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Abstract

This thesis presents two applications of the prototypical make-to-stock queue model
that are mainly motivated by supply chain management and e-commerce issues.

In the first part, we consider the decentralized version of the make-to-stock model.
Two different agents that we call the supplier and the retailer control production and
finish goods inventory level independently. The retailer carries finished goods inven-
tory to service an exogenous demand and specifies a policy for replenishing his/her
inventory from the upstream supplier. The supplier, on the other hand, chooses the
capacity of his manufacturing facility. Demand is backlogged and both agents share
the backorder cost. In addition, a linear inventory holding cost is charged to the
retailer, and a linear cost for building production capacity is incurred by the sup-
plier. The inventory level, demand rate and cost parameters are common knowledge
to both agents. Under the continuous state approximation that the AM/M/1 queue
has an exponential rather than geometric steady-state distribution, we characterize
the optimal centralized and Nash solutions, and show that a contract with linear
transfer payments based on backorder, inventory and capacity levels coordinates the
system in the absence of participation constraints. We also derive explicit formulas to
assess the inefficiency of the Nash equilibrium, compare the agents' decision variables
and the customer service level of the centralized versus Nash solutions, and identify
conditions under which a coordinating contract is desirable for both agents.

In the second part, we return to the centralized version of the make-to-stock
model and analyze the situation where the price that the end customers are willing
to pay for the good changes dynamically and stochastically over time. We also as-
sume that demand is fully backlogged and that holding and backordering costs are
linearly incurred by the manufacturer. In this setting, we formulate the stochastic
control problem faced by the manager. That is, at each moment of time and based
on the current inventory position, the manager decides (i) whether or not to accept
an incoming order and (ii) whether or not to idle the machine. We use the expected



4

long-term average criteria to compute profits. Under heavy traffic conditions, we ap-
proximate the problem by a dynamic diffusion control problem and derive optimality
(Bellman) conditions. Given the mathematical complexity of the Bellman equations,
numerical and approximated solutions are presented as weil as a set of computational
experiments showing the quality of the proposed policies.

Thesis Supervisor: Lawrence M. Wein
Title: DEC Leaders for Manufacturing Professor of Management Science
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Chapter 1

Introduction

In this thesis we study the behavior of a make-to-stock queue model under two major

variations of its traditional formulation.

First, and mainly motivated by the emerging literature on supply chain manage-

ment, we consider in chapter 3 a decentralized version of the make-to-stock model.

Two different agents that we call the supplier and the retailer control production

and finish goods inventory level independently. More precisely, we model an isolated

portion of a competitive supply chain as a M/M/1 make-to-stock queue. The retailer

carries finished goods inventory to service a Poisson demand process, and specifies a

policy for replenishing his inventory from an upstream supplier. The supplier chooses

the service rate, i.e., capacity, of his manufacturing facility, which behaves as a single-

server queue with exponential service times. Demand is backlogged and both agents

share the backorder cost. In addition, a linear inventory holding cost is charged to

the retailer, and a linear cost for building production capacity is incurred by the sup-

plier. The inventory level, demand rate and cost parameters are common knowledge

to both agents. Under the continuous state approximation that the M/M/1 queue

has an exponential rather than geometric steady-state distribution, we characterize

the optimal centralized and Nash solutions, and show that a contract with linear

transfer payments based on backorder, inventory and capacity levels coordinates the

system in the absence of participation constraints. We also derive explicit formulas to

assess the inefficiency of the Nash equilibrium, compare the agents' decision variables

and the customer service level of the centralized versus Nash solutions, and identify

conditions under which a coordinating contract is desirable for both agents.

17



Chapter 1. Introduction

The second variation that we consider in this work is motivated by new business

practices that e-commerce is creating on the B2B and B2C markets. In particular, we
believe that manufacturers and suppliers that operate on the internet are beginning

to experience higher variability on the price they receive for their production. For
instance, Internet price search intermediaries (web aggregators) offer customers easy

access to price lists and it is just a matter of time that most consumers' purchasing
decisions will be based on this type of information. On the other hand, in the Business-

to-Business setting the situation is not much different. The increasing popularity of
online auctions is a good example showing how spot markets are winning ground over
traditional long-term fixed price contracts. For these reasons, we studied in chapter 4
a make-to-stock model where the price that customers are willing to pay for the good
changes dynamically and stochastically over time. We also assume that demand is

fully backlogged and that holding and backordering costs are linearly incurred by the
manufacturer. In this setting, we formulate the stochastic control problem faced by
the manager. That is, at each moment of time and based on the current inventory

position, the manager decides (i) whether or not to accept an incoming order and (ii)
whether or not to idle the machine. We use the expected long-term average criteria

to compute profits. Under heavy traffic conditions, we approximate the problem by a

dynamic diffusion control problem and derive optimality (Bellman) conditions. Given
the mathematical complexity of the Bellman equations, numerical and approximated

solutions are presented as well as a set of computational experiments showing the

quality of the proposed policies.

The rest of this thesis is organized as follows. In chapter 2 we present the basic
make-to-stock model and analyze some of its main properties. In Chapter 3 we study
the decentralized version of the system. We analyze the non-cooperative equilibrium
between supplier and retailer and we present a mechanism that allows coordination.

In chapter 4 we return to the centralize model and discuss the case where the selling

price behaves as a geometric Brownian motion. The admission and production control

problem is formulated and approximately solved. Chapter 5 contains our conclusions.

Finally, because of the use of Brownian motion processes, heavy traffic analysis, and

stochastic calculus in chapter 4, we conclude this thesis with an appendix that briefly
detailed the main results of these research fields.

18



Chapter 2

The Make-to-Stock Queue Model

In this chapter we introduce the make-to-stock model and describe its main features.

The goal is to present to the reader the basic elements and properties of this simple

but powerful modelling device.

The basic make-to-stock queue model consists of three main components: (i) a

demand process for a single durable good, (ii) a manufacturing facility that produces

the good to satisfy the demand , and (iii) a buffer of finish goods inventory laying

in between the end customer and the manufacturer. In the traditional make-to-stock

model, the finish goods inventory is controlled by the manufacturer but it is also

possible that a different entity owns this portion of the system. In this case, we

will call (iii) the retailer's inventory. The analysis of different agents controlling the

production process and the finish goods inventory is discussed in chapter 3.

The following picture schematically describe the basic element of the model. The

A/\ @

(+ )) I (-)W .............. af-.. 
! -.------ \

Figure 2.1: The Make-to-Stock Model.

plus sign in figure 2.1 indicates that the flow of finish goods coming out of the manu-

facturing facility contributes positively to the inventory position. On the other hand,

the minus sign indicates that the flow of demand reduces the level of stock. We now

give a more detailed description of the different components of the model.

19
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Chapter 2. The Make-to-Stock Queue Model

Demand is generally modelled as a renewal process with known inter-arrival time

distribution fD(t) and demand rate A. We set D(t) as the cumulative demand (number

of orders) up to time t and R(t) as the net revenue associated to selling one unit at time
t (that is the difference between selling price and per unit production cost). In the

traditional model that we will discuss in this chapter the selling price is constant over

time, i.e., R(t) = R. Chapter 4 is devoted to removing this assumption considering a
stochastic price process R(t).

Production, on the other hand, is modelled as a single server queueing system.

We set S(t) as the cumulative production out of the manufacturer's facility up to
time t. This is in general a stochastic process that depends on both (i) the service

or production time of the machine and (ii) the production policy, i.e., the rule that
decides when to have the machine producing or idle. Let P(t) be the production

policy, that is the cumulative amount of time up to time t that the machine has been

working. P(t) is a continuous and increasing process satisfying 0 < P(t) < t. We also

assume here that the machine has a service time distribution fs(t) and production

rate It.

Since production is capacitated, there is a natural delayed between the moment

an order is placed and the moment the final good corresponding to that particular
order is finally produced. In order to avoid the customer to experience this delay, the

manufacturer builds a buffer of finish goods inventory . Thus, each arriving customer

simply takes one unit from the finish goods inventory leaving the system without

further delay instead of placing an order to the manufacturer and waiting until that

order is completed. Therefore, the type of product that we consider here can not

be customized, that is every customer gets the same product that the manufacturer

produces and stocks. We set X as the initial level of inventory. Notice that since

production and demand are both stochastic it is possible that an arriving customer

sees no inventory on stock. This out-of-stock situation depends on the demand and

service rate as well as in the initial inventory position and the production policy

used. For instance, if the production rate is bigger than the demand rate (u > A) and

the manufacturer decides to have the machine working all the time (P(t) = t) then
the probability of stock out is almost zero as time goes to infinity. However, in this

case the inventory of finish goods will increase systematically with time making this
approach very unattractive from an economic perspective.

'For this reason we call these type of models make-to-stock queues.

20
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More efficient policies can be constructed in order to balance the trade-off between

the probability of stock-outs and the level of finish goods inventory. Here we will

discuss one particular policy that we believe is commonly used in practice and has

rece.ved most of the research attention. We call this policy Re-order for each Item

S'old (RIS) which is the name used by Philip M. Morse in his seminal work Queues,

Inventories, and Maintenance. The main idea behind this policy is that we place

an order for another unit to the factory only when one unit is sold and that the

machine is working only when there are orders waiting on queue. Let X(t) and Q(t)

be the level of finish goods inventory and the number of orders at time t respectively.

Suppose, moreover, that at time t = 0 there is no order at the manufacturer facility

(Q(0) = 0) and that the initial inventory is X(0) = X0. Then, under a RIS policy

the following identity holds

X(t) + Q(t) = X0 for all t > 0.

This invariant property of the inventory position X(t) + Q(t) characterizes the make-

to-stock model that we consider in this work. As a first observation, we can notice

that under a RIS policy the inventory of finish good X(t) Xo ensuring that the

cost of holding inventory is bounded. On the other hand, stock-out will happen when

Q(t) > X 0. The probability of this event depends on the particular admission policy

that we consider. Three cases will be discussed here

* Case 1: Demand is fully backlogged. Every arriving order is accepted. If there is

inventory on hand then the arriving customer gets immediately the product and

one order for replenishment is place to the manufacturing facility. If there is no

units on stock the arriving customer is backlogged until one unit of finish goods

gets available for him/her. In addition, one order is place to the manufacturer.

In this situation, the X(t) can be arbitrarily negative in which case the absolute

value represents the number of customers waiting for the good.

* Case 2: Lost sales. Customers are accepted only if there is inventory. In this

case the customer gets the good and one order is place to the manufacturer. If

there is no units on stock the arriving customer is lost and no order is place to

the manufacturer. We notice that in this situation X(t) is always nonnegative.

* Case 3: Demand is partially backlogged. This case is a combination of the

previous two. Here some customers are backlogged but there is a maximum
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number of customers that can be waiting for the product. We set Xb > 0 as

the maximum number of backorders. Thus, in this case we have X(t) > -Xb.

Case 1 is recovered making Xb = o and case 2 is recovered making Xb = 0.

From a practical point of view which of these three cases is more appropriate to
use will depend on the type of market that we consider. Case 1, for instance, seems
to be appropriate for a monopoly type of market where customers do not have other

alternative where to go to get the product. Case 2 on the other hand reflects the
situation where consumers have many buying options, thus if one manufacturer does

not have the product the customer will go somewhere else to get it. Finally, case
three is an intermediate situation.

From a literature perspective, the M/MA/1 make-to-stock queue was introduced

by Morse (1958), but lay mysteriously dormant for the next three decades, perhaps
because the multi-echelon version of it lacked the attractive decomposition property of

the Clark-Scarf model and traditional (i.e., make-to-order) queueing networks, except

under some restrictive inventory policies (Rubio and Wein 1996). Make-to-stock

queueing systems have experienced a revival in the 1990s, including multi-product

queues with (e.g., Federgruen and Katalan 1996, Markowitz et al. 1999) and without
(e.g., Zheng and Zipkin 1990, Wein 1992) setups, and single-product, multi-stage

systems in continuous time (e.g., Buzacott et al. 1992, Lee and Zipkin 1992) and
discrete time (e.g., Glasserman and Tayur 1995 and Gavirneni et al. 1996, building

on earlier work by Federgruen and Zipkin 1986).

In what follows, we will analyze in more detail the three cases mentioned above.

In particular, we are interest on how to determine the optimal levels of X 0 (and Xb

for case 3) as a function of the different system parameters. As a general comment,
we would like to mention that we have selected the average profit (cost) criteria

to compute the objective function to be maximize (minimize). Thus, steady-state

average profit (cost) are considered.

2.1 Fully Backlogged Demand

When demand is fully backlogged the number of orders Q(t) on the manufacturing
facility is equivalent to the queue length of a single-server infinite-capacity queue-
ing system. Certainly, the closed-form analysis of these systems is prohibited under
general arrival and production processes. For this reason, we will focus on the Marko-

22



2.1. Fully Backlogged Demand

vian case, i.e., demand follows a Poisson process, production time is exponentially

distributed, and both demand and production are independent.

In order to compute the optimal base-stock policy X 0 2 we have to balance the

trade-off between holding inventory and having customers backlogged. We notice

that the- net revenue R associated to selling a unit does not play any significant role

here since every order is eventually satisfied and the time average criteria is used.

On the other hand, we assume a simple linear holding/backordering cost function

c(X) such that

c(X) = hX if X> O,
bX if X <O.

We can also write c(X) = hX + + b (-X)+ where X + = max{O,X}. Now, let Q

be the number of orders in steady-state and let X be the steady-state finish goods

inventory position. The existence of Q and X will be guaranteed under the Markovian

assumption and the additional condition A < . Moreover, the invariant property of

the make-to-stock model ensures that X + Q = X0. The steady-state average cost as

a function of X 0 is then given by

C(Xo) = h E[X+] + bE[(--X) +] = h E[(Xo - Q)+] + b E[(Q - X 0)+]. (2.1)

Then, the problem that the manager of the production facility has to solve is to find

a nonnegative integer X0 that minimizes (Xo) above. The solution of the problem

is presented in the following proposition.

Proposition 1 Let Q be the steady-state number of orders being processed by the

manufacturer. Then, the optimal base-stock level Xo satisfied

X0 = min{Z > 0 s.t. b < (h + b) Pr(Q < Z)}. (2.2)

Proof: If X0 is the optimal base-stock level then it must satisfied the condition

E(X - 1) > (Xo) < (X 0) + 1.

2 Under a base-stock policy X, the server is working as long as the finish goods inventory position
is less than Xo. When the inventory reaches the level Xo the server turns to the idle or off position.

23



Chapter 2. The Make-to-Stock Queue Model

Combining these two inequality with the identities

E[(X + 1- Q)+] = E[(X - Q)+] + Pr(Q < X)

E[(Q-X)+] = E[(Q-X-1)+ ] + Pr(Q X + 1) for all X > 0

we get that X 0 must satisfy the optimality condition

(h + b) Pr(Q < Xo- 1)-- b < O < (h + b) Pr(Q < Xo) -b. (2.3)

Since the expression (h + b) Pr(Q < Xo) - b is nondecreasing in X 0, condition (2.3)
guarantees the uniqueness of X 0. The existence is also guaranteed since lim X - ooPr(Q <
X 0) = 1. Finally, condition (2.2) is simply a more concise version of (2.3). i

If we forget for a moment that Q is a discrete random variable then X 0 is the
solution to

b
Pr(Q < X) = h b

The solution is of a critical fractile type similar to those encountered on newsboy prob-

lems. Thus, we just need to compute the cumulative distribution FQ(x) = Pr(Q < x)
for the number of orders on the production facility. The solution is given then by

x = Fl' b
( h+b

For the moment, we have not make any particular assumption on Q rather than

assuming that it has a steady-state distribution FQ(X). If we further impose the
Markovian assumption we get that for the M/M/1 queue

Pr(Q < x) = 1 - p+ where p=-.

Thus, from condition (2.2) the optimal value of X is given by

X0 = [ln(h) - ln(p(h + b)) (2.4)
ln(p)

The solution is consistent with the intuition. X is increasing in b and p and decreasing

24



2.2. Lost Sales

with h. We can also conclude that XO = 0 is optimal if

h
P-< h+b

In this case the make-to-stock system behaves like a make-to-order queue. We now

turn to the analysis of Case 2.

2.2 Lost Sales

In this case we need to consider a different cost function. In particular, we do not

have backordering but we do have rejections. We then assume that for each customer

that is rejected because cf stock-outs the system manager incurs a penalty cost f.

We recall here that for each customer that is accepted the manager received a net

revenue of R. Finally, the holding cost rate for keeping finish goods on stock is again

h per unit. Also, since demand is not backlogged the number of orders in the system

(Q) ranges from 0 to Xo.

In this setting, the average revenue per unit time 7r(Xo) as a function of X 0 is

given by

7r(Xo) = A R (1 - Pr(Q = Xo)) - h E[(Xo - Q)]- A f Pr(Q = Xo).

The first term is the total expected revenue obtained by selling the good, we notice

that 1 - Pr(Q = Xo) is the average fraction of customers that will effectively buy

the good. The second term is the expected holding cost. Finally, the third term

is the expected penalty associated to rejections, here Pr(Q = Xo) is the stock-out

probability.

The problem faced by the manager in this case is to find a nonnegative integer X

that maximizes 7r(Xo) above. This problem was first analyzed by P. Morse (1958).

In addition a quite similar but not identical problem was also studied by P. Naor

(1969) in the context of socially optimal admission control to a queue. We notice

that in this case, the distribution of Q does depend on the value of X0 making hard

the analysis of 7r(X) without further assumption about the distribution of Q. Let

us assume then that we are dealing with a Markovian system. In this case, Q is

the steady-state number of order in an M/M/1/Xo queueing system and it has the
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Chapter 2. The Make-to-Stock Queue Model

following distribution:

Pr(Q = k) = Ipo for all k = 0, 1,... ,X 0.
I pX o+1

Proposition 2 The optimal base-stock level X 0 for the lost sales case satisfies

X0 = min{Z > 0 s.t. A(R + f) < G(Z)} (2.5)

where the function G(Z) is given by

1 - (Z - 2) pZ+l + (Z + 1) pZ+2
pZ (1 - p)2

We notice that G(Z) is a nondecreasing function with G(O) = 1 and G(oo) = oo.

Thus, condition (2.5) is always well-defined. In addition, if A(R+ f) < h then Xo = 0

and the manager is better-off closing the production facility.

Proof: After some straightforward manipulations it can be shown that the opti-

mality condition r(Xo - 1) < r(Xo) > 7r(Xo + 1) is equivalent to

(R + f) G(X),
G(Xo- 1) < h < G(Xo),

which turns out to be equivalent to (2.5). The existence of a solution is guaranteed

because limx,,,G(Xo) = oo. Finally, the uniqueness is also ensured since the

function G(Xa) is nondecreasing. I

Unfortunately, and mainly because of the functional form of G(Z), we can not get

a closed form solution for the optimal level X0 in this case.

One possible way to get good approximations for X0 is to assume that Q is a

continuous rather than discrete random variable. We can formally justify this trans-

formation under heavy traffic arguments. The details of this transformation are pre-

sented in the Appendix A at the end. Here, we briefly mention that for system

with traffic intensity closed to unity we can approximately model the behavior of the

queue length Q(t) by a regulated (one-sided or two-sided) Brownian motion. We do

not pursue this approach here but we mention that the section §A.5 (and in particu-

lar §A.5.3) in the appendix contains all the elements required to complete this heavy
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z z

Figure 2.2: Exact versus Approximate Solution.

traffic analysis for this lost sales model.

Here, instead, we approximate X0 in a much simpler and crude way. First, we

notice that the function G(Z) can be rewritten as follows

Z+1

G(Z) = (Z + 1 - k) p-k
k=O

(The proof of this identity is direct and it is left to the reader). From this relation
we can easily see that G(Z) is nondecreasing in Z as it was claimed above. The key

of our approximation is to replace the summation by an integral. That is,

Z+l
G(Z) ~ G(Z) := J (Z + 1- x)e - 8 dx where 0 = ln(p).

Solving the integral we get

e- e(Z+ l) + 0 (Z + 1) - 1
G(Z) 02

A quick comparison between G(Z) and G(Z) shows that in fact the approximation

is quite accurate specially for values of p < 1. Figure 2.2 shows the behavior of G(Z)

and G(Z) for two values of p. As we can see, for p < 1 the approximation is very

precise. For the case p > 1 the approximation does not perform as good as in the

previous case but still the prediction of Xo obtained from it are good.
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H(Z)

a

H -) o H (a) Z

Figure 2.3: Shape of the function H(Z)

The computation of the optimal level X0 reduces to find the minimum Z satisfying

A 02 (R + f)
e-@(Z+l) + (Z + 1)- 1 

Let define H(Z) = exp(-Z) + Z - 1, then the approximation for X0 is given by

X0= Hl ( (R+ f)f) - 1 (2.6)
h

The shape of the function H(z) is plotted in figure 2.3. As we can see H-1(a) contains

two different values for a > 0; one is positive and the other is negative. Which one of

the two we will select depends on the sign of 0. If 0 is negative we select the negative

value of H-l(a). The opposite is true if 0 > 0. A second order Taylor expansion of

H(Z) suggest the following base stock policy.

X 0 [ 2(R f) 1]

Notice the similarities of this solution and the standard EOQ solution (e.g., Hadley

and Whitin (1963)).

As a general comment about the solution in (2.6), we can see that X 0 is increasing

in R and f and decreasing in h, as we should expect. It is important to notice that

the impact of R and f in the optimal solution comes only through the sum R + f.

Thus, low price high rejection penalty systems have the same optimal solution as high
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2.3. Partially Backlogged Demand

price low penalty systems.

We now turn the last of the three cases which considers simultaneously backorders

and rejections.

2.3 Partially Backlogged Demand

We consider in this case that the manager has the ability to backlog as well as to

reject incoming orders. In this situation, the production and admission policy is

characterized by two integers X0 and Xb. X0 is the base-stock policy that controls the

production. That is, the machine will be working as long as the finish goods inventory

level is under X 0. On the other hand, Xb is the maximum level of backorders that

the system is willing/able to hold. Thus, Xb controls the admission of orders to the

system. Using the same notation that we have used in the previous two sections we

can construct the expected utility per unit time for the system, r(X0,¥ X), which is

given by

ir(Xo, Xb) = A R - A(R + f) Pr(Q = Xo + Xb) - h E[(Xo - Q)+] - b E[(Q- Xo)+].

In this case, Q ranges from ,...,X0 + Xb. We notice that the optimization of

r(Xo, Xb) is more demanding in this case because of the two dimension. For this

reason, we solve the optimization problem sequentially. First, we fix the sum L :=

Xo + Xb and we look for the optimal values of X0 and Xb given L. Then, we select

the optimal value of L.

If we fix L, then the distribution of Q is also fixed, independent of the particular

values of Xo and Xb. In this situation we get

Pr(Q = k) = p for all k = 0, 1,..., L.
l pL+1

Moreover, the first and last term in the utility function are constant and the problem

reduces to minimize the holding/backordering cost

c(Xo, Xb) = h E[(Xo - Q)+] - b E[(Q - Xo) +]

subject to X0 + Xb = L. We can, in fact, rewrite the optimization problem only in

terms of X0. It turns out that the optimality condition in this case with fixed L is
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Chapter 2. The Make-to-Stock Queue Model

the same as (2.3), i.e.,

(h + b) Pr(Q < Xo -1) - b< O < (h + b) Pr(Q < Xo) - b.

The optimal solution X is then characterized by the condition

Pr(Q < XolXo + Xb = L) = + b (2.7)

Under the Markovian assumption, we can rewrite (2.7) as

1 - pXo+1 b ln(h + bpL+I) - Iln(h + b) - In(p)
= Xo =

1 - p+l h + b In(p)

The optimal solution is rigorously given by [Xol and Xb = L - Xo].
After some tedious algebra, the problem of finding the optimal value of L can be

written as follows:

min A[(R + f) (1 -)L
L>O pL + 1)

+ h(Xo - (Xo + l)p + pX+l) + b((L - Xo)pL+2 _ (L - Xo + 1)pL+l + pX°+l)

(1 l p)(l _ pL+l) 
s.t.

ln(h + bpL+ 1) - Iln(h + b) - In(p)
in(p)

Although messy, the optimization problem above is one-dimensional and it can
be solved easily. We are, unfortunately, unable to compute the optimal solution in
closed form. Again, we can try to use some type of approximations to estimate the
optimal solutions (XO, Xb). The use of Brownian motion and heavy traffic conditions
is one alternative. We postpone, however, its discussion to chapter 4 where we derive

the optimal solution for this case of partially backlogged demand (see relations (4.67)
and (4.68)).
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Chapter 3

A Decentralized
Production-Inventory System

3.1 Introduction

Within many supply chains, a devoted upstream agent, referred to here as the sup-

plier, produces goods for a downstream agent, called the retailer, in a make-to-stock

manner. Broadly speaking, the performance (e.g., service levels, cost to produce and

hold items) of this isolated portion of the supply chain is dictated by three factors: (i)

Retailer demand, which is largely exogeneous but can in some cases be manipulated
via pricing and advertising, (ii) the effectiveness of the supplier's production process

and the subsequent transportation of goods, and (iii) the inventory replenishment

policy, by which retailer demand is mapped into orders placed with the supplier. If
the supplier and retailer are under different ownership or are independent entities
within the same firm, then their competing objectives can lead to severe coordination

problems: The supplier typically wants to build as little capacity as possible and re-

ceive excellent demand forecasts and/or a steady stream of orders, while the retailer
prefers to hold very little inventory and desires rapid response from the supplier.

These tensions may deteriorate overall system performance.

