seeking a

good solution should therefore involve a systematic search method.

1.3 Thesis Outline

The thesis is organized into 6 chapters. Chapter 2 presents literature review in the area of

calibration and OD estimation. Chapter 3 presents the overall framework of calibration

and then discusses the details of OD estimation, steady state travel times computation and
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the algorithm used for calibration of parameters. Chapter 4 starts with a description of

MITSIMLab, which is the microscopic traffic simulator used for the case studies. It

discusses the various models in the simulator that need to be calibrated. Later in the

chapter, the application of the proposed methodology to MITSIMLab is discussed. In

Chapter 5, results from three case studies are presented. Finally in Chapter 6, the thesis

contributions and the direction for future work are discussed.
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Chapter 2

Literature Review

Calibration can be viewed as an optimization problem in which an objective function has

to be minimized under certain constraints. The chapter reviews literature pertaining to

calibration, OD estimation, and combined calibration and OD estimation.

2.1 Calibration Studies

A great chunk of the existing literature in the area of traffic simulation relates to the

description of the models, their characteristics, assumptions, and the mathematical or

logical relationships around which the models were developed. However, the literature

concerning the calibration of these models is quite rare. Many of the parameters or

distributions were calibrated using very limited data resources or derived for some

specific conditions, and were hardly tested under general conditions. This section

describes some of the work that was done for calibration of traffic models using indirect

techniques.

Abdulhai and Ma [3] dealt with the calibration of microscopic traffic simulator

parameters using a genetic algorithm approach. The software GENOSIM developed for

the calibration purpose performs the role of obtaining traffic simulator parameters such as

route-choice, lane changing parameters etc., assuming a given fixed input OD. Given an

OD matrix and initial parameter estimates, the micro-simulator was run to produce

simulated data. Based on simulated versus actual data and an objective function, a genetic

algorithm approach identifies better parameter estimates using the so-called crossovers

and mutations. This process of running the simulator and GENOSIM was carried until

satisfactory results were obtained. This approach was then used to calibrate five

23



parameters of a network with 470 nodes, 1270 links, and 109 junctions in Toronto,

Canada during a morning peak period of 8:00 to 9:00 AM. While the methodology

mentioned in the paper is promising in terms of using a systematic search technique to

identify better parameter values, there are some issues that merit consideration. The

genetic algorithm approach uses genetic parameters, such as the probability of

crossovers, the probability of mutations, crossover and mutation options etc., to obtain

new set of parameters for the traffic simulator. However, values for these genetic

parameters for a general network are normally based on trial and error. Thus methods to

obtain or "calibrate" these genetic parameters are important for practical use of the

proposed approach.

Lee et al. [4] presented the application of genetic algorithm as an optimization tool for

determining a suitable combination of PARAMICS parameter values. In their study, a

freeway segment on 1-5 southbound in California between Culver and Jamboree was

selected for parameter calibration. The basic sub-models calibrated were the lane

changing and the car following models. Both models are primarily affected by the mean

headway and mean reaction time and hence these parameters were selected as the

calibration elements in the model. The fitness function used in the study was a

combination of average relative errors of 30-second flow and occupancy between

simulation output and field data. To take stochasticity of the model into account, an

average of three runs with different random seeds was used. However in order to simplify

the potential impact brought by the OD, they chose a network with multiple origins and a

single destination.

Cheu et al. [5] calibrated the microscopic traffic simulator INTRAS with a 30-sec

interval, loop detector data set. The parameters were identified and then calibrated

individually, i.e., optimal value of one parameter was obtained by keeping other

parameters constant. Averaging over three runs was done to take care of the stochastic

nature of the simulator. The disadvantage of his approach is that it does not capture the

interactions between the parameters and hence the obtained solution might not be the best

solution.
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Cheu et al. [6] used a genetic algorithm to calibrate the microscopic simulator FRESIM

for a Singapore expressway. The calibration was done based on the field data collected

on weekdays over 5.6 KM segment of Ayer Rajar Expressway. The calibration

parameters consisted of free-flow speeds and vehicle-movement parameters. The fitness

function was a combination of average-absolute errors of 30 sec volume and speed

between the FRESIM output and the field data. However, stochasticity associated with

the simulation model was not addressed in this work.

Kurian [1] developed an optimization-based framework for the calibration of a stochastic

microscopic traffic simulator. The various issues affecting a calibration study, namely the

formulation of an appropriate objective function, the systematic identification of sensitive

parameters, and the effect of stochasticity in calibrating the parameters values were

discussed. The methodology started with an initial guess of the parameters and then

updated the parameters based on the direction of descent. This methodology can lead to a

local optimum; however, a more robust approach has to be adopted to achieve a global

optimum.

2.2 OD-Estimation

One of the fundamental inputs to the simulation models is the OD matrix. In practice, it is

very rare that a true OD matrix is known. Hence, it has to be estimated using some

estimation techniques. OD matrices can either be static or dynamic in nature. A review of

static OD estimation methods is presented first.

Static methods used for the estimation of OD flows include entropy-maximization or

information-minimization approaches (Vanzuylen and Willumsen [7]) maximum

likelihood methods (Maher [8]; Spiess [9]), and generalized least squares methods

(Cascetta [10]; McNeil [11]; Bell [12]).

Cascetta [10] broadly classified the estimation techniques into the following three

categories:

" Direct sample estimation

* Model estimation
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* Estimation using traffic counts

In direct sample estimation, many surveys, such as home or destination interviews,

roadside interviews, flagging techniques, etc. or a combination of them are used for

estimation of the OD matrices using one of the classical sampling theory estimators.

These estimates are often biased because of non-response bias and systematic

measurement errors. In the model estimation method, OD matrices are estimated by

applying a system of models that give the number of journeys made. The third method

uses traffic counts for estimation of OD matrices. This method is less costly to access, as

flow measurements are much easier to get as compared to the expensive surveys.

Furthermore, traffic counts are repeatable so that the evolution of the phenomenon can be

followed.

Ever-increasing urban traffic congestion has stimulated various attempts to estimate OD

matrices from traffic counts where congestion effects are considered appropriately via

incorporating user equilibrium into the estimation process. Nguyen [13] addressed the

OD matrix estimation problem by seeking to reproduce the observed travel time when the

OD is assigned to the network in a user-optimal manner. The resulting formulation was

shown to be similar to the elastic-demand network equilibrium model for traffic

assignment problems. Since such an OD matrix solution has been proven to be non-

unique, a secondary objective function is needed to select the most desirable solution.

LeBlanc and Farhangian [14] proposed a partial lagrangian method to choose the OD

matrix closest to a reference among all feasible solutions.

Cascetta [10] proposed a generalized least squares estimator of the OD matrix, which

involves combining trip table's direct or model estimators with the traffic counts via an

assignment matrix. He considered two cases. The first one was a more general one in

which the estimator was stochastically constrained to the observed flows that were

considered to be random variables because of the measurement errors and the temporal

fluctuations. In the second case the estimator was deterministically constrained to the

observed flows. In both the cases, the variance of the obtained OD was proved to be

lower than that obtained with the direct or model estimator.
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In another paper, Cascetta and Nguyen[15] presented an in-depth study of a methodology

for estimating or updating OD matrices form traffic counts. He formulated the trip matrix

estimation or updating as an optimization problem in which the objective function of the

latter depends on the statistical inference technique adopted. Maximum Likelihood (ML)

estimators, generalized least-squares (GLS) estimators were examined and contrasted to

Bayesian methods for estimating the OD matrices. For each approach, a generic

optimization formulation of the estimation problem using as abstract traffic assignment

operator was described, and the computational issues were discussed.

The literature discussed so far was related to static OD estimation. The disadvantage of

such static models is that they do not capture the dynamics of the traffic flow, and they

assume that the observed link flows represent a steady-state situation that persists over a

block of time. Several researchers have investigated the problem of dynamic OD

estimation.

Cremer and Keller [16] proposed a method for dynamic OD estimation. The OD flows

were treated as time-variant variables, which depend on time varying exit and entrance

counts. Dynamic models were developed for complex intersections using four different

methods: method of cross-correlation matrices, method of constrained optimization,

recursive estimation, and estimation using Kalman filtering. Nihan and Davis [17]

proposed recursive error methods to estimate the dynamic OD matrices from the entrance

and the exit counts. Recursive error method is a recursive formulation of ordinary least

squares where all the past observation are taken into account, to estimate the OD matrices

from the entrance and the exit counts. Both these works ignored the effect of route

choice. This restricts the use of these models only to intersections or small segments of a

freeway where the travel time between each OD pair is roughly constant.

Bell [12] determined split parameters for input-output network relationships that

represented traffic flows at intersections of road networks or along small freeway

segments. He proposed two methods for dynamically estimating the OD flows. In the

first method it was assumed that travel time is geometrically distributed and the model

made use of the recurrence model of platoon dispersion. This method is suitable for a

single intersection because geometric distribution of time is appropriate only over short
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distances. In the second method, no assumption was made about the travel time

distribution, and hence it can be applied to the freeway networks. The disadvantage of

these types of models is that they cannot be applied to a general network and are

restricted to intersections, junctions or small segments of network corridors.

Chang and Tao [18] proposed a cordonline (hypothetical closed curve that intersects with

a set of links and divides the network into two parts: inside and outside the encircled sub

network) model for estimation of dynamic OD estimation. The models were developed

using Kalman filter approach. The key features of the model are: it does not rely on any

prior OD information and it takes into account the effect of signals while computing

travel time, and hence can be applied to urban signalized networks. However, the

disadvantage of this model is that it requires traffic counts at every entry and exit

location, which is a very highly unreasonable demand in case of general networks.

