
A Graphical Programming Interface

for a Children's Constructionist Learning Environment

by

Andrew C. Cheng

Submitted to the Department of Electrical Engineering and Computer Science

in Partial Fulfillment of the Requirements for the Degree of

Master of Engineering in Electrical Engineering and Computer Science

at the Massachusetts Institute of Technology

May 22, 1998

) Copyright 1998 Andrew C. Cheng. All rights reserved.

The author hereby grants to M.I.T. permission to reproduce and
distribute publicly paper and electronic copies of this thesis

and to grant others the right to do so.

Author

Certif

Department of Electrical Engineering and Computer fience
Mav 22. 1998

lied by -_ - - - . -.
f-M<1 chel Resnick

I es isi rervi. <

OF TECHNOeL;GY

JUL 41
LIBRARIES

ARCHiVES

Chaa C /Arthur C Smith
Chairman, Department Commi ee on Graduate Theses

LE^eA C--AtA1lTF 3 by

A Graphical Programming Interface

for a Children's Constructionist Learning Environment

by

Andrew C. Cheng

Submitted to the Department of Electrical Engineering and Computer Science

May 22, 1998

In Partial Fulfillment of the Requirements for the Degree of

Master of Engineering in Electrical Engineering and Computer Science

ABSTRACT

Pet Park Blocks is a graphical programming interface for children. It is designed to lower
the cognitive threshold for children to begin programming in Pet Park, a graphical online
virtual universe created by Austina De Bonte. Pet Park Blocks is a good interface for
beginners in Pet Park to learn basic programming concepts. The interface also provides a
smooth transition to the original textual Pet Park programming environment. In this
sense, Pet Park Blocks effectively provides scaffolding to help users think at one level
and transition smoothly to the next.

Thesis Supervisor: Michel Resnick
Title: Associate Professor, MIT Media Laboratory

2

Table of Contents
1. INTRODUCTION... 4

1.1 DESCRIPTION OF PET PARK .. 4
1.2 PROPERTIES OF CONSTRUCTIONISM 6

1.2.1 Design .. 6
1.2.2 Ownership ... 7
1.2.3 Com m unit y .. 7

1.3 THESIS OVERVIEW .. 8

2. TEXTUAL AND GRAPHICAL PROGRAMMING LANGUAGES ... 9

2.1 CHALLENGES INHERENT IN TEXTUAL LANGUAGES AND ADDRESSED BY GRAPHICAL LANGUAGES 9
2.1.1 Complexity of Expression .. 10
2.1.2 Syntax .. 11
2.1.3 Typing .. 12

2.2 OTHER USEFUL VIRTUES OF GRAPHICAL PROGRAMMING LANGUAGES 1...................... 13
2.2.1 Visual Metaphors 13
2.2.2 Visual Cues .. 14
2.2.3 Advanced Visual Cues .. 16

2.3 LIMITATIONS OF GRAPHICAL PROGRAMMING ARE ACCEPTABLE ... 16

3. EXISTING GRAPHICAL PROGRAMMING PARADIGMS ... 18

3.1 DATA FLOW AND CONTROL FLOW .. 18
3.2 RULE-BASED ENVIRONMENTS: AGENTSHEETS AND VISUAL AGENTALK 19

3.3 PROGRAMMING BY EXAMPLE: COCOA . .. 21

3.4 CONTROL FLOW: LOGOB LOCKS ... 22

4. FEATURES OF PET PARK BLOCKS 24

4.1 BASIC VISUAL STYLE: CONTROL FLOW ... 24
4.2 TY PES .. 28
4.3 OVERLAID IMAGES FOR FEEDBACK ... 29
4.4 ANIMATIONS AS LABELS .. 30
4.5 SWITCHING FROM GRAPHIC MODE TO TEXT MODE .. 31
4.6 GRAPHICAL REPRESENTATION REFLECTS TEXT EQUIVALENT ... 32

5. IMPLEMENTATION: UNDER THE HOOD OF PET PARK BLOCKS 33

5.1 PROGRAM REPRESENTATION: PIECES 33
5.2 GRAPHICAL REPRESENTATION OF PIECES: SQUARES .. 35
5.3 PALETTES ... 35
5.4 WORKSPACE .. 36

6. FUTURE WORK AND CONCLUDING REMARKS ... 37

6.1 FINISH IMPLEMENTING VISUAL CUES AND OTHER TOOLS ... 37
6.2 ENCAPSULATE PROGRAMMING RULES IN KNOWLEDGE BASE ... 37

6.3 INCLUDE OTHER PROGRAMMING PARADIGMS .. 38

6.4 EMPIRICAL STUDIES ... 38

3

1. Introduction

In recent years, educators have experimented with a new theory of learning called

constructionism. Under constructionism, children learn by choosing projects of their own

that involve design, and by sharing their designs (Papert 1993). Pet Park is a graphical

online virtual universe for children which emphasizes constructionist learning. It is a

computer realm where children can log on, create their own animated pets, and program

them to have animated sequences using a child-friendly version of Java called YoYo

(Begel 1997). Pet Park Blocks is a graphical programming interface that accompanies

Pet Park's original textual programming interface. This graphical interface is intended to

help the younger users start programming and to help them make the transition to textual

programming. This cognitive assistance is called scaffolding. This thesis describes the

design goals and implementation of Pet Park Blocks. Pet Park Blocks can be best

understood after a more thorough explanation of Pet Park and its focus on

constructionism.