The recent explosion in the academic supply chain management literature is aimed

at this type of multi-agent problem. Almost without exception, the papers that

incorporate stochastic demand employ variants of one of two prototypical operations

management models: The newsvendor model or the Clark-Scarf (1960) multi-echelon

inventory model. One-period and two-period versions of newsvendor supply chain
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Chapter 3. A Decentralized Production-Inventory System

models have been studied intensively to address the three factors above; see Agrawal

et al. (1999), Cachon (1999) and Lariviere (1999) for recent reviews. Although

many valuable insights have been generated by this work, these models are primarily

useful for style goods and products with very short life cycles. More complex (multi-

period, and possibly multi-echlelon and positive lead time) supply chain models have

been used to analyze the case where a product experiences ongoing production and

demand. Of the three factors in the last paragraph, these multi-period supply chain

models successfully capture the replenishment policy and have addressed some aspects

of retailer demand, e.g., information lead times in the Clark-Scarf model (Chen 1999),

pricing in multi-echelon models with deterministic demand and ordering costs (Chen

et al. 1999), and forecast updates (Anupindi and Bassok 1999 in a multi-period

newsvendor model and Tsay and Lovejoy 1999 in a multi-stage model). However,

the Clark-Scarf model, and indeed all of traditional inventory theory, takes a crude

approach towards the supplier's production process, by assuming that lead times are

independent of the ordering process, or equivalently, that the production process is

an infinite-server queue.

In this chapter, we use an alternative prototypical model, an M/M/1 make-to-

stock queue, to analyze a supply chain. Here, the supplier is modeled as a single-

server queue, rather than an infinite-server queue, and the retailer's optimal inventory

replenishment strategy is a base stock policy. Because the production system is

explicitly incorporated, these make-to-stock queues are also referred to as production-

inventory systems.

Much of the work done on make-to-stock queues (e.g., Wein 1992, Buzacott et

al. 1992, Lee and Zipkin 1992, Rubio and Wein 1996, Federgruen and Katalan 1996,

Markowitz et al. 1999, Glasserman and Tayur 1995 and Gavirneni et al. 1996) either

undertake a performance analysis or consider a centralized decision maker (Gaverneni

et al. analyze their systemr under various informational structures, but not in a game-

theoretic setting), the make-to-stock queue is amenable to a competitive analysis

because it explicitly captures the trade-off between the supplier's capacity choice and

the rctailer's choice of base stock level. However, the model treats the third key factor

in a naive way, by assuming that retailer demand is an exogenous Poisson process.

Moreover, we assume that the system state, the demand rate and the cost parameters

are known by each agent. While this assumption is admittedly crude, we believe it is

an appropriate starting point for exploring competitive make-to-stock queues. In the

only other multi-agent production-inventory study that we are aware of, Plambeck
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and Zenios (1999), contemporaneously to us, analyze a more complex dynamic system

with information asymmetry.

In an attempt to isolate - and hence understand - the impact of incorporat-

ing capacity into a supply chain model, we intentionally mimic Cachon and Zipkin

(1999). Their two-stage Clark-Scarf model is quite similar to our M/M/1 make-to-

stock queue: Both models have two players, assume linear backorder and holding

costs for retailer inventory (where the backorder costs are shared by both agents),

employ steady-state analyses, and ignore fixed ordering costs. The key distinction

between the two models is that the production stage is an infinite-server queue and

the supplier controls his (local or echelon) inventory level in Cachon and Zipkin,

whereas in our work the production stage is modeled as a single-server queue and the

supplier controls the capacity level, which in turn dictates a steady-state lead time

distribution. While Cachon and Zipkin's supplier incurs a linear inventory holding

cost, our supplier is subjected to linear capacity and production costs. Another de-

viation in the formulations is that Cachon and Zipkin's agents minimize cost, while

our agents maximize profit; this allows us to explicitly incorporate participation (i.e.,

nonnegative profits) constraints. A minor difference is that our queueing model is in

continuous time, while Cachon and Zipkin's inventory model is in discrete time. In

fact, to make our results more transparent and to maintain a closer match of the two

models, we use a continuous state approximation, essentially replacing the geometric

steady-state distribution of the M/M/1 queue by an exponential distribution with

the same mean.

The rest of this chapter is organized as follows. After defining the model in §3.2,

we derive the centralized solution in §3.3, where a single decision maker optimizes

system performance, and the Nash equilibrium in §3.4, where the supplier and re-

tailer maximize their own profit. The two solutions are compared in §3.5. In §3.6,

we describe the contract that coordinates the system; i.e., allows the decentralized

system to achieve the same profit as the centralized system. In §3.7, we analyze

the Stackelberg games, where one agent has all the bargaining power. Concluding

remarks, on the other hand, are presented in chapter 5.

3.2 The Model

Our idealized supply chain consists of a supplier providing a single product to a

retailer. Retailer demand is modeled as a homogeneous Poisson process with rate
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A. The retailer carries inventory to service this demand, and unsatisfied demand is

backordered. The retailer uses a (s - 1, s) base stock policy to replenish his inventory.

That is, the inventory initially contains s units, and the retailer places an order for

one unit with the supplier at each epoch of the Poisson demand process. Because we

assume that there are no fixed ordering costs, the retailer's optimal replenishment

policy is indeed characterized by the base stock level s.

The supplier's production facility is modeled as a single-server queue with service

times that are exponentially distributed with rate . The supplier is responsible for

choosing the parameter pt, which will also be referred to as the capacity. The server

is only busy when retailer orders are present in the queue. The supplier's facility

behaves as a M/I/1 queue because the demand process is Poisson and a base stock

policy is used.

The selling price 7r that the retailer charges to the end customers and the wholesale

price w that the retailer pays to the supplier are fixed. These conditions implicitly

assume that the retailer and supplier operate in competitive markets. Each backo-

rdered unit generates a cost b per unit of time for the production-inventory system.

As in Cachon and Zipkin, this backorder cost is split between the two agents, with

a fraction a E [0, 1] incurred by the retailer. The parameter a, which we refer to
as the backorder allocation fraction, is exogenously specified in our model. Much of

the academic literature assumes a = 1; however, even if the supplier does not care
about backorders per se, he would incur a cost in switching to a different retailer if

he provided extremely poor service, which suggests that this extreme case is not very
realistic.

In addition, the retailer incurs a holding cost h per unit of inventory per unit

of time. The supplier pays the fixed cost of building production capacity and the

variable production costs. The capacity cost parameter c is per unit of product, so

that c represents the amortized cost per unit of time that the supplier incurs for

having the capacity ; this fixed cost rate is independent of the demand level. The

variable production cost per unit is denoted by p. We assume r > w > c + p, so

that positive profits are not unattainable. To make our results more transparent, we

normalize the expected profit per unit time by dividing it by the holding cost rate h.

Towards this end, we normalize the cost parameters as follows:

h - b Ac Ap Ar Aw
= = 1, b= , c= h p= - r = - = (3.1)

h = h h= h, h 
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To ease the notation, we hereafter o.liit the tildes from these cost parameters.

Let N be the steady-state number of orders at the supplier's manufacturing facility.

If we assume for now that > A (this point is revisited later), then N is geometrically

distributed with mean v - l, where

AAh . (3.2)

This parameter, which represents the normalized excess capacity, is the supplier's de-

cision variable in our analysis, and we often refer to it simply as capacity. To simplify

our analysis, we assume that N is a continuous random variable, and replace the

geometric distribution by an exponential distribution with parameter v. This contin-

uous state approximation can be justified by a heavy traffic approximation (e.g., §10

of Harrison 1988), and leads to slightly different quantitative results (the approxima-

tion tends to underestimate the optimal discrete base stock level). However, it has

no effect on the qualitative system behavior, which is the object of our study.

Because the revenues for each agent are fixed, profit maximization and cost min-

imization lead to the same solution. We employ profit maximization to explicitly

incorporate the agents' participation constraints, which take the form of nonnegative

expected profits. However, we introduce some variable cost notation (CR and Cs) in

equations (3.3)-(3.4) for future reference when discussing the inefficiency of the Nash

solution (§3.5) and contracts that coordinate the system (§3.6). In these equations,

the quantities r - w and w - c - p are independent of the supply chain decisions (the

total normalized capacity cost is Ad = c(1 + v), where c is the capacity cost if no excess

capacity is built, and cv is the cost of excess capacity) and represent fixed profits for

the respective agents. The steady-state expected normalized profit per unit time for

the risk-neutral retailer (R) and supplier (Is) in terms of the two decision variables

are given by

HR(S, v) = r - w - CR(s, v) (3.3)

= r-w-E[(ss-N)+] - bE[(N - s)+]
1 - e- rS e- Vs

= r - w-s + - orb
v v

and

Ils(s, V) = w-p- c- Cs(s, )
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= w-p-c-(1 - )bE[(N-s)+ ]-cv
e-vs

w-p-c(1 + v) - (1-a)b
v

3.3 The Centralized Solution

As a reference point for the efficiency of the two-agent system, we start by finding
the optimal solution to the centralized version of the problem, where there is a single
decision maker that simultaneously optimizes the base stock level s and the normal-
ized excess capacity v. The steady-state expected normalized profit per unit time II

(defined in terms of the total variable cost C = CR + Cs) for this decision maker is

n(s, ) = IR(S, ) + Hs(s, v ) (3.5)

= r-p-c-C(s,v)

= r-p-c(1 + v)-s+ 1(b + )e-

The centralized solution is given in Proposition 3; see the Appendix for the proof.

Proposition 3 If r- p- c 2c cln(1 + b), then the optimal centralized solution is

the unique solution to the first-order conditions

sV =0 = vs=ln(l+b), (3.6)

11 = (s, ) - (b + 1)(vs s+l1) 2 + c =0, (3.7)

and is given by

ln(1 + b) and s*= cln(1 + b). (3.8)
c

The resulting profit is

Il(s*, v*) = r - p- c- 2/c ln(1 + b). (3.9)

If r -p-c < 2/cl-n(1 + b), then the system generates negative profits and the optimal

centralized solution is to not operate the supply chain.

By relation (3.6), the ratio of the base stock level, s, to the supplier's mean queue

length, v-1, satisfies vs = ln(1 + b) at optimality, which corresponds to a Pareto

36



3.4. The Nash Solution

frontier for the selection of s and v. (The corresponding first-order conditions for
the discrete inventory problem is ln(v + 1)s = ln(1 + b), and so our continuous

approximation can be viewed as using the Taylor series approximation ln(v + 1) - v.)
Although this ratio is independent of the capacity cost c, the optimal point on this
Pareto frontier depends on c via s = vc according to (3.8).

As expected, the optimal capacity level decreases with the capacity cost and in-

creases with the backorder-to-holding cost ratio b. Similarly, because capacity and
safety stock provide alternative means to avoid backorders, the optimal base stock

level increases with the capacity cost and with the normalized backorder cost b. Fi-

nally, as expected, neither w nor ca play any role in this single-agent optimization,

because transfer payments between the retailer and the supplier do no affect the

centralized profit.

3.4 The Nash Solution

Under the Nash equilibrium concept, the retailer chooses s to maximize IR(S, v),

assuming that the supplier chooses v to maximize HS(s, v); likewise, the supplier
simultaneously chooses v to maximize rIs(s, v) assuming the retailer chooses s to
maximize HR(s, v). Because each agent's strategy is a best response to the other's,
neither agent is motivated to depart from this equilibrium.

Our results are most easily presented by deriving the Nash equilibrium in the
absence of participation constraints, which is done in the next proposition, and then
incorporating the participation constraints, nR > 0 and ns > 0. In anticipation
of subsequent analysis, we express the Nash equilibrium in terms of the backorder
allocation fraction a. Let us also define the auxilliary function

f(b) (1 ca)b(ln(l + b) + 1)(3.10)
(1 + b) ln( + b)

which plays a prominent role in our analysis.

Proposition 4 In the absence of participation constraints, the unique Nash equilib-
rium is

v = f(b) v* (3.11)
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S* (In(l + b) )* (3.12)

The resulting profits, rI1(a) and IH(a), are

n (a)= R(S, ,vC) = r-w-s (3.13)

n(a) = nls(s, v,) = w - p- c In(1 + ab) + cv, (3.14)S IVc:) w-p-c- j (n(l + ab) + I v

Proof: Let s*(v) be the retailer's reaction curve, i.e., the optimal base stock level
given a capacity v installed by the supplier. Because (3.3) is concave in s, s*(v) is
characterized by the first-order condition

vs*(v) = ln(1 + ab). (3.15)

Using a similar argument, we find that the supplier's reaction curve v*(s) satisfies

eV (s)s (i/(3)s + c16)
(v(s)s)2 / (1 - )bs2 (3.16)

The unique solution to (3.15)-(3.16) is (3.11)-(3.12), and substituting this solution
into (3.3)-(3.4) yields (3.13)-(3.14). *

Because f(b) is decreasing in a and ln(1 + ab) is increasing in a for b > 0, it
follows that as a increases, the retailer becomes more concerned with backorders and
increases his base stock level, while the supplier cares less about backorders and builds

less excess capacity.

As mentioned previously, we assume that the two agents do not participate in

the game unless their expected normalized profits in (3.13)-(3.14) are nonnegative.

Hence, if either of these profits are negative, the Nash equilibrium (in the presence

of participation constraints) is an inoperative supply chain. The remainder of this
section is devoted to an analysis of these profits as a function of a. The supplier's

profit I (a) is an increasing function of a! that satisfies
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0
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Figure 3.1: The retailer's (fIR) and supplier's (Hs) profits in the Nash equilibrium as a function
of the backorder allocation fraction a.

and Rn*(a) is a decreasing function of a that satisfies

fR(0) = r - w, lim lH(a) -oo00, (3.17)

as shown in Figure 3.1. (Many of the limits taken in this work, e.g., a -+ 1, are

implicitly taken to be one-sided.)

To understand the unbounded retailer losses in (3.17), note that for the extreme

case a = 1, the supplier does not face any backorder cost and consequently has no

incentive to build excess capacity, i.e, v = 0. This corresponds to the null recurrent

case of a queueing system with an arrival rate equal to its service rate, and s = oo:

There is no base stock level that allows the retailer to maintain finite inventory

(backorder plus holding) costs. Hence, this production-inventory system is unstable

when c = 1 and the Nash equilibrium is that the retailer does not participate, and

the supply chain does not operate.

More generally, there exist Cmin and am,,x such that IIH(ce) > 0 and rIH(a) > 0 if

and only if c E [0amin, max]. That is, the Nash equilibrium is an inoperative supply

chain when a < mi, or a > max, because one of the agents is burdened with too

much of the backorder cost. The threshold omax E (0, 1), and solves

(l n(l + b)fQ(b)) (3.18)
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If w - p - c 2/, then amin = 0. Otherwise, amin solves

W··=(lCl + ab) + a(b) * (3.19)

We have been unable to explicitly solve for Oma,, and amin in (3.18)-(3.19). How-

ever, to increase our understanding of these two equations, we investigate the solution
in two extreme cases: When backorders are much less costly than holding inventory

(b << 1), we have

(r -w) 4 + 4(r -w) 2bc- (r - w) 2 (w -p-) 2 20)
Omax 'w- 2bc -min 4bc

When backorder costs are very large,

mx (r-) 2 ln(1 + b)c (3.21)
max ln(1 + b)c + (r - w)2 ' ln(1 + b)c + (w -p - )2

Even under the assumption r > w > c + p, it is possible that amin > amax in (3.20)-

(3.21). In this situation, even though each agent is willing to participate for some
values of a, it is not possible for the retailer and supplier to simultaneously earn

nonnegative profits.

3.5 Comparison of Solutions

In this section, we compare the centralized solution and the Nash equilibrium with

respect to the total system profit, the agents' decisions, and the consumers of the

product.

The Nash equilibrium is inefficient. As in §3.4, it is convenient to first quan-

tify the inefficiency of the Nash equilibrium in the absence of participation constraints,

and then to incorporate them later. In the absence of participation constraints, the

centralized solution is not achievable as a Nash equilibrium. By equations (3.6)

and (3.15), the first-order conditions are vs* = ln(1 + b) in the centralized solution

and vs* = ln(1 + ab) in the Nash solution. Hence, the two solutions are not equal
when a < 1, and the Nash equilibrium in the a = 1 case is an unstable system, as
discussed earlier.

The magnitude of the inefficiency of a lNash equilibrium is typically quantified by
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comparing the profits under the centralized and Nash solutions. Because the profits

7 - w and w - p - c are fixed in (3.3)-(3.4), it is more natural to restrict ourselves

to the variable costs. This assumption also allows us to follow Cachon and Zipkin

and compute the competition penalty, which is defined as the percentage increase in

variable cost of the Nash equilibrium over the centralized solution. By (3.5) and (3.8),

the variable cost for the centralized solution is

C(ts v) = - 1 eI) +b 2+c = cln(1 +b),

and the variable cost C* associated with the Nash equilibrium in the absence of

participation constraints is, by (3.3)-(3.4) and Proposition 4,

C = CR(S*, v) + Cs(s, v) = [fa(b) In(1 + ab) + + ln(l + b)ib)]
In(+ ab) + 1 In(l + b)fa(b)

Hence, the competition penalty in the absence of participation constraints is C-C(s',V') C(s' ,v)

100%, where

C,- C(s*, v*) 1 (b) n(1l +b)ab) 1
C(s*, v*) 2 (b) In(1 + b) + l n(1 + b)f(b) (3.22)

Surprisingly, the competition penalty in (3.22) is independent of the supplier's

cost of capacity. This occurs because the centralized variable cost and the Nash

variable cost are both proportional to /r at optimality, which is a consequence of

the particular functional form arising from the make-to-stock formulation. However,

this penalty is a function of ac and b, and we can simplify equation (3.22) for the

limiting values of these two parameters. The function f(b) is decreasing in a and

fi (b) = 0. Hence, the competition penalty goes to oo as c - 1. This inefficiency
occurs because as the retailer bears more of the backorder cost, the supplier builds

less excess capacity, and in the limit the lack of excess capacity causes instability

of the M/M/1 system. At the other extreme, f(b) - + as c - 0, and the

competition penalty in this case is given by

b
n(1+b) -1 for b > . (3.23)in( I b)

This function is increasing and concave in b, approaches zero as b -X 0 and grows
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to oo as b - oo. Hence, when the supplier incurs most of the backorder cost, the

retailer holds very little inventory and the competition penalty depends primarily on

the backorder cost; if this cost is low then the supplier has little incentive to build

excess capacity, which leads to a small competition penalty because the centralized

planner holds neither safety stock nor excess capacity in this case. In contrast, if the

backorder cost is very high, the supplier cannot overcome the retailer's lack of safety

stock, and his backorders get out of control, leading to high inefficiency.

Turning to the backorder cost asymptotics, f(b) - f as b -+ o, and the

competition penalty approaches

- 1. (3.24)
2Vaa(1 - a)

This quantity vanishes at a = 0.5, is symmetric about a = 0.5, is convex for a E

(0, 1), and approaches oo as a - 0 and a -+ 1. Thus, when backorders are very

expensive, this cost component dominates both agents' objective functions when they

care equally about backorders (ca = 0.5), and their cost functions - and hence decisions

- coincide with the centralized solution. However, when there is a severe imbalance

in the backorder allocation (a is near 0 or 1), one of the agents does not build enough

of his buffer resource, and the other agent cannot prevent many costly backorders,

which is highly inefficient from the viewpoint of the entire supply chain. Finally, for

the case b - 0, the competition penalty is given by

_2 - 1, (3.25)

which is an increasing convex function of a. Consistent with the previous analyses,

this penalty function vanishes as ac - 0 and approaches oo as a -+ 1.

In summary, there are two regimes, (a = 0.5, b - oo) and (a -+ 0, b -+ 0), where

the Nash equilibrium is asymptotically efficient, and two regimes, ae - 1 and ( -+

0, b -4 o), where the inefficiency of the Nash solution is arbitrarily large. However,

because equation (3.22) does not consider the agents' participation constraints, some

of the large inefficiencies in the latter regimes are not attainable by the supply chain.

To complement these asymptotic results, we compute in Table 3.1 the competition

penalty in (3.22) for various values of a and b. Our asymptotic results agree with the

numbers around the four edges of this table. Two new insights emerge from Table

3.1. First, the competition penalty is minimized by a near 0.5 (i.e., the backorder
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b 0 0.1 1 0.3 1 0.5 0.7 1 0.9 1
10- 3 0.0% 0.2% 1.6% 6.1% 18.7% 73.9% 0o%

1 20.1% 14.8% 7.8% 5.9% 12.9% 59.5% 0o%
2 34.9% 23.8% 10.7% 5.8% 11.1% 56.1% oo%
3 47.1% 30.1% 12.3% 5.6% 10.2% 54.8% oo%
4 57.6% 34.9% 13.3% 5.4% 9.6% 54.1% oo%
5 67.0% 38.7% 14.0% 5.3% 9.2% 53.8% oo%
6 75.6% 41.7% 14.5% 5.2% 9.0% 53.6% 0o%
7 83.5% 44.3% 14.9% 5.1% 8.8% 53.5% oo%
8 90.8% 46.4% 15.2% 5.0% 8.7% 53.5% oc%
9 97.7% 48.3% 15.4% 4.9% 8.5% 53.5% oo%
10 104.2% 49.9% 15.6% 4.8% 8.4% 53.5% co%

10200 4.6 x 101'0% 66.7% 9.2% 0.0% 9.1% 66.5% oo%i -~~~~~

Table 3.1: The competition penalty in (3.22) in the absence of participation constraints for different
values of the backorder-to-holding cost ratio b and the backorder allocation fraction a.

cost is split evenly) when b > 1. Second, the competition penalty appears to be an

increasing function of b for a < 0.5, and a U-shaped function of b for ca > 0.5.

Finally, we note that double marginalization (as introduced by Spengler 1950 or

described by Cachon 1999) is not the source of the inefficiency in our model because

demand is fully backlogged and therefore is independent of the agents' decisions.
The negative externality in our model is due to the fact that the centralized planner

balances the costs of backorders, safety stock and production capacity, whereas the

agents in the decentralized model - by behaving selfishly - do not fully incorporate

the impact of their decisions on the entire supply chain cost.

Comparison of decision variables. Figure 3.2 depicts the optimal Nash pro-
duction capacity v* and the optimal Nash base stock level s as a function of ca, and

allows us to compare these functions to the centralized solutions, v* and s*. Excess

capacity and the base stock level are alternative ways for the supplier and retailer,

respectively, to buffer against demand uncertainty, and Figure 3.2 shows that the

inefficiency of the Nash solution does not necessarly imply that these agents have
less buffer resources in the Nash solution than in the centralized solution. For both

decision variables, there exist thresholds on the value of a, denoted by a, and a,, in
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(a) (b)

0 oas 1

Figure 3.2: The optimal Nash production capacity (v,) and the optimal Nash base stock level
(s,) as a function of the backorder allocation fraction a. The centralized solutions are v* and s*.

Figure 3.2, that divide the regions where the agents have more or less buffer resources

than the optimal centralized solution. However, as shown in the next proposition, at

least one agent in the Nash equilibrium possesses less of his buffer resource than the

central planner.

Proposition 5 For as and a, defined in Figure 3.2, we have as > av.

Proof: By Figure 3.2, if a, < a, then there exists & E [as, a,] such that v.s > V*s*.

However, this inequality together with (3.6) and (3.15) implies that f(b) = In(14--b),

i.e., & = 1. But for a = 1 the supply chain is unstable and does not operate. Hence,

vs* < v*s* for a E [0, 1), and consequently a, > a. !

We cannot solve for as and a,, in closed form, except when b takes on a limiting

value. By (3.12), a, satisfies

ln(1 + ab) 
(3.26)

ln(1 + b)f,(b)

As b - 0, we have f(b) -+ V/1-a and in(l+b) -+ a. Therefore, as b --* 0, a,

satisfies Amp = 1, or a, = - 0.618, which is the inverse of the golden-section

number that arises in a variety of disciplines (e.g., Vajda 1989). As b - o, we

have f I(b) -+ , and In(l+cb) In this case, satisfies / = 1, or o! = 0.5.en iat s s , c n In(l+b) ' a-- 
Numerical computations reveal that a, is unimodal in b, achieving a maximum of
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0.627 at b = 1.48, and is rather insensitive to moderate values of b (e.g., ac > 0.61

for b E [1, 10]). In other words, for moderate values of the backorder cost, the Nash

retailer holds more inventory than optimal when his share of the backorder cost is

more than about 61%.

By (3.11), a, solves f,(b) = 1; i.e., when the backorder cost is small, the Nash

supplier holds a less-than-optimal level of capacity. As b - 0, this condition becomes

V~- a = 1, which gives a, = 0. As b -+ o, the condition becomes V/ = 1 ,

which is solved by ca, = 0.5. Note that a, = a, = 0.5 as b -+ o is consistent with

our previous claim that the Nash equilibrium is asymptotically efficient in the regime

(a = 0.5, b -÷ o). A numerical study reveals that a, is more sensitive than a, to the

value of b. As b varies from 1 to 10, a, ranges from 0.28 to 0.49.

Customer service level. The exponential distribution of the queue length

implies that the steady-state probability that a customer is forced to wait because

of retailer shortages is equal to Pr(N > s) = e-"; consequently, we refer to (1 -

e- Vs) x 100% as the service level. By equations (3.6) and (3.15), the stockout prob-

ability e -V equals (1 + b)- 1 in the centralized solution and (1 + ab)- 1 in the Nash

solution. Hence, customers receive better service in the centralized solution than in

the Nash equilibrium. This is because (see Figure 2) the product of the two buffer

resources (normalized excess capacity and base stock level) is always smaller in the

Nash equilibrium than in the centralized solution, and the customers suffer from this

less-than-optimal level of collective buffer resource; this degradation in customer ser-

vice in decentralized systems also occurs in the traditional bilateral monopoly model

(e.g., Tirole 1997), where double marginalization leads to a higher price charged to

the customer and less goods sold. Finally, even though the system is not stable for

a = 1, customers generally desire a larger value of a; i.e., they prefer that the penalty

for shortages be absorbed primarily by the agent in direct contact with them.