Cascetta et al. [19] in a later work extended his generalized least-squares approach to

estimate dynamic OD flows. Two alternative estimation procedures, simultaneous

estimation and sequential estimation, were discussed in his paper. The simultaneous

approach estimates the OD flows for all the time intervals in one step, using the observed

link counts for all the intervals. On the other hand, the sequential estimation technique

estimates OD flows for each time interval sequentially. For estimating the OD flows for a

time interval, it uses the counts relating to that interval and the previous interval and also

the estimated OD of previous intervals. The simultaneous approach gives slightly better

results than sequential, but the computational feasibility of sequential estimation makes it

more attractive.

Ashok and Ben-Akiva [20] proposed a Kalman filter approach for dynamically updating

the OD matrix. The state vector consists of OD flow deviations from the prior estimates

that are based on historical data rather than the OD flows themselves. The consideration

of deviation variables better supports the normality assumptions but requires knowledge

of the historical OD flows in order to estimate the OD trip tables. Furthermore, the

measurement equation assumes knowledge of an assignment map that gives the fraction

of each OD flows, departing from its corresponding origin during each time period, that

would reside on each link during each subsequent period.
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Ashok and Ben-Akiva [21] pointed out that the assignment matrix that are used for

estimation of OD matrices are themselves estimates and thus prone to have random error.

The assignment matrix depends upon the underlying travel time and route choice

fractions. Each of these inputs are themselves realization of random events. To

incorporate the stochasticity of the assignment matrices in the model, they proposed two

approaches. One of them being, adding randomness to the assignment matrix by means of

additional equations. The disadvantage of this is that it increases the computation burden.

In the other approach, they defined assignment matrix in terms of travel time and route

choice fractions. Additional equations were added for underlying travel time and route

choice fractions. Again, this increased the computation burden.

2.3 Joint Calibration of Parameters and Estimation of OD
Matrices

Even though there are some articles pertaining to calibration and many related to

estimation of OD matrices, articles that address both the issues together are rare.

Liu and Fricker [22] tried to estimate an OD matrix and the travel-cost coefficient of the

logit-based route-choice probabilities from link traffic counts on uncongested networks.

They proposed a two-stage heuristic search method to sequentially estimate the OD and

the travel-cost coefficient. In the first stage, the travel-cost coefficient is fixed and the OD

is obtained by minimizing the differences between the modeled and the observed link

flows. In the second stage, the link flows from the first stage act as the input to calibrate

the travel-cost coefficient using the maximum likelihood method. Iterations are repeated

until the first derivative of the likelihood value approaches zero. However, apart from its

ignorance of congestion effects, implementation of this model requires a complete set of

link traffic counts.

Yang et al. [23] proposed an optimization model for simultaneous estimation of an OD

matrix and a travel-cost coefficient for the congested network in a logit-based stochastic

user equilibrium. The model was formulated in the form of a standard differentiable,

nonlinear optimization problem with analytical stochastic user equilibrium. Explicit

expression of the derivatives of the stochastic user equilibrium constraints with respect to
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OD demand, link flow, and travel-cost coefficient were derived and computed efficiently

through a stochastic network-loading approach. A successive quadratic-programming

algorithm using the derivative information was applied to solve the simultaneous

estimation model. This work however does not use dynamic OD estimation and estimates

a static OD. Also, due to the inherent non-convex property of the problem, the technique

used might lead to local optima.

Ben-Akiva et al. [24], calibrated MITSIMLab for a mixed urban-freeway network in

Brunnsviken area in north of Stockholm under congested conditions. Aggregate data such

as speed, flow measurements at sensor locations were used. They used an iterative

procedure to take the interactions between the model parameters and the OD flows into

account. Figure 2-1 depicts the methodology.

Driving Travel
Behavior Behavior

Path Choice Seed O-D
I Set Flows

Sub-Network BDriving Habitual Route Choice O-D
Calibration Par Travel Times Parameters Estimation

Iterative Process

Figure 2-1: Aggregate Calibration of Microscopic Traffic Simulators (Ben-Akiva et al.

[24])

MITSIMLab was calibrated for driving behavior parameters and travel behavior

parameters (route choice parameters and OD flows). An optimization approach was used

for calibration. A sequential approach was used for estimation of OD flows. The results

of this work were promising.

2.4 Summary

This chapter discussed the literature related to the calibration of parameters of

microscopic traffic simulators, techniques for OD estimation and methods for the joint

calibration of microscopic traffic simulators with OD estimation. The current work is
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intended to overcome the problems of previous approaches and arrive at an automated

robust approach for simultaneous estimation of dynamic OD flows and calibration of

parameters for a generic traffic simulator.
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Chapter 3

Calibration Issues and Methodology

This chapter discuses various issues in calibration, followed by the methodology for

calibration of parameters along with estimation of OD matrices. The rest of the chapter is

organized as follows: First the issues related to calibration are discussed and then

calibration problem is formulated followed by methodology adopted to solve it. The

details of the individual components and the algorithms are then presented.

3.1 Issues in Calibration

3.1.1 Parameter Set

The first step in calibration is identification of the parameters that need to be calibrated.

The number of parameters in a microscopic simulator is very large. With the increase in

the number of parameters to calibrate, the computation time also goes up significantly.

Thus, it is crucial to identify the set of parameters that are most sensitive to simulations

outputs and therefore, efforts should be made to fine-tune these critical parameters,

instead of selecting a large set of parameters.

3.1.2 Computational Issues

As discussed above, a large number of parameters govern the output of simulation. The

computation time is highly dependent on the number of parameters that are calibrated. In

this research, along with the calibration of model parameters, estimation of OD flows is

also performed. Estimation of OD flows by itself is a fixed-point optimization problem in

which the OD estimation is dependent on the assignment matrix, which maps the OD
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flows to the sensor counts. The size of the assignment matrix rapidly increases with the

number of OD pairs to be estimated and consequently, the computation time of the OD

estimation algorithm also increases exponentially. Hence, an appropriate technique that

addresses these computation issues needs to be adopted.

3.1.3 Stochastic Issues

Usually simulators are stochastic in nature and the outputs depend on the random number

generation used within the simulator. As discussed earlier, calibration is an optimization

problem in which the objective function is minimized. The value of this objective

function depends on the output of the simulator. So while computing this objective, the

stochastic nature of the simulator should be incorporated.

3.1.4 Measure of Performance

Simulation models can generally provide many measures of performance, including:

flow, speed, density, queue lengths, link travel time, total travel time between a given OD

pair, average fuel consumption, tailpipe emissions of hydrocarbons, carbon monoxide etc.

The choice of the appropriate set of measures of performance would be influenced by the

model capabilities, available data and study objectives. Another aspect to be considered is

the level of accuracy that is desired. The choice of measure of performance along with

the desired accuracy would greatly affect the results of the calibration.
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3.2 Problem Formulation

Calibration can be considered as an optimization problem in which an objective function

is minimized under various constraints. For calibration of traffic simulation models, the

objective function is generally the deviation of the output of the simulator from the

observed field values. The deviation can be considered between flow, speed, density or

any combination of these values, depending upon the available data. The overall problem

is depicted in Figure 3-1.

Real World 
emTransportation Systems 

O f a i

input tothe Minmizatio

Simulator lOutput1-Output2l

SMicroscopic Traffic Simulator
Simulator (Output2)

Figure 3-1: Overall Problem

Minimization of the objective function is achieved by estimating OD flows and finding

the optimal values of the model parameters namely route choice parameters, driving

behavior parameters and steady state travel times. However, there are circular

dependencies among all variables listed above. For example, estimation of OD flows

requires as an input the assignment matrix, which maps OD flows to counts at sensors, as

an input variable. The assignment matrix depends on the steady state travel times, which

in turn is dependent on the OD flows. Hence there is circular dependence between the
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OD flows and the steady state travel times. If the model parameters are changed, the

estimates of OD will also change and vice versa. These interdependencies are depicted in

Figure 3-2.

Driving OD flows
behavior

Simulated
Traffic

characteristics

Route choice
behavior

Figure 3-2: Interdependencies between Various Models (Ben-Akiva et al.[24])

Thus, overall calibration problem is a series of fixed-point problems, whose solution is an

OD matrix that, once assigned to the network, reproduces flows and travel times

consistent with the values used to compute the assignment fractions.

Mathematically, calibration can be formulated as:

Minimize 11 Output - Observed ||
a,fl,OD

Output e Simulation Model f (a,,8, OD, tt )

A : h(a, 8,,OD, tteq )

OD = arg Min 1\ AX -Y \

tt e = g(afl, OD)

Where:

c : Route Choice Parameters

P : Driver Behavior Parameters

OD : Estimated OD flows

ttel Steady State Travel Times
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A : Assignment matrix

Y: Observed counts

X: OD flows

In the above formulation, the function J(.) is the simulation model. The value of the

function is the output of the simulator. The function h(.) is a subroutine that uses the

output of the simulator to obtain the assignment matrix. From the above formulation, it is

to be noted that the estimation of the OD and the assignment matrix is a fixed-point

problem.