1.1 Description of Pet Park

Pet Park is a graphical online virtual universe for kids. Each child is represented by a

graphical entity called an avatar. Figure 1 shows two avatars in a Pet Park location called

"The Hotel." The one in the chair is named Andrew and he inherits from a basic Pet Park

creature called Spotnik. All creatures that inherit from Spotnik look the same. This one

is saying, "Hello!" to the other avatar. A child can move his avatar from one virtual

location to another by selecting exits and other shortcuts. For example, in Figure 1 you

can see the Exit that looks like a doghouse. This is an exit to the Library. Children can

4

communicate to each other by typing messages that are seen by every other user within

the same location. The messages show up as text balloons above the avatar that said

them.

Figure 1: A Pet Park location named "The Hotel"

Children can create new objects to add to Pet Park,

and program these objects with behaviors. A child

can create a dog that jumps and says, "Let's have a

Figure 2: Spotnik at ease, surprised,
and laughing party!" whenever three or more users are in the

dog's location. Children can also program new animations for their avatars. For

example, Spotnik, comes with 20 basic animation clips, or scripts. See Figure 2 for

5

images of Spotnik. One script is called Surprise, and when it is called, it causes the

Spotnik avatar to jump up, open its eyes wide and cover its mouth in surprise. Another

script is called Laugh, and it causes Spotnik to laugh in the same standing position. A

child can create a new animation for his Spotnik avatar, called Congratulate:

Surprise
Laugh
say "Wow! That was great! Congratulations!"

This script plays the Surprise and Laugh animations and ends with the avatar saying,

"Wow! That was great! Congratulations!" All programming for Pet Park is done in a

child-friendly programming language called YoYo (Begel 1997). YoYo incorporates

many ideas from Java and from Logo.

1.2 Properties of Constructionism

Pet Park is a constructionist learning environment. Constructionism is a theory of

learning that emphasizes design, ownership, and community.

1.2.1 Design

Each new animation is a design project. The process of design is rich with learning

opportunities (Papert 1993). A child begins with a new animation concept and learns

many things as he figures out how to organize his thoughts, how to express them to other

children, how to realize them in the act of "building" a program, and how to fix the new

program iteratively until he gets what he had in mind.

In Pet Park, design is done through programming. Seymor Papert argues that

programming is an excellent constructionist learning activity (Papert 1980). When a
6

child writes a program, the child has to express his ideas explicitly and in the organized

fashion required by the programming language. This mode of expression is very

conducive to experimentation; a child can execute his program to see how thoroughly and

accurately he expressed his thoughts. In this way, programming is a way to make

thought processes more explicit and concrete and therefore more accessible to reflection

(Papert 1980).

1.2.2 Ownership

Each animation is a project of the child's own choosing. Each child feels a sense of

ownership for his avatar because that avatar represents him or her to the other children.

Therefore the child is highly motivated to improve continually the avatar with

increasingly complex animations. The result is that the child is willing to spend time to

overcome obstacles and figure out problems that stand in the way of the completion of a

new animation script. The personal connection between the user and the avatar

engenders ownership of the ideas that are learned in the design process.

1.2.3 Community

Each new animation is constructed in an environment where other children can give

suggestions, assistance, and feedback. As a Pet Park user helps others, the user draws on

the knowledge acquired in other projects. This process strengthens and fleshes out the

user's grip on the knowledge, while creating new opportunities to learn about effective

communication. Meanwhile, those who are receiving assistance are encouraged and

further motivated in their own projects. The set of design projects within the community

7

also provides fertile soil where new ideas can grow. Amy Bruckman has explored the

way that a community supports constructionist activities, and the way that design projects

enrich the community (Bruckman 1997).

1.3 Thesis Overview

Since much of the learning in Pet Park takes place while a child programs, special

attention must be paid to the programming interface. Pet Park Blocks is intended to

lower the cognitive threshold for children who want to join the community. The Pet Park

Blocks programming interface makes it easy for younger users to write basic programs.

It helps beginners learn some of the key concepts in programming and also provides a

smoother transition to programming with a textual language. This idea of helping

students at one level so that they can transition smoothly to the next level is called

scaffolding. Pet Park emphasizes learning in a constructionist environment, and Pet Park

Blocks helps younger and less experienced users get involved by providing scaffolding

for the programming environment.

The next section of this thesis describes the challenges that a young programmer

faces when using a textual programming interface. It also describes how a graphical

programming interface can reduce those challenges and also how such an interface can

provide useful aides to thinking. The third section of this thesis is a brief discussion of

several existing graphical programming languages and how they compare to the needs of

young Pet Park users. The fourth section describes the features of Pet Park Blocks that

are intended to provide scaffolding to users. Many of the features are borrowed from the

other graphical programming languages. Finally, the fifth section lays out the current

implementation of Pet Park Blocks.
8

2. Textual and Graphical Programming Languages

Both textual and graphical programming languages have their advantages and

disadvantages. However, this thesis is only concerned with the programming

environment as experienced from the point of view of young and inexperienced

programmers.

2.1 Challenges Inherent in Textual Languages and Addressed by Graphical

Languages

Figure 3 shows the original Pet Park textual programming interface. All programming is

done in a child-friendly version of Java called YoYo. YoYo presents the expressive

power of Java in a simpler syntax that is strongly based on Logo. However, any textual

programming language presents a young user with certain challenges.

Figure 3: The original textual interface for Pet Park

9

2.1.1 Complexity of Expression

The ideal programming environment would allow the users to focus on what he or she

wants to express instead of how to express it. However, with a textual programming

interface, a child spends much of his time figuring out how to say things in the language.