3.6 Contracts

We showed in §3.5 that the Nash equilibrium is always inefficient when the supply

chain operates. In this section, we construct a coordinating contract that specifies

linear tranfer payments based on retailer inventory and backorder levels, the capacity

level and the cost parameters. As in our earlier analysis, this information is assumed to

be common knowledge; although information sharing among entities in a supply chain

is now common practice, we are not aware of any contracts in use that are similar
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to the one proposed here. Cachon and Zipkin also use a linear transfer payment

based on inventory levels to coordinate their supply chain, and readers are referred

to §1.5 of Cachon for a survey of alternative types of contracts in the multi-echelon

inventory setting. We do not impose an explicit constraint that forces either agent to

build a predefined level of its buffer resource. Using Cachon and Lariviere's (1997)

terminology, we assume a voluntary compliance regime, where both the retailer and

the supplier choose their buffer resource levels to maximize their own profits.

Although we have used profit maximization thus far, because the revenues are

fixed our presentation of the contract analysis is simpler - and perhaps more natural

- in the setting of variable cost minimization. Consequently, we first present the

contract in the absence of participation constraints, and at the end of this section we

incorporate the revenues via the agents' participation constraints. Because the model

contains three cost components, the most general linear transfer payment (without

loss of generality, the payment is from the supplier to the retailer) contains cost

coefficients for the holding cost, backorder cost and capacity cost, which are denoted

by Yh, Yb and y,, respectively. The steady-state expected normalized (recall from (3.1)

that h = 1) transfer payment per unit time is given by

T(s, v) = yh (E[(s - N)+]) + 7b (bE[(N - s)+]) + yccv. (3.27)

This transfer payment modifies the profit functions in (3.3)-(3.4) for the retailer and

supplier, respectively, to

CR(S,v) = CR(s, )-T(s,v) = (1- ) - - c)+b( b)e v, (3.28)

Cs(s, v) = Cs(s, v) + T(s, v) = h - + b(1 - a + b)- 4 (1 + yc)Cv.

(3.29)
The following proposition provides a general result for the coordination of s'.tic

games with additive utility structures, and may be applicable to other supply chain

problems.

Proposition 6 Consider a static game with n players, where player i has action

space Xi for i = 1,...,n. For any action x E X 1 x X 2 x ... X Xn, the utility of

player i is given by ui(x). The utility function for the centralized planner problem is

Fin- ui(x), and let x* E argmaxx inZ=l ui(x) be an optimal centralized solution. For
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i # j, let Tij(x) be a linear transfer payment that player i pays to player j if the
action is x. If Tij(x) = yjui(x), where _>= eyj = 1, then x* is a Nash equilibrium of

the modified static game in which player i 's utility function is given by

fi(X) = ui() - E Tij(x) + E Tji(x).
jHi ii

Proof: By our assumptions on Tij(x), the modified utility function for player i can

be written as

ui(x) = (1 - yj)ui() + 7i Z Uj(x) (3.30)
jii ii

N

= Yi E uj(x). (3.31)
j=1

Hence, nil ui(x) = Zinl ui(x), and x* is a Nash equilibrium of the modified game.

Applying Proposition 6 to equations (3.28)-(3.29) shows that coordination in the

absence of participation constraints can be achieved if

-Y = - = 1 - Yh (3.32)

A comparison of equations (3.3)-(3.4) and (3.28)-(3.29) implies that the modified cost

functions are given by

CR(S, V) = (1 - Yh)C(s, v), Cs(S, v) = 'hC(5, v). (3.33)

This is a consequence of the more general result in (3.31), which shows that any split

of the total profit is possible by selecting appropiate values of the {(Yi} parameters.

Note that Yh need not be in the interval [0, 1].

Although we appear to have a degree of freedom in splitting the profits via 7h,

two conditions must be met by Yh to guarantee that both agents will enter into the

contract. First, both agents must be better off under the Nash equilibrium with the

transfer payments than under the Nash equilibrium without the transfer payments,

i.e.,

CR(Sa, V") > (1 - Yh)C(s, V),
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CS(Se, < ) > hC(S,V)-

This condition can be rewritten as yh E [(b), %'(b)], where

L(b) = 1-2 ln(1+ b)ln(1 + b)f,(b)

(b) f(b In(ln(l+ cb) + 2
2 In( + cab) + 1

The second condition on h requires that both agents achieve a nonnegative
profit. The resulting inequalities can be calculated using equations (3.3)-(3.4), (3.9)
and (3.28)-(3.29). Combining these two conditions, we can characterize the range of
coordinating contracts that are attractive to both agents as

max 1- 2y cln(+b)' (b) < h < min ,%(b) (3.34)
2 2cI)1 + b) -p2/cln( + b)

If condition (3.34) is satisfied, we say that the system can be coordinated (by the
contract), and the remainder of this section is devoted to an analysis of this condition.
First we note that it is always possible to coordinate the system if both agents are
willing to participate in the Nash equilibrium in §3.4. This conclusion stems from the
fact that if both players are willing to participate in the Nash equilibrium, then the
additional profits from the centralized solution can be split so that each agent is still
willing to participate and is at least as well off as in the Nash solution. Hence, the
nontrivial cases to analyze are a E [0, amin) and a E (ama,,, 1]; recall that these two
thresholds characterize the participation constraints in the Nash equilibrium and are

defined in (3.18)-(3.19).

We can analyze (3.34) when a approaches one of its extreme values. As ac - 0,
we have

y(b) -+ 1 and %(b) - n(1b) (3.35)

Thus, because a -- 0 implies that a < b, equation (3.34) reduces to

1 <Yh <min{ 1n(+ b)} (3.36)
-- ~2cllb'in1+b
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If w - p - c > 2, then the second term in the brackets in (3.36) achieves the

minimum, and the interval in (3.36) is nonempty because b > ln(1 + b) for b > 0.

Because fa(b) - (1 as a -+ 0, the inequality w-p-c > 2/-b can be recognized

as the supplier's participation constraint in (3.19) in the a -X 0 case. If, on the other

hand, w - p - c < 2/bc, then (3.36) reduces to

w-p-c
1 <_ h (3.37)

2V/cln(1 + b)

By (3.9), the interval in (3.37) is nonempty if and only if I(s*, v*) > r - w.

To summarize, when the supplier absorbs almost all of the backorder cost (i.e.,

c - 0), a coordinating contract is always possible if the supplier is willing to par-

ticipate in the absence of the contract (i.e., w - p - c > 2). If the centralized

system profit I(s*, v*) is less than the retailer's fixed profit, r - w, then the sup-

plier will not enter into the contract. Most interesting is the intermediate case,

w-p-c E (2 /cln(1 + b), 2 V), where the system profit is bigger than the retailer's

fixed profit, but the supplier is unwilling to participate in the absence of a contract.

Here, the excess system profit enables the contract to entice the supplier to partici-

pate in the supply chain. By (3.34), the contract in the a -+ 0 case has yh > 1, and
the supplier subsidizes the retailer's entire operation; i.e., the only way to coordinate

a system in which the retailer does not incur backorder costs is for the supplier to

give the retailer the inventory on consignment.

Turning to the a - 1 case, we have f,(b) -+ 0 and therefore (b) -+ -oc and

',(b) - 0. Thus, condition (3.34) reduces to

r-W
1- _ I < ah _ < 0, (3.38)

2/cln(1 + b)

Equation (3.9) shows that the interval in (3.38) is nonempty if and only if II(s*, v*) >

w -p-c. Hence, when the retailer incurs almost all of the backorder cost, the contract

is attractive to both parties if and only if the centralized system profit exceeds the

supplier's fixed profit, w-p-c. In this case, the contract coefficient yh < 0, and (3.33)

implies that Cs(s, v) < 0; i.e., the retailer subsidizes the supplier's entire operation.

Similar behavior, where where large manufacturers pay for their suppliers' capital

equipment, has been observed in the automobile industry (e.g., Dyer and Ouchi 1993,

Dyer et al. 1998).
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The analysis is more difficult in the general case, a E (0, Camin)U(ma,, 1). Here, we
consider the extreme values of b. As b -+ o, y (b) - 1 - r/ and (b) - 1-a

Even though (b) < a(b) for a E [0, 1] in this case (this can be derived with the

change of variable x = -), neither of these quantities are binding in (3.34), and

coordination becomes impossible because the lower bound in (3.34) is at least 1 and

the upper bound in (3.34) goes to 0. In contrast, as b -+ 0, 7 (b) and % (b) are binding

in (3.34), and (b) -+ I -I and (b) -+ V- a. Because 1- < -a

for a E [0, 1], coordination is always possible as b -- 0.

In conclusion, system coordination is most difficult when the backorder cost is

incurred almost entirely by one agent (i.e., a is near 0 or 1). Furthermore, for a

fixed extreme value of a, coordination is harder if backorders are costly. We can

show (the proof is omitted, but the result follows from our analyses of the a - 0

and a - 1 cases) that a sufficient (but not necessary) condition for coordina-

tion is that the optimal centralized profit exceeds the fixed profits of both agents,

Il(s*, v*) > max {r - w, w - p - c} . Moreover, if we consider w as endogenous, then

the likelihood of coordination is maximized by minimizing the right side of this in-

equality. This is achieved by w = (r + p + c)/2, which splits the fixed profits evenly.

By (3.9), coordination is always possible in this case if r - p - c 4cln(1 + b).

3.7 The Stackelberg Games

We conclude our study of this two-stage supply chain by considering the case where

one agent dominates.

Supplier's Stackelberg game. When the supplier is the Stackelberg leader,

he chooses v to optimize Hs(s, v) in (3.4), given the retailer's best response, s*(v)

in (3.15). This straightforward computation leads to the following proposition.

Proposition 7 In the absence of participation constraints, the equilibrium in the

supplier's Stackelberg game is

.s, -ss~ 1 + ln(1 + ab), P * 1n (3.39)as = s,+/V/1 + ln( + ab)3

The agents' profits are

lHs(.sl ) = w -p - c-2(1 )bc 2 R(s, ) = r - w - . (3.40)
1+ab '
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Equation (3.39) implies that vvs * = vs*, and hence the customer service level

is the same under the Stackelberg and Nash equilibria. Because the first-order con-

ditions of the centralized problem dictate the service level, it also follows that the

Stackelberg equilibrium is inefficient relative to the centralized solution. Not sur-

prisingly, the supplier builds less capacity and the retailer holds more safety stock

in (3.39) than in the Nash equilibrium. The discrepancy between the Stackelberg and

Nash solutions increases as a and b increase.

Now we compare the profit of each agent and the entire system under the Nash

and Stackelberg equilibria. By (3.14), the supplier's profit in the Nash equilibrium

can be written as

IIs(s,v )=w-p-c- c 1- )b (2/ n(l + ab) + '
1±ab 2 ln(1+ab)+1J

The function 2+2 is strictly increasing in [0, o), and is equal to 1 when x = 0. Thus,

it is always the case that rIs(5,0 Pa) Ž> Is(s*, va); this is to be expected, because the

supplier incorporates the retailer's best response when selecting his level of capacity.

However, fIs( /,V) = Is(s,, v*) when a = 0, a = 1 or b = 0, and so the supplier

does not benefit from being the leader in these extreme cases. When a = 1 or b = 0,

the supplier does not face any backorder costs and builds no excess capacity (v = 0).

On the other hand, when a = 0 the retailer - incurring no backorder costs - holds no

safety stock (s = 0). Because these choices (v = 0 and s = 0) are independent of the

bargaining power of the supplier in these cases, the Stackelberg and Nash equilibria

provide the same utility to the supplier.

By (3.13) and (3.39), the difference in the retailer's profit between the Nash equi-

librium and the Stackelberg equilibrium is

nR(Sa, V) - IR(9,, ) = * (V1 + n( + ab) - I ) (3.41)

As expected, the retailer is worse off in the supplier's Stackelberg equilibrium than

in the Nash equilibrium. By (3.8), (3.10), (3.12) and (3.41), the reduction in the

retailer's profit from being the follower vanishes as a -- 0 and b -+ 0 (similar to the

reasons given in the previous paragraph), and increases with a and b.
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A comparison of the total system profit shows that nR(s*, i4) + JsI(So, v) >

nR(SP, i.) + Is( S, i/) if and only if

(1 + ab) n(1 + ab) 1ln(1ab)1 >0.
(1 - a)b 1 + In( + ab) + 1 > . (3.42)

Condition (3.42) holds for large values of a, but is not true in general. Because the

left side of (3.42) equals zero when a = 0, is increasing in a > a 0 if it is increasing

in a at a0, and has a derivative with respect to a equal to 1 - when a = 0, we

conclude that for b < 2 the Nash solution achieves a higher system profit than the

Stackelberg equilibrium for any value of a. If b > 2, the Nash solution is more efficient

if and only if a > a, where a is the unique positive value of a that solves (3.42) with

equality. Hence, overall system performance suffers when the retailer incurs most of

the expensive backorder costs, and - as the follower - has less power than in the Nash

equilibrium to control these costs.

Now we turn to the participation constraints. We start with the follower (i.e., the

retailer) because he performs the inner maximization in this game. By (3.8), (3.10), (3.12)

and (3.39), we can express the optimal Stackelberg base stock level as

ln(1 ab) (1 + ab)c
= (1n( + bb)

Hence, it follows from (3.40) that the retailer's participation constraint, IIR(s, Fa) >

0, is equivalent to

(r - w)l > ln(1 + ab) + ab- (3.43)

The right side of (3.43) is increasing in a > 0, and so there exists a threshold, call it

Cma,,, such that the participation constraint is satisfied if and only if a < max (i.e.,

ma,, solves (3.43) with equality). For future reference, let us also define the threshold

4bc- (w - p- c) 2

min = 4bc + b(w - p - c) 2 ' (344)

The supplier's profit rls(a, Fi/) in (3.40) is nonnegative if and only if a > &min.

There are three cases to examine: a > max, a E [min, cmax] and a < &min. If

a > max then the retailer incurs too much of the backorder costs and his participation

constraint is violated. To avoid an inoperative supply chain, which would give zero
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profits to both agents, the supplier - as the leader - has the luxury of selecting a
capacity level that raises the retailer's expected profit to zero. That is, by (3.15) the
supplier chooses = ln(rl+tb) and the retailer subsequently selects s, = r - w. If the

supplier's resulting profit (see (3.4)) is nonnegative, i.e.,

(r - w)(1 - )b ln(1 + ab)c
(1 + ab) n(1 + ab) r-w >

then this is the supplier's Stackelberg equilibrium for the > rma,. If (3.45) is
violated, then the equilibrium is an inoperative supply chain.

In the second case, ca E [min, amax], both participation constraints are satisfied

and the Stackelberg equilibrium is given by (3.39). In the last case, < dmin, the
supplier's high portion of the backorder costs prevents him from earning a nonnegative
expected profit, and he decides not to participate. Finally, as in §3.4, it is possible
that dmi, > umax; in this case, there is no value of a that simultaneously provides

nonnegative profits for both agents. For brevity's sake, we do not pursue asymptotics

for min and &max.

Retailer's Stackelberg game. The Stackelberg problem is less tractable when
the retailer is the leader. However, the following proposition (see the Appendix for a
proof) characterizes the solution.

Proposition 8 Let (, s) be the equilibirum when the retailer is the Stackelberg
leader in the absence of participation constraints. Define / > 0 to be the unique

nonnegative solution of

2 + ( + 2) (1 - e-( - s)) = 0. (3.46)

Then the Stackelberg solution is

_ (1 - a)b(/ + 1)e-B ^ (3.47)
c va

Although we do not have a closed-form solution to the retailer's Stackelberg game,
the next proposition (see the Appendix for a proof) provides a comparison between

this equilibrium and the Nash equilibrium.
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Proposition 9 The following five inequalities hold:

d.s, < s*,-* (3.48)

> u*, (3.49)

§at < s, (3.50)

InR(,, &) > rIR(S;, ), (3.51)

IIs(9, pa) < Ils(s,,V). (3.52)

While inequalities (3.49)-(3.52) mirror our results for the supplier Stackelberg
game, inequality (3.48) states that the customer service level, (1 - e-s) x 100%, is
lower in the retailer's Stackelberg equilibrium than in the supplier's Stackelberg equi-
librium (and the Nash equilibrium). Inequality (3.48) also implies that the retailer
Stackeiberg equilibrium is inefficient relative to the centralized solution. Analytical
approximations (using e - : - 1- x in (3.46)) and numerical computations reveal that
when the service level is close to 0 or 100%, both Stackelberg games have asymptot-
ically the same service level. The maximum difference is approximately 9.5%, and
is achieved when the service level is 76.0% for the supplier's Stackelberg game and
66.5% for the retailer's Stackelberg game. In a more practical example, if the sup-
plier's Stackelberg service level is 90.0% then the retailer's Stackelberg service level is
approximately 82%. Hence, the deterioration in customer service is not trivial, and
if there is a leader the customers prefer that it is the supplier.

Finally, numerical experiments under a wide range of values for a and b suggest
that the retailer's Stackelberg game achieves a higher total profit than the supplier's

Stackelberg game. However, we have been unable to provide a proof.

3.8 Proofs

3.8.1 Proof of Proposition 3

The function I(s, v) defined in (3.5) is continuously differentiable and bounded above
by Ar in X = {(s, v) s > 0, v > 0}. Thus, a global maximum is either a local interior
maximum that satisfies the first-order conditions or an element of the boundary of X;
alternatively, there could be no global maximum if the function increases as s -+ oc
or v - oo.
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However, we have checked that lim,,, I1(s, v) - -o for v > 0, and lim,,, Il(s, v) -

-o for s > 0, which implies that a global maximum exists. From the first-order con-

ditions (3.6) and (3.7), the only interior point that is a candidate for the global

maximum is (s*, v*). In addition, the Hessian of fl(s, v) at (s*, v*) is given by

H (s*, v*) = - (* c(ln(1+b)2) 
· (·· · ,=-V.

Because ln(1 + b) > 0 for b > 0, the Hessian is negative definite and (s*,v*) is

the unique local maximum in the interior of X. The resulting profit is II(s*, v*) =

r - p - c - 2/cln(1 + b). Finally, lim,,o I(s, v) - -oo for s > 0, and

I(O,) =r - p - c-- + cv <r-p-c-2 < Il(s*,v*) for v > O, b > 0.

Thus, (s*, v*) is the unique global maximum for I(s, v). I

3.8.2 Proof of Proposition 8

To derive the Stackelberg equilibrium, we find it convenient to define

,3 = vs, (3.53)

and rewrite the supplier's reaction curve (3.16) as

e (/2 ) (1)b 2s* (3.54)

The one-to-one correspondence between the base stock level s and the service level

parameter (recall that the service level is e - : x 100%) allows the retailer in this

Stackelberg game to choose rather than s. By (3.3) and (3.53), the retailer's profit

is

InR(, V) = r- -- l ( + (b)e- (3.55)

Solving (3.54) for s and using (3.53) gives

) = (1 - )b(/ + 1)e- (3.56)
C
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Substituting (3.56) into (3.55) yields the retailer's profit as the following concave

function of / > 0:

FIR(/3) = r -W - - 1 (1 + ab)e-) (3.57)

Therefore, the first-order condition

32 + ( + 2)(1 - (1 + b)e- ) =
3 -B = (3.58)

2(/ + 1)2e 2

is sufficient for optimality. Because 1 + ab = e" ;s and the denominator of (3.58)

is always positive, condition (3.58) is equivalent to (3.46). Hence, by (3.46), (3.53)

and (3.56), the Stackelberg equilibrium is given by (3.46)-(3.47). *

3.8.3 Proof of Proposition 9

To prove (3.48), note that the left side of (3.46) is positive if > s,*. Thus, the

root fB of (3.46) must satisfy < vs,, i.e., Is < vas*.

To show that ba > v: and s_ <• s, we first observe that v(s) = arg max>0 {IR(s, v)}

and a2nR(s) = -(1 - )bse - "s < 0. Thus (e.g., Chapter 2 of Topkis 1998), IR(s, V)

satisfies the decreasing difference property,

Idns ) (3.59)ds <

In addition, the function e-6(/ + 1)/i 2 is decreasing in > 0. Hence, from (3.54)
and inequality (3.48), we conclude that A < s. Finally, (3.59) and S, < s implies

that i > v.

The retailer's profit in (3.57) is a decreasing function of .3 for I3 > fl. Hence,
inequality (3.51) follows from (3.48). To prove (3.52), i.e., Is(/3*, v) > s(/, ba),
we first use (3.4) to rewrite the supplier's profit as

Is(, )= w-p - c(v + 1)-(1 - a)be-B).
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The function ls(/, v) is increasing in for v > 0, and so inequality'(3.48) implies

that fs(*, zig) > ls(/5, ia). Hence the proof of (3.52) will follow if we can show

that lIs(3*, v,) > Is(i*, i4 ). For any fixed nonnegative /3, the function fIs(/, v) is

concave in v, achieves its only maximum at v(/B) = V1-abe and is decreasing for

v E [v(/B), o). In particular, we have v(/3*) = i+ < l_ + ln(1 + +b =

v,. This inequality and (3.49) imply that Is(3*, v,) > Is( /*, i,), which completes

the proof of (3.52). *
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Chapter 4

Revenue Management of a
Make-to-Stock Queue

4.1 Introduction

In this chapter, we address the joint problem of admission and production/inventory

control in a single-product manufacturing setting. Demand is stochastic in both the

arrival pattern and the price that each customer is willing to pay. On the other hand,

we embed the production strategy under a make-to-stock queue model framework.

That is, production capacity is limited and stochastic and the manufacturer carries

finish goods inventory to service demand. Our interest is to adequately balance the

benefits from selling and the costs from providing the good to the end customers by

rejecting some of the orders and controlling the levels of stock.

Certainly, admission and production control to a make-to-stock queue is not a

new research topic. However, almost all of the analysis has been carried out under

the assumption that demand prices are fixed or at most depend deterministically on

the type of customer that is placing the order. That is, demand is partitioned into

several independent classes parameterized by independent demand processes -usually

Poisson- and prices (see the literature review below §4.2). A mayor drawback of these

static price models is that they are unable to capture the natural variability and cor-

relation of the price of successive orders. In this chapter, we present a mathematical

model of the traditional make-to-stock queue that incorporates explicitly the fact that

selling prices vary stochastically and continuously over time.

Price variations is a natural phenomenon of dynamic markets. The reason is that
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price is one of the most effective variable that managers can manipulate to encourage

or discourage demand in the short run. Price is not only important from a financial

point of view but also as an operational tool that helps regulating workload and

production pressures. Adding to this, the emerging growth of electronic commerce is

facilitating price changes. The costs of physically relabelling the prices of goods and

those associated to informing customers about these changes are being considerably

reduced in this new channel (e.g., Brynjolfsson and Smith (1999) report a substantial

increase in the number of price changes in the Internet with respect to conventional

retailers). In addition, customers are getting more and better information about

product variety. For instance, Internet price search intermediaries (web aggregators)

offer customers easy access to price lists and it is just a matter of time that most

consumers' purchasing decisions will be based on this type of information. On the

other hand, in the Business-to-Business setting the situation is not much different.

The increasing popularity of online auctions is a good example showing how spot

markets are winning ground over traditional long-term fixed price contracts.

Is in this rapidly changing environment that managers need to be prepared to face

continuous, and to some extent unpredictable, fluctuations in price and demand. For

systems with limited production capacity, this situation implies that rejecting orders

is possibly beneficial. During periods of congestion, low price orders might only

exhaust dedicated capacity that will be needed to server future high profit orders.

The challenge is to be able to serve the right customer at the right price at the

right time. Thus, dynamic admission policies -together with production decisions-

are crucial to balance workload and at the same time to maximize profitability of the

business operation.

The rest of this chapter is organized as follows. Next section revises the relevant

literature on optimal admission and inventory control to a queue. Section §4.3 intro-

duces the stochastic control problem while §4.4 presents its diffusion approximation.

Optimality conditions and numerical solutions are reported in §4.5 and §4.6 respec-

tively. Section §4.7 is devoted to develop approximation policies and to analyze their

performance. Finally, some concluding remarks are discussed in §8.

One of the key element of our formulation is the use of Brownian motion processes

to characterize buffer sizes and price processes. Some elementary knowledge about

these processes and stochastic calculus from the part of the reader will be required.

For this reason, we have included at the end Appendix A describing the basic proper-

ties of the Brownian motion process, the key results on stochastic and It6's calculus,
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and some applications of these diffusion processes to queueing model.

4.2 Literature Review

The literature on admission control to a queueing system is extensive but by no mean

fully developed. In what follows, we describe some of the research that has been done

and that closely relates to our work. This revision is far from being complete and

we recommend the survey papers by Shaler Stidham (1985, 1988) that are still good

introductory references to the field.

Naor (1969) is one of the first to investigate the effects of customer rejection on
the performance of a queue. The setting is a M/M/1 model with fixed reward R for

order completion and fixed cost rate C per unit for queueing orders. In this case,

the admission policy is purely based on the inventory position since prices are fixed.