3.3 Overall Approach

As is evident from the above formulation, individual effects cannot be isolated and there

are complex interactions between various elements of calibration. The iterative

calibration methodology outlined in Figure 3-3 takes these interactions into account

(Ben-Akiva et al.[24]).
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Figure 3-3: Overall Approach for Calibration and OD-Estimation
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An initial set of values for the parameters in the route choice and driving behavior models

is assumed. The traffic simulator is then used to obtain the assignment matrix. The route

choice model uses the current simulated travel times to compute path choice fractions.

The assignment matrix and the corresponding OD flows are the inputs to OD estimation

module. The module estimates an OD matrix by minimizing the deviation between the

observed and simulated link counts. The convergence of the OD matrix is then verified. If

the OD does not converge then the new steady state travel times are calculated and fed

into the simulator to get the new assignment matrix. This process continues till

convergence of OD flows is achieved. The next stage involves changing the values of the

calibration parameters and repeating the above steps. The iterative procedure continues

until the objective criteria, such as the minimization of deviation between simulated and

observed counts and/or speeds is achieved.

There are three modules in the above framework, namely:

" OD-Estimation Module

" Steady State Travel Time Table Module

" Parameter Calibration Module

Since the overall problem is an optimization problem, the optimization approach is

discussed first, and then the following sections would describe the above-mentioned

modules in detail.

3.4 Optimization Approach

Since the optimization has to be performed on outputs from the stochastic simulator it can

be classified as a stochastic optimization problem. Stochastic optimization problems are

difficult to solve because the value of the objective function is not explicitly known and

cannot be written as a mathematical expression. A summary of the key difficulties in

simulation optimization is provided by Banks et al. [25]: "Even when there is no

uncertainty, optimization can be very difficult if the number of design variables are large,

the problem contains a diverse collection of design variable types, and a little is known

about the structure of the performance function. Optimization via simulation adds an

additional complication because the performance of a particular design cannot be
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evaluated exactly, but instead must be estimated. Because we have the estimates, it may

not be possible to conclusively determine if one design is better than another, frustrating

optimization algorithms that try to move in improving directions. In principle, one can

eliminate this complication by making so many replications, or such long runs, at each

design point that the performance estimate has essentially no variance. In practice this

could mean that very few alternative designs will be explored due to the time required to

simulate each one."

A simple way of solving stochastic optimization problem is to use an optimization

procedure that needs only function values and not first or second derivatives. In this case,

the simulation model can be used to get the function values. To speed up the procedure, a

more sophisticated procedure that utilizes the gradient information can be used. However,

the simulation program does not typically provide this information. The method that uses

the normal output is called black-box method. On the other hand, the method that uses

additional information like the gradient of the function is classified as white-box method

(Pflug [26]).

Black-box methods (Figure 3-4) are easy to implement. They consist of a simulation

module, which is responsible for providing estimates for the objective function F and an

optimization module, which uses these values to find the minimizer by iteration. The

optimization module must use a method that does not require derivatives.
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Figure 3-4: The Black Box Approach (Pflug[26])

In contrast, the white-box method uses the gradient, sub-gradients or higher derivatives of

the objective function. Optimization with the gradient information has a better rate of

convergence; this method is better than black-box method. However, applicability of this

approach is limited in the present context, because typical traffic simulation software

cannot provide estimates of gradient because the functional form is not known.

3.5 OD Estimation

As discussed earlier, OD matrices are important inputs to the simulator. They are the

fundamental input for the problems regarding the planning and management of

transportation systems. In practice, the "true" OD matrix is rarely known. As discussed in

the literature review, there are broadly three techniques for estimation of OD matrices:

direct estimation, model estimation and estimation from traffic counts. Estimation from

traffic counts is one of the most feasible methods for obtaining OD matrices.

The inputs to this module are:

" A priori seed matrix.

" Traffic counts from field.
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0 Assignment matrix obtained from the simulator.

While estimating the new OD flows, the values of the parameters and the steady state

travel time is fixed. The basic framework is depicted in Figure 3-5.

Seed OD Simulation Model Assignment > i ato Estimated OD

Figure 3-5: OD Estimation Framework (Ben-Akiva et al.[24])

The OD estimation problem can be stated as a constrained optimization problem in which

the link counts, seed-OD matrix and an assignment matrix generated by the simulation

model are used to get the new estimates of the OD flows. The constraint being imposed is

that OD flows are non-negative.

Let the total study period H be divided into nh intervals h = 1,, nhwhich, without any

loss of generality, can be assumed to have equal length T. Let the network have nj links

with sensors and nr nodes. Let xrt represent the demand between OD pair r that leaves

their origin during interval t, x, the column vector obtained by arranging OD flows. Let

x, denote the a priori information, or an initial estimate of the "true demand" xrt, and

xHthe corresponding vector. For each interval h, a link flow yh is associated with each

link 1 of the network and yh is the corresponding vector for interval h. The estimate of the

demand is denoted by i.

There are two key equations that are used in OD estimation (Cascetta [19]):

h nOD

Ylh = ZZApx, +v'
p=h' r=1

X = X + 77h

Ahp is the assignment matrix, which maps OD flows from time period p to the link counts

of time period h. A' is the fraction of travelers from rth OD flow which are detected by

sensor 1 during the period h. h-h +1 is the maximum number of time intervals needed to
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travel between any origin and destination in the network. v and 77 are the errors

associated with the counts and demand vector respectively.

Cascetta et al.[19] has shown that dynamic estimators can be obtained by solving a

constrained optimization problem of the form:

1,I...nh = arg min F,(x, .... x,,, ...x H )+ F 2 (x.Xn.,, Y1" Jn, )
x>O

The two functions F,(,.) and F2(,) can be seen as two deviation measures. Fl(.,) is with

respect to the deviation from the seed-OD and F2(,) is the deviation between the link

flows resulting from the assignment of the demand vector and link counts. The functional

form of the two functions depends on the assumptions made on the used estimator and

the probability distribution of v and q.

As explained earlier, in case of congested networks, the OD estimation problem is a

circular problem because the link flow estimates y(k) and the resulting costs c(y(i)),

are obtained by assigning the estimated demand vector i to the network, which in turn is

estimated by using the link costs and the link flows (Cascetta and Postorino [27]). So, the

problem has to be solved by imposing the condition that the flows correspond to the

equilibrium assignment of the demand vector. The equilibrium assignment model can be

expressed as a fixed-point problem:

y(i) = y; y = A[c(y)]x

Cascetta et al.[19] has proposed two techniques for dynamic OD estimation.

" Simultaneous estimation

* Sequential estimation

3.5.1 Simultaneous Estimation

In this approach, the entire OD matrix for all the intervals is estimated in one step. All

unknown nh demand vectors (x , X2 ... , X n ) are placed together as a single vector.

Similarly, the flow vector consists of vectors of flows for all intervals, written together,

i.e, (y1 I .2 .... h .... Yn )
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The GLS estimator for the problem is expressed as:

"h .. 1 =ugan h TX W X h h hh h
x, !0....x. X 20 h=1

where

gh Z htX t h
t=1

Where Vh and Wh are the error covariances associated with link counts and OD flows,

respectively.

3.5.2 Sequential Estimation

In this approach, the OD demand vector for a single interval h is estimated at each time

interval. The counts of period h are expressed as linear (stochastic) functions of the

unknown demand of the same period only. This is achieved by equating the demand

relative to previous periods to the already computed estimates £, . The GLS formulation

of the problem is:

Xh = arg min k xh - x ) (xh -X )+V h ]
x, :0.... x.h !

where

gh AhtX + hhXh ~ Yh

Sequential estimation reduces the computational complexity by breaking down a large

optimization problem into several smaller ones. The other advantage is that the estimates

obtained for an interval can be used as initial estimates in the subsequent estimations.

3.5.3 Error Covariance Matrix

In both the formulations discussed above, the error covariance matrices of the sampling

errors and the assignment and measurement errors are required. Ashok [28] in his work

has suggested a method to obtain the error covariance matrices from historical data. In

Ashok's approach, the error covariance matrices are obtained from historical data. The

matrix W can be obtained by an OLS regression on deviation of the OD flow in period h
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with corresponding historical OD flows. The (ij)'h element of this matrix could be

approximated by

W.. = e e. / n

Where e is the OLS residual vector (vector of error between the OD flow in period h with

corresponding historical OD flow) and n is the number of sample observations

Similarly, matrix V can be obtained from the residuals of measurement equation. Here the

residual eh would be obtained from computing the difference Aht Yh over many

days. Each day would yield one value for every residual vector eh. From the values of the

residuals eh over several days, the variance-covariance matrices V can be calculated. Both

V and W matrix can be assumed constant for the study period.

3.6 Steady State Travel Times

After completing the assignment matrix consistency loop, optimum OD matrices are

obtained for the given set of parameters. The next step in the process is to generate the

steady state travel times for all the links in the network. The steady state travel times are

generated through iterations. In this process, the OD and parameter values are kept fixed.

A smoothing of the previous travel times with the latest travel times is performed to

obtain a more reliable travel time matrix. The smoothed travel time is fed back into traffic

simulator and the above-mentioned steps are iteratively performed until convergence.

Mathematically it can be expressed as:

Tk1= Ak tt k+(Ik )TTk

where

Tit,,1 : Expected travel time on k' iteration, on link i, during time period t

Ak :Weight parameter of k'V iteration

ttk : Simulated (experienced) travel time on kth iteration
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3.7 Parameter Calibration

In the next stage of the calibration approach, an enhanced set of parameters is to be

obtained. As discussed in Chapter 1, the objective of the work involves determining a

systematic search method to avoid ad-hoc selection of the values of parameters and

ensure robustness of results. In this step, the OD flows and the steady state travel time are

kept fixed.

