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Abstract

The climate of West Africa exhibits significant variability at the time scale of decades.
The persistent drought of the past three decades is an example of such variability.
This study investigates the role of vegetation dynamics in shaping the low-frequency
variability of the climate over West Africa. A zonally symmetric, synchronously cou-
pled biosphere-atmosphere model (ZonalBAM) which includes explicit representation
of vegetation dynamics has been developed, and has been validated using observa-
tions on both the atmospheric and biospheric climate. The model is then used to

study the dynamics of the coupled biosphere-atmosphere system over West Africa.
Based on the model sensitivity to initial conditions and the resilience of the coupled

system with respect to perturbations, we demonstrate that the coupled biosphere-
atmosphere system over West Africa has multiple equilibrium states, with reversible

transitions between different equilibria. The two-way biosphere-atmosphere feedback

is a significant process in both climate persistence and climate transition.
Based on long-term climate simulations using ZonalBAM driven with the observed

sea surface temperature (SST) variations, our study shows that vegetation dynamics is

a significant process in shaping the climate variability of West Africa. The response

of the regional climate system to large-scale forcings is significantly regulated by
vegetation dynamics. The relatively slow response of vegetation to changes in the

atmosphere is a significant mechanism that acts to enhance the low-frequency rainfall

variability. Climate transitions between different equilibria act as another mechanism

contributing to the low-frequency rainfall variability - multi-decadal fluctuations can

take place as a collective reflection of climate persistence at one equilibrium and

climate transition towards another.
Vegetation dynamics seems to play an important role in the development and

persistence of the current Sahel drought. The most likely scenario for the triggering

mechanism of the Sahel drought would involve a combination of several processes

including regional changes in land cover as well as changes in the patterns of global

and regional SST distributions. However, regardless of the nature of the triggering



mechanism, the response of the natural vegetation to the atmospheric changes is the
critical process in the development and persistence of the observed drought.

Thesis Supervisor: Elfatih A. B. Eltahir
Title: Associate Professor of Civil and Environmental Engineering
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Chapter 1

Introduction

1.1 Physical Geography of West Africa

Geographically, West Africa consists of two different regions with different climates.

Rainfall increases away from the Sahara both southward and northward. The region

north of the Sahara, often referred to as North Africa, is influenced by the Mediter-

ranean climate and mid-latitude cyclones. In this study, we focus on the region south

of the Sahara, which is under the influence of the tropical climate and the West

African monsoon circulation. In the following, the term "West Africa" is used to

refer to the region between the Sahara desert (in the north) and the Atlantic coast

(in the south).

West Africa is located within the tropics, where the atmospheric circulation fea-

tures the meridional overturning known as the Hadley circulation. Driven by the

differential heating in the atmospheric surface layer, the Hadley circulation occurs

with the rising branch near the equator and descending branch over the subtropics.

This sinking motion is the main cause for the formation of the Sahara desert over

West Africa. Another important circulation in West Africa is the monsoon circu-

lation, which is driven by the differential heating between the land and the ocean.

During the summer, wind blows from the ocean to the land at the low levels, with

the returning wind towards the ocean at the high levels. The rising branch of the

monsoon circulation is located over land. The strong monsoon wind brings moist
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Figure 1-1: The horizontal wind (m/s) at 1000mb over West Africa: a) Summer
(August); b) Winter (February). Based on the climatology (1982-1994) of the NCEP
re-analysis data.

air from the ocean surface to the continent. The rising motion of the air over land

generates summer rainfall in most of West Africa. During the winter, this circulation

is reversed. Except along the coast where wind is towards the land all the time, the

low-level wind in most of West Africa blows from the interior towards the ocean in

winter, bringing with it the dry and dusty air from the desert. The subsiding branch

of the winter circulation is over land, which suppresses rainfall. This seasonal pattern

of the monsoon wind is shown in Figure 1-1, using August and February as examples.

The seasonality of the monsoon circulation causes strong seasonality of climate over

most of West Africa, marked by a wet summer and a dry winter. Moving away from

the coast, the strength of the monsoon wind decreases, and so does the length of the

rainy season. Figure 1-2 shows the rainfall seasonal cycle at 0' longitude. The length

of the rainy season decreases from more than 10 months in the coastal area to 1-2

months on the desert margin.

Topography over West Africa is remarkably flat. Most of the region lies between

the sea level and 400 meters. Therefore, the topography-induced modification to the
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Figure 1-2: Rainfall seasonal cycle at 00 longitude, based on the climatology (1982-
1994) of the NCEP re-analysis data. Unit: mm/day.

large-scale atmospheric circulation is negligible. Since the coast line in the south is

almost parallel to the equator, the West African monsoon circulation is primarily a

meridional phenomenon. Together with the meridional overturning associated with

the Hadley circulation, this favors a high degree of zonal symmetry in the climate of

West Africa. Figure 1-3 presents the spatial distribution of the annual precipitation,

air temperature and specific humidity at the 1000-mb level, as well as the downward

solar radiation at the surface. Clearly, the contour lines of these key climate variables

are oriented parallel to the coast lines. Except for the coastal region in the west and

southwest, the zonal variability of climate over West Africa is negligible. This justifies

the use of zonally symmetric models (e.g., Zheng, 1997) and zonally averaged models

(e.g., Xue and Liou, 1990) in simulating the climate of West Africa.

Climate plays the dominant role in determining the vegetation distribution in

West Africa, as it does elsewhere. Due to the high degree of zonal symmetry in

the atmospheric climate, the vegetation distribution also demonstrates significant

zonal symmetry. The gradient of vegetation is mainly along the meridional direction.

Moving away from the coast, annual rainfall decreases from over 2000 mm in the

coastal region to less than 100 mm on the desert margins (Figure 1-3a). At the same
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Figure 1-3: a) Annual accumulated precipitation; b) Annual average of the air tem-
perature at 1000mb; c) Annual average of the specific humidity at 1000mb; d) Annual
average of the downward solar radiation at the surface. Based on the climatology
(1982-1994) of the NCEP re-analysis data.
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time, the solar radiation increases northward (Figure 1-3d). In regions near the coast

where there is abundant supply of water but sunlight availability is limited, forest

is the dominant vegetation type, because trees have the advantage in the access to

sunlight due to their tall woody structure. As water availability diminishes northward,

trees would experience water stress and cannot produce enough biomass to develop

a closed canopy. As a result, the sunlight can reach the ground, which provides an

opportunity for herbaceous plants to survive. The shallow root system of grass has

immediate access to water when the rain infiltrates into the soil. Therefore, grass

becomes the dominant plant type in the north where rainfall is limited. Over all, in

West Africa, from the coast northward, vegetation changes from forest to savannah

to grassland and desert.

Within the forest region of West Africa, broad-leaf evergreen trees dominate along

the coast where there is no well-defined dry season; more northward where the vege-

tation suffers from water stress during the short dry season, the dominant plant type

is the broad-leaf drought-deciduous trees which can shed their leaves during the dry

season to conserve water. Grass is the dominant plant type not only in grassland, but

also in the savannah. As a transitional vegetation type between forest and grassland,

savannah features a mixture of trees and grass, where the grass stratum is continu-

ous but occasionally interrupted by trees and shrubs (Bourliere and Hadley, 1983).

Perennial grass is the majority grass species in West Africa, while annual grass only

constitutes a fleeting component of the ecosystem, filling the gaps when opportunity

arises (Menaut, 1983). Although the aerial parts of the perennials die out in the dry

season, their underground structures remain alive. In the beginning of the growing

season, while the perennials start from the dense underground structure, the annuals

have to start from seeds, which makes the annuals a competitively weak species. Over

the desert region in the north, moisture becomes so scarce that little vegetation can

survive. Species that survive are usually those which have developed various water

conserving techniques during the long process of evolution.
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1.2 Background and Motivation

Rainfall variability in West Africa shows remarkable spatial coherency. According

to the patterns of rainfall fluctuations, Nicholson (1980) divided West Africa into

five different zones: Guinea Coast (Nicholson and Palao, 1993), Soudano-Guinea,

Soudan, Sahel, and Sahelo-Sahara. The main direction of the boundaries between

different zones is along the latitudinal lines. Based on Nicholson's definition and

using specific latitudinal lines as the boundaries, Rowell et al. (1995) divided West

Africa into only three sub-regions: Guinea Coast (coast-10oN), Soudan (10oN-12.5oN),

and Sahel (12.5 N-17.5oN). This coarser definition eliminates the transitional zones

in Nicholson's (1980) study, and the use of latitudinal lines as the boundary makes it

easier to apply in climate modeling studies which need grid data.

Based on the Hulme (1995) rainfall data, Rowell et al. (1995) showed that the

rainfall fluctuations in the Soudan region are very similar to the Sahel region. The

rainfall time series in both regions are dominated by low-frequency variations at the

decadal time scale. The low-frequency variations in these two regions are almost per-

fectly correlated, and the two regions also share up to 50% of their high-frequency

variations. In comparison, for the Guinea Coast region, rainfall variability is domi-

nated by high-frequency components, and there is very little correlation between the

rainfall fluctuations over Guinea Coast and the regions to the north. Therefore, for

simplicity, Soudan and Sahel are treated as one homogeneous region in this study,

and are jointly referred to as the Sahel region. Figure 1-4 shows the time series for

the normalized anomaly of the annual rainfall averaged over the Sahel region (100 N-

17.50 N) during the 20th century, which features two wet periods in the 1920s-1930s

and the 1950s, and a long dry period from the late 1960s to present. The domi-

nance of the low-frequent variability in the Sahel rainfall is rather unique. No similar

phenomenon has been observed in its surrounding regions including East and South

Africa (Nicholson, 1989).

The dominance of the low-frequency variability in the Sahel rainfall (Nicholson

and Entekhabi, 1986; Nicholson and Palao, 1993; Rowell et al, 1995) is not a unique
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Figure 1-4: The normalized anomaly of the annual rainfall averaged over the entire
Sahel region, based on the Hulme rainfall data.

feature of the 20th-century climate. It is also evident in the climate of the same region

during the past several centuries (Malay, 1973,1981; Nicholson, 1981ib; Farmer and

Wigley, 1985). Figure 1-5 shows the level of the Lake Chad (located around 140 E,

13.50 N) in the past 6-7 centuries, reconstructed from the historical records presented

by Malay (1973,1981), Nicholson (1981b), and Farmer and Wigley (1985). Changes

of the lake level with time suggest that the Sahel climate tends to fluctuate between

a humid regime and an arid regime, and that the period during which the climate

persists in one specific regime is in the order of decades. This alternate occurrence of

the dry and wet spells confirms the dominance of low-frequency variability found in

the more recent rainfall data.

Another important feature of the recent climate in the Sahel region is the severe

persistent drought in the second half of the 20th century, which can be seen in Figure

1-4. After a period of rainfall surplus during the 1950s and the early 1960s, the

drought started around 1968, and has lasted for more than three decades. Compared

with the wet period in the 1950s, the current drought caused a rainfall decrease of

about 50% in the Sahel region. This severe drought caused the worst disaster in

African history. Hundreds of thousands of individuals perished in the early 1970s

alone, and millions have been displaced in order to survive (Druyan, 1989). Although
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Figure 1-5: Historical fluctuations in the level of the Lake Chad.

West Africa had experienced several similar dry events in its recent history (Figure

1-5), the severity of the current drought is unprecedented.

Although numerous studies in the past two decades have focused on the Sahel

droughts, the causes for the recurrent droughts in that region, including the current

drought, are still unclear. Understanding the mechanisms of the triggering and per-

sistence of the Sahel droughts is of great social and scientific importance. Motivated

by this, this dissertation aims at studying the physical processes and mechanisms be-

hind the observed rainfall variability over West Africa (the Sahel region in particular),

including the decadal-scale fluctuations as well as the recent Sahel drought.

1.3 Literature Review

1.3.1 Current Sahel Drought

Studies on the mechanisms of the current Sahel drought can be divided into two

general groups. One emphasizes the role of large-scale forcings; the other focuses on

the land surface feedback mechanism, a more local factor.
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Role of Large-Scale Forcings

There have been both empirical and modeling studies that emphasize the role of

large-scale factors such as changes in the atmospheric circulation and changes in the

global sea surface temperature in causing the current drought. Some of these stud-

ies investigate the mechanisms of rainfall inter-annual variability instead of directly

focusing on the drought itself.

Early studies by Bryson (1973) and Winstanley (1973) linked the rainfall variabil-

ity in West Africa with the position of the Inter-Tropical Convergence Zone (ITCZ),

and suggested that the Sahel drought may have been caused by a southward shift of

the ITCZ. However, further studies (e.g., Newell and Kidson, 1984; Nicholson, 1981a)

showed that there is no systematic southward displacement of ITCZ over West Africa.

As a distant forcing, the role of El Niio Southern Oscillation (ENSO) in the vari-

ability of the Sahel rainfall was also investigated (Nicholson and Entekhabi, 1986;

Ropelewski and Halpert, 1987; Folland et al., 1991; Janicot, 1992, 1996), but the

correlation between ENSO and rainfall in most of West Africa is relatively weak.

Lamb (1978a,b) found that the surface circulation pattern in the tropical Atlantic

can impact the rainfall over the Sahel region, and the spring SST pattern may play

an important role in determining the summer rainfall over the Sahel. This was later

confirmed by numerous other studies. For example, Hastenrath (1984) found that

rainfall anomalies in the Sahel region tend to be associated with changes in the large-

scale atmospheric and oceanic fields over the tropical Atlantic; Lough (1986) presented

a strong correlation between the Atlantic SST and the Sahel rainfall during the period

1948-1972. The importance of regional SST forcings were also indicated by modeling

studies which simulated the contrast of the Sahel rainfall between individual years

based on only the regional SST forcings in those years (e.g., Druyan and Hastenrath,

1991; Druyan, 1991). Recently, a modeling study by Zheng et al. (1999) documented

that a spring warming and/or a summer cooling in the tropical Atlantic favors a

positive anomaly of the summer rainfall over the Sahel, which may have implications

regarding the predictability of the Sahel rainfall.
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Other studies extend the region of focus beyond the Atlantic ocean. Folland et

al. (1986) found that the persistent wet and dry periods in the Sahel region are

strongly related to contrasting patterns of SST anomalies at the global scale. Using

an atmospheric general circulation model (AGCM), they showed that worldwide SST

anomalies can influence the summer rainfall over the Sahel through changes in the

tropical atmospheric circulation. Using the same AGCM, Palmer (1986) showed that

the SST patterns in the Pacific and Atlantic oceans are equally important in reducing

the rainfall over the western Sahel while the Indian ocean plays the dominant role

in the rainfall reduction over the eastern Sahel. The importance of global-scale SST

forcing found by Folland et al. (1986) and Palmer (1986) was confirmed by studies

that forced general circulation models with observed SST data for individual years

and successfully reproduced the observed anomalies of the seasonal Sahel rainfall for

those years (Folland et al, 1991; Palmer et al., 1992; Rowell et al, 1992, 1995).

Studies on large-scale forcings identified several important factors that can influ-

ence the variability of the Sahel rainfall and are therefore potentially important for

the drought occurrence. However, few systematic changes in large-scale forcings have

been documented, and no adequate explanation for the current drought has been

established.

Role of Land Cover Changes

Studies on the role of land surface feedback in the development of the Sahel drought

were motivated by the observation that West Africa has experienced intense and ex-

tensive land cover changes during the past several decades, including desertification

and deforestation. In 1975, Charney proposed his pioneering biogeophysical feedback

hypothesis: the cooling effect due to the albedo increase caused by desertification

enhances local subsidence, thus reducing precipitation, which further limits the veg-

etation growth and makes the drought self-sustaining. Following this hypothesis,

numerous modeling studies have investigated the impact of vegetation degradation

at the desert border (e.g., Charney et al., 1977; Sud and Smith, 1985; Cunnington

and Rowntree, 1986; Sud and Molod, 1988; Xue et al., 1990; Xue and Shukla, 1993;
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Xue, 1997; Zheng and Eltahir 1997, 1998). Some of the studies focus on one or two

aspects of the land surface changes associated with vegetation degradation, including

the increase in surface albedo and decrease in soil moisture and surface roughness,

while others considered the full impact of vegetation degradation. These studies sup-

port a common conclusion that desertification causes a significantly drier climate over

the sahel region. It has also been found that desertification tends to cause a di-pole

pattern of changes in the summer precipitation: a southward shift of the rain belt

takes place which causes rainfall to decrease in the Sahel region but to increase in the

south over the Guinea Coast (e.g., Xue and Shukla, 1993; Zheng and Eltahir, 1997,

1998).

In addition to the severe desertification, West Africa has also experienced intense

deforestation. Although deforestation in Amazon Basin has attracted broad atten-

tion (Dickinson and Henderson-Sellers, 1988; Henderson-Sellers et al, 1993; Lean and

Rowntree, 1993; Shukla et al, 1990; Sud et al, 1996; Zhang and Henderson-Sellers,

1996) in the past 10 years, very few studies have looked at the deforestation in trop-

ical Africa. Using NCAR CCM1 coupled with BATS, Zhang and Henderson-Sellers

(1996) showed that the replacement of rain forest in tropical Africa by grassland re-

duces local rainfall by 4%, which is negligible. On the other hand, using a zonally

symmetric model, Zheng and Eltahir (1997) showed that the West African monsoon

circulation is very sensitive to deforestation, and suggested that the extensive and in-

tense deforestation in West Africa might have significantly contributed to the current

drought.

Based on the finding that vegetation degradation can cause a drier climate in the

Sahel region, many previous studies suggested that the current Sahel drought may

have been a result of intense human activities. However, due to the lack of reliable

data on land surface conditions before the time of the drought onset, it is hard to

ascertain whether the drought was indeed anthropogenically induced. Although it is

possible that desertification might have caused the drought, it is also possible that

the land surface degradation in that region might have been a result of the drought.

In addition, West Africa had experienced several similar droughts in the past (Malay,

31



1973, 1981; Nicholson, 1981b; Farmer and Wigley, 1985), before the human activities

became a significant process that impacts the regional climate. Simply attributing

the current drought to human activities fails to look at the present climate in the

context of the long-term climate variability.

According to a recent study by Nicholson et al. (1998), although the drought

in the Sahel region still continues, there has been no progressive man-made deserti-

fication since 1980 (no data is available for earlier period). Any attempt to blame

human activities for the current drought has to address the persistence mechanism

in the Charney hypothesis, i.e., the reduced precipitation following man-made deser-

tification further limits the vegetation growth and makes the drought self-sustaining.

However, in previous studies on land surface feedback, the vegetation distribution

and vegetation perturbations are prescribed. Lack of the representation of vegetation

dynamics in previous models made it impossible to simulate the response of vegeta-

tion to the induced atmospheric climate changes. As a result, previous studies on

land cover changes, including those focusing on the region of West Africa and those

focusing the Amazon Basin, only consider a one-way feedback from vegetation to

climate. This is equivalent to assuming that all vegetation changes are permanent.

In reality, most of the anthropogenically induced vegetation changes are not fully

maintained, or not maintained at all, which allows active vegetation succession and

two-way biosphere-atmosphere interactions. For example, forest harvesting usually

takes place with a rotation cycle of several decades; farms are reclaimed by grass

or trees upon agricultural abandonment; livestocks tend to migrate when a region is

overgrazed; dense ground vegetation colonizes the land surface even in the first year

following a sweeping fire; etc. To more realistically simulate the climatic impact of

vegetation changes, climate models should take into account the response of the post-

perturbation vegetation to the induced atmospheric climate change. This requires a

model that includes an explicit representation of vegetation dynamics.
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1.3.2 Low-Frequency Rainfall Variability

Compared with the large number of studies devoted to the interannual variability of

the Sahel rainfall, fewer studies have investigated the issue of low-frequency rainfall

variability. Due to the nature of this topic, most of the previous studies relied on

statistical analysis or stochastic modeling.

Based on extensive statistical analysis, Ward (1998) found that the decadal vari-

ability of the Sahel rainfall is correlated with the variability of the north-south inter-

hemispheric gradient of the sea surface temperature and sea level pressure. However,

the shortness of the available records precludes reliable estimation of the statistical

significance of this correlation. To confirm such an association, further investigation

using general circulation models is required.

Nicholson (1989) viewed the land surface feedback as the potential factor perpet-

uating the climate condition in Sahel, and proposed that the large scale circulation

might be the trigger for the switch between the drought and wet periods: "If we

assumed that large scale factors initiate a drought and that the resultant land surface

changes reinforce the initial atmospheric forcing, the character of a given rainy season

represents the interplay of these two types of forcing. Presumably, then, a drought

would continue until an atmospheric perturbation favoring rainfall occurs and is suf-

ficiently strong to overcome the surface-imposed drought-promoting feedback". This

provides a theoretical explanation for the long-term rainfall variability over West

Africa. However, it remains to be proven whether the land surface does play such a

role, and through what mechanism.

Using a statistical-dynamical method, several previous studies (Nicolis, 1982; De-

maree and Nicolis, 1990; Rodriguez-Iturbe et al., 1991; Entekhabi et al., 1992) sug-

gested that the dominance of low-frequency variability in some climate records may

be explained if the climate system is considered as a stochastic process driven by

external forcings. Among these studies, Demaree and Nicolis (1990) focused on the

Sahel rainfall, and viewed the low-frequency rainfall variability as a series of transi-

tions between two stable states. Based on statistical analyses of the rainfall data over
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the Sahel region, they constructed a conceptual model using stochastic differential

equations and used it to successfully reproduce the statistical characteristics of the

rainfall time series. However, similar to other studies that are statistically based, the

Demaree and Nicolis theory puts little emphasis on physical mechanisms. A more

physically based study by Entekhabi et al (1992) argued that the prolonged dry or

moist behavior in some climate record is due to the nonlinear interactions between the

components of the hydrological cycle in both the land and the atmosphere. In their

study, the interaction was expressed by the soil moisture feedback in the water bal-

ance equation, which is expressed in its nonlinear differential form. Their stochastic

analysis suggested that the climate may attain a multiple number of preferred modes

with noise-induced transitions between the modes. This study supports Nicholson's

(1989) view that land surface feedback may have caused the persistence of the Sahel

climate. However, the land surface property responsible for this feedback is the soil

moisture, which dries out in arid regions during the dry season regardless of how dry

or how wet the previous rainy season might be. Therefore, the physical feedback

mechanism of Entekhabi et al (1992) only takes effect at the seasonal time scale, not

the multiple-year time scale.

For the land surface feedback to act as an effective mechanism of climate persis-

tence, the surface property responsible for the feedback must have a "memory" long

enough to carry the rainfall information from one year to the next. While soil mois-

ture in general only has seasonal "memory", vegetation may maintain multiple-year

"memory". This is obvious over the forest region since the canopy of trees is sup-

ported by the "year-to-year" accumulated woody structure. Over grassland region,

as discussed in section 1.1, perennial grass is the dominant plant species. Although

the aerial part of perennial grass shows strong seasonality, it has perennating under-

ground structure which accumulates from year to year. Therefore, vegetation may

have played a significant role in causing the observed climate persistence. This role

has not yet been addressed due to the lack of representation of vegetation dynamics

in previous models.
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1.3.3 Two-way Biosphere-Atmosphere Interactions

The literature reviews in the previous two sections suggest that two-way biosphere-

atmosphere interactions and vegetation dynamics may be the key towards a better

understanding on the recent climate variability over the Sahel region. The role of veg-

etation dynamics has also been highlighted in studies of paleo-climatology in West

Africa. For example, Kutzbach et al (1996a) simulated the middle-Holocene (6000

years BP) "climate optimum" in West Africa, and found that changes in the orbital

forcing ("R") alone can only account for 40% of the observed rainfall difference be-

tween the middle Holocene and the present. The incorporation of paleo-vegetation

and the associated soil texture difference ("RVS") brings the model simulation and

the observations of paleo-climate into closer agreement. Then, the rainfall simulations

are used to force a biome model. The results show that the vegetation simulated with

"RVS" is in a better agreement with paleo-vegetation than that simulated with "R",

which means, the vegetation/soil changes during the middle Holocene have increased

rainfall sufficiently to be self-maintaining. Kutzbach et al. (1996a) strongly suggested

that climate models need to incorporate the two-way biosphere-atmosphere interac-

tions, and to include the biospheric processes involving both vegetation and soils.

A similar conclusion was reached by several other studies (e.g., Foley et al., 1994;

Kutzbach et al., 1996).

Among early studies on the two-way biosphere-atmosphere interactions are those

by Gutman (1984 a,b; 1986). Gutman (1984 a,b) used the dryness index D (which

is a function of the net radiation and precipitation) to parameterize the vegetation

condition, and defined the water availability (which determines the latent heat flux)

as a function of D, thus coupling the geobotanic state with the atmospheric climate.

Using the two-way interactions described above with a zonally averaged annual steady

state climate model, Gutman (1984 a) produced a long-term climate and vegetation

state which agreed well with observations. However, in the deforestation and deser-

tification (Gutman, 1984 b) experiments, he assumed a prescribed perturbation over

certain regions while allowing two-way feedback in the unperturbed region. The rea-
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son for making that assumption is the fact that this simple scheme can not simulate

the transient geo-botanic change. In a later study, Gutman (1986) suggested a possi-

ble way to simulate the transient geobotanic process, which assumes that the speed

of geobotanic changes is equal to the difference between the current geobotanic state

and the equilibrium geobotanic state normalized by the related time scale. However,
"much work is needed on investigating these time scales" (Gutman, 1986). The tran-

sient changes of vegetation were also considered by Protopapas and Bras (1988) in

their hydrological modeling of soil-crop-climate interactions, but at the seasonal time

scale.