Naor shows that a simple threshold policy is optimal when maximizing the infinite

horizon expected profit, i.e., accept a new job if the number of jobs already in the

system is less than the critical value no := min{n : n + 1 - p- p2 ... _ pn+l >

Rl(1l- p)C - 1', where p is the traffic intensity before rejections and u is the service

rate. By the same time, Miller (1969) was looking at a different scenario. In his case,

the setting is a M/M/n/n system with m different classes of customers, which are

differentiated only by the reward rk (k = 1, ... m) associated to the completion of

a class-k job. The admission policy in this case is also of a threshold type but now

not only depending on the inventory position but also on the class of the arriving

order. Quantitative results about the control policy are only reported algorithmically

in this case because of the underlying complexity of the infinite horizon continuous

time Markov chain formulation. Although these two pioneer works are essentially

different when combined they share much of the complexity of our current research.

In particular, we share (i) the trade-off between collecting the reward from accepting

orders and the holding cost incur to queue them with Naor's paper and (ii) the trade-

off between accepting a low price job now and eventually rejecting a better deal in

the early future because of unavailable capacity with Miller's work.

Prototypical extensions to these earliest papers were presented during the 70's.

Yechiali (1971, 1972) generalized Naor formulation to the GI/M/1 and GI/M/s cases

respectively. Lippman (1975) improved Miller's model by introducing queue capacity

(M/M/n/k, k > n) and allowing an infinite number of customer classes. Stidham
(1978) enriches Yechiali's GI/M/1 formulation by considering random rewards and
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allowing customers to pay a state dependent entrance fee instead of being rejected.

Finally, Johansen and Stidham (1980) synthesize much of these results under a general
semi-Markov decision process formulation.

After this first decade of research, the interest start shifting from the single-

queue Markovian formulations towards more general and complicate settings. One
of such extensions is the study of admission control policies for network of queues,

e.g., Ephrcmides et al. (1980), Ghoneim and Stidham (1985), Veatch and Wein
(1992). Helm and Waldmann (1984) look at something different. Using a general
semi-Markovian formulation, the authors analyze optimal admission control policies

to a single queue for which system parameters -such as prices, holding cost rates, and
production capacity- are function of the environment. In particular, Helm and Wald-
mann consider the case where the state of the environment is a Markov process. The

importance of this new modeling device is that the reward/price of successive orders
are not longer independent as we should expect to see happening in real systems. An-
other important extension is to consider inventory decisions. All the articles that we

have mentioned above consider make-to-order systems, i.e., the possibility of holding

inventory is excluded. Even though inventory decisions can be seen as independent
of admission policies, they are intimately related specially in models that assume lost

sales (e.g., Li (1992), Ha (1997)). A recent paper in this line is Carr and Duenyas
(2000). The authors consider a single machine production system with two classes of
product: one class is served using a make-to-order policy while the other product is
make-to-stock. Dynamic admission policies and scheduling decisions are studied for

the two-class M/M/1 queue and the case or Erlang distributions.

So far, we have presented the research that uses Markov processes as the main
modeling tool. In this setting, and except for very few exceptions, most of the results

regarding admission policies are qualitative in the sense that only structural properties
of the value function (such as monotonicity, concavity, modularity, etc) are reported.
Explicit admission rules can only be obtained numerically solving some type of DP
recursion. This is probably one of the reasons why a completely different stream of

work has been running in parallel, namely, diffusion and heavy traffic models. These
more crude but also more tractable approximations use an adequate time and space

scaling to model inventory position as a (regulated) diffusion process (e.g., Harrison
(1985)). The main advantage is that DP recursions or Bellman optimality equations
are represented by systems of ordinary or partial differential equations whose solutions

are the desired control policies. Although these systems of equations (specially PDE's)
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are difficult to solve, they provide useful insight about the problem, insight that can

be used to develop good approximations, as we do in this research.

One-dimensional diffusion control models (i.e., single queue systems) were stud-

ied in Harrison and Taylor (1978), BeneS et al (1980), Harrison and Taksar (1983),

Menaldi and Robin (1984), Taksar (1985), Wein (1992), Krichagina et al. (1994),

among others. In these papers, a one-dimensional diffusion process (e.g., inventory

position, queue length) is regulated by adjusting an input process (e.g., demand)

and/or an output process (e.g., production). Typically, a cost function depending

on the regulated diffusion process is minimized. Finite/infinite horizon as well as

discounted/average versions of this problem have been considered and threshold poli-

cies of bang-bang type have been shown to be optimal. That is, in the interior of a

certain region G the process moves free of any control and it is only when it hits the

boundary that maximum control is used to keep the process within G. It is impor-

tant to mention that these diffusion control papers assume fixed (or deterministic in

a few exceptions) objective function parameters such as holding cost rates, per unit

production cost, and selling prices. Finally, we point out that uncertainty in these

models is present only through the diffusion process used to represent the inventory

position.

In view of the literature mentioned above, our work can be described as an exten-

sion to the one-dimensional diffusion control problem studied by Harrison and Taylor

(1978), Harrison and Taksar (1983), and Taksar (1985). Our main contribution is to

consider the price of incoming orders as stochastic rather than fixed. In that sense,

our formulation shares much with Lippman (1975) and Stidham (1978). However a

major distinction with these two papers is that we consider that the prices of succes-

sive orders are correlated. This feature makes our work to be closely related to Helm

and Waldmann (1984) but using a continuous rather than discrete approach.

4.3 The Control Problem

Consider a single-server manufacturing system that serves according to a make-to

stock discipline an exogenous demand. Both production and demand are independent

stochastic processes. We assume that demand is fully backlogged and that holding

and backordering costs are linearly incurred by the manufacturer. We also consider

that the price paid by an incoming customer is an exogenous stochastic process. The
data and notation of the model are summarized as follows:
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* D(t): Cumulative demand process. Total number of orders up to time t. We

set A the average demand rate and cd the squared coefficient of variation (scv)

for the interarrival time.

* S(t): Cumulative production process. Total number of unit produced if the

server has been continuously working during [0, t]. We set p and C2 the service

rate and scv for the service time respectively.

* R(t): Price of orders at time t. We model the price as a driftless geometric
Brownian motion. Thus, R(t) = Ro e WR(t), where Ro is the initial price at time

0, 6 is the diffusion parameter, and WR(t) is a Wiener process.

* Z(t): Inventory process. Number of units (possibly negative) in inventory at

time t.

· h: Holding cost per order per unit time.

* b: Backorder cost per order per unit time.

* c(z): Cost rate if the inventory position is z (possibly negative).

c(z) = { hz if z> O,
bz if z <.

Except for the selling price R(t), the rest of the data are standard inputs for

a make-to-stock manufacturing system. Thus, the novelty of our formulation is in

the use of a stochastic process to model the selling price. The particular choice of

a geometric Brownian motion (GBM) is mainly influenced by the Finance literature

where GBM is the prototypical model used to represent price processes. Its simplicity

and mathematical tractability make GBM an attractive modeling tool (e.g., Black-

Scholes option-pricing formula). For more details on the use of GBM to model prices,

readers are referred to the early works of Osborne (1964) and Samuelson (1965) and

to Merton (1990).

Let A(t) and P(t) be the cumulative time that the system has been accepting

orders and producing respectively during [0, t]. These are the decision variables that

the manufacturer can manipulate in order to maximize the net profit. Both A(t)

and P(t) are assumed to be nonnegative, nondecreasing, and non-anticipating with

respect to the demand, production, and price processes.
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We consider the expect long-term average criteria version of the problem. That

is, the manufacturer is interested in the solution to the following stochastic problem

max inf lim f oT[f TmAx inf lim T E R(t) dD(A(t)) - c(Z(t)dt (4.1)

s.t

Z(t) = Z(O) + S(P(t)) - D(A(t)). (4.2)

In (4.1), dD(A(t)) represents the marginal demand that is accepted at time t. Thus,

the first integral in (4.1) is the net selling revenue up to time T. The second integral,

on the other hand, is the total holding and backordering cost up to time T. Finally,

(4.2) describes the evolution of the inventory position, which is the difference between

cumulative production and demand. Z(O) is the initial inventory level that we will

assume to be equal to 0 from here on.

Because (4.1)-(4.2) appears to be analytically intractable for the general case, we

simplify the problem complexity by considering its diffusion version. That is, under a

heavy traffic scaling transformation, we replace (4.1)-(4.2) by a sequence of stoc! ,'stic

control problems that weakly converge to a diffusion control problem. The details of

this transformation are carried out in the following section.

4.4 The Diffusion Control Problem

The main tool underlying the heavy traffic approximation is a functional limit the-

orem, Donsker's Theorem. The basic elements of Donsker's theorem are described

in section §A.2.2 on Appendix A. For a more detailed and technical description,

we recommend Billingsley (1999) and the references therein. The key idea behind

Donsker's result is that under an appropriate scaling of time and space (and other

technical conditions that we omit here) a stochastic process converges weakly to a

Brownian motion. To be more precise, let us first introduce the following notation.

Definition 1 Let X(t) be a stochastic process with average rate i = limto X(O We

define the Brownian scaling, the fluid scaling, and the centered versions of X by

X() X(nt) - X(nt)£~t)= V(t) = n, and c(t) = X(t) - t

respectively, where n is a sufficiently large positive number (scaling factor).
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What Donsker's theorem establishes is that X(t) weakly converges to a Brownian

motion as n -+ o. Motivated by this result, we introduce the following sequence of

transformation to our system.

From the definition above we have

(t-) = S(P(nt))- D(A(ntt)).Z¢) = I ( P nt) _ S(A(nt)) =SDn p -tl
_

Let us recall that the average rate for S(t) and D(t) are p and A respectively. Thus,

Z(t) becomes

Z(t) = SC(P(t)) - DC(A(t)) + vi (p P(t) - A A(t)).

Finally, introducing the rejection and idleness processes U(t) = t - A(t) and I(t) =

t - P(t) respectively, we get the following dynamics for the scaled inventory position

Z(t) = x(t) + AU(t) - I(t), (4.3)

where (t) = SC(P(t)) - DC(A(t)) + /i ( - X)t.

The key of the Brownian approximation is to use Donsker's argument to replace

x(t) by a Brownian process. However, the presence of P(t) and A(t) as the argument
of the production and demand processes makes the transformation less straightfor-

ward. In order to make the argument precise, we need to apply a random time-change

result that replaces P(t) and A(t) by their time average limits (see proposition (26)

on the Appendix A and/or Harrison (1988), section §5 and §11 for details). Both

P(t) and A(t) are clearly two random time-change processes. However, it is not ab-

solutely clear if they are weakly convergent to some limit. We simplify this problem

by assuming that the admission process is in fact stationary from an average sense.

That is

lim ( =3. (4.4)

This assumption obviously ensures weak convergence of the admission policy. On the

other hand, the production policy can now be constrained using classical queueing

arguments. In fact, given the previous assumption the average effective arrival rate

is given by A 3. Thus, the server must be working on average a fraction p (where

p := A) in order to keep the inventory process under control. The approximation for
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T(t) becomes now evident and is given by

lim =t) P . (4.5)

We notice that both A(t) and T(t) are bounded below and above by 0 and t respec-
tively. Thus, conditions (4.4) and (4.5) are well-defined only if 0 < I < min(l, p-').

From (4.4) and (4.5) we approximate x(t) as follows

X(t) - S(pjt) - D(-t) + n(p - A)t

and the Brownian approximation assumes that x(t) = X(t), where X(t) is a Brow-
nian motion with drift vi~(pI - A) and variance A i,(c + c'). The inventory dynamics
is approximated by:

Z(t) = X(t) + AU(t) - HI(t).

Thus, Z(t) behaves as a two-sided controlled Brownian motion. Before analyzing
the effects of the Brownian transformation on the objective function (4.1), let us
discuss the implications of (4.4). Since the system manager controls both arrival
and production rates, he/she has the flexibility to regulate the inventory position
through different combinations of arrival and production rates. This "ambiguity" on

the system operations avoids us to apply directly the convergence result. Therefore,
by fixing the average arrival rate according to (4.4) we are also fixing the average

production rate through (4.5). Although for real manufacturing systems we expect
some kind of stationarity on the admission policy (i.e.,(4.4) holding), it is not obvious
a priori that a stationary admission policy is optimal. We will not dig into this issue
here and we will concentrate our attention only on stationary admission policies.

Finally, in order to find the optimal value of /f we maximize the objective function

(4.1) which by the additional constraint (4.4) has become a function of 3.

Let us now turn to the objective function (4.1). First of all, given the piecewise

linearity of the cost function c(z), we have that

|c((t)) dt = n c(Z(nt)) ndt = vj3 c(Z(t)) dt
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On the other hand, we have that

T T

jo R(t)dD(A(t)) = R(nt)dD(nA(t)) = R(nt)db(A(t))

Moreover, given the Brownian scaling we have that D(t) weakly converges to a BM

with drift /H A and diffusion parameter Acd. Therefore,

dD(A(t)) = vA dA(t) + VCadWD(A(t)),

where WD(t) is the underlying Wiener process associated to D. Thus, after some

algebra we get that the objective function is given by

TE n R(nt) dt + cd vfn R(nt) dWD(A(t))

(a) (b)

- Av fo R(nt) d(t) - /jo;C((t))t.

62t

From Fubini's theorem and the fact that E[R(t)] = E[Ro] e 2 we have that

(a) (2 ) (e[R0 ] )

WVe notice that (a) is independent of the controls, thus we can exclude it from the for-

mulation. On the other hand, (b) is a stochastic integral in the It6 sense. Since WD(t)

is a Wiener process, we expect (b) to have low impact in the objective in an average

sense. This conclusion is true if R(t) and WD((t)) are independent. In this case the

expected value of (b) is exactly equal to 0 (see proposition (10) below). However, in

our setting we should expect demand and prices to be negatively correlated and (b)

does not necessarily cancelled. To keep our formulation simple, we will assume for the

moment that R(t) and WD(t) are independent. We will remove this assumption later

on in section §??. Under the independence assumption the following result holds.

Proposition 10 If R(t) is adapted and independent of WD(t) and if the control pro-

cess 4A(t) is nonanticipating then,

E [oR(t) dWD(A(t))] = 0.
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Proof: See §4.10 at the end of this chapter.

We can now remove (a) and (b) from the objective function above. If in addition

we make the change of variable nT - T, the objective becomes

- E[E [A lR(t) dU(t) + c(Z(t)) dt] (4.6)

The minus sign reveals that this objective is in fact a cost function. The first integral

is the cost of rejecting orders while the second is the holding and backordering cost. A

very important step in this heavy traffic scaling is to identify the orders of magnitude

of the different parameters. In particular, we want the Brownian motion X(t) to

be well-defined and the two cost components in (4.6) to be in the same order of

magnitude to avoid trivial solutions.

First, we recall that X(t) is a (0, a 2) - Brownian motion where the drift 0

I/i/(1 -p) and the diffusion cr2 := A3(c +c2). Since our heavy traffic approximation

works for large values of n, we requires 0 to be bounded as n -+ oo. This condition,

which is traditionally known as the Heavy traffic condition, assumes then the existence

of a bounded real a such that

/i lim xV(1 - p) = 0.
n--+oo

The limiting drift 0 can be positive, negative, or zero depending on the relative value

of the demand and production rates A and p. For instance, if > A then 0 is positive.

The heavy traffic condition implies that the system works at a high level of uti-
lization, in particular 1 - p has to be order 1/fvl. Therefore, we expect to observe
very large queues in the unscaled system. If the penalty of rejecting orders (R(t)) is
not large enough then the holding/backordering cost will dominate the objective in
(4.6). To avoid this situation, we restrict ourself to the cases that satisfy

o (R(t)) ,O (c(t))

Given our scaling, we can write R(t) as follows

g(t) = ° egL (47WR(nt)
(4.7)
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Thus, setting the holding/backordering cost to be order one, we get the following

condition for the price parameters

Ro -O(n) and 0°

The initial price has to be large enough (order n) to make the penalty of rejection

on the same order of magnitude than the holding/backordering cost. In addition, we
need a condition on the diffusion parameter. In particular, has to be small (order
one over root n) to maintain the price bounded.

We summarize these heavy traffic conditions by assuming that there exist scalars

ho and , such that
Ro -

lim Ro and lim /-6.
n-+oo n n-0oo

As a representative example consider n = 100. If the holding and backordering cost
rates are order 1, then the initial price R has to be order 100, the diffusion 6 has to

be order 0.1, and the traffic intensity p has to be order 0.9.

We are now in condition to write the heavy traffic control problem, which is given
by

min sup lim TE R(t) AdU(t)+ fT C(Z(t)) dt , (4.8)
T-+oo T Ro Uo 

s.t.

Z(t) - X(t) + AU(t) - uI(t), (4.9)

lim U(T) U, (4.10)
T-+o T

where U = (1 -/ ). This problem has almost the same structure than (4.1)-

(4.2). The only structural difference is constraint (4.10) which appears as a direct

consequence of (4.4). Moreover, this constraint is not easily handled in the derivation

of optimality condition and we use a Lagrangian approach to put it in the objective.

Let a be the Langrangian multiplier associated to (4.10). The problem becomes

mn sup lim E [ (R(t) + a)AdU(t)+ c(Z(t))d] (4.11)

s.t.

Z(t) = X(t) + AU(t) - yi1(t).
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From weak duality, we know that if (U*, I*) is a solution to (4.11)-(4.12) that satisfies

(4.10), then it is also a solution to (4.8)-(4.10). This result is formalized in the next

proposition.

Proposition 11 Suppose that (U, I*) is a solution to the Lagrangian problem (4.11)-

(4.12). Suppose, moreover, that

U(T)lim ( = U. (4.13)
T-oo T

Then (U *,I*) is a solution to the constrained problem (4.8)-(4.10).

For a proof see §4.10 at the end of this chapter. We can use the result of proposition

(11) to find an optimal solution to the original problem as follows:

1. Solve the Lagrangian relaxation as a function of ac -the Lagrangian multiplier.

Let (U., In) be the solution.

2. Find a* such that U. satisfies condition (4.13).

Naturally, we will first tackle step 1 and later we will address step 2. For this purpose,

we start computing optimality conditions for the Lagrangian formulation.

4.5 Optimality Conditions

We now turn to the problem of finding the optimality equations that characterize

the optimal policy (U*, I*). We use an heuristic derivation following Taksar (1985).

First, we look at the discounted version of the problem, that is

(P*) min E e- t(R(t) + a) dU(t) + e-*tc(Z(t))dt , (4.14)
s.t

Z(t) = X(t) + U(t) - I(t), (4.15)

where y > 0 is the discount rate. The attend reader should have noticed that we

have simplified the notation in (4.14)-(4.15) by replacing JU - A and I - I
and by removing the tildes and bars of the different processes. In what follows, it

is important to remember that the two exogenous processes are (i) R(t) a driftless

geometric Brownian motion with diffusion starting at Ro and (ii) X(t) a Brownian
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motion with drift and diffusion a. For simplicity and without lost of generality in

what follows we will assume Ro := 1. This is equivalent to normalize holding and
backordering cost rates (h and b respectively) by Ro.

The approach is first to find the optimality equations for problem (Pa) and then
let y -+ 0+ to derive the optimality equations for the average control problem by
mean of a Tauberian argument. We assume that R(t) + ca > 0 for otherwise the
control problem would make no sense. Our approach for solving (4.14)-(4.15) mimics

Harrison and Taksar (1983).

The essential step is heuristic. We assume the existence of a function f(x, r)
twice continuously differentiable representing the optimal value in (4.14) starting at
(x, r). This assumption is known as the principle of smoothness fit. The main result
obtained out of this assumption is summarized in the following proposition.

Proposition 12 The Hamilton-Jacobi-Bellman equation for problem (PY) is

[-f7(x, r)] A [f7(x, r) + r + a] A [f7(x, r) + c(x) - yf (x, r)] = 0, (4.16)

where
0 a 2 2 62r (6r)202

r = + a + r + Ox 20x2 2 Or 2 Or2

is the infinitesimal generator of (X(t), R(t)).

Proof: See the §4.10.

We now turn to the average cost case. First we put VI(x, r) = f (x, r) - fY(:, r).
The value function V7(x,r) represents the relative discounted cost of starting in
state (x, r) instead of starting in state (, f). We then let -y 0 and assume that
g = lim 7y fY(j, ) exists. Then, passing to the limit in (4.16) we get

[-V(x, r)] A [V(x, r) + r + a] A [c(x) + V(x, r) -g] =0. (4.17)

This is the Hamilton-Jacobi-Bellman equation for the average cost problem (4.11)-

(4.12). Here g represents the minimal average cost of the problem.

Given the singular nature of the control processes, the first two terms in (4.17) are
boundary conditions. For example and given the smoothness assumption, we can
rewrite Vx(x, r) + r + c = 0 as follows

V(x, r) - V(z + , r) = ( + a-) + o(E).
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4.5. Optimality Conditions

Given a price r, the left-hand side is the marginal cost of accepting an order of size

e and the right-hand side is the marginal cost of rejecting an order of the same size.

Thus, the condition above defines the set of states (x, r) for which it is optimal to

reject orders at the marginal cost r + c. Similarly, V (x, r) = 0 characterizes those

states for which it is optimal to stop producing.

Let us introduce two boundary curves x = q(r) and x = 6(r) which will play a

central role in our solution. We define these curves as follows

V(?(r),r) + r + c = O and V(¢(r),r) = 0. (4.18)

According to our previous discussion, both i,(r) and ¢(r) are switching curves for the

accept/reject and the produce/idle decisions respectively and they are essentially the

decision variables for the diffusion control problem. Combining this observation, the

smoothness of fit assumption, and (4.17) we obtain the following partial differential

equation (PDE) representation

FV(x, r) + c(x) - g = 0, V(x, r): r(r) <x z < (r), r > 0, (4.19)

V(q(r), r) + r + C = 0, V( (r), r) = 0, (4.20)

-(r + ) < V(x, r) < 0, (4.21)

VU.(7n(r), r) = VU(¢(r), r) = 0. (4.22)

This is a two-dimensional elliptic PDE problem with free boundary conditions. Closed

form solutions for this type of problems are very rare in general. Unfortunately (4.19)-

(4.22) is not an exception and we have not been able to solve it analytically. For this

reason, we approach the solution through numerical and approximated methods.

Before jumping into these approximations, we simplify the system above by in-

troducing the change of variable = exp(y). With this change, the system becomes

FV(x, y) + c(x) - g = 0, V(x, y) : q7(y) < x < (y), (4.23)

lV(,q(y), y) + e + a = 0, V( (y), y) = , (4r24)

-(eY + a) < V (x, y) < 0, (4.25)

V (( y) = V (((y), y) = 0, (4.26)
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where the infinitesimal generator r is given by

0 a2 02 62 2
r = 0 + - + yax 2 &x2 2 ay2'

The main advantage of this new formulation is that r is independent of the state,
fact that will facilitate the analysis later. We omit here the proof of the validity of
(4.23)-(4.26); it basically relies on the fact that under the change R(t) = exp(Y(t)),

Y(t) is a driftless Brownian motion with diffusion .

4.6 Numerical Solution

As with any numerical method for solving PDE's, we start by discretizing the state
space. We approach this problem using the finite difference approximation technique

developed by H. Kushner (1977). This method relies on the fact that we can ap-
proximate a regulated diffusion process by a finite state Markov Chain. Readers are
referred to Kushner and Dupuis (1992) for details.

Let us first define a bounded region Qf on the plane (x,y) E R2)} where the

process (X, Y) will lay on (9Q denotes the boundary of Q). We have to choose the
set Q large enough to ensure that (X, Y) will rarely reach the boundaries given the
optimal control policies (U*, I*). Next, we introduce h as the finite difference interval
which defines how finely the state space and time space are discretized. Then, the
initial state space of the Markov chain associated to h is given by the lattice

Qo = ((x, y) E Q : x = n h, y = n h, Inl < N, Inyl < Ny, n, ny integers),

where Nz and Ny are positive integers that define the dimensions of m° .

Starting with OQ, our solution method iteratively generates a sequence of regions
, 2 ],... such that Q2 D Q D FQ D ... and that will approach the optimal region

(Q*) defined by the boundaries q7(y) and (y)

Q = ((, y) e l:x n, = , iy , (y) < x _< =(y), InYj < _ N nx, n integers).

For this reason, we require N. to be large enough to ensure Q C 

Suppose that we are in stage k and that the current region is Qk. The remaining

of this section is devoted to describing the details of the iteration that generates QR+.
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4.6. Numerical Solution

Figure 4.1: Reflection Field at the Boundaries.

For notational convenience, we omit the dependence on k.

The first step is to compute the transition probability distribution for the Markov
chain associated to Qh. For this purpose, we assume that in the interior of Qh the

manager does not exert any control over the evolution of the process but she does
control it on the boundaries. Moreover, the boundaries of this region are reflecting

according to figure 4.1.

The dashed line represents QO, the solid line is the current region h, and the
arrows indicate the direction of the reflection.

Let Ph((x, y), (x', y')) be the transition probability from state (x, y) to state (x', y').

Define (see Kushner and Dupuis (1992), section §5)

Qh = hJ 1 + 2 + 2.

Then, the transition probability distribution is given by:

* If (x, y) E Qh - A9QA then

a2 + 2h 04
Ph((x, y), (x ± h, y); ) 2Q

2Qh

PA((x, y), (x, y i h); u) = 2Q ' (4.27)

P(w, w'; u) = 0 otherwise,
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where 0 =- e°

* If (x, y) E 9Q[ then PA((x, Y), (x + h, Y)) = 1.

e If (,y) E qQr then P,((x, y), (x - h,y)) = 1.

· If (x, y) E OGu then (4.27) still holds but replacing

P ((x, y), (x, y + h))

by PA((x, y), (x, y)). This ensure that the process does not leave Qh.

· Similarly, if (x, y) E qQd then (4.27) still holds but replacing P. ((x, y), (x, y-h))
by Ph((x, y), (x, y)).