A sequential search technique based on the Box complex algorithm (Box[29]) is used to

determine the optimal values of these parameters. The advantage of using Box algorithm

is that, it just requires the value of the objective function and does not depend upon the

gradient of the objective function and hence fits well into our black-box approach. It

proceeds by continuously dropping the worst point from among the points in the simplex

and adding a new point determined by the reflection of this point through the centroid of

the remaining vertices.

The objective function, which can be the sum of the squares of the differences between

observed flows and/or speeds and simulator-generated flows and/or speeds, is to be

minimized. The objective function is first evaluated for a user-specified number of points

(i.e. combinations of values of the parameters to be calibrated) and the procedure

attempts to move the point yielding the highest objective function value closer to the

centroid of the remaining points. The point with the highest objective function value is

'corrected' during each iteration until the objective function value converges to the

minimum. A flow diagram detailing the procedure is shown in Figure 3-6.
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Figure 3-6: The Box Algorithm
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Box Algorithm (Kuester and Mize [34]):

The algorithm finds the minimum of a multivariate, nonlinear function subject to

nonlinear inequality constraints:

Minimize F (XI, X2 ......... , XN)

Subject to Gk Xk H, k = 1, 2, ..., M

The implicit variables XN+J, .... XM are dependent functions of the explicit independent

variables X1, X 2,..., XN,. The upper and lower constraints Hk and Gk are either constants or

functions of the independent variables.

Let the objective function be some function F(X,,X2-...., XN). It is desired to find the

values of X1, X2,..., XN,. for which F(X,X 2 ..------. ,XN) is a minimum. A point is any

combination of values X, X 2,..., XN,. for which the objective function value will be

computed. The algorithm enlists a complex of K points to search for the minimum of the

objective function, where K is an input parameter specified by the user. The basic

algorithm is as follows:

Step 1: An original "complex" of K > N + 1 points is generated consisting of a feasible

starting point (specified by the user) and K-1 additional points generated from random

numbers and constraints for each of the independent variables:

X 1 =G, +ri(Hi -G,),

i =1, 2, N

and

j 1, 2, K-I

where rj are random numbers between 0 and 1

Step 2: The selected points must satisfy both the explicit and implicit constraints. If at

any time the explicit constraints are violated, the point is moved a small distance 6 inside

the violated limit. If an implicit constraint is violated, the point is moved one half of the

distance to the centroid of the remaining points

Xij (new) = (X 1 (old) + Xi,)/ 2
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i 1, ..., N

where the coordinates of the centroid of the remaining points, X ,, are defined by

- 11x = X + Xij(old), i = 1, 2, ..., N.
K -I1j=

This process is repeated as necessary until all the implicit constraints are satisfied.

Step 3: The objective function is evaluated at each point. The point having the highest

function value is replaced by a point which is located at a distance a times as far from the

centroid of the remaining points as the distance of the rejected point on the line joining

the rejected point and the centroid (correction 1):

X 1 (new) = a [ - X,1 (old)]+ 

i = 1, 2, ... , N

Box recommends a value of a =1.3

Step 4: If a point repeats in giving the highest function value on the consecutive trials, it

is moved one half the distance to the centroid of the remaining points (correction 2).

Step 5: The new point is checked against the constraints and is adjusted as before if the

constraints are violated.

Step 6: Convergence is assumed when the objective function values at each point are

within P percentage for y consecutive iterations.

To calibrate the parameters, the algorithm proceeds as described above. The module

accepts as input the measured flows, speed etc. values from sensors in the real network.

Each time the objective function is evaluated, the simulator is called and the outputs from

the simulator are used in the objective function. To take care of the stochasticity related

to the simulator, the simulator can be run for a number of times and then the average

value of the objective function over these runs can be used in the box algorithm.
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3.8 Convergence Criterion

There are four points where the convergence has to be verified:

* OD convergence

" Steady state travel time convergence

" Parameter convergence within Box algorithm

" Parameter convergence in the main iteration loop

The termination criterion used for checking the convergence of the OD matrix estimation

module is based upon the maximum percent difference between the elements of the new

estimated OD (x) with the old OD (xk-)I

(x( -x

max <x.

where:

e : Tolerance

The iterations end when this tolerance criterion is met or when maximum number of

iterations has been performed.

The termination criterion for checking the converges of steady state travel time is exactly

the same as in the case of OD-estimation, where the OD flows are replaced by the link

travel times.

Within the Box algorithm, the convergence is achieved if the difference between the

maximum value of the objective function and the minimum value of the objective

function is within P percent of the minimum function value, for y (which is specified by

user) consecutive iterations or when maximum number of iterations has been performed.

The convergence of parameters in the main iterative loop is again on the same lines as

that of the OD convergence. The convergence criterion is based on the elements of the

new estimated parameter value (ak) with the old value of the parameter (ak-1):
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(ak - ak-1 )max
Ri

where:

R, : Difference between Upper and lower bound of the parameter

p : Tolerance

The iterations end when this tolerance level is achieved, or when maximum number of

iterations has been performed.

3.9 Summary

In this chapter, we formulated the calibration problem and then proposed an iterative

methodology to take the interactions between the model parameters and the OD matrices

into account. Details of each individual module were then presented. The next chapter

focuses on implementing the developed module in a Microscopic Traffic Simulator

Laboratory (MITSIMLab).
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Chapter 4

MITSIMLab and Implementation

This chapter gives an overview of MITSIMlab, which was the simulator used for testing

the module and performing the case studies. The chapter discusses the various models of

MITSIMLab and then describes the implementation of the methodology with

MITSIMLab.

4.1 Overview of MITSIMLab

MITSIM (MIcroscopic Traffic SIMulation Laboratory) has been developed at MIT by

Yang for modeling traffic flows. MITSIMLab is a simulation-based laboratory that was

developed for evaluating the impacts of alternative traffic management system designs at

the operational level and assisting in subsequent refinement (Yang[30]). Examples of the

systems that can be evaluated with MITSIMLab include advanced traffic-management

systems (ATMS) and route-guidance systems.

MITSIMLab is a synthesis of a number of different models and has the following

characteristics:

" Represents a wide range of traffic management system designs;

" Models the response of drivers to real-time traffic information and controls;

" Incorporates the dynamic interaction between the traffic management system and

the drivers on the network.

The various components of MITSIMLab are organized in three modules:

" Microscopic Traffic Simulator (MITSIM)

" Traffic Management Simulator (TMS)
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0 Graphical User Interface (GUI)

The interactions among the various MITSIMLab modules are shown in Figure 4-1. A

microscopic simulation approach, in which the movements of individual vehicles are

represented, is adopted for modeling traffic flow in the traffic flow simulator (MITSIM).

This level of detail is necessary for an evaluation at the operational level. The Traffic

Management Simulator (TMS) represents the candidate traffic control and routing logic

under evaluation. The control and routing strategies generated by the traffic management

module determine the status of the traffic control and route guidance devices. Drivers

respond to the various traffic controls and guidance while interacting with each other.

Figure 4-1: Elements of MITSIMLab and Their Interactions

4.1.1 Traffic Flow Simulator (MITSIM)

The role of MITSIM is to represent the "world". The traffic and network elements are

represented in detail in order to capture the sensitivity of traffic flows to the control and

routing strategies. The main elements of MITSIM are:

* Network Components: The road network along with the traffic controls and

surveillance devices are represented at the microscopic level. The road network
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consists of nodes, links, segments (links are divided into segments with uniform

geometric characteristics), and lanes.

" Travel Demand and Route Choice: The traffic simulator accepts as input time-

dependent origin to destination trip tables. These OD tables represent either

expected conditions or are defined as part of a scenario for evaluation. A

probabilistic route choice model is used to capture drivers' route choice decisions.

" Driving Behavior: The origin/destination flows are translated into individual

vehicles wishing to enter the network at a specific time. Behavior parameters

(such as desired speed, aggressiveness, etc.) and vehicle characteristics are

assigned to each vehicle/driver combination. MITSIM moves vehicles according

to the car-following and lane-changing models. The car-following model captures

the response of a driver to conditions ahead as a function of relative speed,

headway and other traffic measures. The lane-changing model distinguishes

between mandatory and discretionary lane changes. Merging, drivers' responses to

traffic signals, speed limits, incidents, and tollbooths are also captured.

4.1.2 Traffic Management Simulator (TMS)

The traffic management simulator mimics the traffic control system in the network under

consideration. A wide range of traffic control and route guidance systems can be

simulated, such as:

" Ramp control

" Freeway mainline control

" Lane control signs (LCS)

" Variable speed limit signs (VSLS)

" Portal signals at tunnel entrances (PS)

" Intersection control

" Variable Message Signs (VMS)

* In-vehicle route guidance

TMS has a generic structure that can represent different designs of such systems with

logic at varying levels of sophistication (from pre-timed to responsive).
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4.1.3 Graphical User Interface (GUI)

The simulation laboratory has an extensive graphical user interface that is used for both,

debugging purposes and demonstration of traffic impacts through vehicle animation.

4.2 MITSIMLab Model Descriptions

4.2.1 Driving Behavior Models

In MITSIMLab vehicles move according to the following models (Ahmed[2]) (which are

a function of the traffic environment around the subject vehicle, vehicle's individual

characteristics, and driver's characteristics):

" General acceleration

" Lane changing and gap acceptance

" Merging

* Forced merging

" Intersection models

General acceleration:

A vehicle accelerates (decelerates) in order to:

" React to the vehicles ahead;

" Perform a lane changing or merging maneuver;

" Respond to events (e.g. red signals and incidents).

