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by

Giinter Maximilian Schmid

Submitted to the Department of Chemistry
on August 12, 1994, in partial fulfillment of the

requirements for the degree of
Doctor of Philosophy

Abstract

In this thesis we explain dynamical symmetry breaking as an important and practically rel-
evant mechanism of localizing excitation in molecules and molecular aggregates. Explicitly
treated are the normal to local mode transition in triatomic molecules AB 2 of symmetry
C2v, modelled by two harmonically coupled anharmonic oscillators, and the self-trapping
transition of an excess charge in a molecular crystal dimer with site exchange symmetry,
modelled by Holstein's molecular crystal. At these transitions, localization of excitation
occurs in violation of symmetry requirements. The potentials that confine the excitations
appear upon excitation and thus are called dynamic potentials. Therefore localization oc-
curs under dynamical symmetry breaking.

We show that all qualitative and quantitative aspects of dynamical symmetry breaking
in these systems can be successfully discussed in the language of quasiparticles. For the
triatomic molecules, the quasiparticle is referred to as "local mode" and consists of a bare
vibrational excitation and an induced distortion of the molecular equilibrium configuration;
for the molecular crystal dimer, the quasiparticle is known as "small polaron" and consists
of an excess charge and an induced distortion of the crystal equilibrium configuration. On
the basis of timescale arguments, we obtain the equations of motion for these quasiparticles,
called Duffing's equation, and solve them analytically. In addition, we employ geometrical
methods from classical mechanics to discuss various dynamical aspects.

In the discussion of the triatomic molecules we put emphasis on the connection of
classical, semiclassical and quantum mechanical modes of description. In particular, we for-
mulate a stability criterion for eigenstates of the quantum system in terms of susceptibilities
to symmetry breaking perturbations and show that parametric instability in the classical
correspondent can be deduced in the classical limit. We discuss the practical relevance of
the susceptibilities for the control of intramolecular dynamics by lasers.

In the discussion of the molecular crystal we focus on the derivation of the equations
of motion in two different "adiabatic" limits, which we distinguish as the standard adia-
batic limit and the Duffing limit. We establish the connection to the commonly employed
adiabatic approximation.

Thesis Supervisor: Robert J. Silbey
Title: Professor of Chemistry
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Chapter 1

Introduction

1.1 Motivation

Modern technology has high demands on materials. Often a new technology requires

engineering of materials down to the molecular or atomic level. This process of

characterization and conversion of materials is referred to as chemistry. The trend

is to use materials not only as building blocks constituting a functional unit, but

as functional units themselves which respond to excitation. Conspicuous examples

that come to mind are micro electronics [1] and fiber optics [2]. Lesser-known to the

public, but economically equally important, are ongoing efforts to optimize industrial

chemical catalysts [3]. Futuristic and perhaps most challenging appear attempts to

tailor bio-compatible or bio-mimicking tissues [4]. If the search for a material with

a desired property is not to become the quest for the philosopher's stone of modern

Alchemy, it is necessary to gain far-reaching control over the process of engineering.

This goal can be achieved only on the basis of the ability to predict the relevant

chemical and physical properties. In this thesis we set out to contribute to this

endeavor by explaining the little understood mechanism of localization of excitation

in molecules and molecular aggregates under dynamical symmetry breaking.
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1.2 Basic notions

Technically important physical properties of molecules and molecular aggregates such

as dipole moment and polarizability are expected to vary with the locus of excitation.

Both localized and delocalized excitations are observed in molecules and molecular

aggregates. Typical examples are vibrational excitations in molecules [5] or excess

charges of various topologies in molecular aggregates [6].

In the following sections we will introduce some basic notions that will allow us

to develop some intuitive insight into possible mechanisms of dynamical symmetry

breaking and to state the problems this thesis offers a solution for. At this preliminary

stage it will be sometimes unavoidable to speak in somewhat loosely defined terms.

Therefore we will carry out the discussion following the two examples that constitute

the main part of this thesis: localization of vibrational excitations in molecules and lo-

calization of excess charges in molecular crystals. The statements will be considerably

refined, quantified, generalized and properly referenced in the later chapters.

1.2.1 Localized and delocalized excitations

The locus of excitation within a system and the point symmetry of a system are inti-

mately related. If the locus of the excitation extends uniformly over the entire system

the excitation is called delocalized, localized otherwise. Later on we will use the dy-

namic equivalent of this definition: if the excitation can be completely transferred

between any parts of the system it is called delocalized, otherwise localized.

It is plausible that in the absence of point symmetry any excitation will be local-

ized to some degree. Conversely, if any excitation is delocalized there will be some

symmetry.

The degree of localization can be specified in terms of the distribution of the

excitation over a partition of the system. If the system has a certain point symmetry

a convenient partition is such that the parts are equivalent under the symmetry

operations of the corresponding symmetry group. Equidistribution of excitation on

these symmetrized parts implies delocalization on the considered scale. Deviation

14



from equipartition implies localization. If the localization extends over a macroscopic

fraction of the system it is usually referred to as large, if it extends over a microscopic

fraction only it is called small.

As a first example consider a vibrational excitation in symmetric molecules. Let us

take as a partition the individual bond oscillators. An excitation of a non degenerate

normal mode is considered delocalized, since it involves the coherent motion of all

bond oscillators with a single frequency (Figure 1-1).

In contrast, an excitation of a local mode is considered localized since it involves

coherent motion of only a certain fraction of bond oscillators at the same frequency

(Figure 1-2). Note that periodic complete transfer of vibrational excitation between

degenerate local modes amounts to coherent motion of the bond oscillators at one

frequency and thus constitutes a normal mode (Figure 1-3). If the single bond oscil-

lators are polarized, the dipole moment of the molecule changes upon localization of

vibrational excitation.

Let us mention as a brief aside that the notion normal mode implies that the vibra-

tional potential be harmonic. In the recent literature this condition was relaxed. Now

symmetry adapted linear combinations of the displacement coordinates not obeying

Hooke's law are sometimes paraphrased as normal modes. In addition, let us point

out that excitation of a normal mode does not necessarily lead to delocalization of

vibrational excitation even if it transforms according to the symmetry operations of

the molecular point group. As an example consider excitations of normal modes that

transform according to the E representations in systems with C3 axes and higher that

are always localized to some extent.

As a second example take an excess charge in a molecular crystal. Choose as a

partition molecules located at the crystal sites. Delocalization is indicated by a uni-

form probability density of the excess charge over the entire crystal (Figure 1-4), and

localization by accumulation of probability density of the excess charge at particular

molecular sites (Figure 1-5). If the excess charge extends over many molecular sites

it is referred to as large, if it is localized at a single molecular site it is called small. If

each molecule is polarized, the polarization of the crystal changes upon localization

15
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Figure 1-1: Delocalized vibrational excitation in normal modes v and v3 of AB 2

systems.

1 2t

Figure 1-2: Localized vibrational excitation in local modes 11 and 12 of AB 2 systems.

of the excess charge.

1.2.2 Transitions from delocalized to localized excitations

The same type of excitation, e.g. a vibrational excitation in a molecule, can be

localized or delocalized in the same system, depending on the mechanism or level of

excitation.

+

Figure 1-3: Coherent degenerate
of AB 2 systems.

local modes 11 and 12 form normal modes v1 and V3
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Figure 1-4: Probability density of a delocalized excess charge in a molecular crystal
of diatomic monomers. Translational symmetry is conserved.

Figure 1-5: Probability density of a localized excess charge in a molecular crystal of
diatomic monomers. Translational symmetry is broken due to the induced distortion.

Mechanisms of excitation that favor localization are collisions or other local in-

teractions since they introduce large inhomogeneities into the system. For example,

collisions of molecules in the gas phase can lead to large distortions of the molecu-

lar geometry. If the collision event lasts longer than a typical period of oscillation

(O(10-14s)) around the equilibrium geometry, the induced vibrational excitation is

"drained away" unsymmetrically.

The degree of excitation is equally important, since it influences the instability

towards localization. For vibrational excitations, normal modes prevail at low levels

of excitation as opposed to local modes that predominate at high levels of excitation.

For excess charges delocalization is likely at high values of kinetic energy in contrast

to localization at low values of kinetic energy.

Consequently, there is the possibility of transition from a delocalized to a localized

excitation of the same type within the same system. For vibrational excitations this

transition is called the normal to local mode transition, for excess charges in a crystal

the trapping transition. In the following we state different conditions and mechanisms

17



of localization.

Conditions of transition

Transitions can occur under different conditions. For isolated systems excitation

must be redistributed within the system. For closed or open systems excitation can

be additionally interchanged with the surroundings. Which conditions prevail for a

given system depends on the relative magnitude of the time scales of the processes

involved.

For example, redistribution of vibrational excitation in molecules in the low den-

sity gas phase takes place (O(10-°s)) before it can be relaxed via a collison or

emission of a photon (O(10-8s)). Thus the molecules behave effectively like isolated

systems during the relaxation of vibrational excitation. Most dramatic is the local-

ization of vibrational excitation into a chemical bond that can lead to dissociation of

that bond. In condensed phases, vibrational excitation is rapidly exchanged between

molecules (O(10- 9s)) before it can relax completely within the molecule (O(10-10 s)).

Thus the molecules behave effectively like closed or open systems during the relax-

ation of vibrational excitation.

As a further example consider an excess charge in a molecular crystal. Its kinetic

energy can be dissipated into phonon degrees of freedom until the kinetic energy

falls below a certain threshold that allows conservative localization. Then the kinetic

energy of the excitation is converted into a local increase of potential energy of the

crystal through distortion and thus forces its own confinement.

These examples raise the issue of the mechanisms of transition from a delocalized

to a localized excitation.

Mechanisms of transition

Two generic mechanisms of localization can be distinguished by the nature of the

potential that confines the excitation.

18



Localization in a static potential. First, localization in a minimum of a static

potential occurs under relaxation by some external mechanism. A static potential

exclusively depends on the coordinates of the system. It is insensitive to initial con-

ditions and does not vary with time.

For molecular vibrations, a static potential that allows localization is usually

present in the absence of symmetry. For excess charges in crystals a static poten-

tial that permits localization can occur around a defect.

Typical external mechanisms of relaxation are emission of a photon or phonon.

Localization in a dynamic potential. Dynamical symmetry breaking. Sec-

ond, localization in a minimum of a dynamic potential can occur, in contrast to the

first case, even in the absence of relaxation by some external mechanism. A dynamic

potential depends on the momenta and eventually on the coordinates of the system.

Thus it is sensitive to initial conditions and varies with time (Figure 1-6). This time

dependence can be interpreted as arising from the mutual interaction of the excitation

and the medium it is moving in.

Localization in a dynamical potential becomes most evident in the absence of a

static potential that could allow localization. This is the case for symmetric molecules

where it leads to lowering of the molecular symmetry via increase of the equilibrium

bond lengths of the locally excited bonds (Figure 1-7).

A similar situation occurs for molecular crystals with translational symmetry.

Here localization leads to lowering of translational symmetry via distortion of the

lattice around the localized excess charge.

The process of lowering the symmetry of a system is known as symmetry breaking.

If it occurs upon localization in a dynamic potential we refer to it as dynamical sym-

metry breaking. Symmetry breaking upon a spontaneously occuring fluctuation within

the system is called spontaneous symmetry breaking. Finally, symmetry breaking can

be induced by the surroundings and is then known as induced symmetry breaking.
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Figure 1-6: Localization in a dynamic potential: Particle moving in gravitational field
on a deformable surface under friction.

Localization in a static and dynamic potential We expect that in an actual

physical system localization involves both static and dynamic potentials. For example,

consider an excess charge around a minor defect in a crystal that is too small to lead to

considerable localization all by itself. Simultaneously, far from the defect the induced

distortion of the crystal by an excess charge is too weak to allow localization in a

dynamic potential well all by itself. Yet in the presence of the excess charge the defect

will be amplified through additional distortion of the crystal lattice. Therefore the

excess charge will localize in a static potential under support by a dynamic potential,

each of which alone is too small to lead to localization. In the case of an immobile

defect the excess charge will be localized at a certain locus in the crystal. For a mobile

defect it will drag around the induced distortion and the defect.
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D3h C2v
Figure 1-7: Localization of vibrational excitation leads to dynamical symmetry low-
ering, here from D3h to C2v symmetry.

1.3 Realizations of dynamical symmetry break-

ing

Realizations of dynamical symmetry breaking are reported from particle physics [7],

solid state physics [8] and molecular physics[9].

Dynamical symmetry breaking causes particle like excitations. It arises from the

mutual interaction of an excitation and the medium it is moving in.

In the following we will provide intuitive explanations of the physical mechanisms

of dynamical symmetry breaking using the examples of a small polaron in a crystal

and a local mode in a symmetric molecule. The problems will be stated and explained

concisely in the following chapters.

1.3.1 Formation of a polaron

Polarons result from dynamical symmetry breaking. They consist of localized excess

charges in a polar crystal that are accompanied by a local distortion of the crystal

configuration. Therefore the translational symmetry of the crystal is broken. If the

distortion extends over a macroscopic fraction of the crystal the excitation is called

21
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large polaron, small polaron otherwise.

The formation of a polaron follows a feedback mechanism. Consider an excess

charge moving through a polar crystal. Through coulomb interaction, the crystal

lattice locally relaxes when the excess charge has sufficiently low kinetic energy. Then

the excess charge is accompanied by that distortion. Its mass increases by the inertia

of the distortion to an effective mass. Consequently it slows down, which allows

the crystal lattice to relax further. As a result, the effective mass increases and the

velocity drops further until eventually the distortion of the crystal lattice is large

enough to considerably confine the excess charge as a bound state. In turn, the

bound state potential itself is stabilized by the presence of the excess charge bound

in it and the trapping transition occurs. The distortion and the excess charge move

now as a particle like unit, called the polaron. The polaron was initially proposed by

Landau [10] and investigated early on by Pekar [11].

A necessary condition for the formation of the polaron is that the kinetic energy

of the electron is initially small enough such that the distortion can develop and

follow the excess charge. Furthermore, it must be slowed down enough to allow the

formation of a distortion large enough to provide a bound state. If the excess charge

is initially completely delocalized the symmetry breaking has to be spontaneous in

the form of a fluctuation in the equilibrium geometry of the crystal or induced by

external stress. If the excess charge is initially localized to some extent, the polaron

can form directly.

The described distortion potential depends on the momentum and the position of

the excess charge and therefore is a dynamical potential in the sense discussed above.

The conditions under which the formation occurs can be conservative or non-

conservative. In the conservative case the potential energy of the excess charge is

lowered by the same amount that the potential energy of the crystal lattice is in-

creased given that the polaron slows down enough to match the kinetic energy of the

former nonlocalized excess charge. Conservative formation of the polaron is some-

times called self-trapping, the associated transition self-trapping transition [12]. In

the non-conservative case the formation of the polaron may be supported by emission
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of a photon or dissipation into the phonons of the crystal.

1.3.2 Formation of a local mode

Local modes in symmetric molecules result from dynamical symmetry breaking. Let

us view a local mode as a localized vibrational excitation in a molecule that is ac-

companied by a distortion of the molecular equilibrium configuration. Therefore the

point symmetry of the molecule in its electronic ground state is reduced.

Similar to the polaron, the formation of a local mode follows a feedback mecha-

nism. Consider a vibrational excitation moving through a symmetric molecule. The

molecular equilibrium configuration is relaxing at sufficiently low kinetic energy of

the excitation which is then accompanied by that distortion. The distortion is due to

the general form of a typical adiabatic bond potential. Now it is important to realize

that with increasing localization of the excitation on one bond oscillator, the total

potential energy of the system tends to a minimum. Upon transfer to another bond

oscillator the excitation has to pass through the state of least distortion that is the

state of maximal overall potential energy. As for the polaron, the excitation is slowed

down by the distortion that accompanies it and therefore may further develop. Thus

it may be the case that the kinetic energy of the excitation vanishes before the state

of least distortion is overcome. The normal to local mode transition occurs and the

excitation is truly localized. The potential which confines the excitation is stabilized

by the presence of the excitation. As for the polaron, the symmetry lowering can be

induced, spontaneous, conservative or non-conservative.

For both examples the important issue of the relative phase of various excited

degrees of freedom of the system was ignored. The relative phase determines the

amount of the total energy of the system contained in the couplings and will be

explained in detail in the following chapters.

Furthermore, the issue of dissipation was avoided. We will later show that in the

two model systems we are about to analyse the process of localization cannot occur

without dissipation of energy. The reason is that all degrees of freedom are involved

in the confinement of the excitation. Therefore a redistribution of excitation within
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the system out of the region of localization into the rest is impossible.

Finally, the outlined pictures are classical and have to be modified for quantum

systems by considering additional phenomena like tunneling.

In summary, a localized excitation can develop following a variety of mechanisms

under different conditions so that we have to expect that in a real system we won't

usually encounter one or the other textbook example. Yet in order to control mate-

rial properties it is important to distinguish between the different mechanisms and

estimate their relative importance under different experimental regimes. Therefore it

is necessary to exactly state the extent to which certain conditions favor particular

mechanisms.

1.4 Theory of dynamical symmetry breaking

Dynamical symmetry breaking in classical systems is treated in the framework of

catastrophe theory [13]. Qualitative features of the dynamics can be predicted from

geometrical methods, like phase plane or potential analysis. Analytic prediction of

trajectories is possible in different limiting regimes, yet usually unavailable over the

complete range of system parameters.

Dynamical symmetry breaking in quantum systems is described in the framework

of quantum field theory [14] and formulated in the Lagrangian formalism. It occurs

for a system whose Lagrangian is invariant under a particular symmetry transforma-

tion yet its ground state is not invariant under that same transformation. Qualitative

features can be predicted on the basis of semiclassical methods. However, it is not

straightforward to apply the full range of classical methods for quantum systems. The

reason is that the notion of classical stability does not have an obvious quantum me-

chanical counterpart. Semiclassical approaches show some promise and have boomed

over the last ten years [15].

In both classical and quantum mechanical cases the study of simple model systems

promises some intuitive insight in the process of dynamical symmetry breaking. The

nonlinear dimer and the two coupled Morse oscillators are two such models. For both
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systems it is possible to reduce the equations of motion under adequate conditions to

the discrete nonlinear Schrddinger equation which has been extensively investigated.

1.4.1 Model systems

The nonlinear dimer

For the small polaron such a model system is the nonlinear dimer, which is the

simplest model to show localization of an excess charge in a crystal. It is the smallest

possible realization of Holstein's molecular crystal [16]. The basic ingredients are:

the medium is modelled by two identical diatomic molecules. Their centers of mass

occupy two lattice sites and their relative orientation is fixed. A single excess charge

can occupy the two sites. The treatment of the electronic properties of the system can

be simplified a great deal given a weak electronic overlap between the two molecules.

Then the Schrbdinger equation can be solved separately for each site and the electronic

state assumed to be a linear combination of those solutions. This procedure is called

the tight binding approximation. On the basis of numerical evidence the vibrational

properties of the molecules are assumed to be sufficiently described by two uncoupled

classical harmonic oscillators. Finally, the coupling of the excess charge and the

vibrations is assumed to show linear dependence in their coordinates for reasonably

low levels of excitation.

Two coupled Morse oscillators

For a local mode in a symmetric molecule, a simple model system that displays

dynamical symmetry breaking is given by an AB 2 molecule with C2v symmetry which

is the simplest to show localization of vibrational excitation in a molecule [17]. For a

given electronic state the AB bond potential is assumed to obey the typical general

form of an adiabatic bond potential which is intrinsically anharmonic. A convenient

choice for the interatomic potential is the Morse potential. The bond oscillators can

exchange vibrational excitation via a coupling that up to moderately high levels of

excitation can be assumed to be harmonic. The total amount of excitation is not
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restricted to one as for the nonlinear dimer.

1.4.2 The discrete nonlinear Schrodinger equation

The two model systems introduced lead under certain conditions to equations of mo-

tion for the excitation that can be transformed into the discrete nonlinear Schrodinger

equation which is sometimes also referred to as the discrete self-trapping equation

(DSE) [12]. The discrete nonlinear Schr6dinger equation has been extensively in-

vestigated in the context of solitary excitations in solids and polymers. Possible

applications for molecular vibrations were indicated [18].

Without writing it down explicitly for the moment, let us have a look at its

structure. It consists of a system of first order partial differential equations for the

time evolution of the probability amplitudes of the excitation in different parts of the

system, e.g. local bond oscillators. The time evolution of the probability amplitudes

depends linearly both on the probability amplitudes and probability densities.

This can be understood in the following way. The linear coupling in the proba-

bility amplitudes results in recurrent transfer of the excitation between parts of the

system. The linear dependence on the probability densities increases or decreases

the tendency of excitation transfer and thus leads to confinement. Therefore the two

basic ingredients are given for a system that can display both localization and delocal-

ization and thus the transition between both regimes. Note that the solutions of the

discrete nonlinear Schr6dinger equation will not obey the principle of superposition

that only applies for linear differential equations. A detailed exposition of the topic

is given in Appendix C.

1.4.3 Classical and quantum mechanical aspects

So far we have not emphasized conceptual differences in possible mechanisms of lo-

calization for classical and quantum systems. A difference that immediately comes

to mind is that an excitation in a quantum system can penetrate a classically forbid-

den region by tunneling. The classical picture of confinement of the excitation in a
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potential well can be saved by .modifying it to a semiclassical picture that includes

this effect.

The true conceptual difficulty arises from the correspondence principle in connec-

tion with the notion of classical stability. Let us begin with a brief account of the

facets of meaning of classical stability, yet without suffocating the exposition in the

exact mathematical definitions.

Stability in classical mechanical systems is distinguished as local and global sta-

bility [19].

Local stability characterizes the properties of trajectories contained in a small

volume element of phase space, i.e. the immediate change in the dynamics under an

instantaneous switch from one trajectory to another nearby trajectory in the same

volume element. The volume element contains stable, unstable or neutrally stable

trajectories if their tangents at the time of switch intersect after or before the time of

switch or their tangents are parallel. The difference in slopes of two tangents of nearby

trajectories gives the rate of divergence from a trajectory under a small perturbation.

Note that we use "local stability" in the sense of linear stability.

Global stability characterizes the properties of trajectories over a large fraction of

the phase space and can be quantified by generalizing the idea of local divergence of

trajectories. As before, we start with two trajectories contained in a small volume

element of phase space and determine the local rate of divergence. Then we follow

each trajectory for a short time and evaluate the new rate of divergence and so

on. After repeating this procedure a large number of times we can determine on

average the rate of divergence of two initially nearby trajectories, usually referred to

as the Lyapunov exponents. Positive Lyapunov exponents imply global instability of

a trajectory and negative exponents global stability of a trajectory.

In quantum mechanics the rate of divergence of two states cannot be used to

define stability of a particular state upon a small displacement in a certain region of

the Hilbert space or the entire Hilbert space. The reason is that the overlap of two

states is constant under Hamiltonian time evolution which is unitary [20]. Therefore

any state is certain to recur since the quantum equations of motion are linear and
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thus at most locally divergent.

However, what can be done is to determine the time dependent overlap of one

particular state with itself under propagation by two slightly different Hamiltonians

which essentially probes the rate of divergence of a state from its original position

under a small perturbation.

Another possibility to characterize stability in a quantum system is to quantify the

complexity of the eigenvalue spectrum in terms of the level statistics. This approach

has been especially fruitful in molecular and atomic spectroscopy.

Still, the underlying physical property of a quantum system whose classical corre-

spondent has a particular stability property is unclear. This property is fundamental

since the stability properties of the classical correspondent can be deduced from the

quantum original in the classical limit.

1.5 Posed problems

We conclude our introductory remarks and can set out now to explain the little under-

stood mechanism of localization of excitation in molecules and molecular aggregates

under dynamical symmetry breaking. In particular, we wish to address the following

issues.

* Conditions of localization

What are the exact conditions under which dynamical symmetry breaking leads

to localization of excitation in molecules and molecular aggregates? What are

quantitative measures for the tendency to localization of excitation? Which

systems meet those conditions? What are the particular mechanisms? What

do those mechanisms have in common, how do they differ?

* Dynamical properties of particle like excitations

What are the dynamical properties of excitations? How does the dynamics

of the excitation affect the medium it is moving in? How does the dynamics

change under damping or driving?
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* Quantum-classical correspondence

What properties of a quantum system lead to a classical system with particular

stability properties? To what extent can classical pictures account for dynamical

symmetry breaking in a quantum mechanical system?

· Practical implications

What are the experimental manifestations of localization under dynamical sym-

metry breaking? To what extent can localization be controlled?

This thesis is organized as follows. The investigation is carried out in the frame-

work of two model systems and covered in the following three chapters:

* in chapter 2 we give a full account of the normal to local mode transition of

vibrational excitation in AB 2 molecules with C2v symmetry.

* In chapter 3 we deal with self-trapping of an excess charge as a small polaron

on the nonlinear dimer. Chapter 2 and chapter 3 can be read independently.