For example, consider Figure 4. It shows the ways to express the same idea in three

different languages. The idea is to print out a message: "Hello World!" Figure 4a

shows how this is done in Java. Figure 4b is for YoYo, and Figure 4c is one graphical

alternative.

Figure 4: Three ways to print "Hello World!"

As one moves from 4a to 4c, one can see that there is less to remember in order to

express the idea of saying, "Hello World!" In 4a, a child must remember to type the

string System. out. println even though this string includes ideas that the child

does not need to understand. YoYo abstracts away this excess. The concept in 4c moves

10

(4a) System.out.println("Hello World!");

(4b) say "Hello World!"

1. A \
(4C) rogrammer is to type

the desired text
in the white balloon.
This text will be
printed to the screen
verbatim.

even closer to a plain representation of the idea since the avatar stands with an empty text

balloon waiting to be filled.

2.1.2 Syntax

The challenge of getting all the syntax correct in textual programming environments can

be frustrating, especially for young users. This challenge is deeply linked with the

previous one described above. Reconsider Figure 4. The YoYo code in 4b requires that

the user type say before the message. One can imagine forgetting which of the

following lines has the correct syntax:

say Hello World!

say, Hello World!

say, "Hello World!"

say: Hello World!

say: "Hello World!"

Pet Park actually uses two variations. When programming scripts in YoYo, a text

message must be enclosed in quotes. However, quotes are not necessary when a child

types at the command prompt what he or she wants the avatar to say. This might confuse

a young programmer who could have the preconception that there is one correct syntax.

As he tries to figure out what the syntax is, the system allows for variations thus

potentially causing momentary confusion: "Wait. I thought it was supposed to be done

this way." The limited variation can cause further confusion: "I thought I could say it any

way I wanted to. I thought the computer would figure out what to do." Eventually a

child might wonder: "What would happen if I tried to include a quote mark in my

message?" During a conversation with a teacher, the child might have some trouble

understanding what an escape character is. Finally, the child could ask: "How would I

include an escape character in my message?"
11

We can see here that the child is focusing on how to express an idea instead of

what idea to express. While this focus can be fruitful in learning the differences between

different programming languages, it is probably too esoteric for beginners in Pet Park.

Reconsider Figure 4c. The image suggests that whatever is typed in the text

balloon will appear verbatim when it is executed, because the image is actually identical

to the execution: some text will appear in a white balloon directly above the avatar. This

approach virtually eliminates the need for escape characters and other syntax.

A program that is easy to compose is also easy to debug. Reconsider Figure 4. A

Java syntax error is harder to find than a YoYo syntax error simply because Java

programs have more syntax for a programmer to wade through. However in a graphical

programming environment, errors can be prevented in real-time as the system notifies the

user that a certain thing cannot be done: "Sorry, only blue program blocks can go here."

This reduces the errors in programming to mostly conceptual errors: "Ah, I should put

more Laugh blocks here because a single Laugh block doesn't represent as long of a

laugh as I wanted." A child will be freed from syntax concerns such as: "Was Laugh

supposed to be capitalized?" and will be able to think primarily of what concept is

missing or out of sequential order.

2.1.3 Typing

One last challenge is typing. The first program I ever tried to type into a computer was

one I found in the BASIC handbook for my Commodore64. The book said that the

program listed on the page would cause the computer to display a flower pattern and play

12

a nice melody. I took a long time in entering the program into the computer because I did

not yet know how to type. Finally I executed the program and the computer displayed

something like tormi wallpaper and from the keyboard speaker came the sounds of two

gunshots and a scream, played repeatedly. I spent another hour trying to correct any

typing mistakes and the final result was a program that displayed a black screen and

played no sound. I had no idea what many of the program lines meant, and, although that

was a very deep and serious problem, my most pressing concern was rather that the

endeavor was taking forever because I didn't know how to type. I quickly relapsed into

my previous mode of playing Montezuma's Revenge, a video game. A graphical

programming environment can drastically reduce the amount of typing.

2.2 Other Useful Virtues of Graphical Programming Languages

In addition to eliminating or reducing certain challenges of textual programming

languages, graphical programming languages can provide usefill visual cues.

2.2.1 Visual Metaphors

Graphical programming languages can represent certain common programming ideas in a

straightforward manner that makes the meaning visually clear. The term "visual

metaphor" is related to the ordinary meaning of "metaphor" which is: a figure of speech

literally meaning one thing, but used in place of another to emphasize the similarity

between them. A visual metaphor is a graphical convention for displaying a certain

program construct, where the convention makes the meaning of the construct obvious by

13

its similarity. For example, a branch can represent a conditional statement such as an if

in a sequence of blocks, with the boolean test at the branch.

2.2.1.1 Metaphor for Parallelism

Another good example of a program construct that can be represented well by a visual

metaphor is parallelism. Two segments of code that can execute in parallel can be

depicted in a graphical programming environment as two geometrically parallel paths

through which the control of the program flows. In Figure 5, the arrows indicate that the

control runs along two paths simultaneously and rejoins at the end of the two parallel

code segments.

Figure 5: A visual metaphor for parallelism

2.2.2 Visual Cues

Another way a graphical programming interface can help the programmer is by providing

visual cues. Two kinds of visual cues are described here.

2.2.2.1 Corresponding Shapes and Colors

In Pet Park, an animation such as Congratulate (see Section 1.1) is procedurally

abstracted and represented by that name: Congratulate. Animations can be called

one after another because every animation sequence begins and ends with the same image

of the avatar. This convention allows one animation to leave off where another will

14

begin, much the way cursive fonts on a computer have letters that begin and end at

corresponding points. In Pet Park Blocks, blocks such as the one shown in Figure 6

represent animations.