The most constraining of these situations determines the acceleration (deceleration) rate

to be implemented in the next simulation cycle. Depending on the degree of interaction

with the vehicle ahead, the subject vehicle can be in free-flowing, car-following, or

emergency regime. The degree of interaction is determined by the time headway between

the two vehicles. The acceleration in the free-flowing regime is a function of the vehicle's

desired speed, while in the car-following and emergency regimes, the acceleration is a

function of traffic conditions and relative position and speed of the two interacting

vehicles.
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Free-flowing regime: In the free-flowing regime, the vehicle accelerates if its current

speed is different from the driver's desired speed. The acceleration applied by a driver in

this regime is assumed to have the following functional form:

aff (t) = AfV,* (t[, - rn -Vn(t - 'rn +6 ff Wt

Where,

aff(t): acceleration of driver n at time t

: parameter

Vn*(t): desired speed of the driver

V (t) : speed of subject vehicle at time t

-,Ir(t): error term

Car-following: The car-following model is used for calculating a vehicle's acceleration

or deceleration rate in various cases such as:

" Car-following relationship with the leading vehicle;

" Competition with other vehicles if two or more lanes merge into a single

downstream lane;

" Yielding to another vehicle shifting into the same lane.

The car following model is a generalization of the non-linear GM model. Furthermore,

the parameters of the model can be different for acceleration and deceleration situations.

The general structure of the model is shown in Figure 4-2:

L

L V t

A x (()t)(t

xx. t()

Figure 4-2: Car-Following Model
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The car-following model can be expressed mathematically as:

a cf(t)= " A (t -T [V- k"Y_(t -T 7)- V tAx(-T7), )]' + -6n (t)

Where,

acf (t): acceleration of vehicle n at time t;

Ax(t): gap between vehicles at time t;

k: density of traffic in the vicinity of the vehicle;

Vn(t): speed of vehicle n at time t;

cc, P, y,5: parameters

En f(): error term

Emergency regime: In the emergency regime, the vehicle uses an appropriate

deceleration rate to avoid collision. The deceleration rate depends on the state of the front

and subject vehicles. In all cases though, the applied rate guarantees that the subject

vehicle will always decelerate to extend the headway to a safe range.

Lane Changing and Gap Acceptance Models

Lane Changing Model

The lane changing model is implemented in three steps: (a) checking if a change is

necessary and defining the type of the change; (b) selecting the desired lane; and (c)

executing the desired lane change if the available gaps are acceptable.

Lane changing may be mandatory (MLC) or discretionary (DLC). Mandatory lane

changing is performed when the current lane ceases to be an option (due to, for example,

lane use regulations, incidents, and need to take exit ramps), and thus the driver must

move to another lane. Discretionary lane changing is performed when a driver is not

satisfied with the driving conditions in the current lane (due to, for example, average

speed of the lane as compared to the driver's desired speed, and existence of heavy

vehicles).
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The Gap Acceptance Model

The gap acceptance model captures drivers' assessment of gaps as acceptable or

unacceptable. Drivers are assumed to consider only the adjacent gap. An adjacent gap is

defined as the gap in between the lead and lag vehicles in the target lane (see Figure 4-3).

For merging into an adjacent lane, a gap is acceptable only when both lead and lag gaps

are acceptable.

X total clear gap + vehicle length Y

jag gapl lead gap
lag vehicle lead vehicle

S uje ct front
vehicle;

x Y

Figure 4-3: Gap Acceptance Model

Drivers are assumed to have minimum acceptable lead and lag gap lengths (lead and lag

critical gaps respectively). These critical gaps vary not only among different individuals,

but also for a given individual under different traffic conditions. The value of the critical

gap is a function of traffic density, distance to the point by which the driver has to

complete a mandatory lane change, etc.

Forced Merging Model

In heavily congested traffic, gaps for merging and lane changing are difficult to find. In

these situations the driver creates a gap by forcing another vehicle to yield. The

probability of forced merging is a function of traffic conditions and characteristics of the

subject drivers.

4.2.2 Route Choice Model

In MITSIMLab, drivers make route choice decisions either pre-trip or en-route (based on

information received from Variable Message Signs (VMS) or in-vehicle devices). A
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probabilistic route choice model is used to capture route choice decisions and it has two

forms: path- or link-based. The path-based model is path-size logit model

(Ramming[31]). The link-based model calculates the probabilities of choosing an

outgoing link at each intersection using the formula (see Figure 4-4):

P(i j, t)=
) expxp l (,(t) + Ck (t + C^(t)))]

k (t+CItW) < 1jt

Where:

c, (t): expected time to traverse link 1 for a vehicle that enters that link at time t;

C, (t): expected shortest travel time from node k to the destination for a vehicle

that arrives at k at time t;

/8: model parameter.

0-Current Link d

k T Tk

Figure 4-4: Linked-based Route Choice Model

The expected travel time to one's destination for each alternative downstream link at an

intersection can be time dependent. The expected travel time depends on the type of

information the driver has access to. If no information is available habitual travel times

are used.
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4.3 Implementation

In order to fit MITSIMLab into the module, certain handshake routines had to be written

that converted the MITSIMLab generated output into the format that is taken by the

module. Figure 4-5 shows an overall picture of MITSIMLab integrated with the

calibration module.

E START= STOP

YES

MITSIMI-ab STEADY STATE NO . OVERALL
TRAVEL TIME CONVERGENCE

MITSIMI-abT
MITSII-abROUTE-CHOICE 

+
DRIVING BEHAVIOR MITSIMI-ab

PARAMETERS7 CALIBRATION

Assignment Matrix Module N

YES

ASSIGNMENT MATRIX

OBSERVED COUNTS No OD-ESLTIMATION CONVERGENCE

ASINENT MATRIX

Figure 4-5: MITSIMLab in Calibration Module
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4.3.1 Assignment Matrix Module

MITSIMLab is used to generate the assignment matrix. The sensor counts generated

using MITSIMLab are translated into an assignment matrix using a matlab program.

MITSIMLab produce an output file called "assignment matrix.out" which has to be

processed in matlab to give the assignment matrix. Figure 4-6 depicts the methodology.

asigrment MATLAB Assignment

Figure 4-6: Assignment Module

4.3.2 OD Estimation Module

The OD estimation module gives the new estimates of the OD flows in terms of a vector.

This output cannot be directly fed into MITSIMLab. Hence, a routine in matlab was

written to translate the new estimates of the OD flows into the input that is compatible

with MITSIMLab (Figure 4-7).

New OD
estimates OD in
from OD MATLAB MITSIMLab

/ estimation format
module

Figure 4-7: OD Estimation Module

4.3.3 Steady State Travel Time

Steady state travel times are generated using MITSIMLab. MITSIMLab outputs the

travel time experienced on the network into an output file (linktime.out). This file is fed

back into MITSIMLab to generate new estimates of travel times. The process of

smoothening is done using a matlab program which takes the input link travel time file

and the output link travel time file and does a weighted averaging, to give a new travel

time file which than becomes the input for the next iteration. This process is repeated

until we get a converged link travel time. Figure 4-8 shows this process.
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Figure 4-8: Steady State Travel Time

4.3.4 Objective Function

The box complex algorithm evaluates the value of the objective function for a given set

of parameters. To evaluate the value of the objective function, the outputs from

MITSIMLab are required. Generally the objective function is to minimize the deviation

between counts, speed (or a combination of these values) generated by MITSIMLab and

the field values of counts, speed etc. The outputs generated from MITSIMLAB have to

be processed to give the desired values in the desired format. Appropriate routines are

written in matlab to convert the output from MITSIMLab to required format (Figure 4-9).

MITSM~abOutput 00 MATLAB desiped

Figure 4-9: Output Processing

The other issues to be considered is that, box algorithm generates user-specified number

of sets of parameters and than as it goes along, it drops the set with the worst objective

function and generates a new set of parameters. In order to evaluate the objective

function associated with the different set of parameters generated by box algorithm, it is

necessary to input these set of parameters in MITSIMLab. So it is required to make

routines that can send the set of parameters from the box algorithm output to the

MITSIMLab input. Furthermore, box algorithm needs the value of the input parameters,

so again a routine is required which can read these values from MITSIMLab and pass it

to box algorithm. Most of the parameters that are changed in MITSIMLab are written in a

parameter file (paralib.dat). Appropriate routines were written in matlab to parse the
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initial value of the initial set of parameters and than pass it to the box algorithm and

routines which can write the set of values generated from box algorithm into the

parameter file (paralib.dat). The process is depicted in Figure 4-10.

(Passing initial set to Box)

paraetersMTIIa Output z o BXAloih parameter

MATLAB

(W it ne et in .

Figure 4-10: MITSIMLab with Box Algorithm

The other issue to be addressed is the stochasticity associated with the simulator. To

evaluate the value of the objective function for a given set of parameters, the simulator

can be run for a user defined number of times, with the objective function evaluated for

each run. Finally, while returning the value of the objective function to the box algorithm,

an average of these objective functions can be returned.

4.4 Summary

In this chapter an overview of MITSIMLab and its models was provided. The

implementation of calibration framework in MITSIMLab was discussed. The next

chapter uses the implementation in MITSIMLab for the calibration of three networks.
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Chapter 5

Case Studies

This chapter presents three case studies performed using the module. The simulator used

in these studies is MITSIMLab.