On our way to answer the posed questions we encounter a couple of interesting side

issues such as

* limitations on the use of Fourier analysis to detect chaotic dynamics (Appendix

A),

* stability of eigenvalue problems towards small mistakes and round off errors

(Appendix B) and

* various derivations of the nonlinear Schr6dinger equation (Appendix C).

29



Bibliography

[1] J. L. Jewell, J. P. Harbinson and A. Scherer, Sci. Am., 265, 67 (1991); P. F.

Fagan and M. D. Ward, Sci. Am. , 267 86 (1992)

[2] see special issue of Physics today, 47 (1994).

[3] J. F. LePage et al., Applied Heterogeneous Catalysis:

Use of Solid Catalysts, Technip (1987).

[4] M. A. Mahowald and C. Mead, Silicon Retina, in:

Systems, C. Mead ed., Addison-Wesley (1989); E. A.

Univ. Press (1990).

Design, Manufacture and

Analog VLSI and Neural

H. Hall, Biosensors, Open

[5] M. S. Child and L. Halonen, Adv. Chem. Phys. 57,1 (1984).

[6] A. S. Ioselevich and E. I. Rashba, Tunnelling in Condensed Media, Yu. Kagan

and A. J. Leggett eds., Chapter 7, Elsevier (1992). E. I. Rashba, Excitons, E. I.

Rashba and M. D. Sturge eds., North-Holland (1982). Y. Toyozawa, J. Luminis-

cence, 1, 632 (1970).

[7] T. D. Lee, Particle Physics and Introduction to Field Theory, Harwood Academic

Publishers (1981).

[8] A. R. Bishop, J. A. Krumhansl and S. E. Trullinger, Physica D, 1, 44 (1980).

[9] P. N. Schatz, in: Mixed Valence Compounds, D. B. Brown ed., D. Reidl Publ.

Comp. (1980).

[10] L. D. Landau, Phys. Zs. Sowjet., 3, 664 (1933).

30



[11] S. Pekar, J. Phys. USSR, 10, 341 (1946). S. Pekar, J. Phys. USSR, 10, 347 (1946).

[12] J. C. Eilbeck, P. S. Lomdahl and A. C. Scott, Physica D, 16, 318 (1985).

[13] V. I. Arnold, Catastrophy Theory, Springer (1984).

[14] L. H. Ryder Quantum Field Theory, Cambridge University Press (1985).

[15] E. J. Heller and S. Tomsovic, Physics Today, 46, 38 (1993).

[16] T. Holstein, Ann. Phys., 8, 325 (1959). T. Holstein, Ann. Phys., 8, 343 (1959).

[17] P. R. Stannard, M. L. Elert and W. M. Gelbart, J. Chem. Phys. 74, 6050 (1981).

[18] A. C. Scott, P. S. Lohmdahl and J. C. Eilbeck, Chem. Phys. Lett., 113, 29 (1985).

[19] J. Guckenheimer and P. Holmes, Nonlinear Oscillations, Dynamical Systems and

Bifurcations of Vector Fields, Springer (1983).

[20] F. Haake, Quantum Signatures of Chaos, Springer (1991).

31



Chapter 2

The local to normal mode

transition in polyatomic molecules

2.1 Introduction

The reactivity of a molecular species depends on the distribution of excitation on in-

ternal degrees of freedom in the transition state. Therefore, localization of vibrational

excitation into specific degrees of freedom will affect the rates of chemical reactions.

Usually the degree of freedom responsible for a chemical reaction is associated with a

highly excited vibrational state of the molecule, whose population depends on both

the inter- and intramolecular dynamics. Thus the efficiency of excitation transfer into

the degrees of freedom that support or lead to dissociation affects the rate. In the

case of localization of excitation, it may lead to considerable deviation of the actual

population from the population predicted from Maxwell-Boltzmann statistics.

In this investigation we shall be exclusively concerned with localization in a dy-

namic potential. The object of our study will be the class of AB2 molecules with C2V

symmetry [1] for the following reasons.

First, due to symmetry constraints there exists no intramolecular static potential

that allows localization of vibrational excitation. into a specific AB bond oscillator.

Therefore the study of localization in a minimum of a dynamic potential becomes

important. It results in the reduction of the molecular symmetry, often referred
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to as "dynamical symmetry breaking". Obviously the normal mode description of

the molecular oscillations becomes then inadequate and local modes provide a more

satisfactory picture. The normal to local mode transition occurs at the boundary

between these two descriptions.

Second, the system is simple enough to be treated analytically in both the classical

and quantum mechanical limits and may thus allow generalization of the results. The

specific questions we want to address will become apparent after a brief survey of

previous investigations on the normal to local mode transition in triatomic molecules

AB 2.

The Hamiltonian for the water molecule, the epitome of molecules AB 2 with sym-

metry C2v, was originally written down by Podolsky [2]. Perturbative analysis of

the vibrational contributions led Bonner [3] to an expansion of the vibrational level

energies in powers of the vibrational quantum numbers of the normal modes. Incon-

sistencies of calculated and observed spectra were removed by Darling and Dennison

[4] who recognized that, due to the near degeneracy of the symmetric and antisym-

metric normal modes, the coupling between these two modes had to be taken into ac-

count. The corresponding Hamiltonian correctly generating the spectrum is called the

Darling-Dennison Hamiltonian, the introduced resonant term the Darling-Dennison

term. The Darling-Dennison Hamiltonian in the second quantized representation is

an algebraic form of the raising and lowering operators for the normal modes. The

discovery by Henry and Siebrand [5] that an algebraic form in the raising and lowering

operators of the local modes shows at least equally good agreement with the spectra

and even excellent agreement with the low energy states within the same overtone

manifold opened the discussion as to the physical nature of these vibrational states.

From here on there have been a number of efforts on the problem. For a compre-

hensive review and bibliography on the topic, the reader is referred to [1]. The focus of

attention has been on models of two identical harmonically coupled local bond Morse

oscillators, both classical and quantum mechanical. These are especially appealing

from a physical point of view and lead directly to the local expansion mentioned

above. 
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In the following treatment of.the classical aspects, we connect to the hindered rotor

model developed by Sibert et al. [6, 7]. Their analysis is carried out in action angle

coordinates, where the action of the hindered rotor is given by the action difference,

the angle of rotation by the phase difference of the oscillators. The potential of

hindrance is periodic in 2r. In the weak coupling limit they identified the regime of

local modes with libration of the rotor and normal modes with hindered rotation. Using

the WKB method they obtained the semiclassical eigenvalues in good agreement with

the exact result from the quantum mechanical analogue.

The quantum mechanical aspects were studied by Stannard et al. [8], Mortensen

et al. [9] and then in a series of detailed investigations by Child and Lawton [10],

who found from numerical calculations an indicator of local and normal character of

a state in the spectrum. This indicator is given by the ratio of the coupling between

the oscillators and the anharmonicity constant of the oscillators. Local character was

attributed to states that appear in pairs split by an energy difference small compared

to the energy difference to neighboring states in the spectrum, normal character

to all other states. The splitting between states of local character was attributed

to tunneling between degenerate local modes. States of the same total vibrational

quantum number n are grouped in the "n th polyad ". States of local character usually

appear at low energies within a polyad, states of normal character at high energies.

The number of states of local character increases with n. Weak coupling, strong

anharmonicity and high excitation favor local character states. These observations

can be understood and quantified from the properties of a dynamical double well

potential using semiclassical ideas.

Part of the discussion was reconciled by Lehmann [11] and then Kellman [12] who

demonstrated the equivalence of the normal Darling-Dennison Hamiltonian and the

local algebraic Hamiltonian, which are related by a SU(2) transformation. Kellman

also pointed out, that the labeling of states in either normal or local zeroth order

basis is both inaccurate and ambiguous. Xiao and Kellman [13] proposed then a

classification scheme for the vibrational states in terms of the dynamical properties of

the classical Darling-Dennison Hamiltonian. Their contribution is important in two
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aspects. First, they showed by numerical integration of the equations of motion that

the locality or normality of a classical trajectory is independent of the representation

in a local or normal basis. The display of the classical phase space trajectories of states

in the same polyad on the "polyad phase sphere" spanned by SU(2) coordinates

allowed them to assign unambiguously the label of local or normal character. For

example, a trajectory corresponding to a state with local character in the spectrum

must be inside the nonresonant area in the local representation and inside the resonant

area in the normal representation, i.e. two normal classical normal modes exchanging

vibrational excitation form a local classical mode. Second, they demonstrated that

their model is a legitimate extension of the one treated by Sibert et al [6, 7] beyond

the weak coupling limit.

Finally, let us mention that the connection of the dynamics of normal and local

modes to the nonlinear Schr6dinger equation was first pointed out by Scott et al. [14]

and will be commented on in Appendix C.

At this point, the distinction between local and local character has been made.

Classical local modes can be assigned to quantum mechanical states of local char-

acter. Yet in contrast to the possibility of localization of excitation in the classical

local modes the quantum mechanical modes of local character are characterized by

delocalization of excitation in any basis. The reason is that all eigenstates are invari-

ant under the symmetry operations according to the molecular symmetry, i.e. in the

local mode representation they are formed by a superposition of two local states of

identical excitation and are thus inherently of non-local nature.

Therefore the question at the heart of the issue remains unanswered: can we

intuitively understand the physical content of the normal to local mode transition?

On our way to an answer we face several obstacles.

Is the proper theoretical framework classical, semiclassical or quantum mechani-

cal? What are the assets and drawbacks in each mode of description? What are the

proper quantitative measures that support an intuitive picture?

What are the exact conditions for the normal to local mode transition to occur

under dynamical symmetry breaking? Can we predict this transition for particu-
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lar systems? For which systems can this transition take place under conservative

conditions? Is an exact specification of the particular mechanism that leads to the

transition necessary?

What can we say about the dynamics of the excitation in the normal mode and

local mode limits? What are the features of the process of localization?

We address these issues in two steps, first, by a head on attack on the classical

system and second, by an investigation of the implications of the classical results for

the properties of the quantum system.

The dynamics of a vibrational excitation of the classical system is shown to be

equivalent to an undamped Duffing oscillator without driving. The dynamical proper-

ties of the system are then discussed using phase plane analysis and potential analysis

of the Duffing potential. The initial condition dependence of the dynamics and the

potential is discussed using a phase diagram that can be extended to a phase surface,

known as the Poincar6 sphere. Then we evaluate the theoretical results for a variety

of molecular systems, to be specific H 20, 03, SO02, C2 H2 and C 2D 2. In the following,

the equations of motion for the excitation are solved analytically and the conditions

for the normal to local mode transition formulated. A panoptic view of the analytic

tools and results leads us to an intuitive interpretation of the classical normal to local

mode transition, which can be understood in terms of the explicit dynamical Duffing

potential that changes from single well to double well form upon excitation. Its origin

is due to the general form of a typical adiabatic bond potential and it is therefore

present in any moderately excited polyatomic molecule. Localization of vibrational

excitation into a bond leads to a state of unsymmetric distortion of the equilibrium

geometry and minimum overall potential energy. Upon transfer of the excitation to

another bond the molecule passes through the state of least distortion and highest

overall potential energy. If the kinetic energy of the excitation vanishes at that state

the normal to local mode transition occurs. Finally, it turns out that the process

of localization cannot occur for the discussed systems under conservative conditions.

An extension to damped conditions is qualitatively discussed.

The discussion of the quantum mechanical aspects is opened by an introduction
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into the eigenvalue problem of the quantum Darling-Dennison Hamiltonian and the

quantum Duffing Hamiltonian. Quantum states can be uniquely labelled as normal

or local character states on the basis of the analytical classical results. Yet due

to symmetry requirements none of them can display excitation localization. How-

ever, the physical relevance of this distinction can be understood in terms of the

susceptibility to a symmetry breaking perturbation. This susceptibility quantifies

the tendency for localization. Local character states are much more susceptible to a

symmetry breaking perturbation than normal character states under the same pertur-

bation. The conditions for the quantum mechanical normal to local mode transition

are formulated. The classical physical interpretation is modified due to the possibility

of tunneling. The developed concepts are applied to the already classically treated

molecular systems.

The susceptibility to almost any symmetry breaking perturbation turns out to

be extraordinarily high in some cases. Therefore it is necessary to define a stability

criterion for vibrational eigenstates of polyatomic molecules interacting with an in-

homogeneous environment. This can be done in terms of random matrix theory. The

stability analysis is explicitly carried out for a variety of molecules.

2.2 The classical Darling-Dennison system

2.2.1 Derivation of the classical Darling-Dennison Hamil-

tonian

The quantum mechanical Darling-Dennison Hamiltonian for two coupled stretch vi-

brations in its local form can be written to good approximation as [12]

HDD = Ho + V: 1,

fo = (n + 1) + [(n + )2 + ( + 2)+ a2( + )(h2 + )+
2 2 2 2 2

1 (ii + 1)1(IatI &2 + 1). (2.1)2 2'
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Here at and i , i = 1, 2, are raising and lowering operators defined by their action

on the state of the ith local anharmonic oscillator

ailni > = v -ini-1 >, (2.2)

adtni > = vn+ 1ni +l>. (2.3)

The number operator hi and total number operator h are given by

ii = a&ai, (2.4)

/* = ? + 2.- (2.5)

The Hamiltonian parameters w, a, a 12, P and are obtained by a non-linear least-

squares fit to the spectrum and can be interpreted in terms of the physical picture

of two harmonically-coupled identical Morse oscillators as follows. w is the funda-

mental frequency of the oscillators, a the anharmonicity constant and a 12 the cross

anharmonicity constant. The harmonic coupling 1:1 increases linearly with the total

number of vibrational quanta. The magnitudes and signs of the parameters a, a12, /

and can strongly vary from molecular species to molecular species, indicating differ-

ent causes for anharmonicity and coupling. As will turn out later, these aspects are

completely irrelevant for the appearance of the normal mode to local mode transition.

For more details on the Hamiltonian and the procedure to obtain the parameters the

reader is referred to [12, 13]. Following a suggestion of Kellman we define the SU(2)

operators

Ix = ata2 + a2 a1 , (2.6)

= -i(ata 2 - a2a1), (2.7)

Iz = 1-fl 2, (2.8)

I = + 1, (2.9)

= 2[+ (i + 1)]. (2.10)2 2
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They obey the commutation relations

[Ii, Ij] = 2ieijkk, (2.11)

where ijk is the Levi-Civita tensor. Note that

[2 = i +2 + 2 + 2. (2.12)

We define the constants

a + a2
4 a + a1 2 (2.13)4

X = - a 1 (2.14)4

The Hamiltonian (2.1) can now be written in compact form

HDD = (w+ i)I+C, (2.15)

C = 4I +I. (2.16)

The dynamical invariants are given by the vanishing commutators

[HDD, HDD] = 0, (2.17)

[HDD, ] = 0, (2.18)

[fIrD, C] = O. (2.19)

It may seem artificial for the moment to emphasize the invariant nature of fHDD

under propagation by itself, yet later on we will use an algebraic relation of the three

invariants that by construction is an invariant itself.

As a brief aside let us mention the analogy to Schwinger's formulation of the theory

of angular momentum in second quantized form which leads in the classical limit to the

interpretation of < I > /2, < I > /2, < Iy > /2, < I > /2 as actions. As opposed
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to Schwinger's construction, the basic constituents of angular momentum here are

not harmonic but anharmonic oscillators from which we infer that the phenomenon

of localization of excitation will occur in angular momentum problems in the context

of hindered rotations.

In particular, < Iz(t) > / < I > can be interpreted as the probability difference

for the total vibrational excitation to be found on either oscillator and thus is the

proper tool to diagnose symmetry breaking due to self-trapping. If the time average

of this ratio is nonvanishing, we have to conclude, that the vibrational excitation is

trapped on one of the oscillators. We will later on obtain the analytical solutions for

this quantity in the classical limit.

The time evolution of Iz (t) is given by

Iz= i[z, HDD = -2(Iy. (2.20)

For highly excited vibrational states, i.e. < >= n > 1, the classical limit of the

quantum mechanical Hamiltonian is expected to provide a satisfactory description of

the system. The raising and lowering operators it, ai correspond in the classical limit

to -the complex mode amplitudes a, ai, to be specific

ai - a = ni + exp(ii), (2.21)

ai --+ ai = ni + exp (-i i). (2.22)
2

The operators i/2, I/2, iy/2, i,/2 correspond to the actions 1/2, I,/2, Iy/2, I,/2 and

(, C to the numbers (, C. In the classical limit the Hamiltonian (2.15) takes the form

HDD = (w + ~I)I + C. (2.23)

12 = I 2 + I +1 2 (2.24)

C = (I + XI 2. (2.25)

Let us denote the associated energy by EDD. Note that (1/2, = 1 + 02) and
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(Iz/2, J = 1 - 02) are pairs of conjugate coordinates, called action angle coordinates

for HDD. In particular, is a cyclic coordinate which implies for its conjugate

coordinate 1/2 that /2 = 0.

The dynamic invariants are given by the vanishing Poisson brackets

{HDD, HDD} = 0, (2.26)

{I,HDD = 0, (2.27)

{C,HDD} = 0. (2.28)

The time evolution of Iz is given the Poisson bracket

I = {I, HDD} = -2(Iy. (2.29)

2.2.2 Equivalency to Duffing's oscillator

It is possible to solve the equation of motion eqn. (2.29) for Iz by numerical integration.

Obviously an analytical solution would be of advantage, since it provides expressions

for the explicit dependence of the dynamics on the Hamiltonian parameters. In order

to simplify the problem of finding that analytical solution and a physical interpreta-

tion, we will carry out a canonical transformation on the Hamiltonian HDD such that

(I, i,) are conjugate coordinates to a new Hamiltonian H.

Naturally the equations of motion are then given by

iZ = {I,H} = i H, (2.30)

AIi = {I, H} = -, H. (2.31)

The invariants given in eqn.(2.24,2.25) will be by construction invariants to H, i.e.

{H, H} = 0, (2.32)

{I, H} = 0, (2.33)

{C, H} = 0, (2.34)
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and then by construction

{H, HDD} = 0. (2.35)

The transformation can be carried out for both the classical and quantum me-

chanical system. We focus on the "construction work" of H which makes the physical

content of the dynamics intuitively clear. The building blocks are the invariants I

and C. We treat the classical case in detail and give the result for the quantum

mechanical case.

The idea is to write the new Hamiltonian H as an algebraic form in the invariants

I C, i.e.

H = X + Yf(I) + Zg(C), (2.36)

where X, Y, Z are constants, f(I) is some polynomial in the total action I and g(C)

is some polynomial in the invariant C, all of which we are about to determine under

the condition that I, Iz are conjugate coordinates to H.

The Hamiltonian in question has a kinetic and a potential contribution

H(IZ, Ih) = T(IZ) + V(Iz). (2.37)

The kinetic contribution T(i,) has to be according to eqn.(2.29)

T = 2 = 24 I. (2.38)

The potential contribution V(I/) can now be obtained in two steps. Since I and C

must be invariants of both HDD and H we can use them to eliminate I. First we

substitute eqn. (2.38) in the expression for the invariant I given by eqn.(2.24). Second,

we eliminate I using the invariant C given by eqn.(2.25). The result is

X = 0, (2.39)

Y = 2(2, (2.40)

Z = -2, (2.41)
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f(I) = 12, (2.42)

g(C) = C 2, (2.43)

where we set the constant X = 0. Therefore we obtain for the Hamiltonian H

H = 2[((I)2- C2] = T + V =
H2A 

2(I)2 + AI2 BI4 (2.44)

A = (2)2 - 8C, (2.45)

B = 8X2. (2.46)

Let us denote the associated energy by E. We see that the potential V(Iz) is a linear

combination of a quadratic and a quartic term. Thus we can visualize the dynamics of

I, as the motion of a classical particle in a single or double well potential, dependent

on the constants A, B. Note, that in the (I,,I) representation the potential V(Iz)

is static, whereas in the original (aj, iaj) representation it depends on the momenta

and thus is dynamic.

The reason why we could carry out the transformation is that the motion of

I(I, Iy,, I) in the original system is restricted by the invariant I onto the surface of

a sphere of radius I. The invariant C determines the trajectory on that surface.

Using C we can formulate I as a quadratic function of I. Therefore we can view

the trajectories as arising from motion of a classical particle in a harmonic potential

under the restriction that the particle has to move on the surface of a sphere of radius

jI [15]. Thus there is only one time dependent degree of freedom to be solved for

which we identified to be the difference in excitation I of the two local oscillators.

The quantum mechanical form of the Hamiltonian (2.44) follows in analogy

H = 2[2(2- i)- 2] =

= 2(I) 2 - 2X{C, I} + 22I2 + 2X2i4. (2.47)

{, j2} = 0,2 ±+2C0 (2.48)
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Note that

[HDD, H] = 0, (2.49)

i.e. HDD and H have the same eigenstates, which we will take advantage of later.

In the classical limit, C and I2 anticommute and Hamiltonian (2.44) proves to be

the correct classical correspondent. The major difference between the classical and

quantum mechanical Hamiltonians is that although the symmetry with respect to a

sign change in I is present in both, only the classical system can display local modes

in the double well potential. The reason is that the quantum mechanical system

allows tunneling through the well between local states, which is impossible in the

classical system.

The Hamiltonian defined in eqn. (2.44) turns out to be identical to the Hamiltonian

of an undriven Duffing 1 oscillator without damping [16]. Not only is the Duffing

oscillator one of the best studied models in nonlinear dynamics but has also in the

form given above an analytic solution to its equation of motion. The equation of

motion is called Duffing's equation and is given by

- 61_V(IZ) = -AI, - BI3. (2.50)

The solution for Iz allows together with the definition of C in eqn.(2.25) the solution

for I. Then we can readily solve for Iy from the definition of I in eqn.(2.24). Finally

from the definition of I:, Iy and I we can obtain the solution for the complex mode

amplitudes al and a2 and therefore for the trajectories of both bond oscillators.

The advantage of mapping the intramolecular energy transfer of the oscillating

molecule onto the Duffing oscillator goes well beyond the benefit of an analytical

solution. The visualization of the stability properties of the system by a single or

double well potential is established in physics under the notion of the Landau function

1Biographic note. Georg Duffing (* 1861 t 1944), full-blooded engineer of the Wilhelminic era
in Berlin, Germany, who carried out extensive experiments investigating anharmonic oscillations in
mechanical systems. His monograph on the topic, "Erzwungene Schwingungen bei Veriinderlicher
Eigenfrequenz", remained largely unnoticed until in the 1960's it went through a Renaissance with
the "discovery" of chaos in dynamical systems. How little his work is still appreciated can be
estimated from the fact that neither of the leading encyclopedias contains his biographic note.
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and allows intuitive insight. We will use this insight in the following section to

qualitatively discuss the dynamical properties of the molecular vibrational excitation

and to obtain the parametric dependence as well as initial condition dependence of

the normal to local mode transition. Another advantage is that the extension of the

model to damped and driven cases allows the adaption of well known results from

the Duffing system.

2.2.3 Geometrical construction of the polyad phase-sphere

Before we will analytically solve the equation of motion eqn.(2.50) let us extract infor-

mation about the dynamics of the system using geometrical methods from classical

mechanics. First, we will investigate the phase plane and the potential associated

with the Duffing equation. Second, we will discuss the parametric and initial con-

dition dependence of the solutions to the Duffing equation and display the results

in a phase diagram spanned by the initial values of the actions that constitute C.

The synthesis of the phase diagram and the phase plane will lead us to a geometric

representation of the phase space trajectories on the Poincar6 sphere, which in the

context of molecular dynamics is referred to as the polyad phase-sphere.

Phase plane analysis

The phase plane analysis for the Duffing equation can be carried out in the coordinates

(I, ) [17]. Note however, that due to the appearance of the invariant C in the

constant A we have to expect that the determination of the stationary points of the

system requires a specification of I. as well.

Let us first introduce the normalized variables

Zyz I=,IZ (2.51)

which is the trivial case of a canonical transformation changing the scale of the canon-

ical variables.
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Furthermore we introduce the dimensionless parameter ,

C + 
= 22I- a-a 12 (2.52)

2XI a - a12

The definition for is motivated by the idea to relate the antagonistic tendencies of

excitation transfer and localization. The transfer tendency is reflected in the mag-

nitude of the coupling parameter ( that increases linearly with the total vibrational

excitation I. The localization tendency manifests itself in the parameter X which is

proportional to the degree of anharmonicity a reduced by the diagonal coupling a 12

of the oscillators for any given excitation. The normalization by I makes dimen-

sionless. Small values of indicate a high tendency, large values a low tendency of

localization of vibrational excitation. The dependence of K on I indicates, that with

increase of total vibrational excitation the tendency of localization also increases.