Congratulate

Figure 6: A Congratula
animation block

Surprise

Laugh

I I

Figure 7: How animati
blocks fit together

together horizontally,

Notice the notch at the top and the protrusion at the

bottom. Animation blocks can be connected in a vertical

column with the protrusion of a block fitting into the notch of

the next block as shown in Figure 7. The blocks fit together

ate
like jigsaw puzzle pieces. These notches and protrusions are a

visual hint to the programmer that pieces that do not have a

notch at the top cannot be connected at the bottom of animation

blocks. For example, a boolean operator such as an and piece

should not be connected to any animation block, since

animation blocks have no boolean value for the operator to use.

Therefor boolean operators are represented by graphical

entities which do not have top notches and bottom protrusions.
on

Figure 8 shows how boolean operators and variables fit

because boolean operators have concave sides that accept the round

convex sides of boolean variables.

3nce

Figure 8: How boolean variables and operators fit together Figure 9: Contact edge
tinted

15

Pieces that correspond to each other can be color-coded. For example, all boolean

operators can be dark blue and boolean variables can be lighter blue. Also, the edge of an

if block that is meant to hold a boolean expression can be tinted blue, indicating that

only blue blIean blocks could go there. Ir. Figure 9, the concave contact surface that the

i f statement has for boolean variables is tinted blue.

2.2.2.2 Message Icons for Visual Feedback

Another visual cue that graphical programming environments can

provide is an occasional pop-up icon that notifies the user of what

action will take place if the user proceeds with the current mouse

operation. For example, if the user is dragging an animation block
Figure 10:
Visual cue

near a boolean operator, the system can determine that if the

animation block were dropped there, it would not connect with the boolean operator. The

system could then display a visual cue over the animation block, showing that it will be

rejected if dropped there. See Figure 9 for an example of this visual cue.

2.2.3 Advanced Visual Cues

An animation block can have, on its face, a little window showing the actual animation

sequence playing in a loop. This way, the block can be identified either by its text label

or its contents, the animation. Many other visual cues and metaphors are possible.

2.3 Limitations of Graphical Programming are Acceptable

Although there are limitations to graphical programming, most limitations are acceptable

in Pet Park Blocks because the interface is focused on providing scaffolding for beginner
16

programmers. These programmers will write simple programs and for that reason either

(1) they will not encounter these limitations or (2) the limitations will not have too

negative an impact.

For example, one limitation is that graphical programming constructs usually take

up more screen space than their text equivalents. Therefore, screen space places a limit

on how much of the program the user can view at any given time. This limitation is

acceptable for beginner programmers because Pet Park Blocks is designed so that

programs tend to grow only in one direction: down. If a program does not fit on the

screen in its entirety, the programmer only has to scroll the program in one dimension.

A second limitation is that graphical programming languages generally have less

expressive power than textual programming languages. This disadvantage is acceptable

for beginning users, however, since many basic ideas that they want express can be

represented graphically. For example, a new animation that is simply the result of

chaining other animations together can be easily expressed in Pet Park Blocks by a

column of animation blocks.

As programmers grow in experience, their programs grow longer and require

more expressive power. They discover that there are things that cannot be done in Pet

Park Blocks. Therefore, they make the transition to the textual programming interface.

Pet Park Blocks has certain features that are designed to make the transition a

straightforward one. These features are discussed in Section 4.

17

3. Existing Graphical Programming Paradigms

The consideration of (1) several existing graphical programming paradigms and (2) how

they compare to the needs of Pet Park programmers can provide a context for

understanding the decisions made concerning the features, design, and implementation of

Pet Park Blocks. The following graphical programming languages are categorized by the

conceptual model they follow.

3.1 Data Flow and Control Flow

In the data flow paradigm, there are two basic graphical programming constructs: (1)

lines or arrows showing the path that data takes during the execution of the program, and

(2) blocks that represent transformations or operations that are done on the data.

Consider Figure 10 for an illustration of this. The program's input is labeled as Source.

This statement is operated on by transform Hi. The result of this is operated on

separately by transforms H2 and H3, and the final Answer is the sum of the results from

H2 and H3. Notice that the program implies that the transformations done by H2 and H3

can be done simultaneously. This is another example of the use of the visual metaphor

for parallelism depicted in Figure 5.

Data
Source

Answer

Figure 11: Data flow example

18

This programming style is useful for scientific applications where operations and

transformations are done on data. However, for the purposes of Pet Park, the data flow

paradigm is inappropriate. The basic graphical programming constructs are not

transformations or operations but rather blocks that represent animation sequences. The

reason behind this is that YoYo is a control flow language. Programs are sequences of

actions that are occasionally modified by control structures such as loops and conditional

statements. Data is not passed from one operator to the next, but rather the control of the

environment flows through successive statements. Since Pet Park Blocks provides

scaffolding for beginner programmers to gradually transition to the YoYo textual

programming environment, Pet Park Blocks adheres to the control flow paradigm.

3.2 Rule-Based Environments: Agentsheets and Visual AgenTalk

Agentsheets (Repenning 1993) is a graphical language that compiles to Java. It was

developed by Alex Repenning at the University of Colorado. In Agentsheets, an agent is

an entity that is programmed with the ability to perceive and react to changes in its

environment. Agents are organized on a grid called an "agentsheet." They

communicate with each other directly and also according to their relative position on the

agentsheet. For example, a programmer can create an agentsheet that represents the

ecosystem of a pond. The agents on this agentsheet represent the individual fish. Each

agent (or fish) can react to its environment by avoiding collisions with other fish,

swimming towards food, etc.