As biospheric modeling achieved greater sophistication, more studies focused on

the two-way biosphere-atmosphere interactions. Claussen (1994) coupled the equilib-

rium vegetation model BIOME (Prentice et al., 1992) with the global climate model

of the Max-Planck-Institute for Meteorology, ECHAM. The coupling between these

two models is asynchronous: the monthly means of atmospheric forcings are produced

from several years of integration with ECHAM; based on these data, BIOME predicts

the global distribution of biomes, which then provides a new set of surface param-

eters for the subsequent ECHAM integration. This iteration is repeated until an

equilibrium between the two models is established. In an effort to address the Sahel

drought and desert dynamics, Claussen (1997) examined the sensitivity of the asyn-

chronously coupled ECHAM-BIOME model to initial land surface conditions, and

found two equilibrium solutions in North Africa and Central East Asia depending on

the initial conditions. The present-day solution is associated with the present-day dis-

tribution of vegetation, while the anomalous solution features a significant northward

expansion of the savannah and grassland which results in a "green Sahara". Claussen

questioned whether the existence of two solutions is realistic. This is because the

ECHAM-BIOME merely predicts equilibrium vegetation and cannot deal with tran-

sient vegetation dynamics. Hence the model does not tell how the vegetation grows

into desert. If such an "intrusion" is unlikely to happen under present-day conditions,

the anomalous state will not occur in reality and therefore will be irrelevant to the

climate variability in West Africa.
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The asynchronous coupling approach was also taken by Texier et al. (1997) who

coupled BIOME to the LMD AGCM in a paleo-climate study. They explored the

role of vegetation-climate interactions in the model's response to the mid-Holocene

(6000 years BP) orbital forcing, and found that the inclusion of two-way interactions

improved the qualitative agreement between the model simulation and the 6000 yr BP

observational data derived from pollen and macrofossil evidence. The mid-Holocene

climate in North Africa was significantly wetter than today, and some moisture-

demanding vegetation types once existed in the now-arid region. With the mid-

Holocene orbital forcing alone, Texier et al.'s simulation for North Africa was wetter

and greener than today's condition, but not wet enough compared with the Holocene

climate. The two-way vegetation-climate feedback was found to enhance the orbitally

induced precipitation increase in North Africa by more than 100% and bring the model

closer to observations.

Compared to those with prescribed vegetation, studies such as Claussen's (1994,

1997) and Texier et al.'s (1997) are more realistic. However, due to the use of equilib-

rium vegetation model and the asynchronous coupling between the biosphere and the

atmosphere, these studies still could not simulate the transient vegetation dynamics.

In order to simulate the synchronous coupling between the biosphere and the atmo-

sphere, there is a need for a special type of biospheric models. Such models must be

detailed enough to include the key biospheric processes, but at the same time simple

enough to only include large-scale descriptions. For example, vegetation should be

described at the scale of the overall canopy structure instead of at the scale of a single

tree. The Integrated BIosphere Simulator (IBIS) (Foley et al., 1996) is the first of

this new generation of models. IBIS integrates a wide range of terrestrial phenomena,

including the biophysical, physiological, and ecosystem dynamical processes, into a

single, physically consistent simulator that can be directly coupled to atmospheric

models. Foley et al. (1998) coupled IBIS with the AGCM GENESIS, and tested the

model's performance in simulating the current climate conditions. The synchronously

coupled IBIS-GENESIS correctly simulated the basic zonal distribution of tempera-

ture and precipitation, and roughly captured the general distribution of forests and
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grasslands. Recently, Levis et al. (1999) used the fully coupled IBIS-GENESIS to

examine the potential effects of changes in vegetation cover on simulations of C02-

induced climate change, and demonstrated that vegetation feedbacks are potentially

significant and must be included in assessments of anthropogenic climate change.

1.4 Research Objectives

The main objective of this dissertation is to elucidate the mechanisms of the cli-

mate variability over the Sahel region, which include the dominance of low-frequency

variability and the persistence of the Sahel drought in the second half of the 20th

century.

The uniqueness of the low-frequency variability in the Sahel region suggests that

the land surface feedback in that region, a local factor, instead of the large-scale

forcings, may play a more important role in the persistence of the Sahel climate.

As discussed in Section 1.3.2, vegetation cover can have a multi-year "memory",

which provides a potential mechanism through which the land surface feedback may

regulate the variability of the regional climate. The recent advances in modeling the

synchronous coupling between the biosphere and the atmosphere makes it possible to

thoroughly investigate the vegetation feedback mechanism, and to study the climatic

impact of vegetation changes within the scope of a natural, dynamic ecosystem. In

this study, the role of vegetation dynamics in the climate variability of West Africa

will be investigated using the numerical modeling approach. First, a synchronously

coupled biosphere-atmosphere model will be developed to simulate the climate system

over West Africa. The coupled model will then be used to address the following topics:

1. The nature and stability of the regional climate equilibrium (equilibria) over

West Africa.

2. The role of vegetation dynamics in shaping the natural variability, low-frequency

variability in particular, of the regional climate over West Africa.

3. The role of vegetation dynamics in the triggering and persistence of the current

Sahel drought.
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1.5 Thesis Structure

The main body of this thesis has two parts. In Part I, a zonally symmetric, syn-

chronously coupled biosphere-atmosphere model (ZonalBAM) is developed to simu-

late the climate system over West Africa, and extensive model testings are carried

out; in Part II, the newly developed model is used to study the two-way biosphere-

atmosphere interactions over West Africa and to interpret the observed climate vari-

ability in the Sahel region.

Part I includes three chapters. Chapter 2 focuses on the model development. A

zonally symmetric atmospheric model on the West African climate is developed, and

is synchronously coupled to the fully dynamic biospheric model IBIS. Each component

of the atmospheric model and the biospheric model is described, and modifications

made to IBIS are presented. Chapter 3 presents the model validation. First, the at-

mospheric model and the biospheric model are separately tested against observations.

The performance of the fully coupled model (ZonalBAM) is then examined. In the

model development, a canopy interception scheme has been incorporated into IBIS

to account for the impact of rainfall sub-grid variability. The importance of incorpo-

rating this sub-grid variability is demonstrated in Chapter 4 using West Africa as a

case study.

Part II includes four chapters. Chapter 5 focuses on the response of the coupled

biosphere-atmosphere system in West Africa to non-permanent vegetation perturba-

tions. Emphasizing the role of vegetation dynamics, theoretical analyses lead to a

hypothesis that the coupled biosphere-atmosphere system may have multiple equilib-

ria states, with reversible transitions between different equilibria. This hypothesis is

tested using ZonalBAM based on both the model sensitivity to initial conditions and

the resilience of the coupled system with respect to vegetation perturbations. Both

the existence of multiple climate equilibria and the possibility of climate transition

are demonstrated. Chapter 6 investigates the response of the coupled biosphere-

atmosphere system to continuously varying large-scale forcings (SST variations), and

examined the multiple-equilibrium behavior of the system in a more realistic scenario.
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Based on these, mechanisms of low-frequency rainfall variability are then explored and

the role of vegetation dynamics is addressed. Chapter 7 explores the possible mecha-

nisms for the triggering and persistence of the current Sahel drought. Two triggering

mechanisms, human activities and large-scale forcings, are considered, and vegetation

dynamics is seen to play a dominant role in both. This chapter also demonstrates how

the coupled system responds to man-maintained land cover changes, and the role of

vegetation dynamics in the case of permanent vegetation changes. Finally, Chapter

8 summarizes the main results and conclusions of this dissertation.
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Part I

Modeling the Coupled

Biosphere-Atmosphere System
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Part I focuses on the development and validation of a coupled biosphere-

atmosphere model (ZonalBAM). A zonally symmetric atmospheric model

is synchronously coupled with a biospheric model that includes explicit

representation of vegetation dynamics. Therefore, the coupled model sim-

ulates not only the transient atmospheric climate but also the associated

transient vegetation. Chapter 2 presents the development of the cou-

pled model, and describes each component of the zonally symmetric at-

mospheric submodel as well as the fully dynamic biospheric submodel.

Chapter 3 examines the model's performance in simulating the biospheric

climate, the atmospheric climate, and the coupled biosphere-atmosphere

system. In the model development, a canopy interception scheme has been

incorporated into IBIS to account for the rainfall sub-grid variability. The

importance of doing so is demonstrated in Chapter 4 using West Africa as

a case study.
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Chapter 2

Model Development

2.1 Introduction

As reviewed in Chapter 1, the recent advances in modeling the synchronous coupling

between the biosphere and the atmosphere make it possible to pursue studies on the

climatic impact of land cover changes within the scope of a natural, dynamic ecosys-

tem. We are interested in how the biosphere and the atmosphere as a synchronously

coupled system respond to non-permanent vegetation perturbations over West Africa,

and what role the vegetation dynamics play in the climate variability over that re-

gion. Due to the slow nature of vegetation growth and decay, the time scale associated

with ecosystem dynamics is at the order of decades or centuries. To better serve our

research purpose, we develop a zonally symmetric biosphere-atmosphere model (Zon-

alBAM) to simulate the synchronously coupled biosphere-atmosphere system, which

is computationally more efficient than a model of the same kind that accounts for the

zonal asymmetry. As documented by Zheng and Eltahir (1998), the observed climatic

conditions justify the assumption of zonal symmetry in West Africa.

The newly developed model simulates the coupled biosphere-atmosphere system

over West Africa including ecosystem dynamics. It combines a zonally symmetric

atmospheric model and a fully dynamic biospheric model, which will be described in

the following.
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2.2 The Atmospheric Model

The development of the atmospheric model started from the framework of the zonally

symmetric atmospheric model of Zheng (1997) (hereafter, "the Zheng model"), which

has been used in several previous studies (Zheng and Eltahir, 1997, 1998; Zheng, 1998;

Zheng et al., 1999).

For atmospheric dynamics, the Zheng (1997) model follows Plumb and Hou (1992).

It uses z = -Hln- (log-pressure) as the vertical coordinate and y = asin# as the

meridional coordinate. Here H is a reference scale height (8km is used), p the pressure,

ps the reference pressure (usually taken as 1000mb), a the earth radius, and # the

latitude. In the meridional direction, the model domain covers the whole globe,

with a uniform resolution in y axis. The land-ocean boundary is set at 6'N, with

land in the north and ocean in the south. Sea surface temperature is prescribed

according to observations. In the vertical direction, the Zheng (1997) model assumes

uniform resolution with respect to height. We modified the numerical scheme for the

atmospheric dynamics so that the model can have a non-uniform vertical resolution

with respect to height (usually finer for low levels and coarser for upper levels), which

adds to the computational efficiency of the model.

For atmospheric physics, the Zheng model used the radiation scheme by Chou

(1992) and Chou et al. (1991), and the convection scheme by Emanuel (1991) (ver-

sion 2.02). Our new model uses the same radiation scheme. We also use Emanuel's

convection scheme, but a recently updated version CONVECT4.1 (personal commu-

nication). Here our model development focuses on the representation of additional

physical processes, including atmospheric boundary layer processes and the cloud-

radiation feedback, which were not simulated in the Zheng model.

The atmospheric boundary layer is defined as the portion of the atmosphere di-

rectly influenced by the land surface. The free atmosphere "feels" the existence of

the surface through the growth and decay of the boundary layer. It is the boundary

layer that directly responds to land surface forcings. Therefore, to correctly simulate

the biosphere-atmosphere interactions, a boundary layer scheme which describes the
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boundary layer processes is incorporated into the new model.

Clouds cover more than half of the global surface. The presence of clouds signifi-

cantly impacts the radiation budget of the earth-atmosphere system, thus modifying

the atmospheric profile which then feeds back to influence the cloud formation, i.e.,

cloud-radiation feedback. For the biosphere, clouds reflect the incoming solar radia-

tion thus reducing the photosynthetically active radiation at the land surface, which

retards the vegetation growth. To account for these mechanisms, a cloud parame-

terization scheme is developed and incorporated into the new model to predict the

cloudiness.

The components of the atmospheric model will be described in the following, with

more detail given to those new components that were not represented in the Zheng

model.

2.2.1 Atmospheric Dynamics

The framework of the model dynamics is same as in the Zheng (1997) model, which is

based on Plumb and Hou (1992). The momentum equations, the hydrostatic approx-

imation, the air mass conservation equation, the thermodynamic energy equation,

and the water conservation equation of the meridional circulation in the log-pressure

system can be written as follows:

U-fV=AU+DU+FU (2.1)
at

+ fU =AV +DV +FV - cos2<p (2.2)
at ay

a 9
T = M 2 () = ( + -)T (2.3)

az 2H

av -M(W) = - _)W (2.4)
ay az 2H
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09T 2W2 R
+N2 W =AT+DT+e 2H -Qd+FT (2.5)

at H

= AQ + DQ + e-±6 Sq+ FQ (2.6)

where

RT*
(U, V, W, , T, Q) = (ucos#, vcos#, w 4D, RH ' '

In the above, u, v, w are the three velocity components, <b is the geopotential, T*

is the departure of temperature from a reference state, and q is the specific humid-

ity. Parameters and constants include the Coriolis parameter f, latitude #, the gas

constant for dry air R, a reference height scale H, and a reference pressure Ps.

In Eqs. 2.1-2.6, AU, AV, AT, AQ are the advective terms of U, V, T, Q, which can

be expressed as follows:

_ a
AU = -e 2H {-(VU) + -(WU)}, (2.7)ay az

AV = -e-2H U2 y (2.8)
a2 cos2g'

AT = -e-2{ (VT) + -(WT)}, (2.9)ay az

_ a a
AQ = -e-2 { (VQ) + (WQ)}. (2.10)

ay az

DU, DV, DT, DQ in Eqs. 2.1-2.6 are diffusive terms. Different from the Zheng model

which included the diffusive terms to suppress the numerical instabilities, the diffusive

terms in this model are associated with the physical diffusion process, which will be

explicitly described in the boundary layer scheme. FU, FV designate the zonal and

meridional components of drag owing to small-scale eddies and surface momentum

flux. FT, FQ are the surface fluxes of sensible heat and water vapor, which will be
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supplied by the biospheric model. Qd is the total diabatic heating which includes

the radiative cooling, heating due to moist convection, and heating due to large-scale

condensation. Sq is the total water vapor source/sink caused by moist convection and

large-scale condensation.

2.2.2 Radiation Scheme

The model uses the radiation parameterization scheme developed by Chou (1986)

and Chou et al. (1990). It computes the infrared and solar radiation fluxes at

different absorption bands (or spectral regions), and derives the overall solar heating

and thermal cooling rates in the atmosphere. For the infra-red radiation, this scheme

considers the radiative emission in different H 2 0 bands, C02 bands, and 03 bands, as

well as the impact of CH4 and N 20. Details about the infra-red radiation calculation

within this scheme can be found in Chou et al. (1990), Chou and Kouvaris (1990),

Chou (1984), and Chou and Peng (1983). Solar radiation is calculated in the near-

infrared region and the UV+Visible region. Within the near-infrared region, the solar

radiation is absorbed by H 2 0, C02, and 03, scattered and reflected by clouds and

aerosols. Within the UV+Visible region, it takes into account the ozone absorption

and the effect of clouds and aerosols. For details about the solar radiation, please

refer to Chou (1991), Chou (1990), and Chou (1986). In this study, we do not include

the effect of aerosols.

2.2.3 Convection Scheme

The moist convection processes are simulated using the convection scheme devel-

oped by Emanuel (1991). We are using the recently updated version CONVECT

4.1. In this scheme, the convection representation is mainly based on the dynamics

and microphysics of the cloud processes, which is deduced from recent observations

and theories of convective clouds. The fundamental entities of convective transport

are the subcloud-scale drafts rather than the clouds themselves. The main closure

parameters are the parcel precipitation efficiencies, 0 and $. 0 determines how much
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of the condensed water is converted to precipitation. @ determines how much of the

precipitation falls through the unsaturated air thus leading to warming and drying,

while the remaining fraction (1 - @) of the precipitation re-evaporates, leading to

cooling and moisturing. These parameters are specified as functions of altitude, tem-

perature, and adiabatic water content, thus relating the large scale forcings to the

microphysics of cloud processes. Given the vertical profile of temperature and humid-

ity, the convection scheme computes the amount of convective precipitation and the

tendencies of temperature and moisture. Further details can be found in Emanuel

(1991). Large scale condensation is treated separately from convection. When the

atmosphere reaches super-saturation, the excess water is condensed out of the system

as large-scale precipitation, and no re-evaporation is considered. During both the

convection and large-scale condensation processes, enthalpy is conserved.

2.2.4 Cloud Parameterization Scheme

Clouds play an important role in the biosphere-atmosphere system through their im-

pact on the radiative transfer within the atmosphere. Clouds reduce the incoming

solar radiation mainly by reflection and scattering. For the biosphere, this change of

the solar radiation directly reduces light availability for vegetation. For the earth-

atmosphere system, the short-wave cloud radiative forcing has a cooling effect. At

the same time, clouds also causes warming by trapping the outgoing long-wave radi-

ation. The net radiative forcing varies significantly with different types and spatial

distributions of clouds. For example, for the stratiform clouds in the boundary layer,

the cooling effect is dominant; for cirrus clouds near the tropopause, the warming

effect is dominant. Therefore it is important to distinguish different types of clouds.

The presence of clouds modifies the vertical distributions of temperature and

water vapor, which feeds back to impact the formation of clouds through a set of

complex microphysical processes. Simulating this clouds feedback remains a challenge

to climate modelers. In fact, previous studies (e.g., Cess et al., 1996; Cess et al.,

1989; Spelman and Manabe, 1984) have shown that variations in the representation

of clouds are largely responsible for the differences in the sensitivity of existing models
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to external forcings. On the other hand, the microphysical processes associated with

clouds are extremely complex, and are poorly understood. Most of these processes

take place at spatial scales much smaller than the typical grid size of climate models.

One common approach in modeling clouds is to parameterize smaller scale processes

as functions of large scale variables, which is also used in our model.

In this study, clouds are divided into three groups: high-level clouds, medium-level

clouds, and low-level clouds. They are described by their fractional coverage, height,

vertical extent, and cloud density (optical depth). According to London (1952), the

globally averaged vertical extent for the high-, medium-, and low-level clouds are

220mb-280mb, 460mb-640mb, and 640mb-940mb, and, the optical depths of each

cloud type are about 2, 6, and 12, respectively. Here we fix both the cloud vertical

extents and the cloud optical depths at their global means. Only the fractional cloud

cover is predicted by the model.

The parameterization of the fractional cloud cover is developed based on Kvamsto

(1991). Previous studies (e.g., Slingo, 1980, 1987; Sunquist, 1989; Kvamsto, 1991)

have developed many fractional cloudiness parameterization schemes. Some of these

are complex and consider the impact of several physical variables, while others predict

the cloudiness based on one single variable, the relative humidity. The Kvamsto

(1991) scheme belongs to the latter group. It features a linear relationship between

the relative humidity and the fractional coverage of the low-level clouds, as described

by the following:

FC = max(O.0, RH (2.11)
1 - R Ho

where FC is the cloud fractional cover, RH is the relative humidity, and RHO is the

relative humidity threshold at which clouds start to form. Despite of its simplicity,

the performance of the Kvamsto scheme is one of the best among the seven schemes

examined by Mocko and Cotton (1995). Here the linear scheme shown in Equation

2.11 for the low-level clouds is adopted and its application is expanded to the medium-

and high-level clouds. For the relative humidity threshold RHO, 0.8, 0.65, and 0.7 are

used for high-, medium-, and low-level clouds, respectively. Because of the difference
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in spatial resolution, these threshold values are slightly lower than those usually used

in meso-scale models (e.g., Slingo, 1980, 1987; Kvamsto, 1991).

The cloud scheme is summarized by Figure 2-1.

- 220 mb

High Clouds

460 mb

Middle Clouds

_ 640mb

Low Clouds

940 mb

Figure 2-1: A summary of the cloud parameterization scheme. Here r is the cloud
optical depth, and the definition for RH and RHO is the same as in Eq. (2.11).
FC is first calculated at each pressure level based on the relative humidity at the
corresponding level. The average of FC within the vertical extent of each cloud type
is then used as the fractional cover for that type of clouds.
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2.2.5 Boundary Layer Scheme

The boundary layer responds to the land surface forcing through turbulence. It is the

frequent occurrence of turbulence that distinguishes the atmospheric boundary layer

from the free atmosphere above it. Heating from the warm ground and wind shear

near the surface are the most important factors that contribute to the generation of

turbulence. Within the boundary layer, the transport of quantities such as heat, mois-

ture, and momentum in the vertical direction is dominated by turbulent transport,

which is orders of magnitude more effective than the transport through molecular

diffusion. Boundary layer models describe the turbulent transports of heat, moisture,

and momentum within the atmospheric boundary layer.

Our boundary layer scheme is developed based on Hotslag and Boville's (1993)

non-local scheme. This scheme is termed "non-local" relative to the usually used

"local" schemes. In a "local" boundary layer scheme, the flux of a quantity is propor-

tional to the local gradient of that quantity, and the eddy diffusivity depends typically

on local gradients of the mean wind and mean virtual temperature. In contrast, for a

"non-local" boundary layer scheme, the formulation of the eddy diffusivity depends

on the bulk properties of the atmospheric boundary layer rather than local proper-

ties. It also incorporates nonlocal (vertical) transport effects for heat and moisture,

the so called "counter-gradient transport". As shown by Holtslag and Boville (1993),

simulations with a "non-local" scheme are in general more realistic than those with a

"local" boundary layer scheme. Another advantage of using a "non-local" boundary

layer scheme is that the effect of dry-adiabatic adjustment on the turbulent transport

can be neglected.

The turbulent transport of heat, moisture, and momentum can be expressed by

the following equations:

dO - Kh( - Gh) (2.12)
dt az az

dq _ 0 ogd- = Kq( - - Gq) (2.13)
di az 0z
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du = Km( ) (2.14)
dt Oz Oz

deKm(&v

dv = Km(V (2.15)
dt Oz Oz

In the above, Km, Kh, and Kq are the eddy diffusivities for momentum, heat and

water vapor, and Gh, Gq represent the counter-gradient transport for heat and water

vapor. The eddy diffusivity depends on the boundary layer height h, formulated as

follows:

K = kwz(1 - -)2
h

where k is the Von Karman constant, and w is a characteristic turbulent velocity

scale which differs between heat, water vapor and momentum. The boundary layer

height h is a function of the bulk Richardson number Ri. The implicit relationship

between the boundary layer height and the boundary layer Richardson number is

used to determine h:

h Ri.,[u(h)2 + v(h) 2]
-(Ov (h) - Os)'

where Os is the air temperature near the surface, O, is the virtual temperature, and

Rjc, is the critical Richardson number.

2.3 The Biospheric Model

The dynamic biospheric model uses the Integrated BIosphere Simulator (IBIS), de-

veloped by Foley et al. (1996). IBIS integrates a wide range of terrestrial phenomena,

including the biophysical, physiological, and ecosystem dynamical processes, into a

single, physically consistent simulator that can be directly coupled to atmospheric

models. IBIS takes the meteorological forcings provided by the atmospheric model as

inputs, returns to the atmospheric model outputs that describe surface properties and

surface fluxes, and updates the biospheric state including the vegetation structure.

Here a brief description of IBIS is given, followed by a description of the modifications
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we have made to IBIS including the incorporation of a canopy interception scheme.

2.3.1 IBIS Description

The vegetation cover in IBIS is a combination of different plant functional types

(PFTs). PFTs are defined based on physiognomy (tree or grass), leaf form (broad-leaf

or needle-leaf), leaf habit (evergreen or deciduous), and photosynthetic pathway (C3

or C4). For example, PFTs that grow well in the tropics include tropical broad-leaf

evergreen trees, tropical broad-leaf drought-deciduous trees, and C4 grasses. Veg-

etation canopy in IBIS is divided into two layers, with woody plants in the upper

canopy and herbaceous plants in the lower canopy. Soil texture is represented by the

percentage of three different components: sand, silt, and clay. There are 6 soil layers

in the root zone, which sum up to 4.0 m. The thickness of each soil layer, from the

top to the bottom, is 0.10, 0.15, 0.25, 0.50, 1.00, and 2.00 m respectively. The rooting

profile differs between different PFTs, and are based on published data (Jackson et

al., 1996). This land surface structure is schematized by Figure 2-2.

IBIS consists of four component modules: the land surface module, the vegetation

phenology module, the carbon balance module, and the vegetation dynamics module.

The hierarchical framework of IBIS is presented in Figure 2-3. Each of the sub-models

are described in the following.

The land surface module represents the biophysical and physiological processes

at the same time step as the atmospheric model (20 minutes in this study). It solves

for the exchange of water vapor, energy, carbon dioxide, and momentum between

the ground and vegetation, between different vegetation layers, and between vegeta-

tion and the atmosphere. Solar radiation is treated using two-stream approximations

within each vegetation layer, with separate calculations for direct and diffuse radi-

ation in two wavelength bands: 0.4-0.7 um and 0.7-4.0 um. For infrared radiation,

each vegetation layer is treated as a semi-transparent plane with its emissivity de-

pendent on the leaf and stem density. For the canopy hydrological processes, IBIS

includes a detailed description for the cascade of precipitation. Formulations for inter-

ception, throughfall, evaporation from the intercepted water, and plant transpiration

53



Upper Canopy

Lower Canopy
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Figure 2-2: Structure of the land surface in IBIS. The numbers (10cm, 15cm, ...)
label the thickness of different soil layers.
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are all physically based. However, the sub-grid variability of rainfall is neglected.

(The issue of sub-grid variability will be addressed in Section 2.3.2.). The overall

evapotranspiration has three different components: evaporation from the ground sur-

face, evaporation from the intercepted water, and transpiration from the vegetation

canopy. The exchanges of water vapor and carbon dioxide between the vegetation

canopy and the atmosphere are related to the photosynthesis rate and stomatal con-

ductance. IBIS uses physiologically-based formulations of C3 and C4 photosynthesis,

stomatal conductance, and respiration.

Also described in this module are the exchanges of water and energy between

different soil layers. Relevant processes include heat diffusion, water transport within

the soil, plant uptake of water, etc. Water transport between different soil layers is

governed by gravity drainage and diffusion. Direct evaporation from the soil only

occurs in the top layer. The drainage from the bottom soil layer is modeled assuming

gravity drainage and neglecting interactions with groundwater aquifers. Water uptake

by plants from different soil layers depends on the rooting profiles. Water stress is

considered when the soil moisture is below the wilting point.