5.1 Case Study 1: The HCQS Network

5.1.1 Project and Network Description

The Highway Capacity and Quality of Service (HCQS) committee of Transportation

Research Board has outlined a test case to be used to address the calibration and

validation issues for simulation and the capacity analysis of various traffic simulation

models. The purpose of this is to serve as a common ground for exhibitors/demonstrators

to showcase their products' latest features in the HCQS exposition of simulation models.

The dataset comprised calibration data (speed, density etc.), traffic volumes, signal

timings and information about the basic network geometry.

The network consists of a 5-mile freeway with two interchanges, and is shown

diagrammatically in Figure 5-1. There are altogether four signalized intersections with

pre-timed signals.
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Figure 5-1: HCQS Network

5.1.2 Data

Data from 5:30-5:45 AM was available for calibration. The available data comprised:

" Average speeds at mid-sections of the freeway

" Average speed on the arterial segments

* Average density on the freeway segments

" Average Travel Times on the freeway segments

* Average Travel Times on the arterial segments

The simulation was performed from 5:00 AM to 6:00AM. The OD flows were estimated

using traffic volumes on the freeway along with entrance counts on the on and off ramps.

All signals were pre-timed signals, with a constant 90-second cycle length and differing

offsets. The volume splits at the intersections and the signal timings were provided. In the

weaving section, 10% of on-ramp traffic exits at the next off-ramp (ramp-ramp

movement). It was given that there is 95% peak hour factor for all the volumes, adjusted

for the third 15-minute period.
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5.1.3 Input Files for MITSIMLab

The network was coded in MITSIMLab using the information provided by HCQS

committee and the signals and sensors were placed at the appropriate locations. The pre-

timed signals were coded accordingly. The link volumes for the entire network and the

splits at the interchanges were used to generate the dynamic OD matrix.

5.1.4 Implementation of the Module

Choice ofparameters: Since there is no route-choice associated with this network, only

the car-following parameters were selected for calibration. In the car-following model,

the scaling factor a (Chapter 4) captures the effect of unobserved variables that are not

captured by coefficients of the explanatory variables. Hence a was chosen as a

calibration parameter. There are two values of a; one is associated with acceleration and

the other is associated with deceleration. Both these parameters were chosen for

calibration. Along with these parameters a scaling factor for scaling vehicle-desired

speeds was used. The lower and upper bounds of these parameters were set as shown in

Table 5-1. The range was decided based on the default value of these parameters.

Alpha (Acc) Alpha (Dec) Scaling Factor
Lower Bound 0 -0.1 0.8
Upper Bound 0.1 0 1.2

Table 5-1: Upper and Lower Bound for Chosen Parameters

Objective Function: Based on the available the data, the objective function chosen is

given by equation shown below:

L(v, -V')2 + col(kj -k ) 2

i=1j=1

Where:

vi : Observed Field Speed.

vi: Speeds from MITSIMLab.

1 : Number of sensors.

ki : Observed Field density for segment j.
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k :Density for segment j from MITSIMLab.

m Number of segments for which densities are reported.

o Relative weight of density function with respect to speed function

In this study, the deviations in observed and simulated densities and speeds were treated

equally and hence, co = 1 was employed. The Box algorithm module was run to generate

six sets parameters and consequently better sets of parameters. To take care of the

stochasticity associated with MITSIMLab, for each set of parameters, MITSIMLab was

run three times and an average value of the objective function over these three runs was

returned to the box algorithm.

5.1.5 Results

The different sets of parameters generated by the Box algorithm and the values of the

objective function associated with them are given in Table 5-2.
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Alpha(Acc) Alpha(Dec) Scaling Factor Function Value
Initial Set

1 0.0400 -0.0420 1.0000 459.7
2 0.0665 -0.0110 0.8764 556.4
3 0.0870 -0.0265 0.9690 595.9
4 0.0010 -0.0313 1.1400 24674.2
5 0.0137 -0.0654 0.9961 17862.9
6 0.0819 -0.0834 1.1264 466.1

Iteration
1 0.0999 -0.0644 0.8001 455.0
2 0.0999 -0.0195 0.9002 589.0
3 0.0654 -0.0668 0.9038 484.0
4 0.0328 -0.0977 0.9949 4180.0
5 0.0518 -0.0756 0.9681 531.0
6 0.0686 -0.0322 0.9089 583.0
7 0.0697 -0.0429 0.9251 518.0
8 0.0613 -0.0646 0.9547 486.0
9 0.0702 -0.0482 0.9332 474.0
10 0.0660 -0.0590 0.9480 484.0

Table 5-2: Parameters Sets and Corresponding Objective Function Value

It is evident from Table 5-2 that the Box algorithm searches the multidimensional search

space and tries to reach the global optimum. . The box algorithm initially generates six

sets of parameters. It then evaluates the objective function value associated with each set

of parameters. Then it moves the point returning the highest function value, towards the

centroid of the remaining five points. For e.g. in Table 5-2, out of the 6 parameter sets

generated, the fourth set yielded the highest objective function value of 24674.2.

Therefore, in the first iteration the fourth set was replaced by a new set of parameters.

This replaced set of parameters yielded an objective function value of 455.0 as shown in

Table 5-2 (corresponding to the first iteration). Thus, now among the six sets of

parameters, the set with the objective function value of 17862.9 is the highest and is

subsequently replaced by the box algorithm (as shown in iteration 2). This process

continues until all the points converge towards the minima. Table 5-3 summarizes the

highest and lowest values of the objective function obtained after each iteration.
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Objective Function Value

Highest Lowest
Initial Set 24674.2 459.7

Iteration

1 17862.9 455.0
2 595.9 455.0
3 589.0 455.0
4 4180.0 455.0
5 556.4 455.0
6 583.0 455.0
7 531.0 455.0
8 518.0 455.0
9 486.0 455.0
10 484.0 455.0

Table 5-3: Highest and Lowest Values of the Objective Function

In the initial iterations, the Box algorithm tries to search the entire search space, so the

value of the objective function fluctuates, but it starts to converge after a few iterations

(after iteration 5).
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Figure 5-2: Differences in Highest and Lowest Objective Function Value
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Figure 5-2 shows the difference between the highest and lowest objective function values

after each iteration (beyond iteration 5), and clearly indicates convergence to the

minimum.

These calibrated parameters were then used to obtain the speed, density and travel time

on freeway and arterial locations. The results are shown below in Figures 5-3 through 5-

5.
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Figure 5-3: Comparison of Speed on Freeway Segments

71



MFW

40.0

35.0

30.0

25.0J20.0
15.0

10.0

5.0

0.0

2.50

2.00

1.50

1.00

0.50

0.00
1 2 3 4 5 6 7 8 9 10

FreewaySegment

Average Travel Time on Freeway Segments (5:30-5:45)

Figure 5-4: Comparison of Density and Travel Time on Freeway Segments
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Figure 5-5: Comparison of Speed and Travel Time on Arterial Segments

The results show a good match with the field data. The maximum percentage difference

between the field data and MITSIMLab results of speed, density, and travel time on

freeway was 5%, 5% and 15% respectively. Along the arterial segments, the maximum

difference between the field and MITSIMLab speed and travel time was less than 27%

and 20% respectively.
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5.2 Case Study 2: The North West Kungsholmen Network

5.2.1 Project and Network Description

The North West Kungsholmen (NWK) network is located in the western part of

Stockholm, Sweden, and covers an area of approximately 4 square kilometers. Two main

motorways traverse the network. Essingeleden (Motorway E4) runs in a north-south

direction, and Drottningholmsvagen runs in an east-west direction. The following bridges

("bron" in Swedish) define the network boundary: Ekelundsbron in the north,

Tranebergsbron in the west, and Fredhillsbron, Mariebergsbron, and Viisterbron in the

south. Central Stockholm is located 2 kilometers east of the network. This section of

Stockholm consists of industrial and residential developments. The area is highlighted in

Figure 5-6 below.

Figure 5-6: Network Location

Public Transportation in Stockholm is provided by Stockholm Localtrafik (SL). The

system has a fleet of blue and red buses, and a subway system through the city. Signal

priority for bus operations is used in the network, along Lindhagensgatan. Three signals

operate under PRIBUSS, a signal priority strategy developed for use in Stockholm
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(Cortes[32]). Figure 5-7 shows a diagram of the area, including the transit routes and the

signal priority locations.

PRIBUSS Signal
I R Priority Locations

iit RIT/ I

t#H

Figure 5-7: Network and Location of Signals

5.2.2 Data

Daily traffic volumes for year 1996 on selected links were provided by GFK

(Cortes[32]). Preliminary OD data and directional volumes for the year 2000 for the

morning peak hour (7 AM - 8 AM) were obtained from EMME/2 output and provided by

SCC. The GFK data was thus normalized to the year 2000 for analysis, using growth

rates determined by annual population statistics for the Stockholm area. As the morning

peak hour was simulated for the NWK network, peak hour volumes were extracted from

the daily GFK volumes using a peak hour traffic/daily traffic ratio (peak hour factor) of

10%, the value used by GFK. Traffic volume distributions over a typical weekday, when

available,(such as at the Kristineberg and Fredhall junctions), was combined with peak

hour factor to reflect a more accurate ratio. After this preliminary procedure, traffic

volume data was thus estimated for the weekday morning peak hour in the year 2000 at

various point locations throughout the network.
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5.2.3 Input Files for MITSIMLab

The network was coded in MITSIMLab using the information provided by GFK,

including construction drawings, transit maps and schedules, aerial photographs, and

initial studies. Roadway geometry was determined from the drawings and photographs

where possible; elsewhere, minor roadways within the network were assumed to consist

of one lane in each direction. The network has a total of 122 links and 64 nodes. As

previously described, three PRIBUSS signals are included in the network along with a

total of 10 SL bus routes. Figure 5-8 shows the simulation network as represented in

MITSIMLab.