Visual AgenTalk is a rule-based graphical programming environment for

Agentsheets. Each agent can be programmed with a set of rules such as: "If the space on
19

the agentsheet grid immediately to my right is empty, then move to that space." This is

represented by the graphical rule depicted in Figure 12.

Figure 12: An Agentsheets rule

In the example of the pond ecosystem, a fish agent can have any number of rules.

The agentsheet is associated with a virtual clock and with each passing clock tick, the

system goes through each agent and determines which rules to fire. Suppose a given fish

has five rules that are satisfied simultaneously on a given clock tick. The system chooses

which rules to fire by consulting the heuristic supplied by the programmer. One heuristic

is to choose one rule at random and fire it. Another heuristic is to impose an arbitrary

order and fire the first three. The agentsheet goes through this procedure for each agent.

This may sound similar to Pet Park, because Pet Park also has agents that can

react to the environment. However, there is a fundamental difference in the way the

behavior of an agent is specified in the two environments. In Agentsheets, an agent

obeys a set of specified rules. In Pet Park, agents follow an animation sequence specified

in YoYo code whenever the user and requests that the animation be activated. The entire

animation is a sequential matter and is not driven on each clock-tick by a set of rules.

20

3.3 Programming by Example: Cocoa

Before . ' After
. . . , -

Before After

Before fterBefore After

Before A - fter

Before After

Before. - After

*1

Figure 13: Creation of a Cocoa rule

Cocoa is a language developed at

Apple. It is actually based on an

early version of Agentsheets.

Cocoa is also rule-based, but it is

still noteworthy in this

discussion because it emphasizes

another programming paradigm:

programming by example. In

this paradigm, the programmer

shows the computer what to do

by giving it an example. The

computer then figures out what

the equivalent program code

should be. Programming by

example is also called

programming by demonstration.

Figure 13 shows the creation of a

Cocoa rule that is the equivalent

of the Agentsheets rule shown

in Figure 12. The bottom image

is the final form of the rule. If

the space immediately to the

21

I

1 a~r
I

I

g
I fI

I

I 09#'
I

I

- . I

I

I _'

'

I

I I

I , , I ' -I . .. I -- I

I

I :~~

right of the agent is empty, then the agent should move to that empty space. In order to

create this rule, the user clicks on a New Rule button. The top image in Figure 13 is

presented to the programmer, and each successive image shows the steps in creating the

rule. The agent is in a single grid square in a Before stage and an After stage. The

programmer needs to demonstrate to the computer that, if there is an open space to the

right of the agent, the agent should move to that space. This demonstration is done by

altering the After stage: the programmer needs to create an empty space to the right and

then show how the agent should move there, all by interacting only with the After

stage. The After stage has round handles or tabs on the edges that can be dragged by

the mouse. The programmer drags the right handle one space to the right. The agent is

now next to an empty grid space to its right. The programmer then drags the agent from

its original location in After, to the empty space immediately to the right. Notice the

behavior of the Before stage: it mimics all the changes in the After stage except any

changes that involve the agent itself (such as a change in the agent's location).

Programming by example is a very intuitive way of specifying rules. Pet Park

animations could be programmed this way if the environment supported the recording of

macros. However, the original textual programming environment involved writing YoYo

programs that call one animation after another.

3.4 Control Flow: LogoBlocks

LogoBlocks (Begel 1996) was developed at the Media Laboratory at MIT for the Cricket,

a tiny computer that can communicate through two sensors and can control two motors.

LogoBlocks emphasizes control flow. The graphical user interface consists of a

22

workspace and a set of palettes. Each palette holds program pieces in the form of shapes

with notches and protrusions that fit with other compatible pieces. The user builds a

program by dragging blocks from the palette to connect them together in the workspace.

Figure 14 shows a short LogoBlocks program. Notice that the or block has two

curved concave sides that correspond to the convex sides of the boolean blocks

SwitchA and SwitchB. The blocks are also color-coded: control structures such as

if-thens are yellow, actions such as Beep are green, and so on. The color scheme

and the block shape convention are visual cues that show which blocks can fit together.

They are useful visual cues that Pet Park Blocks borrows.

Figure 14: A LogoBlocks Program

23

4. Features of Pet Park Blocks

The following features of Pet Park are designed to help beginner programmers get their feet wet

in programming in Pet Park so that they can later make a smooth transition to programming in the

textual programming interface with YoYo. This section describes both the intended features

as well as the ones that are actually implemented. See Figures 15 and 16 for an image of

the current implementation of Pet Park Blocks. Figure 15 is the graphic mode of the

programming interface. The right side displays the current palette. Two palettes are

available containing the animation blocks belonging to this Pet Park creature and its

parent. The left side is the workspace where the program is constructed. A program is

built by dragging blocks from the palette to the workspace where they are added to the

growing program. In Figure 15, the programmer is working on a dance script. So far,

the script includes two animation blocks called hop and wave. Figure 16 shows the new

textual programming interface. It still displays the palettes on the right. A user can click

on an animation block in a palette and then click in the text window on the left and the

code for that animation bock is copied into the program at that point.