The main equations in the land surface module predict the temperature of different

vegetation components (upper-layer leaf temperature, upper-layer stem temperature,

and the combined temperature for the lower-layer leaf and stem), the air tempera-

ture at each canopy level, the air specific humidity at each canopy level, and, the

temperature and soil moisture of each soil layer.

The vegetation phenology module, operating at a daily time step, describes

the plant leaf display in response to seasonal climate conditions. For example, winter-

deciduous plants shed their leaves when temperature drops below a threshold value;

leaf-shedding for drought-deciduous plants takes place upon severe water stress.

The carbon balance module calculates the net primary productivity (NPP)

for each PFT, and annually updates their carbon storages. The annual NPP is equal

to the difference between photosynthesis and respiration, integrated through an entire

year. NPP is allocated to three different carbon reservoir: leaves, stems, and roots.

The change of carbon biomass in each reservoir depends on the NPP allocation and
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the turnover rate. Parameters on allocation and turnover differ between different

PFTs.

The vegetation dynamics module updates the vegetation structure for each

PFT at an annual time step according to the carbon budget of that PFT. Whether a

PFT can potentially exist at a specific location depends on the climatic constraints;

whether it can actually survive depends on its competition with other PFTs for

common resources. The transient change in vegetation structure, including the leaf

area index (LAI) and living biomass, is a reflection of this competition. Common

resources account for water and light. The effect of nutrient stress is not considered.

PFTs in different vegetation layers have different advantages in accessing light and

water. The upper layer has easier access to sunlight, and shades the lower layer to a

certain degree depending on its fractional coverage. Plants in the upper vegetation

layer have deeper root structures than those in the lower layer. As a result, the lower-

layer PFTs have the advantage of reaching water first in the process of infiltration,

while the upper-layer PFTs have access to the water storage in the deeper soil. In

terms of life form, herbaceous plants in the lower layer do not need to divert resources

into the production and maintenance of the woody supporting structures as woody

plants in the upper layer do.

Competition between PFTs within a same vegetation layer has to do with the dif-

ference in their ecological strategies. For example, under severe water stress, drought-

deciduous plants shed their leaves to shut off the water consumption through transpi-

ration. Needle leaf plants conserve water better than broad-leaf plants. C4 plants use

water more efficiently than C3 plants. These factors cause the differences in carbon

balance between different PFTs in the same layer.

For more details about IBIS, please refer to Foley et al. (1996).

2.3.2 Sub-grid Variability: Interception Scheme

In the past few decades, as land surface parameterization schemes developed towards

greater physical realism, it has been widely recognized that the spatial variability in

precipitation (e.g., vegetation type and soil texture) at the sub-grid scale significantly

57



affects the simulation of surface hydrological processes at the grid scale (Shuttleworth,

1988b; Entekhabi and Eagleson, 1989; Pitman et al., 1990; Lloyd, 1990; Ghan et

al., 1997). The impact of sub-grid variability of rainfall is most pronounced in the

tropics, where the vegetation canopy is dense and most of the precipitation takes

place as convective rainfall. A typical convective rain cell has a spatial coverage

at the order of 102km 2 , while a typical grid cell in a climate model often covers

an area of 103 _ 106km 2 . Modeled rainfall is actually the integrated rainfall over the

entire grid element. Without considering the effect of this mismatch in scales, climate

models will predict drizzle uniformly falling over the entire grid area instead of intense

rainfall concentrated in a small portion of the grid cell. As a result, more rainfall will

be intercepted by the vegetation canopy and subsequently re-evaporated (Lean and

Warrilow, 1989; Dolman and Gregory, 1992; Eltahir and Bras, 1993a). Although IBIS

includes detailed and sophisticated representation of canopy hydrological processes,

it does not consider the effect of sub-grid variability in rainfall distribution. Here, we

modify the representation of canopy hydrological processes in IBIS by including an

interception scheme which accounts for the impact of rainfall sub-grid variability.

One commonly used approach in interception schemes is the "statistical approach",

which combines the point description of canopy hydrology and the statistical treat-

ment of rainfall sub-grid variability. This approach assumes that precipitation only

covers a fraction yL of the grid cell, and assumes an idealized function for the precip-

itation probability distribution within the rain-covered region (Carson, 1986; Shut-

tleworth, 1988b; Eltahir and Bras, 1993a). The grid-averaged interception loss and

throughfall are then computed based on these assumptions. The impact of sub-grid

variability is therefore implicitly represented by modifying the grid-average values

for variables of local relevance. Another commonly used approach is the "mosaic

approach" (Koster and Suarez, 1992), which explicitly breaks each grid cell into cer-

tain number of smaller cells, and is frequently used when the heterogeneity of land

surface properties (e.g., vegetation and soil) is also considered. In our model, for com-

putational efficiency, we choose the statistical approach in representing the sub-grid

variability of rainfall.
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Our interception scheme is based on the Shuttleworth scheme (1988b). Precipi-

tation is assumed to fall over a fraction p of the grid cell. Within the rain-covered

region, the probability density function for rainfall distribution takes the form:

f (P) = #exp(- -), (2.16)
PO PO

where P is the grid-averaged precipitation rate. Assuming that the canopy storage at

the beginning of a time step is C, and that the canopy capacity is S, which is uniform

over the entire grid cell. Within the time step, the maximum rate of infiltration into

the canopy is Imax = SZ. Therefore, the canopy throughfall, which is defined here as

the part of the canopy drainage contributed directly by rainfall (another component

of the canopy drainage is the dripping from the canopy storage), can be expressed as:

T = P - Imax (P > Imax); T = 0. (P < Imax ).

On average, the canopy throughfall within the precipitation-covered region due to the

newly produced rainfall is:

R =f j (P-Iax)-exp(--)dP= "exp(- max)
1a PO PO PO PO

Consequently, the canopy throughfall averaged over the entire grid cell is:

R = Poexp(- Pimax (2.17)
PO

Hence the grid-average rate of infiltration into the canopy will be:

I = Po(1 - exp(- max)) (2.18)
P

The parameter p, as well as its spatial and temporal variation, may significantly

affect the model's climatology. In fact, previous studies (Pitman et al., 1990; Johnson

et al., 1991; Thomas and Henderson-Sellers, 1991) already showed that a model's

climate is very sensitive to the choice of p. Here the Eltahir and Bras (1993b) method
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is used to estimate the fractional rainfall coverage:

p = Pmodel (2.19)
Pob,

where Pmodel is the modeled rainfall intensity, and Poeb is the climatology of observed

rainfall intensity at the corresponding location and during the corresponding season.

We estimate Pob, based on published data in Lebel et al. (1997) and Le Barbe and

Lebel (1997). This method of estimating p guarantees that the precipitation intensity

in the model is always close to observations, and allows y to change with time and

location, therefore brings greater physical realism into the model.

2.3.3 Minor Modifications

In our model, several minor changes have been made to IBIS.

In IBIS, when there is vegetation patchiness, radiation and precipitation between

and within patches are treated separately. For the fraction of bare soil, a very im-

portant factor is the soil albedo, which depends on both the soil texture and soil

saturation. The current version of IBIS considers three different soil textures: sand,

silt and clay. Different soil types have different percentage of these three textures.

For example, silty loam has 20% of sand, 60% of silt, and 20% of clay. The albedo

for saturated soil a, follows Dickinson et al. (1993), i.e., 0.12 (sand), 0.085 (silt),

and 0.05 (clay) for visible and UV solar radiation and is double those magnitudes for

near-infrared solar radiation. Albedo for unsaturated soil a depends on both a, and

the soil saturation w:

a = (1.0 +1.0 * (1 - w)) * a8

However, according to the above formulation, the maximum possible albedo for a

sandy desert is about 0.33, while albedo over the desert is observed to be around

0.35-0.45 (Ohmura et al., 1998). For a better comparison with observed albedo over

bare soil, the following formulation has been adapted in our model:

a = (1.0 + 2.0 * (1 - w)) * a,
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In the model, evaporation from the soil can only take place in the top soil layer.

No water can directly evaporate from the lower soil layers. During the drying process

of the top soil layer, moisture in the lower layers flows upward towards the top layer

through diffusion and supplies the moisture for evaporation. This process is quite

efficient and the whole soil can be dried out within a finite time if no precipitation

takes place. This causes some over-drying in regions with little vegetation. In reality,

especially over arid regions with sparse vegetation, after some time of drying, a dry

crust forms at the surface, which limits the direct soil evaporation. Such soil crusting

is an important mechanism for arid ecosystems (Walter, 1985). Crusted soil has a

very low hydraulic conductivity compared with the normal soil. It not only limits

the soil evaporation, but also slows down the infiltration at the beginning of wetting.

However, the thickness of the dry crust is much smaller than the depth of the top soil

layer in the model, which makes it difficult to simulate the exact physical processes

associated with soil crusting. Instead, here we represent the overall effect in the model

by setting a threshold for the soil saturation in the top layer, below which moisture

diffusion from the second layer to the top layer ceases. This constraint slows down

the top layer evaporation, which resembles the effect of soil crusting on evaporation.

In the context of a climate model which does not simulate the horizontal movement

of the surface water (in the form of surface runoff) within one grid cell, the effect of

soil crusting on infiltration is significant only within a short duration at the beginning

of the wet season. Therefore, the overall effect on infiltration is relatively small and

can be neglected.

2.4 Summary

To summarize the model development, Figure 2-4 shows all the components of the

zonally symmetric, synchronously coupled biosphere-atmosphere model (ZonalBAM).
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Chapter 3

Model Validation

In the model validation, the biospheric model and the atmospheric model are first

separately tested against observations: the modified IBIS is run in off-line mode

to simulate the potential vegetation, with the atmospheric forcings fixed at today's

condition; the model's performance in simulating the atmospheric climate is tested,

with the vegetation fixed at today's condition and IBIS functioning as a land surface

scheme. The full model is then used in a synchronous mode to simulate the coupled

biosphere-atmosphere system.

3.1 Modeling the Biospheric Climate

Foley et al. (1996) used the stand-alone IBIS driven with the climatological atmo-

spheric forcings to reproduce the global vegetation distribution. A similar study is

performed here, but with the newly modified representation of canopy hydrology and

with different atmospheric forcing. We use the daily climatology of the atmospheric

forcings from the NCEP/NCAR re-analysis data, which is derived based on the data

for the period 1958-1997, and averaged between 15'W and 15 0E. The temperature

and specific humidity are interpolated into a finer temporal resolution by assuming

a sinusoidal diurnal cycle. Following Foley et al. (1996), the daily precipitation is

assumed to occur within a certain time period, and the length of precipitation events

as well as the starting time is determined by sampling randomly from suitable statis-

63



tical distributions. In contrast to the simulations involving the atmospheric model,

the incoming solar radiation and the incoming long-wave radiation in the off-line IBIS

are calculated based on empirical formulas.

With a spatial resolution of 20, the model domain spans from 5N to 25'N. The

time step for the land surface processes is 30 minutes. The simulation starts with

minimal amount of vegetation cover everywhere. At the beginning, each of the PFTs

have an equal opportunity to survive - all of them exist at every grid point, with

the same LAI of 0.1 in order for the physiological processes to get started. The stem

and root biomass are initialized to be zero. The vegetation distribution at a later

time depends on the competition between different PFTs for light and water under

the corresponding atmospheric conditions. In this simulation, the soil texture is fixed

with time, but varies from silty loam (20% sand, 60% silt, 20% clay) near the coast

to loamy sand (80% sand, 10% silt, 10% clay) in the north, according to the Zobler

(1986) data.

After 80 years of simulation, the model evolves to near equilibrium. The com-

petition between grass and trees comes to an end, and the net primary productivity

remains stable (Figure 3-la). The only process that has not reached equilibrium state

is the slow accumulation of the woody biomass (Figure 3-1b), which has a time scale

in the order of centuries. Details of this "close-to-equilibrium" vegetation distribu-

tion are presented in Figure 3-2. Trees exist between the coast and 10'N, while

grass occupies the region between 10'N and 16'N. North of that, the land surface

is desertic. This vegetation distribution is in reasonable agreement with observations

over West Africa. The simulated total NPP at the equilibrium state is also in a rea-

sonable range. In Figure 3-3, the solid line shows the simulated NPP, while the two

asterisks mark the mean of point measurements (Murphy, 1975) from humid and arid

regions in West Africa. The error bars span the range p i o-, where p is the mean

and o- the standard deviation. The statistics for each region are based on five site

measurements. The model simulation compares well with the site measurements.

Over locations that are eventually occupied by trees, competition between trees

and grass takes place before the tree establishment. As an example, Figure 3-4
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Figure 3-1: Vegetation growth process: a) Total net primary productivity
(kgC/m 2 /year); b) Wood biomass (kgC/m 2).
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presents the NPP of woody plants (solid line) and herbaceous plants (dashed line) at

7'N. The early stage of vegetation development is dominated by dense grass, which

has a very high NPP due to the large amount of precipitation and high LAI. Trees

gradually take over and grass dies out within three decades. After that the tree NPP

stays stable.

1.4

1.2 . - -- - -

. ... .. .. ..

I ., .

E 0.8 - - - -
3 - Upper Canopy

0.6 - -- Lower Canopy
0...... .........

........................... P
z 0.4

0 .2 - - -- -- - - - -. - -- - - -- - - -- --

0
10 20 30 40 50 60 70 80

Years of Simulation

Figure 3-4: The net primary productivity (in kgC/m 2 /year)
canopy at 7'N.

of the upper and lower

In general, the model captures the main features of the vegetation distribution in

West Africa. As Foley et al. (1996) already found, due to the lack of disturbance

mechanisms and climate variability, the model does not do well in simulating the

savannah-type vegetation (i.e., a mixture between trees and grass). For example, at

equilibrium (Figure 3-2), tall grass exists right next to the dense woodland, without

a transitional vegetation type (e.g., savannah) located between the two. This issue

will be further discussed in Section 3.3.

67



3.2 Modeling the Atmospheric Climate

3.2.1 Model Details

With the ecosystem dynamics turned off and the vegetation distribution fixed at a

state close to today's condition, the biosphere-atmosphere model is used to simu-

late the current atmospheric climate over West Africa. Under this condition, IBIS

functions as a sophisticated land surface model with static vegetation. Here static

vegetation only implies that the vegetation structure does not change from one year

to the next. The diurnal cycle and seasonal cycle for the biophysical, physiological,

and phenological processes are still simulated.

According to observations (e.g., the USGS Global Land Cover Characterization

data; Foley et al., 1996; Gornitz and NASA, 1985) over West Africa, there is evergreen

rain forest in the coastal region, and drought-deciduous forest and woodland extend

from the coast to about 100N, from where the vegetation gradually changes from

savannah northward to short grass. This vegetation distribution (Figure 3-5) is used

as the model's boundary condition over land. Similar to the simulation in section 3.1,

rain forest

d forest

F...................savnna .................
. ...... savannah

0

CU
.... ... .. .. tall arass ' . . . .

.... ... ... ... ... ... .. .short grass

.. ......... ... .... .... ... .... ... Id e s e rt

1ON 15N 20N
Latitude

Figure 3-5: Vegetation distribution close to what has been observed.

68



the soil texture ranges from silty loam (20% sand, 60% silt, and 20% clay) near the

coast to loamy sand (80% sand, 10% silt, and 10% clay) in the north. South of the

coast (set at 6'N), sea surface temperature is fixed at the zonal average (10'E- 10'W)

of its climatology (Reynolds and Smith, 1995). For the simulation in this section as

well as in section 3.3, a vertical resolution corresponding to about 40 mb is used in

the atmospheric model. The biospheric model and the atmospheric model use the

same horizontal resolution, which corresponds to ~ 2.50 within the tropics. The time

step is 20 minutes.

A zonally symmetric model cannot correctly simulate the interaction between mid-

latitudes and the tropics. To reduce the associated bias, surface conditions (including

the albedo, temperature, sensible and latent heat fluxes) outside the tropics are fixed

at their climatology from the NCEP re-analysis data, averaged between 15'W and

15'E. Here the tropics are defined as 27 0N-27 0 S.

3.2.2 Results

Three years of integration are needed before the atmospheric model reaches equilib-

rium, after which no significant trend is found in the atmospheric simulation. Since

the SST climatology is used as the driving forcing, the simulated climate features neg-

ligible interannual variability after three years from the beginning of the simulation.

In the following the results from the fourth year of the simulation are presented.

The zonally symmetric model successfully reproduces the zonal mean of precipi-

tation and surface temperature in West Africa. The seasonal cycle of the simulated

surface temperature is plotted in Figure 3-6a, which compares well with the NCEP

re-analysis data in Figure 3-6b. An identifiable difference is that the warm summer

over the Sahara desert in the model lasts until October, which is more than one

month longer than that in the NCEP re-analysis data. Over West Africa, credible

and inclusive rainfall measurements are limited. A significant discrepancy between

different rainfall data sets is frequently observed, which highlights the difficulty in

comparing rainfall simulations with observations. Here the model rainfall seasonal

cycle (Figure 3-7a) is compared with both the NCEP re-analysis data (Figure 3-7b)
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Figure 3-6: The seasonal cycle of the surface temperature (K): a) model simulation;
b) climatology of the NCEP re-analysis data.
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Figure 3-7: The rainfall seasonal cycle (mm/day): a) model simulation; b) climatol-
ogy of the NCEP re-analysis data (1958-1997); and c) climatology of the GPCP data
(1987-1997).
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and the GPCP data (Figure 3-7c). The difference between the modeled rainfall sea-

sonal cycle and either of the rainfall data sets is comparable to the difference between

the GPCP data and the NCEP re-analysis data. This is especially true over land,

where biosphere-atmosphere interactions take place. The comparison for the annual

rainfall over land is presented in Figure 3-8, which shows a fair agreement between

the model simulation and observations.

7.5N 1ON 12.5N
Latitude

15N 17.5N 20N

Figure 3-8: Comparison of the annual rainfall (in mm/year) between the model
simulation (solid line), the GPCP climatology (- o -), and the NCEP climatology

The model also reproduces the atmospheric circulation with reasonable accuracy.

Taking the peak monsoon season (August) as an example, Figure 3-9 compares the

simulated meridional wind field with the NCEP re-analysis data, and Figure 3-10

presents the comparison for the vertical velocity. The model captures the overall

pattern of the meridional circulation. During the rainy season, wind blows from the

ocean to the land at low levels, with the returning wind from the land to the ocean

at high levels. Correspondingly, the rising branch of the monsoon cell is mainly
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Figure 3-9: Comparison of the meridional wind in August between (a) the model
simulation and (b) the NCEP re-analysis data. Unit: m/s.
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located over land, and the descending branch over the ocean. Compared to the

NCEP re-analysis data, the model underestimates the magnitude and overestimates

the vertical span of the northward wind. These two factors compensate for each

other, which brings the total northward mass transport at low levels across the coast

closer to the NCEP re-analysis data. A similar comparison for the zonal wind is

shown in Figure 3-11. In the zonal wind field, an identifiable difference exists around

the Sahara region at the level of 100mb-400 mb, where a westerly jet results from a

local cooling (see Figure 3-12a) through the thermal wind mechanism. For example,

at the 400-mb level over 200N, temperature decreases northward at a rate of 0.7

'C/km or so (at 20*N, this can cause an upward increase of westerly wind by about

7 m/s/km). Such a cooling is not observed in the NCEP re-analysis data (Figure

3-12b). This unrealistic cooling effect may have to do with the lack of easterly waves

and zonal asymmetry in the model. According to Rodwell and Hoskins (1996),

the diabatic heating associated with the Asian monsoon can induce a Rossby wave

pattern to the west and causes descent over the eastern Sahara and Mediterranean.

The adiabatic warming associated with this induced descent would have offset the

unrealistic cooling in Figure 3-12a, eliminating the unrealistic westerly jet at high

levels over the Sahara-Sahel region in Figure 3-11a.

Comparison of radiation fluxes with observations is complicated by both the limi-

tation of the current understanding on the atmospheric radiative transfer (Cess et al,

1995; Pilewskie and Valero, 1995; Ramanathan et al, 1995; Li et al., 1995; Arking,

1996; Stephens, 1996) and the large uncertainty in radiation measurements (Bishop

et al., 1997). Here the simulated radiation fluxes are compared with both the NCEP

re-analysis data and the International Satellite Cloud Climatology Project (ISCCP)

data (Gupta et al., 1997), as shown in Figures 3-13 and 3-14. Note that the NCEP

re-analysis data is a product based on both observations and model simulations. In

Figure 3-13, the spatial and seasonal pattern of the incoming solar radiation in the

model agrees well with both the NCEP re-analysis and ISCCP data. In terms of the

magnitude, the model simulation is closer to the NCEP re-analysis data during the

season of high radiation, and closer to the ISCCP data for the rest of the year. Note
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that the season of high radiation varies with latitude. A general trend is observed

that the solar radiation of both the model and the NCEP re-analysis data is higher

than that of the ISCCP data, which may have to do with the underestimation of the

atmospheric solar absorption by the current generation of radiation schemes (e.g.,

Cess et al, 1995; Li et al., 1995; Arking, 1996). As shown in Figure 3-14, the spatial

distribution of the incoming long-wave radiation in the model agrees well with the

NCEP re-analysis data, while the ISCCP data shows a significantly different spatial

pattern. Compared with the NCEP re-analysis data, the model tends to underesti-

mate the long-wave radiation. This under-estimation becomes very significant when

compared with the ISCCP data. It is worth noting that the difference between the

model and NCEP re-analysis data is smaller than the difference between the NCEP

re-analysis and ISCCP data.

The underestimation of the long-wave radiation may result from the underesti-

mation of the atmospheric water vapor content in the model. Figure 3-15a presents

the simulated seasonal cycle of specific humidity near the surface, compared with the

NCEP re-analysis data (Figure 3-15b). Although the overall patterns agree well, the

model underestimates the specific humidity by 1-4 g/kg. Although to a less degree,

this underestimation also exists away from the land surface. For example, Figure

3-16 presents the comparison of the specific humidity distribution during the peak

monsoon season in August, which shows that the specific humidity over land in the

model is in general lower than the NCEP re-analysis data. The moisture maximum in

the model occurs over the ocean near the coast, while in the NCEP re-analysis data,

it is located inland over the savannah region. In the model, the humidity level of the

atmosphere decreases from the forest region northward, while the NCEP re-analysis

data suggests that the specific humidity over the arid savannah/grassland region is

at the same level as the forest region.

The surface net radiation, which determines the total energy exchange between the

biosphere and the atmosphere, is an important variable for the biosphere-atmosphere

interactions. Also important is the land surface albedo which directly affects the net

radiation. As shown in Figure 3-17, the model surface albedo agrees well with the
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ISCCP observations. For both the model and the ISCCP data, the albedo magnitude

increases from lower than 0.15 near the coast to above 0.40 over the desert, and

decreases northward from the desert. In the NCEP re-analysis data, the albedo

contrast between the forest and the desert is much smaller, and the desert albedo

is significantly lower. In addition, the NCEP re-analysis data shows an unrealistic

seasonal cycle of albedo: a maximum occurs during summer when the ground is wet.

Similarly, the model net radiation compares better with the ISCCP data than with the

NCEP re-analysis data (Figure 3-18). Over the forest region in all seasons, and over

the grassland during the rainy season, the difference between the simulation and the

ISCCP data is within 20W/m 2 . Larger discrepancy exists over the grassland in the

dry season and over the desert region throughout the year. This difference is mainly

a reflection of the differences in the incoming radiation fluxes (see Figures 3-13 and 3-

14), which might be attributed to both the model deficiency and the data uncertainty.

According to Bishop et al. (1997), inaccuracy in the ISCCP data is associated with

the spatially and temporally varying aerosol distribution. On the other hand, our

model does not account for the impact of aerosols. It is worth noting that the largest

discrepancy between the model and ISCCP data takes place where and when the

ground is dry and unprotected, which tends to cause a high aerosol loading in the

atmosphere. For the NCEP re-analysis data, consistent with the small forest-desert

contrast in albedo, there is no dramatic contrast in net radiation between the coast

region and the desert. This is unlikely to be the case considering the well-known role

of the Sahara desert as an energy sink.

As presented in Chapter 2, we incorporated into the model a canopy interception

scheme to account for the impact of the rainfall sub-grid variability. Here the repre-

sentation of canopy hydrology is evaluated using the fractional interception loss, as

shown in Figure 3-19. The fractional interception loss is defined as the fraction of the

evapotranspiration that is contributed by the direct evaporation of the intercepted

water on the canopy. According to Shuttleworth (1988a), the fractional interception

loss is approximately 25% at a forest site in the Amazon. Our model estimation over

the forest region is also around 25%. As expected, interception loss over savannah
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Figure 3-19: Interception loss as a fraction of the overall evapotranspiration.

and grassland is much smaller, at a magnitude of 10% or even smaller.

In summary, the zonally symmetric model reproduces the current atmospheric

climate with reasonable accuracy. However, because the model is designed to carry

out long integrations or simulations, its complexity is limited, and some of the physical

processes are over simplified (e.g., the cloudiness) or not represented (e.g., aerosols

effect). Moreover, the real world is not zonally symmetric. Therefore, some differences

between the model and observations are expected, as have been shown above.

3.3 Modeling the Coupled Biosphere-Atmosphere

System

After testing each of the two model components against observations, the synchronously

coupled model including ecosystem dynamics is run to simulate the biosphere-atmosphere

system of West Africa. The model starts with an initial vegetation distribution close

to today's condition (Figure 3-5), with vegetation dynamics simulated in the region

between 6N (the coast) and 27*N. Similar to the simulation of Section 3.2, surface

properties and fluxes outside the tropics are fixed at their climatological values from
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the NCEP re-analysis data, and SST is also fixed at the climatology allowing for

seasonal variability (Reynolds and Smith, 1995).