The four regions 9hu, dan, aOS, and aQ in which we have divided the boundary of
Qa are shown in Figure 4.1.

The interpolation interval Ath is defined by

h 2

Qh

which, defined this way, ensures that the first two moments of the Markov chain are
consistent with those of the diffusion process.

We use this Markov chain representation to approximate the value function V(x, y)
by V(x, y) and the expected average cost g by g. We notice that Vh(x, y) and gh
are approximations restricted to region Q,. Let {rh(x y) : (x,y) E Q } be the
steady state probability distribution for the Markov chain. Given the instantaneous

(singular) nature of the control processes we have that

Ag = E k(x, y; O) r(x, y), (4.28)
(Xy)Ef,,

where
(c(x) - )Ath if (x, y) E Q, - aQ - Q,

k(x, y; ): (eY + a)h if (x, y) E aQ,

o if (x, y) E 9O.
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On the other hand, the value function satisfies

Vh(x, y) = k(x, y; g) + Ph((x, y), (x', y')) Vh(x', y'). (4.29)
(X' ,y')E h

We notice that the solution to(4.29) is unique up to an additive constant. Thus, we

can arbitrarily fixed the value of V(i, Y) for an arbitrary state (, Y) E Q,. Given the

sparse nature of the transition matrix Ph, we can solve efficiently (4.28) and (4.29)

using Gaussian elimination. However, the dimension of the system can be extremely

large and value iteration methods are also recommended.

The final step for updating Q is based on a numerical method proposed by Kumar

and Muthuraman (2000). Their method is based on the PDE representation of the

problem and the approximation of the value function Vh(x, y). First, we observe that

the Markov chain approximation is such that (4.23) is asymptotically satisfied as

h -+ 0. This is, in fact, in the nature of Kushner's method and its finite difference

structure. Then, only conditions (4.24)-(4.26) need to be checked. For this purpose,

we approximate V(x, y) for any (x, y) E Q by

Vh(x + h, ) - Vh(x, y)Vz(x, y) 

Given our current solution Qh, the boundaries aQl and 4d2, are the natural candidates

for q(y) and (y) respectively. Moreover, it turns out that by (4.29) we have

Vh(x, y) = (ey + a) h + V(x + h, y), (x, y) E acQt

which is equivalent to

h(Z + , y) - Vh(X, ) ey+a=O or V(x, y) + eY + a = O, V(x,y) E OQ.

In the same way (4.29) implies

Vh (x, y) = Vh(x - h, y), (x, y) E oQ~.

That is, V(x, y) = 0, V(x, y) E aQ r.. Therefore, given the approximation for V (x, y)
we have that (4.24) is satisfied with {(7r(y), y)} = ~L4 and {((y), y)} = aQ t. It only

remains to check (4.25)-(4.26). Unless Qh is optimal at least one of these conditions is
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x

Figure 4.2: Boundary Update

violated and we need to update Qr,. The following figure plots a prototypical example

showing how conditions (4.25)-(4.26) are usually violated and how the update of Qh is
done. Given the two-dimensional nature of the process, Figure 4.2 shows the update

of Qh for a fixed value of y.

The solid line represents the value of V7(x, y). The abscissas 77 and ~ are the
current values of the boundaries 0fQ and aQ0, at the level y. Since condition (4.25) is

not satisfied in the example, we find the new values 77* and ~* looking for the minimum

and maximum values of V(x, y) (Vx(x, y) = 0) in the range [, ~]. Thus, repeating
this procedure for all values of y, we are able to update the values of dQl and 9Q,.

We do not attempt here a proof of convergence of this iterative procedure. We
only report that in all computational experiments that we have performed the method

has found an approximated solution to (4.23)-(4.26) in few iterations. We conclude
this section with an example that shows the convergence of the proposed method. In
virtue of future discussion, we consider the following instance of the problem:

Example 1:

The data for this example are = 0, ac2 = 62 = 2, b = 2h = 2, ac = 3, Nx = 100,

N = 40, and h = 0.1. In order to get an idea of the computational complexity of this
instance, the solution to (4.28) and (4.29) requires the inversion of a 16,000 x 16,000
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Figure 4.3: Numerical Solution to the Driftless Case.

matrix with 80,000 non-zero entries for the initial state space Q . Figure 4.3 plots

the evolution of Q. Notice that we have inverted the axis because the boundaries

r7(y) and e(y) are functions of y instead of x.

Initially (k = 0), QOi is a rectangle defined by NZ, Ny, and h. As k increases, region

Qk shrinks as we should expect given our previous discussion. The algorithm stops

at k = 7 when the boundaries remain unchanged from the previous iteration. We

observe that the upper boundary ((y)) is approximately horizontal while the lower

boundary (r(y)) has an exponential shape. If we consider that hitting (y) and 71(y)

at level y has a cost of 0 and exp(y) + a respectively, we can immediately imagine

a few relations between the boundaries and the corresponding cost functions. We

postpone, however, this discussion until we develop some additional insights about

the problem. Finally, Figure 3 also shows the values of the expected average cost

(g) for each region fQ. We observe that the improvements obtained during early

iterations are significantly bigger than those obtained at the end.
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4.7 Approximations

We devote this section to find approximate solutions to (4.23)-(4.26). Two types of
approximations will be proposed. The first one -our Proposed Policy- uses as much

as possible the optimality conditions but it modifies the reflection field on the bound-
ary. With this transformation, we replace the PDE formulation by a simpler ODE
system for which explicit solutions are presented. The second approximation -Static

Policy- is computed assuming that the optimal policy is independent of the price.

That is, production and admission decisions are based exclusively on the inventory

position. We use this suboptimal policy because its simplicity makes it appealing
from a practical point of view. Thus, it can be used as a benchmark for our Proposed

Policy.

4.7.1 Proposed Policy

We turn now to our proposed solution. Let us rewrite here problem (4.23)-(4.26) in
a more general form that will facilitate the exposition.

2 (~2
Ol/(x, y)+ -V(, y)+ -Vyy(x, y) = g- C(x) (4.30)

2 2
V((y), y) = H(y), V.(rI(y), y) = -G(y), (4.31)

where 0 is the drift of the workload process, a and 6 are the diffusions of the

workload and price processes respectively. The function C(x) represents the hold-
ing/backordering cost rate while H(y) and G(y) are the boundary cost functions
associated to stop production and to stop admission respectively. In this work, we
consider the special instance C(x) = hx+ + bx-, G(y) = exp(y) + a, and H(y) = 0.

These functions C(x), G(y), and H(y) define the particular structure of the problem.

We also notice that for the moment we are not imposing any continuity condition on

V(x, y) such as Vx(~(y), y) = Vx(r/7(y), y) = 0. Our objective is to find the switching
curves (y) and 77(y) and the value of g such that (4.30) and (4.31) are satisfied and

g is minimized.

Suppose that we fixed (y) and r(y), then (4.30)-(4.31) becomes a Neumann prob-
lem except for the fact that the boundary conditions do not involve normal derivative

but oblique derivative on the direction of X. The key idea of our approximations is

'For more details on the Neumann problem see John (1982).
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to replace our particular boundary condition by the standard Neumann condition.

That is, we will look for the solution to the following problem:

02 62
OV(x, y)+ Vx(x, y)+ - V jy(x, y) = g - C(x), for all (, y) E Q (4.32)2 2

9V(x, y) = F(y), for all (x, y) E aQ
On

(4.33)

where Q, as it was introduced in section §(4.6), is a bounded domain given by

= {(x, y) : (y) < x < (y), Y < Y < Y2} (4.34)

and n is the inward unit normal vector field on aQ. The boundary function F(y)

satisfies

F(y)= { H(y)

-G(y)
0

if x = (y),
if x = q7(),
otherwise.

(4.35)

The rest of this section is organized as follows. First we normalized our PDE problem

to what we call the standard form. Next, we present the approximate solution for the

driftless case 0 = 0. Finally, we analyze the general case.

4.7.2 Standard Form

We normalized (4.30) and (4.31) by introducing new independent variables w and z
through a real transformation:

= ) = , z=z(y)= 7- y

The problem in the new variables becomes

i9V(w, Z) + V(w, ) + V + ((w , z) = g - 0

Vw,(w, z) = F(z), (w, z) E oQ,

(4.36)

(4.37)

where 0 := I, C(w) := C (f53), and F(z) := F () (we also set G(z) := G (2)

and f(z) := H (7)).

Let A and V be the Laplacian and gradient operators in 12. We set , := (, 0) E

-R2 the drift vector and n(3) = (n,,(fl), n,(fi)) the inward unit vector field at /3 E aQ2.
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We replace problem (4.36) and (4.37) by its standard form version:

(A + . V)V(w, z) = g - C(w), (4.38)

OV (w z) (n(3) V)V(w, z) = F(z), for all E (OQ. (4.39)

As we can see, the key approximation is to use at the boundary the reflection vector

n(f3) instead of the true vector (1,0). The advantage of this approximation is that
classic results such as Green's identity or the divergence theorem can be used directly
to compute optimality conditions as we will see next.

4.7.3 Driftless Case

We present now the driftless case = 0. The main result is summarized in the

following proposition.

Proposition 13 For a fixed and bounded domain Q with smooth boundary O9 we

have that the steady-state average cost satisfies:

g= [1 cl(n) (w) dA + a F(z) ds] (4.40)

where dA = dw dz is the element of surface in Q, ds is the element of length in

dOQ, and 7r is the inverse of the area of the domain Q (i.e. r = Area(Q)l- ).

Moreover, if is given by (4.34) and F(z) by (4.35) then

/z2 V) =f'(, 1+'()+()
.9= [I) C(w)dw dz+ : (H(Z)V1+ 2(z) + G( z()) z].41

(4.41)

Proof:
For the driftless case the PDE problem becomes:

AV(w, z)= g - C(w),

OV(w, z) = F(z), for all 3 E aQ.
On
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In addition, for a bounded domain w with smooth boundary OQ and for two contin-

uous functions p(w, z) and q(w, z) on cl(Q), Green first identity states that

nPq dn =/ cl() ap q-VP Vq) dA

If we replace on Green's identity p(w, z) = 1 and q(w, z) = V(w, z) we get

fF(z) ds= cl(f) (g- C(w))dA

From this relation (4.40) follows directly since f fcl(n) g dA = g Area(Q).

Finally, (4.41) is a direct consequence of (4.40) and the representation of F(z) and

Q by (4.35) and (4.34) respectively. 

The result of proposition (10) allows us to represent our original problem as a

calculus of variation problem. In fact, the problem becomes now to identify the

functions ~(z) and r(z) that minimize g above. This is a variational problem that we

can write in standard form as:

minr j () C(w) dw + H(z) V1 + 2(z)

[.I(z) M

dz. (4.42)

s.t

(z( (z)- r(z)) dz = -. (4.43)
7r

N

Let E = M - yN be the corresponding Hamiltonian where y is the Lagrangiar

multiplier for (4.43). Then, the Euler-Lagrange necessary conditions for optimality

are (e.g., Gelfand (1963))

--- d(-) = O and
whih idz n ti srle dz a

which in this case are equivalent to

O()) + d (z) (z)) (4.44)
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-C((z)) =_ + z ( / (z ) ') (4.45)

We notice that (4.44)-(4.45) is a system of ordinary differential equations (ODE).
That is, we have managed to replace a complex PDE system by a much standard and
easier to solve ODE problem. Moreover, the system is diagonal in the sense that each

equation has a single unknown and we can solve independently for C and 77.

Further analysis of (4.44)-(4.45) requires more information about the function
C(w), H(z), and d(z). Thus, we return now to our original formulation and replace
those functions by their particular values. In this case system (4.44)-(4.45) becomes

(Z) = e (4.46)ha

I(Z) 2y + X d (a-e )() (4.47)
bao ba dz +rj(z)

Equation (4.46) reveals that the production switching curve ((z)) is a base-stock
policy independent of the price. This result is particularly interesting because it is
exactly the same observation that we have made based on the numerical solution in

section §4.6. Thus, our approximation is able to captures the horizontal belavior of

On the other hand, r(z) is the solution to the (4.47). This is a nonlinear second-
order ordinary differential equation which we have not been able to solve in closed

form. However, two general observations about (4.47) are important

1. r/(z) = - vi is a particular solution. Moreover, from the results of section §4.6
we can conjecture that this behavior is optimal for low values of z (z - -oc).

2. If 277(z) >> 1 then we can use the approximation

Vrl r/7)d _ _/2' 6 :
' b(e 2 +) e . (4.48)ba ba dz ba boa

We observe that for z -+ -oo, this approximation is consistent with our first

observation iq(z) = constant. In addition, for large value of z the assumption

r 2(z) >> 1 is satisfied. Thus, (4.48) asymptotically satisfies (4.47) when z -+

00oc.
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It only remains to estimate the value of y to complete the characterization of the

Proposed Policy. For this purpose, we use a completely different approach. The idea

here is to separate the influences of C(w), G(z), and fH(z) from the general structure

of our problem. For this purpose, we introduce the switching curves ~(z) and (z)

together with the function U(w, z) defined through

U (w, z) = H(z) + (C (w) - g- A(z)) dt. (4.49)

where A(z) is given by

A(z) = C(((z)) - g = C(0(z)) - g. (4.50)

For the moment, all three functions A(z), (z), and 5(z) are unknown. Thus, (4.50)

only partially characterizes A(y). We notice that (4.49) implies U,,,(w, z) = (A(y) -

C(w)+g). This relation together with (4.50) imply that Uw,(~(z), z) = Uw(7(z), z) =

0. In addition, from (4.49) is clear that U,(~(z), z) = H(z). We can now select the

value of A(y) solving U,((z), z) = -G(z), i.e.,

a (C(t) - g - A(z)) dt + (z) + f(z) = 0. (4.51)

In summary, relations (4.49), (4.50), and (4.51) define the functions U, (w, z), i7(z),

~(z), and A(z) such that

UW(O(Z), z) = -0(z), U,,( (z), Z) = H(z),

-O(Z) < Uv,(w, ) < n(z),
UWW(O(z), z) = Ulw((z), z) = 0.

That is, the function U(w, z) satisfies the boundary conditions of our PDE formulation

for the driftless case. Unfortunately, it can be shown that U(w, z) does not satisfies

the elliptic PDE (4.30). However, what makes this approximation appealing is the

following result.

Proposition 14 If = 0 then the solutions il(z) and ~(z) given by (4.50) and (4.51)

are optimal for the driftless case.
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Proof: See the §4.10 at the end of this chapter.

This result reveals the myopic nature of this approximation. In fact, = 0 implies
that there is no variation on the price. Thus, (4.50)-(4.51) compute the switching
curves 7(z) and (z) as if z were constant. It turns out that fixing z, our problem
is equivalent to controlling a one-dimensional two-sided regulated Brownian motion
(e.g., Harrison (1985) §5, Wein (1990)).

In our setting C(w) = h w + + bw-, G(z) = exp(6 z/vX) + c, and H(z) = 0, the
solutions to (4.50) and (4.51) are

2 h b ((z) ,+ A(z)) a(z) = A(z) +g (4.52)
A(z)+g = h b(Z) h and 73z) (4-52)h+b h b

Therefore,

2 b(e7 2 + a) 2h(e7 +a)
= (h + b) b(h + b)

A few observations are important with respect to these solutions. First, (y) and il(y)
are decreasing functions of h and b respectively as we might expect. For example, if
h (the holding cost rate) increases, it becomes more expensive to hold inventory and
the manager will stop producing at a lower level of inventory. Thus, (y) decreases
with h. A similar intuition applies to 1(y) and b. Another observation is that the
values of the boundaries depend on the sum of the boundary cost G(z) and H(y) and
not on their distribution. This is in fact a direct consequence of the myopic nature
of these switching curves. Figure 4.4 below plots the myopic solution ((z), (z)) for
the Example 1 of the previous section. In Figure 4.4, the dashed lines correspond
to the numerical solution. As we can see, for z -- -oo the approximation mimics
the numerical solution. The reason is that for z small G(z) = exp(6 z/V/2) + a cr,
i.e., it is approximately constant in this region. This is in fact the condition required
by proposition (14). Thus, the solutions in (4.52) are asymptotically optimal as
z - -oc. On the other hand, for large values of z the approximation is unable to
represent the behavior of the optimal solution because of the high variability of G(z)
in this range. However, we can use the asymptotic optimality when z - -oc to
compute the value of that is missing to completely describe the Proposed Policy.
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Figure 4.4: Myopic Approximation vs. Numerical Solution.

In fact, as z - -oo the Proposed Policy is given by

lim ~(z) =
Z-4-00 hea

and lim r/(z)= 
Z---00 ba

Similarly, as z -+ -oo the myopic solution in (4.52) becomes

lin (Z) =
Z--+-0

2ba!
h(h + b)

and lrn )(z2 ha
i *-z) b(h + b)'

From these two relations we conclude that

hba
/o h + b 

Finally, we can now give a full characterization of the Proposed Policy for the driftless
case:

(Z) = i2ba(z) = h(h + b)
d () 2ha eand 71(z) = -b(h + b) Vo

Moreover, these boundary curves can be expressed in terms of our original variables

(x, y) as follows

Proposed Policy

(4.53)

..U; -' - i

'--* -I

_ . . , , , l. _

h(Y) = e b and 1' (y) b hb) -Jb;V (-h --i-b) i iha+ 

I · · ·, · ·, ,
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Y: In(Price)

Figure 4.5: Proposed Policy: Driftless Case.

Figure 4.5 plots the boundaries in (4.53) and those obtained numerically. Two

observations are important (i) the horizontal nature of ~(y) and (ii) the exponential

behavior of i0(y). These results are consistent with those obtain numerically in section

§4.6 as it is shown in the figure. Finally, let us comment on the approximation

(4.48) above. This approximation, which is in fact asymptotically consistent with

(4.45), is made because we cannot get closed form solutions for (4.45). Based on this

observation, we can look for an improvement to (4.53) by considering a more general

policy of the form

ba__ h a 2 6y
6(y) =a -and 7(Y)= - K ey, (4.54)y) h(h + b) and (y) - b(h + b) b (454)

where K > 0 is a fixed parameter to be determined. In order to study the behavior of

this modified policy we perform a numerical analysis. For a set of different scenarios

(in terms of b, h, a, a, and ) we compute the expected average cost as a function of

K. Let gi(K) be this expected average cost function for the i th scenario. Figure 4.6

plots the results that we have obtained. In order to plot all the functions in the same

graph, we normalize gi(K) and consider the functions

If= g (K)
minK{g(K)}'

which are those presented in the figure.
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Figure 4.6: Normalized Expected Average Cost (§(K)) as a Function of K.

We can see that the minimum value of gi(K) is attained in most of the cases at

K = 1 or in the neighborhood of it. Moreover, gi(K) increases monotonically as

K - 11 increases. This empirical result suggests that the boundaries given by (4.53)

are the best within the family of policies in (4.54).

4.7.4 General Case

We now turn to the case of an arbitrary boundary vector K. Much of our analysis

is based on the paper by Harrison and Williams (1987). In this work, the authors

study the steady-state distribution of a regulated Brownian motion that moves inside

a bounded domain . The special feature of their setting is the type of reflection

on the boundary they assume. To be more precise, let us consider Figure 4.7. Here,

q

Figure 4.7: Reflection Field
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n is the inward unit vector field and v is the reflection field on 9Q. The tangential

vector field q is given by q = v - n. The main result of Harrison and Williams is the

following:

If the reflection field v satisfies the skew symmetric condition:

n(3) q( 3*) + q(/) - n(O*) = 0, for all /3,3* E Q, (4.55)

then the stationary distribution of the RBM with drift has a

density of the exponential form

p(x) = K(c.) exp {-y(K) x}, for all x E Q.

The skew symmetric condition above is, in general, very restrictive. However, if

we assume once again that we have normal reflection then v = n and q = 0. In this

situation (4.55) holds trivially. In particular, we have that in our setting

a() ne and K(K) (I epl({) . } dA) 

We now state the analogue of proposition (13) for the general case.

Proposition 15 For a fixed and bounded domain Q with smooth boundary &Q we

have that the steady-state average cost satisfies:

g =K(c) [I |c e"' 0(w) dA +i fe F(z) ds] (4.56)

Moreover, if Q is given by (4.34), F(z) by (4.35), and . = (, 0) then

g = K(K) [I e°u; C(w) dwdz

+ / (e@) 1(z) 1 + �(() + e(z) z1+ (z)) d]. (4.57)

Proof:

The proof in this case is almost identical to the one lsed for proposition (13). In this
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case the PDE problem is:

(a + .g* V):(, ;) = g - C(w),

Oa(w, z) = F(z), for all 3 E aQ.
On

Moreover, from Lemma 2.1 in Harrison and Williams (1987) we have that

P(wz) f )(wzn ds = j )p(w, z) (+ -V) f(w,z)dA, for all f e C 2(cl(Q)).

(4.58)
Here p(w, z) is the steady-state distribution, i.e., the solution to the adjoint problem

(- - . V)p(w, z) = 0, (w, z) E ,

Op(w, ) = 0, (w, z) E aQ.
On

Relation (4.58) is in fact a direct consequence of Green's identity and the divergence
theorem. If we replace p(w, z) = K(K) exp(r. x) and f(w, z) = V(w, z) in (4.58) we
get (4.56). Again, (4.57) follows directly from (4.56) and the definitions of Q and

F(z). I

Based on (4.57) we can write the following optimization problem:

min K(c) I[ Z eteW C(w) dw dz (4.59)
n1(z),V(z) ZL JI(z)

+ /
2 (eo(Z) ft(z) 1l + 2(z) + et9 7(z) G(z)l + 42(z)) dz]

s.t.

Z2 19) - et(z) dz= (4.60)

Since limo 9-1 (exp(t9 (z)) - exp( hq(z)) = (z) - q(z), it is not hard to show that

(4.42)-(4.43) is a special case of (4.59)-(4.60) with iV = 0.

We look now at the solution to (4.59)-(4.60) for our particular case of interest.

Proposition 16 The optimality Euler-Lagrange necessary conditions for (4.59)-(4.60)
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when C(w) = (h w+ + bw-), fI(z) = 0 and G(z) = ep(6z/s/) + a are:

oar(z) _ ) 1 + - a )(4.61)
b b

1 d e-7(z) (e* + a) (z) (4.62)

where y is the Lagrangian multiplier associated to (4.60).

The proof follows the same lines that we used for the driftless case and we omit it here.
First, we notice that condition (4.61) reveals that the production switching curve is a
base-stock policy independent of the price. Thus, (z) has the same behavior that in
the driftless case. On the other hand, condition (4.62) is a highly nonlinear ODE that
we have not been able to solve in closed form. However, we can study the asymptotic
behavior of the solution for z ±oo.

In the first case, when -+ -oo, the cost function G(z) - ca. Thus, in this
regime the price is constant and we can consider that both (z) and (z) are ap-
proximately constant. In particular, we can rewrite (4.59) assuming /1 + (2(z) 1

and V1+ /(z) - 1. Replacing this conditions in (4.59)-(4.60) and recomputing
(4.61)-(4.62) we get

u' (Z) _ ' (4.63)

o(z) _a '+We ___

' - b b 9 ' (4.64)
V2_ - b '

Notice, moreover, that this solution satisfies our previous assumption /1 + (2(z ) : 1

and A + rq(z) 1 as z -+ -oo.

On the other hand, when z - oo we can used the approximation 77?(z) >> 1.
In particular, we consider V/1 + i7r(z) Irqz(z)l = -z(z) in (4.59). In this case and

after some algebra, we can rewrite the optimality conditions (4.61)-(4.62) as follows

e6, c(z) _y (4.65)

v2 - h'
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o r(z) J zr = _ e, z -+ co. (4.66)

Again, this asymptotic solution is consistent with the assumption Z2(z) >> 1 as

z -+ co. Although different, both asymptotic solutions (4.63)-(4.64) and (4.65)-(4.66)

are quite similar. As z -+ -oo the switching curves become price independent. On

the other hand, as z - o the admission curve q7(z) exhibits an exponential decay.

We are once more left with the task of finding the optimal value of y. We can

again use the same technique that we have used for the driftless case. That is, we

can look for the myopic solution obtained when we assume fixed prices. Since for

z -+ -oc the price function exp(z) + a , we expect the fixed price assumption to

be asymptotically optimal for z -+ -oo.

Proposition 17 If the price is fixed and equal to a, then the optimal policy ((s, i70)

solves

- 0 = h +bi7 , (4.67)

ex h+b h+b h+b )
+ (t+b) exp h +b ) (4.68)

Proof: See §4.10 at the end of this chapter.

A closed-form solution for (4.67)-(4.68) is only available for the special case h = b

and it is given by

arccosh(S) In(S) arccosh(S) In(S) t92 a
( 1191 - 9 and =7 , where S = exp 2) .

For the case (h $ b) we can solve the system sequentially in two easy steps.

1. First, solve (4.68) for I, = - r7,. A simple bisection algorithm can be used.

For 09 > 0, we search on the interval 0 < I, < (h + b) In((h + b) h-'S) (b9)- 1

For < 0 the search has to be conducted over the range 0 < I < -(h +

b) In((h + b) b' S) (hO)-'
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2. Once I, has been found, the optimal solution is

b I,,, a nd h I, + a
h+b h+b

As we discussed above, we expect this solution to be optimal as the price decreases

(z - -oo). From this observation and (4.63)-(4.64) we get

= v ( h+b '

We can now present the Proposed Policy for the general case which in terms of the

original variable (x, y) is given by

Proposed Policy for the General Case

~a(b - , i a)2 v' I, + b) V exp (y) if z -6 -oo,

= + o) =
v/h ( 29 b(h + b) x/ b exp(y) if z - oo.