4.1 Basic Visual Style: Control Flow

Pet Park Blocks borrows the intuitive visual style used in LogoBlocks: a program is

formed by placing blocks together on the screen. Each block represents some bit of

YoYo code, such as a short animation. An animation is a sequence of images. When an

animation block is executed, the images are displayed in order on the screen where the

Pet Park avatar is. The first and last images of each animation sequence are the same as

the default image for the avatar. This way, blocks can be connected in the sequence and

24

Figure 15: The Pet Park Blocks graphical interface

executed; each block leaves off where the next block begins. This convention is

borrowed from cursive fonts: each letter ends at the same point so that the next letter can

connect to it smoothly.

Each agent has his own library of animation blocks. For example, a child may be

represented by an avatar named Stacy. Stacy's library of animations is initially empty.

Whenever the child creates a new animation for Stacy, this animation is added to Stacy's

library. When the child is editing or creating an animation, these libraries as well as that
25

Figure 16: The new text interface

of the agent's parent-creature appear in palettes. In the example, suppose that Stacy, the

avatar, is a Pet Park creature that inherits from the basic Pet Park creature called Spotnik.

The child can drag blocks from this palette to the workspace and connect it to the existing

program.

Each animation block has a notch at the top and a protrusion of the bottom like

the Logo Blocks ABoff and Beep shown in Figure 14. The blocks form a sequence

26

Figure 17: Program construction in progress

when they are connected in a vertical column with the beginning of the sequence at the

top. Programmers drag a block from the palette and drop it below the block they want to

connect it to; the blocks snap together if they are compatible. Figure 17 shows that a

programmer selected a Laugh animation block and is dragging a copy towards the place

where he or she wants to connect it to the program. As you can see, when a block is

selected in the palette, it is outlined in white to reflect that selection. The copy of Laugh

27

that is being dragged within the workspace is overlaid with a large red icon denoting that

the block will not attach correctly to anything if it is dropped in the current location.

Control flow statements such as repeat and conditional statements such as if

are available on a separate palette. Boolean operators as well as boolean variables that

are based on the properties of the avatar and the avatar's environment are also available

on their own palette.

4.2 Types

Young programmers can learn about types from visual cues such as block shapes and

colors. If two blocks do not fit together like jigsaw puzzle pieces, then they are of

incompatible types or kinds. For example, the system will not allow an and block to

hold an animation block as one of its arguments; the and piece only takes boolean

pieces, this can be seen clearly by the corresponding shapes of the and piece and any

boolean piece. Figure 18 shows

IK7~ piece~~~~an animation block, an and

piece and a boolean variable

.rLu,;. r[lUt 11 bllVWb LIVW ll5

Figure 18: An animation block, an and block and a
boolean variable block and piece fits with the boolean

piece.

A color scheme further

assists the programmer: dark

Figure 19: A boolean operator between two boolean blue boolean operators always
variables

take light bide boolean pieces. Furthermore, any side of a piece that can be connected to

28

'M -- n I,\·· -,r +·

any other piece is shaded in the color that it expects. A dark blue boolean operator has

two light blue boolean edges. Figure 19 shows the shading.

4.3 Overlaid Images for Feedback

If the child tries to connect an animation block to a boolean operator, the animation block

is overlaid with an image which indicates that the block cannot be connected there (see

Figures 10 and 17). This image is a visual cue that gives the child feedback. This

feedback is very important; if it were absent, then the child might think that the system is

malfunctioning when he or she drops the animation block and it fails to connect as

intended. When the feedback is given, the child (1) gets the message that the block

cannot connect there and (2) the system knows that and is not malfunctioning.

n

Figure 20: Icons for (a) attaching a block to the bottom (b) inserting a block
(c) attaching a block to the right end

If the child tries to make a valid connection between two blocks, then the system

overlays an appropriate image to indicate what kind of connection will take place if the

block is dropped where the mouse currently is. Figure 20a shows the image that is

overlaid if the current block being dragged by the mouse is to be connected at the bottom

of a vertical sequence of blocks such as a sequence of animations. Figure 20b shows the

29

image that is overlaid in the block is to be inserted somewhere within the vertical

sequence. Figure 20c shows the image that is overlaid if the block is to be connected to

the end of a horizontal sequence of blocks such as a sequence of boolean variables and

boolean operators.'

4.4 Animations as Labels

An advanced visual cue that was discussed previously in this thesis can be used to label

animation blocks. The animation block can have, on its face, a small window that shows

the animation playing continuously in a loop. Therefore, the animation block is easily

identified by both the animation loop and the text label. See Figure 21.2

l his aavanced visual cue increases the ease with wicf

programs can be communicated to other children. Recall that

communication between members of the community is an

important part of constructionist learning.

What if the animation loop was displayed without the

Figure 21: Animation loop were complicated and long, it
as label

might be hard to identify the animation block at a glance. A

programmer might have to watch the better part of the animation loop in order to know

what it is. A text label identifies an animation block at the single glance.

off that we can discuss with the children who participate in Pet Park.

This is a trade-

This kind of

These particular overlaid images are not currently implemented due to time constraints. However the
implementation would be trivial.
2 This capability is not currently implemented. However it would be simple to adapt the code that is
already used to display the animation in Pet Park.

30

conversation can be fruitful for them because they can learn how to think about slightly

more complicated design issues.

4.5 Switching from Graphic Mode to Text Mode

The ability to switch from graphic mode to text mode is perhaps the most effective way

that Pet Park Blocks helps beginner programmers transition smoothly to programming in

a textual environment. The user interface for the graphical programming environment

includes a button for switching to the text mode. This is a useful learning tool for a

beginner programmer who wants to learn the syntax for YoYo, because if the child wants

to see what YoYo syntax would look like for a new construct such as an if statement, he

or she can select the control structures palette, drag an empty if statement into the

workspace, connect some boolean properties and operators and some animation blocks,

and finally click on the switch button to see what the text equivalent is.