Now we will carry out the phase plane analysis in the normalized coordinates

(z,l,Z1,,2) defined by

Zz,l = zz, (2.53)

Iz,2 = z,. (2.54)

The Duffing equation eqn.(2.50) can be written as a system of two coupled first

order differential equations

iz,1 = Iz,2, (2.55)

2Z,2 = -AZ,,-- B1 2 1 (2.56)

The condition for stationary points S(lZZ, Z) is that

Iz,l = 0 (2.57)

Iz, 2 = 0. (2.58)
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* For loc > 1 we find two stationary points

S 1 '2 = (1, 0, 0). (2.59)

* For IEl < 1 we find four stationary points

SI, = (±1, 0, 0), (2.60)

S3,4 = (/i0, ± 1-). (2.61)

Linear stability analysis of eqn. (2.56) around the stationary points gives the following

results.

* For ll > 1, S 1' 2 are center points (neutrally stable).

* For 1,1 < 1 we have to distinguish between n > 0 and rn < 0.

- For , > 0, S1 is a saddle point (unstable), S2,3,4 are center points.

- For n < 0, S1,3,4 are center points, S2 is a saddle point.

We see that number and stability of stationary points changes at j11 = 1 and

n = 0, i.e. three bifurcations occur. The bifurcation diagram is shown in Figure 2-1.

It displays a combination of two pitchfork bifurcations that occur at r, = ±1 and a

transcritical bifurcation at X = 0. Since the picture is somewhat reminiscent of two

pitchforks crossed in a fight between farmers in the author's bavarian homeland we

will call the bifurcation the "Bauernrauferei" or farmers fight bifurcation. This result

is consistent with results obtained for the Darling-Dennison Hamiltonian [18].

At this point it is important to notice that apparently only the modulus of the

parameter In is important to detect qualitative changes in the dynamics of the ex-

citation transfer. Therefore the particular mechanisms that lead to the transfer or

the localization of the excitation, as reflected in different signs of the Hamiltonian

parameters ( and X, do not have to be invoked in order to explain the dynamics.
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Figure 2-1: Bifurcation diagram for the undamped Duffing oscillator without driv-
ing. Dashed lines (- -) indicate neutrally stable branches, dotted lines (...) unstable
branches. At Inj = 1 there occurs a pitchfork bifurcation and at = 0 there occurs
a transcritical bifurcation.
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The Duffing Potential V(Iz).

In order to explore the dynamical properties of the non stationary trajectories, let us

discuss the properties of the potential V(lz) = V(Iz)/I 2 .

The potential parameters A, B in V depend both on the original Hamiltonian

parameters, whereas only A depends via C on the initial conditions. Since B is

positive semidefinite, V can either have one minimum or one maximum and two

minima, dependent on the sign of A. The transition between these two forms occurs

at A = 0 and indicates the bifurcation discussed above. In the single well form the Iz

coordinates of the centers coincide with those of the minima of V. In the double well

form the 1z coordinates of saddle and the appearing centers are identical to those

of the maximum and the minima, respectively. The following dynamic regimes are

possible.

* For all extrema of V, 2z is stationary.

* For the case of a single well potential, Iz oscillates around Iz = 0. The vibra-

tional excitation undergoes complete exchange between the two local oscillators

within half a period of oscillation.

* For the case of a double well potential we have to distinguish between two

situations.

- First, if E > 0, 1z oscillates around 2z = 0, yet due to the potential well

under reduced velocity at the origin.

- Second, if E < 0, Iz oscillates around one of the minima of V. The

vibrational excitation is not completely exchanged between the two local

oscillators. The excitation is trapped.

The energies EDD and E at the stationary points S1 2 '3'4 as calculated from

eqn.(2.23,2.44) are

EDD = (w + I)I + , (2.62)
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E34 (w + I)I + X 2 + (2.63)

E1'2 = 0, (2.64)

E3 4 = _X2(1 _- 2) 2 14 4 (2.65)

It is worth mentioning that the stationary states are gauge invariant, to be specific,

invariant under a change of the coordinates ai -+ ai exp(i-yt) where the frequency y

can be determined from HDD.

This concludes the discussion of the dependence of the dynamics of the excitation

on the Hamiltonian parameters. In the following section we investigate the depen-

dence on the initial conditions.

The phase diagram

The dependence on initial conditions is best displayed in a phase diagram spanned

by ((to),Z(to)). First, from the definition of I we conclude that

z(to) + ZT(to) < 1, (2.66)

which restricts the accessible area of the phase diagram to the unit circle. There exist

two more lines that separate three different dynamic regimes.

* The regions of single and double well potentials are separated by the bifurcation

parabola

z(to= = (2.67)

which we readily obtain from the condition A = 0 in eqn.(2.45).

* The regions for which E > 0 and E < 0 are separated by the localization

parabola

Iz(to) = +1 2 (2.68)
2which we readily obtain from the condition = in eqn(244) For > 

which we readily obtain from sitive, for < the ondition E = in eqn.(244). For be > 

the ordinate has to be taken positive, for n < 0 the ordinate has to be taken
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negative.

* In order to locate a state observed in the spectrum at energy EDD in the phase

diagram, we eliminate C from eqn.(2.25,2.23) to obtain the spectral parabola

-l(to) = C - (t) (2.69)

C = [EDD - (w + (I)I]. (2.70)

* The stationary points lie on the unit circle and have the coordinates

Figure 2-2 displays several possible states in the phase diagram for given rn. From

here on let us assume without loss of generality that n > 0, unless stated explicitly

otherwise.

We see that the area of the phase diagram within the unit circle is divided into

three regions by the localization parabola IZ(to) and the bifurcation parabola Z,(to)

indicated as solid lines. They have the same curvature -1/K but different intercepts

with the ordinate. The ordinate of the localization parabola is fixed at 1x(to) = 1, the

ordinate of the bifurcation parabola is variable at ZI(to) = K. The spectral parabolae

ZxT(t) are indicated as dashed lines and have the same curvature as the localization

and bifurcation parabolae.

We can now unambiguously assign dynamical properties to a particular spectral

state by drawing the corresponding spectral parabola in the phase diagram. Note that

C is a linear function of the energies of the spectral states. There are five possible

cases.

* For C > 1 the corresponding spectral parabolae IZx(t 0) lie in the region of

trapped motion.

* For C = 1 the corresponding spectral parabolae IX (to) coincides with the local-

ization parabola 4 (to).
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xt,O

2z70z,O

Figure 2-2: Phase diagram for 0 < i' < 1. The solid circle (-) restricts the accessible
area of the phase diagram. The solid parabolae (-) are the localization parabola (s)
and the bifurcation parabola (b). The dashed parabolae (- -) are in the local mode
region (A1), in the region of a normal mode in a double well potential (A2) and in the
region of a normal mode in a single well potential ( 3 ).
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· For 1 > C > Kn the corresponding spectral parabolae IZ(to) lie in the region of

free motion, yet the excitation is subjected to a double well potential.

* For C = n the corresponding spectral parabolae (to) coincides with the bifur-

cation parabola Z (to)

· For K > C the corresponding IZ (to) lies in the region of free motion in a single

well potential.

The parametric dependence on can be directly read from the phase diagram.

Let us consider the limits of small and large absolute values of r'.

* For small absolute values of X the area of trapped motion is large compared to

the area of free motion. Thus there exists a wide range of initial conditions for

which the vibrational excitation is trapped.

* For large absolute values of n the situation is reversed. In agreement with the

phase plane analysis we see, that a necessary condition for self-trapping is that

,I < 1, since for Il > 1 the localization parabola does not include any area

with the unit circle. Then localization is impossible for any initial condition.

Note that, due the fact that all parabolae have the same slope, a change in dynamic

properties of a spectral state is only possible by shifting the intercept with the ordi-

nate. This amounts to a change in energy EDD. Therefore the process of localization

cannot occur under conservative conditions.

The polyad phase-sphere

The results of the phase plane analysis displayed in a flow diagram yield information

about the flow of the excitation, the results of the potential analysis displayed in

the phase diagram yield information about the initial condition dependence of the

dynamics. We should explicitly warn here that a standard phase plane picture will

display intersecting flow lines due to the initial condition dependence of the Duffing

potential and should therefore be used only with caution.
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If we insist on displaying the complete dynamic information in a single phase

diagram we have to employ a construction called the Poincare sphere. It displays the

phase space trajectories and the flow direction for a given value of the dimensionless

parameter i. It is spanned by the normalized actions , ly and 2. The invariant I

gives the radius as II = 1. The invariant C determines the trajectory of corresponding

energy on the sphere.

For a particular molecular species the Hamiltonian parameters are fixed, such

that the only degree of freedom remaining in /c is the principal action I. Thus the

Poincar6 sphere consists of several layers of phase portraits, one for each value of

I. This suggests, that all states within the same polyad are displayed on the same

Poincar6 sphere, which is therefore referred to as the polyad phase-sphere.

The phase plane (/z,iz) can be obtained from the Poincar6 sphere as the projec-

tion of a trajectory specified by C and n onto the (y,z) plane, apart from a scaling

factor - 2 for 2z as can be seen from eqn. (2.29).

The phase diagram results as the projection onto the (Iz,I) plane.

Now, let us have a look at the geography of the Poincar6 sphere.

We will call

* the point (1, 0, 0) the north pole and

* the point (-1, 0, 0) the south pole;

* the line (IZ = 0, (2z)2 + (iy)2 = 1) the equator, separating the northern and

southern hemispheres and

* the line (Iz = 0, (I2)2 + (y)2 = 1) the zeroth meridian, separating the western

and eastern hemispheres.

For further discussion we have to distinguish between Xn < 1 and > 1.

* Figure 2-3 shows the Poincar6 sphere for rn < 1. The north pole is occupied by a

saddle, the south pole by a center as stationary points. Two additional centers

as stationary points specified by the coordinates (, 0, +1- 2) lie on the

stationary meridian in the northern hemisphere parametrized by (y = 0, I <
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0, () 2 + () 2 = 1). The localization parabola appears as a separatrix on

the sphere, originating at the north pole, embracing regions of local excitation

on the western and eastern hemispheres, largely extended over the northern

hemisphere. Around the south pole we find the region of normal excitation.

The bifurcation line appears as a bifurcation loop south from the separatrix.

The self-trapping line and the bifurcation line are indicated as solid lines.

* For > 1 we find centers on the poles as stationary points. The area of normal

excitation extends over the complete Poincar6 sphere.

Let us establish the connection to the phase plane and the phase diagram. For a

given trajectory in the phase diagram, we can identify the points of intersection of

the spectral parabola IX(to) and the unit circle with the turning points of the motion

on the Poincar6 sphere. The points of intersection with the Z axis constitute foci of

the motion in the phase plane. At these points the trajectory on the sphere arrives

at the maximum value of Zy.

Let us have a look at the trajectories on the Poincar6 sphere for rn < 1, as displayed

in Figure 2-4. The trajectories are indicated as dashed lines. It is straightforward to

show, that trajectories in the areas of free motion circulate counterclockwise around

the I axis and trajectories in the trapped region for positive Iz counterclockwise, for

negative I clockwise around the stationary points on the northern hemisphere.

In summary, we were able to determine the dynamical properties of the system

by exploring the geometry of the associated phase space. The invariants were the

key to the successful analysis. The parametric dependence of the qualitative change

from normal to local excitation has been condensed in the bifurcation parameter ri.

Particular trajectories can be assigned 1:1 to spectral states via their dependence on

C.

Two main results could be established so far.

* First, the particular physical mechanism of confining a localized excitation is

unimportant, since only the modulus of the dimensionless parameter N is rele-

vant. We will see several examples in the next section.
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Figure 2-3: Poincar6 sphere for the undamped Duffing oscillator without driving,
0 < n < 1. The dashed circles (- -) indicate the equator (a), the 0th meridian (b) and
the 90th meridian (c) which intersect at the north pole (NP) and the south pole (SP).
The dotted parabolae (...) are the localization parabola and the bifurcation parabola
from the phase diagram. The solid loops (-) on the sphere indicate the localization
loop (S) and the bifurcation loop (B).
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Figure 2-4: Trajectories on the Poincare sphere. The dashed lines (- -) indicate
trajectories of a local mode (A 1), a normal mode in a double well potential (A 2) and
a normal mode in a single well potential (A 3).
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* Second, the process of localization cannot be conservative, since a crossing of the

localization parabola by a spectral parabola can only be achieved by dissipation

of energy.

Furthermore, we want to mention that the same type of analysis can be carried

out for any coupling Vk:l. The cases k = 1 = 1, 2, which constitute the Hamiltonian

for degenerate local and normal modes can both be solved analytically in terms of

Jacobian elliptic functions. We will give that solution for the case k = 1 = 1.

Before we proceed in that direction it will be instructive to apply the theoretical

results to some experimental data.

2.2.4 Adaptation to experimental data

In this section we evaluate the phase diagram for H 2 0, 03, S0 2, C2H 2 and C 2D 2.

The data for the Hamiltonian parameters are taken from [12] and were obtained by

a nonlinear least-square fit of experimental data to fHDD for the molecular species in

the gas phase. 2

The phase diagrams are organized as follows. The unit circle, the localization

parabola and the bifurcation parabola are indicated as solid lines. The spectral

parabolae are represented by dashed lines, the calculated energy EDD of lines in

the absorption spectra is given in wavenumbers above the corresponding spectral

parabola.

Phase diagrams for water

First, let us compare the phase diagrams for the same molecular species for different

values of I. Figure 2-5, Figure 2-6 and Figure 2-7 show results for water from I = 2

to I = 6.

2The Hamiltonian in Kellman's investigation contains both Vl:l and V2:2. Yet the coupling
constant associated with this additional term turns out to be 0(10-1) compared to ( and thus can
be neglected without changing the result qualitatively. Corrections for the dynamics of Iz can be
obtained by perturbative techniques.
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Figure 2-5: Phase diagrams for H 20, I = 2 and I = 3. The dashed lines (- -) indicate
spectral parabolae, the energies of the corresponding transitions are given in cm-1
above the parabolae.
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Figure 2-6: Phase diagrams for H 2 0, I = 4 and I = 5.
spectral parabolae, the energies of the corresponding
above the parabolae.

The dashed lines (- -) indicate
transitions are given in cm-l
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Figure 2-7: Phase diagram for H 2 0, I = 6. The dashed lines (- -) indicate spectral
parabolae, the energies of the corresponding transitions are given in cm-' above the
parabolae.

* Already for I = 2 we find r < 1. Since n is monotonically decreasing with I, lo-

calization is possible in that polyad and for all following polyads. There are two

normal spectral parabolae, one in the region south of the bifurcation parabola,

the other north of the bifurcation parabola and south from the localization

parabola.

* For I = 3 we observe two major changes. First, there is one spectral parabola

in the local region north of the localization parabola, the other two at higher

wavenumbers in the local region south. Second, the energy difference between

the two energetically lower lying spectral parabolae is smaller than the one

between the two higher lying spectral parabolae.

* For I = 4 we can observe already of a pair of two local spectral parabolae split

in energy by an amount significantly smaller than the other splittings.
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* For I = 5 the splitting between the pair of local spectral parabolae is further

decreased. The points of intersection with the unit circle, i.e. the turning points

of the motion of Iz are shifted to large absolute values of Iz. The two spectral

parabolae in the bifurcated region show already a separation from both the two

local and the normal spectral parabola.

* For I = 6 the two lowest lying spectral parabolae are almost degenerate in

energy, followed by a pair of local spectral parabolae split by a larger margin of

energy. At some distance there are two normal spectral parabolae.

Note three features of the sequence.

* First, the energetically highest lying normal spectral parabola remains approx-

imately at the same position in the phase diagram. This indicates the univer-

sality of the representation, which relies on the dimensionless parameter rn and

the normalized actions.

* Second, the local character of local spectral parabolae becomes more pronounced

and correlates with the drift of the turning points towards z = 1.

* Third, as rc decreases the number of spectral parabolae in the localized region

increases and the low lying spectral parabolae develop the structure of split

pairs. Note that the difference in C for two spectral parabolae is a linear function

of the energy difference between the corresponding states.

We will give a tentative explanation of these observations in the semiclassical

discussion of the normal to local mode transition and a detailed explanation in the

quantum mechanical analysis of the problem.

Phase diagrams for different molecular species

Let us continue by comparing the phase diagram corresponding to polyads I = 6 for

different molecular species shown in Figure 2-8 - Figure 2-12.

* Figure 2-8 shows the phase diagram for ozone.
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The first difference we notice is that the diagram is "upside down", as indicated

by a negative value of n. The reason is that ( > 0, i.e. the coupling between

the local oscillators increases EDD, as opposed to water where ( < 0, i.e the

coupling decreases EDD. One can speculate about the physical mechanism that

causes ( > 0. Yet it is important to notice, that no matter what effect turns out

to be responsible, the local character of the modes depends only on the absolute

value of a. We arrived at this statement earlier in the phase plane analysis.

In somewhat popular terms the situation can be explained as follows. For water,

each bond oscillator finds vibrational excitation "attractive" and there is com-

petition, whereas for ozone, it is considered "unattractive" and the vibrational

excitation is "shoveled around like a hot potato" between the bond oscillators.

The decisive point is, that for both water and ozone the bond oscillators have

the same type and degree of preference.

The second difference compared to water is that there are only two spectral

parabolae in the local region. This indicates, that for the same degree of vibra-

tional excitation the polyad I = 6 shows larger local character for water than

for ozone.

* Figure 2-9 shows the phase diagram for sulfur dioxide. The predominant feature

here is that all spectral parabolae are equally spaced. Since n > 1 we know that

all modes must be of normal character. Compared to water and ozone, the

polyad I = 6 for sulfur dioxide shows strong normal character.

Effects of isotopic substitution

As a brief interlude it is interesting to have a look at the effects of isotopic substitution

on the normal to local mode transition. Although acetylene and deuterated acetylene

do not belong to the class of triatomic molecules studied here, the local CH and CD

stretch vibrations obey the Darling-Dennison Hamiltonian.

* Figure 2-10 shows the result I = 6 for acetylene. There are two local spectral

parabolae and a pair of spectral parabolae in the bifurcated region. The one
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Figure 2-10: Isotope effect: Phase diagram for C 2H 2.

lower in energy coincides with the bifurcation parabola.

* Figure 2-11 shows the phase diagram I = 6 for deuterated acetylene. We notice

that [IA - 1 and see accordingly no spectral parabolae in the local region, i.e.

the phase diagram exhibits strong normal character.

* The first phase diagram for C 2D2 to show local spectral parabolae is shown in

Figure 2-12 and appear at I = 21.

This impressively demonstrates that upon isotope substitution we do not only

have to expect quantitative changes in the dynamics, such as shifts in frequency, but

also qualitative changes regarding the stability of the modes.

In summary, we have seen that the phase diagram turns out to be a convenient

tool of discussing the question of local and normal character of different molecular

species, their polyads and states within a polyad.

* The functional dependence of n. on the total excitation I for different molecular

species can be used to label a particular species as "local type" or "normal
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Figure 2-12: Isotope effect: Phase diagram for C 2D 2 at high excitation.
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type" according to their overall tendency to localize excitation.

* The values that n takes for particular polyads I are indicative of how many of

the contained states may be labeled as local modes and how large their degree

of locality is.

* For a particular state within a polyad these issues can be directly decided by

comparing the invariant C with r.

In the following section we will solve for the time dependence of I and thus

complete the the discussion of the classical local to normal transition.

2.2.5 Analytical solution of the equations of motion

The analytical form of I(Zx,, Zy,,z) is obtained in a straightforward manner. For 4Z

we solve in terms of Jacobian elliptic functions. The solutions for IZ and Zy follow

immediately from eqn.(2.24,2.25). From the definitions of Z, Zy and IZ in eqn.(2.51)

one can then easily solve for complex mode amplitudes al and a 2.

Ansatz and solution

The proper ansatz is given by

lZ(t) = Df(Qt - lDm). (2.71)

Here f is a Jacobian elliptic function of amplitude D, frequency Q, phase 1) and

parameter m. Inserting this ansatz in eqn.(2.50) and using eqn.(2.24,2.25) one obtains

three different types solutions, dependent on the parameter m.

* For m < 0 the solution is given by

Zz = Dnd(V1+ m [Qt- ld] 1 + Il), (2.72)

1 1Im D )2 1
'Ind = -F(arcsin 1 -

n = 1 + ImI m +I )-
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* For 0 < m < 1 the solution is given by

Zz = Dcn(Qt- >cnm), (2.73)

cn = -F(arccos () m).D

* For 1 < m the solution is given by

zz = Ddn(v'[Qt- dn I'), (2.74)
m

4dn = -- F(arcsin D I).

* The results for D, m and Q are

D = ± - +2I2(1 - 2) + (2.75)

1 A
m = -(1-B + ) (2.76)

2 24I/T2~--Y,2 + 

nQ -(DI (2.77)

Here cn, dn, nd are Jacobian elliptic functions and F an elliptic integral of the first

kind.

There are several things to notice.

* First, for the different domains of the parameter m we get qualitatively differ-

ing results. Figure 2-13 shows the elliptic functions for different values of the

parameter m.

- The cn function oscillates between the upper bound D and lower bound

-D. Thus the vibrational excitation is completely transferred after two

quarterperiods, which are usually denoted by K = F(Qt = lm).

- The dn function oscillates with the upper bound D (or lower bound -D)

but does not change the sign of its range. Thus the vibrational excitation
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is never completely exchanged between the two bond oscillators, i.e. it is

a local mode.

- The nd function oscillates with the lower bound D (or upper bound -D)

and, like the dn function, does not change the sign of its range. Thus it

describes a local mode as well. The difference to the dn solution is that

the average of Iz over a period 4K is larger than for the evolution under

the nd solution.

* Second, the frequency Q depends on the initial amplitude D, in sharp contrast

to linear dynamical systems.

* Third, let us consider limiting cases. Take an initially local state for large I - n,

i.e. Iz(to) = 1. From eqn.(2.75-2.77) we obtain DI = 1, m = 1/4,2 and Q = 2 .

- In the limit of vanishing anharmonicity X -+ 0, - oo, the vibrational

excitation oscillates unhinderedly between the local oscillators, as can be

seen from

lim I, = lim cn(2(tlm) = cos(2(t).
m-+O M-*

- In the limit of vanishing coupling + 0, -+ 0, the initial distribution of

vibrational excitation is maintained at all times, as can be seen from

1
lim zE = lim dn(2tl-) = 1.

m-+0o m-+oo m

Connection to the phase diagram

As we see, the transitions between these functions depend on the parameter m. Thus

we should be able to recover the phase diagram from the expression for m as given

by eqn.(2.76). This is indeed the case.

* The condition m = (appearance of additional points of inflection at half values

of the quarter period K) yields C = and thus the bifurcation parabola is given

by eqn.(2.67).
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* The condition m = 1 (transition between cn and dn) yields C = 1 and thus the

localization parabola is given by eqn.(2.68).

Connection to the hindered rotor model

Let us briefly establish the connection to the hindered rotor model by Sibert et al.

[6, 7]. Their analysis is carried out in action-angle coordinates, where the action of

the hindered rotor is given by the action difference of the two bond oscillators, the

angle of rotation by the difference in phase angles of the two bond oscillators. The

potential of hindrance is periodic in 27r. Their analysis concludes that the regime

of local modes coincides with libration of the rotor and normal modes coincides with

hindered rotation of the rotor.

In order to recover their results from our analysis it is instructive to have a look at

the normalized complex mode amplitudes di = ~a for an initially local state on oscilla-

tor one, which takes a particularly simple form for large I. Using eqn.(2.24,2.25,2.51)

we obtain

* for 0 < m < 1

1 1
al = cos [am(2(tl 42)] (2.78)

1 2 1
a2 = sin[-am(2(tl )] exp [-i(arccos d n (2 ( t l 4 + (2.79)

* and for 1 <m

al = +/1 + dn(2Ixtl4n 2) (2.80)1 + dn(2IXtl4K2)2l =f (2.80)

52 = 1) exp [(am(2Ixtl4c2) + r)]. (2.81)
2 2

Here am is the elliptic amplitude and related to cn via cos [am(2(tlm)] = cn(2(tlm).

For convenience we split the complex mode amplitudes in a real valued amplitude

and a phase factor of modulus one that can take imaginary values.

Let us first discuss the case 0 < m < 1. The argument of the trigonometric
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functions is monotonically increasing with time. Therefore the amplitudes range

from -1 to +1. After t = K/C the vibrational excitation is completely transferred

from oscillator one to oscillator two. The phase factor has time dependence of the

form arccos(dn). The range of dn is at most between 0 and +1. Thus the total

phase (arccosdn(2(tl 41) + ) can at most range between 0 and 7r. This amounts to

a hindered rotation between the angles 0 and 7r. The case 1 < m can be discussed in

complete analogy.

We conclude that a trapped phase, i.e. hindered rotation, implies free transfer of

vibrational excitation, whereas a free phase, i.e. libration, implies self-trapping of the

vibrational excitation. This result is identical to the hindered rotor model of Sibert

et al. [6].