Figure 5-8: Network in MITSIMLab

5.2.4 Implementation of the Module

MITSIMLAB has been previously calibrated and validated for the Stockholm drivers

(Ben-Akiva et al. [24]). Hence in this study, parameters were not calibrated and only OD-

estimation was done using the counts at various sensor locations. Since not much data

were available, the error covariance matrices of both counts and the OD flows were
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initially assumed to be identity and then were adjusted. The module started by computing

the steady state travel time (5 iterations) and then iterations for OD estimation (5

iterations) were performed. After each iteration, the new set of steady state travel times

was computed and fed back to MITSIMLab.

5.2.5 Results

The results of OD estimation are shown in Figure 5-9 they show a very good match with

the field data.
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Figure 5-9: Comparison between Observed and Simulated Counts at Sensor Locations

5.3 Case Study 3: The Irvine Network

The data used in this research were collected from Irvine, a part of District 12 in Orange

County, California, USA.
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5.3.1 Network Description

The study network (Figure 5-10) is comprised of three major freeways and a dense

network of urban arterials. The 1-5 and 1-405 Interstates, along with State Route133,

define a wedge that is intersected by several major arterials. The city of Irvine is located

in Orange County, just outside Los Angeles. It is a major commercial and business

center, and serves as an important regional airport. Irvine is also home to several schools

and universities. The city therefore attracts a varied mix of commuters and travelers.

Figure 5-10: The Irvine Network

The network is represented as a set of 298 nodes connected by 618 directed links in

MITSIMLab. These links represent the physical links on the network, and are further

subdivided into 1373 segments to model the changing link section geometry. Almost all

of the 80 intersections within the study area are signalized, and are controlled by vehicle-

actuated signal logic. A high fraction of the signals along the primary arterials (Barranca

Park-way, Alton Parkway and Irvine Center Drive) are coordinated.

5.3.2 Data and Analysis

The data was derived primarily from four sources:
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" PARAMICS network files

" OD flows from OCTAM planning study

" Time-dependent detector data

" Signal timing and coordination plans

Information regarding the network was contained in a set of input files created for the

PARAMICS traffic simulation system. These files included descriptions of network

geometry, link and lane connectivity, sensor locations and signal timing plans.

The OCTAM planning study generated a static matrix of OD flows covering the morning

peak period. While this matrix contained every possible OD combination from 61 zones,

several of these flows were zero. In this study, a subset of 655 primary OD pairs with

non-zero flows was extracted from the static matrix. A review of the static OD matrix

showed that freeway-based OD pairs contributed to a major proportion of the total

demand. Figures 5-11 indicates the primary OD pairs. The thickness of the lines

connecting the origins and destinations is a measure of the magnitude of the OD flow.
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Figure 5-11: Primary OD pairs

Time-varying freeway and arterial detector data recorded over 5 working days was

available from California Department of Transportation (Caltrans). This data consisted of

counts and occupancies measured by lane-specific sensors on freeway links and lane-

group-specific sensors on arterial links. While the freeway detectors reported data every

30 seconds, the arterial detectors were aggregated over 5 minute time slices. It should be
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noted that only 68 out of 225 sensors reported usable data. The remaining detectors were

either located outside the study area, or their data files were inconsistent. Out of these 68

usable sensors, 30 sensors were located on freeway and ramps, and 38 on arterial.

The data collected by the surveillance system consisted of vehicle counts and

occupancies. The counts were aggregated into common intervals of length 15 minutes.

Further analysis indicated that there was not much day-to-day variability in the sensor

data, even though the data was collected on 5 different days of the week (Figures 5-12

and 5-13 (Balakrishna [33])).
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Figure 5-12: Counts Variation Across Days: Freeway Sensor
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Figure 5-13: Counts Variation Across Days: Arterial Sensor

Signal timing and coordination charts from the City of Irvine specified the details

regarding signal phasing, timing, actuation and coordination.

5.3.3 Input files for MITSIMLab

The network file describes the locations of nodes, links, segments and sensors, and

defines the connectivity between individual lanes in the network. Other then the network

file, MITSIMLab requires signal files as an input. Generic controllers were coded using

the signal plans provided.

The OD demand file specifies the time-varying OD flows for each OD pair in the

network that has a non-zero flow. between it. A seed OD matrix constructed for

calibration of DynaMIT (Balakrishna[33]) was used as the seed for OD estimation

process.
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It is necessary that a good set of paths for each OD pair of interest is generated. A

suitable path set generated for calibration of DynaMIT was used in this calibration study.

All unique paths shorter than twice the shortest distance were included in the final path

set. Manual inspection confirmed that most of the practical alternatives had been selected.

The final set contained a total of 9036 paths.

5.3.4 Implementation

The calibration was performed for AM peak period, i.e., 6:00AM to 7:30AM. However,

the calibration was started from 4:00AM (sensor records indicated that the network is

almost empty) to ensure that the first interval that we estimate has minimal interference

from vehicles departing in earlier time intervals. The study interval was divided into

equal subintervals of 15 minutes. This discretization was based on probe vehicle data that

indicated that maximum travel times in this network were approximately 10 minutes.

OD Estimation: The module requires error covariance matrices of both counts and the

OD flows. These matrices were developed for calibration of DynaMIT (Balakrishna [33])

and were used in this calibration study. Since day-to-day variation in the available data

was not significant, three days of data was used together for estimating the OD matrices.

The deviation of the simulated counts was taken against the observed counts on all three

days.

Calibration Parameters: The Irvine network has multiple paths for a given OD pair.

Hence route choice parameters become very important in this case. Therefore the travel

time coefficients (3) were calibrated along with freeway bias parameter. Furthermore,

scaling factor alpha (a) of car-following model was also included. Table 5-4 summarizes

the range of the selected parameters. The value of freeway bias is between 0 and 1. All

travel times on the arterials are divided by freeway bias to account for driver's preference

for freeway. The range of other parameters was set based on the default values.
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#(Guided) /3(Unguided) Freeway Bias Alpha (Acc) Alpha (Dec)

Lower Bound -0.5 -0.5 0 0 -0.1
Upper Bound 0 0 1 0.1 0

Table 5-4: Upper Bound and Lower Bound of Route Choice and CF Parameters

However, visual results of the simulation indicated that parameters of lane changing

model also needed to be calibrated. Hence lane-changing coefficients were included in

the calibration process. Scale parameters in the lane changing gap acceptance model (PO)

and nosing models (b) were chosen for calibration. Table 5-5 summarizes the range of the

selected parameters.

/80 /30 60(Mandatory, /0(Mandatory, b
(Discretionary, (Discreationary, Lead) Lag)
Lead) Lag)

Lower Bound 0 1 0 0 -3.5
Upper Bound 1 3 0.7 1 -2.5

Table 5-5: Upper Bound and Lower Bound of Lane Changing Parameters

Objectivefunction: The objective function chosen for the calibration of parameters was a

sum of squares of differences between counts generated by MITSIMLab and field values

of counts (for all three days) at sensor locations. Mathematically,

3 1

(y, - yi)
j=I i=1

where:

y, MITSIMLab count at sensor i.

S:Field count at sensor i on day j.

I: Number of sensors.

5.3.5 Results

The module was first used to generate steady state travel time, ans then to calibrate the

route-choice and car-following parameters. All other parameters and OD matrices were

fixed in this stage. After calibrating the route-choice and car-following parameters,
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calibration of lane changing parameters was performed by fixing all other parameters and

the OD matrices.

Table 5-6 and 5-7 summarize the different sets of parameters generated by Box algorithm

and their corresponding function values; the best set of parameters is highlighted.

B(Guided) f(Unguided) Freeway Bias Alpha (Acc) Alpha (Dec) Function value
Initial Set

1 -0.24 -0.24 0.80 0.040 -0.042 226297415
2 -0.49 -0.27 0.33 0.064 -0.043 242244647
3 -0.05 -0.47 0.43 0.021 -0.021 241647149
4 -0.40 -0.01 0.23 0.038 -0.094 238283048
5 -0.35 -0.21 0.58 0.078 -0.040 248156817
6 -0.17 -0.29 0.76 0.068 -0.095 293804289

Iteration

1 -0.17 -0.31 0.42 0.005 -0.084 286525542
2 -0.22 -0.28 0.46 0.025 -0.072 227398667
3 -0.22 -0.27 0.64 0.057 -0.077 247731893
4 -0.24 -0.26 0.57 0.517 -0.068 245146859
5 -0.26 -0.26 0.54 0.049 -0.064 239320797
6 -0.38 -0.26 0.42 0.055 -0.051 246238874

Table 5-6: Route Choice and CF Parameters and Their Corresponding Values
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/80 0 /30 /30 J b Function value

(Discretiona (Discreation (Mandatory, (Mandatory,
ry, Lead) ary, Lag) Lead) Lag)

Initial Set

1 0.0508 2.02 0.384 0.587 -3.159 231286412
2 0.231 1.037 0.517 0.893 -3.297 236725304
3 0.607 2.643 0.123 0.058 -3.301 224907573
4 0.486 1.889 0.284 0.353 -2.896 234212906

5 0.891 2.231 0.655 0.813 -3.228 224367123
6 0.762 2.584 0.642 0.0099 -3.301 226519434

Iteration

0.999 J 2.999 0.289 0.0001 -3.021 230547553
2 0.999 2.999 0.593 0.217 -3.5 232747358

Table 5-7: Lane Changing Parameters and Their Corresponding Values

Finally, the parameters were fixed at the calibrated values and OD estimation was

performed (with calibrated parameters). After each iteration of OD estimation, a new set

of steady state travel times were obtained by fixing the OD and the parameters. OD

estimation was done iteratively till a convergence criterion was achieved.