However, since the graphic implementation does not cover all of YoYo

exhaustively, this method of example generation will not work for all YoYo constructs.

The programmer learns here that there are limits to graphical programming. This limit

will encourage programmers who are mature enough, to move on to the textual interface,

because they will want more expressive power. In this way, Pet Park Blocks is an

addition to Pet Park that helps the environment accommodate users at whatever level they

need.

31

4.6 Graphical Representation Reflects Text Equivalent

One final feature of Pet Park Blocks that could be implemented is that the graphical

representation for program constructs such as an if statement can reflect the YoYo

equivalent. For example, the graphical if program block can have text labels such as

brackets that reflect the YoYo syntax. When the user switches from graphic mode to the

text mode, the graphics can fade slowly and leave behind only the text.

32

5. Implementation: Under the Hood of Pet Park Blocks

This section describes the implementation of Pet Park Blocks. The key to understanding

Pet Park Blocks is understanding the Piece, the data structure used to represent the

different parts of the program that is constructed within the Workspace. The overall

design of the system is shown in Figure 22. The user manipulates the Workspace and the

Palette.

Pieces.

detailed

sections

Figure 22: Architecture of Pet Park Blocks

Within these two spaces, Squares receive mouse events and in turn manipulate

Each Piece represents one part of the program being constructed. A more

description of these parts of the Pet Park Blocks system is included in the

below.

5.1 Program Representation: Pieces

A Piece is a data structure that represents program parts such as animation blocks,

boolean operators and variables, and control flow statements such as the i f statement. A

Piece is aware of its own type. For example, an animation Piece is aware that it can only

accept connections at its top edge and its bottom edge. The Piece also contains the actual

YoYo code that it represents. When Pieces are connected together, there exists a total
33

ordering, because each Piece has links to the
IF

previous Piece and the next Piece. Pieces are

THEN ELSE aware of what other Pieces are connected at

each of the four sides. Figure 23 shows an

if-else statement. Figure 24 shows the

Figure 23: An if-else program block Pieces that comprise the statement and the

tnt! -nrtar Fn F f hrcoa D;--,,, Tz D;a'.t ;n
LaI UIULIIVl I LV3%., · l . 111 .Allc3 I1

Figure 23 that have no text label are expansion

units, which are automatically added to

accommodate for whatever is connected to the

then and the else Pieces. Units 3 and 5 are

Figure 24: Total ordering of pieces expansion units. Figure 25 emphasizes theexpansion units. Figure 25 emphasizes the

expansion unit added to accommodate the

Piece was connected to the then Piece.

The total ordering is used when the

YoYo code is required. The first piece of the

program passes its code to the next piece,

which appends its own code to the code it

Figure 25: Expansion unit (8) added to receives. It then sends this new accumulated
accommodate for piece attached to (4)

code to its next piece. This continues until the last piece in the program has all of the

code.

34

5.2 Graphical Representation of Pieces: Squares

All Pieces are represented graphically by Squares, which are basically Java Canvases.

Squares can accept certain mouse events depending on whether they reside in the Palette

space or in the Workspace. Mouse events determine what commands a Square sends to

its Piece.

5.3 Palettes

Palettes are the libraries that hold the program blocks that the

programmer can use when constructing a new program. See

Figure 26 for the Palette that holds the animation blocks for

Spotnik. A Palette is basically a scroll pane with an array of

Squares. When a Square receives a Mouse Down event, it

changes its image to indicate that its Piece has been selected

and that it has been copied into memory. The Mouse Down

event also clears the memory of old Pieces and un-selects

any Pieces that were previously selected. The Square

outlined in white in Figure 26 is a selected Square.

Figure 26: A palette

35

5.4 Workspace

The Workspace is a two-dimensional matrix of Squares, which receive mouse events

such as Mouse Down, Mouse Entered, and Mouse Exited. See Table 1 for a description

of what happens in each case.

Mouse event Piece selected No piece selected
Mouse entered Square displays appropriate No action.

visual cues to indicate whether
selected piece can connect to
program at this point.

Mouse exited Square reverts back to normal No action
appearance.

Mouse down If selected piece can connect to If the Square is not empty, its piece
program at this point, Square is marked for deletion. Otherwise,
attaches it to the program and the the Square takes no action.
system updates the rendering of
the program.

Table 1: Mouse events handled by the Workspace

36

6. Future Work and Concluding Remarks

6.1 Finish Implementing Visual Cues and Other Tools

There are still a few very useful visual cues that are not yet implemented. For example,

each Square is labeled with a text label and a static image. We can include the animation

itself as a label, as described in Section 4.4.

Another visual cue that would be useful is animation of parts of Pet Park Blocks.

For example, when the programmer drags a block into the Workspace and attaches it to

the program, Pet Park Blocks can animate the act of actually connecting the two blocks

and also play a clicking sound when the two blocks touch. If the programmer tries to

make an illegal connection, for example dropping an animation block next to a boolean

operator, the system can animate the two program blocks colliding a few times to indicate

that they do not fit together.

Another tool that can be added to the system is a Try button which, when

pressed, causes a small window to appear with the current program running. This way

the programmers can stop occasionally and see what they have created.