Polar representation of the mode amplitudes

It is customary to graph and analyse the dynamics of systems similar to the studied

type in the polar representation of the complex mode amplitudes ai as obtained

from numerical integration of the equations of motion. Although we consider this

representation as not very instructive and somewhat esoteric let us view our results

from this angle. In the following we compare the complex mode amplitude of oscillator

two to the coordinate space trajectories of the oscillators and insert as "missing link"

the real valued amplitude of the complex mode amplitudes. Again, we consider an

excitation that is initially localized on oscillator one in the limit of large I. Figure 2-14

- Figure 2-17 shows

* the complex mode amplitude a2 in polar representation (abscissa: real part of

a 2; ordinate: imaginary part of a2),

* the real valued amplitude V/2 (abscissa: time in units of K; ordinate: JV/)

and

* the coordinate space trajectories in the harmonic approximation (abscissa: dis-

placement from equilibrium of oscillator one; ordinate: displacement from equi-

librium of oscillator two)
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for different values of the parameter m.

We expect that as the vibrational excitation becomes trapped on oscillator one,

the excitation will no longer be transferred completely to oscillator two and thus 2

will undergo a transition towards decreased amplitudes.

The sequence shows, that as m gradually approaches 1, the complex mode am-

plitude exhibits a high density around the circle of radius 1/V as can be calculated

from eqn.(2.81). This high density region corresponds to the plateau in the amplitude

forming at the same value and implies that for large periods of time the excitation

becomes nearly equally distributed between the two oscillators. This amounts to

a "blackening" of the diagonal for the normal coordinate space trajectory diagram.

Thus the molecular oscillations appear as sudden kicks after some time of apparent

standstill of dynamics. At m = 1 we observe that the complex mode amplitude of

oscillator.two collapses into the region within the circle of radius 1/v, i.e. the sym-

metry of the system is broken. A local coordinate space trajectory forms. Now, only

oscillator one reaches full amplitude. As m increases further, the density of the com-

plex mode amplitude of shifted back towards a uniform density with further increasing

values of m. At this stage, oscillator two appears to have come to a standstill.

Technically, the transition occurs when the trajectory in the polar representation

intersects itself before it passes the origin, i.e. the period of the phase factor becomes

shorter than the period of the amplitude factor.

Let us close with a final aside. The trajectory around m = 1 looks "more compli-

cated" than the trajectories in the limits m = 0 and m 1. Suppose we couple the

Darling-Dennison to another oscillator such that the excitation can be periodically

transferred between that oscillator and the Darling-Dennison system. Then, the plot

for the complex mode amplitude would "look like a mess" if the Darling-Dennison

system is in the regime m = 1. One is then tempted to open the toolbox of chaotic

dynamics and analyse the frequency spectrum of the trajectory to see whether the

dynamics is periodic, quasiperiodic or chaotic. We demonstrate in Appendix A that

the result will be ambiguous if, like in our case, the trajectory can be written in terms

of elliptic functions.
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2.2.6 Panoptic view of different dynamic representations

We have seen in the last few sections that there is a variety of ways of looking at the

dynamical properties of the molecular system. We pause a second in order to connect

in Figure 2-18 the different representations used so far.

All features of the dynamical properties are contained in the motion of the vector

I on the Poincar6 sphere. The Poincar6 sphere displays the phase portrait of all

trajectories for a certain value of . The phase plane and the phase diagram are

projections of the phase portraits onto perpendicular sections of the Poincar6 sphere.

The extrema of the potential V are identical to the foci of the motion in the phase

plane, the kinetic contribution T specifies the direction of the flow in the phase plane

and thus on the Poincar6 sphere. All these geometric representations come to live

as we implement the time dependence in terms of the explicit solutions for lz or the

complex mode amplitudes al and a 2.

2.2.7 Extension to damped systems

So far we have treated only the dynamics of local or normal excitations and shown

that the process of trapping of vibrational excitation can not be accounted for in the

system in its current form.

The identification of the dynamics of 1z with that of an undriven Duffing oscilla-

tor without damping provokes the further exploitation for cases when Zz is subject to

damping or to a driving force. Both cases have been carefully studied for the Duffing

oscillator. In this section we qualitatively discuss the effect of damping on the sys-

tem. We demonstrate that damping can change qualitatively the molecular dynamics

and lead to localization of vibrational excitation. The physical situations for which

damping becomes important range from dynamics of vibrational excitations in the

high density gas phase to the liquid or solid phase.

Let us return to the original semiclassical Hamiltonian (2.23) and assume for

simplicity that I stays invariant under damping, i.e. the trajectory remains on the

polyad phase sphere. The consequence is that C is no longer invariant. Let us further

78



Figure 2-18: Panoptic view of different dynamic representations 0 < < 1, con-
taining the Poincar6 sphere, the corresponding phase diagram, the phase planes, the
Duffing potentials and the time dependent Jacobian elliptic functions. See text for
explanation.
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Figure 2-19: Bifurcation diagram for the damped Duffing oscillator without driving.
Solid lines (-) indicate stable branches, dotted lines (...) unstable branches. At
IAI = 1 there occurs a pitchfork bifurcation and at Kt = 0 there occurs a transcritical
bifurcation.

assume that the loss of energy has the functional dependence h(Iz) and h(Iz = 0) = 0.

By construction the number and location of stationary points as well as the location

of the bifurcations at lj = 1 and n = 0 are identical to those in the undamped case.

Yet the stability of the stationary points and thus the phase portrait on the

Poincar6 sphere are different from the undamped case. The bifurcation diagram is

displayed in Figure 2-19. The structure is similar to the undamped case. Again we

find a combination of two pitchfork bifurcations occurring at n = ±i. Two stable

branches are bifurcating into a pair of stable and one unstable branch. In addition

there is a transcritical bifurcation at n = 0.
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The assumptions made above can be motivated as follows. Consider a molecule

embedded in a matrix of atoms. The vibrating molecule interacts with the matrix

in two ways: first, by the oscillations along the bonds on a fast timescale, second,

by transfer of excitation between the local bond oscillators on a slow timescale. The

bond oscillations can persist damping especially if the difference in mass between the

molecular oscillator and the atoms in the matrix is large. The transfer of excitation

between the bond oscillators leads to considerable change in the relative amplitudes

of the two local oscillators and forces rearrangement of the local environment. The

damping of the periodic rearrangement is described by the model introduced above. It

can be shown [19] that the total action I is an adiabatic invariant under the condition

that the energy is dissipated slowly compared to a period of oscillation of the bond

oscillators and therefore may be treated as a conserved quantity.

Now, let us have a look at the Poincare sphere that shows the following features

for the damped system.

The Poincar6 sphere for n > 1 is displayed in Figure 2-20. There are two stationary

points:

* A stable spiral point at the north pole (1, 0, 0) and

* an unstable spiral point at the south pole (-1, 0, 0).

For all initial conditions but the unstable spiral point, the trajectory will converge to

the north pole.

The Poincar6 sphere for es < 1 is displayed in Figure 2-21. There are four station-

ary points:

* A saddle at the north pole (1, 0, 0),

* two stable spiral points at (, 0, v/1 - n2) and

* an unstable spiral point at the south pole (-1, 0, 0).

A separatrix originates at the unstable spiral point and leads to the saddle point. The

sphere is split in two basins of attraction, one for each of the stable stationary points.
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Thus for any initial condition but the unstable stationary points or the separatrix

the behaviour of _I at long times will be determined by the location of the stable

stationary points.

Note the fundamental difference of the undamped and damped system in respond-

ing to a perturbation. This difference manifests itself in the magnitude of the per-

turbation necessary to induce a transition from normal to local behaviour. For the

undamped system the perturbation necessary to induce a qualitative change in the

dynamic behaviour depends on the distance of the trajectory on the Poincar6 sphere

to the separatrix, which has to be crossed in order to change from normal to local be-

haviour. In contrast the damped system directs under any infinitesimal perturbation

* for n > 1 to the north pole (normal mode) and

* for n < 1 to one of the stable stationary points on the northern hemisphere

(local mode).

Typically perturbations are always present in the form of fluctuations in the surround-

ings the Darling-Dennison system interacts with. Thus the surroundings are in two

ways responsible for the transition from normal to local modes. First, the symmetry

is broken due to a fluctuation, then vibrational excitation is dissipated.

For molecules with more than two degrees of freedom the normal to local mode

transition can occur under conservative conditions. The energy can be dissipated

intramolecularly into the degrees of freedom that do not participate in the confinement

of vibrational excitation. For the AB 2 type molecules this could be the bending mode,

for more complex molecules any other vibrational mode.

2.2.8 Preliminary review of the classical results and con-

clusions

Before we begin with the discussion of quantum mechanical aspects of the normal

to local mode transition let us follow up on the introductory questions. Up to this

point we have investigated the classical correspondent to the quantum mechanical
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Figure 2-21: Poincar6 sphere for the damped Duffing oscillator without driving, 1 >
n > 0. Top: view from north, middle: view from(1,1,1) and bottom: view from south.
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Darling-Dennison Hamiltonian which describes two identical harmonically-coupled

Morse oscillators. Such a description is valid for moderately to highly exited systems.

As a measure to detect localization of vibrational excitation under dynamical sym-

metry breaking we chose the occupational probability difference of the excitation on

the two oscillators.

We found the analytical solution of the equations of motion of Darling-Dennison

systems in terms of Jacobian elliptic functions and the associated elliptic parameter.

Three qualitatively different solutions exist for different ranges of the elliptic parame-

ter: one, allowing complete exchange of vibrational excitation as a normal mode and

two others, confining the vibrational excitation as local modes. The normal to local

mode transition occurs at a particular value of the elliptic parameter which depends

on both the Hamiltonian parameters and the initial conditions. As a result, we can

not only exactly state for any Darling-Dennison system the conditions under which

the normal to local mode transition occurs, but also describe the dynamical details

of the delocalized or localized excitation. However, the knowledge of the analytical

solution to the problem is of little benefit from an intuitive point of view. The phys-

ical content of the normal to local mode transition can be better understood using

geometrical methods from classical mechanics, i.e. phase plane analysis and potential

analysis.

To begin with, we carried out a seemingly technical canonical transformation of

the Darling-Dennison Hamiltonian into action-angle coordinates. The reason was to

obtain the explicit dependence of the Hamiltonian on the the total action I that

is a dynamic invariant. Thus it was possible to decompose the Hamiltonian into a

sum of invariants. As an immediate consequence we could geometrically construct

the trajectories of the system. They appeared as closed loops on a spherical surface

called the Poincar6 sphere spanned by the Euclidean components of the total action.

The components of I could be interpreted in the following way.

* The Z component of the total action is the occupational probability difference

of the excitation on the two oscillators therefore indicating the position of the

excitation. Large values of Iz imply that due to the form of the Morse potential
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the molecule is in a distorted state. Vanishing values of Jz indicate that the

molecule is in its undistorted equilibrium configuration. The energy lowering

of the molecule due to the distortion by the anharmonic forces has a quadratic

dependence on Zz.

* The Zy component indicates the velocity of the excitation transfer between the

bond oscillators and therefore the kinetic energy of the moving excitation. The

transfer is the fastest for a phase difference of the bond oscillators close to r/2,

i.e. one of the oscillators is fully stretched whereas the other is at its equilibrium

position. The transfer is the slowest for a phase difference of the bond oscillators

close to 0 or ir, i.e. both bond oscillators are simultaneously stretched or one is

stretched whereas the other one is compressed.

* The lZ component indicated the amount of energy contained in the coupling

of the two bond oscillators. This energy can either be converted into kinetic

energy of the excitation (increase in Iy) or into distortion energy of the molecular

equilibrium geometry. If the phase difference of the two bond oscillators is close

to either 0 or r the coupling energy is frozen and cannot be converted.

There is only one time dependent degree of freedom to be solved for which we chose

for convenience to be Ez. The associated Hamiltonian turned out to be similar to

the Hamiltonian for an undamped Duffing oscillator without driving, apart from

dependence of the associated Duffing potential on the initial conditions. The Duffing

potential appears either in single well or double well form, the exact shape depends

on the Hamiltonian parameters and the initial conditions. The potential picture is

intuitively appealing since now localization of vibrational excitation under dynamical

symmetry breaking can be discussed treating the excitation as a quasiparticle with an

associated kinetic and potential energy. A necessary but not sufficient condition for

localization is the appearance of the Duffing potential as double well. The necessary

and sufficient condition for the normal to local mode transition to occur is that the

kinetic energy of the excitation vanishes at the top of the potential well.

The transition of the Duffing potential from single well to double well form ex-
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elusively depends on the Hamiltonian parameters and the total action. Therefore

it is characteristic of particular molecules and degrees of excitation. We introduced

the bifurcation parameter , relating the antagonistic tendencies of delocalization by

coupling and localization by anharmonicity. Large moduli of , favor delocalization,

small moduli of r; favor localization. Since only the modulus appears to be of impor-

tance we came to the surprising conclusion that the particular physical mechanisms

that lead to different signs in the Hamiltonian parameters are completely irrelevant.

In order to assign a trajectory of given energy to a normal or local mode we dis-

cussed the initial condition dependence of the dynamics in terms of a phase diagram.

We found that specification of the energy alone is enough to assign unambiguously a

given trajectory to a normal or local mode. This furthermore implied that the process

of localization can only occur under dissipation of energy either within the system or

into the surroundings.

Thus we were lead to classify the trajectories on the Poincar6 sphere into three

categories with increasing energy for given total action:

* local modes in a double well potential,

* normal modes in a double well potential and

* normal modes in a single well potential.

The dependence of the dynamics on the relative phase of the two oscillators can

be directly read off the Poincar6 sphere that therefore allows the straightforward

refinement of the intuitive picture of a quasiparticle that we already developed in the

introductory chapter.

2.3 Semiclassical interpretation

The technicality of mapping of the Darling-Dennison Hamiltonian onto the Duffing

Hamiltonian goes far beyond the obvious benefit of obtaining an analytic solution for

the classical trajectories.
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In particular, the Duffing potential allows intuitive insight and provides an ex-

planation for two observations in the quantum mechanical Darling-Dennison Hamil-

tonian. The number of states of local character and their locality increases with I.

Using semiclassical ideas one can make the following predictions: for the case of a

single well the spectrum consists of almost equidistant states of normal character.

Upon excitation the potential barrier forms and grows. The spectrum splits into two

regions. For energies above the barrier it contains almost equidistant states of normal

character, while for energies below the barrier, there are nearly degenerate pairs of

states of local character. Since the potential barrier grows like i4, the limit of near

degeneracy and thus high locality is attained for relatively small I. The time required

for an initially localized state to pass over or to tunnel through the barrier is then

approximated by the "inverse splitting".

Let us compare the time scales involved for the complete transfer of an initially

localized wavepacket with energy below the barrier, and thus large components along

the local character eigenstates, to an initially localized wavepacket with energy above

the barrier, and thus large components along the normal character eigenstates. The

wavepacket with energy below the barrier remains local during a period of transfer

of the wavepacket above the barrier. Thus the distinction between states of local or

normal character can be justified from the point of view of dynamics.

In order to define the significance of this argument for the symmetric eigenstates

we must slightly change our point of view. Let us compare the dynamics of an

eigenstate of local character to the dynamics of an eigenstate of normal character in

the presence of a small symmetry breaking perturbation. The period of oscillation

of a vibrational excitation between the two local oscillators is much longer for a

former local character state than for a former normal character state. Within one

period of transfer of a former normal character state, a former local character state

becomes more localized whereas the symmetry of a former normal character state

would be on average maintained. In terms of classical dynamics, a local character

state is unstable whereas a normal character state is stable against a small symmetry

breaking perturbation. This implies for the algebraic eigenvalue problem that the
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local or normal character of eigenstates should become apparent in the presence of a

symmetry breaking perturbation.

We will follow this line of thought in the discussion of the quantum mechanical

aspects of the normal to local mode transition.

2.4 Quantum mechanical aspects of the normal

to local mode transition

In this section, we demonstrate the difference in the physical properties between eigen-

states of local and those of normal character. Quantum states that correspond to local

modes in a classical description are extremely susceptible to symmetry-breaking per-

turbations. When a small symmetry breaking perturbation is added to the Hamilto-

nian these states become localized by mixing. States that correspond to normal modes

in a classical description remain delocalized when the same perturbation is added to

the Hamiltonian. Thus we can show that the susceptibility to symmetry breaking is

very much larger in local character quantum states than in normal character quantum

states. This allows us to formulate a quantitative measure for localization in these

molecules.

Let us briefly sketch how to introduce the concept of stability for the eigenstates

of HDD and H.

First, we discuss the eigenvalue problem of HDD and H. Where exact results are

unavailable, we obtain estimates for eigenvalues and eigenvectors for large I. Then we

recover the classical bifurcation parameter, a, and discuss its relevance in the quan-

tum mechanical context. We proceed examining the effect of a symmetry breaking

perturbation on the eigenstates of HDD. The issue of instability under symmetry

breaking perturbations is quantitatively addressed for each individual eigenstate us-

ing two measures to be defined later: (1) The effect is measured in terms of order

parameters that indicate the mismatch in occupation numbers of the two local oscil-

lators. (2) The sensitivity is measured in terms of susceptibilities. The usefulness of
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the method is demonstrated by an application to experimental data.

2.4.1 The eigenvalue problem

In this section we solve the eigenvalue problem to HDD and H which are familiar in

the context of angular momentum. Since the exposition is essential to the further

discussion we did not "ban" it into the Appendix.

From the commutation relations eqn.(2.19) we see that both HDD and H are block

diagonal in the representation of eigenstates to I. Furthermore we note the invariance

of both Hamiltonians under site exchange by the site exchange operator P12,

[P12, HDD] = 0 (2.82)

[P12, H] = 0. (2.83)

Therefore each block of both Hamiltonian associated with a certain value of I can be

further decomposed in two blocks in simultaneous eigenstates to both I and P 12.

Thus it is of advantage to solve first the eigenvalue problem to I followed by

that for 1 2. Then all that remains to be done is to diagonalize C in the basis of

the simultaneous eigenstates to 12, I. The eigenvalues of HDD and ft can easily be

related using the eigenvalues A and Ac to I and C.

Let us denote the nth eigenstate to one of the local oscillators by I'n >. The

eigenstates 4l1, l > and eigenvalues A to I are trivial to find and given by the outer

product of the local oscillator states

il/1I, >= I-_ > o1 >= IIbn- > 1-b >= II(PI, 1 > (2.84)

We use the normalization

< I, klbI, k >= (k,

1, k = , 1...,n. (2.85)
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The action of the site exchange operator P12 onto the eigenstates to I is defined by

P12 1'D,~ I >= P 1214n- 1 > Il1 >= Il > 'ln- >= I, n-I > (2.86)

Again, the eigenvalue problem is straightforward to solve. For given I we have to

distinguish between the cases for which I is even or odd.

* For even I there are (n + 1)/2 eigenstates associated with the eigenvalue +1

that are symmetric under site exchange. There are equally many eigenstates

with eigenvalue -1 that are antisymmetric under site exchange.

* For odd I there are (n + 2)/2 symmetric and n/2 antisymmetric eigenstates.

The symmetric and antisymmetric eigenstates 1 I, 1, ± > written in the basis of

eigenstates to I are

^ 1
A2 |DI,1,> = > A2 (11bn- > |<D > ±|(D > )n- >)

= 1( ,-t 1 > IiP > P > ,-t >) = PI, 1, ± > .(2.87)

The states 4II, 1, ± > are now simultaneously eigenstates to I and P1 2.

Let us denote in the 1Ii, , ± > basis by the matrix C and the Ith block of

symmetry ± of C by CI' ± with the real matrix elements ci. The matrix C is

symmetric tridiagonal.

As before, we have to distinguish between the cases of even and odd I

* For even I the diagonal and off diagonal elements of C',+ are given by

ctl = x(n - 21)2,

Cl+l,= C/(1l+l)(n-/);
n-2

1 = 0,1,..., 2
2

c_ n_ X- (2.88)
2 2 +2
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* For odd I the diagonal and off diagonal elements of CI,' are

c1t' = x(n- 21)2;

n-2
I = 0,1,..., -2

2

c/+,I -= v /( +- 1)(n-1);
n-4

I = 0,1,..., 2 -

I,+n2= ( n( + 1).
2'2

2' 2 2
(2.89)

The eigenvalue problem of ( can be formulated in terms of the eigenvalue problems

of the blocks C I , as

(C', - Ai 1)c = 0. (2.90)

Thus the eigenvalues AI± (for brevity denoted by A) can be calculated

* for even I for the symmetric and antisymmetric eigenstates from the vanishing

determinant DI,' =

x(n- 2)2 - A

V/2(n - 1)

0

(/2(n - 1)

0

(2.91)

* for odd I for the symmetric eigenstates DI,+ =
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0

0

0

0

9X - A 2V'(- 1)(n + 3)

~. ln-l )(n+3 R X n+1 _A



xn2-A (Fn

(V~nn X(n - 2)2 - A

0

(V2(n -1)

4X - A

n(a2 + 1)

0

n(2 + 1)

-A

(2.92)

and for the antisymmetric eigenstates DI- -

0

c/2(i- 1)

16x - A

0

0

2 i(n- (n + 4)

4X - A

(2.93)

The results up to 1=4 can be obtained analytically.

(2.94)

A3,+
C,O,1

C

A4,+
C,O,1

A4,-
C,O,1

= X+ ,

= 2 (x+ V 2 + ),

- 4X,

= 5X + 24X2 - 2X( + 2,

= 5X - 2V4X2 + 2X + 2.

(2.95)

(2.96)

(2.97)

(2.98)

The expectations of HDD and H are then given by

DD,L = (s + w I)I + C,L,

EL' = 2[C2(I2 - 1) - 2]

(2.99)

(2.100)

Let us denote the corresponding eigenstates to and thus to fHDD and H by

I i, ±, L > with the counting index L = 0,1, ..
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As an example, consider the. eigenstate associated with A2+ = X + ( which is now

denoted by '2 , +, 0 >= 12, 0, + >= 1/2(1 > 0 > +0 > 1 >).

The eigenstates to A'+ reduce

* in the limit of vanishing coupling, i.e. C -X 0 to degenerate pairs of the form

* and in the limit of vanishing anharmonicity, i.e. X -+ 0 to nondegenerate

Ii, ,+ >.

2.4.2 The energetic splitting of eigenstates of the Darling-

Dennison Hamiltonian

Since we are later on interested in the response of the system to perturbations, it

is essential to have a look at the differences in energy between the eigenstates. For

simplicity we focus on HDD which is of practical relevance. The theoretically equally

interesting discussion of H can be carried out in complete analogy.

Low excitation

It is instructive to begin with the weak coupling limit X > ( and small I. For

the differences in energy A = A C,+- A,- between the lowest lying symmetric

and antisymmetric eigenstates 19I, ±, 0 > we obtain from the analytical solutions in

eqn.(2.98) to lowest non vanishing order in ((/X):

Ax 2 , = 2C, (2.101)

Ao = X', (2.102)
X

AA4 +_ 3 (2.103)
,o -4X2 .

We note that the energetic splitting of the two lowest lying eigenstates within a

polyad decreases with increasing I and follows a power law of order (n - 1) in the

small parameter (/X). A glance at the classical treatment indicates that the limit
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X > ( corresponds to the local mode limit K < 1.

The eigenstate closest in energy to these pairs of states is given by the symmetric

eigenstate with the next higher counting index, i.e. I,, +, 1 >. For the energy

difference AA+ 1 = Al,+ - A' + between the lowest lying symmetric state i,, +, 0 >

and following symmetric state Il, +, 1 > within the same polyad we obtain to O(()

AC,O,1 = 4X, (2.104)

Ax4 = 8X - 2(. (2.105)

We conclude that in the weak coupling limit

* the two lowest lying eigenstates states form an almost degenerate pair

* and the separation between pairs of almost degenerate eigenstates is at least

one order of magnitude larger in energy than the splitting of the degenerate

pairs.

High excitation

We will now investigate under what conditions on X and ( this tendency of the two

lowest lying states to form almost degenerate pairs of eigenstates is present for large

I. In this limit the exact results are not accessible.

A first glance at the determinants DI," in eqn.(2.91) shows that standard per-

turbation theory is not a good way to obtain an approximate result for the energy

splitting of the two lowest lying states. The reason is that we have to compare the

lowest lying eigenvalues and the corresponding eigenstates of two matrices that are

tridiagonal and differ only in the lower right matrix element. For large I we expect

the lowest lying eigenvalues to be in the vicinity of the largest diagonal element, i.e.

the upper right matrix element which is identical for both matrices. In order to get

a difference in the two necessary perturbative expansions we have to carry out the

perturbative series to (n - 1)/2 order since the matrices are tridiagonal and differ

only by the lower right matrix element. This procedure becomes impractical with
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increasing I.

We follow a different strategy that takes advantage of the fact that the Hamiltonian

matrices are tridiagonal. The method we use is a continued fraction expansion of the

secular determinant [20, 21] that appears to have been forgotten as an analytical

method soon after its implementation on computers. The method is straightforward

yet tedious to apply.