For the atmospheric model to spin up, vegetation in the first three years remains

static. Ecosystem dynamics start to take place in the fourth year of the simulation.

The modeled system evolves into an equilibrium state within 25 years. An additional

15 years of simulation reveals no noticeable trend, as shown by the evolution of the

annual precipitation and the total net primary productivity (NPP) in Figure 3-20.

Similar to today's environment in West Africa, this equilibrium state features forest

in the south and grassland in the north, as shown in Figure 3-21. However, in the

region between the forest and the grassland, at a grid point near 11'N, the initialized

savannah vegetation gives way to dense woodland. As demonstrated by the evolution

of the growing-season leaf area index (LAI) for the upper and lower canopy (Figure

3-22), grass at this savannah site becomes overwhelmingly dense immediately after

the introduction of vegetation dynamics, probably due to the lack of disturbances

under a relatively wet climate; trees gradually develop and eventually shade grass

out. The annual rainfall at the model equilibrium is presented in Figure 3-23 (solid

line). For comparison, also presented in Figure 3-23 is the annual rainfall simulated

in Section 3.2 with fixed current vegetation (dashed line), which is comparable to the

current climate (see Figure 3-8). In general, the climate of the equilibrium state is

slightly wetter and greener than the current climate in West Africa.

Strictly speaking, the climate of the model equilibrium is not comparable to the

observed current climate since the current biosphere-atmosphere system may not be

at its natural equilibrium. First, it is uncertain whether the current system is at equi-

librium at all; secondly, any equilibrium in the real world is expected to be different

from the modeled natural equilibrium due to the recurrence of human disturbances.

Similar to the equilibrium biosphere in Section 3.1, a very noticeable feature of the

simulated biosphere-atmosphere equilibrium is the absence of savannah. As shown

in Figure 3-22, trees eventually take over in the region that is initialized with the

observed savannah-type vegetation. Although several studies (e.g., Eagleson and

Segarra, 1985; Rodriguez-Iturbe et al., 1999) argued that the savannah vegetation
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system is naturally stable, various ecological evidence suggests that the stability of

savannah in some regions may depend on external disturbances. These disturbances

can be of natural origin or anthropogenically induced. In many parts of West Africa,

the savannah landscapes were originally created and are still maintained by recur-

rent burning for various human purposes (Bourliere and Hadley, 1983). According

to Bourliere and Hadley (1983), "when plots of such man-maintained savannas are

protected from bush fires for a number of years, they very quickly turn into deciduous

woodland". Grazing also plays an important role in maintaining the current savan-

nah landscape in Africa (Sprugal, 1991). For example, tree establishment over the

current savannah region started around 1895 when the cattle disease "rinderpest"

was introduced into Africa (Sinclair, 1979), and was suppressed again when vaccines

were developed later on to protect domestic livestock. Various human disturbances

of this kind left the current landscape as a mixture of grass and trees. The transient

nature of the savannah-type vegetation in the model may have to do with the lack of

representation of these disturbances.

To qualitatively validate the above argument on the simulation of the savannah-
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type vegetation, we perform one experiment with a certain degree of fire and grazing

effect imposed over the savannah and grassland region. Fire is assumed to take place

every year in the dry season and consumes a fraction f of the above-ground live

biomass, where f varies from one year to the next and is a random number uniformly

distributed between 0 and 10%. We assume that grazing consumes 50% of the grass

NPP every year. Figure 3-24 shows the evolution of peak LAI for the upper and
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Figure 3-24: Same as Figure 3-22, but
savannah and grassland region.

with the impact of fire and grazing over the

lower canopy at the grid point near 11'N, where initial vegetation is a mixture of

trees and grass. Under the impact of disturbances, the savannah-type vegetation

survives into the model equilibrium. Comparison between Figures 3-22 and 3-24

confirms that disturbances could indeed play an important role in the survival of the

savannah-type vegetation. This experiment is designed to investigate the qualitative

impact of disturbances on the model's equilibrium state, therefore we made no effort

to reproduce the historical occurrence of fire and grazing.
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3.4 Summary

The newly developed zonally symmetric biosphere-atmosphere model ZonalBAM is

applied to the region of West Africa, where climate conditions show high degree of

zonal symmetry. Experiments are carried out to separately test the model's perfor-

mance in simulating the biospheric climate and the atmospheric climate. The results

suggest that the model can reproduce the observed climate in West Africa with rea-

sonable accuracy. Since the real world is not zonally symmetric, it is expected that

there would be some differences between the model and observations, as shown in

previous sections.

After separately validating the biospheric model and the atmospheric model, we

simulate the natural climate system of West Africa using the synchronously coupled

biosphere-atmosphere model. At the equilibrium derived in this chapter, the climate

of the natural biosphere-atmosphere system is close to, but slightly wetter and greener

than, the current climate. Focusing on the natural interactions between the biosphere

and the atmosphere, at this stage we have not accounted for the impact of various

human activities. At the same time, it is impossible to identify whether the current

observed climate system is at equilibrium. Therefore, the comparison between the

model equilibrium and the current climate may not be justifiable. Nevertheless, the

"close-to-current" equilibrium of the model provides an ideal control state for further

studies.
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Chapter 4

Impact of Rainfall Sub-Grid

Variability - a Case Study

4.1 Introduction

To account for the impact of rainfall sub-grid variability, a canopy interception scheme

was incorporated into the coupled biosphere-atmosphere model ZonalBAM which was

validated in Chapter 3. However, it is unclear what impact the rainfall sub-grid

variability has on the performance of a coupled biosphere-atmosphere model. In this

chapter, using ZonalBAM and taking West Africa as an example, we demonstrate

the importance of including rainfall sub-grid variability in modeling the biosphere-

atmosphere system.

The impact of rainfall sub-grid variability on surface processes has been investi-

gated by many studies (Pitman et al., 1990; Eltahir and Bras, 1993a; Seth et al., 1994;

Ghan et al., 1997) using the land surface model BATS (Dickinson et al., 1993). While

Eltahir and Bras (1993a) focused on the estimation of canopy interception, other stud-

ies paid more attention to the energy and water balance of the overall land surface.

According to Pitman et al. (1990), changing the areal distribution of precipitation

alters the balance between runoff and evaporation. In their study, modifying the

rain-covered area can change the surface climatology from an evaporation-dominated

regime into a runoff-dominated regime. Consistently, Seth et al. (1994) showed that
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considering the rainfall sub-grid variability affects the surface energy partitioning and

modifies the Bowen ratio. A study by Ghan et al. (1997) showed that neglecting the

sub-grid variability in summer precipitation causes a decrease of runoff by 48% and in-

crease of evapotranspiration by 15%. A common conclusion can be drawn from these

studies that the sub-grid variability of rainfall or the lack of it significantly affects

the water partitioning between evapotranspiration and runoff as well as the energy

partitioning between the sensible heat and latent heat fluxes at the land surface.

In most of the previous studies, off-line land surface models were used. The atmo-

spheric forcings were prescribed. It is not obvious how the land surface-atmosphere

feedback would modify the sensitivity of surface processes to the representation of

rainfall interception (Kim and Entekhabi, 1998). Dolman and Gregory (1992) investi-

gated this issue using a 1-D version of the UKMO's 11-layer GCM with a simple land

surface scheme, and found that total evapotranspiration in their model is strongly

controlled by the radiation input and is rather insensitive to the representation of

rainfall interception. In their study, when the rain-covered fraction changes from 0.1

to 0.3, the total amount of evapotranspiration differs by only 1%. It appears that the

parameterization of rainfall sub-grid variability only affects the partitioning between

direct evaporation from the canopy storage and plant transpiration, but not the total

evapotranspiration.

In addition to the contradiction between the studies using off-line models and

those using coupled models, previous studies have been limited to the impact of sub-

grid variability on the surface hydrological processes. Its broader effects have not been

evaluated. Even if the total evapotranspiration remains the same, the incorrect par-

titioning between the evaporation and plant transpiration may still have a significant

impact on the atmosphere as well as the biosphere due to various feedback mecha-

nisms. In addition, no previous study has looked at the issue of sub-grid variability

in the context of a dynamic biosphere. Here, using the coupled biosphere-atmosphere

model ZonalBAM, we investigate the impact of rainfall sub-grid variability on mod-

eling the biosphere-atmosphere system over West Africa. We will demonstrate how,

despite the accurate simulation of total evapotranspiration, the errors in the repre-
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sentation of land surface hydrology propagate into the atmospheric and biospheric

simulations, and how it influences the biosphere-atmosphere equilibrium state when

vegetation dynamics is considered.

4.2 Relevant Model Details

Surface hydrological processes are the starting point for the broad impact of the

rainfall sub-grid variability on the simulated climate system. To help understand the

results of this study, here we describe how the surface hydrology is treated in the

model, adding more details to the description in Chapter 2.

The land surface module in IBIS includes a detailed description for the precip-

itation cascade. Rain falls over the upper vegetation canopy and part of it gets

intercepted, which contributes to the upper canopy storage. The throughfall from

the upper canopy, including the instantaneous throughfall and the slow canopy drip-

ping, falls over the lower canopy. After the canopy interception at the lower layer,

what reaches the ground is the drainage from the lower canopy. The intercepted

rainfall stays as free water on the vegetation canopy. Dripping and re-evaporation

reduce the water storage at both canopy layers.

The amount of water that reaches the ground is partitioned into three parts:

direct evaporation from surface puddles; surface runoff that discharges out of the

system; infiltration that recharges the water storage in the soil. Within the soil, water

movement between different layers is governed by gravity drainage and diffusion, with

three moisture sinks: direct evaporation, plant uptake (transpiration), and drainage

out of the bottom. Direct evaporation from the soil only occurs in the top soil layer.

Water uptake by plants from different soil layers depends on the rooting profiles.

The drainage from the bottom soil layer is modeled assuming gravity drainage and

neglecting interactions with groundwater aquifers.

Within the vegetation canopy, the major component of water vapor exchange

is the plant transpiration, which is strongly related to photosynthesis and stomatal

conductance. Plant stomata opens during photosynthesis to let C02 in. As a result,
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the stomata loses water to the ambient environment in the form of transpiration.

When part of the canopy becomes wet, sunlight can only reach part of the leaf surface.

As a result, photosynthesis is suppressed, which would correspondingly reduce the

stomatal conductance therefore the transpiration. The water supply for transpiration

is the plant uptake from the soil. Upon water stress, stomatal conductance decreases,

therefore the transpiration rate also decreases. When water stress becomes severe

enough, drought-deciduous plants shed their leaves to preserve water.

Although the land surface module in IBIS has detailed description of surface hy-

drology, it does not consider the impact of rainfall sub-grid variability. For example,

canopy interception (I) is estimated as a function of the vegetation density (repre-

sented by the single-sided leaf area index LAI) and does not depend on the sub-grid

distribution of rainfall:

I = Po(1 - exp(-LAI))

where Po is the precipitation rate predicted by the atmospheric model, which repre-

sents the rainfall average over each grid cell. For greater physical realism, as described

in Chapter 2, we modified the representation of canopy hydrology by incorporating

into the model an interception scheme (Section 2.3.2) which accounts for the spatial

variability in rainfall interception.

When incorporating the interception scheme, an approximation is made regarding

the representation of canopy hydrology in the presence of two vegetation layers. The

"rain" falling over the lower layer canopy is actually the drainage from the upper

layer. The "routing" effect of the upper-layer canopy will significantly modify the

"rain" distribution for the lower canopy. However, in the model, it is assumed that

both the parameter y and the form of probability distribution function for the lower-

layer canopy are the same as the upper-layer canopy. This assumption may cause

inaccuracy in regions with savannah-type vegetation (i.e., mixture of trees and grass),

but makes no difference over regions with tree-only or grass-only vegetation.
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4.3 Design of Experiments

Our study on the impact of rainfall sub-grid variability is based on two main experi-

ments, one labeled as variable and one uniform. In the variable case, the interception

scheme presented in section 2.3.2 is used; in the uniform case, the interception calcu-

lation of original IBIS described in Section 4.2 is used, which assumes uniform rainfall

distribution over each grid cell.

The model setup is the same as in Section 3.2, with the land-ocean boundary at

6N and SST fixed at its climatology. We first look at the case with static vegetation

- the role of vegetation dynamics will be addressed later. For the static vegetation

distribution, forest occupies the region between the coast and 12.5N, with rain forest

near the coast and drought-deciduous forest to the north; grassland extends from

12.5N to the desert border near 17.5N, with dense tall grass near the forest and short

grass near the desert. This vegetation condition is similar to, but slightly different

from, the observations in West Africa (Foley et al., 1996; Gornitz and NASA, 1985).

Reaching as far north as 12.5N, the drought-deciduous forest in the model covers

both the dry forest region and the savannah region of today's West Africa. As a

result, vegetation specified in the model is either forest or grassland, without the

mixture of trees and grasses. Therefore, the assumption that the "rainfall" sub-grid

distribution for the lower canopy is the same as the upper canopy does not affect our

experiments. Moreover, the larger forest-covered region makes the effect of rainfall

sub-grid variability more distinguishable since trees have a higher canopy capacity

than other vegetation forms.

Three years of integration is needed before the model reaches equilibrium. Results

from the fourth year of the simulation are presented in the following. Our interest in

this chapter is not how well each of the experiments reproduces the observed climate.

Instead, we focus on the simulation differences that result from the assumption of

uniform rainfall distribution. For the purpose of this study, we only concentrate on

the region of West Africa between 6N (the coast) and 20'N (desert)
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4.4 Analysis of Results

4.4.1 Main Results

Here the results are presented in the form of a comparison between the two experi-

ments: the variable experiment which considers the rainfall sub-grid variability, and

the uniform experiment which assumes uniform rainfall distribution within each grid

cell.

Results on surface hydrology are presented in Figure 4-1 (a-d). Figure 4-1 (a, b)

show the interception loss and transpiration respectively. The uniform case overesti-

mates the interception loss by more than 100%, and significantly underestimates the

plant transpiration over the forest region, which is qualitatively consistent with previ-

ous studies (e.g., Eltahir and Bras, 1993a,b). The difference over the grassland region

is not as significant. Figure 4-1c and 4-1d present the evapotranspiration and runoff,

respectively. Despite the dramatic difference in the partitioning between intercep-

tion loss and transpiration, the overall evapotranspiration shows negligible difference

over the forest region. Over the grassland region in the uniform case, an increase

of evapotranspiration is observed. Although the total evapotranspiration is rather

insensitive to the representation of rainfall interception, a significant difference is ob-

served in runoff. Runoff, which is up to 725 mm/year in the variable case, is almost

non-existent in the uniform case. Our results over the forest region, including the

overestimation of interception loss, underestimation of transpiration, and more im-

portantly, the low sensitivity of the total evapotranspiration, are consistent with the

findings of Dolman and Gregory (1992). It is important to note that the Dolman and

Gregory (1992) study also used a coupled land-atmosphere model. This agreement

suggests that the high sensitivity of total evapotranspiration to the representation of

rainfall interception found in studies using off-line land surface models may have to

do with the lack of atmospheric feedback.

The bias caused by neglecting the rainfall sub-grid variability is not limited to

the surface hydrological processes. It also affects the simulation of biospheric and

atmospheric processes to a great degree, as shown in Figure 4-1 (e,f). Figure 4-
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Figure 4-1: The comparison between the uniform case (dash line) and the variable
case (solid line) for: a) Interception loss; b) Transpiration; c) Evapotranspiration; d)
Total runoff; e) Precipitation; f) Net primary productivity.
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le presents precipitation as an example for the atmospheric climate, and Figure 4-

lf presents the net primary productivity (NPP) as an example for the biospheric

climate. Although the total evapotranspiration remains the same, comparison of the

precipitation between the two experiments shows a striking difference. Precipitation is

underestimated in the uniform case by up to 35% in the forest region, and significantly

overestimated in the grassland region. Correspondingly, in the biosphere, NPP is

underestimated in the forest region and overestimated in the grassland region.

In the following we focus on interpreting the results presented above, in par-

ticular, on understanding how errors in the representation of rainfall interception

propagate into the atmosphere and the biosphere although the total evapotranspi-

ration is correctly simulated. As shown by Figure 4-1 (e,f), the response of the

biosphere-atmosphere system differs between the forest region and the grassland re-

gion. Therefore these two regions are analyzed separately in the following.

4.4.2 Interpretation of Results for the Forest Region

To understand the impact of rainfall sub-grid variability, we start from the microme-

teorological processes within the vegetation canopy. When falling uniformly over the

entire grid cell, rainfall occurs in the form of drizzle in climate models with coarse

resolution. The fine rain drops tend to stay on the leaves. Therefore, the amount of

free water on the canopy, as well as the wet canopy area, increases. Similar to the

difference between land and ocean, the easily accessible canopy water favors a moister

and cooler environment within the canopy. Consequently, humidity of the air within

the canopy increases, and canopy temperatures, including the leaf temperature and

stem temperature, decrease. As an example, Figure 4-2a shows the fraction of the

wet leaf area on a typical day of August, which is larger in the uniform case due to

the extra wetting effect; the corresponding leaf temperature and canopy air humidity

on that same day are presented in Figure 4-2(b,c). Clearly, for the uniform case, the

canopy is cooler and the air within the canopy is moister.

The rate of evaporation ("E") from the intercepted water over a unit wet leaf area

is proportional to the moisture deficit Q, - Qa, where Q, is the saturation specific
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Figure 4-2: The comparison between the uniform case (dash line) and the variable
case (solid line) for the canopy condition on a typical day of August (the rainy season):
a) Fraction of the leaf area that is wet; b) Leaf temperature; c) Specific humidity of
the canopy air.
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humidity at the canopy temperature, and Qa is the specific humidity of the canopy

air. For the uniform case, both the lower temperature of the canopy and the moister

air within the canopy favor a smaller moisture deficit. As a result, "E" over a unit

wet leaf area is lower in the uniform case. However, in the uniform case, the wet leaf

area is larger. For example, the wetting fraction of the forest at 6'N is about 2.5%

for the variable case, but is more than 10% for the uniform case (Figure 4-2a). This

significant increase of wetness (by a factor of more than 3) dominates over the impact

of reduced moisture deficit, thus causing a higher interception loss in the uniform case

(Figure 4-la).

The rate of plant transpiration ("T") is proportional to the stomatal conductance

K, and the moisture deficit Qj - Qa, where Qj is the saturation specific humidity at

the leaf temperature, and Qa is the specific humidity of the canopy air. Similar to the

effect on "E", the canopy environment in the uniform case favors a smaller moisture

deficit. At the same time, due to the excessive wetness in the uniform case, less leaf

area is available for the absorption of photons. As a result, the photosynthesis rate

decreases, which causes a decrease in plant stomatal conductance K,. The reductions

in both Qj - Qa and K, contribute to the lower transpiration in the uniform case,

as observed in Figure 4-1b.

The total evapotranspiration has three components: interception loss, transpi-

ration, and soil evaporation. Over the forest region, soil evaporation is negligible.

Interception loss and transpiration count for most of the evapotranspiration. The

increase of interception loss and the decrease of transpiration compensate for each

other, thus bringing the total evapotranspiration for the uniform case close to the

variable case (Figure 4-2c). This mechanism is described by the flow chart in Fig-

ure 4-3. Here we would like to emphasize that it is physically possible for a climate

model to have severe errors in the description of surface hydrology but still get ac-

curate simulation of the total evapotranspiration. What makes this issue critical is

the fact that these errors are not limited to the land surface. Instead, they propagate

into the atmosphere and the biosphere through feedback mechanisms as analyzed in

the following.
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Figure 4-3: A mechanism through which the neglect of sub-grid variability influ-
ences the simulation of surface hydrology. The shortcut between the "larger leaf area
covered by water" and the "less transpiration" is through the photosynthesis and
stomatal conductance.
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In the uniform case, the higher humidity of the canopy air tends to increase the

rate of water vapor flux, thus having a moistening effect for the atmosphere above;

the lower vegetation temperature tends to reduce the sensible heat flux, thus causing

a cooling effect for the atmosphere above. As the low-level atmosphere gets moister

and cooler, more low-level clouds will form. Figure 4-4 presents the fractional cover

of low-level clouds during August. The increase of low-level clouds reduces not only

Low-Level Cloud Cover

50

4 0 - - - - - - - - - - - - - .- . -

2 0 - - - - - - - - - - -.-.

1 0 . . . . . . . . . . . .

0
1ON 15N 20N

Latitude

Figure 4-4: The fractional cover of low-level clouds in the uniform case (dash line)
and the variable case (solid line).

the incoming solar radiation at the land surface, but also, the surface net radiation

(Slingo, 1990; Klein and Hartmann, 1993; Baker, 1997), as shown in Figure 4-5(a,b).

This cloud feedback further enhances the sensible heat flux reduction initiated by

the reduced canopy temperature. It also tends to suppress the evapotranspiration,

which may offset the increase initiated by the overestimated canopy air humidity. As

a result, the sensible heat flux in the uniform case is lower, but very little difference

in the latent heat flux is observed (Figure 4-5c). Therefore, the total energy flux from

the land surface to the atmosphere is lower in the uniform case.

In the uniform case, the lower energy flux from the land surface to the atmospheric

boundary layer tends to stabilize the atmosphere. As a result, the intensity of local

atmospheric convection decreases, and so does the precipitation falling to the surface
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Figure 4-5: The comparison between the uniform case (dash line) and the variable
case (solid line) for energy fluxes at the surface: a) Incoming solar radiation; b) Net
radiation; c) Sensible heat flux (plain line) and latent heat flux (line with pentagram).
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(Figure 4-1e). Since the evapotranspiration remains the same, the reduction of pre-

cipitation signals a decrease of moisture convergence due to changes in the large-scale

circulation which is, in this case, the West African monsoon circulation. As demon-

strated before, the assumption of uniform rainfall distribution causes underestimation

of total surface energy flux, which is the energy supply for the atmospheric boundary

layer. This would tent to reduce the moist static energy supplied to the atmospheric

boundary layer. At the same time, the depth of the boundary layer over forest would

be smaller in the uniform case due to the reduction in sensible heat flux (Figure 4-5).

This effect would tend to increase the magnitude of the moist static energy per unit

depth. It seems that the effect of the decrease in the total flux of energy is larger than

the effect of the change in boundary layer depth. Therefore, the boundary layer moist

static energy and entropy over the forest region are underestimated (Eltahir 1996).

As a result, in the uniform case, the boundary layer entropy gradient from the ocean

toward the land is smaller, and the peak of the boundary layer entropy moves north-

ward (Figure 4-6). During the monsoon season, such differences favor a monsoon

Boundary Layer 0 e
330

3 2 8 . . . . . . . . . . .. . . .. . . .

326 . . . . . .

~3 2 4 .. . . . . . .. . . .. . . .. . .

322 -- -.-- - ---

5S EQ 5N 1ON 15N 20N
Latitude

Figure 4-6: The equivalent potential temperature 0e for the uniform case (dash line)
and the variable case (solid line), averaged between 1000mb-800mb. 0e can be viewed
as an index of the boundary layer entropy : E = Cp1 ,e + const.

circulation that is weaker (Eltahir and Gong 1996) but penetrates further inland.

This is clearly demonstrated by Figures 4-7 and 4-8. According to Figure 4-7(a,b),
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the low-level meridional wind across the coast is weaker in the uniform case than in

the variable case; at the same time, as shown in Figure 4-8(a,b), the rising motion

over the land is weaker in the uniform case, and its peak occurs further northward.

These changes in the monsoon circulation cause a decrease of rainfall over the forest

region in the south. In the land surface water budget, the precipitation reduction is

balanced by the runoff decrease (Figure 4-1d).

The difference in NPP between the uniform case and the variable case (Figure

4-1f) is closely related to two factors: leaf wetting and clouds. As mentioned above,

in the uniform case, the excessive canopy wetness leaves less area available for pho-

tosynthesis. At the same time, the increase of low-level clouds reduces the incoming

solar radiation, therefore reduces the photosynthetically active radiation. Both of

these two factors cause lower photosynthesis rate, thus lower NPP.

In addition to the above mentioned effects, another important mechanism has

to do with the water availability in the root zone. Over the forest region in the

uniform case, both the over-estimation of interception loss and the underestimation

of precipitation reduce the water availability in the root zone. The resulting water

stress will further suppress the plant photosynthesis and transpiration. However,

this effect may not be significant since the plant growth over forest region is more

frequently limited by light availability instead of water availability.

The main mechanisms involved in the above interpretation are summarized by

Figure 4-9.

109



more water intercepted by the canopy

less throughfall

larger leaf area covered by water

moister air
within the canopy

lower
canopy temperature

less leaf area for
photosynthesis

LESS TRANSPIRATION% LESS NPP

More Low-Level Clouds

4' Less PAR

L'ESS PRECIPITATION Drier Soil

Figure 4-9: Mechanisms through which the neglect of the sub-grid rainfall
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4.4.3 Interpretation of Results for the Grassland Region

The physical mechanisms responsible for the error propagation over the forest region

are also valid over the grassland region. However, these local factors may not play the

dominant role in the grassland region, according to Figure 4-1(e,f). Climate over West

Africa is under the influence of the West African monsoon circulation. As demon-

strated in Figures 4-7 and 4-8, the assumption of uniform rainfall distribution causes

a monsoon circulation that is weaker but penetrates further inland, which results in

a northward expansion of the monsoon rain belt at the expense of a rainfall decrease

in the south. Therefore, over the grassland in the north, rainfall is overestimated in

the uniform case (Figure 4-le). As a response to this excessive water availability, the

total evapotranspiration and NPP are all overestimated (Figure 4-1).

4.5 Role of Cloud Feedback in Error Propagation

Analyses in section 4.4 suggest that the cloud feedback plays an important role in

propagating the errors associated with the misrepresentation of rainfall interception.