6.2 Encapsulate Programming Rules in Knowledge Base

The programming rules are currently embedded within the Piece. The Piece knows

which other kinds of Pieces it can connect to, and on which of the four sides, etc. This

knowledge is hard to alter once it is embedded. A good improvement to the system

would be to encapsulate the knowledge about such programming rules in a knowledge

base. This knowledge base would then be consulted whenever the system wants to check

37

whether a certain action is legal. This way, the knowledge would be easy to alter and

extend, apart from the actual Java code of the Pet Park Blocks system.

Along with the knowledge base, we can include the capability to give informative

error messages. For example, after any illegal operation, the system can print out the

reasons why the action was illegal. This error message is based entirely on the inferences

that the system made using the knowledge base. The explanation capability is common

in knowledge-based systems and it lends to the transparency of the task at hand. Another

way to provide this feature is to show the messages only when the programmer clicks on

abutton marked Why was that illegal?

6.3 Include Other Programming Paradigms

Pet Park Blocks can be expanded to include other programming paradigms. For example,

to write automated movement behaviors for an avatar, Pet Park Blocks can offer

programming by example, much the way Cocoa does (see Section 3.3). We can ask the

children about the different ways of programming. They may form their own ideas about

the different programming paradigms.

6.4 Empirical Studies

The system has not yet been tested thoroughly to see its effectiveness in providing

scaffolding for beginner programmers. Formal experiments should be conducted to

determine to what extent Pet Park Blocks lowers the cognitive threshold for young

beginners. Do some of the younger children find programming in the original textual

environment daunting? Austina De Bonte, the designer of Pet Park, has seen children as

young as 7 programming in YoYo with relatively few problems. Are there children who

38

cannot program in YoYo, but who can operate in a graphical programming environment?

These are questions that can only be answered with formal empirical studies.

Also studies should be conducted to gather feedback from children. We would like

to know what features the children would like to add to Pet Park Blocks and which

current features and visual cues are awkward or unclear. It is our hope that Pet Park can

be adapted for classroom use so that it enhances the opportunities for learning about

programming and communication.

39

Acknowledgments

First, I am constrained to thank God for teaching me what I really needed to know and for
giving me the grace to make it through MIT. Second, I would like to thank my parents
and my brother and sister for being such a great family. I would also like to thank Alicia
and Chris and all the good friends in God's family. I would repeat the struggle of MIT
just to be with all of you again.

My loudest thanks goes to (1) Mitchel Resnick, my advisor, for his patience and grace,
(2) Austina De Bonte for her excellent guidance, and (3) Jaime A. Meritt for his hard
work which gave me inspiration.

40

References

[1] Albright, Michael J. & Graf, David L., Editors. Teaching in the Information Age: the Role
of Educational Technology. Jossey-Bass Publishers. San Francisco. 1992.

[2] Apple Computer, Inc. "Apple's Cocoa Site." http://cocoa.apple.com/cocoa/home.HTML

[3] Begel, Andrew. "LogoBlocks: A Graphical Programming Language for Interacting With
the World." MIT, 1996.

[4] Begel, Andrew."Bongo Home." http://el.www.media.mit.edu/bongo/

[5] Bigge, Morris L. Learning Theories for Teachers. Harper & Row. New York. 1964.

[6] De Bonte, Austina. " Pet Park: a Graphical, Virtual World for Kids." Master's Thesis
Proposal, MIT, 1997.

[7] De Bonte, Austina, " Pet Park Home." http://www.media.mit.edu/-austina/petpark.html

[8] Bruckman, Amy. "MOOSE Crossing: Construction, Community, and Learning in a
NetworkEd Virtual World for Kids." Ph.D. Thesis, MIT, 1997.

[9] Cooper, James M. & Ryan, Kevin. Those Who Can, Teach. Houghton Mifflin Company.
Boston. 1995.

[10] Epistemology and Learning Group, MIT Media Laboratory. "A Cricket: Tiny Computers
for Big Ideas." http://el.www.media.mit.edu/people/fredm/projects/cricket/

[11] Gardner, Howard. The Unschooled Mind: How Children Think & How Schools Should
Teach. BasicBooks. New York, NY. 1991.

[12] Holt, John. How Children Learn. Pitman Publishing Corp. New York. 1967.

[13] Lewis, R. & Tagg, E.D., Editors. Trends in Computer Assisted Education. Blackwell
Scientific Publications. London. 1987.

[14] Papert, Seymour. Mindstorms: Children, Computers, and Powerful Ideas. BasicBooks.
New York, NY. 1993.

[15] Papert, Seymour. "Uses of Technology to Enhance Education." MIT A.I. Laboratory,
June, 1973.

[16] Repenning, Alex. "Agentsheets & VisualAgenTalk HomePage."
http://www.agentsheets.com/

[17] Resnick, Mitchel. Turtles, Termites, and Traffic Jams. MIT Press. Cambridge, MA. 1993.

41

THESIS PROCESSING SLIP

FIXED FIELD: ill.

index

* COPIES: rcves

Lindgren

TITLE VARIES: PC

Aero

Music

Dewey

Rotch

name

biblio

-n) Hum

ience

NAME VARIES: g Ai , C.kn - i 4o

IMhR mN(1CG Hc

IMPRINT: (COPYRIGHT)

· COLLATION: n41

* ADD: DEGREE: · DEPT.:

SUPERVISORS:

NOTES:

cat'r: date:
page:

opDEPT:. E. b T3|
. YEAR: 1 DEGREE: M 1 En9 .
P NAME: CHE/V&, Adrew O..

I

--