To begin, we recursively obtain the ratio of two consecutive components of an

eigenvector as a function of the next ratio of two consecutive components, i.e.

cl - ~xl(n-I + 21)2 (2.106)
-Cl X(nA -(21)2--C(n- 1)(1 + 1 )CIl 

From now on, without loss of generality, let us consider even I. For (/XI < 1 we

obtain after some algebra an estimate for A'+ as

"A,0 - Xn2 + 4X n (2.107)

which in the limit stated above equals the energy of the classical stationary trajectories

in the local mode limit E3,4 in eqn. (2.63) up to the contribution by the principal action

I. Using this approximate result in eqn.(2.106) we can obtain an estimate for the

ratio of the first component co and last component cn- of the eigenstates Io', ±, 0 >
2

to A±C,O

C~r (I -1 2 (2.108)
co 4X V(n+ 1)!

We see, that in the stated limit successive components of the eigenstates I, , , 0 >

decrease by an order of magnitude each. It is therefore possible to explicitly evaluate

the difference in the expectation of the Hamiltonian for the two lowest lying eigen-

states iz,, ±, 0 >. Since up to the component C(n-3)/2 the contributions are identical

it can be justified to consider for the difference in the eigenvalues contributions from

the differing components Cn-l only. To do so, let us assume that IT,, ±, 0 > can be

normalized and set co to 0(1). Together with eqn.(2.91) we can then approximate
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zAx by

C - (c n-- - C-l n-l) = 2(( n-l (2.109)
2 2 ' 2 2 

4X (n

As a preliminary check, let us evaluate this formula for even small values of I and

compare to the results in the limit of small I and C << X in eqn.(2.103).

AA2 o = 2(, (2.110)

\Aco = ', (2.111)
X

"A c,± 3= 3 (2.112)
16X

We see that there is surprisingly good agreement to the splittings of eqn.(2.103). This

might tell us that it is the ratio (/XI used to obtain eqn.(2.109), rather than x/( or

1/1 alone, that determines the order of magnitude of the splitting.

On second thought the result is not surprising since we had to expect exactly this

from the crucial role of n = (/2XI for the classical analysis in the previous chapters.

2.4.3 Recovery of the classical bifurcation parameter

The trajectories generated by the classical correspondent of the quantum mechanical

Hamiltonian HDD show parametric instability. In the following we deduce the stability

properties of the classical trajectories from the properties of the quantum mechanical

eigenstates and thus derive the classical bifurcation parameter n from the quantum

mechanical Darling-Dennison Hamiltonian. In the classical analysis the bifurcation

parameter n = / 2 XI specifies the normal to local state transition. In the quantum

mechanical model, this parameter arises once more, but the value of n at which the

transition occurs is shifted.

To show the analogy, we use the fact that if there are any states of local character

within the block labelled by I, then the two states iT,, ±, 0 > of lowest energy AI '±

are necessarily among them. Thus it is sufficient to identify the conditions where the

ITi, ±, 0 > undergo the normal to local character state transition.

97



Let us therefore further examine the ratio (2.108). We define

- e. (2.113)
2

Using Stirling's formula and the definition of k we can approximate eqn.(2.108) as

1
Cn-1 ~ n- n 24e

c2 - (R) 2 5 1(2.114)
c 0 ~ (n+ 1)4 74

For the ratio of the projections of the eigenstates lowest in energy I1I, ±, 0 > onto

the state of largest local character eI, 0, i >, i.e. co, and onto the state of largest

normal character IgI, n1, ± >, i.e. cn-, we can show under further neglect of non
2

exponential factors in eqn. (2.114,2.109)

Cn-1 1
In ) -- In (aR), (2.115)

Co 2

and for the difference in energy

ln( 2 )(n- )ln(l l). (2.116)

In the classical limit, I > 1, we obtain

* for I 1 > 1,

lim < I,, 01, 5, 0, >= 0. (2.117)
I-+oo

Thus for large I and IkI > 1 the eigenstates i, ±, 0 > have a vanishing local

character component and are thus of normal character. They become normal

modes in the classical limit. The energy difference between these eigenstates

increases with I according to eqn.(2.109).

* For IER < 1 we get

n-1
lim < t1, ±, 0 , ± >= 0. (2.118)

I-+oo 2
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For large I and I < 1 the eigenstates Ii, +, 0 > have a vanishing normal

character component and are thus of local character. They become truly local

in the classical limit. The energy difference between these eigenstates decreases

with I according to eqn.(2.116).

* The transition between the limiting forms occurs at I11 = 1 which establishes

the analogy to the classical bifurcation at ind = 1.

Note that relates coupling and anharmonicity similar to the local mode indicator

used in numerical studies by Child and Lawton [10]. At kiR = 1 two qualitative global

changes occur in the quantum system that are ultimately responsible for the change

in the stability properties:

* The lowest lying eigenstates within a polyad change from normal to local char-

acter or vice versa.

· The first near degeneracy of eigenstates at lowest energy A0 appears or disap-

pears.

Note that the quantum mechanical normal to local mode transition occurs at 1RI = 1,

which is later than the classical transition at I = (lIl = e/2). This may be

interpreted, in terms of the classical dynamical potential V, using semiclassical ideas:

the change from the single well to the double well form of V is not sufficient to lead

to a localized quantum state. The barrier must be high enough so that at least one

bound state lies at an energy below the barrier maximum.

Before we come to the perturbation analysis of the system, let us estimate the

minimal energy difference min(AA±,l) between the lowest lying antisymmetric state

I@, -, 0 > and the next higher symmetric state II, +, 1 > for large I. Using Ger-

schgorin's theorems from linear algebra we obtain for the difference of min(A~;) and

max(AC,)

min(Alo),1) = 4X(n - 1) - [/n+ 2(n - 1)] 4X(n - 1). (2.119)

99



Now the stage is set for more firmly establishing the connection between the

stability of the classical stationary states and the eigenstates of the Darling-Dennison

Hamiltonian. We are encouraged enough by the amazing recovery of the bifurcation

parameter n of the classical problem in the slightly different form of the quantum

mechanical problem.

2.4.4 Perturbative analysis and stability

For the symmetric Darling-Dennison Hamiltonian given in eqn.(2.15), the quantum

eigenstates will always be delocalized in order to satisfy the symmetry condition,

i.e. < z >= 0. Note however, that in general < 2 > takes large values for states

of local character and small values for states of normal character. The standard

deviation o = /< I2 > - < I >2 = < I2 > indicates the degree of local or normal

character. But still, it does not give insight as to what the physical implications of

this distinction are.

However, if a small symmetry breaking perturbation is added to the Hamiltonian,

pairs of symmetrized states of local character and different parity will mix and become

local while those of normal character will remain normal. In the following we will

investigate the stability properties of eigenstates of fDD. The question of stability is

decided by determining the magnitude of a symmetry breaking perturbation neces-

sary to cause localization to a specified extent. We will show that eigenstates of local

character become unstable against localization to a specified extent at smaller mag-

nitudes of a symmetry breaking perturbation than occurs for eigenstates of normal

character. A convenient choice for the perturbation is given by an energy mismatch

between the two local oscillators. We will quantify the effect of the perturbations by

determining the induced difference in vibrational excitation and the susceptibility of

individual states by dependence of the induced difference in exitation on the energy

mismatch. Other measures, such as the loss of initial eigenstate character, provide

similar information and may be useful for different systems.

Before we get down to the details, let us begin with a brief aside.
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Numerically unstable eigenvalue problems

It has been observed in the 1950's in a series of numerical investigations by Wilkinson

[22], that the eigenvalue problem for matrices of same type as C is well posed, whereas

the eigenvector problem is ill posed.

Miniscule deviations in the lowest lying approximate eigenvalues used to calculate

the corresponding eigenvector can lead to dramatically differing results. Sometimes

the erroneous eigenvector can be orthogonal to the actual eigenvector. For the higher

lying eigenvalues the effect on the corresponding eigenvector is less dramatic.

Wilkinson identified two causes to be responsible which we discuss in some detail

in Appendix B.

* First, eigenvalues appear in almost degenerate pairs, the splittings being par-

ticularly small for the lower lying eigenvalues.

* Second, the most dramatically responding eigenvectors have a large projection

onto the basis states that are associated with diagonal element of C closest to

the eigenvalue. For the lowest lying eigenvalues those basis states are the local

character states.

The second cause is necessary and sufficient for the effect. It is completely inde-

pendent of the first, that only amplifies the effect, and is present in even well posed

eigenvalue problems.

This numerical instability of the computational problem gives us a hint that the

physical system might be sensitive as well to small perturbations, especially for the

lowest states within a polyad.

Before we close the aside, note however, that the condition number (see Appendix

B), used to to quantify the sensitivity of an inversion problem to errors in the matrix

elements, does not provide a satisfactory tool to identify instability in our problem.

For matrices of the type C it is calculated to take the smallest possible value and

therefore indicates that the problem is well conditioned.
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Susceptibility and order parameter

Let us begin with the formal treatment of instability of the symmetrized eigenstates

toward localization. Since we want to define stability towards any perturbation, let

us assume the most effective perturbation that breaks the symmetry of the system. For

that purpose let us introduce an energy mismatch between the two local oscillators.

We will quantify the effect of that perturbation by determining the induced difference

in vibrational excitation. The perturbed Hamiltonian, including an energy mismatch

of magnitude 2e, takes the form

HDD,P = HDD + eIZ. (2.120)

Let us denote the eigenstates to HDD,P by IT,, +, L >p. Note that these states are no

longer symmetric in the strict sense. The induced difference between vibrational exci-

tations of the two local oscillators is given by the expectation of the order parameter

I, for the perturbed state i, ±, L >p, which we will denote by

Iz,±,,L(e) =< IZ >p . (2.121)

Let us define the susceptibility of the unperturbed eigenstates ,, +, L > to the

symmetry breaking perturbation I, by

YI,,L = [ Oe ] = o (2.122)

The susceptibilities and order parameters are easily accessible by numerical calcu-

lation. An analytical expression for the susceptibilities can be obtained from time

independent perturbation theory to first order in e.

The shift in energy ZAI,+,L is calculated to vanish according to

AI,±,L = e < xi, +, LjIIl~'I, ±, L >= 0. (2.123)
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The perturbed eigenstates I11, ±, L >p are

I >P=J4 >, KiI, L:, ±, L > + T, K>. (2.124)
K CL C,K

The expectation of the order parameter Iz,I,±,L(e) is given by

Iz,,,L(E) = I < I , KII , I,+,L > (2.125)
K C,L CK-

Finally, the susceptibility 7YI,±,L of the eigenstate II,, ±, L > to the symmetry break-

ing perturbation Iz turns out to be

'YI,,L = Zl< PI T, KII ,,L > (2.126)
K C,L C,K

We see that the susceptibility of an eigenstate contains both ingredients inferred by

Wilkinson: the energetic distance to the other eigenstates and the magnitude of the

components along basis states of large local character I(I, 0, ± >- IT, ±, 0 >.

Low excitation The following example will give us an idea how to interpret the

susceptibilities. We evaluate the susceptibility for the first excited state 1112, +, 0 >

1

/2,+,o= (2.127)

We see that the susceptibility is given by the period of transfer for an initially localized

excitation of the unperturbed system between the local oscillators. Equivalently, we

can say that the susceptibility is proportional to the time an initially normal state of

the perturbed system needs to evolve to a local state. This interpretation provides a

nice analogy to the classical picture of stability: A local character excitation of the

unperturbed system appears to become localized under perturbation if observed for

times short compared to the period of transfer.

Note, that with the interpretation of the susceptibilities as periods of transfer the

interpretation of the inverse susceptibilities as the perturbation necessary to induce
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localization of the associated eigenstate follows immediately. These statements are

further refined in the following.

High excitation Let us now establish the connection between the susceptibilities

'I,±,L and the notion of local and normal character from the semiclassical analysis.

We have to derive an expression for 'I,±,L in the limit of large I. Let us make a two

state approximation on the basis of the estimates eqn.(2.109,2.119). Note that this

approximation becomes increasingly better with increasing I and decreasing n.

For the lowest lying symmetric state I, +, 0 >, the susceptibility can then be

estimated from eqn.(2.126) as

n!
(2.128)

or, equivalently
n 2

?i,+,0 AAio i. i(2.129)

This result is satisfactory since it is a caricature of the susceptibility: the ratio of

the square of the largest possible occupational difference and the smallest possible

energetic splitting.

Let us investigate the limit of high excitation. Together with eqn.(2.109) we see,

that,

* for I > 1, lis > 1 the susceptibility 7Y,+,o - 0, whereas

* for I > 1, Isk < 1 the susceptibility 7Y,+,o -+ oo.

This implies that the strength of the perturbation becomes irrelevant for the question

of stability in the classical limit, which is well known from classical dynamics. Note

the proportionality factor of n2 which we missed in the interpretations in the limit of

low excitations.

In order to compare this result with the classical analysis, let us calculate the

susceptibility of a state I iT, +, 0 > whose associated classical trajectory may undergo
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a bifurcation. We insert the definition of n, into eqn.(2.12 8) and set Inj = 1 to obtain

crit = (2.130)

2 exp(I)'

Since all states of local character have larger and all states of normal character smaller

susceptibilities than yrit(I) we denote it the critical susceptibility.

For states of normal character the two state approximation is not applicable. But

we can qualitatively predict that the susceptibilities for normal character states should

be low for the following reasons:

* for each normal state there are at least two states that mix in under the per-

turbation by approximately the same amount. These states contribute with

opposite signs to the susceptibility. Therefore the largest change in the proba-

bility amplitude of vibrational excitation will be around small values of IZ,I,i,L.

* The magnitude of change decreases with increasing energetic distance to the

neighboring states and is therefore smaller for the wide split normal character

states than for the almost degenerate states of local character.

For these two reasons, the susceptibility will be lower for states of normal character

than for states of local character.

In the following sections we evaluate the susceptibility and the expectation of the

order parameter for H 2 0, 03, SO 2, C2 H2 and C 2D 2 and compare the result to the

semiclassical phase diagram.

Evaluation of susceptibilities from experimental data

Let us begin with the susceptibilities for the eigenstates of H 2 0 up to I = 10 as given

by eqn.(2.126). The results are displayed in Figure 2-22 and organized as follows. We

plot the decadic logarithm of the absolute values of the susceptibility versus I. We

distinguish between symmetric and antisymmetric eigenstates indicated as circles and

crosses respectively. Furthermore, we compare the susceptibilities of the eigenstates

II, +, 0 > to the estimates obtained in eqn.(2.128) which are indicated as stars. The

105



critical susceptibility is indicated as a dashed line.

The susceptibilities of H20 change dramatically upon excitation. We delineate

three trends:

* the individual susceptibilities increase with increasing energy and I;

* the number of states with susceptibilities higher than the critical susceptibilities

increases;

* the eigenstates become unstable in pairs.

The susceptibility of all local character states is at least two orders of magnitude

larger than that of a normal character state. The interpretation in terms of the

semiclassical picture is straightforward.

Furthermore, the classical normal to local character transition is completely re-

covered quantum mechanically as can be seen from a comparison with the phase

diagrams for the classical trajectories in Figure 2-5. Note however that without the

knowledge of the critical susceptibility we could not draw a strict line between the

local and normal character states. This is not a flaw of the treatment but its asset.

Due to tunneling the quantum mechanical normal to local state transition cannot

be as sharp as the classical normal to local mode transition, although we can unam-

biguously label each quantum state by the isoenergetic classical trajectories. This

suggests that the proper way of thinking about the properties of the eigenstates to

the Darling-Dennison Hamiltonian is in terms of the susceptibilities that constitute

a physical property and not in terms of the classical normal/local mode distinction

that is only a label.

In the last section we have interpreted the inverse susceptibilities as the magnitude

of the perturbation necessary to induce localization of the associated state. For H 20

at I = 10 this means, that the perturbation necessary to localize the antisymmetric

normal character state has to be 14 orders of magnitudes larger than the one that

localizes the states of highest susceptibility. In absolute terms the perturbation nec-

essary to localize the normal character state is two orders of magnitude larger than

the coupling constant ( which is of 0(102)cm -1 .
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Figure 2-22: Susceptibility diagram for H 20. The susceptibilities of symmetric eigen-
states are indicated as circles (o), of antisymmetric eigenstates as crosses (x) and the
estimated susceptibilities as stars (*). The critical susceptibilities are represented by
the dashed line (- -).
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The estimated susceptibilities are in excellent agreement with the calculated sus-

ceptibilities. From I = 6 the deviation from the calculated values are less than 1 %.

This can be understood from the fact that the two state approximation is very good

for H 2 0 since < 1.

As well in excellent agreement is the distinction of normal and local character

states in the phase diagrams from the classical analysis. Note however, that whereas

the pairing of states in the phase diagram can be solely explained from the near

degeneracies in the eigenvalue spectrum, the pairing of the susceptibilities is caused

by a combination of that near degeneracy and of the strong bias of the eigenstates

along certain local character components. In the phase diagram the information

concerning this bias is contained in the location of the focus of the motion, i.e. the

point of intersection of the spectral parabolae with the abscissa.

Figure 2-23, Figure 2-24 show the susceptibilities for 03, S0 2. Whereas 03 dis-

plays high susceptibilities even for low values of I, S02 hardly shows significant

susceptibilities up to I = 10. Note, that the estimate still gives the correct trend for

large I. Yet it is not quite accurate, since the two state approximation is not good

up to I = 10 since > 1. The agreement with the phase diagrams I = 6 is excellent.

Isotope effect Figure 2-25, Figure 2-26 compare the susceptibilities for C 2H 2 and

C 2D 2. As we have already noticed earlier, there are dramatic quantitative and qual-

itative changes upon isotopic substitution of the hydrogen atoms in C 2H 2 . Not only

the frequencies of the modes, but also the stability against localization deviate dra-

matically. They differ up to four orders of magnitude for I = 6.

Evaluation of order parameters from experimental data

In order to further illustrate the relevance of the susceptibility, let us evaluate the

change in the expectation of the order parameter upon variation of the strength of the

perturbation e over several orders of magnitude. In order to facilitate the collection of

observations, let us anticipate here the notion of a bifurcation, which we will formally

introduce in the following section. For reasons to become obvious then, we will call
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Figure 2-24: Susceptibility diagram for S0 2.
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Figure 2-25: Isotope effect: Susceptibility diagram for C 2H 2.
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Figure 2-26: Isotope effect: Susceptibility diagram for C 2 D2.
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Order parameter diagrams for H 2 0 from I = 2 to I = 5.

the value of e for which IZ,I,±,L(e) has an infection point a point of bifurcation of the

associated eigenstate.

Figure 2-27, Figure 2-28 and Figure 2-29 show the results of the exact calculation

for H 20 from I = 2 to I = 10, where we plot IZ,I,±,L versus the decadic logarithm of

e in wavenumbers.

There are four regimes to distinguish. We begin with the limiting cases.

* At perturbations 0(10-12) all states have order parameters close to zero.
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Figure 2-28: Order parameter diagrams for H 2 0 from I = 6 to I = 9.
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Figure 2-29: Order parameter diagram for H 2 0, I

I1I, ±, 1 >p are assigned.

= 10. The corresponding states
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* At perturbations 0(104 ) the order parameters range from I- 1 to 1 - I in steps

of two.

* At small intermediate values of log(e) there is a cascade of bifurcations, similar

to a corn ear. The bifurcations occur in pairs. They begin with the pair

IIl, +, 0 > for which I,i,±, is taking the maximum values +(I - 1), followed

by IT,, +, 1 > yielding +(I - 3), and so on.

* At high intermediate values of log(e) several of the order parameters cross,

mostly in the positive region. These crossings can be followed in detail. Figure 2-

30 shows an example.

Most of the results can be directly deduced from the properties of the suscepti-

bility plot, once the connection is established. According to the interpretation of the

susceptibility being approximately the inverse of the perturbation necessary to form

the associated localized eigenstate, the plot of the negative decadic logarithms of the

susceptibilities versus I provides the approximate bifurcation diagram. By inspection

we see that the agreement with the points of bifurcation in the order parameter plot

is reasonable good. Better agreement can be achieved by considering the factor of n2

from the estimate in eqn.(2.129).

As an example, take the bifurcation of the state IIio, +, 0 > at e - 10-8cm- 1.

From the order parameter diagram we read Ylo,+,o - 10 10cm. Then, according to the

estimate in eqn.(2.129) the perturbation necessary to localize the excitation equals

92/1010 = 10-8 cm- 1 which is the correct answer.

Figure 2-31 shows the order parameter for 03 and SO2 for I = 6. Whereas for

03 there is a clear separation between the bifurcation points, for S02 the transition

to the final values of the order parameter occurs over a broad range of almost

simultaneously and without crossings. Figure reffig:14(m,n) shows the results for

C 2H2 and C 2D 2.
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Figure 2-31: Order parameter diagrams for 03, S02, I = 6.

C2H2 , I = 6 C2 D2, I = 6

A

V

log (e) log (e)

Figure 2-32: Isotope effect: order parameter diagrams for C2H 2, C 2D 2 , I = 6.
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Crossing of order parameters

The crossing of order parameters can not be accounted for by the susceptibilities in

the present definition.

Crossings occur when two perturbed eigenstates simultaneously undergo a bifur-

cation. As a result, they interchange their degree of locality.

We have investigated the crossing thoroughly and only report the results here. The

crossing occurs at values of e where two eigenvalues reach their minimum energetic

distance. Note, that the eigenvalues repel and cannot cross.

Let us picture the effect of the slowly varying between the given limits as a

rotation of the orthogonal system of eigenstates to HDD,P onto the coordinate system

spanned by the eigenstates to i, with increasing magnitude of e. Technically there are

several possible ways to carry out successive rotations such that the two coordinate

systems finally align. Yet in the studied case this path is set by the relative stabilities

of the eigenstates for given . The more unstable eigenstates of local character are

rotated first at small e until at larger e they are almost aligned with some eigenstates

to Iz. Then the more stable eigenstates of normal character rotate towards their final

positions. However, this rotation makes it necessary for the almost aligned states to

interchange their already aligned positions.

These crossings have physical relevance. In a range of , where they occur, a

slight fluctuation in its value can lead to an interchange of the degree of locality

of two or more eigenstates. Thus we expect a qualitative change in the dynamics

of a state with nonvanishing components along one or both of these states. The

order parameter can change significantly under a small variation of e. This leads

to a sensibility of the dynamics of one and the same state to small changes in the

Hamiltonian parameter e. The region of repelling eigenvalues coincides with the region

of crossing order parameters. A perturbation in form of a time dependent field whose

amplitude oscillates around one the values of e where a crossing takes place would

yield chaotic dynamics. Note that the Darling-Dennison Hamiltonian in a periodic

driving field, e.g. for the periodically kicked Darling-Dennison system, is identical to
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the kicked top, the epitome of quantum chaotic behavior.

2.4.5 Preliminary review of the quantum mechanical re-

sults and conclusions

The recovery of the classical bifurcation parameter 'e in the modified form im-

plies that the classification of spectral states into states of normal and local charac-

ter according to the properties of the associated classical trajectories is legitimate.

The physical significance of this local/normal distinction can be understood by ex-

tending the concept of a classical bifurcation using semiclassical ideas. The same

semiclassical picture hints at the intrinsic property of instability of eigenstates of the

Darling-Dennison Hamiltonian under symmetry breaking perturbations. In the clas-

sical system, describes the global stability properties of the trajectories, while in

the quantum mechanical system describes the global stability properties of eigen-

states. For each individual state the symptoms of instability can be quantified by the

associated order parameter under perturbation, the extent of instability by the asso-

ciated susceptibility. The susceptibilities are genuine properties of the unperturbed

system. We conclude that the classical bifurcation can be understood as the classical

correspondent of the instability of the quantum mechanical eigenstates.

The instability of eigenstates towards symmetry breaking perturbations is quite

general and can be shown to be present in other classes of molecules, e.g. in ABn

or CHn type molecules, that are also known to undergo the normal to local mode

transition.

The breaking of the molecular symmetry can lead to significant changes in the

physical properties. It should be possible to detect effects of dynamical symmetry

breaking in condensed systems, such as for H 20 molecules in a solid matrix, where

the duration and magnitude of perturbations in form of fluctuations, disorder or

external stress may be sufficient. The distribution over localized eigenstates for given

coupling between matrix and molecule can be determined on the basis of random

matrix theory using a recently developed statistical stability criterion that will be
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discussed elsewhere. Similar phenomena in molecular aggregates have been reported

in other systems of coupled degrees of freedom such as Jahn-Teller systems, where

the molecular distortion can be induced by mechanical stress [23].

The situation in the gas phase is delicate.

For weakly perturbed molecules in the gas phase we expect the effects of dynam-

ical symmetry breaking to be insignificant since the transition rate into the states

of broken symmetry decreases with increasing susceptibility. This can be seen from

standard time dependent perturbation theory. Localization in the presence of a con-

stant perturbation is significant only for times t .1/AE z' = yi,+,o/n 2 according to

eqn.(2.129). Although a molecule could detect miniscule constant symmetry breaking

perturbations, such as inhomogeneity in fields, by complete localization, the timescale

involved would be experimentally inaccessible.