To further validate the above interpretation, here we investigate the sensitivity of

the model results to cloud feedback by conducting two experiments, one uniform and

one variable. These two experiments are the same as their counterparts described in

Section 4.3 but without the cloud feedback, i.e., the cloud cover for the experiments

of this section is prescribed, instead of predicted by the model. Here the fractional

cloud cover in both experiments are fixed at the same value, which is derived from

the seasonal cycle of the cloud cover predicted by the variable experiment in Section

4.3.

The role of cloud feedback in error propagation can be demonstrated from com-

parisons between experiments with prescribed clouds (in this section) and those with

interactive clouds (in Section 4.3). Figure 4-10(a,b) presents the results for the inter-

ception loss and transpiration at the same scale as Figure 4-1(a,b); Figure 4-10(c,d)

presents the results for the precipitation and NPP at the same scale as Figure 4-

1(e,f). Although a significant difference between the uniform case and the variable

111



a) Interception Loss

-.. . ... . \ -. . . . . . . . .

.............
-, - - - --t- -- ----

- -- - - -N -

1ON 15N

b) Transpiration

E
E

1200

900

600

300

0
20N

Latitude

c) Precipitation

1ON 15N
Latitude

1.5

Ca

0 C "1
E

0.5
a-
z

0
20N

1ON 15N
Latitude

d) NPP

1ON 15N
Latitude

Figure 4-10: The comparison between the uniform case (dash line) and the variable
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case still exists in the partition of evapotranspiration between interception loss and

transpiration, the differences in precipitation as well as in NPP are much smaller

when no cloud feedback is allowed (Figure 4-10(c,d), compared with Figure 4-1(e,f)).

The cloud feedback is responsible for most of the precipitation difference between the

uniform case and the variable case shown in Figure 4-le. Of the difference in NPP in

Figure 4-1f, about one half is attributed to the cloud feedback.

4.6 Error Propagation via Vegetation Dynamics

In the above simulations, a static vegetation distribution was used and the effect of

vegetation dynamics was not considered. However, since the representation of rainfall

sub-grid variability affects the estimation of the net primary productivity, further

error propagation is expected when vegetation dynamics are included. To address

this issue, two experiments are designed, one uniform and one variable, which are

the same as the experiments described in Section 4.3 but with dynamic vegetation.

The vegetation distribution described in Section 4.3 is used as the initial vegetation

condition. The synchronously coupled biosphere-atmosphere system is then allowed

to evolve towards its equilibrium state.

It takes 3-4 decades for the simulations in both experiments to reach an equi-

librium. Here we use the leaf area index, precipitation, and NPP to represent the

equilibrium state. Figure 4-11a presents the growing-season leaf area index (LAI)

for trees at the equilibrium in both the uniform (dash line) and the variable (solid

line) experiments, compared with the initial condition (dot line). A similar compar-

ison is made for herbaceous plants in Figure 4-11b. In general, trees in the variable

experiment grow denser, but become less dense in the uniform experiment. In con-

trast, the herbaceous plants in the uniform case are significantly denser than the

initial condition. These vegetation changes are associated with other changes in the

biosphere-atmosphere system. For example, Figure 4-11(c,d) show the precipitation

and NPP at equilibrium in both the uniform and the variable experiments. Com-

paring Figure 4-11(cd) with Figure 4-1(e,f) suggests that the differences in both the
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Figure 4-11: Comparison of the equilibrium state between the uniform case (dash
line) and the variable case (solid line), a) Leaf area index for the upper canopy; b)
Leaf area index for the lower canopy; c) Precipitation; d) Net primary productivity.
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precipitation and NPP between the uniform case and the variable case are enhanced

by vegetation dynamics, especially over the grassland region. The bias caused by ne-

glecting the rainfall sub-grid variability drives the biosphere-atmosphere system into

a different equilibrium state.

4.7 Conclusions

This chapter carries out a case study on the impact of rainfall sub-grid variability on

climate modeling using a coupled biosphere-atmosphere model. This study provides

evidence for the need for great physical realism in modeling the coupled biosphere-

atmosphere-ocean system. One important finding is that a climate model may suc-

ceed in accurately simulating the total evapotranspiration while misrepresenting the

canopy hydrology, and the bias in the canopy hydrology would introduce significant

errors in the broad aspects of the biosphere-atmosphere system. Several conclusions

can be drawn from our results:

1) Neglecting the rainfall sub-grid variability may not cause noticeable bias in

the simulation of total evapotranspiration. However, interception loss is significantly

overestimated and transpiration is significantly underestimated. At the same time,

runoff is significantly underestimated.

2) Even though the total evapotranspiration remains the same, the error in its

partitioning between interception loss and transpiration causes significant differences

in the atmospheric processes: moister atmosphere, more low-level clouds, smaller

sensible heat flux, and weaker monsoon circulation. These errors result in an under-

estimation of precipitation over the forest region in West Africa. However, over the

grassland region, an overestimation of precipitation results, because the local factors

associated with the representation of sub-grid rainfall variability are dominated by

large-scale factors involving gradient of the boundary layer entropy.

3) Among biospheric processes, NPP for the forest is significantly underestimated

when the rainfall sub-grid variability is neglected. Over the grassland region where

plant growth is limited by water availability, NPP is overestimated due to the over-
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estimation of precipitation.

4) The low-level cloud feedback plays an important role in propagating the errors

in surface hydrology to both atmospheric processes and biospheric processes.

5) Vegetation dynamics further propagate the resultant errors by changing the

state of the biosphere, which then feeds back to the atmosphere and eventually leads

to a different biosphere-atmosphere equilibrium. This resultant equilibrium features

denser vegetation in the grassland region but less dense vegetation in the forest region.

While previous studies focused on the impact of the sub-grid variability on the

simulation of land surface processes, the investigation of our study extends to the

broad aspects of climate modeling including the simulation of the biosphere, the at-

mosphere, and the biosphere-atmosphere equilibrium. In addition, a considerable

effort has been devoted to understanding the mechanisms of error propagation. How-

ever, at this stage we only focus on the sub-grid variability of rainfall interception and

did not consider the importance of land surface heterogeneity (Koster and Suarez,

1992; Seth et al., 1994; Giorgi and Avissar, 1997; Giorgi, 1997). Also, there has been

no consideration for the impact of rainfall sub-grid variability on the infiltration and

runoff generation. The lack of treatment for these sub-grid land surface processes

and properties may have an impact on the general applicability of the results from

this study. While a full study on the heterogeneity of land surface properties remains

a topic of future research, a simple mosaic approach for the representation of land

surface heterogeneity is adopted in Chapter 7 of this thesis.
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Part II

Two-Way Biosphere- Atmosphere

Interactions
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This part of the study uses the coupled biosphere-atmosphere model

developed in Part I, and focuses on interpreting the observed characteris-

tics of the West African climate, including the dominance of low-frequency

variability and the persistence of the current Sahel drought. Chapter 5

explores the multiple-equilibrium nature of the regional climate system

over West Africa, which provides the theoretical basis for further studies

in this part; Chapter 6 investigates the physical mechanisms for the ob-

served low-frequency rainfall variability over West Africa; Chapter 7 stud-

ies the potential causes for the Sahel drought in the twentieth century.

The most fundamental finding is that the two-way biosphere-atmosphere

interactions involving ecosystem dynamics can act as an important physi-

cal mechanism for both the low-frequency variability of the Sahel rainfall

and the persistence of the current drought.
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Chapter 5

Multiple Climate Equilibria and

Climate Transition

This chapter studies the behavior of the biosphere-atmosphere system which includes

a natural dynamic ecosystem. We first develop a theoretical understanding of the two-

way biosphere-atmosphere feedback by considering the role of ecosystem dynamics,

and describe the conditions under which the climate system may have multiple equi-

librium states coexisting under the same precessional forcing. We then demonstrate

the multiple climate equilibria and climate transitions between different equilibria

using the coupled biosphere-atmosphere model ZonalBAM which was introduced and

tested in Part I. The multiple-equilibrium behavior of this regional climate system

provides a theoretical basis for understanding the natural climate variability over

West Africa.

5.1 Theory and Hypothesis

Vegetation plays a prominent role in the exchange of energy, moisture, momentum,

and carbon between the land surface and the atmosphere. Removal of vegetation

modifies the local energy balance and the local water cycle. According to Eltahir

(1996), the deforestation-induced reduction in net radiation causes a decrease in the

total heat flux from the surface, which is the source of energy and entropy for the
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atmospheric boundary layer; on the other hand, the degradation of vegetation causes

an increase of the surface temperature therefore an increase of the sensible heat flux,

which is associated with a larger boundary layer depth. As a result, the moist static

energy within a unit depth of the boundary layer decreases, so does the boundary

layer entropy (BLE). The lower BLE over the land favors less local convective rainfall,

a weaker monsoon circulation, and less monsoon rainfall over West Africa (Eltahir

and Gong, 1996). Therefore, a drier climate results following vegetation degradation.

However, this response does not necessarily point to a positive feedback that was

frequently suggested by previous studies (see the review in Chapter 1). Whether a

feedback is positive or negative depends not only on the response of the atmospheric

climate to vegetation changes, but more importantly, on the response of vegetation to

the induced change in the atmospheric climate. Here a feedback is defined as negative

if it moderates the perturbation, and as positive if it enhances the perturbation.

In moist regions such as the tropical rain forest, it is often the energy availability,

instead of the water availability, that limits the plant growth. Therefore, a rainfall

decrease within a certain range has negligible effect in limiting the plant growth. Even

in arid regions such as the Sahel where plant growth is limited by water availabil-

ity, a rainfall reduction caused by desertification still does not necessarily trigger a

positive feedback. With the degradation of vegetation, the water demand of the veg-

etation community would also decrease. Most likely, rainfall following the vegetation

degradation may not fulfill the water requirement to maintain the pre-perturbation

vegetation. However, it may still be enough for the maintenance and further growth of

the post-perturbation vegetation. Under this circumstance, the biosphere-atmosphere

feedback will be negative, and will drive the system towards its pre-perturbation state,

although sometimes it may not fully recover. If the reduced rainfall cannot support

the post-perturbation vegetation, the biosphere-atmosphere feedback will be positive,

and the vegetation degradation will be enhanced therefore self-perpetuating.

Based on the above analysis, when a perturbation occurs to a biosphere-atmosphere

system at equilibrium, the system may respond in three qualitatively different ways: a

negative feedback leading to a full recovery; a positive feedback leading to a perturba-
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tion enhancement; a negative feedback leading to a partial recovery. When a positive

feedback takes place, or when a negative feedback only leads to a partial recovery, the

biosphere-atmosphere system will develop into a different equilibrium state. There-

fore, we propose that the biosphere-atmosphere system can have multiple equilibrium

states coexisting under the same precessional forcing, with the two-way biosphere-

atmosphere feedback acting as the mechanism for both the climate persistence at one

equilibrium and the climate transition towards another.

A system with multiple equilibria can be described using the example of a ball

moving on a simple landscape, as shown in Figure 5-1. Here the full circle represents

an equilibrium climate system, and the shaded circle marks the extent of the perturba-

tion imposed on the system. When a perturbation occurs, the response of the system

depends on both the perturbation magnitude and the status of the post-perturbation

system relative to its neighboring equilibria. With perturbation of increasing magni-

tude, the system falls into different response zones in sequence, as shown in case "a",

"b", and "c" of Figure 5-1, where "a", "b", and "c" respectively represent the case

of a full recovery, a perturbation enhancement, and a partial recovery. The climate

system can remain around one equilibrium under the influence of small perturbations

(i.e., climate persistence) until a large enough perturbation leads the system towards

a different equilibrium (i.e., climate transition). It is worth emphasizing that, when

the perturbation is large enough, the transition to a different equilibrium may take

place via a negative feedback which leads to a partial recovery.

This hypothesis not only applies to anthropogenic vegetation perturbations, it

also applies to natural variations in the large-scale atmospheric or oceanic processes.

The biosphere-atmosphere system responds to both types of disturbances in similar

ways. A large disturbance may develop into a persistent anomaly, while a small

disturbance may be wiped out through the two-way feedback between the biosphere

and the atmosphere.

The possibility of multiple equilibria has been suggested by several previous studies

(e.g., Nicholson, 1989; Entekhabi et al., 1992), but lacked a clear demonstration prior

to this study. A series of studies on this topic were carried out by Claussen (1997,
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a)

another control
equilibrium equilibrium

Figure 5-1: The movement of a ball on a simple landscape, as an analogy of the climate
system with multiple equilibria. The three cases represent the system's responses to
different perturbations: a) small perturbations: a negative feedback leads to a full
recovery; b) larger perturbations: a positive feedback leads to a new equilibrium; c)
perturbations even larger: a negative feedback leads to a new equilibrium.
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1998), who used the asynchronously coupled ECHAM-BIOME model to investigate

the sensitivity of the model's equilibrium to its initial vegetation conditions. The

ECHAM-BIOME model found two equilibrium solutions in North Africa and Central

East Asia. However, as pointed out in Chapter 1, BIOME is an equilibrium vegetation

model which cannot simulate ecosystem dynamics, and the coupling between ECHAM

and BIOME is asynchronous. These two limitations make it difficult for the Claussen

(1997, 1998) study to address the issue of multiple equilibria which is closely related

to the synchronous biosphere-atmosphere coupling as well as ecosystem dynamics.

Moreover, using an equilibrium vegetation model such as BIOME, it is impossible to

address whether and how the climate can actually make a transition between different

equilibria. Here, we study the topic of multiple equilibria using the newly developed

model ZonalBAM, which is a synchronously coupled biosphere-atmosphere model

and includes explicit representation of ecosystem dynamics. Section 5.2 presents the

sensitivity of the coupled biosphere-atmosphere system to initial conditions; Section

5.3 demonstrates the existence of multiple climate equilibria and the possibility of

climate transitions by studying the resilience of the coupled biosphere-atmosphere

system with respect to perturbations.

5.2 Sensitivity of the Biosphere-Atmosphere Sys-

tem to Initial Conditions

5.2.1 Experiments Design

One necessary condition for a system to have multiple equilibria is its sensitivity to

initial conditions. Using ZonalBAM, experiments are carried out to test the sensitivity

of the synchronously coupled biosphere-atmosphere system to its initial vegetation

distribution. First, for the highest sensitivity, the two extremes of initial vegetation

distributions are considered: a West Africa uniformly covered by rain forest and a

West Africa uniformly covered by desert. Second, an initial vegetation distribution

similar to today's condition is also considered.
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In the sensitivity experiments, the land-ocean boundary is set at 60 N, with land

in the north and ocean in the south. The Atlantic sea surface temperature is fixed

at its climatology (1950-1979) (Reynolds and Smith, 1994), averaged over 100W -

10'E. Since a zonally symmetric model cannot correctly simulate the atmospheric

circulation in mid-latitudes and the related biosphere-atmosphere feedback as well,

we only apply vegetation dynamics to the region of 6'N - 27'N. Under the extreme

initial vegetation distributions considered here, the simulated climate is expected to

be very different from the current climate not only within but also beyond the tropics.

Therefore, we choose not to fix the land surface fluxes and other properties beyond

the tropics at their climatological values. Instead, here we fix the vegetation north of

27'N at short grass and let the model compute the surface fluxes and temperature.

5.2.2 Results Analysis

In each of the sensitivity experiments, initialized with different vegetation distribu-

tions, the coupled model ZonalBAM is run until it reaches equilibrium. For all the

cases considered here, it takes several decades for the model to reach an equilibrium.

Comparison between the final equilibrium states shows that the modeled biosphere-

atmosphere system is indeed sensitive to its initial conditions.

Equilibria at the Extreme

When starting with forest everywhere, the coupled system evolves into an equilibrium

(labeled as F. L C.) with trees covering most of West Africa and grass covering a narrow

band in the north (Figure 5-2a). When starting with desert everywhere, the coupled

system develops into an equilibrium (labeled as D.L C.) whose vegetation ranges from

tall grass near the coast to short grass and desert in the north (Figure 5-2b). At

equilibrium F.I. C., woody plants reach as far north as 250 N, and no desert condition

exists in West Africa; at equilibrium D.I.C., the southern boundary of the desert is

located south of 150N, and no woody plants get established in West Africa. Consistent

with the extreme difference in their vegetation distributions, equilibrium F.I.C. is
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Figure 5-2: Vegetation distribution for a) Equilibrium F.I. C.; and b) Equilibrium
D.I. C.. F. LC. is the shortening of "Forest Initial Condition", and D.I. C. stands for
"Desert Initial Condition". The vegetation types include VI (rain forest), V2 (dry
forest), V3 (woodland), V4 (tall grass), V5 (short grass), and V6 (desert).
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Figure 5-3: Comparison between equilibrium F.I. C. and equilibrium D.I. C.: a) An-
nual precipitation; b) NPP.
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significantly wetter and more productive than equilibrium D. I. C., as indicated by the

distribution of the annual rainfall (Figure 5-3a) and NPP (Figure 5-3b). Due to the

extreme nature of the two initial conditions, it is expected that equilibria F.I. C. and

D.I. C. respectively represent the wettest (the most productive) and driest (the least

productive) equilibria of the natural biosphere-atmosphere system under the current

precessional forcing.

In the following we look in more detail at the differences between the two extreme

equilibria. As shown by the rainfall seasonal cycle in Figure 5-4, the south-north ex-

tent of the rain belt of equilibrium F.I. C. is about twice as wide as that of equilibrium

D.I. C., which occurs mainly in the form of a northward expansion of the rain belt.

During the dry season, the isohyet of 1-mm/day rainfall at equilibrium D.I. C is lo-

cated at 6'N, while the 1-mm/day rainfall reaches as far north as 16'N at equilibrium

F.I.C. However, no significant difference is observed in the magnitude of the peak

rainfall. During the rainy season when the monsoon circulation develops, the mag-

nitude of the peak rainfall increases from 5.5mm/day at equilibrium D.I. C. to about

9.0mm/day at equilibrium F.I.C., and the location of the peak rainfall moves from

10'N to about 22'N. In addition, the 1-mm/day rainfall isohyet of equilibrium F.I. C.

reaches as far north as 36 0 N, about 20' northward from that of the equilibrium D.I. C..

During the dry season, the differences in rainfall distribution mainly reflect the differ-

ences in evapotranspiration associated with the vegetation distribution (Figure 5-5).

However, during the active monsoon season, the differences in rainfall distribution

also reflect the differences in the intensity of the monsoon circulation between the

two equilibria.

We compare the monsoon circulation between the two cases taking the peak mon-

soon season August as an example. As shown in Figure 5-6, the meridional wind (at

both low levels and high levels) of equilibrium F.I. C. during August is more than

twice as strong as that of equilibrium D. I. C., which suggests that the monsoon cir-

culation at equilibrium F.I.C. is much stronger (Figure 5-6). Correspondingly, for

equilibrium F.I. C., the rising branch of the monsoon circulation covers the whole

West Africa and centers around 200 N; for equilibrium D.I.C., this rising branch is
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Figure 5-4: Seasonal cycle of rainfall, in mm/day: a) Equilibrium F.I. C.; b) Equilib-
rium D.I.C..
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Figure 5-6: The meridional wind during the peak monsoon season August, in m/s:
a) Equilibrium F. I. C.; b) Equilibrium D. I. C..
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Figure 5-7: The vertical velocity during the peak monsoon season August, in Pa/s:
a) Equilibrium F. L C.; b) Equilibrium D. L C..
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a) Specific Humidity q (g/kg): F.I.C.
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Figure 5-8: The specific humidity during the peak monsoon season August, in g/kg:
a) Equilibrium F.L C.; b) Equilibrium D.I. C..
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a) Equivalent Potential Temperature
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Figure 5-9: The equivalent potential temperature 0e during the monsoon season Au-
gust, in K. a) Equilibrium F. .C.; b) Equilibrium D. I. C.. 0e is an index for the moist
entropy E: E = CPOe + const.
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located more southward, and only covers the region near the coast (Figure 5-7). Al-

though the rising motion at the center of the rising branch is slower for equilibrium

F. I. C., it still generates more precipitation due to its higher content of atmospheric

moisture (Figure 5-8). According to Eltahir and Gong (1996), the monsoon circu-

lation in West Africa is driven by the gradient of the boundary layer entropy. The

differences in monsoon intensity between the two equilibria presented in Figure 5-6

and 5-7 are consistent with their entropy distribution (Figure 5-9), which shows that

the gradient of the boundary layer entropy from the ocean to the land for equilibrium

F.I. C. is much larger.

For equilibrium F. I. C., the dense vegetation all over West Africa provides the at-

mosphere with abundant water vapor supply in the form of evapotranspiration; at the

same time, the strong monsoon circulation brings the moisture-abundant air from the

ocean inland, which also increases the atmospheric humidity. While the latter is only

effective during the monsoon season, the moistening effect due to evapotranspiration

takes place throughout the year. As a result, as shown in Figure 5-10, the near-surface

atmosphere at equilibrium F. I. C. is significantly moister than equilibrium D. I. C. all

over West Africa and during the whole year.

Figure 5-11 presents the comparison of surface temperature between the two ex-

treme equilibria. Equilibrium F.I. C. is generally warmer than equilibrium D.I. C..

However, a cooling of equilibrium F.I. C. is observed during the time and within the

region of intense evapotranspiration, which moves gradually from the coast region

northward from spring to summer. In general, denser vegetation favors higher net

radiation at the surface, which tends to warm up the land surface; at the same time,

the higher evapotranspiration associated with the denser vegetation has a cooling

impact. The change of the surface temperature associated with vegetation changes

depends on the balance between these two opposite effects. In a case of vegetation

increase, the warming effect may be dominant during the dry season when there is no

significant evapotranspiration, while the cooling effect may become dominant during

the rainy season when the evapotranspiration is intense. The temperature compari-

son in Figure 5-11 shows this general trend. The response of surface temperature to
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vegetation differences will be discussed in more detail in Section 5.3.

A Midway Equilibrium

Due to the extreme nature of their initial conditions, equilibria F.L C. and D.I. C.

respectively represent the wettest (the most productive) equilibrium and driest (the

least productive) equilibrium of the natural biosphere-atmosphere system under the

current precessional forcing. Other equilibria of the climate system will most likely

fall in-between. To give an example for a midway equilibrium, we consider an initial

vegetation distribution similar to today's observation: forest in the south, desert in

the north, with savannah and grassland in between. Several experiments are carried

out, with initial vegetation ranging from slightly thinner to slightly denser than the

current condition.

Despite the differences in their initial vegetation distribution, within two to three

decades, all the experiments converge into the same equilibrium state. The vegeta-

tion of this equilibrium (Figure 5-12), ranging from forest near the coast to grassland

which borders the desert around 15'N, falls in between the two extremes F.I. C. and

D.I. C. (Figure 5-2). This is also true for the precipitation and net primary productiv-

ity. Figure 5-13 shows that, in general, this midway equilibrium is wetter and more

productive than equilibrium D.I. C., but drier and less productive than equilibrium

F.I.C..

As shown in Figure 5-13, the statement that other equilibria would fall between

the two extremes F.I. C. and D.L C. only holds at the continental scale. The midway

equilibrium presented here provides an example that this regional climate system can

develop an equilibrium which is slightly wetter than equilibrium F.I. C. in a small

sub-region but much drier in most of West Africa. However, at the continental scale,

equilibrium F.I. C. is by far the wettest and the most productive.
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Figure 5-12: Vegetation distribution of a midway equilibrium. This equilibrium is
derived by initializing the biosphere-atmosphere model with a vegetation distribution
close to the current observation.
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5.2.3 Summary

This section focuses on the sensitivity of the biosphere-atmosphere system to initial

conditions. Our results support the conclusion that the coupled biosphere-atmosphere

system is sensitive to its initial vegetation distribution. Depending on its initial

condition, the coupled biosphere-atmosphere model has multiple equilibrium states

coexisting under the same precessional forcing.

When initialized with an all-forest West Africa, the biosphere-atmosphere model

evolves into an equilibrium with healthy vegetation cover all over West Africa; when

initialized with an all-desert West Africa, an arid equilibrium results, which features

grassland near the coast and desert condition over a large portion of West Africa.

These two distinct equilibria represent the most productive (wettest) scenario and

the least productive (driest) scenario of the biosphere-atmosphere equilibria over that

region. Compared with the arid equilibrium, the equilibrium at the wet end features

a northward expansion of the rain belt, more effective evapotranspiration, a stronger

monsoon circulation, and a moister atmosphere. Both the biospheric climate and the

atmospheric climate for other equilibria would most likely fall in between these two

extremes.

More equilibria can be explored by dramatically changing the vegetation initial

conditions. However, the purpose of this study is not to explore every single equilib-

rium of the coupled model. Instead, the objective here is to show that the coupled

biosphere-atmosphere system is indeed sensitive to its initial conditions.
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5.3 Resilience of the Biosphere-Atmosphere

System

5.3.1 Introduction

Theoretically, the demonstrated sensitivity of the model equilibrium to initial vege-

tation distribution suggests the existence of multiple equilibria. However, it is not

obvious whether the transition between different equilibria is physically possible. If

the regional climate could not evolve from one equilibrium to another under the same

precessional forcing within a reasonable time, the existence of multiple equilibria

would be practically irrelevant to the observed climate variability over West Africa.

To address the issue of climate transition between different equilibria, here we focus

on the equilibria that are close to today's climate, and investigate the resilience of the

biosphere-atmosphere system with respect to different types of perturbations using

ZonalBAM. The model setup is the same as in Section 3.3, which is different from

Section 5.2 in the assumption regarding the mid-latitudes. In particular, here the

land surface fluxes and other properties beyond the tropics are fixed at their clima-

tology based on NCEP re-analysis data so that the simulated climate system is close

to its current state.

Used as the control equilibrium here is the "close-to-current" equilibrium found in

Section 3.3, which is derived from 40 years of simulation using ZonalBAM initialized

with today's land surface condition. Figure 5-14 shows the annual rainfall and net

primary productivity (NPP) of this equilibrium. As shown in Section 3.3, this control

equilibrium is close to, but slightly wetter and greener than, today's climate.

With respect to the control equilibrium, major land surface changes of different

type and magnitude are added to the system in the 41st year of the simulation.