(4.69)

We notice that the driftless solution (4.53) is a particular case of (4.69) with

o(h + b)
I,=a - if' =0.

hb

Figure 4.8 plots the boundaries ((y) and (y) for the same data used in Example 1 in

section §4.6 and a drift 0 = 1. The graph on the left (a) considers the approximation
for (y) as y -+ -oc. On the other hand, (b) uses the result for y -+ oo. We

can see that the upper boundary (y) mimics closely the behavior of the numerical
solution (although it tends to be less accurate as y increases). On the other hand,
the approximation for 77(y) in Figure 4.8(a) looks particularly good in this example

for all ranges on y. The approximation in (b) does not fit well the numerical solution

for low values of y but improves significantly as y increases (this result should be

expected since (b) is the approximation obtained making y - oo).
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Figure 4.8: Proposed Policy: General Case

4.8 Computational Experiments

In this section we study the performance of the policies presented in the previous

section. In particular, we use the expected average cost (g) as the measure and the

numerical solution of section §4.6 as our "optimal" solution. That is, for an arbitrary

policy p we define the relative error Ag(p) by

Ag9) -= g(p) - g(numerical) x 100,
g(numerical)

where g(p) and g(numerical) are the expect average cost under policy p and the

numerical solution of section §4.6, respectively.

In order to get an idea of the performance of the proposed policies with respect to

common practices in industry, we consider the simplest static policy. This policy is

obtained by assuming that the admission and production decisions are independent

of the price, that is, both r(y) and ((y) are constant. From a managerial perspective,

this policy is easy to implement since it does not require any monitoring of the

dynamics of the price. In addition, it also represents the solution that fixed priced

models (such as those described in section §4.2) would suggest. It is not hard to show

-specially after considering the solution in (4.52)- that the optimal static policy in the
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interval [yl, Y2] is given by

Vatic (( h(G) 2s4
(giC" v h = b)' ,s t atic(y) = - _

i(Y) h(h b)' (Y)= - b(h + b) (4.70)

for the driftless case = 0 and by

(static(y) = b G taic(y) =I+ (4.71)
h+ b h b

for the general 0 0 case. G is the average price

- = f~ (eY + C) dy e-2 _ e

Y2 - Y1 Y2 - Y1

and I is the corresponding amplitude2 of the inventory position, which is the solution

of the equation i

2 Gf h 20bI b -2 hI \
exp( 2(h ) = (h) ( + b) + b h + b)pat2(h+ b +b) (+b)ep( h

The goal of the computational experiments that we have performed is to assess
the quality of the proposed policy when used to solve the PDE problem

0.2 62

V ( (y), y) = 0, V ((y), y) -(Ro e + a).

Equivalently, the real transformation presented in §4.7.2 allows us to rewrite the

system in standard form as

9vW(w, Z) + V,,(w, Z) + V~(w, Z) = g - (h w+ + b (-w)+), (4.72)

VW,((z),z) = 0, V,(q(z), z) = -(R e + ), (4 73)

(where := and = 9) thus reducing the number of parameters to consider.

In what follows we present a set of experiments measuring Ag for different values

of the h, b, R0, & and . We will drop the hats from here on for ease of notation.

2We call amplitude the difference between the maximum level inventory and the maximum level
of backorders that the system can ever have.
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The first set of computational experiments studied the influence of the holding
and backordering cost parameter on the performance of the proposed policies. Table
4.1 shows some of the results that we have obtained for the driftless case. Our first

b JJ zAg(proposed) I -Ag(static) |
1 3.47% 24.60%
2 2.78% 21.31%
3 2.52% 9.08%
4 2.26% 7.57%
5 2.49% 4.80%
6 2.14% 4.02%
7 2.05% 3.33%
8 2.10% 3.16%
9 1.94% 2.85%
10 1.91% 2.90%

Average I 2.37% 5.94% 

Table 4.1: Performance of the policies;
is Ro = 1, a = 3, h = 1, and a2 = 62 = 2.

as a function of the backordering cost (b). The data used

observation is that the proposed policy out performs the static policy. While the

proposed policy has an average error of 2% the static policy has an average error
above 10%. In addition, the quality of the approximations seems to improve as b

increases.

The second analysis that we present aims to expose the relative effect of the

two types of cost present, that is, the holding/backordering cost and the bound-

ary cost associated to rejecting orders. The experiment that we conduct measures

the performance of the proposed policy as a function of the relation between the

holding/backordering cost C(x) = h x + + b(-x)+ and the boundary cost G(y) =
(Ro ey + a). In particular, we fix G(y) and vary C(x). The goal is to understand

the effect of the relative weight of these two cost components on the quality of the

proposed policy. We use the following simple scheme to vary C(x)

C(Z) = k (h x+ + b (-x)+)

where the parameters h. and b are kept fixed and k > 0 is changed. For low values of

k the penalty of rejecting customers C(y) is the main component of the cost function.
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On the other hand, as k increases the manager cares more about holding inventory

or backordering customers than rejecting orders. The following table presents the

results that we have obtained. Notice that we have set the experiments for two value

of the drift 0 in order to studied simulhanoously the impact of this parameter. The

Table 4.2: Performance as a function of the relative importance of the holding/backordering cost
and boundary cost (Ro = 1, a = 3, b = 2h = 2, a2 = 5 = 2).

results of Table 4.2 shows that the proposed policy performs systematically better

than the simplest static policy. However, as the holding/backordering cost increases

with respect to the rejection penalty (k ) the difference between this two policy

tends to diminish. The biggest difference are observed for the case for low values of

k. It is also interesting to notice that in the present of a positive drift the quality of

the proposed policy is better than in the driftless case.

Our next set of experiments are concerned with the quality of the solution as a

function of the variability of the demand and production processes. We notice that

since we have combined in a single process both demand and production, we can not

isolate the variability of each of those processes. Rather, we have to look at both

simultaneously. The parameter that characterizes this variability is a the diffusion of

the Brownian motion. The results in Table 4.1 show once again that the proposed

policy is much better that the simplest static policy. Variability, on the other hand,

seems to have a different impact on a driftless and a positive drift systems. On the

driftless case, variability improves the performance of the proposed policy while in

the case of a positive drift variance affects negatively the quality of the results. In

general, the relative error of the proposed policy is about 2%, consistent with the

results of the previous experiments.

0 I 0= 1 
k Ag(proposed) ] Ag(static) Ag(proposed) Ag(static)

0.5 1.04% 26.85% 0.06% 1.43%
1 2.61% 20.97% 0.23% 5.46%
2 3.88% 15.62% 2.22% 8.70%
4 4.72% 12.23% 2.91% 9.28%
8 5.20% 9.27% 3.21% 9.61%
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0=0 0=1
a 2 Ag(proposed) Ag(static) g(proposed) I Ag(static)

0.25 4.17% 77.31% 0.12% 2.38%
0.5 2.25% 42.00% 1.58% 5.99%
1 3.98% 24.99% 1.78% 9.99%
2 2.62% 20.95% 2.61% 13.41%
3 2.32% 25.65% 1.78% 14.92%
4 2.17% 32.12% 1.39% 16.34%

Table 4.3: Performance as a Function of the Demand and Production Variability (Ro = 1. ca = 3,
b = 2h = 2).

4.9 Extensions

We conclude this chapter looking at two additional results -that we have partially

developed- concerning the general structure of the problem that we have analyzed so

far. First, we studied in §4.9.1 the case that considers correlation between price and

demand. Next, in §4.9.2 we look more closely at the specific type of approximations

that we have used here. I particular, we quantify the error of replacing a general

reflection field by the standard inwald unit normal reflection.

4.9.1 Correlation Between Price and Demand

We consider in this section a natural extension to our basic model. In section §4.4

while building the diffusion model we made the assumption that R(t) (the price

process) and D(t) (the demand process) were independent. Certainly, this is a major

assumption since price and demand are tightly correlated in practice.

In this section, we relax this assumption and we extend our formulation to include

correlation between R(t) and D(t). We tackle this problem, however, in a a very

simplistic way that we will explain shortly. First, we recall that according to the

heavy traffic scaling we can represent the demand and price processes by diffusion

processes. More precisely, what we have is that

D(t) , vn At + N/ C WD(t) and R(t) Ro e6'YR(t),

where WD(t) and TWR(t) are two Wiener processes. Thus, the dependence between
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R(t) and D(t) is reflected through the dependence between 1WD(t) and WR(t). Here,
we assume the simplest type of dependence between this two processes, that is, we
consider that the correlation between WID(t) and WR(t) is fixed and equal to -p, or
more precisely we assume that the quadratic covariation < IAD, WR > satisfies

< WD, WR >= -Pt. (4.74)

Notice that 0 < p < 1 does not have any relation with the traffic intensity of the
system. In addition, the minus sign in (4.74) ensures that demand and price are in
fact negatively correlated. In this new setting we have the following result.

Proposition 18 The Hamilton-Jacobi-Bellman equation is

[-1V(x, y)] A [V(x, y) + EY + ac] A [rV(x, y) + c(x) - g] = 0, (4.75)

where
0 a 2 2 02 62 02

+ + ±+p)
Ox 2 az 2

axy 2 ay2

is the infinitesimal generator of (X(t), Y(t)), where Y(t) = In (R(t)).

We omit the proof of this result since it follows almost exactly the same lines of the
proof of proposition (10). In PDE form, the problem becomes to find a value function
V(x, y), two boundary functions (y) and q(y), and a the smalest scalar g that satisfy

2 (~2
0 V (x, V(,y) ) + - (x, y) = g - C(x) (4.76)

/xI(x, y) = F(y), for all (x, y) E aQ. (4.77)

This problem is almost equivalent to (4.30)-(4.31). In fact, for p = 0 those two
problems are the same. The first step to solve this problem is to rewrite (4.76)-(4.77)
on standard form (see section 4.7.2). We can achieve this goal if we find a real
transformation {w = w(x, y); z = z(x, y)} that satisfies the Beltrami condition (for

details see for example John (1982) §2.3)

p zZ - zJ az -6p zy
Wx = Amp', Wy -6

0. i-p ' 5- 3/1 - 27

It turns out that in this homogeneous case a simple rotation and scaling of the X and
Y axes suffice to solve the Beltrami equation above. In fact, it can be shown that the
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following transformation

w= 1 (-p( c+) and z-

reduces (4.76)-(4.77) to its standard form which is

(A + V)V(w, ) = g - C(wz),

(*. V)V(w, z) =F(w, z) for all (w, z) E aQ,

where drift () is given by

K = -tz

The cost function (w, z) and the boundary function /(w,z) are computed using

the transformation of coordinates above. Finally, we approximate this system by

replacing the reflection field by the inward unit vector field n to get

(A + V)V(w, z) = g - C(w, z), (4.78)

(n V)V(w, z) = F(w, z) for all (w, z) E OQ, (4.79)

We can now solve this problem using the same techniques that we used in section

§4.7.4.

4.9.2 About the Error of the Proposed Policy

An important question that we have not formally addressed so far is related to the

quality of our approximations. We have partially addressed this issue numerically

comparing the results of our proposed policy and those of the numerical solution. In

this section, we look more closely to this problem. We restrict, however, the scope of

our analysis looking only at the driftless case which can be extended to the general

case without much difficulty.

As a summary of our approximations, we know that the only structural difference

between our original problem and the one we solve is the vector field that we use to

reflect the diffusion process at the boundary. Suppose that we fix the domain Q and

its boundary aQ. Let u be the original vector field and n be the vector field that we
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use to replace u. In our particular case, we have that u is the outward vector field
point in the direction of X and n is the outward normal vector field. Let C(x) be

the holding/backordering cost function and G(y) be the boundary cost function. The

generic problem for an arbitrary vector field w is given by

Problem w

V 2 VW(x,y) = g - C(x), in Q,

w VV(x, y) = G(y), in OQ,

where gW is the average cost under the reflection w and Vw(x, y) is the corresponding

value function.

We are interested in the solution to pU, that is, we look for a pair (VU(x, y), gU)

that satisfies the system above when w = u. In particular, since we try to minimize
g, we primarily care about the value of g". The exact solution to this problem is in

general hard to find. However, we can solve "easily" problem pn and find gn without

much difficulty. Thus, if gu and gn are similar then we might view our approximation

(i.e., replacing u by n) as appropriate. In other to be more precise about what

similar means, we define the following criteria to compare the solutions. We define

the relative error A(u, n) as follows:

U - gf
A (u,n) g=

Our main result is the following.

Proposition 19

zA(u, n) = fJS q* Vv'"(x, y) da C (n VVU(x, y) - G(y)) do (480)
fn C(x) ds + fan G(y)da dC(x)ds + nG(y)da 

where q = n - u, d, and ds are the element of length and surface on &Q and Q

respectively.

Proof: See §4.10 at the end of the chapter. Before proving proposition (19) we observe

the following properties of the solution.

A z/(u, n) = 0. This condition holds trivially if q = O. It can also holds for q 0

if for example q VVU(x, y) = 0 in tQ.
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a More interesting, perhaps, is the fact that the nominator in (4.80) is a line

integral which depends only on the value of the functions on the boundary and

the length of the boundary. On the other hand, the denominator depends on

both the boundary and the surface of Q. Thus, if the boundary is well-behaved

and the different functions are bounded we will expect the ratio in (4.80) to

decrease as the area of Q increases. In other, and more intuitive, words, the

boundary conditions become negligible as the area of Q increases.

In order to proceed further, we need to give more structure to the domain Q and its

boundary 0Q. For this purpose and based on our particular problem, we consider the

following region

Q = {(x,y) s.t. rq(y) < x < (y) and y < y < Y2}.

We will, now, look at the behavior of A(u, n) for a given pair of functions (77, C) when

the length interval [Yl, Y2] increases. In order to keep the same structure that we have

in olr problem, we will consider that the boundary function G(y) is nonzero only in

the lower boundary (r/(y), y). If we define at as the angle between u and n then we

can rewrite the nominator in (4.80) as follows:

a (n VVU(x y)- G(y))da= j (sin(a)Vu(xI y) - cos(a)V(x y) - G(y)) .

Moreover, on the boundary we know that VU(x, y) = -G(y). Thus,

(u, n) = fan(sin(a)Vu(x, Y) - (1 - cos(a)) G(y)) da

fn C(x) ds + 0an G(y) da

We can see from this last relation that that the holding/backordering cost C(x) ap-

pears only in the denominator. Thus, we expect A(u,n) to be decrease in C(x),

this result was in fact observed in the computational experiments performed in §4.8.

Further analysis of the error requires the characterization of the partial derivative

VyUU(, y) on OQ. We postpone this issue for a future research but we can mentioned

that empirical observations suggest that the error A(u, n) decreases with the magni-

tude of Area(Q).
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4.10 Proofs

4.10.1 Proof of Proposition (10)

The notation used in this proof is based on chapter 4 in Harrison (1985). We first
check that R(t) E H 2, that is

E R2(s)ds] <oo, Vt>O.

Let recall that R(t) = Ro e WR(t) is a geometric Brownian motion. Now, from Fubini's
theorem we have

E [ R2 (s) ds = /0 E [e2 WR(s)] ds.

In addition, WR(s) is normally distributed with 0 mean and variance equal to s, thus
E[e2 WR(s)] = e2 and

E [R2(s) ds =2 (et-1) < Vt>O.

Since R(t) is adapted and belongs to H 2 , we know that there exists a sequence of
adapted processes Rn(t)} c S2 (simple processes) such that R"(t) -- R(t) (see §4
proposition (7) on Harrison (1985)). Given that R"(t) is a simple process, there exists
a partition r, = {to, t,..., t, } such that Rn(s, w) = Rn(tk_l, w) for all s E [tk-l, tk),

to = 0, t = t, and mesh(7r,) --+ O0. Then,

t n-1

I(R) R'(s) dWD(A(s))= E R(tk)[WVD(A(tk+)) -WD(A(tk))] a.s.
k=O

Let {Fk = F(tk)}, where F= {F(t) : t > 0} is the corresponding filtration on the

probability space. Then,

n--Il

E [I(R)] = E EF{R(tk)E [WD(A(tkl))- WD(A(tk))Fk]}
k=O

But WD(t) is a martingale and A(t) is random time change process (continuous and
non-decreasing), therefore
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E [WD(A(tk+l)) - WD(A(tk))lFk] = o

and E [I(Rn)] = 0 for all n. Finally, we apply §4 proposition (11) in Harrison (1985)

to conclude that E [I(R)] = 0. I

4.10.2 Proof of Proposition (11)

Let Z*(t) be the inventory position under the optimal control (U*, I*), i.e., Z*(t) =

X(t) + A U*(t) -, i*(t). Then, for any policy (U, I) such that Z(t) = X(t) + A U(t) -

p I(t) e have

lm oo E (R(t) + c) AdU*(t) 

lim 1 E [(t) +
T-oo T E ((t) + [J)d(t) +

-fc(Z(t)) dt]

j c(2(t))d].

Since ca is fixed and U* satisfies (4.13), we get the following equivalent condition

lim 1 E fT
T-loo T[ o

lim E T
T-oo T f

- r~T

R(t)AdU*(t) + fo

R(t)AdU(t) + ' c

c(Z*(t))dt + cux <

:(2(t)) dt + A U(T)] .

Moreover, if (, I) is a feasible solution to the original problem (4.8)-(4.10) then U

also satisfies (4.13) and

fR(t)AdU*(t) +

R(t)AdU(t) + J

fo C(*(t))dt] +U<

/0 c(Z(t)) dt + A U.fo 
After cancelling cA U in both side of the inequality above, we conclude that

(U*, I*) is an optimal solution to (4.8)-(4.10). *

[IT
0T

[foT
lim -E

-4-+oo T

lirn E
T-oo T
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4.10.3 Proof of Proposition (12)

We consider a small neighborhood [x - E, x + e], and the stopping time

T, = inf{t > 0: IX(t) - X(O)f = E}.

The idea is that the scheduler when facing the state (x, r) can take three decision (i)
he/she can increase I moving instantaneously to (x- E, r), (ii) he/she can increase U
moving to (x + E, r), and (iii) he/she can do nothing until TE and re-evaluate what to
do at that time.

In the first case the objective function is given by

f (x - E, r) = f (x, r) - f(x, r)e + 0o(). (4.81)

In the second case we have

(4.82)

Finally, in the third case

E(,r) [ e- tc(X(t))dt + e-' T f(X(T), R(T))] .

Now, using the following general result: For any continuous function A(-)

[E T A(X(t))dt]
C~3.S E[T]

li 2E[T ]

4S0 E2

(where a 2 is the variance of X). We can rewrite (4.83) when E . 0 as follows

f (x, r) + ((x) +
E(xr) [e TCf(X(T), R(T))- f(x, r)f\ (e2 2

E[TEI ,)- +0 (E~x,r,l) [Tc]1) 

Since f is twice continuously differentiable, f(X, R) is an It6 process. Then applying

integration by parts (see Harrison (1985) §4.9 proposition (2)) we have

e-Vtf(X(t), R(t)) = f (x, r) + j e-sdf (X(s), R(s)) - yj e-7Sf (X(s), R(s))ds.

(4.83)

106

r + f x + , ) = f x ) +- [fx(Jx, ) + ,E - o(,E).



1074.10. Proofs

In addition, from It6's lemma

df(X, R) = fdX + fdR
1

+ I (fxxdX + frdR) dX
2
1

+ 2(fdX + f,,dR) dR.2

Moreover, we know that

dX(t) = o dt + adW (t), dR(t) = 2 (t) dt + JR(t)dWr(t),
2

where the processes W/(t) and Wr(t) are two independent Wiener processes. Thus,
using the above representation for X and R and the differential rule for quadratic
variations 3, we have

df (X, R) = [[ f' 2
0 2 + (6R(t))2 ]

- J + 2 frr2 2 J dt + afdW, + 6R(t) fdW,,

Ff(X,R)

(4.84)

or equivalently

df (X, R) = f (X, R)dt + afdWz + 6R(t) fdW,.

Therefore,

e-*t f (X(t), R(t)) = f(x,r, )+ 0 t e-s(Ff - yf)(X(s), R(s))ds

+ j e-SaofdW~(s)+
o

e-76R(t)frdWr(s)
0

M(t)

Now, taking expectation in the previous expression and noticing that the integrands

on the two last integrals are bounded, we have that E[M(t)] = O, therefore

E(x,r) [e7T f (X(T), R(T))- f(x, r)] _

E[T,]

Jo e-7(Ff - yf)(X(s), R(s))ds

E[TJ]

3 That is, d < t,t >= d < t,W >= d < W, W, >= O0 and d < W,W >= dt.
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Combining the previous result, we can replace (4.83) by

f (x, r) + (c(x) + ff (x, r) - yf (x, r)) () + o (E(x,r) [T]) (4.85)

The optimality of f(x, r) together with (4.81), (4.82), and (4.85) imply that f satisfies

f(x, r) = min{f(x, r) - f(x, r)E + o(),

f(x, r) + [fx(x, r) + r]E + o(E),

f(x, r) + (c(x) + -f(x, r) - yf(x, r)) (-) + o (E(x,r)[T]).

Subtracting f(z, r) from both side an letting e . 0, we conclude that f(x, r) solves

= [f7(x, r)] A [f(x, r) + r] A [c(x) + ff7(x, r) - f(x, r)].

4.10.4 Proof of Proposition (14)

If 6 = 0, the price is not changing over time. Therefore, for each value of z there are

optimal thresholds values i7(z) and ~(z) used to control the one-dimensional Brownian
motion process X. From standard results (e.g., Harrison (1985), section §5.5), the
steady state distribution of the driftless Brownian motion on the interval [(z), W(z)]
is Uniform and the average amount of control per unit time used to keep the process

within the range is
1

((z) - (z))

in both extremes. Since G(z) = exp(z) + c and ft(z) = 0 are the cost of reflecting X
to the right and to left respectively, we get the following expression for the average
cost per unit time

fg( ) (w) d:x. + ((z) + H( ())

inally, in this case (z fixed)( -maximize g(z))

Finally, in this case (z fixed) we maximize g(z solving

Og(z) 0 and g(z) = 0.
~() O97r(z)
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Solving this system gives the desired solution. I

4.10.5 Proof of Proposition (17)

The proof uses the fact that the steady state distribution of a (, 1) Brownian motion

in the interval [a, a + I] is a truncated exponential

e (x-a )

p(x) = eI- 1 for a < x < a+ I.

For a proof of this result see §A.5.3 in the Appendix A or chapter 5 Harrison (1985).

Moreover, the local times on the left (x = a) and right (x = a + I) boundaries are

given by

respectively.

LT(a) = d and LT(I + a) = l

Thus, in order to find the optimal values for a and I, the following

optimization problem has to be solve

f I+a

min h x p(x) dx -
a,I>O o

a bxp(x) dx + (eoi- 1 

From the first order optimality conditions and after some algebra we recover condi-

tions (4.67) and (4.68). *

4.10.6 Proof of Proposition (19)

The proof is a straightforward application of Green's identity. In fact, Green's identity

on problem P" implies

(gIn C(x)) d o = fS G(y) ds.

Letting ,r to be the inverse of the area of Q, the condition above is equivalent to

9 = [J C(x) d + f 2G(y) ds] .

Similarly, problem pu can be written in standard form as follows:

V 2 vu(x, y) = gU _ C(x),

n VV(x, y) = G(y) + q- VVU(x, y)

in Q,
ill at2.
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Thus, Green's identity implies

g9 = [ C(x) dC + r (G(y) + q. VVU(x, y)) ds].

Combining the values of gU and g we get the first equality in (4.80). The second

equality is obtained replacing q = n - u and u- VVU(x, y) = G(y) in oQ. I



Chapter 5

Conclusions

In this thesis we have presented two applications of the traditional make-to-stock

queue model related to the fields of supply chain management and electronic com-

merce. As a general comment, it is our view that the make-to-stock queue is an

attractive operations management model to embed into a game-theoretic framework

or into an optimal admission control problem. The model is in most ways richer than

the newsvendor model and is about as complex as - but considerably more tractable

than - a two-stage Clark-Scarf model. It also allows us to capture the nonlinear effect

of capacity and the impact of the retailer's order process on the supplier's lead times.

Of course, none of these models attempt to mimic the complexities of an actual supply

chain. Nevertheless, to the extent that queueing effects are present in manufacturers'

production facilities, the make-to-stock queue is a parsimonious and tractable model

for deriving new insights into multi-agent models for upply chain management.

Regard'ng the decentralized make-to-stock model, the distinguishing feature of

our simple supply chain model is that congestion at the supplier's manufacturing

facility is explicitly captured via a single-server queue. Each agent has a resource at

his disposal (the supplier chooses the capacity level and the retailer chooses the base

stock level) that buffers against expensive backorders of the retailer's inventory. When

the inventory backorder cost is incurred entirely by the retailer (i.e., the backorder

allocation fraction ac = 1), the supplier has no incentive to build any excess capacity,

which leads to system instability. When the supplier incurs some backorder cost (a E

[0, 1)), there is a unique Nash equilibrium in the absence of participation constraints.
The Nash equilibrium is always inefficient: The agents' selfish behavior degrades
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overall system performance. The Nash equilibrium is asymptotically efficient in two

cases: (i) The backorder cost goes to zero and the supplier incurs all of the. backorder
cost, and (ii) the backorder cost goes to infinity and is split evenly between the
two agents. In the absence of participation constraints, the Nash equilibrium has
an arbitrarily high inefficiency in two cases: (i) The backorder cost goes to infinity
and the supplier incurs all of the backorder cost, and (ii) the retailer incurs all of
the backorder cost. Relative to the centralized solution, the agents in the Nash
equilibrium have more buffer resources when they care sufficiently about backorders:
The supplier builds more capacity than optimal when c < v, (and av, > 0.28 if
backorders are more expensive than holding inventory) and the retailer has a larger
than optimal base stock level when a > 0.63 (and in some cases, an even smaller
threshold). However, at least one of the agents in the Nash equilibrium holds a lower-
than-optimal level of his buffer resource. Finally, customers receive better service in
the centralized solution than in the Nash equilibrium, and customer service improves
in the Nash setting when the retailer incurs most - but not all - of the backorder
cost.