There were 655 OD pairs and 14 time slices. The field observation was given for 68

sensor locations. Hence, for each time interval 68 count readings were to be matched and

655 OD pairs were to be estimated. The resulting assignment matrix was of size 952 x

9170. The module was able to handle such a large matrix and gave new estimates of the

OD in less than 5 minutes.

The final results after OD-estimation are shown in Figures 5-14 through 5-20.
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One of the biggest problems in calibrating this network was the computation time. Due to

this limitation, we were constrained to do less number of iterations. The accuracy of these

results can be further improved by increasing the number of iterations.

5.4 Summary of Results

Based on the three case studies, the following conclusions are drawn:

" For the simple HCQS network, the calibration approach was successful in

matching the observed speeds, densities and travel times on the freeways and the

arterials effectively. The validity and the potential of the Box algorithm to be used

for the calibration of various parameters were aptly demonstrated.

" In the next case study on the North West Kungsholmen network, the capability of

the calibration framework to estimate OD flows to match field sensor counts was

tested. Again, the approach was successful in estimating OD flows that closely

replicated field counts for an AM peak period.

* The final case study on the Irvine network was aimed to demonstrate the joint

calibration of the model parameters with OD estimation. The results were

promising. However, it was clear that several iterations are to be performed to

closely replicate field data. Due to constraints imposed by the large running time

involved in running the simulator and the large number of parameters to be

calibrated, the optimal values of the parameters was not ascertained.

" Importantly, the case studies highlighted that the approach used for calibration of

the model parameters based on the Box algorithm and the procedure used for OD

estimation can yield accurate results.
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Chapter 6

Conclusions

This chapter discusses the thesis contributions and provides directions for future research.

6.1 Thesis Contributions

In this thesis, a systematic approach for the calibration of microscopic traffic simulation

models along with estimation of dynamic OD matrices was developed. The framework

takes into account the interactions between various models in the simulator and OD

flows. An optimization-based methodology was developed for calibration of the

parameters and estimating OD matrices. Furthermore, the methodology addressed the

issue of obtaining a global optimum in a multidimensional search space using the Box

algorithm. The algorithm generates random set of parameters in the entire search space

and then tries to converge all the generated points towards the minimum. Steady state

travel times can also be computed and is an integral part of the module. Other issues

addressed in this thesis are the computational issues related to OD estimation. As the size

of OD matrices increase, the computational burden increases significantly. To address

this issue of computation burden, a sequential OD estimation approach was implemented

for application to cases where the simultaneous OD estimation approach would be

infeasible.

The framework developed in this thesis can handle any objective function, and calibrate

any user-specified set of parameters. In order to take care of the stochasticity associated

with the simulator, the function can be written in such a way such that it returns the

averaged value of objective function over pre-defined number of runs. The number of

parameters to be calibrated is constrained only by computational time. As the number of
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parameters to be calibrated increases, the number of points initially generated by Box

algorithm increases, which indirectly implies that more runs of the simulator are needed

to evaluate the value of objective function associated with these sets. Furthermore, more

iteration may be required to achieve the optimum value of the parameters.

The module was tested on three networks. For the HCQS network, the car-following

parameters and the scaling factor for speeds of the driver groups were calibrated. The

results showed that as the number of iterations increase, the Box algorithm tries to bring

all the sets of parameters towards the minimum. In the North West Kungsholmen

network case study, the simultaneous estimator was used for estimating the OD flows,

and it produced promising results. In the third case study, the overall framework of the

module was tested. In this case study, route choice parameters, car-following parameters

and some lane changing parameters were calibrated along with estimation of OD matrices

and estimation of steady state travel times. Since the number of OD pairs was quite large,

the sequential approach was utilized. However because of the computation time of

MITSIMLab, the number of iterations was reduced.

6.2 Future Research

Sensitive Parameters: The focus of this thesis was mainly to develop a generic tool that

can be used for calibration purpose; the sensitivity of various parameters was not tested.

Hence one good direction of research would be to identify the set of parameters that are

most sensitive to the simulation results. Kurian ([1] partially addressed this issue. Also,

the range of variation of these parameters should be identified so that they can be used for

defining the upper bound and lower bound of the parameters. Calibration of these

parameters would be computationally more efficient.

Search Algorithm: The Box complex algorithm was implemented in this module.

Although this algorithm tries to take the solution towards the global minima, the final

solution depends upon the number of initial sets of parameters generated and also on the

random numbers generated. Hence, the performance of Box algorithm should be

compared with other available algorithms.
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Appendix A

Calibration Module

This appendix gives details of each component of the module.

The entire module has been written in MATLAB and the following assumptions are

made:

General Assumptions

" Counts data is available at the sensor locations.

" The sensor data report interval is same as the OD interval.

MITSIMLab Input Files Assumptions:

" All input and output files are in the same directory.

" The OD file is called "od.dat".

" The sensor output file is called "sensor.out".

" The assignment matrix file is called "assignmentmatrix.out".

" The input historical travel time file is called "linktime.dat".

" The output link travel time file is called "linktime.out".

" The parameter file is called "paralib.dat".
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C START STOP

ODCLEAN

NO Overall

MITS'MLab Convergence

Steady State TT
Convergence>

NO N

YES

SENSORFORMAT

ASSIGNMVATRIX YES

SEQ/SIMUL ODvre

Figure A-1: Main Program of the Module
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The module needs the following input files:

* Observed counts file (counts.dat).

* Weights file (weight.dat)

* Seed OD file (seed-od.dat)

* Any other file required for calculating the objective function value.

The main program of the module is depicted in Figure A. 1:The module has many sub-

modules and a description of each of the sub- modules is as follows:

ODCLEAN: This module cleans the seed OD (seed-od.dat) file by removing

comments from the file and writing the pertinent data to od.dat. This

makes processing easier.

ODFORMAT: This module covert the OD file (od.dat) into a matrix format which

makes it easier to manipulate.

27000 0 1

1 4 2409
{ 1 7 453
{ 1 10 411

27000
27000
27000

1
1
1

Format of OD

Format after ODFORMAT module

4 2409
7 453
10 411
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SENSORFORMAT: Similar to ODFORMAT module, this module coverts the sensor

output file (sensor.out) into matrix format.

27900 {
0 1
1 1
2 1
3 1

}
27900
27900
27900
27900

0
1
2
3

372
440
250
42

372
440
250
42

Format of sensor.out

Format after SENSORFORMAT

ASSIGNMA

SEQ:

SIMUL:

TRIX: This module generates the Assignment Matrix, which maps OD

flows to sensor counts. Assignment Matrix represents the fraction of

demand for a particular OD contributing to sensor counts by time period.

It uses the 'assignmentmatrix.out' generated by MITSIMLab and the

output files generated by ODFORMAT and SENSORFORMAT modules

to generate the Assignment Matrix.

This module uses the Assignment Matrix generated by ASSIGNMATRIX

module, output file of ODFORMAT module, field sensor count file

(counts.dat) and the weights file (weights.dat) to estimate the OD

matrices. Constrained OD estimation is performed sequentially and the

estimated OD matrices are written back in MITSIMLab compatible format

to od.dat.

This module is similar to the SEQ module. The only difference is that it

estimates the OD matrices simultaneously.

HISTORICAL: This module calculates the weighted average

generated by MITSIMLab (linktime.out) and

(linktime.dat) to produce a new historical travel

linktime.dat).

of link travel time

input travel time

time file (overwrite
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PARAMETERBOX: This module applies the Box algorithm and returns optimized value

of the parameters. This module calls the BOX module, which in turn calls

the CHECK module, INITIALPARAMETERS module,

CHANGEPARAMETERS module and FUNC module.

BOX: This is the module where the Box algorithm is implemented. It generates the initial

(K) sets of parameters. It calls the INITIALPARAMETERS module to get

the initial value of the parameters specified in the parameter file. It then

evaluates the function value associated with each set of parameters. To

implement this, it first writes these values in the parameter file using the

CHANGEPARAMETER module and then calls the FUNC module to

evaluate the function value associated with them. Then based on the Box

algorithm, it generates new set of parameters and repeats the above-

mentioned steps till the convergence criterion is met.

INITIALPARAMETERS: This module passes the initial set of value from the parameter

file to CONSX module. This module needs to be modified based on the

chosen parameters. In this module the user has to specify a method to

extract the initial set of parameters (chosen for calibration), from the

parameter file (paralib.dat).

CHANGEPARAMETER: This module writes the new set of parameters into the

parameter file (paralib.dat). This module will also change depending

upon the parameters chosen for calibration. The user has to specify a

method in this module to write the values of chosen parameters into the

parameter file.

FUNC: This module returns the function values. It calls the simulator and the outputs of

the simulator are then processed in this module to give the value of the

objective function.
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