Our study focuses on the impact of non-permanent perturbations - a perturbation

takes place during the 41st year, then the landscape is allowed to evolve naturally

through the two-way biosphere-atmosphere interactions. Three different types of

perturbations are considered: deforestation, desertification, and irrigation. Here the
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Figure 5-14: Precipitation (solid line with open circles) and NPP (solid line with
hexagrams) at the control equilibrium state. This equilibrium is derived by starting
the model with a vegetation distribution close to today's condition.

deforestation and desertification take place as a uniform thinning instead of a mosaic

exposure of bare soil. Similarly, the effect of irrigation is simulated by a uniform

increase of vegetation density.

According to the theoretical analysis in Section 5.1, climate transitions between

different equilibria may take place as a response of the coupled biosphere-atmosphere

system to perturbations. In the following, we demonstrate both the existence of

multiple climate equilibria and the possibility of climate transitions using results of

the perturbation experiments.

5.3.2 Deforestation

Deforestation is imposed to the forest and woodland region (6'N - 12.5'N) of the

control equilibrium. A group of experiments have been performed, with deforestation

ranging from mild selective logging (tree thinning) to forest clearing (the most severe

form of deforestation). During the early stage of succession, in all these deforesta-

tion experiments, major precipitation reduction takes place. However, the biosphere-
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atmosphere system can always fully recover from the deforestation perturbation. Here

the case of forest clearing is presented as an example. In this experiment, a clear cut

removes all the tree biomass over the whole forest and woodland region, leaving be-

hind only the sparse ground vegetation that usually grows during the process of tree

clearing.

Figure 5-15a shows the distribution of annual precipitation over West Africa before

and after the clearing; Figure 5-15b and 5-15c present the growing season LAI for

the upper and lower vegetation canopy, respectively. In the first year following the

perturbation, rainfall over the perturbation zone decreases by 30-40% (Figure 5-15a).

However, the post-perturbation rainfall is still as high as 1000-1500 mm/year, which

is more than enough for the herbaceous ground vegetation to grow and prevail. As

shown in Figure 5-15c, the sparse herbaceous vegetation becomes overwhelmingly

dense within one year after the forest clearing. The quick colonization by herbaceous

plants following a large-scale clear cut is consistent with ecological observations in the

tropics. "Succession in the wet tropical lowlands usually starts with rapid soil coverage

by a mixture of weedy herbaceous plants and fast growing vines" (Ewel, 1983). These

dense herbaceous plants remain as the dominant vegetation for years to decades until

trees eventually take over (Figure 5-15b,c). Interestingly, the grassland region north of

the perturbation zone enjoyed a very wet period (Figure 5-15a) after the establishment

of dense herbaceous plants in the deforested region and before the eventual take-over

by woody plants. Correspondingly, the vegetation growth over the grassland region

is enhanced during that period, as shown by the increase of growing season LAI in

Figure 5-15c. After the recovery of the upper canopy over the perturbation zone,

rainfall over the entire domain returns to its pre-perturbation level (Figure 5-15a).

The time it takes for the upper canopy to fully recover ranges from one decade

near the coast to four decades at the northern boundary of the perturbation zone.

Here the recovery of the upper canopy is measured using upper canopy LAI. To avoid

confusion, it is worth pointing out that although the tree LAI and NPP reaches the

pre-perturbation level within years after the selective logging and within decades after

a clear cut, it takes much longer for the carbon storage to recover due to the slow
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Figure 5-15: Evolution of the biosphere-atmosphere system before and after a forest
clearing that takes place over the entire forest and woodland region in the 41st year
of the simulation. a) Annual precipitation (mm/year); b) Growing-season LAI for
the woody plants; c) Growing-season LAI for the herbaceous plants.
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accumulation of woody biomass. According to Ewel (1971) and Golley (1975), leaf

production is very high during the early stage of forest succession. The LAI for a sec-

ondary stand of six years old can be as large as the LAI for a well-stored mature forest

(Golley et al., 1975). It is the leaf area, not the woody biomass, that really matters

for the biospheric production and the biosphere-atmosphere interactions. Therefore,

in this study the biospheric state is defined based on the LAI instead of the carbon

biomass.

As demonstrated in Figure 5-15, within the perturbation zone, the deforestation-

induced biosphere-atmosphere feedback is negative, and this negative feedback leads

to a full recovery. The biosphere-atmosphere system reaches its pre-perturbation

equilibrium within four decades following the forest clearing. The recovery time

is much shorter following selective logging. The event of rainfall enhancement in

the grassland region during the process of forest succession is not observed in the

selective logging experiments, when the deforestation is not severe enough to allow

the development of a dense ground vegetation on the forest floor.

5.3.3 Desertification and Irrigation

The modeled desertification takes place at the grassland region of the control equi-

librium, between 12.5'N and 17.5'N. The vegetation is degraded in the form of a

uniform grass thinning, which resembles the effect of grazing. A group of experiments

have been carried out, with the severity of desertification increasing gradually. Com-

pared with the system's response to deforestation, its response to desertification is

more diverse - desertification of different magnitude can cause qualitatively differ-

ent biosphere-atmosphere feedback. Here the results from four specific experiments

(Exp1, Exp2, Exp3, and Exp4) are presented. In Expl-Exp4, 50%, 60%, 75%, and

80% of the grass biomass are uniformly removed from the entire perturbation zone,

and the induced exposures of bare soil are about 25%, 40%, 60%, and 75%, respec-

tively. These four experiments are chosen because their induced biosphere-atmosphere

feedbacks are close to the thresholds between different types of responses.

The impact of desertification on the biosphere-atmosphere system is rather local-
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ized. In spite of the significant reduction in precipitation as well as NPP over the

perturbed region immediately after desertification, the induced precipitation change

over the forest and woodland region is relatively small compared to the large rain-

fall amount before the perturbation. Correspondingly, vegetation over the forest and

woodland region show little detectable response. Therefore, the following analyses

only focus on the response of the climate system over the grassland region, i.e., the

perturbation zone, and take the grid point near 16'N as an example. For all the

four experiments (and also Exp5 which is described later), the annual precipitation

in each year before and after the perturbation is plotted in Figure 5-16a, and the

growing-season LAI is plotted in Figure 5-16b. The evolutionary pattern is similar

in other part of the perturbation zone as well as for other properties of the coupled

biosphere-atmosphere system.

As shown by Figure 5-16(a,b), after removing 50% of the grass biomass (Exp1),

the two-way biosphere-atmosphere interactions trigger a negative feedback, which

drives the system back to its pre-perturbation equilibrium (labeled as equilibrium

"A") within 10 years. However, when the fraction of grass removal increases to 60%

(Exp2), a positive feedback takes place, which leads to a perturbation enhancement

- both the precipitation and LAI further decrease with time after the perturbation.

The biosphere-atmosphere system evolves into a different equilibrium state (referred

to as equilibrium "B"). As the perturbation magnitude increases to 75% grass removal

(Exp3), a negative feedback is encountered again, but only leads to a partial recovery

- the system rebounds to a certain degree and evolves into the same equilibrium state

as in Exp2. As the grass loss increases to 80% (Exp4), the biosphere-atmosphere feed-

back becomes positive again, which drives the system into a more arid equilibrium

state (referred to as equilibrium "C"). The equilibrium "C" features desert condi-

tion at the grid point near 16'N where grassland exists at the control equilibrium.

Induced by different degrees of desertification over the region 12.5'N - 17.5'N, the

biosphere-atmosphere system is able to evolve from the control equilibrium into two

new equilibria.

To simulate the effect of irrigation, several experiments have been performed on
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Figure 5-16: Evolution of the biosphere-atmosphere system before and after vari-

ous perturbations that take place over the grassland region in the 41st year of the

simulation. a) Precipitation at 16N; b) Growing-season LAI for grass at 16N.
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the uniform increase of grass density over the grassland region 12.5'N - 17.5'N.

As an example, the LAI and annual precipitation near 16'N in experiment Exp5

are plotted in Figure 5-16a and b respectively. Exp5 features a 50% increase of the

grass density over the entire grassland region. Although the climate in the year of

irrigation is significantly wetter and greener, it gradually decays back to the control

equilibrium. Interestingly, further increase of grass density fails to cause a transition

of the biosphere-atmosphere system from the control equilibrium to a wetter one.

The control climate presented in Figure 5-14 might be the most favorable equilibrium

the climate system can maintain within the perturbation regime of this study, i.e.,

removal or enhancement of grass between 12.5'N and 17.5*N.

As demonstrated clearly by Figure 5-16(a,b), experiments Exp1, Exp2, and Exp3

represent three different types of responses of the coupled biosphere-atmosphere sys-

tem: a negative feedback leading to a full recovery (Exp1); a positive feedback leading

to a perturbation enhancement (Exp2); and a negative feedback leading to a partial

recovery (Exp3). The response of the climate system in experiment Exp4 is of the

same type as Exp2, but within the attraction zone of a different equilibrium. Our

modeling results support the theoretical hypothesis of Section 5.1 on the necessary

conditions for the existence of multiple equilibria and on how the coupled biosphere-

atmosphere system responds to non-permanent vegetation perturbations.

In the experiments presented above, vegetation degradation over the grassland re-

gion causes climate transitions from the control equilibrium to drier equilibria. These

transitions are reversible. Further experiments demonstrate that, for the climate sys-

tem at a drier equilibrium, favorable perturbations such as irrigation can trigger the

system to develop into a wetter equilibrium. As an example, Figure 5-17 presents

the change of the annual rainfall at 16'N after an irrigation effect is imposed to the

biosphere-atmosphere system at the dry equilibrium "B". Here the irrigation features

a 30% increase of grass density, which is a change of small magnitude given the low

base value of the grass density at equilibrium "B". As shown in Figure 5-17, the irri-

gation perturbation induces a positive feedback which eventually leads the system to

the wet equilibrium "A".
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Figure 5-17: The evolutionary pattern for precipitation at 16N when an irrigation
event occurs to the biosphere-atmosphere system at equilibrium "B" during the 72nd
year of the simulation.

In summary, through desertification and irrigation experiments, it is demonstrated

that the regional climate system over West Africa has multiple equilibrium states, and

there are reversible transitions between the different equilibria.

5.3.4 Comparison Between Different Equilibria

Experiments on the resilience of the coupled biosphere-atmosphere system have ex-

plored three distinct climate equilibria over the region of West Africa: a wet equilib-

rium "A", a medium equilibrium "B", and a dry equilibrium "C". Figure 5-18(a,b)

present the normalized differences between equilibrium "A" and the two drier equi-

libria, in annual rainfall and NPP, respectively. Although very little difference is

observed over the forest region, both equilibria "B" and "C" are significantly drier

and less productive than equilibrium "A" over the Sahel region. At the grid point

near 160 N which is south of the desert border, the decrease of productivity from equi-

librium "A" to "C" is up to 98%, which reflects a southward expansion of the Sahara

desert. This is consistent with the significant vegetation loss as shown in Figure 5-16.

In the following, using equilibrium "C" as an example, we present in more detail

the characteristics of the arid climate equilibrium in comparison with the wetter and
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greener equilibrium "A".

Figure 5-19 presents the comparison of rainfall seasonal cycle between equilibria

"A" and "C". Over the Sahel region, the rainy season of equilibrium "C" is sig-

nificantly drier than that of equilibrium "A"; at the same time, equilibrium "C" is

slightly wetter near the coast region in the south, which signals a slight southward

shift of the rain belt. Correspondingly, during the rainy season, the local ascending

motion for equilibrium "C" over most part of the Sahel region is weaker, and this

difference can be as much as 50% around 15'N in August (Figure 5-20). As already

reflected by the slight rainfall increase, the ascending velocity in the south is slightly

higher. Figure 5-21 presents the comparison of the meridional wind field in August

between equilibria "A" and "C". At low levels, equilibrium "C" features a slightly

weaker northward wind across the coast, which signals a slightly weaker monsoon

circulation.

The differences in the Sahel rainfall between equilibria "A" and "C" also reflect

the differences in the local atmospheric circulation. Vegetation degradation results

in a reduction in the net surface radiation including both the short-wave and long-

wave components (Eltahir, 1996). Therefore, the net radiation for equilibrium "C"

is lower than equilibrium "A", as shown in Figure 5-22. This causes a reduction in

the total heat flux from the surface (i.e., the sum of the sensible and latent heat

fluxes), which is the energy supply for the atmospheric boundary layer. At the same

time, as will be shown later, the sparse vegetation at equilibrium "C" favors higher

surface temperature during the rainy season, which causes higher sensible heat flux.

Therefore, the boundary layer depth of equilibrium "C" is larger than equilibrium

"A". Together with the lower energy supply for the entire boundary layer, this results

in a significantly lower moist static energy for equilibrium "C" (Figure 5-23). This

decrease of energy reduces the likelihood of the local convection. At the same time, the

thinner vegetation at equilibrium "C" provides the atmosphere with less water vapor

supply in the form of evapotranspiration, thus causing drier atmospheric conditions

(Figure 5-24). Both the weaker local convection and the lower atmospheric humidity

reduce the local convective rainfall.
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A comparison of the surface temperature between the equilibria "A" and "C"

reveals an interesting seasonal pattern: over most part of the Sahel region, equilibrium

"C" is warmer by up to 1.5 K during the rainy season and cooler by more than 1.0

K during the dry season (Figure 5-25). The warming during the rainy season of

equilibrium "C" takes place in spite of a decrease in the net radiation (Figure 5-

22). Upon vegetation degradation, the increase of albedo (Figure 5-26) reduces the

net solar radiation, which tends to cool the land surface (Charney, 1975); on the

other hand, evapotranspiration decreases, which tends to warm up the land surface

(Idso, 1977). The net impact on the surface temperature depends on which factor

is dominant. Figure 5-27a presents the difference between equilibria "A" and "C"

in the net solar radiation, which is mainly due to the albedo effect; Figure 5-27b

presents the difference in the latent heat flux, which stands for the evapotranspiration

effect. Clearly, over the Sahel region, the evapotranspiration effect is dominant during

the rainy season when the water supply is adequate. During the dry season, the

evapotranspiration process is constrained by the limited water supply, and the albedo

effect becomes dominant. Therefore, a vegetation degradation such as the change

from equilibrium "A" to "C" causes a summer warming and winter cooling in the

Sahel region, as shown in Figure 5-25.
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5.4 Discussion

Experiments on different types of vegetation perturbations showed that the simulated

biosphere-atmosphere system is more resilient to perturbations over the forest region

than to perturbations over the grassland region. If the ecosystem is saved from further

human disturbances, the biosphere-atmosphere system can recover from a disturbance

over the forest region, while it may not recover from a disturbance over the grassland.

However, this does not imply that deforestation is less significant than desertification.

In fact, as shown in Figure 5-15, the deforestation-induced decrease in precipitation

is very significant during the early stage of the succession which lasts for decades.

Although the study on the resilience of the coupled biosphere-atmosphere system

focuses on the anthropogenic vegetation perturbations, natural climate variations

can cause similar effects in degrading or enhancing the vegetation, especially in the

grassland region. An event of one extremely dry year or several dry years in a row

could cause as much vegetation degradation as man-made desertification. Similarly,

a naturally induced wet event can significantly enhance the grass growth. Therefore,

transitions between different equilibria are not necessarily caused by human activities.

Historically, and before the emergence of human activity as a significant process, the

main forcing in triggering a climate transition would be the large-scale forcings such

as the global SST variations, as well as natural local factors such as plant pathogens

and diseases of grazing fauna.

The existence of multiple climate equilibria and equally important, the possibil-

ity of climate transitions between different equilibria, have significant implications

regarding the past, present and future climate over West Africa. The alternate oc-

currences of dry and wet spells over West Africa (see Figure 1-5) can be viewed as

a collective reflection of the climate persistence at one equilibrium and the climate

transition to another. For the current drought, it is conceivable that the climate

system before the drought might have been in a state similar to the wet equilibrium

"A" of this study. A single dry year or several dry years in a row, or man-made deser-

tification, might have triggered the climate system to evolve into a drier equilibrium
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("B" or "C"). An event of one or more significantly wet years in the future, or man-

made perturbations such as large-scale irrigation, may trigger the system towards a

wetter equilibrium thus starting a wet period. The irrigation-induced recovery of the

wet equilibrium brings up the possibility of mitigating the current drought by way of

human perturbations. A 3-D model with a finer resolution is required for an accurate

estimation on how much irrigation is needed to induce such a beneficial effect. Such a

study may or may not be attainable due to the high computational expense involved.

The multiple-equilibrium nature of the climate system adds more uncertainty and

challenge to climate studies using coupled biosphere-atmosphere models (e.g., Foley

et al., 1998). Discrepancies between model simulations and observations may not

necessarily reflect a deficiency in the model, since observations and simulations may

possibly describe two different equilibria. It is technically difficult and computation-

ally expensive to identify all the relevant equilibria that a model might have, especially

for 3-D models.

Finally, our results have important implications regarding the general topic of

climate predictability. The perturbation-induced climate transition between different

equilibria, as well as the sensitivity of the climate system to its initial conditions,

implies that climate in West Africa should be considered as an initial value problem

as well as a boundary value problem. The traditional notion of climate as exclusively

a boundary value problem, which is used to justify most of the current approaches for

predicting future climate, is seriously challenged (Pielke, 1998). Our finding neces-

sitates a reevaluation of the current understanding regarding climate predictability,

and calls for new approaches to climate prediction.

5.5 Conclusions

This chapter focuses on the multiple-equilibrium behavior of the coupled biosphere-

atmosphere system over West Africa. After the hypothesis regarding the multiple

climate equilibria is described, numerical experiments using ZonalBAM are performed

to investigate the sensitivity of the coupled biosphere-atmosphere system to initial
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conditions and the resilience of the coupled biosphere-atmosphere system with respect

to various perturbations. The main conclusions include:

1) The regional climate system over West Africa has multiple equilibrium states

coexisting under the same precessional forcing.

2) Triggered by external perturbations and governed by the two-way biosphere-

atmosphere interactions, the climate system over West Africa can evolve from one

equilibrium to another within a relatively short time (in the order of one decade).

Such climate transitions are reversible.

3) Following a vegetation perturbation, the biosphere-atmosphere system has three

different ways of responding: a negative feedback leading to a full recovery; a positive

feedback leading to a perturbation enhancement (therefore a new equilibrium); a

negative feedback leading to a partial recovery (therefore a new equilibrium).

The scope of this chapter is limited to the response of the natural biosphere-

atmosphere system to a major non-permanent perturbation. In reality, the climate

system is constantly subjected to continuous variations in the large-scale atmospheric

and oceanic processes as well as recurrent local disturbances due to human activities.

Based on the understanding developed up to this point, the following chapters will

investigate how the coupled biosphere-atmosphere system responds to continuous

forcings or disturbances.

164



Chapter 6

Mechanisms for the Low-Frequency

Rainfall Variability

6.1 Introduction

Precipitation in the Sahel region of West Africa is dominated by low-frequency vari-

ability at the time scale of decades or longer, a characteristic not observed in the

surrounding regions. While the time scale of the dominant rainfall variability is

about 2-7 years for the Guinea coast region and for regions in East and South Africa,

it is up to several decades over the Sahel region, according to analyses of observations

collected during the past century (e.g., Nicholson and Entekhabi, 1986; Rowell et al.,

1995). Consistently, historical records for the level of Lake Chad (Figure 1-5) confirms

the dominance of the low-frequency variability found in the more recent observations

over the Sahel region. However, the physical mechanisms behind this well-documented

low-frequency variability are still not well understood (see the review in Chapter 1).

Using the coupled biosphere-atmosphere model ZonalBAM, Chapter 5 documented

the multiple-equilibrium behavior of the coupled biosphere-atmosphere system in

West Africa, and suggested that the climate fluctuations at decadal time scale may

be viewed as a collective reflection of climate persistence at one equilibrium and

climate transition to another. However, Chapter 5 focused on the response of the

climate system to single isolated perturbations, and assumed climatological SST sea-

165



sonal cycle over the ocean. In reality, the regional climate system is continuously

subjected to small successive perturbations. Unavoidably, subsequent disturbances

would modify or even override the system's response to any precedent event. For ex-

ample, climate transitions from one equilibrium towards another may be interrupted

or reversed by subsequent forcings. The goal of this chapter is to investigate how the

coupled biosphere-atmosphere system in West Africa responds to successive forcings

such as SST variations in the Atlantic Ocean, and to study the low-frequency rainfall

variability over the Sahel region in a more realistic scenario. This study is based on

long-term climate simulations using ZonalBAM driven with the observed SST varia-

tions over the Atlantic Ocean during the period 1898-1997. The monthly SST data

from the UK Meteorological Office (Parker et al., 1995; Rayner et al., 1996) is used.

We interpolate in time the monthly SST observations averaged between 10'W and

10'E. The diurnal cycle of SST is not considered.

6.2 Modeling the Rainfall Variability at Decadal

Scale

6.2.1 Control Simulation

To study the long-term climate variability over the Sahel region, a simulation of 100

years (Dyn-Control) is carried out using ZonalBAM, with dynamic vegetation over

land and SST varying from 1898 to 1997 over the ocean. In the first year of the

simulation, the biosphere-atmosphere system is assumed to be at the equilibrium

derived in Chapter 3, which is also the wettest of the three equilibria explored in

Chapter 5 (see Figure 5-16). This equilibrium is close to the climate of the current

century, with forest in the south, grassland in the north, and the desert border around

17.5'N (see Figure 3-21).

Figure 6-1 presents the annual rainfall distribution over West Africa during the

period 1898-1997 in the Dyn-Control simulation. The rainfall climatology based on

this 100-year simulation is shown in Figure 6-2, compared with the GPCP data and
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Figure 6-1: Rainfall distribution along latitude and time, simulated in
Dyn-Control. The unit is m/year.
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the NCEP re-analysis data. The GPCP data spans the period 1987-1997, amid

the extended Sahel drought. The temporal coverage of the NCEP re-analysis data

includes both a wet episode and the drought. For further comparison, the NCEP

reanalysis data are presented for the wet period (1958-67) and the dry period (1968-

1997). Over most of the domain, the climatology of the simulated rainfall falls between

the observations for the dry period and the wet period. The slight overestimation of

rainfall near the coast may have to do with the lack of representation in the model

for detailed distribution of land use patterns within the forest region. In general, the

comparison of rainfall climatology between the simulation and observations shows a

fair agreement.

2500

2000

1500

100

8N 1ON 12N 14
Latitude

Figure 6-2: The model climatology (1898-1997) of the annual rainfall, compared with
the climatology based on the GPCP data (1987-97), the NCEP re-analysis data in
the wet period (1958-67), and the NCEP re-analysis data in the dry period (1968-97).

In Figure 6-1, the temporal variability of rainfall over the region north of 10'N ex-

hibits a high degree of spatial coherency. The same statement also holds for the region

south of 10*N, but with a different pattern of the rainfall temporal variability. There-
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fore, we can study the rainfall variability of West Africa based on the time series of the

rainfall average within the Sahel region (defined as the region 100N-17.50 N in Chapter

1) and the rainfall average within the Guinea Coast region (defined as the region be-

tween the coast and 10'N in Chapter 1). Figure 6-3a and 6-3b present the normalized

anomaly of the annual rainfall averaged over the two regions, respectively. Qualita-

tively, the model rainfall over the Sahel region contains more low-frequency variability

than the Guinea Coast region, which is consistent with observations (Nicholson and

Palao, 1993; Rowell et al, 1995). Analyses in the following focus on the Sahel region

where the low-frequency rainfall variability is prominent.

a) Rainfall Over Sahel
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Figure 6-3: Time series of the normalized rainfall anomaly averaged over (a) the Sahel
region and (b) the Guinea Coast region, based on the simulation shown in Figure 6-1.
The climatology for each region is based on the whole time series (1898-1997).

Although the model captures both the rainfall climatology and the spatial contrast
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in the time scale of the rainfall variability, it lacks representation of several climatically

important factors, which include (but are not limited to) the large scale impact of the

"Little Ice Age" that ended in the 1920s (Dansgaard et al., 1975; Porter, 1986), the

anthropogenically induced land cover changes since 1950s (Gornitz and NASA, 1985;

Fairhead and Leach, 1998), changes in the level of C02 and industrial aerosols in the

atmosphere, and the impact of global SST forcings (Palmer, 1986). Therefore, on a

year-to-year basis, the model simulation may not be comparable with observations.

For example, in the same scale as Figure 6-3a, Figure 6-4 presents the observed

rainfall anomaly in the Sahel region for the period 1900-1996, based on the Hulme

data (Hulme et al., 1998). For the rainfall variability at decadal time scale, two

Rainfall Over Sahel: Hulme Data

0-

1900 1910 1920 1930 1940 1950 1960 1970 1980 1990 2000
Years A.D.

Figure 6-4: Time series of the normalized rainfall anomaly averaged over the re-
gion 150W-15'E, 10*N-17.5'N, based on the Hulme data (Hulme et al., 1998). The
climatology is based on the whole time series (1900-1996).

major differences between the simulation and observations are identified: the model

simulates a wet episode during the first two decades of the century in the Sahel

region, while average to dry conditions were observed; a persistent Sahel drought was

observed in the past three decades, while the model simulates a drought interrupted

by a wet spell in 1970s. The simulated wet event early in the century is associated

with the extremely low SST in the Atlantic Ocean probably related to the "Little Ice

Age" whose broad impact is not included in our model. At the same time, it may

also have to do with the initial conditions of the simulation. As will be demonstrated
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in the next section, when starting with an arid condition, the model does simulate a

dry episode in the beginning of the century. For the "not-so-dry" 1970s, the lack of

human-induced vegetation degradation may play a role. It is encouraging to note that

the simulation captures the wet event in 1950s. Moreover, the simulated wet event

in 1970s, which breaks an otherwise continuous drought, takes place around a time

when the severity of the observed drought was significantly alleviated (Figure 6-4).