We assume that the agents only participate if their expected profits are nonnega-
tive. In the Nash equilibrium, the retailer refuses to participate when his share of the
backorder cost, a, is sufficiently large (the inventory costs become arbitrarily large
when a = 1), and the supplier may also (depending on the cost and revenue param-
eters) refuse to participate when a is too small. Hence, system instability due to a
lack of excess capacity would not be expected to arise in practice in the a = 1 case
because it would be superceded by the participation constraint: The retailer would
disengage from the relationship if the supplier offered such horrible service.

A simple linear transfer payment, which is based on actual inventory and backorder
levels, the capacity level and the cost parameters, coordinates the system in the
absence of participation constraints. We derive bounds on the backorder allocation
fraction a for when the coordinating contract is attractive to both parties, in that each
agent achieves a nonnegative profit that is no smaller than his Nash equilibrium profit.
Interestingly, there are values of a for which the contract will lead to the operation of
an otherwise inoperative supply chain; i.e., the extra system profit generated by the

contract is sufficient to entice the nonparticipating agent into playing. Overall, we
find that a contract is more likely to be entered into by both agents when the system

is reasonably profitable (i.e., the optimal profit of the centralized system is large) and
relatively well-baianced (i.e., a is near 0.5 and the wholesale price w is intermediate
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between the retailer's selling price r and the supplier's manufacturing cost c + p).

When a takes on an extreme value near 0 or 1, the coordinating contract dictates

that one of the agents (the one who is incurring the backorder cost) subsidizes the
other's entire operation.

Finally, when one of the agents is the Stackelberg leader, he builds less of his
buffer resource and receives a higher profit than in the Nash equilibrium, and the

other agent builds more of his buffer resource and receives a smaller profit. Customer
service is the same in the Nash equilibrium as when the supplier is the Stackelberg
leader, but customers fare worse when the retailer is the leader; this nonobvious
result appears to stem from the asymmetric effects of capacity and safety stock on

customer service. Taken together, these results provide operations managers with a
comprehensive understanding of the competitive interactions in this system, and offer
guidelines for when (i.e., for which sets of problem parameters) and how to negotiate
contracts to induce participation and increase profits.

Recall that our model is quite similar to the two-stage inventory model of Cachon
and Zipkin: The two main differences are the single-server vs. infinite-server model

(i.e., queueing vs. inventory model) for the manufacturing process, and our inclusion
of revenue, and hence participation constraints. Regarding the first difference, capac-
ity in our model has a larger and more nonlinear impact on the service level than does
upstream inventory in Cachon and Zipkin's model. As in single-agent models, the
difference between queueing and inventory models in the multi-agent setting is mag-
nified when the queueing system is heavily loaded, which occurs in our model when

the capacity costs are large and/or the supplier is not concerned with backorders. In
the extreme case when the supplier does not care about backorders (a = 1), he builds
no excess capacity in our queueing model, whereas he holds no inventory in Cachon

and Zipkin's inventory model. The effect of the former is an unstable system, while

the effect of the latter is to turn the supply chain into a stable - albeit ineffective

- make-to-order system. In Cachon and Zipkin's echelon inventory game, the Nash
solution is indeed highly inefficient when a = 1, but in the local inventory game the
median inefficiency in their computational study is only 1%. When a = 1 in the local

inventory game, the supplier's base stock level offers him little control over the sys-

tem's cost, whereas the capacity level in our model affects the entire system in a more

profound way. On the other hand, both models predict that the inefficiency is small

when the backorder costs are shared equally. Another qualitative difference between

the results in these two works is that Cachon and Zipkin's agents hold less inventory in
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the Nash equilibrium than in the centralized solution, whereas our agents build/hold

a higher-than-optimal level of their buffer resource when their share of the backorder

cost is large (as suggested in the management literature by Buzzell and Ortmeyer

1995 and others). Finally, because our model incorporates participation constraints,

we can go beyond the Cachon-Zipkin cost minimization analysis and predict that

the high inefficiencies in most situations will be preempted by either participation
constraints or coordinating contracts; for example, returning to the case where the

retailer bears most of the backorder cost, our analysis suggests that the retailer either
subsidizes the supplier's production capacity or - if this subsidization does not lead

to any retailer profits - does not participate.

Regarding the second part of this thesis, we have formulated and approximately
solved the admission/production control problem to a make-to-stock queue when

selling prices are highly variable. The importance of such a problem and its solution
is two fold.

First, we have the practical implications of this model. The increase in popularity

of the Internet is certainly driven consumers, retailers, suppliers, and the whole supply

chain to interact in a new way where fixed prices and long term contract agreements

are becoming less common. Everybody realizes that the e-price of a product today

can be completely difference than the e-price of exactly the same product tomorrow.

For instance, yield management practices on the airline industry are a good example

of this phenomenon on the B2C world. Is in this rapidly changing environment that
product managers must be alert to assess the right business opportunities that the
Internet is offering. That is, in our setting they have to be able to understand if a
particular order at a given price today is attractive or not to be served.

On the other hand, we have the academic interest of formulating and solving the

stochastic control problem that comes out of this model. Brownian motions are very

effective modelling devices. They are the natural extension to the more traditional
Markov processes and they provide more tractable formulations and to some extend

they are more insightful about the structure of the problem. In this perspective,

the model that we have presented in chapter 4 generalized the standard two-sided

regulated Brownian motion (RBM) formulation commonly used to model inventory

position by considering in addition a geometric Brownian motion (frequently encoun-

tered in finance) to model the price process. The result is a two dimensional stochastic
control problem for which approximate solutions are proposed.
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In terms of the managerial insights that come out of our model and solution we

have that (i) the production policy is characterized by a base-stock policy which is

independent of the price and (ii) the admission control policy is a price sensitive

function that depends linearly on the price. Thus, since price is rather unpredictable

it is convenient to produce until we hit a target level in which case we should turn

off production. On the other hand, if there are backorders on the system, let say B,

we should reject a new order if the price offered by the incoming customer is below

a threshold R(B) = al + a2 B, where the constant al and a 2 are positives. The fact

that we get a linear relations for the admission policy is due to our assumption that

holding and backordering costs are linearly incur. However, the analysis that we have

developed allows us to easily relax this assumption.

From a technical point of view, the analysis that we have performed reveals that

the main complexity of this problem comes from the particular reflection field that we

have to use on the boundaries. Moreover, our approximations are based on a simple

rotation of this reflection field to obtain normal reflection. Under this transformation,

we can compute explicitly the solutions to our problem. If we consider that the local

time on the boundaries for these two dimensional regulated Brownian motions is 0,

we can guest then that the quality of these approximations should be good. In fact,

our computational experiments show that in average our proposed policy has an error

around 2%. This result looks even better if we consider that a naive policy such as

the static policy produces average errors above 10%. In this sense, the next step to

improve the quality of the results proposed here is to better understand the effect

of the reflection field on the distribution of the RBM and to incorporate the non

normality of these reflections on the structure of the solutions.





Appendix A

Brownian Motion and Queueing
lModels

This appendix has been written with the intention of exposing some elementary prop-

erties and features of Brownian motions that will help the development of chapter

(4). Part of the analysis is based on the book by J.M. Harrison: Brownian Motion

and Stochastic Flow Systems.

A.1 Introduction

The name Brownian motion comes from the studies done by the botanist Robert

Brown in 1828 on the irregular movement (Brownian movement) of pollen suspended

in water.

In order to define what is this object that we will call a Brownian motion, we start

by introducing the notion of stochastic process and some basic concepts of measure

theory.

Definition 2 A stochastic process is a collection of random variables X = {Xt : t >

O} defined on a sample space (, ).

For simplicity, we will assume on this notes that the index t above represents time.

We can view a stochastic process as mapping that at each time t > 0 associated the

occurrence of a random phenomenon represented by Xt.

The sample space (, .F) consists on:

* Q: An abstract space of points w E Q.
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* F: a a-field (or a-algebra) on Q. That is, a collection of subsets of Q satisfying:

1. Q E .

2. Let A C Q such that A E F then Ac = Q - A E F.

3. Let Al, A 2, A3,... E then Al U A2 U A3 U... E F.

The elements of S are called events. Condition (1) above simply states that the
space Q is necessarily an event. Conditions (2) and (3) state that the collection
of events is closed under the set operations of complement and countable union.

The space (Q, F) satisfying these conditions is called a measurable space. For a
fixed point w E Q, we called the sample path of the process X associated with w the

function t -+ Xt(w) : t > O.

An important consideration is related to the way we collect and use informa-
tion over time. In particular, we would like to be able to isolate past and present

from future. For example, let consider two events A, B E S such that Xs(wl) =

X,(w 2); Vl E A, VW2 E B, Vs, 0 s < t. Then during the period [0, t] the events

A and B can not distinguished from the point of view of X. For this reason, we
complement our sample space (,.F) with a filtration, i.e., a nondecreasing family
{Ft : t > O} of sub-a-fields of S such that F$ C FSt C F for O < s < t. The idea is
that each Ft contains the information available up to time t.

Another very important object that we will use during the analysis of Brownian
motion is called stopping time. However before defining it, we have to introduce the
notion of measure and measurable function.

Definition 3 Let (Q, F) be a measurable space. A set function it on S is called a

measure if it satisfies the following conditions:

1. (0) = o,

2. A E TF implies 0 < iL(A) < oo,

3. Al, A 2 ,... E F and {An) are pairwise disjoint (Ai n Aj = 0 for i j), then

An) = E(An)
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For example, the Lebesgue measure commonly denoted by A and defined on the

class of Borel sets 7Z' of the real line, is given by A(a, b] = b - a.

We call a measure p a probability measure if p(Q) = 1, in this case instead of /, we

use the notation P. If P is a probability measure then (Q, , P) is called a probability

space.

Definition 4 Let (, F) and (a', F') two measurable spaces. A mapping Y : Q - Q'

is (, F')-measurable if for each A' E F'

Y- 1 (A') = {w E Q: Y(w) E A'} E F.

According to this definition, the mapping Y is measurable if for any well-defined

event A' E F' the pre -image of A' by Y (denoted by Y-'(A')) is also a well-defined

event in F.

Definition 5 A stopping time is a measurable function T from (Q, F) to [0, oo) such

that {w E Q : T(w) < t} E Ft, for all t > O.

We can now give a first definition of a Brownian motion.

Definition 6 A standard, one-dimensional Brownian motion (or Wiener process) is

a continuous, adapted stochastic process X = {Xt, Ft : 0 < t < oo}, defined on some

probability space (Q, F, P) with the properties that Xo = 0 almost surely and for

0 < s < t, the increment Xt - X, is independent of F, and is normally distributed
with mean zero and variance t - s.

A few points about the previous definition:

(a) We say that X = 0 almost surely (a.s.) in (, F,P) if the set A = {w E Q:

Xo(w) 0} has probability 0, i.e., P(A) = 0.

(b) The stochastic process X is adapted to the filtration {Ft} if for each t > 0, Xt
is an Ft-measurable random variable.

Two extremely important features that characterizes a Wiener process presented

in the following property:
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Property 1 If X is a Wiener process then X has independent increments, that is,

for any positive integer n and any sequences of times 0 < to < tl < ... < t, < o the

random variables Yi = X(ti) - X(ti_1 ), i = 1, 2,..., n are independents.

In. addition, X has stationary increments, that is, for any 0 < s < t < o the

distribution of Xt - Xs depends only on t - s.

These two properties are so attached to the Wiener process that they can be used

as an alternative definition of a standard Brownian motion. We notice here that for

discrete time stochastic processes the two properties above characterize the Poisson

process. Thus, we might think for simplicity on the Wiener process as the continuous

space extension of the Poisson process.

Once we have defined the Wiener process, we can extend its definition and define

the general (, a) Brownian motion process Y as follows:

Y(t) = Y(O) + ut + aX(t)

where X is a Wiener process and Y(O) (the initial value) is independent of X.

We call the drift and a 2 the variance or diffusion of Y. It follows directly from

the definition of X that Y(t + s) - Y(t) is normally distributed with mean ,as and

variance a2 s. Finally, we say that Z is a geometric Brownian motion if Zt = eYt,

where Y is a Brownian motion.

A.2 Properties of Brownian Motions

In this section we present the main properties that make Brownian motions a very at-

tractive modelling tool. However, we start ironically presenting some results showing

the extremely erratic behavior of Brownian motion processes.

A.2.1 Basic Properties

Property 2 Let X be a Brownian motion in (Q, .,P). Then except for a set of

probability 0, the sample path Xt(w) is nowhere differentiable.

Even though the variation of X over time is particular unstable, some measure

of its variability can be computed. In fact, let define the random variable (quadratic
variation) Qt as follows:
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2n-1
Qt- l im y X -X (A.1)n--+ok=O 2 2n

Then, we have the following result.

Property 3 For almost every w E Q we have Qt(w) = a2 t for all t > 0.

This last result implies that Brownian motion have infinite ordinary variation

almost surely. In addition, as we will see later, property 3 contains the essence of the
It6's formula.

Property 4 If X is a (, a) Brownian motion then:

- E(Xt) = Xo + pt,

- Var(Xt) = a2 t,

- Cov(Xt, X,) = a2 (t A s) = a2min{t, s}.

The following theorem is a very important result that reflect the memoryless
property that characterizes Brownian motion processes.

Theorem 1 (Strong Markov Property)

Let X be a (, a) Brownian motion and T be a finite stopping time. Then Yt =

XT+t - XT is a (, a) Brownian motion starting at 0 and it is independent of FT.

Property 5 (Brownian martingales)

Let X be a (, a) Brownian motion then:

(a) If It = 0 then X is a martingale, i.e., E(Xt - XI.,) = 0.

(b) If , = 0 then X 2 - a2 t is martingale.\U/ 1J ~ -- V L~l~rCIL ~Lt

(c) Let q(f) = ,/u + a2 32 and VB(t) = eixt- q (O)t. Then, V: is a martingale.
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A.2.2 Wiener Measure and Donsker's Theorem

In this subsection we explore the nature of the Wiener process as a type of central

limit theorem for stochastic processes. The notation and results are based on the

textbook Convergence of Probability Measures by P. Billingsley (1999).

We start by introducing the Wiener measure, W, which is a probability measure

on (C,C)1 having two properties. First, each Xt is normally distributed under W

with mean 0 and variance t, that is:

1 a 2

W[Xt < a] = L e 2t du.

For t = 0, we have W[Xo = 0] = 1. The second property is that the stochastic

process X has independent increments under W.

In order to state the main result of this section (Donsker's theorem), we in-

troduce the sequences {X : n = 0, 1,. .} of stochastic processes as follows. Let

E= { ,2, .. .} be a sequence of IID random variables having mean 0 and finite
variance a 2. Let S = 1 - * + n (So - O) be the partial sums of _. We define Xn

as follows:

1 1
Xt () = / SLntJ(W) + (nt- nt]) ~nt+l( ) (A.2)

Figure A.1 shows the behavior of the process Xn for three values of n 2. We

can see that as n increases, the behavior of Xn resembles a Wiener process. This

result is in fact Donsker's theorem. We can see the non differentiability of Xn(t) as
n increases.

Theorem 2 (Donsker's Theorem) If l, 2,... are independent and identically dis-

tributed random variables with mean 0 and variance 2, and if Xn is the random

process defined by (A.2), then Xn ==>n V, a Wiener process.

(Where the symbol -7,, stands for convergence in distribution as n - cxo.) This
result can be understood as a generalization of the standard central limit theorem for

random variables.

1Where C - C[O, oc) is the space of all continuous functions x : [0, oo) - t and C is the Borel
a-algebra on C.

2In the construction of the three sample paths the ,n are uniformly distributed in [-1, 1].
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t

Figure A.I': Behavior of Xtn} for n = 1, 5, and 20.

The previous result is intuitive in the sense that Sn -being the sum of IID random

variables- converges in distribution to a N(O, no2 ). Another interesting property of

the Wiener process, and more generally of any (0, a) Brownian motion is their scale

invariance that can partially be observed in (A.2).

Property 6 (Scale Invariance) Let X be a (0, a) Brownian motion, then for any

c > 0:

x/t) t > D {X(t) : t > O}. (A.3)

(Where - stands for equality in distribution.)

This scaling property, that is of course related to the normal distribution, will be

specially important (together with Donsker's theorem) later for our study of queueing

systems and the use of heavy traffic approximations.

We can now use Donsker's theorem to find the distribution of M = sup W, how-

ever, we need before an additional result.

Theorem 3 (Mapping Theorem) Let {X,} be a sequence of processes such that

Xn =:: X. Let h be a measurable function and let Dh be the set of its discontinuities.
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If Dh has probability 0, then h(Xn) =~ h(X).

Since h(X) := supt Xt is a continuous function on C, then from the mapping theorem

and the fact that Xn => W, we have that:

sup Xt = sup Wt.
t t

Let Mn = maxo<i<a Si, then it is not hard to show that supt X1t = m. Thus,

pM =# sup Wt. (A.4)
a0n t

Since we can peak any sequence f{ } such that E(n,) = 0 and E(d) < o, let assume

that n takes the values +1 with probability . Therefore, So,S1,... represents a

symmetric random walk starting at 0. We first prove that

P(Mn > a, Sn < a) = P(Mn > a, Sn > a) a > 0.

This should be clear from the fact that the behavior of the random walk is independent

of its history and it is symmetric, thus if the random walk reach a at time i < n then

the value of Sn is symmetric with respect to Sa = a. In other words, for each path

of the random walk (So, S1,. .. , Sn) such that Mn > a, Sn = a - k < a there exists

another path such that Mn > a, Sn = a + k > a. This symmetry is an example of the

reflection principle. Given this result, we have that:

P(Mn > a) = P(Mn > a, Sn < a) + P(Mn > a, S = a) + P(Mn > a, Sn > a)

= 2P(Mn > a, Sn > a) + P(Mn > a, Sn = a)

= 2P(Sn > a) + P(Sn = a)

By the central limit theorem P(Sn > ai) -- P(N > a) and P(Sn = av/n- ) - 0,

where N is a standard (0,1) normally distributed random variable . In addition

2P(N > a) = P(INI > a). Thus, combining this results we have that M = supt Wt

has the same distribution of INI and

P(M < a) = 2 du. (A.5)Fe- (A5
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A.2.3 Reflection Principle

In this subsection, we look with more detail at the distribution of Mt = sup0<S<t X s,

where X is a general (, a) Brownian motion. We first start the analysis for the

special case of = 0, a = 1. In this case, we can apply a similar argument that the

one used in the previous subsection based on the reflection principle to show that

P(Mt > x) = 2P(Xt > x) = P(IXtl > x).

We can also compute the joint distribution for (Xt, Mt), that is

Ft (, y) = P(Xt < x, M, < y).

Since X0 = 0 and Mt > Xt w.p.1, we can focus our attention to the case x < y and

y > O. First of all, we notice that

Fttx, y) = P(Xt < x) - P(Xt < x, At > y)

= (xt 2) - P(Xt < x, Mt > y),

where (-) is the N(O, 1) distribution function. From the reflection principle P(Xt <

x, Mt > y) = P(Xt > 2y - x) = P(Xt < x - 2y). Thus, we have the following result.

Property 7 If M = 0 and a = 1, then

P(Xt < x, Mt < y) = b(xt-) - (( - 2y)t-).

The previous result depends heavily on the assumption = 0 or in other words on

the reflection principle. In order to extend the result to general Brownian motion, it

is required first to understand how making a change of measure can lead to a change

of drift.

Let P and Q be two probability measures on the same probability space (Q,. F)

with the important property that P is dominated by Q. That is, Q(A) = 0 ==

P(A) = 0. Then, there exists a non-negative random variable ~ (also denoted by 4R)

such that

P(A) = dQ, VA E F.

An important implication of the above relation is that if Y is a random variable and

EQ(IcYI) < o then Ep(Y) exists and Ep(Y) = EQ(~Y). The random variable C
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is usually called the density or Radon-Nikodym derivative (or likelihood ratio) of P

with respect to Q. In order to find the density J associated to two Brownian motion

measures of i. fferent drift, we use an heuristical approach.

Let consider now a (, o) Brownian motion and a sequence of instants 0 = to <

tl < · < t, = t such that ti - ti-l = 6, i = 1,.. ., n. The density associated to that

particular sequence of instance is given by:

1 n (Xti-Xt-- -6)2

_ e 2H2 
(as) 1_ i=1

'f the drift were instead p + 0 then density is obtained replacing t by A + 0 above.

Thus, the density is given by:

e l2%- ~'~I (Xtl -Xti _l -#6)2-(Xq -Xti-_ 1 -(~+8)5)7

After some algebra, we have that the density is given by:

(t) = e;(Xt-A- (A.6)

= Ve (t).

Where V(t) is Wald martingale defined in property (5). We can compute the distri-

bution of Mt for the case of u $ 0 as follows (we start with a = 1):

P, (Mt > x) = Eo(V (t); Mt > x)

=1-~ J I( )__ - ).

Finally, for the general case (, a), we can rescale the probability measure to obtain:

P(M < x) = 4 ( c/ } - e 2 ) (A.7)

which is called the inverse Gaussian distribution.

A.2.4 Some Extensions

In this subsection, we present some additional results concerning Brownian motions.

The first important extensions is related to the initial condition X0 . Before, we have
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impose the restriction that Xo = 0 w.p.1. We now turn to the general case Xo = x

w.p.1, where x is any real number. In order to make explicit this new value of the

initial state, we introduce the notation Px to refer to the probability measure that

satisfies Px(Xo = x) = 1 (the same is valid for E,; the expected value operator under

P).
A first important result is related to the way we represent Brownian motions

(BM). Of course, we have already given a concrete definition of a BM, however, let

look at an alternative representation. We know that Xt+s - Xt has a N(YIs, a2 s)

distribution. Thus, the transition density

p(t,x,y)dy _ P(Xt E dy) = - Y-- A t )dy

satisfies the following differential equation:

a P(t ,Y) = a22 + p(t,x,y),

with initial condition

P(, y) = OX(- Y) {1 if y = x,
- y) = otherwise.

The differential equation above characterizes BM and is called Kolmogorov 's backward

equation. If instead of differentiating with respect to the initial state x, we differentiate

with respect y, the final state, we get the Kolmogorov's forward equation

p (t ,x, y) -1 a p2 y_ a P(t, ).
Ot-~ 2 aOy 2

1a

In the special case when /u = 0, the previous equation reduces to the traditional heat

equation (or diffusion equation), for this reason Brownian motion are usually called

diffusion processes.

Another important extension is the Hitting Time problem. That is, the problem

of determining the first time when the process reaches a predefined state. Let define

T(y) = inf{t > 0 : Xt = y, i.e., the first time at which X reaches the value y.

Suppose that the process start at x > 0 and let 0 < x < b. Then, we are interested

in finding the distribution of T - T(O) A T(b). A first step is the following result:
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Property 8

E,(T) < o, O < x < b.

The proof is based on the martingale stopping theorem, that is

Theorem 4 Martingale Stopping Theorem
Let T be a stopping time and X a martingale (with right-continuous sample paths)

on certain filtered probability space. Then the stopped process {X(t A T), t > 0 is
also a martingale.

Thus, if we apply this result to Aft = Xt - t, , hich is clearly a martingale, we
have that:

E.(M(T A t)) = E.(M(O)) = x.

But E(M(T A t)) = E(X(T A t)) - ME(T A t). Thus, for IL $ 0, the result in
(8) follows directly. For the case, /u = 0, we have to apply the martingale stopping
theorem to the martingale X2 -a 2 t.

Let us now recall Wald martingale introduced in property (5), that is, V(t) 
e6Xt - q()t where the function q(-) is given by q(0) = MO + A. Now, it can be shown

that

E (V(T)) = E.(Vf(O)) = e, 0 < < b.

Therefore, we have the following decomposition:

el = E.(V# (T); XT = O) + E.(V(T); XT = b),

= Vp*(xIq(3)) + ebp*(xlq(,)), (A.8)

where 0*(xlA)-- E(e-AT; XT = 0) and *p*(XIA) - E(e-AT; XT = b). Solving the
equation q( 3) = A, we get:

,(A) = p + '/ p2 + 2aA > 0; *(A) = 2 0.

Thus, combining this result and (A.8), we get the following system of equation:

,e-O(-)\ = *(xlA) + e-(A)b*(XjIA),

e-'(A)x = 4'*(xz) + e-I(A)b+*(xlA).

The solution of this system gives the following result.
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Property 9 Let A > 0 be fixed. For 0 < x < b,

(x*(x, A) - (x, A)0*(0, A)
1 - (b,X)O*(0, X)

A (x, A)-0* (x, X)0* (b, A)
1 - 0o (b, A)0*(O, A)

0*(, A) = e - ( : ),

0*(x,A) = e' ( )(b- )

Finally, from the previous result, we can obtain the distribution (or more precisely
the Laplace transform) of T.

Proposition 20 Let * and ,0 be defined as above. Then,

Ex(e -T(O);T(0) < oo) = B,(x,A) ; E(e-T(b);T(b) < oc) = 0*(x,A), 0 < x b.

In addition, if p = 0 then Px(XT = b)= Otherwise,

PS(XTob) = e h(e ; t(z) b e , tO < s e < b.