Nonetheless, a strong symmetry breaking perturbation, such as a large field in-

homogeneity, might cause significant changes in the moment of inertia and the spin

statistics of states with high susceptibility. Therefore the rotational structure of the

vibrational transition changes. Similarly, in molecular collisions, interaction energies

are frequently large enough, typically O(cm-'), to allow transfer during the collision

duration for the nearly degenerate susceptible states. The facile redistribution of

vibrational energy during a collision should enhance the transfer rates of the highly

susceptible local character levels compared to the normal character levels. To sum-

marize the situation, a trade off between susceptibility, time of transfer and strength

of applied perturbation could allow the observation of dynamical symmetry breaking

in the gas phase.

2.4.6 A stability criterion for eigenstates

Three problems associated with the procedure in the previous sections remain:

* First, the choice of a specific symmetry breaking perturbation appears to be

rather arbitrary and artificial. Since stability must prevail under any possible

perturbation, the strategy to eliminate arbitrariness is to choose the most ef-
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fective case. This requires that a chosen perturbation be shown most effective,

even in cases where a particular choice seems intuitively clear. For example,

in the water molecule, the most effective localizing perturbation is achieved by

directly removing the symmetry through an imposed energy mismatch on the

two local oscillators. Still, that most effective perturbation may be artificial in

the sense that it is forbidden under the particular experimental conditions.

* Second, for more complex molecules the choice of the most effective perturbation

may not be obvious, especially if there is a variety of symmetry restrictions or

conservation laws for the states and processes.

* Third, even in unsymmetric systems one may observe susceptible states. This

can easily be seen if one views the slightly perturbed symmetric system as the

unsymmetric original to be perturbed. The most effective perturbation there

will be the one that restores symmetry.

This leads directly to the issue of the stability of the eigenstates of the perturbed

system whose susceptibilities in turn must be evaluated. If, for example, at the

classical normal to local mode transition the normal modes become unstable when

simultaneously the local modes become stable, does this imply that the symmetric

eigenstates become unstable and simultaneously the local eigenstates become stable

against any perturbation? In order to answer that question we are forced to repeat

the procedure of adding a small arbitrary specific perturbation and evaluating the

response Figure 2-33.

The response is going to depend on the specific choice of perturbation. In turn,

it can be shown that the perturbed states are as susceptible to a symmetry restoring

perturbation as the unperturbed states are to a symmetry breaking perturbation of

the same magnitude. On the other hand, the perturbed states are insusceptible to

the identical perturbation that produced them. Although we can define stability for

the unperturbed states by the absence of instability towards any symmetry breaking

perturbation we are confronted with the need to specify exactly the perturbation

against which the perturbed state is unstable. The reason is that there is exactly
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eter for one of those eigenstates under successive randomly chosen perturbations for
the same magnitude of perturbation. For a large number of successive perturbations
one can obtain by a simple counting scheme the distribution of the order parameters.
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one type of perturbation that restores symmetry whereas there are many more that

break symmetry originally. Therefore, though tempting, we cannot call a perturbed

state stable when the unperturbed state becomes unstable in the same above defined

sense. What is the proper way to define stability for quantum states? The following

change in the point of view promises a solution. Instead of successively perturbing a

particular state several times, we look for the ensemble of perturbations that generates

the same individual results when directly applied to the unperturbed state. Thus we

neglect the history of a particular perturbed state and obtain an ensemble of directly

perturbed states that does not change under further perturbation.

In this section we propose a solution to the three problems by proceeding as

follows. Beginning with a brief introduction to the eigenvalue problem of the Darling-

Dennison Hamiltonian for triatomic AB2 molecules of symmetry C 2v, we formally

develop a local stability criterion for the normal to local character transition in those

molecules on the basis of random matrix theory. According to the discussion above

it seems cumbersome to define stability of a single state in terms of an individual

response to a specific perturbation of given magnitude. In contrast, we define stability

of an ensemble of eigenstates in terms of the statistics of its response to an ensemble

of random perturbations of given magnitude. This definition is born from the physical

picture of an ensemble of molecules interacting with an inhomogeneous environment.

Then we carry out the stability analysis explicitly for triatomic molecules AB2 of

symmetry C2v and show that in particular for the water molecule the individual

response to the most effective specific perturbation almost coincides with the most

probable response to an ensemble of random perturbations for the same magnitude

of perturbation. For more complex molecules this suggests the use of an ensemble

of random perturbations in order to find a very effective perturbation for detecting

susceptible states. On the basis of the analytical and numerical results presented in

this and previous sections we propose a generalization of the local stability criterion

to other classes of symmetric and non-symmetric molecules. Stability properties are

assigned to the ensemble of perturbed eigenstates that is invariant under an ensemble

of random perturbations.
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Stability under randomly occurring perturbations

We now turn to the construction of the local stability criterion for an ensemble of

eigenstates to HDD under an ensemble of random perturbations. Instead of the per-

turbation Iz, we now impose an arbitrary perturbation to HDD in the form of a

random operator G, which is an element of an ensemble of random operators to be

determined in the following. In analogy to eqn.(2.120) we write for the perturbed

Darling-Dennison Hamiltonian

fHDD,P = [HDD + EG. (2.131)

Let us choose as a basis for the representation of G the basis of eigenstates I', +, L >

of the unperturbed Hamiltonian HtDD. This defines the square random matrix G =

{< I -, +', L' @ Ii, ±, L >}. Let us assume the matrix elements of G to be indepen-

dent identically distributed random variables subject to certain additional restrictions.

These restrictions may arise from conservation laws or symmetry requirements.

The specific perturbation Iz is contained in the ensemble of random operators C.

Since we want to use the same magnitude e for both the most effective and any other

random perturbation, let us normalize G such that the largest matrix element is of

magnitude I - 1 which equals the magnitude of the largest matrix element in I,I.

We are interested in the case of intermediate I and small << , i.e. small

perturbations at intermediate levels of excitation. In this region of parameters we

do not expect significant changes in the spectrum due to G. However, we do expect

significant changes in the locality properties of the eigenstates.

Let us impose the following additional restrictions on the ensemble of random

matrices G. First, let us make the approximation that I is conserved, i.e. due to

the large energy differences between different polyads for intermediate I only states

within the same polyad are mixed appreciably by the weak perturbation. Therefore

we may assume G to be diagonal in blocks GI of size I. Second, let us impose

the condition that the statistical properties of GI are invariant under the similarity

transformation that diagonalizes HDD. Since the blocks HID are real symmetric
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matrices the transformation in question must be orthogonal. Therefore the ensemble

of random matrices G is given by the Gaussian orthogonal ensemble (GOE) known

from nuclear physics [25].

Let us recapitulate the properties of G E GOE so far. The matrix representation

consists of real symmetric blocks of size I with independent identically distributed

matrix elements normalized such that the largest entry is of magnitude I - 1; they

are similar under orthogonal transformations.

Note that the symmetry properties of a particular molecular system or physical

process may cause these restrictions to be modified and that neither the perturba-

tion Iz nor any single other member of the GOE is necessarily invariant under the

orthogonal transformation that diagonalizes HDD.

Numerical evidence

Let us stop for a moment in the formal development in order to establish the con-

nection between the effects of Iz and G on the eigenstates of HDD. Figure 2-34,

Figure 2-35 and Figure 2-36 show the order parameter for H 20 evaluated at 3000

intermediate values of e for randomly generated C from I = 2 to I = 10.

Instead of a continuous function Iz(e) we have to deal now with a distribution

over I at given . Yet, it is easy to see that the regions of high density of points

coincide with the curves Iz(e) calculated from eqn.(2.120). As claimed, they represent

the worst effective case. They embrace regions of lower density of points at smaller Iz

for low values of e. At large values of e they form a distribution concentrated around

I = 0 which is identical to the distribution of order parameters for the GOE. The

bifurcation cascade is also reproduced, whereas the crossing of order parameters can

not be seen.

In popular terms we state that, once the magnitude of the perturbation exceeds

the inverse susceptibility of an eigenstate, it ends up being more or less localized.

We conclude, that it was in fact sufficient to use the perturbation Iz to demonstrate

instability of eigenstates Ii, i, L > to fHDD towards any perturbation. The numerical

calculation also tells us how to understand the stability of the now localized eigenstates
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Figure 2-34: Order parameter diagrams for H 20 under random perturbations from

I = 2 to I = 5. Each dot (.) indicates the response of an eigenstate to a randomly

chosen perturbation of magnitude e.
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chosen perturbation of magnitude e.
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Figure 2-36: Order parameter diagrams for H 2 0 under random perturbations, I = 10.
Each dot (.) indicates the response of an eigenstate to a randomly chosen perturbation
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I't, ±, L >p to HDD,P just by quantifying the more or less of localization.

A stability criterion

Let us therefore return to the formal development.

We retain the definitions for the order parameter in eqn. (2.121) and for the sus-

ceptibility in eqn.(2.122) for the GOE perturbations. We are interested in reasonably

small << (. For this region, only the eigenstates Iz,, ±, 0 >p can be completely

localized to give Iz,I,±,LI = I - 1, and the others only to a certain fraction of I - 1.

Therefore we define the relative degree of locality AI,±,L of a state JI'J, +, L >p by

AI,,L = I- (2L + 1)' (2.132)

1 > A,,L > 0,

which takes the value AI,±,L = 1 for maximum possible localization and AI,±,L = 0

for maximum possible delocalization.

Now we can define a statistical measure of the relative degree of locality under an

ensemble of random perturbations of given magnitude as follows.

Let P,I,,L(Au > A > ) be the probability that, given a GOE perturbation of

magnitude , the eigenstate 1I1, ±, L >p to HDD,P has a relative degree of locality

AI,,L between the lower limit AI,,L = I and the upper limit AI,±,L = u, 1 > u > 1 > 0.

The density function P,I,±,L(AIu > A > 1) is accessible through a simple numerical

scheme. In this way we propose a local stability criterion for the transition from states

of normal character to states of local character.

At given an ensemble of eigenstates ITi,, +, L >p is stable local if PE,I,±,L(A1 >

A > 0.5) > 0.5, stable normal if Pe,I,,L(AI1 > A > 0.5) < 0.5 and neutrally stable if

P,I,±,L(Arll > A > 0.5) = 0.5. A point of bifurcation for an eigenstate is given by

the value of e for which a change in stability occurs.
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Discussion of the stability criterion

The construction given above appears to be rather technical. In the following we

comment on it and explore its physical content.

The origin and action of the random operator G that perturbs the Hamiltonian

HDD can be justified and interpreted in many ways.

* For small (I, e), G may reflect scattering processes between states mediated by

weak coupling of the molecule to an inhomogeneous environment.

* For large (I, e), the interaction between states of the isolated molecule may be so

complex that the eigenvalues of G describe the spectrum to good approximation.

That region is commonly referred to as the chaotic region of the spectrum.

* Similarly, G may also account in some way for the uncertainty in the Hamilto-

nian parameters that are obtained from fits to experimental spectra owing to

perturbations by coupling mechanisms not explicitly included. From this point

of view it seems reasonable to check the stability of any eigenstate calculation

based on an approximate algebraic Hamiltonians.

The resulting ensemble of Hamiltonians fHDD,P generates for each given an en-

semble of eigenstates IT,, i, L >p that is invariant under GOE perturbations. There-

fore it is possible to assign to that ensemble of states properties that do not require

further specification of the applied perturbation. A property of interest for the normal

to local character transition in AB 2 molecules with C2v symmetry is the degree of lo-

cality of a vibrational excitation defined by eqn.(2.132). The distribution of the degree

of locality over the ensemble of perturbed states is obtained by equally weighting the

response to each single G. If more than half of the ensemble of perturbed eigenstates

show localization of vibrational excitation to more than half of the possible degrees,

it is reasonable to call that ensemble stable local. Whereas for the classical corre-

spondent we are certain that the local modes become stable when the normal modes

become unstable, for the underlying quantum system at that particular magnitude of

perturbation we expect only that a particular state be more localized than delocal-
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ized. Note that probabilistic concepts enter the picture in two ways. First, via the

probabilistic interpretation of the quantum mechanical expectation value and second,

via the expectation value over the response to an ensemble of random perturbations

under some probability weight which we chose to be the same for all responses.

Let us establish by example the connection between the effects of the supposedly

most effective perturbation Iz and the random perturbations G on the eigenstates

of HDD. The calculation of the order parameter diagram for perturbation by Iz

is straightforward. For GOE perturbations we implemented the following numerical

scheme for H 2 0, I = 10, -12 < log(e) < 4 to obtain the density function Pe,1O,±,L. The

logarithmic scale of is divided in 49 equal parts and the order parameter evaluated

at each of the 50 points for 104 successively generated random perturbations G 10 E

GOE. The range of the order parameter Iz,10,±,L_ < 9 is divided into 51 equal intervals

and the number of calculated order parameters within each interval counted. The

probabilities are obtained by normalization of those counts by the total number of

counts for given . Using counting statistics as a rule of thumb we estimate the

accuracy of the probabilities to be 1/vx/ = 0.01. For the purpose of compact

representation the results P,10,±,L were combined into the distribution P,lo for all

eigenstates I = 10 and further normalized to one. The result is shown in Figure 2-37.

Let us briefly summarize the main features.

* First of all, we notice for small e the dominant peak in Pe,lo around Iz,1O,±,L = 0.

This peak represents all counts of states for which Iz,10,,L 0.18. Its value

decreases from 1 for the unperturbed ensemble in discrete steps of approxi-

mately 0.2. This corresponds to successive pairs of eigenstates 1i10, ±, 0 >p,

I'10, i, 1 >p, 'I10, ±, 2 >p, ... becoming localized to more than 2% of the

absolute possible value Iz,10,±,L = 9.

* Second, we see that at A10,,L - 1, for each state maxima in P,lo develop.

After a cascade of four decreases in the center peak, the dominant peak and

the outer maxima disappear and a broad distribution with a single maximum

at Iz,TO,±,L = 0 forms. For each state the contour line of maximal height has
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Figure 2-38: Contour of probability distribution Po,lo for H 20 (indicated as thin
lines), superimposed by the order parameters under Iz perturbation (indicated as
thick line). For explanation see text.

a sigmoid shape and indicates the single most probable response to a random

perturbation. This can be more clearly seen form the contour plot in Figure 2-

38. Over a certain region of e the single most probable response changes from

almost no locality to almost total locality, i.e. a qualitative change in the

stability properties occurs. The notion of a bifurcation point has been attached

to the value of Ebif where the expectation of locality is larger than one half.

Figure 2-38 shows the contour plot of PE,lo on which is superimposed the order

parameter plot for the Ih perturbation. We see that the contours of maximal height

almost coincide with the the order parameter for the systematic perturbation after

the bifurcation. From the graph we see that the bifurcation point coincides in good

approximation with the point of inflection of the sigmoid given by the top contour.
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Since the most probable single response lags behind the response to that particular

single systematic perturbation, it is reasonable to call this perturbation more effective

than the average perturbation. Since it causes the maximum possible localization at

larger values of e, we may call it the most effective perturbation.

The surprising aspect is that the most probable response and the largest possible

response are so close. The reason can be outlined as follows. Consider the projection

of any GOE perturbation onto the hz perturbation. Let us assume for the sake of

argument that the magnitude 0 of the projection is uniformly distributed between 0

and 1, i.e. eG = e0Iz + e(1 - 0)G', K 0 < 1. Thus for any random perturbation for

which e > bif we expect the maximum possible response. Under equidistribution

of projections for values of > bif this will be most probable, i.e. almost any

perturbation will be most effective.

This connection between the Iz perturbation and other GOE perturbations is vital

from a practical point of view. For the Iz perturbation we can analytically predict for

which range of Hamiltonian parameters and degree of excitation the molecular system

will become unstable. In addition, as we have pointed out in a previous section,

we can obtain the bifurcation points for individual states in good approximation

by evaluation of the order parameter associated with eqn.(2.120) and in reasonable

approximation from the inverse of the susceptibilities.

Therefore we can analytically predict the onset of instability of a vibrational ex-

citation in the molecular system and of each individual state under an ensemble of

randomly occurring perturbations.

The straightforward application of the normal to local character stability criterion

to the water molecule shows that at a GOE perturbation e - 0(10- 7 ) the eigenstates

t1lo, +, > become unstable normal and the corresponding perturbed eigenstates

filo, +, 0 >p become stable local. This coincides with the prediction from the ana-

lytical results (I = 10) < 1 and n2/-yl 0,±,o O(10-8cm-1).
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Generalization of the stability criterion

In conclusion, let us summarize the answers to the questions posed at the beginning

of this section and generalize the results.

First, the choice of a specific symmetry breaking perturbation to probe the insta-

bility against any symmetry breaking perturbation can be justified from the observa-

tion that the response to the most effective symmetry breaking perturbation almost

coincides with the most probable response under an ensemble of random perturba-

tions. Thus this response under the most effective perturbation is representative for

the behavior under any perturbation.

Conversely, for complex symmetric molecules the instability against symmetry

breaking perturbations can be investigated taking almost any random perturbation.

Such a perturbation is easily found since the most probable response appears to be

close to the maximum possible response.

Third, the statistics of the response of an ensemble of eigenstates to an ensemble

of random perturbations of given magnitude defines their stability. The entire ensem-

ble or a fraction of it is considered stable if in response to the perturbation at most

half of the ensemble within previously specified limits is shifted outside those limits.

The response can be described most simply by the overlap of the unperturbed and

perturbed eigenstates or more sensible measures like order parameters that indicate

reduction in symmetry. The ensemble of random perturbations can be chosen in a

variety of ways. In the simplest case the proper random ensemble is chosen according

to the transformation that diagonalizes the Hamiltonian and applied without further

restrictions. By imposing restrictions such as conservation laws or symmetry require-

ments the perturbation can become of increasing selectivity in the sense that only a

certain fraction of states will respond.

For the class of AB2 molecules with C2v symmetry these conclusions are based on

analytical arguments that allow us to predict the onset of instability of vibrational

excitations and the extent of instability for each individual state in terms of the

Hamiltonian parameters and the degree of excitation.
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Let us emphasize that the magnitudes of perturbation necessary to cause local-

ization are extremely small compared to typical magnitudes of couplings between

local oscillators. Therefore almost any small inhomogeneity in the surroundings of a

molecule that contains an unstable normal excitation will cause localization of that

excitation under reduction of the molecular symmetry.

It is straightforward to apply this procedure to polyatomic molecules of higher

symmetry than C2, or even to molecules without symmetry, where it may reveal

a tendency towards localization beyond what must be expected from the mere ab-

sence of symmetry. The local to normal character stability criterion is then easily

generalized:

At given e, an ensemble of eigenstates is stable local if P,, 1(A1 > A > 0.5) > 0.5,

stable normal if P,,(All A > 0.5) < 0.5 and neutrally stable if P,,q(Ai > A >

0.5) = 0.5. A point of bifurcation for an eigenstate is given by the value of e for which

a change in stability occurs.

P,g contains the statistics of the response of the ensemble of eigenstates > in

terms of the random variable A that indicates the relative degree of locality of the

perturbed eigenstates I >p under the ensemble of random perturbations. P,,1, and

A can be defined for each particular case in analogy to the proposals made above. In

the next section let us outline the practical relevance of our theoretical investigation

for the control of intramolecular dynamics.

2.5 Relevance for control of intramolecular dy-

namics

Some twenty to thirty years ago, the first attempts were made to control molecular

dynamics using lasers as a source of electromagnetic radiation [27]. In general, two

different techniques of control were attempted:

* control by selective coupling of intramolecular degrees of freedom induced by a

strong laser field, based on the idea of rerouting the pathways of energy flow;
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* control by selective excitation of particular degrees of freedom, referred to as

"mode-selective excitation", based on the idea of modifying the initial locus of

excitation.

The degree of control turned out to be very poor for the following reasons. The

effects of strong laser fields on molecules are too complex to be selectively used, and

intramolecular distribution of excitation rapidly destroys initially prepared locality

before significant progress in the reaction has taken place.

In awareness of these obstacles three different new techniques were proposed re-

cently:

* Tannor and Rice put forward a more classically oriented scheme, based on wave

packet dynamics [28]. An initially prepared wave packet is continuously guided

through a particular reactive pathway to the desired product.

* Brumer and Shapiro advocate "coherent control" [29], based on quantum inter-

ference. A particular superposition of final states is targeted by simultaneously

exciting several different reactive pathways under control of the relative phases.

* Nelson proposes a NMR-oriented control scheme based on wave packet dynamics

[30]. The state of the system is directed by a series of excitation-evolution steps

until the targeted product state is reached.

The differences between the three new schemes consist of the particular uses of

the laser source as a tool

* to continuously drag the system through one particular pathway,

* to simultaneously feed several reactive pathways at fixed phase relations and

* to successively drive by "kick and wait" the system towards a particular product.

The advantages of each method are expected to be:

* continuous wave packet control renders selectivity for molecules with many re-

active pathways since the wave packet is kept permanently under control;
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* coherent control allows high selectivity for molecules with few reactive pathways,

where the phase relations are easy to initiate and to maintain;

* pulsed wave packet control yields selectivity by adjustment of the successive

pulses to the immediate response of the molecular dynamics and therefore is

very flexible in applications.

Which of the schemes allows best selectivity and yield, if feasible at all, remains to

be tested experimentally.

Common to all three schemes is the problem of optimal control, investigated early

on by Rabitz [31]. Optimal control takes into account not only the physical properties

of the reactive system but also technical constraints, such as available laser power,

time resolution, wave lenghts, ... and constraints set by the particular scheme, such

as phase, amplitude and delay parameters of the control field.

The optimal control procedure involves three steps. First, an immediate objective

is set, usually "maximum yield" or "maximum yield and selectivity". Second, the

constraints on the field are chosen and included into the immediate objective, now

called the total objective. Finally, the parameters that optimize the total objective

are obtained. The resulting field allows control closest to the immediate objective and

is therefore called the optimal field. The following conceptual and practical problems

are associated with this procedure.

The conceptual difficulty is that the complex numerical control process strips the

scheme from insight and intuition. Therefore it appears to be difficult to actually learn

from the results and consequently to improve the schemes themselves on a conceptual

level. In addition, it may be difficult to detect occurring errors.

The practical problem is that as straightforward as this procedure seems, it is

as difficult to implement. Mainly, the reason is that the optimization of the total

objective typically involves non linear functionals, dependent on the particular func-

tional form of the chosen field. Due to the non linearity the solution will in general

not be unique. In addition, one has to expect an extraordinary sensitivity to both

experimental and theoretical systematic and random errors. To be specific:

139



* the exact form of the system Hamiltonian is usually not known, in particular,

the intramolecular couplings at high energies and the couplings to the field;

* the experimental setup allows control over the field only up to a certain accuracy,

limited by practical restrictions, such as fluctuations of phase, amplitude and

time delays and inherent restrictions, such as the time frequency uncertainty

relation.

These problems are common to all three proposed schemes which therefore can be

put reliably to work only by gaining far reaching insight and control over the effects

of these uncertainties.

The susceptibility to almost any symmetry breaking perturbation may turn out to

be extraordinarily high for some states that are intended for use in a control scheme.

The susceptibility of local character states increases while the susceptibility for normal

character states decreases with increasing excitation. The degree of excitation along

reactive pathways is usually very high so that we have to expect extremely susceptible

and extremely stable states in close energetic vicinity. Almost any inhomogeneity in

the molecular environment, such as the medium of reaction or the controlling laser

field, has a profound effect on the locality properties of highly susceptible states,

whereas the nearby stable states remain essentially unaffected. In awareness of this

problem we have defined a stability criterion for vibrational states of polyatomic

molecules in an inhomogeneous environment.

The ensemble of random perturbations simulates the effect of both mentioned

uncertainties in the optimal control schemes. The randomly perturbed model Hamil-

tonian now includes all possible sorts of constant couplings that were initially omitted

either by accident or on purpose, or constant couplings that are introduced by an

external field. In addition, the random perturbations mimic any uncertainties of

amplitude, phase or frequency in the controlling field.

From our investigation we infer that control of selectivity and yield of a chemical

reaction is limited by the ability to selectively excite states of large degree of locality

which support the energizing or dissociation of one particular bond. Unfortunately,
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it turns out that those states appear as almost degenerate pairs with increasing ex-

citation. This sets a limit in principle on the time and frequency resolution of the

controlling field and an experimental threshold of accuracy that has to be overcome.

We conclude that in the case of static perturbations we already understand the in-

herent limitations of selectivity in single bond excitation.

The results reported in the previous section were obtained for static random per-

turbations. In order to demonstrate the practical relevance for the control of molec-

ular dynamics we have to treat the more general case of time dependent randomly

modulated perturbations. Similar numerical investigations have been carried out by

Rabitz and co-worker, who were the first to look into the problem of stability of the

control process [32]. In the future we wish to address

* the theoretical issue of inherent limitations of control due to fluctuating time

dependent perturbations and

* the strategic issue of design of more intuitively oriented control schemes on the

basis of stability information in terms of susceptibilities.

The susceptibilities hold the key to product selectivity and yield, to technical and

operative efficiency and thus can be used as guidelines for new control schemes up to

the theoretical limitations. The following scenarios may illustrate this.