Most importantly, the model reproduces the low-frequency variability of the Sahel

rainfall, a feature that was also observed in the past several centuries (see Figure 1-5)

and is therefore independent of the omitted forcings. Analyses in the following focus

on understanding the mechanisms of this low-frequency variability.

6.2.2 Role of Vegetation Dynamics

When vegetation dynamics is included, it takes the regional climate system years or

longer to recover from certain vegetation perturbations (Figure 5-16). This may have

significant implications regarding the mechanisms of low-frequency rainfall variability.

Without the functioning of vegetation dynamics, a perturbation in atmospheric vari-

ables would be wiped out within weeks. The corresponding time scale for soil moisture

changes would be in the order of months. This contrast in time scales makes veg-

etation dynamics more important than other factors as a source for low-frequency

climate variability.

An experiment (Stat-Exp) is carried out to study the role of vegetation dynamics

in the long-term rainfall variability over the Sahel region. Stat-Exp is similar to

Dyn-Control but assuming static vegetation conditions, i.e., vegetation distribution

during the period of 1898-1997 remains fixed at the same condition as the first year of

the Dyn- Control simulation. Therefore, the rainfall variability simulated in Stat-Exp

merely reflects the response of the atmospheric climate to SST forcings, while the

rainfall variability simulated in Dyn-Control results from both SST forcings and the

impact of vegetation dynamics.

In the same scale as Figure 6-3a, Figure 6-5 shows the time series of the rainfall

anomaly over the Sahel region based on Stat-Exp. It is readily noticeable that the
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Figure 6-5: Time series of the normalized rainfall anomaly averaged over the Sahel
region, simulated in Stat-Exp. The climatology for each region is based on the whole
time series (1898-1997).
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Figure 6-6: Spectra of the simulated rainfall in Dyn-Control (dash line) and Stat-Exp
(dash-dot line), compared with the spectrum of the observed rainfall (solid line) based
on the Hulme data (Hulme et al., 1998).
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rainfall variability in the Dyn-Control simulation contains more low-frequency com-

ponents than the Stat-Exp simulation. As a quantitative measure, Figure 6-6 shows

the spectrum of the annual rainfall based on the Dyn-Control and Stat-Exp simula-

tions, compared with the spectrum based on the Hulme data. The simulation with

dynamic vegetation (Dyn-Control) not only captures the dominance of low-frequency

components in the rainfall variability, but also reproduces the full spectrum of the

rainfall variability with reasonable accuracy. In contrary, the rainfall variability in

the simulation with static vegetation (Stat-Exp) demonstrates no clear dominance of

low-frequency components. Figure 6-6 suggests that vegetation dynamics enhances

the low-frequency variability and suppresses the high-frequency variability of the cli-

mate over Sahel. The response of the regional climate system to forcings such as the

regional or global SST variations is significantly regulated by vegetation dynamics,

without which the low-frequency climate variability over the Sahel region is unlikely

to be as significant as observed. Studies on the climate variability of this region

should take into consideration the role of vegetation dynamics.

6.3 Sensitivity to Initial Conditions

6.3.1 Multiple Climate Equilibria

The century-long simulations in the previous section start from the equilibrium "A"

of the coupled biosphere-atmosphere system (Chapter 5). The assumption that the

climate system in 1898 was at this specific equilibrium may not be justifiable. First,

it is uncertain whether the biosphere and the atmosphere in 1898 were at equilibrium.

Secondly, even if the biosphere-atmosphere system was anywhere close to an equilib-

rium, it is hard to identify that equilibrium due to the multiple-equilibrium nature of

the climate system. To address the issue of uncertainty associated with initial condi-

tions, we carry out a group of sensitivity experiments using dynamic vegetation, each

with a different degree of initial vegetation perturbation in the grassland region where

the coupled biosphere-atmosphere system is highly sensitive to vegetation changes.
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Four experiments, Dyn-Pert1, 2, 3, and 4, will be presented in this study. With

respect to the initial condition in the Dyn-Control simulation, Dyn-Perti features a

25% increase of grass density, while Dyn-Pert2, 3, and 4 feature a grass removal of

25%, 60%, and 80%, respectively.

Figure 6-7(a, b), using the annual rainfall and growing-season LAI at the grid

point near 16'N as examples, presents the sensitivity of the climate system to initial

conditions. Despite an initial vegetation difference of +25%, -25%, and -60% over the

grassland region in Dyn-Perti, Dyn-Pert2, and Dyn-Pert3 respectively, simulations

in these three experiments converge to the Dyn-Control simulation within several

years. After the first convergence, although some local differences of small magni-

tudes do exist, a very good agreement between different simulations is observed. For

convenience, in the following we refer to this climate regime as the "wet regime".

In Dyn-Pert4, with a grass removal of 80%, a significantly drier climate (referred

to as the "dry regime") results, which features desert condition at 16'N where the

"wet regime" features short grass. Experiments with 70% and 75% grass removal

(not shown here) all converge to the "dry regime". Further experiments failed to

introduce a third climate regime.

Figure 6-8(a,b) presents the latitudinal distribution of the net primary productiv-

ity (NPP) for both the "dry regime" (Dyn-Pert4) and the "wet regime" (using Dyn-

Control as an example) during the period 1898-1997, with the approximate desert

border marked by the isohyets of the 200-mm annual rainfall. Significant differences

exist between the two distinct climate regimes. The "dry regime" is in general less

productive than the "wet regime", and features a southward expansion of the Sahara

desert.

The sensitivity of the long-term climate simulation to initial vegetation condi-

tions reflects the response of the coupled biosphere-atmosphere system to vegetation

perturbations in the scenario of varying SSTs. Therefore, results of the sensitivity

experiments shown in Figure 6-7 can be analyzed in comparison with the multiple

climate equilibria ("A", "B", and "C") in Figure 5-16. Comparison between these

two figures shows that the "wet regime" is in fact a reflection of the wet equilibrium
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Figure 6-7: Time series of (a) the annual rainfall and (b) the growing-season LAI at
the grid point near 16*N, in the control simulation Dyn-Control (black) and sensitivity
experiments Dyn-Perti (green), Dyn-Pert2 (blue), Dyn-Pert3 (magenta), and Dyn-
Pert4 (red).
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Figure 6-8: Net primary productivity (in kgC/m 2 /year) distribution for the simula-
tion period 1898-1997: a) Dyn-Control (wet regime); b) Dyn-Pert4 (dry regime). The
black lines are the isohyets of the 200-mm annual rainfall.
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"A" in the scenario of varying SSTs, while the "dry regime" is a reflection of the dry

equilibrium "C". The lack of a climate regime that resembles equilibrium "B" may

have to do with the stability of equilibrium "B" under the influence of varying SSTs.

This point is also supported by the observation that the climate during the driest

periods of the "wet regime" is wetter than equilibrium "B", while the climate during

the wettest periods of the "dry regime" is drier than equilibrium "B". To address this

issue, we carry out a group of experiments by restarting the coupled model from equi-

librium "B" at different times. In Figure 6-9, the red and green lines show the annual
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Figure 6-9: Time series of the annual rainfall at the grid point near 16*N. Green and
red lines stand for the experiments that begin from different years with the initial
condition at the model's medium equilibrium "B"; black lines plot the wet regime
(Dyn-Contro) and the dry regime (Dyn-Pert4) for references.

rainfall of these experiments at the grid point near 16'N, while black lines plot the

annual rainfall of the "wet regime" (Dyn-Control) and "dry regime" (Dyn-Pert4) for

references. LAI and other variables evolve in a similar way. The climate system in the

model, although initialized with the medium equilibrium "B", eventually converges

to either the "wet regime" or the "dry regime" depending on when the simulation

starts. This suggests that the medium equilibrium "B", which is stable under fixed

SST forcings, becomes unstable under varying SSTs. Only two equilibria (the wet
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one "A" and the dry one "C") are viable when the inter-annual variability of SST

forcings is included.

6.3.2 Climate Transitions

It can be observed from Figure 6-7 that there is no intersection between the "wet

regime" and the "dry regime", which suggests that the observed SST variability

over the Atlantic Ocean alone is not large enough to cause transitions between the

two climate regimes, or equivalently, between equilibria "A" and "C". In reality,

such transitions may take place due to other large-scale forcings, for example, SST

variations over the Pacific and the Indian oceans which also have a significant impact

on the Sahel rainfall (Palmer, 1986). However, due to its zonal symmetry, our model

cannot represent the global-scale SST forcings. To better understand the behavior of

the climate system under the influence of larger external forcings, here we perform two

experiments (Wet2 and Dry2) on the system's response to the artificially increased

SST forcings over the Atlantic Ocean. Here the Wet2 and Dry2 experiments have

the same initial conditions as Dyn-Control and Dyn-Pert4, respectively, but with the

magnitude of SST anomalies being doubled.

Figure 6-10 presents the annual rainfall at the grid point near 16'N for Wet2 (green

line) and Dry2 (blue line) experiments. Interestingly, Dry2 converges to Wet2 before

the end of the decades-long wet event simulated in the early stage of the century. As

mentioned earlier, the cold SST in the first several decades of the 20th century causes

a long wet period, which is favorable enough to allow the climate system to develop

from an arid equilibrium into a humid one. The impact of this wet event is obviously

enhanced due to the doubling of SST forcings. To avoid this wet event, we start the

Dry2 experiment from 1938, 40 years later than 1898. Result of this experiment is also

presented in Figure 6-10 (red line), which introduces a climate regime much drier than

the one in Wet2. During most of the time in the 100 years of simulation, the climate

of the Wet2 experiment is similar to the "wet regime" explored with observed SST

forcings (shown in Figure 6-7a), which is the reflection of the wet equilibrium "A" (in

Figure 5-16). When starting from 1938, climate of the Dry2 experiment is close to the

178



400

E
. 200 - - - - - - -- - - -

a... .. .. . .. . .

100 -.-.-.-.-

0
1900 1920 1940 1960 1980 2000

Years A.D.

Figure 6-10: Time series of the annual rainfall at the grid point near 16*N, in the
Wet2 experiment (green) and the Dry2 experiments starting from 1898 (blue) and
1938 (red).

"dry regime" and the dry equilibrium "C". As demonstrated clearly in Figure 6-10,

under the influence of enhanced SST forcings, climate transitions between different

regimes take place at various moments. For example, a climate transition from the

"dry regime" to the "wet regime" is simulated in the early stage of the 20th century

(around the 1920s), and a reverse transition takes place towards the end of the 20th

century (in the 1980s). Climate transitions from the "wet regime" towards the "dry

regime" are triggered around 1934 and 1963, which are interrupted and reversed by

subsequent forcings.

The Sahel region during several earlier centuries experienced major rainfall fluc-

tuations of large amplitude (Malay, 1973,1981; Nicholson, 1981b; Farmer and Wigley,

1985), which may have to do with transitions of the regional climate system between

different equilibria as demonstrated in Figure 6-10. For example, historical lake level

records in the Sahel region (see Figure 1-5) indicate three major events of rainfall fluc-

tuation since the 19th century: a change from wet conditions to dry conditions late

in the 19th century, a change from dry conditions to wet conditions early in the 20th
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century, and a rapid desiccation later in the 20th century. This makes the arid initial

condition for 1898 used in Dry2 a better reflection of reality than the initial condi-

tion used in Wet2 and Dyn-Control. When starting from 1898, the Dry2 experiment

produces a dry episode of almost two decades at the beginning of the 20th century,

followed by a climate transition from the "dry regime" to the "wet regime", which

agrees well with the general trend in Figure 1-5. The rapid climate transition from

the "wet regime" to the "dry regime" in the 1980s simulated in the Dry2 experiment

may reflect the occurrence of the current Sahel drought with some time shift.

The above results and analyses suggest that climate persistence at one equilib-

rium and climate transitions between different equilibria can act as an important

mechanism for climate fluctuations of large amplitude at the time scale of decades to

centuries.

6.4 Discussion and Conclusions

This chapter investigates the mechanisms behind the low-frequency variability of the

Sahel rainfall using the coupled biosphere-atmosphere model ZonalBAM. Climate

simulations for the past 100 years have been carried out using SST in the tropical

Atlantic Ocean as the driving forcing. Analyses on simulations with and without

vegetation dynamics lead to a conclusion that vegetation dynamics enhances the

low-frequency variability of rainfall over the Sahel. Large scale factors including

SST variations in the Atlantic Ocean may act as the driving forcings for the climate

variability in the Sahel region. However, the response of the regional climate system

to these forcings is significantly regulated by vegetation dynamics. Without the role

of vegetation dynamics, the low-frequency rainfall variability would be less significant

than observed. Studies on the long-term rainfall variability over the Sahel region

should take into consideration this impact of vegetation dynamics.

The multiple-equilibrium behavior of the regional climate system under the influ-

ence of varying SSTs is also examined. Although three equilibria (wet, medium, and

dry) are documented when the model is forced with the climatology of SST seasonal
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cycle, only two climate regimes (wet and dry) are viable when the inter-annual vari-

ability of SST is included. The observed SST forcings in the Atlantic Ocean alone are

not large enough to cause a climate transition between different regimes. However,

climate transitions do take place when SST forcings over the Atlantic are artificially

doubled, which suggests the potential for climate transitions under the impact of

global-scale SST forcings. Such climate transitions may be of close relevance to the

climate fluctuations observed in the past several centuries, and is likely to be an-

other important mechanism (in addition to vegetation dynamics) contributing to the

low-frequency variability of the Sahel rainfall.

The time scale of the system's recovery from vegetation perturbations, which is

in the order of years or even longer, may be the key for understanding the role of

vegetation dynamics in enhancing the low-frequency rainfall variability. When SST or

any other forcing causes a significantly wetter-than-normal (drier-than-normal) event,

vegetation develops denser (thinner) than normal, especially if this event spans several

years. When the external forcing ceases to operate, the biosphere-atmosphere system

still has a denser-than-normal (thinner-than-normal) vegetation, which is equivalent

to the situation after vegetation perturbations. In the next several years following

the termination of the original event, the biosphere-atmosphere system will be in a

status of recovering from the vegetation anomaly, which favors wetter-than-normal

(drier-than-normal) conditions before the full recovery, assuming that a recovery is

possible. As a result, the original event gets amplified by vegetation dynamics. This

mechanism applies to our simulation using observed SST variations. In occasions

when a recovery is not possible, climate transitions will take place. As a result,

the original event will be not only amplified, but also sustained and perpetuated.

Several periods in our simulations with doubled SST forcing can be described by this

mechanism. Both mechanisms, the enhancement of anomalies through vegetation

dynamics and the occurrence of climate transitions, favor the dominance of the low-

frequency variability in the regional climate.

The decadal variability in the inter-hemispheric gradient of the global SST, which

is statistically related to the low-frequency variability of the Sahel rainfall (Ward,
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1998), cannot be represented in our zonally symmetric model. However, it is likely

that vegetation dynamics would play a significant role in shaping the response of the

regional climate system to such global forcings.

Vegetation in West Africa has experienced intense anthropogenic perturbations

since the 1950s (Gornitz and NASA, 1985; Fairhead and Leach, 1998), which is likely

to have contributed to the severe persistent drought in Sahel. So far, we have focused

on the natural biosphere-atmosphere system without considering the impact of recur-

rent or permanent land cover changes. The possibility that changes in land use may

have altered the climate in the past several decades will be investigated in the next

Chapter.
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Chapter 7

Ecosystem Dynamics and the Sahel

Drought

7.1 Introduction

As reviewed in Chapter 1, despite of the considerable research effort in the past two

decades, the cause of the current Sahel drought and the mechanism of its persistence

remain a topic of inconclusive debate. In Chapter 6, we demonstrate that, under the

influence of SST interannual variability, the natural climate system in West Africa

has two stable climate equilibria/regimes with reversible transitions between them.

Droughts can take place as a result of a climate transition from the wet regime to the

dry regime which can be triggered by large-scale forcings. Such climate transitions

may be a convincing explanation for the historical occurrence of the Sahel droughts,

before the emergence of human activities as an important factor modifying the re-

gional climate. However, the cause of the current Sahel drought is complicated by

the extensive anthropogenic disturbances which have effectively reshaped the regional

landscape (Bourliere and Hadley, 1983; Sprugal, 1991).

This Chapter investigates both the possibility of drought initiation by human

activities and that by large-scale forcings. Using the coupled biosphere-atmosphere

model ZonalBAM, we perform climate simulations by driving the model with SST

variations during 1950-1997 over the tropical Atlantic ocean. Experiments are carried
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out to study the impact of patchy land cover changes and the impact of large scale

SST forcings. We show that, no matter what initiated the 20th century drought,

the feedback associated with the natural vegetation dynamics may have played the

dominant role in the dynamics of this drought.

7.2 New Feature of the Model

Over the ocean (south of 6'N), the model setup is the same as in Chapter 6, with

SST prescribed but varying with time as observed (Parker et al., 1995; Rayner et al.,

1996). However, over land, the model used in this chapter features a new development

on the description of the terrestrial ecosystem.

Each grid cell over land is divided into two parts: vegetation is static over the

area of fraction f and is dynamic over the area of fraction (1-f). The fraction f
with static vegetation represents the managed landscape where vegetation structure

is prescribed according to permanent land use conditions; the fraction (1-f) with

dynamic vegetation represents the natural landscape where vegetation structure is

updated every year based on the carbon budget and allocation. Therefore, the model

features a mosaic combination between natural ecosystem and managed ecosystem for

each grid cell. Here the division of the grid cell is only limited to the surface, and we

assume that the two portions are subjected to the same meteorological forcings (e.g.,

precipitation, temperature, humidity, wind, and incoming radiative fluxes). Fluxes

from the land surface to the atmosphere (e.g., outgoing radiative fluxes, sensible and

latent heat fluxes, and evapotranspiration) are the area-weighted averages between

the two parts.

In the southern region of West Africa where the natural ecosystem features forest

and woodland, vegetation for the managed fraction of each grid cell is prescribed

as dense herbaceous plants which characterize the agriculture and pasture land use;

in the north, where the natural ecosystem features grassland, the managed fraction

of each grid cell is prescribed as bare soil which reflects the impact of man-made

desertification. The fraction of managed landscape (f) may increase with time to
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simulate the progressive impact of human activities.

7.3 Drought Initiation by Human Activities

The climatic impact of land cover changes such as desertification, though a topic of

decades-long modeling studies, is not fully resolved. Due to the lack of the repre-

sentation of vegetation dynamics, previous studies did not include the response of

vegetation to the induced climate change. This is insufficient in the case of non-

permanent vegetation perturbation where succession is active, as demonstrated in

Chapter 5. Even in the case of permanent land use pattern, the lack of representa-

tion of vegetation dynamics still poses a severe problem. Land cover changes often

occur to only a certain fraction of the region or the grid cell, and vegetation else-

where still responds to climate changes induced by the fractional permanent land

cover changes. Such feedback mechanism may significantly modify the sensitivity of

a climate model to land cover changes. In this section we address this topic through

a study on the drought initiation by human-induced vegetation changes.

7.3.1 Scenario of Land Cover Changes

Vegetation distribution in West Africa has experienced significant modifications due

to human activities in the twentieth century, which include deforestation near the

coast and desertification in the north. Here we define the most likely scenarios of

land cover changes that will be investigated in this chapter.

Deforestation occurs as people clear up the forest for agricultural land use or

pasture land. Selective logging of short return period may also cause destruction of

the forest stand. It is widely accepted that deforestation in West Africa has been

intense and extensive, but different sources disagree on the quantitative measures.

A recent study by Fairhead and Leach (1998), based on careful examination and

interpretation of ecological data, claimed that deforestation in West Africa has been

largely exaggerated. For example, in Ivory Coast which hosts about half of the rain

forest over West Africa, early studies (FAO, 1981; Myers, 1980-1994; Thulet, 1981;
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Bertrand, 1983; Gornitz and NASA, 1985) estimated that more than 10 Mha of

humid forest has been lost since 1900, while the estimate by Fairhead and Leach

(1998) is less than 5 Mha. All studies agree on the extent of the remaining forest.

The main difference lies in the estimation of how much forest did exist in the beginning

of the twentieth century. Instead of using the absolute values of the forest cover, we

normalize each estimate by the forest cover in 1900 from the same source. The envelop

of these results are plotted in Figure 7-1(a), which presents the area of forest loss as

a fraction of the total forest area in 1900. Based on Figure 7-1(a), deforestation did

not become significant until the 1950s. Therefore we concentrate on the period from

1950 on. Since the deforestation record during the 1990s is not available, we assume

that there is no further forest loss after 1990.

Shifting agriculture is one major cause of deforestation in West Africa. Only part

of the area where forest is destroyed will be used for cultivation. The rest is left

as fallow land. According to Gornitz and NASA (1985), between the 1950s and the

present, the ratio of cultivated to fallow land is about 1:3 to 1:4. Over the fallow land,

vegetation succession is active. In part of the fallow land, the fallow period may be

long enough for tree saplings to establish. As reported by Golley et al. (1975), leaf

production of woody plants is extremely high during the early stage of succession,

which causes the LAI of young trees to be almost as high as LAI of mature trees.

Therefore, despite the small statue and low level of carbon biomass, the vegetation

in part of the fallow land may function in terms of evapotranspiration (dependent on

LAI) in a way closer to forest than to grassland. Therefore, in our study, we assume

that vegetation functions in the same way as herbaceous plants in only half of the

deforested region, and as trees in the other half.

Desertification takes place as a result of overgrazing, soil erosion, and other similar

processes. Despite numerous claims for the existence of desertification in the Sahel

region, there is very little quantitative documentation on land cover changes. This

problem is further complicated by the fact that land cover changes similar to that

caused by desertification can also result from a severe drought. For the land cover

changes during the past several decades, it is hard to distinguish how much is man-
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Figure 7-1: Scenarios of land cover changes: a) Minimum (line with pentagram,
Scenario A) and maximum (line with triangle, Scenario B) estimation for the area of
deforestation as a fraction of the total forest cover in 1900; b) Fractional exposure of
the bare soil due to man-made desertification.
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made and how much is induced by the drought. Since the main cause of desertification

in West Africa is overgrazing, we can gain some insight about desertification processes

based on the dynamics of herbivore population. Over many parts of the Sahel region,

the herbivore population increased during the 1950s and 1960s, probably as a result

of the rainfall surplus; following the onset of the drought, a large fraction of the

livestocks perished, and its population afterwards stayed stable or even decreased

due to the lack of forage (Warren,1996). Therefore, it is a conceivable scenario that

the extent of man-made desertification may increase from 1950s to the late 1960s and

becomes stable shortly after the drought onset. Here we assume that the fraction

of bare soil exposed by anthropogenic activities over the Sahelian grassland linearly

increases from zero in 1950 to the value fmax in 1970, and remains at that level

afterwards, as shown in Figure 7-1(b). No progressive man-induced desertification is

considered after the drought onset, which is consistent with observations (Nicholson,

1998). The value of fmax can be used as the variable for sensitivity experiments.

7.3.2 Experiments Design

Our study on the impact of land cover change is based on climate simulations for

the period 1950-1997. SST variations over the Atlantic ocean during the same period

are used as the driving forcing. All simulations start from the wettest equilibrium

state of the biosphere-atmosphere model which is close to the observed condition in

West Africa (see Chapter 3 and Chapter 5). This equilibrium is derived by running

the coupled biosphere-atmosphere model for 40 years, starting from a vegetation

distribution close to observations, with SST fixed at its climatology and dynamic

vegetation within the tropics. The vegetation distribution of this equilibrium can

be found in Figure 3-21, with forest near the coast, woodland reaching about 12'N,

and grassland in the north bordering the desert around 17.5'N. Here we use the

equilibrium state of the biosphere-atmosphere system as the initial condition in order

to avoid the unrealistic climate trend imposed by the system's development towards

an equilibrium. The choice for the wettest equilibrium is justified by the observation

that wet conditions prevailed over the Sahel region around 1950 and lasted for more
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than one decade.

The control simulation, Dyn-Control, features natural dynamic vegetation during

the whole simulation period. No human-induced land cover changes are included.

Therefore, it only simulates the response of the natural biosphere-atmosphere system

in West Africa to SST forcings over the Atlantic Ocean.

The first group of experiments include Dyn-Defi and Dyn-Def2, which account

for deforestation of scenario A and B in Figure 7-1, respectively. Deforestation takes

place between the coast and 12'N, in a region covered by forest and woodland at the

natural equilibrium of the model. These experiments are designed to address whether

the past deforestation in West Africa is large enough to initiate a drought in the Sahel

region.

The second group of experiments concentrate on the impact of desertification on

the regional climate. Desertification is considered here in addition to deforestation.

Land cover changes in each experiment include deforestation of scenario A in the south

and desertification in the north with fmax varying between experiments. Therefore,

the Dyn-Def1 experiment can be used as the control for desertification experiments.

Here we only present one desertification experiment Dyn-Desi, which has a fmax value

of 20%. This experiment is chosen because 20% is approximately the threshold value

upon which desertification starts to significantly impact the biosphere-atmosphere

system in the Sahel region.

The third group of experiments are designed to demonstrate the role of natural

vegetation dynamics in the response of the regional climate system to desertification,

which include experiments Stat-DesO and Stat-Des1. Stat-DesO and Dyn-Defi are

identical except that Stat-DesO does not include vegetation dynamics. Similarly, Stat-

Desi and Dyn-Desi are identical except that Stat-Des1 does not include vegetation

dynamics. Therefore, over the unperturbed fraction of each grid cell in the third group

of experiments, instead of responding to the subsequent climate changes, vegetation

after 1950 is fixed at the initial vegetation condition.