So far, we have presented the basic properties associated to Brownian motions.
We would like next to present the applications of BM to queueing theory. However,

in order to extend these results to queueing systems, we require some additional

background, in particular, the notion of Regulated Brownian Motion (RBM) is fun-
damental. It turns out that the analysis of RBM is much easier if we use results from

Stochastic Calculus. For this reason, we postpone the study of RBM and we present
in next section the basic elements of Stochastic Calculus.

A.3 Stochastic Calculus

The main goals of this section is to present It6's lemma and the use of stochastic

differential equations as important tools for modelling stochastic processes. We start
the analysis introducing heuristically It 's Stochastic differential equation.
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A.3.1 Motivation

It is a common practice when modelling physical systems to express the dynamics of

the system, i.e., its evolution over time through a difference or differential equation.

For example, when describing the position (y(t)) of a certain object at time t, we

might use the relation

dy(t) = v(t)
dt

where v(t) is the instantaneous velocity of the object at time t. In general, differential

equations have been used extensively in science, and probably one of their biggest

advantages is that they are able to capture the essence of the physical system with-

out incorporating the natural and necessary difficulties that are imposed by border

conditions.

Let us now look at the "general" (deterministic) differential equation:

dx(t)
dt f(t, (t)).dt

Solving this equation is an old problem in mathematics, and it is not the purpose of

this note to go into the details of how to solve it. We would like, however, to introduce

some type of uncertainty into the model. One easy way of doing this is to use the

traditional trick used by econometricians, that is, to simply add an stochastic term to

the above relation. In order to do that, we proceed as follows. We first approximate

the dynamics by:

x(t + At) - x(t) = f(t, x(t))At + o(At),

where o(t) is function such that t-1 o(t) - 0 as t - 0. If we assume now that

uncertainty can be model by an stochastic process v(t) that we simply add in to the

dynamics of the system, we have:

x(t + At) - x(t) = f(t, x(t))At + v(t + A) - v(t) + o(At).

In particular, we might think on this uncertainty as being the sum of independent

and small perturbations. Thus, a reasonable model is to suppose that

v(t + A) - v(t) = a(t, x(t))(z(t + At) - z(t)),

where z(t) is Wiener process and a accounts for the variance of v. We can then
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rewrite the dynamics of the system as follows:

dx = f(t, x)dt + a(t, x)dz,

which is called It6's stochastic differential equation. Notice that we can note divide

by dt above since z is nowhere differentiable.

A.3.2 Stochastic Integration

Since the Wiener process is nowhere differentiable, It6's differential equation does not

have a clear meaning per-se. In this subsection, we will give it one, which is based on

the notion of stochastic integral. The idea is the following, we use the notion:

dx = f(t, x)dt + a(t, x)dz,

as a shorthand for

x(t) = x(O) + f(s, r(s))ds +/ j (s, x(s))dz(s).

The first integral in the right-hand side is understood in the usual Riemann sense.

The second integral, however, does not have a clear meaning for the reasons that we

have already mentioned. Let us then focus in the following stochastic process:

It(X) Xs dW, t > 0, (A.9)

that we called the stochastic integral. Here X is any stochastic process and W is a

wiener process. Stochastic integration was first presented by It6 (1944) and extended

later by Doob (1953). Here, we will not go into the formal details behind the theory

of stochastic integration. We will rather give a more simpler and intuitive analysis.

From traditional calculus, we know that if a function is relatively well-behaved in

the interval [0, t] (i.e., it is integrable), then we can approximate the value of

I = ff(s)ds,

as follows. We first introduce a sequence of partitions {P, : n > 1} where Pn = {ti

O < i < n} is a partition of the interval [O, t], i.e., 0 = to < t < .. < t = t. We

denote by IIPn[l = ma{ti - ti_ : 1 < i < n}. Then, if lim,,o IIPnll = 0, we have
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Simple Process

Xt(o)

I I
I I

I I

to tI t2 t3 t

Figure A.2: Simple process.

that

I = lim E f(i)(ti+l - ti),
tiEP

where i E [ti,ti+l]. In particular, ~i = ti or i = ti+l does not make much differ-

ence for deterministic real-valued function. This analysis is exactly the one that we
will apply to compute stochastic integral, however, the analysis requires some extra
attention.

We first introduce a special class of stochastic processes that we call simple. A
process X is simple if there exist a sequence of times {tk} such that

O= to < tl < -- <tk -+ 00

and

X(t,w) = X(tk-,w), Vt E [tk-l,tk) k = 1,2,.

We notice that the sequence {tk} is independent of w. Given the special form of
simple processes, it is possible to give a clear definition of the stochastic integral in
this case. In fact, if X is simple, then

t n-1
I(X) = foX dW = E X(tk)[W(tk+l) - W(tk)],

k=O

l_ I 
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where to = 0 and t, = t. The importance of simple processes is not only that we are

able to compute easily their integrals but also that they can be use to approximate

other more complex processes. That is,

Property 10 Let consider the stochastic process X E H2 , i.e.,

E [oX2(s) ds] < o, Vt > O.

Then, there exists a sequence of simple processes {Xn} E H 2 such that

Xn •=,n X.

Moreover, the value of It(X) can be obtained from the fact that

It(,Yn) =n It(X).

Let define the norm I1 t in H 2 as follows:

IIXII = E [X2(s) ds]

Then we have the following result

Proposition 21 Let X E H2 , then E[It(X)] = 0 and IIt(X)II = IIXII.

Example:

Let consider the case when X = W, it is not hard to show that W e H 2, moreover,

IIWII = . Now, in order to compute I(W) we introduce the simple processes

Xn(s) = W E [2nk 2 1)

Let define tk = kt. Then, for these simple processes we have:

2n-1

It(Xn) = E W(tk)[W(tk+l) - W(tk)]
k=O

1 2-1 1 2n-1
= 2 A [W (tk+)- W2(tk)]- E [W(tk+l)- W(tk)]2

k=O2 k=O
1 W2(t) n1 12-1]
-2 E [W(tk+l)- W(tk)].

k=O
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But in equation (A.1), we saw that the summation above converges to t. Therefore,
we conclude that:

It(W) WdW = 1W2(t) _ (A. 10)

A.3.3 It6's Lemma

In this section, we define the notion of stochastic differential and state aad prove It6's
lemma which is the fundamental rule for computing stochastic differentials.

We start by defining some notation. As usual, we consider a probability space

(,3r,P), a Wiener process W(t,w), a pirocess Y(t,w) that is jointly measurable in
t and w with respect to Ft, is adapted and satisfies fT IY(t,w)ldt < oo w.p.1. We
also consider a process X that is non-anticipating on [0, T]. We say that Z is an It6

process if it has the following functional form:

Z(t, w) = Z(, w) + X(s, w)dW(s, w) + j Y(s, w)ds. (A.11)
o fo

The first integral in the right-hand side is call the Brownian component of Z and

it has to be computed according to the analysis that we did in the previous section.
The second integral is called the drift component (or VF component) of Z and it is
evaluated in the usual Reimann sense. Instead of using (A.11) to represent Z, we say

that Z has an It6 differential (or stochastic differential) dZ given by:

dZ = XdW + Ydt.

Proposition 22 (It6's Lemma)

Let u(t, x) be a continuous non-random function with continuous partial derivates

ut, u, and ux. Suppose that Z is a process with stochastic differential dZ = XdW +

Ydt. Let define the process V(t) = u(t, Z(t)), then V has a stochastic differential

given by:

dV - u(t, Z) + 9 u(t, Z)Y + a2 (t, Z)X 2 dt + u(t, Z)XdW. (A.12)cV =[ ~ud, Z ) + u(t, Z) + - -2 t,

(The proof of the Lemma uses a second order Taylor expansion of the function u(t, x).)

Let us take a look at It6's lemma in a particular case. Let suppose that u(t, Z) =
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f(Z), for some twice continuously differentiable function f. Then (A.12) implies:

df(Z) = [f'(Z)Y + 2f (z)x2] dt + f'(Z)XdW.

Rearranging terms we get:

df(Z) = f'(Z) [Ydt + XdW] + -f"(Z)X 2 dt

= f'(z)dz + -f"(Z)(dZ) 2 . (A.13)

Relation (A.13) is a simplify way of expressing It6's lemma and uses the convention

(dZ)2 = (Ydt+XdW) 2 = X 2 dt. The idea is that in differential terms only (dW)2 $ 0

this is consistent with our finding in (A.1) about the quadratic variation of Wiener

processes. Let notice that for ordinary differentials df(Z) = f'(Z)dZ, thus the second

term in (A.13) is the main difference for stochastic differential that, as we have already

mentioned, reflects the infinite variation of Brownian paths.

Example:

Suppose that V(t) = e(t) where X satisfies

dX = -adt + 3dW,

and X(O) = 0. Applying It6's lemma we have:

dV = [- + v] dt + ,VdW,

= 2 v -] dt+dw ).

That is, V is a geometric Brownian motion. In order to solve the stochastic differential

above, we introduce the following change of variable:

A = ln(V).

Then, using It6's lemma we get:

1 1
dA = dV (dV)2

[] [2V2

[21
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Thus, replacing [1] by [- a ]dt + dW and [2] by /21/V 2 dt we get:

2 / 2dA = ( - )dt +/3dW - .2dt,
2 2
1 32

= ( -- - )dt + dW.2 2

This linear differential implies A(t) = (- - )t + 6W(t). Finally, combining this

result and the transformation A = In(V) we conclude:

V(t) = e 22)t+ Ow(t)

We finish this section with an important result about the existence of solutions for

stochastic differential.

Theorem 5 Let consider the It6 process Z defined through the following stochastic

differential:

dZ(t) = f(t, Z(t))dt + g(t, Z(t))dW(t),

with initial condition Z(O, w)= c(w) = c. If

1. f and g are both measurable with respect to all their arguments,

2. There exists a constant K > 0 such that

If(t,x) - f(t, y)I + g(t, x) - g(t, y)l < Klx - yl,

If(t,x)12 + g1(t,x)I 2 < K 2(1 + IxI2),

3. The initial condition Z(O, w) does not depend on W(t) and E[Z(O, W)2] < 00.

Then, there exists a solution Z(t) satisfying the initial condition which is unique

w.p.1, has continuous paths and suptE[Z(t)2] < oo.

A.4 Regulated Brownian Motion

So far we have study Brownian motion and other stochastic processes trying to un-

derstand how they behave and which are they main properties. In this section, we

will develop the concept of Regulated Brownian Motion (RBM) that is a stochastic
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process build from an Brownian motion and a set of constraints that we will impose

to ensure certain desired behavior. In particular, we will be looking at two types of

constraints (i) we would like to impose that the process never goes below 0 (one-sided

regulator), and (ii) we would like that the process evolves only inside the interval [0, b]

for some b > 0 (two-sided regulator).

A.4.1 One-Sided Regulator

Let x E C[O, oo) be a continuous function on [0, oo). Suppose that we are interested

in constructing a new function y E C[O, oo) such that y is as similar as x as possible

but y satisfies the condition y(t) > 0, Vt E [0, oo). In order to do this, we introduce

two mappings X, : C -+ C defined as follows

l't (x) = sup {x- (s)}, (A.14)
O<s<t

Ot(x) = x(t) + t(z), (A.15)

where z- = max(O, -x). The pair (, 0) is called one-sided regulator with lower

barrier at zero. The function y that we were looking for is in fact given by y = (x),

and the next proposition makes this fact explicit.

Proposition 23 Suppose that x e C and x(O) > O. Then +(x) is the unique function

1 such that:

1. 1 is continuous and increasing with 1(0) = 0,

2. y(t) = x(t) + I(t) _ O for all t > O0 and

3. 1 increases only when y = 0.

Figure A.3 plots the behavior of the one-sided regulator when applied to an arbi-

trary function x(t). We might think of 4'(t) = (t) (the step function in the figure) as

the cumulative amount of control used by an observer of the sample path of x up to

time t. The observer wants to increase I fast enough to keep y = x + I positive but

using as little control as possible.
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One-Sided Regulator

Figure A.3: The one-sided regulator.

A.4.2 The Two-Sided Regulator

Let us now consider the case when we wish to keep a process within the interval [0, b]

for some b > 0. We can view the previous case (one-sided regulator) as a special case

with b= oo.

Let x E C[O, o) be a continuous function such that x(0) E [0, b]. If we mimic the

approach that we took in the case of the one-sided regulator, we are interested in a

pair of function (1, u) such that

1. 1 and u are continuous, increasing and (0) = u(O) = 0,

2. y(t) = x(t) + I(t) - u(t) E [O, b] for all t > 0, and

3. 1 and u increase only when y = 0 and y = b respectively.

Using the same reasoning than before we have that

(A.16)1(t) = t(x- u) = sup (x(s) - u(s))-.
O<s<t

Similarly, we can compute u as follows:

u(t) = t(b- - ) = sup (b- x(s) - l(s))-.
O<s<t

(A.17)
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Proposition 24 For each x E C with x(O) E [0, b], their is a unique pair of continu-

ous functions (, u) satisfying (A. 16) and (A.1 7), and this same pair uniquely satisfies

points 1,2, and 3 above.

Let consider now a general (, a) Brownian motion and

Wt = (X - Xo -t),

a standard Brownian motion defined by X. Let define L and U as the two-sided

regulator for X and Z = X + L - U as the regulated Brownian motion. Let consider

a function f twice continuously differentiable. Then, applying It6's lemma, we have

Proposition 2 f(Z) is an It6 process with differential

df(Z) = af'(Z)dW + [rf(Z)dt + f'(O)dL - f'(b)dU],

where r is a differential operator such that rf -o 2 f " + f'.

The proof of the proposition is based on a direct application of It6's lemma and

the fact that L and U increase only when Z reaches one of the boundaries. Thus,

o f '(Z)dL = f f'(O)dL = f'(O)Lt.

A.5 Queueing Models

In this section we present the applications that Brownian motions have on Queueing

Theory. We start by motivating the use of diffusion models to represent queues, part

of this analysis and notation are based on the Newell (1971). After this introduction,

we will present some concrete examples and formulations.

A.5.1 Introduction

Let consider a generic queue, and let Q(t) be the queue size at time t. If Q(t) is

large enough, then after a short period of time we do not expect that queue size has

changed by more than a few customers, or in other words, we do not expect to observe

an empty system. Thus, we might try to analyze locally the behavior of Q(t) without

worrying about the border condition Q > 0. Let define f(x, t) as the density of Q(t)
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at x. Of course, for a real system Q(t) is always integer, however, we will assume

here that Q(t) is a continuous variable for obvious reasons.

Let us now introduce, in some sense, the dynamics of the system. That is, let define

f(x, t + rlxo, t) as the probability density for Q(t + r) at x given that Q(t) = x 0. This

conditional distribution completely captures the evolution of the system since

f(x,t + r) = f/ f(xt + rxo, t)f(xo, t)dxo. (A.18)

The previous relations captures the essence of the dynamics of the system and it

will be the base to obtain a differential equation that characterizes the queue. In

order to do this, we need first to work a little more on the conditional distribution

f(x, t + rIxo, t). Let A(t) be the cumulative number of arrivals to the queue up to

time t and let D(t) be the cumulative number of departures up to time t. Then we

have

Q(t + r) - Q(t) = [A(t + r) - A(t)] - [D(t + 7) - D(t)].

We can argue that for r large enough many arrivals and departures will take place

between t and t +r, then Q(t +r) -Q(t) is approximately normally distributed almost

independently of the arrival or departure processes.

It is important to mention here that in one side we would like to have T small

so that the border conditions can be omitted and on the other side we would like to

have T large so that we can approximate the conditional distribution by a normal.

This situation is not necessarily infeasible. The fact is that if we choose a sufficiently

coarse scale to measure Q(t) then it should be possible to choose r such that the

queue does not change much during this time. Thus, what we really required is that

r is negligible compared with the time required to change the queue by a significant

fraction of its normal values (a heavy traffic condition). On the other hand, we need

r to be sufficiently large so that the change in the queue is large compared with the

integer scale of counting single customers.

Let A(t) and pu(t) the arrival and service rates. Then, we can use the following

approximation:

E[Q(t + r) - Q(t)] [A(t) - (t)]r.

Similarly, we can approximate de variance of Q(t + r) - Q(t) by some function 6(t)r.

Thus, assuming normality we can find the distribution of Q(t + T) given Q(t) = xo
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by
1 (z-zo-(,(t)-It))r] 2

f(x, t + 1rxo, t) .e 26(tr

Given this particular form for the conditional distribution of the queue, we can try

to solve (A.18). In order to do that we first expand f(xo, t) in a power series. Thus,

Of(x, t) (xo - x) 2 02f(x, t)
f(xO, t) = f (, t) + (o - x) x t) +ox 2 Ox2

If we substitute this relation in (A.18) and integrate we get:

f (X, t + -r) - f , t) af(x, t)f(xXt + )- f(x, = [A(t) -(t) (t)] f( +[6(t) + (A(t) _- (t))2 ] 2 f (x t)
_ Ox 2Ox2

Thus, if we take limit as 7 - 0, we obtain the following differential equation:

Of(x, t) -f(x, t) 6(t) 2 f(x, t)
Ot O 2 O 2 (A.19)

This is exactly the Kolmogorov's forward equation (or diffusion equation) that char-

acterizes Brownian motions. Thus, for heavily loaded system, we can approximate

the behavior of the queue when it far from 0 as a BM. The drift is the difference

between the arrival and service rates, and the variance is the difference between the

variance of the arrival and service process.

Before moving to some concrete models of queueing system, we would like to

introduce a scaling transformation for (A.19). This transformation applies in the

stationary case, that is when the arrival and service process are not time dependent.

In this case (A.19) becomes

aof(, _ _f(, t) 6 a2f(X, t)

Ot = Ox 2 Ox 2

Let introduce the following transformation of units

x t
=-, t=-

L; T'

That is, queue length is measure in units of L and time in units of T. With this
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transformation, the diffusion equation becomes:

af(XtL, tT) af(xL, tT) 6 2 f (L, tT)
-[A -p] + -2

Tat- LXO 2L2 O2

If we write f(x, t) - f (L, tT) which is the distribution of Q = Q, then

f( , t_ [A - ]T f(±, 0 6T 2 f(, 0
At- L A± 2L2 9.2

Finally, if we choose L and T such that

( - A)T 6T=1, -= 
L 2L 2

we get
6 5

L= T=
-A )2'

and the diffusion equation is

of(±, t o9f(,I 0 1 2 f( t)
At =A 2 aO2

A somewhat different approach can also be used to justify the usage of Brownian
motions as a good approximation for modelling queue lengths. This approach is
commonly known as the heavy traffic approximation for reasons that will become
clear shortly. The details of this approximation are explained in the next section by
mean of an example.

A.5.2 Single-Stage Infinite Capacity Queueing Model

Let us now look at the simplest queueing model, that is a single-stage system rith

infinite capacity. In order to model this system, we make use of two stochastic
processes A = {At : t > 0} (arrival process) and D = {D : t > O} (departure
process). The value At represents the cumulative number of arrivals (or input) up to
time t and Bt represents the cumulative potential number of departures (or output)
up to time t. That is, Bt is the cumulative number of departures if we assume that
the system is never empty. For simplicity we assume that Ao = B0 = 0. Since it
is possible for the system to get empty eventually, Bt does not properly model the
output process. In order to model the real output process, we need to consider an
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additional process L = {Lt : t > O}, where Lt represents the amount of output lost up

to time t because of system emptiness. Thus, the actual departure process is B - L.

We define the auxiliary process

Xt = Xo+ At - Bt,

where Xo is the initial queue size. By the discussion of the previous subsection we

can approximate the behavior of X by a Brownian motion. We can now define the

queue size (or inventory) at time t as follows:

Zt = Xo + At- (Bt- Lt) = X + t,.

We can notice, at this point, that Lt is the one-sided regulator that keeps Zt > 0,
thus

Lt = sup X-.
O<s<t

Now in order to find the distribution of Z, we use the following identity:

Zt = Xt + sup X-
O<s<t

= sup (Xt - Xs)
O<s<t

=sup Xs,
O<s<t

where X8 = Xt - X,, 0 < s < t. But since X is a BM, we have that X is also a BM

with the same distribution of X. Thus,

Zt Mt- sup Xs.
O<s<t

In section (A.2.3) we have already determined the distribution of Mt, which is the
inverse Gaussian distribution. Therefore, if X is a (, a) Brownian motion we have:

P(Z, < ) = (z lt) - et x - t)

Finally, we can get the limiting distribution of Z by taking limit as t -- oo. Let
ZO the steady state value of the queue, then
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-e3-y ifIL<;
P(ZOO < ) = 0 if > 0.

That is, under the natural condition jp < 0 (i.e., the service rate is bigger than the
arrival rate) the limiting distribution of the one-sided regulated Brownian motion is

exponential.

The previous analysis was based on the assumption that we can approximate

Xt = Xo + At - Bt by a (, o) Brownian motion. This assumption is consistent the
arguments that we develop in the previous subsection (A.5.1), where we argue that
the BM approximation is appropriate for systems that are heavy loaded. In what
follows, we will give additional support to the use of Brownian motion under heavy
traffic condition.

We start by redefining our primitive data which are two renewal processes (arrival
and service or departure):

{At: t > 0} rate A, variance 2,

{Dt : t > 0) rate u, variance 2 .

Notice that we now use p for the service rate, which is standard notation in

queueing models. As before, At is the cumulative numbers of arrivals up to time t,
while Dt is the cumulative number of service completitions if the system were always

busy. Let Zt be the queue length at time t. We can define the cumulative busy-time

process in [0, t] (i.e., the total amount of time that the server was serving) as follows:

B(t) 1{z(s)>o}ds,

and then the inventory process is given by

Z(t) = A(t) - S(B(t)).

In order to simplify the analysis, it is convenient to redefine the arrival and de-

parture process defining their centered version. We use the same notation to avoid
excessive notation.
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With this new definitions we have that

Z(t) = A(t) - D(B(t)) + (A - M)t + (t - B(t)),

X(t) L(t)

The next step is related to a functional central limit result. We have already

presented Donsker's theorem that asserts that

SLntJ - (nt)m =

where Sn = Enl i and {(i} is a sequence of i.i.d. random variable with mean m

and variance v2. Thus, we rescale our processes as follows,

z(nt) A(nt) (nt) (nt ) t)
Zn(t) = Z An(t) = 7 Dn(t)= - Xn(t)= Ln(t)= )

and we also set

Bn(t) B(nt)

We use a fluid rather than a Brownian scaling for B for reasons that will become

clear shortly.

Given this transformation, we have that

Xn(t) = An(t) - Dn(Bn(t)) + V/(A - )t.

That is, Xn has almost the required form to apply Donsker's theorem. The only

problem is that the argument of Dn is the busy process. In order to solve this

problem, we apply the following result:

Proposition 26 (Random Time-Change Theorem)

Suppose that {Tn} is a sequence of random time changes (i.e., Tn is a process with

increasing, real-value sample paths) converging to T. If Vn = V, then VnoTn = VoT.

Bn(t) is clearly a random time change. However, it is not absolutely clear if

the sequence {Bn(t)} is weakly convergent to some limit. If we use classical queueing

results, we can argue that in order to satisfy demand and keep inventory under control,

the server must be working on average a fraction p = of the time. Thus, we use
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the following approximation

B,(t) = pt.

We are now in condition to apply Donsker's Theorem to X.(t) and argue that

Xn(t) E X*,

where X* is a (0, a) Brownian motion with drift 0 = -V(1 - p) 3 and variance
a2 = A(v + v2) (where v,,2 and v,2 are the scv for the arrival and service time). Finally,

and by construction Z, = Z* a (, a) reflected Brownian motion.

We conclude this section with the following more general result:

Proposition 27 Consider a queueing system with J arrival streams and K servers.

Suppose that the jth arrival stream has parameters Aj and vj and the kth server

has parameter Pk and v,2k. Then the total number of customers in the system is

approximated by a reflected Brownian motion with drift L and variance a2 given by

J K J K

IL= E Aj E k 1 = EA AjVaj + kE'sk,
j=1 k=1j=1 k=l

where p = .

A.5.3 Single-Stage Finite Capacity Queueing Model

If the queueing system has a maximum capacity C then the Brownian motion ap-

proximations has to consider the two-sided regulator. In this case, we say that Z(t)

(the queue size) behaves like a two-sided regulated Brownian motion in the interval

[0, C] . Thus, it can be written as

Zt = Xt + Lt - Ut

where Xt is a uncontrolled (/, a 2) Brownian motion and Lt and Ut are the lower

and upper controls respectively. This process are the minimum amount of control

3Since n is large to ensure the convergence of X,(t), we need (1 - p) to be order 1//irT to ensure
a finite value of the drift theta. This condition is known as the heavy traffic condition and also gives
the name to these type of approximations.
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necessary to use to keep Zt within [0, C]. If we call

a 2 d2 d
2 dx 2 Pdox

the infinitesimal generator of Xt then a major result is

Proposition 28 If f : [0, C] -- R is a twice continuously differentiable function then

f(Z(t)) is an Ito process with differential

df(Z) = of'(Z)dW + rf(Z) dt + f'(O) dL - f'(C) dU.

The proof can be found in chapter 5 in Harrison (1985). This result allows us to use

the whole set of tools of Stochastic Calculus. In particular, the main result (that we

present without proof) for our queueing system is the following.

Proposition 29 The steady state distribution of Z(t) is given by the following trun-

cated exponential distribution

enuz

p(Z) = vev_ 1 for all 0 < z < C,

where v = i. In addition, the average amount of control used (or the local time on

the boundaries) is

li E[R(t)] v and lim E[R(t)] _ 
t-oo t evc _ 1 t-oo t 1 - e- C '
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