* There is a trade-off between product selectivity and yield. High selectivity can

be achieved by choosing reactive steps that involve stable states and thus are

easy to control in their changes, yet lead only to a minor extent to localization

of excitation. High yield can be achieved by choosing reactive steps that involve

susceptible states which almost completely localize excitation, yet are difficult

to control in their changes.

* Furthermore, susceptibilities specifically direct technological efforts. For exam-

ple, susceptibilities towards phase fluctuations may be small, yet to frequency

fluctuations may be large. Consequently, larger effort may have to be put in

the development of sources with reliable frequencies.
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* Finally, susceptibilities selectively direct operational efforts. For example, along

a reactive path some states may require closer control than others. They can

be distinguished on the basis of susceptibilities.

On the basis of the expected numerical and analytical results we intend to design

in the future a variety of control schemes that are accessible to intuitive reasoning. We

believe this approach to be intellectually more appealing and practically more promis-

ing than a recently proposed approach based on methods from artificial intelligence

[35].

2.6 Review

In this chapter we have discussed in detail the phenomenon of dynamical symmetry

breaking in the context of the normal to local mode transition of stretching vibra-

tions in AB 2 molecules of C2v symmetry. The model system studied consists of two

identical Morse oscillators that are harmonically coupled and is referred to as the

Darling-Dennison system. In particular, we stated the conditions of localization of

vibrational excitation and determined its dynamical properties. Furthermore we dis-

cussed the purely theoretical aspects of the quantum-classical correspondence and

practical implications for the control of localization of vibrational excitation in ex-

periments. Let us briefly review the main results.

Conditions of localization The symmetry of Darling-Dennison systems allows

no static potential that permits localization of vibrational excitation in a single bond

oscillator. Therefore any localization that occurs must be due to the presence of

a dynamical potential and the C2, symmetry is dynamically broken. A convenient

measure of localization is the time averaged difference in vibrational excitation of the

single oscillators.

The classical Darling-Dennison system permits the description of a vibrational

excitation as a quasiparticle that consists of a harmonic excitation and an induced

distortion of the molecular equilibrium geometry. It moves under the influence of a
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single well or double well potential, referred to as the Duffing potential. The particular

topology and shape of the Duffing potential depends on the molecular species, i.e.

Hamiltonian parameters, the amount of excitation, i.e. the number of vibrational

quanta, and the total energy. The necessary condition for the double well form to

develop is that for a given amount of excitation the maximum possible coupling energy

be smaller than the sum of the maximum possible anharmonic distortion energies of

the single oscillators. At this point a bifurcation occurs. The necessary and sufficient

condition for the normal to local transition to occur is that the kinetic energy of the

quasiparticle vanishes before it reaches the top of the potential well. This becomes

more likely with increasing amounts of excitation. For a given amount of excitation,

the localization tends to be the case for lowest possible energies. This picture applies

to a variety of different molecules. For water, with its weakly coupled and strongly

anharmonic bond oscillators, it indicates local modes already at moderate levels of

excitation. For sulfur dioxide, with its strongly coupled and weakly anharmonic bond

oscillators, it indicates exclusively normal modes up to high levels of excitation. The

process of localization in Darling-Dennison systems cannot occur under conservation

of energy.

The symmetry of the quantum mechanical Darling-Dennison does not permit lo-

calization of excitation in a single oscillator. However, each eigenstate can be asso-

ciated with a corresponding isoenergetic trajectory of the classcial Darling-Dennsion

system and therefore be unambiguously labelled as normal or local character state.

A semiclassical interpretation of the Duffing potential hints at the physical content of

this distinction: local character states are more susceptible to a symmetry breaking

perturbation than normal character states under the same perturbation. The extent

of localization under perturbation is conveniently measured in terms of an order pa-

rameter that specifies the mismatch in vibrational excitation of the single oscillators.

Susceptibilities and order parameters indicate physical properties and make the labels

of normal or local character superfluous.
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Dynamical properties of the excitation The classical dynamical properties of

the excitation can be summarized in the Poincar6 sphere that displays in a single view-

graph several trajectories for a given amount of excitation. In particular, it facilitates

the discussion of the initial condition and phase dependence of the dynamics. Fur-

thermore, it allows a qualitative discussion of the change in dynamics under damping

that yields an enhanced tendency to form local modes. For the quantum mechanical

case the quasiparticle picture can be refined by incorporation of the possibility of

tunneling between the wells of the Duffing potential.

Quantum-classical correspondence The correspondence between the bifurca-

tion in the classical system and the onset of high susceptibilities in the quantum

system is established by the recovery of the classical bifurcation parameter in the

eigenvalue problem. A difference between classical instability and instability in the

quantum system is that there the magnitude of perturbation to produce a signif-

icant effect has to be specified. Since the susceptibility of some eigenstates turns

out to be extremely high under almost any perturbation, a statistical stability cri-

terion for eigenstates under randomly occurring perturbations can be employed. It

is particularly useful in cases where the molecule interacts with an inhomogeneous

environment.

Practical implications The performance of several proposed control schemes for

intramolecular vibrational excitation using laser fields can be investigated by the

application of the statistical stability criterion for eigenstates.

144



Bibliography

[1] M.S. Child and L. Halonen, Adv. Chem. Phys. 57,1 (1984) and references therein.

[2] B. Podolsky, Phys. Rev. 32, 812 (1928).

[3] L.G. Bonner, Phys. Rev. 46,458 (1934).

[4] B.T. Darling and D. M. Dennison, Phys. Rev. 57, 128 (1940).

[5] B.R. Henry and W. Siebrand, J. Chem. Phys. 49,5369 (1968).

[6] E.L. Sibert III, W.P. Reinhardt and J.T. Hynes, J. Chem. Phys. 77,3583 (1982).

[7] E.L. Sibert III, W.P. Reinhardt and J.T. Hynes, J. Chem. Phys. 77,3595 (1982).

[8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

P.R. Stannard, M.L. Elert and W.M. Gelbart, J. Chem. Phys. 74, 6050 (1981).

O.S. Mortensen, B.R. Henry and All Mohamadi, J. Chem. Phys. 75, 4800 (1981).

M.S. Child and R.T. Lawton, Faraday Discuss. Chem. Soc. 71, 273 (1981).

K.K. Lehmann, J. Chem. Phys. 79, 1098 (1983).

M. Kellman, J. Chem. Phys. 83, 3842 (1985).

L. Xiao and M. Kellman, J. Chem. Phys. 90, 6086 (1989).

A.C. Scott, P.S. Lohmdahl, J.C. Eilbeck, Chem. Phys. Lett. 113,29 (1985).

V.I. Arnold, Mathematical Methods of Classical Mechanics, 2nd ed., New York:

Springer (1991).

145



[16] G. Duffing, Erzwungene Schwingungen bei Ver/nderlicher Eigenfrequenz, I.

Vieweg und Sohn (1918).

[17] J. Guckenheimer and P. Holmes, Nonlinear Oscillations, Dynamical Systems,

and Bifurcations of Vector Fields, New York: Springer (1983).

[18] Z. Li, L. Xiao and M. Kellman, J. Chem. Phys. 92, 2251 (1990).

[19] L. D. Landau and E. M. Lifshitz, Mechanics, Course of Theoretical Physics I,

Pergamon Press (1960).

[20] M.F. Manning, Phys. Rev. 48, 161 (1935).

[21] see, for example: P. M. Morse and H. Feshbach, Methods of Theoretical Physics,

McGraw-Hill, Volume I 557ff (1953).

[22] J. H. Wilkinson, The Algebraic Eigenvalue Problem, Claredon Press, Oxford

Science Publications (1965).

[23] R. Englman, The Jahn-Teller Effect in Molecules and Crystals, Wiley, 191ff

(1972).

[24] F. Haake, Quantum signatures of Chaos, Springer (1991).

[25] M.L. Mehta, Ramdom Matrices, rev. and enl. 2nd ed., San Diego: Academic

Press (1991).

[26] for reviews see: A. Ben-Shaul, Y. Haas, K. L. Kompa and R. D. Levine, Lasers

and Chemical Change, Berlin: Springer (1981); J. Manz and C. S. Parmenter,

eds., Mode Selectivity in Unimolecular Reactions, Chem. Phys., 139, 1 (1989);

R. D. Levine, A. H. Zewail and M. A. El-Sayed, eds., Berstein Memorial Issue

on Molecular Dynamics, J. Phys. Chem., 95, 7961 (1991).

[27] for reviews see: A. Zewail and R. Bernstein, Chem. Eng. News, 66, 24 (1988); A.

Bandrauk, ed., Atomic and Molecular Processes with Short Intense Laser Pulses,

New York: Plenum (1988). E. D. Potter, J. L. Herek, S. Pedersen, Q. Liu and

A. H. Zewail, Nature, 355, 66 (1992).

146



[28] D. J. Tannor and S. A. Rice, J. Chem. Phys., 83, 5013 (1985); D. J. Tannor

and S. A. Rice, Adv. Chem. Phys., 70, 441 (1988). See also N. F. Scherer, R. J.

Carlson, A. Matro, M. Du, A. J. Ruggiero, V. Romero-Rochin, J. A. Cina, G.

R. Fleming and S. A. Rice, J. Chem. Phys., 95, 1487 (1991).

[29] P. Brumer and M. Shapiro, Chem. Phys. Lett., 126, 541 (1986); for review see:

P. Brumer and M. Shapiro, Annu. Rev. Phys. Chem., 43, 257 (1992).

[30] A. M. Weiner, D. E. Leaird, G. P. Wiederecht and K. A. Nelson, Science, 247,

1317 (1990); M. M. Wefers and K. A. Nelson, Science, 262, 1381 (1993); for

review see: L. Dhar, J. A. Rogers and K. A. Nelson, Chem. Rev. , 94, 157

(1994).

[31] A. Peirce, M. Dahleh and H. Rabitz, Phys. Rev. A, 37, 4950 (1988); for reviews

see: W. S. Warren, H. Rabitz and M. Dahleh, Science, 259, 1581 (1993); D.

Neuhauser and H. Rabitz, Acc. Chem. Res., 26, 4996 (1993).

[32] P. Gross, D. Neuhauser and H. Rabitz, J. Chem. Phys., 98, 9651 (1993).

[33] B. D. Cahn and C. C. Martens, J. Chem. Phys., 99, 7440 (1993); B. Hartke, A.

E. Janza, W. Karrlein, J. Manz and V. Mohan, J. Chem. Phys., 96, 3569 (1992).

W. Jakubetz, E. Kades and J. Manz, J. Phys. Chem., 97, 12609 (1993).

[34] Y.-J. Yan, R. E. Gillilan, R. M. Whitnell, K. R. Wilson and S. Mukamel, J.

Phys. Chem., 97, 2320 (1993); A. D. Bandrauk, Int. Rev. Phys. Chem., 13, 123

(1994).

[35] P. Gross, D. Neuhauser and H. Rabitz, J. Chem. Phys., 98, 4557 (1993).

147



Chapter 3

Duffing's oscillator and the

nonlinear dimer

3.1 Introduction

The object of our investigation is a Hamiltonian system with coupled classical and

quantum mechanical degrees of freedom. This evergreen is of interest for both the

pure and the applied theorist. On the pure side it has recently received some attention

in connection with questions concerning the foundations of quantum mechanics [1,

2, 3]. On the applied side it has been developed to a standard model to explain a

variety of experimental data ranging from charge transfer dynamics in mixed valence

compounds [4], to neutron scattering in metals [5].

Our study is motivated by the phenomenon of self-trapping. Self-trapping is

the process of localization of an excitation that interacts with itself by a feedback

mechanism through the medium it is moving in. The most prominent examples are

the formation of a polaron from an excess charge in a molecular crystal [6, 7], a solitary

exciton from an electronic excitation in a molecular chain [8, 9, 10], or a local mode

from a vibrational excitation in coupled normal modes [11]. The phenomenon arises

from the interplay of two feedback mechanisms. Consider the polaron. A slow excess

charge polarizes a molecular crystal. The resulting distortion provides a potential well

for that charge to form a bound state which in turn enhances the polarization of its
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immediate environment. The excess charge is self-trapped in the induced distortion.

Charge and distortion can move as a unit, called a polaron. The emphasis on "self"

is made to distinguish the phenomenon of self-trapping from others like radiative

trapping in a defect or relaxation induced trapping due to coupling to a bath. In

general, the self-trapped state does not have to be an eigenstate of the system.

If the number of sites the excitation can reside on is restricted to two, the situation

is referred to as the "excitation on a dimer". The excitation is called to be "self-

trapped on the dimer" if its motion does not extend over both sites. The minimal

model that captures the phenomenon of self-trapping an excitation on a dimer can

be derived from a Hamiltonian system with six degrees of freedom, two of which

are coupled, which we declared to be the object of our investigation. Note however,

that this model will not allow the description of the process of localization under

conservative conditions.

Although the discussion could be carried out in general terms we will follow the

physical picture of an excess charge on a pair of identical diatomic molecules, centers

of mass residing on the sites and relative orientation fixed.

Before we get down to the details, a few more words about related investigations

this study is partially built on, and how it differs. Let us introduce first some more

notions. Taking the motion of the excitation as a reference one can distinguish be-

tween two limiting dynamic regimes. These are characterized by either a small or

large ratio of timescales related to the dynamics of the excess charge and the molecu-

lar vibrational modes. In the first case one speaks of the molecular vibration enslaved

to rapidly oscillate around the slowly moving excess charge density, thus providing a

local potential for it. For reasons to become obvious later we will call this limiting

regime the "Duffing limit". The second limiting regime displays the reversed situa-

tion and will be called the "standard adiabatic limit". If there are only two different

timescales present, we shall call those quantities changing on the slow timescale "slow

variables", the others "fast variables".

Aspects of the motion of self-trapped excitations in one dimension in the Duffing

limit were -described within the theoretical framework of a nonlinear Schrddinger
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equation, the discrete self-trapping equation, which has been extensively studied [12,

13, 14, 15, 16, 17]. Partial analytical results were obtained for the dimer and trimer

[18, 19, 20]. Numerical simulation [12] for larger systems suggests the existence of

periodic, quasiperiodic and chaotic trajectories, extending over parts of or the entire

system. The role of different symmetries for self-trapping were investigated using

analytical and numerical methods [21, 22, 23].

Extensions to damped and driven systems were modeled by introduction of phe-

nomenological damping [24, 25, 26] or Ohmic dissipation and a driving field [2, 3].

The objective is to demonstrate a straightforward method to analyse the dynamics

associated with the system of consideration, which allows not only to readily rederive

and reinterpret known results, but to line out how to transfer these to more compli-

cated situations. The program to be carried out consists of two steps: first, derivation

of the reduced dynamic equations for the excess charge and molecular vibrations, and

second, their solution and interpretation.

We will derive the exact equations of motion by directly carrying out the vari-

ational procedure according to the principle of least action. We will single out two

coupled dynamic variables, representing the excess charge and the molecular vibra-

tions. The subsequent phase plane analysis will yield an extract of dynamical features

that have to be matched by any approximation that claims to preserve the nonlin-

ear core of the problem. This approximation will be carried out using perturbative

methods to the order necessary.

As a result, we will reduce the equation of motion under different dynamic regimes

to the Duffing equation which can be solved analytically in certain limits. We will

provide a simple picture, i.e. the phase diagram from chapter 2, to interpret the

analytical results and recent numerical studies [27, 25, 26, 28].

Immediate consequences from the equivalency of the system of consideration to

Duffing's oscillator will be briefly lined out, without completely exploiting its physical

and mathematical richness.

Many of the methods and tools employed are similar or identical to the ones used

in the discussion of the normal to local mode transition in the previous chapter.
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Therefore we will considerably abbreviate the current discussion in the overlapping

sections and only briefly outline earlier results.

3.2 Derivation of the reduced dynamic equations

As outlined in the previous section, the focus of attention has been on those cases,

where the dynamics associated with the degrees of freedom occur on timescales dif-

fering at least one order of magnitude. The standard approach to obtain the dynamic

equations for the slow variables is to use the adiabatic approximation, which involves

four steps:

* Neglect the contribution of the fast variables to the kinetic energy in the Hamil-

tonian.

* Find the values of the fast variables that minimize the total energy.

* Eliminate the fast variables from the Hamiltonian.

* Use Hamilton's equations to obtain the dynamic equations for the slow variables.

- There are two difficulties associated with this procedure (which is carried out in

Appendix C).

* One is to correctly identify the conjugate variables in the last step. It has

been shown [29] that the equations of motion for the solitary exciton derived

by Davydov using Hamilton's equations are not identical to those derived from

the principle of least action. We will overcome this difficulty by using the time

dependent variational principle of quantum mechanics [30]. The equations for

the time evolution of the parameters in the ansatz for the wavefunction are

obtained by directly carrying out the minimization of the differential of the

total action.

* The other difficulty is to show that the obtained reduced dynamic equations for

the slow variables are qualitatively correct and to obtain quantitative correc-

tions. For example, if the complete equations of motion allow trapped motion of
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the excess charge for a given set of parameters, so should the reduced dynamic

equations for that same set of parameters. To show that this is the case we will

use in analogy to classical mechanics phase plane analysis. We will compare the

projection of the phase space of the complete system onto the surface spanned

by the slow variables and the full phase plane of the reduced system by number,

location and stability of stationary points. The reduced dynamic equations will

be obtained by singular perturbation analysis [31] which will be carried out

to the order at least necessary to reach qualitative agreement in the discussed

sense. The method allows systematic generation of quantitative corrections to

this result.

3.2.1 Variational procedure

The Lagrangian density for an excess charge on two identical diatomic molecules, cen-

ters of mass residing on two sites and fixed relative orientation can be approximated

in the tight binding limit for the excess charge and the assumption of two classical

uncoupled harmonic oscillators for the molecular vibrations and a linear coupling of

excitation and oscillators as

L = [Q + Q2 - w 2(Q2 + Q2)] + x(QIla 12 + Q21a212) + (3.1)

2(alal - al + aza2 - &*a2 ) + ((ata2 + a~al).

Here Q1 and Q2 are the displacements from equilibrium of oscillator one and two, al

and a 2 the probability amplitudes for the excess charge of residing on site one and

two; ,u is the reduced mass of the oscillators, w the frequency of oscillation, X the

charge-molecular vibration coupling constant and ( the electronic intersite coupling

constant. X, are assumed to be positive. Note the symmetry with respect to site

exchange. The number n is defined by

n = la1 12 + la2 12 (3.2)
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and takes the value n = 1 for the case of a single excess charge, which we will consider

in the following. The action S is defined by

ti

=X dtL(Q i, a, ai,aia). (3.3)

The equations for the time evolution of the variables Q1, Q2, al, a, a2, a* can be de-

rived using the principle of least action under the restriction that the number n is

conserved, i.e.

-(S- An) = 0. (3.4)

Here A is the Lagrange multiplier associated with the differential of n. This tedious

but nevertheless straightforward procedure leads to the exact equations of motion

Q1 +w2Q X lall2 = 0, (3.5)

Q2 + - 2Q-Xla212 = 0, (3.6)

ia - a( - Q) + a2 = 0, (3.7)

ia2- a2( - Q2) + a = 0. (3.8)

From eqn. (3.5,3.6) we learn that the equilibrium displacement of each molecular

oscillator is shifted proportionally to the probability of the excess charge being found

on its site. This suggests a change of coordinates for the oscillators to the total and

relative displacement coordinates Q, and Q, defined by

Qs,,a = Q1 ± Q2. (3.9)

They are by construction symmetric and antisymmetric with respect to exchange of

sites. From eqn. (3.7,3.8) one can readily derive the discrete self-trapping equation.

Again, site exchange symmetry suggests a change of coordinates for the excess charge

to the real valued SU(2) coordinates

P = ata - aa 2, (3.10)
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= ala 2 + a 2a 1 , (3.11)

Py = i(ala2-aaj), (3.12)

1 = p +p +p2. (3.13)

The polarization P can be interpreted as the probability difference for the excess

charge of occupying sites one and two. In the new coordinates eqn.(3.5-3.8) take the

form

Qs + 2 QS -_ = 0, (3.14)

Qa + 2 Qa XPz = 0, (3.15)

Pj + 4( 2 p_ - 2XQaPx = 0, (3.16)

2CP. + XQaPz = 0. (3.17)

We see from eqn.(3.14), that Qs is decoupled from Qa, P, and P, and can be inter-

preted as a harmonic oscillator with fixed equilibrium displacement. Thus we will

disregard Q, in the following.

Eqn.(3.15-3.17) describe a system of two coupled oscillators with displacements Qa

and Pz and will be the starting point of subsequent approximations. The equilibrium

value of Qa is a linear function of P, and vice versa. In terms of the original picture

we can say that only the relative excess charge density P and the antisymmetric

vibrational mode undergo coupled oscillations. Note that eqn.(3.17) is necessary to

describe the time evolution of the relative phase of the original complex variables al

and a 2. For the reduced dynamic systems it will determine a dynamic invariant. In

addition we note that

2(Py = Pz (3.18)

which will be of use later.

One can arrive at the same results using Hamilton's equations, starting with the
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Hamiltonian density

212) (Q2 +Q 2
_ XH =1 (p2 + p2 + (Q(2 +Q QP) -+ a P. (3.19)

Then the knowledge that P1,2 are the conjugate to Q1,2 and ia* 2 are conjugate to al,2

leads to eqn.(3.14-3.17) as well. Note that H and P are dynamic invariants, i.e.

H = P = , (3.20)

which reduces the number of degrees of freedom by two and is ultimately responsible

for the integrability of the reduced dynamic equations to be derived in the following

sections.

3.2.2 Phase space analysis

Before we proceed with the elimination of variables in the Duffing and standard

adiabatic limit, we will analyse the phase space associated with the complete set of

dynamic equations.

A word about the different timescales in the system of consideration first. We

will distinguish between two different timescales 1/w and 1/( associated with the

molecular vibration and the charge density motion, which define and 0

= wt (3.21)

0 = 2(t. (3.22)

We will investigate two different cases, i.e. the Duffing limit r > 0 and the standard

adiabatic limit < 0.

Within the two limiting cases, the number of parameters can be reduced by one,

so we expect the relative magnitudes of the two remaining parameters, i.e. (X, () or

(X, w2) to qualitatively determine the dynamics. Thus we define two new parameters
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a,, by the following ratios

= (3.23)

/ = X (3.24)
Nuw2

These definitions for a and d are motivated by the idea to compare two competing

mechanisms. For example, a compares the tendency of charge density transfer via

electronic coupling versus the tendency of on site polarization via the coupling to

molecular vibrations X. The dimensionless constant

= - (3.25)

relates the polarization and both transfer tendencies, i.e. the transfer by electronic

coupling and the transfer by coupling of excess charge and molecular vibrations. Note

the difference to the bifurcation parameter from the normal to local mode transition

in that here there are two competing transfer tendencies.

The phase space analysis will be carried out in the coordinates (Pr, P,, P,) and

Qa,l = Qa, (3.26)

Qa,2 = Qa,l. (3.27)

Substitution in eqn.(3.14-3.17) gives

Qa,l = Qa,2 (3.28)

Qa,2 = Qa,l + -XPz (3.29)
IL

Pz = 2(Py (3.30)

Py = -2(Pz + XQa,lP (3.31)

P = -XQa,lPy. (3.32)
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The stationary points of the system are given by the condition

Qa,l = Qa,2 = P. = Py = P = 0. (3.33)

* For > 1 we find two stationary points SQa,p = (Qa,l, Qa,2, P, Py, Pz) at

(,2) = (0, 0, +1, 0, 0). (3.34)

* For n < 1 we find four stationary points at

(1,2) = (0, O, 1,,), (3.35)

S(3,4 = (/P1- 3, 1- , , , -) . (3.36)

Linear stability analysis of eqn.(3.28-3.32) yield the following results

* For n < 1, S (1) is unstable (saddle point in both Qa,l, Qa,2 and Pl, 1, P, 2) andQa,P

Q(2,p) are neutrally stable.

· For n > 1, Sl,2) are neutrally stable.

* At n, = 1 there occurs a pitchfork bifurcation in both Qa,l and P,.

Note, that the bifurcation occurs simultaneously for both electronic and vibra-

tional degrees of freedom which implies, that the trapping of the excess charge forces

the trapping of the molecular vibration and vice versa. If we had not restricted the

constants X and ( to be positive, we would have in analogy to the Darling-Dennison

System a transcritical bifurcation at = 0.

Our scope now is to determine the conditions of existence of those trajectories in

the phase space whose points of intersection with a surface section AT of the phase

space spanned by T(Qa,1, Qa,2, Px, Py, P.), T2(Qa,l, Qa,2 , Py, Py P) can be approxi-

mated by a continuous function in a properly scaled time 0 or r. We will determine

the number, location and stability of stationary points in AT for these trajectories.

This will set the margin for the phase planes of the reduced equations in the the
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Duffing limit, AD, and in the standard adiabatic limit, AL. To formulate the punch

line: We compare sections of the phase space of the complete system with the complete

phase planes of the reduced systems.