The characteristics of all the experiments are listed in Table-1.
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Table 1: Experiments Design

Experiments Vegetation Over Maintained Perturbation

ID Unperturbed Region Deforestation Desertification

Dyn-Control Dynamic no no

Dyn-Def1 Dynamic scenario A no

Dyn-Def2 Dynamic scenario B no

Dyn-Des1 Dynamic scenario A fmax=0.20

Stat-DesO Static scenario A no

Stat-Des1 Static scenario A fmax=0.20

7.3.3 Impact of Land Cover Changes on the Sahel Rainfall

In the following we present the results on how the human-induced land cover changes

might have altered the rainfall trend in the Sahel region during the past several

decades. As demonstrated in Chapter 6, when the model is driven by the SST vari-

ations in the Atlantic Ocean, the interannual variability of the simulated rainfall

demonstrates significant spatial coherency within the Sahel region (100N-17.5 0 N) as

well as in the region of Guinea coast (south of 10 N). Such spatial coherency is also

evident in observational data (Nicholson and Entekhabi, 1986). Therefore, the areal

average of rainfall over each of the two regions can be used for further analysis.

Figure 7-2(a,b) presents the time series of the Sahel rainfall and rainfall over the

Guinea coast, simulated in Dyn-Control (solid line), Dyn-Defi (dash-dot line), and

Dyn-Def2 (dot line). Deforestation causes significant reduction in rainfall over the

Guinea Coast. From 1950s to 1990s, a rainfall reduction of about 20% is simulated.

However, the model shows no systematic impact of deforestation on the Sahel rainfall.

Further experiments suggest that deforestation does not cause significant decrease of

Sahel rainfall unless its extent and intensity reach a certain level, a level higher than

that of the recorded deforestation in West Africa. This result seems inconsistent with

the finding of previous studies such as Zheng and Eltahir (1998), who showed that

deforestation causes rainfall decrease over the entire West Africa. However, in their
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Figure 7-2: Rainfall time series for a) the Guinea coast region and b) the Sahel region,
in experiments Dyn- Control (solid line), Dyn-Defi (dash-dot line), and Dyn-Def2 (dot
line).

study, deforestation was defined as a complete replacement of forest by grassland,
which is the most severe scenario of forest loss. Our study takes a more realistic

approach: deforestation is described as a gradual process of patchy land cover changes

from forest to grassland; within the undisturbed area, forest still exists and is able to

respond to the climate changes induced by forest loss elsewhere. When a complete

replacement of forest by grassland is considered in our model, the decrease of rainfall

takes place all over West Africa including the Sahel region, which is consistent with

Zheng and Eltahir (1998).

The impact of desertification also tends to be concentrated in the perturbation

zone. While desertification within a reasonable range causes negligible climate modifi-

cation over the Guinea Coast, it can induce significant response of the climate system

within the Sahel region. This is shown in Figure 7-3(a,b), where the light line stands

for the Dyn-Defi experiment, and the heavy line stands for the Dyn-Desi experiment.

Here the Dyn-Def1 experiment is used as the control case for the desertification exper-

iment. In addition to the deforestation process of scenario A considered in Dyn-Defi,

land cover changes in Dyn-Desi also includes a desertification process (as shown in

Figure 7-1) with fr equal to 20%. Desertification of this scenario, i.e., the fraction
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Figure 7-3: Comparison between the experiments Dyn-Defi (light line) and Dyn-Desi
(heavy line): a) Rainfall average over the Guinea coast region; b) Rainfall average
over the Sahel region; c) Growing-season leaf area index (LAI) at the grid point near
16'N; d) Rainfall at the grid point near 16'N.
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of exposed bare soil increasing from zero in 1950 to 20% in 1970 and remaining con-

stant afterwards, induces a large magnitude of rainfall reduction in the Sahel region

during the second half of the 20th century: a severe Sahel drought is initiated in the

late 1960s, and persists until the end of the simulation, in 1997. The rainfall amount

averaged over the Sahel region after 1970 is only about 60-70% of that in the 1950s

(Figure 7-3b), a decrease of more than 30%. This drought causes an expansion of

the Sahara desert. As shown in Figure 7-3(c,d), the grassland near the desert border

before the drought onset is transformed into desert, and the corresponding rainfall

decrease is as large as 60% (compared with the wet 1950s). Figure 7-4 presents the

spatial and temporal distribution of NPP in Dyn-Desi, with the approximate desert

border marked by the black line. Comparing Figure 7-4 with Figure 6-8 suggests that
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Figure 7-4: Net primary productivity (in kgC/m 2/year) distribution for the simula-
tion period 1950-1997 in Dyn-Des1.

the simulated drought is associated with a transition of the regional climate system

from its wet regime to its dry regime. It is worth noting that the magnitude of the

desertification that causes such a climate transition is rather small: the desertification

scenario with fm. equal to 20% represents a transformation of grassland into desert

at a rate of only 1% per year during the period 1950-1970. The overall surface albedo
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(i.e., the area-weighted albedo average between the portion of natural ecosystem and

the portion of managed ecosystem) increases from the 1950s to the 1990s by less than

0.08, which is a conceivable amount based on observations (Nicholson et al., 1998).

Interestingly, the drought initiation shows a strong nonlinearity. When a slightly

smaller fm is used (e.g., 15%), the model simulates very little rainfall reduction

caused by desertification. This is due to the nonlinearity in the resilience of the

coupled biosphere-atmosphere system as presented in Chapter 5.

Our results suggests that man-made desertification of a realistic magnitude is

able to trigger a persistent Sahel drought, while the deforestation-induced reduction

of rainfall occurs mainly near the coast. Observations show that the current drought

is not limited to the Sahel region. Although not as dramatic as in the Sahel region,

a trend of rainfall decrease is also observed over the Guinea Coast (e.g., Nicholson,

1994). If human activities are to blame, the persistent Sahel drought might have been

initiated by desertification, while sustained deforestation may have played a role in

the observed rainfall decrease near the coastal region.

7.3.4 Role of Natural Vegetation Dynamics

As demonstrated above, man-made desertification can trigger a severe persistent

drought in the Sahel region. Due to the natural vegetation dynamics, the drought

results from not only the imposed land cover changes alone, but also, the vegeta-

tion feedback induced by these changes. Here, to elucidate the role of vegetation

dynamics in the simulated drought, we investigate how much of the rainfall decrease

is attributed to the vegetation feedback and how much is due to the imposed land

cover changes alone.

Figure 7-5 presents the comparison of the Sahel rainfall between experiments

Stat-DesO and Stat-Des1, which is similar to Figure 7-3(b) but without vegetation

dynamics. These are the kind of results that traditional studies on the climatic im-

pact of desertification would get. When assuming static vegetation, the prescribed

land cover changes of the same magnitude result in only a minor reduction of rainfall

without causing any climate transition. Therefore, the simulated drought conditions
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in the Sahel region (Figure 7-3b-d) are primarily caused by vegetation dynamics which

involves the response of the natural ecosystem to the atmospheric climate changes in-

duced by the imposed land cover changes. When the initial damage of the ecosystem

due to desertification reaches a certain threshold, the response of the atmospheric

climate becomes significant enough to deteriorate the otherwise undisturbed portion

of the ecosystem, which then works in the same direction as the man-made deser-

tification in causing a drier climate. Therefore, natural ecosystem dynamics act to

amplify the impact of man-induced land cover changes. This response, together with

the system's natural response to the observed oceanic forcing during the late 1960s

and early 1970s, eventually cause a persistent drought in the following decades.
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Figure 7-5: Comparison of the sahel rainfall between Stat-DesO (light line) and Stat-
Desi (heavy line).

7.4 Drought Initiation by Large Scale Forcings

Although the man-made desertification can act as a triggering mechanism for the

Sahel drought, it is not the only possible mechanism for drought initiation. Large

scale forcings, e.g., the SST pattern in the Atlantic Ocean and over the globe, can also
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cause the deterioration of the regional climate system by reducing the Sahel rainfall

(e.g., Folland et al., 1991; Ward, 1998). Due to its zonal symmetry, our model cannot

represent the various global-scale forcings. Here, as a surrogate for those forcings,

a warming perturbation in SST of the Atlantic ocean is imposed for a limited time

to force a reduction of the Sahel rainfall (Eltahir and Gong, 1996) around the time

of the drought onset. During the rest of the simulation period, the observed SST

is used. The only difference between the Dyn-Control simulation in Section 7.3 and

the SST perturbation experiments here is the imposed warming event. Therefore,

Dyn-Control can be used as the control for the SST perturbation experiments.

Sensitivity experiments on different magnitudes and durations of the SST per-

turbation are carried out. The results suggest that a warming as small as 2.5*C,

imposed uniformly for the four years 1968-1971, is sufficient to trigger a persistent

Sahel drought which lasts for several decades. Figure 7-6 presents the temporal and

spatial distribution of NPP in this SST experiment, where the isohyet of the 200-mm

annual rainfall marks the approximate desert border. Comparing Figure 7-6 and Fig-
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Figure 7-6: Net primary productivity (in kgC/m 2/year) distribution for the simu-
lation period 1950-1997 in the experiment with a warming of four years (1969-1971)
imposed over the Atlantic ocean.

ure 6-8 clearly indicates a climate transition from the wet regime to the dry regime
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around the time of the drought onset. Rainfall time series for the Guinea coast and

the Sahel region in this SST perturbation experiment are shown in Figure 7-7(a,b),

comDared with that of the control case. Similar results for the growing-season leaf
a) Rainfall Over Guinea Coast b) Rainfall Over Sahel
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Figure 7-7: Comparison between Dyn-Control (light line) and the SST perturbation
experiment (heavy line): a) Rainfall average over the Guinea coast region; b) Rainfall
average over the Sahel region; c) Growing-season leaf area index (LAI) at the grid
point near 16'N; d) Rainfall at the grid point near 16'N.

area index (LAI) and the annual rainfall at a grid point near 16'N are presented in

Figure 7-7(c,d). Although no trend of rainfall decrease is observed over the Guinea

coast, a significant drought occurs in the Sahel region. Figure 7-6 and 7-7 all suggest

that the drought induced by large-scale forcings is also accompanied by an expan-

197



sion of the Sahara desert. Similar to the case of land cover changes, when the SST

forcing reaches a certain threshold, the response of the atmospheric climate becomes

significant enough to cause a change in the natural ecosystem, which then works in

the same direction as the initial forcing in changing the regional climate.

For the case of drought initiation by anthropogenic desertification, albedo in-

creases as a result of both desertification and the induced drought. Here, for the case

of drought initiation by SST warming, as no human activity is involved, the changes

of albedo merely reflect the response of the natural ecosystem. However, as shown in

Figure 7-8, no readily identifiable difference between the two cases is observed in the
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Figure 7-8: Annual variations of the overall surface albedo averaged over 12.50 N-
17.5 0N, in the desertification experiment (dot line) and the SST perturbation exper-
iment (solid line).

pattern of the albedo evolution, and there is no significant difference between the two

cases in the magnitude of the albedo change from the 1950s to the 1990s. Therefore,

albedo increase derived from satellite data does not necessarily suggest the existence

of man-induced vegetation degradation. Without more ecological data, it is hard to

distinguish the land cover changes induced by human activities from those induced

by a drought.
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Figure 7-9: Similar to Figure 7-7b, but for experiments with static vegetation.

The role of vegetation dynamics in shaping the response of the climate system to

SST perturbations is investigated in a similar way to the case of land cover changes.

We perform two experiments which, except for the assumption of static vegetation, are

exactly the same as the control and the SST perturbation experiment in Figure 7-7.

The comparison between the control with static vegetation and the SST perturbation

experiment with static vegetation is presented in Figure 7-9. Differences in the Sahel

rainfall only exist during the perturbation period. After the termination of the SST

perturbation, very little lasting impact on the Sahel rainfall is observed. Therefore, for

a drought initiation by any large-scale forcing, the dynamic response of the biosphere

plays a critical role. Without the functioning of ecosystem dynamics, the regional

climate system will quickly recover from a non-persistent forcing.

7.5 Summary and Conclusions

This chapter investigates the potential triggering mechanisms for the Sahel drought

using ZonalBAM. Long-term climate simulations are carried out by driving the model

with SST variations during 1950-1997 over the tropical Atlantic ocean. By adding
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different types of perturbations to the model, the possibility of drought initiation

by anthropogenic activities and that by large-scale forcings are separately studied.

Human activities considered include both deforestation and desertification of realistic

magnitudes, which are described as a patchy, gradual change of the land cover. A

uniform warming over the Atlantic ocean imposed for a certain period around the

drought onset is used as the surrogate of the large-scale forcings that may cause a

decrease of the Sahel rainfall. The role of ecosystem dynamics in shaping the response

of the regional climate system to these external forcings is studied using experiments

with and without vegetation dynamics.

Our results suggest that both human activities alone and large-scale forcings alone

can trigger a persistent Sahel drought similar to what has been observed in the 20th

century. However, no matter what the triggering mechanism is, ecosystem dynamics

is the most significant process in maintaining the drought condition. The natural

ecosystem deteriorates in response to changes of the atmospheric climate caused by

the man-made vegetation degradation or the warming over the Atlantic ocean. This

adds to the system an induced process of land cover degeneration which works to

impact the regional climate system in the same direction as that of the initial forcing.

As a result, the impact of the triggering forcing, whatever it is, gets amplified and

perpetuated. When the initial forcing reaches a certain threshold, the feedback due to

ecosystem dynamics becomes significant enough to result in a transition of the regional

climate system from its wet regime to its dry regime. Such a transition features a

persistent drought in the Sahel region which will last until a reverse transition takes

place.

Due to the lack of reliable ecological data before the drought onset, it is hard

to determine based on observations what triggered the recent Sahel drought. In the

context of the model, when driven by the SST observations over the Atlantic ocean

and subjected to no other external forcings (e.g., Dyn-Control experiment, solid line

in Figure 7-2b), the regional climate system features a relatively dry condition over

the Sahel region in the 1960s. This makes the climate system in the 1960s vulnerable

to any external forcing which may further decrease the Sahel rainfall. The 1960s
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happened to be a time when both the regional land cover changes (e.g., Warren, 1996)

and the global SST pattern changes (e.g., Ward, 1998) favor a rainfall reduction in

the Sahel region. The most likely scenario for the occurrence of the Sahel drought

is that natural ecosystem dynamics has intensified and perpetuated an existing dry

condition initiated by a combination of regional changes in land cover and changes

in large-scale forcings such as the global SST pattern. We emphasize that, no matter

what is the initial forcing, ecosystem dynamics plays the dominant role in sustaining

the drought conditions.
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Chapter 8

Summary and Conclusions

This chapter summarizes the main results and conclusions of this study, and suggests

directions for future research.

8.1 Summary of the Results

8.1.1 Modeling the Biosphere-Atmosphere System

A zonally symmetric, synchronously coupled biosphere-atmosphere model ZonalBAM

is developed to describe the climate system over West Africa. The coupled model com-

bines a zonally symmetric atmospheric model and a fully dynamic biospheric model.

It can simulate not only the transient climate but also the transient vegetation associ-

ated with the transient climate, i.e., the two-way biosphere-atmosphere interactions.

With the atmospheric forcings fixed at today's condition, the biospheric model

is run in off-line mode to simulate the potential vegetation distribution; with the

vegetation fixed at today's condition and the biospheric model functioning as a land

surface scheme, the atmospheric model is used to simulate the current atmospheric

climate. The model simulations compare well with various observational data over

West Africa. Starting with an initial vegetation distribution close to today's obser-

vation and forced by the climatological SST, the fully coupled biosphere-atmosphere

model produces an equilibrium state which is slightly greener and wetter than the

203



current climate (defined as the average during the entire twentieth century). One fea-

ture of this model equilibrium is the absence of savannah-type vegetation, for which

the lack of a disturbance mechanism (e.g., fire and grazing) in the model is identified

as a potential reason.

Taking West Africa as a case study, the importance of representing the rainfall

sub-grid variability in climate modeling is demonstrated using ZonalBAM. When

neglecting the sub-grid variability of rainfall, even if evapotranspiration is tuned to

be consistent with observations, significant errors in surface hydrological processes

and surface energy balance may result. These errors extend to the atmosphere via

the low-level cloud feedback and impact a wide range of atmospheric processes. The

same errors also propagate into the biosphere through vegetation dynamics, and can

eventually lead to a significantly different biosphere-atmosphere equilibrium state.

This case study provides a good example for the need to have physical realism in

modeling the complex biosphere-atmosphere system.

8.1.2 Multiple Equilibrium States

Based on simple analyses on how the coupled biosphere-atmosphere system responds

to vegetation perturbations (natural or anthropogenic) within the scope of a dynamic

ecosystem, a hypothesis is proposed that the regional climate system may have mul-

tiple equilibrium states coexisting under the same precessional forcing. Following a

vegetation perturbation, three possible types of response are predicted: a negative

feedback leading to a full recovery; a positive feedback leading to perturbation en-

hancement and a new equilibrium; a negative feedback leading to a partial recovery

and a new equilibrium.

The topic of multiple equilibria is first studied based on the sensitivity of the

coupled biosphere-atmosphere model (ZonalBAM) to initial conditions. When start-

ing from a forest-covered West Africa, the model evolves into an equilibrium which

features trees over most of West Africa and grass over a narrow band in the north.

When starting with a desert-covered West Africa, the model evolves into an equilib-

rium which features tall grass near the coast with short grass and desert in the north.
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Other equilibria of the model fall in between these two extremes.

A further study on the multiple-equilibrium nature of the regional climate system

using ZonalBAM is performed based on the resilience of the biosphere-atmosphere

system at a "close-to-current" equilibrium. Perturbations considered here are non-

permanent and include deforestation, desertification, and irrigation. When deforesta-

tion (up to a forest clearing) occurs, a negative feedback is always observed which

eventually leads to the full recovery of the "pre-perturbation" equilibrium; when dif-

ferent degrees of desertification (in the form of a uniform grass thinning) are imposed,

all the three predicted types of responses are observed. Following grass thinning of

a small magnitude, the feedback is negative and leads to a full recovery; upon grass

thinning of a large enough magnitude, a climate transition occurs through a posi-

tive feedback, or through a negative feedback leading to a partial recovery. Three

different equilibria (wet, medium, and dry) are identified. While desertification can

cause a climate transition from a wetter equilibrium to a drier one, irrigation can

cause a climate transition from a drier equilibrium to a wetter one. In all the above

experiments, the climatological SST is used.

8.1.3 Mechanisms of the Low-Frequency Rainfall Variability

Long-term climate simulations for the region of West Africa are performed using

ZonalBAM forced with the observed SST in the tropical Atlantic Ocean from 1898

to 1997. Consistent with observations, the model rainfall over the Sahel region is

dominated by low-frequency variability, and the model rainfall over the Guinea Coast

features more high-frequency variability. However, when assuming static vegetation

conditions (i.e., the vegetation dynamics is turned off), the model fails to reproduce

the dominance of low-frequency variability in the Sahel rainfall.

Based on the sensitivity of the long-term climate simulations to initial vegetation

conditions, the multiple-equilibrium behavior of the regional climate system under

the influence of variable SST is examined. Although three equilibria (wet, medium,

and dry) are documented when the model is forced with the climatology of SST

seasonal cycle, only two climate regimes (wet and dry) are viable when the inter-
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annual variability of SST is included. The observed SST forcings in the Atlantic

Ocean alone are not large enough to cause transitions between different regimes.

However, climate transitions take place when SST forcings over the Atlantic ocean are

artificially doubled to surrogate the impact of global-scale forcings. Such transitions

represent a potential mechanism for the low-frequency climate oscillation.

8.1.4 Ecosystem Dynamics and the Current Sahel Drought

The coupled model ZonalBAM with a mosaic representation of land surface is used to

investigate the process of drought initiation by anthropogenically induced permanent

land cover changes. The time period 1950-1997 is considered. When the extent of

man-made desertification (i.e., changing a fraction of the grassland to desert) reaches

a certain threshold, the induced changes in the atmospheric climate become significant

enough to deteriorate the healthy sections of the local ecosystem which are not directly

influenced by human activities. This response causes a climate transition towards a

drier equilibrium in the late 1960s which takes place in the form of a severe persistent

drought over the Sahel region. However, when vegetation dynamics is turned off,

desertification of the same magnitude induces only a minor reduction of the Sahel

rainfall.

A warming event of a limited time is imposed to the Atlantic ocean, as the sur-

rogate for the global-scale SST variations that may cause a decrease of the Sahel

rainfall, to study the process of a drought initiation by large-scale forcings. When the

SST warming reaches a certain threshold, the rainfall reduction over the Sahel region

becomes significant enough to cause the deterioration of the natural ecosystem, which

then works in the same direction as the SST warming in causing dry conditions in

the Sahel region. As a result, a climate transition to the drier regime takes place,

leading to a persistent drought. In the case where vegetation dynamics is not con-

sidered, instead of developing into a persistent drought, the impact of the warming

event disappears shortly after the termination of the warming.
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8.2 General Conclusions

The coupled biosphere-atmosphere system over West Africa is intransitive. The re-

gional climate system has multiple equilibrium states coexisting under the same pre-

cessional forcing, with reversible transitions between different equilibria. The climate

system can remain around one equilibrium under the influence of small perturbations

(i.e., climate persistence) until a large enough perturbation leads the system towards

a different equilibrium (i.e., climate transition). Following a vegetation perturbation,

climate persistence is observed when the feedback is negative which leads to a full

recovery; climate transitions take place when the feedback is positive, or when a

negative feedback only leads to a partial recovery.

Triggered by external perturbations (natural or man-made) and governed by the

two-way biosphere-atmosphere feedback involving vegetation dynamics, the biosphere-

atmosphere system can evolve from one equilibrium to another within a relatively

short time (on the order of one decade). The short time scale of climate transi-

tions between different equilibria suggests that the multiple-equilibrium behavior of

the regional climate system is a relevant process for shaping the climate variabil-

ity at historical time scales. Vegetation dynamics, the fundamental physical process

that ensures the multiple-equilibrium behavior of the coupled biosphere-atmosphere

system, is important for understanding the observed climate characteristics in West

Africa.

Vegetation dynamics enhances the low-frequency variability of the Sahel rainfall.

Large-scale factors including SST variations in the Atlantic Ocean may act as the driv-

ing forcing for the climate variability over the Sahel region. However, the response

of the regional climate system to these forcings is significantly regulated by vegeta-

tion dynamics. Without the role of vegetation dynamics, the low-frequency rainfall

variability would be less significant than observed. When the SST or any other forc-

ing causes a significantly wetter-than-normal (drier-than-normal) event, vegetation

develops denser (thinner) than normal, especially if this event spans several years.

When the driving forcing ceases to operate, the biosphere-atmosphere system still
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has a denser-than-normal (thinner-than-normal) vegetation, which is equivalent to

the situation after a vegetation perturbation. In the next several years following the

termination of the original event, the biosphere-atmosphere system will be in a status

of recovering from a vegetation anomaly that favors wetter-than-normal (drier-than-

normal) conditions, assuming that a recovery is possible. As a result, the original

event gets amplified by vegetation dynamics, which directly contributes to the low-

frequency climate variability.

The regional climate system over West Africa in the model has two "close-to-

current" climate regimes (wet and dry) in the scenario of varying SST forcings. When

external forcings such as changes in the global SST pattern cause an unrecoverable

anomaly, climate transition takes place. As a result, the impact of the original forc-

ing is not only amplified, but may also be sustained and perpetuated. Such climate

transitions between the two different regimes act as another important mechanism

contributing to the low-frequency rainfall variability in the Sahel region. Climate per-

sistence at one regime and climate transitions towards the other collectively compose

a special type of multi-decadal fluctuations. It is important to note that vegeta-

tion dynamics is the fundamental physical process regulating the climate transitions

between different regimes.

Vegetation dynamics plays an important role in the development and persistence

of the current Sahel drought. A likely scenario for the triggering mechanism of the

Sahel drought would involve a combination of several processes including regional

changes in land cover as well as changes in the patterns of global and regional SST

distributions. However, regardless of what the triggering mechanism is, the response

of the natural vegetation to the atmospheric changes induced by the initial external

forcing is a critical process for explaining the severity and persistence of the observed

drought. The natural response of the grass ecosystem near the desert border to the

dry conditions of the late 1960s seems to have played a significant role in the dynamics

of the drought.

In summary, vegetation dynamics is a significant physical process in causing the

observed characteristics of the climate over West Africa, including the low-frequency
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climate variability and the persistence of the Sahel drought. The multiple-equilibrium

nature of the regional climate system provides the theoretical basis for the special role

of vegetation dynamics in the climate variability.

8.3 Future Research

In this study we document the multiple-equilibrium behavior (i.e., intransitiveness)

of the regional climate system over West Africa using a zonally symmetric model. It

remains to be addressed how the limitation of a zonal model may influence the results

of our study. In future research we plan to carry out a similar study by coupling IBIS

to a general circulation model. More importantly, it is essential for future research to

address whether the existence of multiple equilibria is a general feature of the global

climate system or specific for the region of West Africa. The intransitive nature of

the climate system suggests that climate prediction should be treated as an initial

value problem instead of as a boundary layer problem which is the general traditional

view. Therefore, the development of a new approach to studies on climate prediction

(e.g., doubling C02 studies) is also a task of future research.

The decadal variability in the inter-hemispheric gradient of global SST, which is

statistically related to the low-frequency variability of the Sahel rainfall, cannot be

represented in a zonally symmetric model. It will be important for future research

using a 3-D model to address whether the decadal variability of the global inter-

hemispheric SST gradient does contribute to the low-frequency variability of the Sahel

rainfall, and if so, how significant it is compared with the contribution from the two-

way biosphere-atmosphere feedback.

In this study we focus on the role of two-way biosphere-atmosphere interactions.

The two-way atmosphere-ocean interactions are not included. Without incorporating

the oceanic feedback, it is impossible to address whether the biosphere-atmosphere

feedback is the most significant mechanism in regulating the climate variability. The

role of oceanic feedback remains to be a topic for future research.

The increase of C02 concentration has significant impact on the coupled biosphere-
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atmosphere system. In addition to the well-documented warming impact, C02 abun-

dance also fertilizes the vegetation growth and modifies the competition between C3

and C4 plants. However, in this study, the C02 concentration is fixed at its post-

industrial level, which is about 350ppm. Future studies should address the impact

of CO 2 increase in the scenario of a synchronously coupled biosphere-atmosphere

system.
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