The following argument may help to understand the subsequent procedure. Let

us place Qa,l, Qa,2 at their stationary state values, P, Py be positive and P1 = 0.

From eqn.(3.29,3.31,3.32) we see that Py has negative slope and Qa,2 after an instant

positive slope, which forces an increase of Qa,1. If Qa,2 changes slope upon increase

of Qa,l before Pz does, Q,l will start oscillating around its equilibrium position Qe1

given by eqn.(3.29)

Q, = -/P 1 . (3.37)

This will be the case for w > 2. The dynamics of the "equilibrium trajectory"

T(Qeq Q, Px, Py, Pz) is confined to the section AT of phase space spanned by

T 1(-oPz, , P, 0, 0), T 2(-Pz, O, 0,Py, 0) and T 3(-PfP, , 0, 0, P,). The invariant P

allows to eliminate Py. Let us go one step further. We evaluate the invariant C given

by integration of eqn.(3.32) for Q`q and eliminate P. Thus the equilibrium trajectory

T = T(PZ) is parametrized in Pz and fixed in phase space by the constant C. We are

interested in the case, where the points of intersections of the actual trajectory of the

system and the equilibrium trajectory can be approximated as a continuous function

of some time 0, i.e. T[PZ(O)]. This means that Qa should carry out at least one cycle

of characteristic time 1/w as T[PZ(0)] changes to T[Pz(O + 60)], i.e. it sweeps an in-

finitesimal section of one cycle of characteristic time 1/2(. This is the case for ( < w,

i.e. the Duffing limit. As we will later reduce the equation of motion to the variables

P1, JoPz the section AT spanned by T(Q , O PyO), T (Q') a,q,, O, P,,) has toQ a,2, , yi) , Q ,, 0a ,

be compared to AD. We see, that by construction the stationary points contained in

AT coincide with those of the complete phase space.

We arrive by analogous argumentation at the standard adiabatic limit ( w

where the dynamics can be approximated by the vibrational coordinates and the

stationary state coordinates of the charge density motion. Here as well, the stationary

points in AT are identical with those of the complete system and have to be compared
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to those in AL in the reduced system.

We now have to confirm that in both limits the reduced equations of motion

have to produce the same number, location and stability of stationary points as the

complete phase space.

3.2.3 Elimination of fast variables in the Duffing limit

In the Duffing limit, the slow variable is Pz. It changes with the time 0 = 2t, which

will be taken as the reference time now. The ratio of timescales of slow and fast

variables is given by V = 2. Changing from variable t to 0 and from differentiation

with respect to t to differentiation with respect to 0, t = 2So, eqn.(3.15-3.17) take

the form

1
Qa = -- (Qa + i3Pz) (3.38)

62 p = -Pz + aQaP, (3.39)

6oP. = -aQaSoPz. (3.40)

We will solve eqn. (3.38-3.40) using perturbation expansions of Q, P, and P, in powers

of , i.e.

Qa = Q(O) + EQ) + Q()... (3.41)

p = p() + Ep(1) + 2p(2) +... (3.42)

p, = pO)p? + ( 2p)+ .... (3.43)

We substitute in eqn.(3.38-3.40) and collect terms of same order in .

To O(e- 1) we obtain

Q(O) + ,BP(O) = 0. (3.44)

To 0(0 °) we obtain

623(o) = _(Q() + 3p(1)) (3.45)
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62P(O) _P(0) + Q(O)P(o) (3.46)

9 p ®o) = - Q)6Po) . (3.47)

We use eqn.(3.44, 3.47) to eliminate Q?) from eqn.(3.46) and arrive to lowest order

at the differential equation that has to be satisfied by Pz in the Duffing limit:

62 p(o) = -AP(o) - B(P(O))3 (3.48)
C

A = 1-- (3.49)

1
B = 2k2 (3.50)

C = P(°)(0o) + [p()( 0)]2. (3.51)

Eqn.(3.48) is the dynamic equation for the undriven Duffing oscillator without

damping, which explains why we called this regime the Duffing limit. Kenkre and

Campbell derived eqn.(3.48) from the discrete self-trapping equation. As easily can

be seen, the number, location and stability of the stationary points in the phase plane

AD(P(O), 69P()) associated with eqn.(3.48) are identical to those in AT which we de-

rived in the previous section. We conclude that eqn.(3.48) gives the correct qualitative

behaviour and higher order terms p(n) achieve a quantitative correction. One can

show that the dynamic equation for P(1) is linear (as it should be, since it should not

add new stationary points) and describes oscillations of Pz in the neighborhood of

P(O) which can be interpreted as the polarization of the charge density due to coupling

to the molecular vibrations. Note that the zeroth order system has two invariants.

One is P(O), the other C that can be obtained from eqn.(3.47).

3.2.4 Elimination of fast variables in the standard adiabatic

limit

In the standard adiabatic limit, the slow variable is Qa. It changes with the time

T = wt, which will be taken as the reference time now. The ratio of slow and fast

variables is given by v = . Changing from variable t to T and from differentiation
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with respect to t to differentiation with respect to , t = w6,, eqn.(3.15-3.17) take

the form

6IQa

6rPz

(3.52)= -(Qa - Pz)

= (-P + aQaP) (3.53)

b,P = -aQa-rPz. (3.54)

We will solve eqn.(3.52-3.54) using perturbation expansions of Qa, P, and P, in powers

of , i.e.

Qa = Q(o) + jQ(I) + 2Q2 .. (3.55)

P = p(O)+ p(1)+ 2p(2) +... (3.56)

p = p(O)+ ±p1)+ 2p) 2)+ .... (3.57)

We substitute in eqn.(3.52-3.54) and collect terms of same order in e.

To O( - 1) we obtain

_ p(O) + aQ(O)P(o) = O (3.58)a (3~~~~~~~~~~~~~~~~~~~~~~~~~~~~

To O(O°) we obtain

j2Q(0)

2 p (O)
PI

= -(Q(O) + Opj))

-= _p(l) + aQ(1)P ( 1)

= -aQ 0) P(0).a l:

(3.59)

(3.60)

(3.61)

We use eqn.(3.58,3.61) to eliminate P(0 ) from eqn.(3.59) and arrive to lowest order

at the differential equation that has to be satisfied by Qa in the standard adiabatic

limit:

2Q(0 ) = -Q()[1 I
K\

G (

1 + (CQ))2
G = [p(0)(To)] 2 + [( 0 )(To)] 2 = 1.

(3.62)

(3.63)
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We recognize in eqn.(3.62) the equation for phonon dynamics as derived from the

standard adiabatic potential. Again it can be easily checked that number, location

and stability of stationary points of the phase plane associated with eqn.(3.62) are

identical to those in AL(Q(°), 7Q(O)) already discussed.

Note, that G = 1 as Py is constant and has to be set tozero in order to guarantee

conservation of Pl.

One final comment on the derivation of the reduced equation of motion is in

place here. Our choice of the small parameters , j is not unique, yet turns out to

be the most convenient. Other choices force the solution for higher order terms in

the perturbation expansion, up to the order necessary to restore the features of the

original phase space.

3.3 Solution and interpretation of the reduced

dynamic equations

In this section we will solve and interpret the Duffing equation (3.48) and analytically

approximate the standard adiabatic equation (3.62).

3.3.1 Charge density dynamics in the Duffing limit

Geometric methods from classical mechanics are the proper tools to extract the dy-

namical properties of the system in the Duffing limit. Although the analytic solutions

to the Duffing equation in the above form are known and given in terms of Jacobian

elliptic functions, we will show that the analytic solution is not necessary to predict

the different dynamic regimes in the Duffing limit and to locate the transitions be-

tween them. A considerable amount of work has been done [5, 27, 18, 25, 26, 12] in

the analysis of Duffing limit and we believe our analysis to be a supplement.

We will begin by defining a Hamiltonian density in terms of the invariants P(0), C,

which allows a classical interpretation of the dynamics of P(O). The initial condition

dependence will be summarized in a phase diagram. As a natural extension of that
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phase diagram we will construct the trajectories P(PX, Py, Pz) on the surface of the

Poincar6 sphere that was introduced in chapter 2. The analytical solution for the

components of P(PX, Py,, P) as well as for the probability amplitudes a1 and a 2 will be

given. Numerical results for the damped Duffing oscillator [25, 26] will be interpreted.

Hamiltonian density in the Duffing limit

Let us simplify the notation by dropping the superscript (0) for all variables. Then

eqn.(3.48-3.51) take the form

62 p = -AP, - BP3 (3.64)

C
A = 1-- (3.65)

1
B = 2K2 (3.66)

The invariants are

1 = p2 +p2+p2 (3.67)
p2

C = Px + Z (3.68)
2K

From these two invariants and eqn.(3.18) we obtain the Hamiltonian density with

conjugate variables (Pa, 6oPz) for the dynamics of Pz in the Duffing limit.

HD= 1 -C2 = 1 2 + Ap2 + Bp4 (3.69)_ID~ll~f~Iym~j'zF4I~ (3.69)
HD= 2- 2 2 z 4

By construction the kinetic contribution T and potential contribution V to HD are

p 2

T- 2 (3.70)2

V = Ap2 + B p4 (3.71)
2 4

Let us denote the corresponding energy by ED. Thus we can visualize the dynamics

of Pz by the motion of a classical particle in V(Pz) with kinetic energy T(Pz) and

163



total energy ED. The Hamiltonian density HD and energy ED defined in eqn.(3.69)

are different from the Hamiltonian density HD and energy ED that can be derived

directly from eqn.(3.19) in the Duffing limit,

= -( +C) (3.72)

and will allow us to determine the dependence of the dynamics on the energy of

the original system. For both the trajectory given by the motion of the polarization

vector P(Px, P,, Pz) is restricted by the invariant P to a sphere of radius PJ = 1

and determined on that sphere by the invariant C given by eqn.(3.68). The sphere is

called the "Poincar6 sphere" and is in extensive use in molecular mechanics under the

notion "polyad phase-sphere" [32]. It allows us to display the phase space trajectories

of eqn. (3.64) for given K. The initial condition dependence is absorbed in the invariant

C.

From here on we will proceed in three steps. First, we will discuss the initial

condition dependence of the dynamics of Pz in terms of the Hamiltonian density HD

and summarize the results in a phase diagram. Second, we will connect that phase

diagram to the phase plane AD. As a result we will arrive at the Poincar6 sphere.

Third, the parametric forms of the trajectories as functions of 0 will be given.

Phase diagram in the Duffing limit

In this section we lay out briefly the construction of the phase diagram. A more

detailed discussion can be found in chapter 2.

The potential parameters A, B in V depend on the original Hamiltonian param-

eters [W 2, X and ; in addition, A depends on the initial conditions (P,( 0O), Pz(9o)).

Since B > 0, V(Pz) can either have one minimum or one maximum and two minima,

dependent on the sign of A. The transition between these two forms occurs at A = 0

and indicates a possible bifurcation in Pz, where the center point S(1) at the origin of

AD changes to a saddle point and two new center points S(34) appear. The following

dynamic regimes are possible.
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* For all extrema of V(Pz), Pz is stationary.

* For the case of a single minimum Pz oscillates around Pz = 0, i.e. the charge

density undergoes complete exchange between the two sites within half a period

Pz.

* For the case of two minima we distinguish between two situations.

- First, if ED > 0, Pz again oscillates around Pz = 0, yet due to the potential

well with reduced velocity at its equilibrium position.

- Second, if ED < 0, P oscillates around one of values for which V(Pz) has

a minimum, i.e. the charge density is not completely exchanged between

the two sites and is trapped on one of the sites.

* Transitions between regimes occur for certain values of n and the initial condi-

tions (Pz(0o), P (0o)), which we will discuss first.

The dependence on initial conditions is best displayed in a phase diagram spanned

by (Pz(0o), Px( 0O)) similar to the one used in the previous chapter. Let us briefly

reintroduce the construction. First, note that (Px(I)) 2 +(P_(0)) 2 < 1 which restricts

the accessible area of the phase diagram to the unit circle. There are two lines that

separate three different dynamic regimes.

* The regions of single minimum and double minima potentials are separated by

the bifurcation parabola

pz (°) = 'i (3.73)2n '

which we readily we obtain from the condition A = 0, C = in eqn.(3.65)

* The regions for which ED > 0 and ED < 0 are separated by self-trapping

parabola
P~( 0o)

wc epaic( E0) = 1 2n (3.74)
2w 

which we readily we obtain from the condition E = 0, C = in eqn.(3.69).
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* In order to locate a state. of given energy ED in the phase diagram, we solve

eqn.(3.72) for Px(00), to obtain the spectral parabola

P2 (00)P'(0) = C - p((3.75)
2K '

C = -( + (3.76)

* For the case that the system is found in one of its stationary states we obtain

from eqn.(3.64), SD[PZ(0O), P(0O)]

S('2) = (0, ±1), S(3'4) = ( 1 - K, ). (3.77)

The stationary states lie on the unit circle. Their location depends only on the

parameter K, which was also found by [12].

Figure 3-1 displays several possible states in the phase diagram for given K.

We see that the area of the phase diagram within the unit circle is divided into

three regions by two parabolae of slope -1/K, one, whose ordinate is fixed at P (0O) =

1, the other variable at Px(0O) = K.

* For C > 1 the corresponding state lies in the region of trapped motion,

* for 1 > C > the corresponding state lies in the region of free motion, yet is

subjected to a double minimum potential and

* for K > C the corresponding state lies in the region of free motion in a single

minimum potential.

The parametric dependence on of these transitions can be immediately read

from the phase diagram. Remember, that small values of K imply a dominance of the

on site polarization mediated by X over the transfer of charge density between the

sites mediated by (, resulting in a high tendency of the excess charge to be trapped on

one of the sites. This translates into the phase diagram as follows. For small absolute

values of K the area of trapped motion is large compared to the area of free motion.
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PX,0

Z,)O

Figure 3-1: Phase diagram for 0 < < 1. The solid circle (-) restricts the accessible
area of the phase diagram. The solid parabolae (-) are the localization parabola (s)
and the bifurcation parabola (b). The dashed parabolae (- -) are in the local mode
region (A 1), in the normal mode region in a double well potential (A2) and in the
normal mode region in a single well potential ( 3)
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Thus there exists a wide range of initial conditions for which the excess charge is

undergoing trapped motion. For large values of r, the situation is reversed.

In agreement with the phase space analysis we see that a necessary condition for

self-trapping is that n < 1 , since for r, > 1 the self-trapping line and the unit circle

includes no area within the circle. Then self-trapping is impossible for any initial

condition.

In addition, since all the parabolae in the phase diagram have the same curvature,

a change in dynamical properties is only possible by shifting the spectral parabolae

horizontally, i.e. by a change in energy. Therefore the process of trapping cannot be

described by the model in its current form.

The amplitude transition In addition to the two discussed transitions, a third

transition was reported, called the "amplitude transition" [27]. It was observed, that

for given initial conditions Pz(0o) < 1, Py(0o) = 0 the amplitude of oscillation is either

upper or lower bounded by Pz(90 ), depending on K. We will argue that the amplitude

transition is not a well defined concept. First, let us consider the potential V and its

minimum at Pz,min > 0. Suppose that Pz( 0 ) > 0. The kinetic contribution T = 0.

Thus if Pz(9o) < Pz,min the amplitude of oscillation will increase initially and have

the lower bound Pz(0o). If Pz(Go) > Pz,min the amplitude of oscillation will decrease

initially and have the upper bound P,( 0O). In the phase diagram this transition is

located at the point (1- i 2, nr) on the unit circle, thus being different from the

other two transitions occurring along lines and separating regions in the diagram.

Second, let us drop the condition Py(Oo) = 0 and consider the phase plane AD. Let

us divide the area around the focal point, given by the intersection of the spectral

line and the Pz( 0o) at Pz,foc in quadrants. Now we have to distinguish four cases. If

we place the system initially in one of these quadrants, we would observe that Pz(o)

would neither be the upper nor the lower bound of the amplitude of Pz. Thus, the

notion of the amplitude transition has lost its meaning.

A brief comment on the eigenstates of the system is in order: site exchange sym-

metry forces the eigenstates to Pz = 0. For Kn < 1 the symmetry of the eigenstates
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is parametrically unstable against a symmetry breaking perturbation. The effect of

symmetry breaking perturbations was numerically investigated for the eigenstates of

the Peierls-Hubbard dimer [33] and is extensively discussed in chapter 2 in the context

of the Darling-Dennison System.

Geometrical representation of the trajectories on the Poincarg sphere

Difficulties in the interpretation of the effects of change in the initial condition can be

avoided by combining the information contained in the phase plane AD(PZ, Py) and

the phase diagram (Pz, Px) on the surface of the Poincar6 sphere in the right handed

coordinate system (Px, Py, Pz). The invariant P gives the radius of the Poincar6

sphere by IPI = 1. The invariant C determines the trajectory on the sphere. The

phase plane AD can be obtained from the Poincar6 sphere as the projection of a

trajectory. specified by C, X onto the (Py, Pz) plane, and the phase diagram as the

projection onto the (Pz, Pa) plane. We will call the points (1, 0, 0), (-1, 0, 0) the north

pole and the south pole, the lines P, = 0, (Pz)2 + (py)2 = 1; P, = 0, (Px)2 + (py)2 = 1

the equator and the zeroth meridian, separating the northern and southern or western

and eastern hemispheres.

* For < 1 the north pole is occupied by a saddle, the south pole by a center

as stationary points. Two additional centers as stationary points specified by

the coordinates ( 0, i1 - 2) lie on the stationary meridian in the northern

hemisphere parametrized by Py = O, P, < 0, (pZ)2 + (px)2 = 1. The self-

trapping line appears as a separatrix on the sphere, originating at the north pole,

embracing regions of trapped motion on the western and eastern hemispheres,

largely extended over the northern hemisphere. Around the south pole we find

the region of free motion. The bifurcation line appears as a bifurcation loop

south from the separatrix. The picture is in complete analogy to Figure 2-3.

* For > 1 we find centers on the poles as stationary points. The area of free

motion extends over the complete Poincar6 sphere.
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The charge density dynamics can be interpreted as motion in the harmonic po-

tential C under the constraint that the trajectory has to lie on a sphere.

For a given trajectory in the phase diagram, we can identify the points of inter-

section of the spectral line and the unit circle with the turning points of the motion.

The points of intersection with the Pz axis constitute foci of the motion in AD. At

these points the trajectory on the sphere arrives at the maximum value of Py.

It is straightforward to show, that trajectories in the areas of free motion cir-

culate counterclockwise around the Px axis and trajectories in the trapped region

counterclockwise for positive Pz, clockwise for negative Pz around the Pz axis.

In summary, the excitation of the nonlinear dimer behaves in the limit of slow

charge density motion and instantaneous adjustment of the vibrational equilibrium

configuration like a quasiparticle in a single or double well potential. The quasiparticle

consists of the excess charge and the induced distortion of the molecular equilibrium

configuration that it drags around. They become simultaneously trapped if the kinetic

energy of the quasiparticle vanishes before it reaches the top of the potential barrier

of the double well form of the Duffing potential. The details of this process can

be directly read off the Poincar6 sphere and interpreted in complete analogy to the

discussion of the Darling-Dennison system in chapter 2.

Analytic solution of the Duffing equation

The analytical form of P(Px, Py, Pz) are obtained in a straightforward manner. Pz can

be solved for in terms of Jacobian elliptic functions. Most of the results for Pz were

obtained by Kenkre and co-workers [5, 27, 18, 25, 26]. The solutions for P , Py follow

immediately from eqn.(3.67,3.68). From the definitions of Px, Py, Pz in eqn.(3.10-3.13)

one can then easily solve for the wavefunction of the excess charge in terms of a 1, a 2.

The proper ansatz is given by

P,(0) = Df(QR - lm). (3.78)

Here f is a Jacobian elliptic function with frequency , phase I) and parameter m.
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Inserting in eqn.(3.64) and using eqn.(3.67,3.68) one obtains three different solutions,

dependent on the parameter m.

· For m < 0 the solution is given by

P = Dnd( l + m

1
nd = - , F(

1

1 +1 )

ircsin
V/1 + Iml

1 - ( D )2 1

m + m

* For 0 < m < 1 the solution is given by

P, = Dcn(Q-,cnlm)

41cn = -F(arccos Z(o)m).

* For 1 < m the solution is given by

P, = Ddn(§i[QO -

1
- - = F(arcsin

--./

',dn] I)
m

1 - (Pz(0o)) 2
D•1

(3.81)

I)m.

* The results for D, m and Q are

D = /-2r(-C)

m = (1-
2 -f*-(

Q

+ 2/Vi1 + ,%(rE - 2C)

- 9C

D

Here cn, dn, nd are Jacobian elliptic functions, F an elliptic integral of the first kind.

There are several things to notice.
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Figure 3-2: Jacobian elliptic functions. The abscissa is calibrated in units of the
quarter periods K(m = 1.4) of dn(m = 1.4). The solid line (-) indicates cn(m = 0.2),
the dashed line(- -) dn(m = 1.4) and the dashed-dotted line (-.) nd(m = -0.5).

* First, for the different domains of the parameter m we get qualitatively differing

results as displayed in Figure 3-2.

- The cn function oscillates between the upper bound D and lower bound

-D. Thus the excess charge density is completely transferred after two

quarterperiods, which are usually denoted by K.

- The dn function oscillates with the upper bound D (or lower bound -D)

but does never change the sign of its range. Thus the excess charge density

is never completely transferred and has to be considered trapped.

- The nd function oscillates with the lower bound D (or upper bound -D)

and thus describes trapped motion as well.

The transitions between these functions depend on the parameter m. Thus we
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should be able to recover.the phase diagram of the foregoing section from the

expression for m as given by eqn.(3.83). This is indeed the case. The condition

m = 1/2 yields C = r, and thus the bifurcation line as given by eqn.(3.73).

The condition m = 1 yields C = 1 and thus the self-trapping line as given by

eqn.(3.74). For the discussion of the transition from dn to nd which formally

occurs as m changes sign, see the last section.

* Second, the frequency Q depends on the initial amplitude D, in sharp contrast

to linear dynamical systems.

* Third, let us consider the case of a pure state, i.e. P(Oo) = 1. From eqn.(3.82-

3.84) we obtain D = 1, m = 1/4c 2, Q = 1.

- In the limit of no coupling between excess charge and molecular vibration,

- oc, the excess charge density oscillates unhinderedly between the

sites, as can be seen from

lim Pz = lim cn(Olm) = cos(O). (3.85)
m+O m-+O

- In the limit of no electronic intersite coupling, , -* 0, the initial excess

charge distribution is maintained at all times, as can be seen from

1
lim Pz = lim dn(O1-)= 1. (3.86)

m-+oo mo o m

To see how the wavefunction of the nonlinear dimer compares to the linear case,

- co, let us have a look at the analytic expression for the wavefunction for the

pure state. Using eqn.(3.67,3.68,3.10-3.13) we obtain for 0 < m < 1

I 1
al = cos [am(O 4 2)] (3.87)

a 2 = sin[am(O 42)] exp [-i(arccos dn( (1 2) + )], (3.88)
2 4 r. 4 r4 2
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and for 1 < m

1 = + dn(2 142) (3.89)

2

- dn( 14K+2) 021- 2 4 exp [-- (am( Ž42) + 7r)].
a2 = ± 2 exp[ (a 21K (3.90)

Here am is called the elliptic amplitude and related to cn via cos [am(Olm)] = cn(Olm).

For 0 < m < 1 we see, that the phase difference of al, a2 oscillates around 7 but does

not complete cycles of 27r, whereas the argument of the trigonometric functions does.

For 1 < m the situation is reversed. Note that neither the phase nor the argument

show linear time dependence but are periodic functions in time. An interpretation of

the charge density motion in term of a hindered rotation is possible in analogy to the

hindered rotor model for the Darling-Dennison system.

Extension to damped and driven systems and comparison to numerical

results

The identification of the dynamics of P_ with that of an undriven Duffing oscillator

without damping suggests further exploitation for cases when Pz is subject to damping

or to a driving force. Both cases have been carefully studied for the Duffing oscillator.

Damping of P, can be introduced in the equations of motion in various ways, e.g.

on the level of the reduced dynamic equations by a phenomenological damping term

of the form f(6oP), or on the level of the complete dynamic equations by a damping

term of the form f(Q, PS). In any case, C is no longer an invariant.

The phenomenological damping term of the reduced dynamic equations brings the

advantage of simple mathematical treatment, yet has the disadvantage of being an ad

hoc correction lacking physical meaning. The damping of P, mediated by the damping

of the molecular vibrations introduced on the level of the complete dynamic equations

correctly reflects the physical situation. The nonlinear dimer loses energy due to the

coupling of the molecular vibrations to a bath of phonons. The disadvantage is,

that after the elimination of the vibrational coordinates the dynamic equation for Pz
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is a nontrivial extension of the Duffing equation, making additional approximations

necessary. Similar difficulties appear upon introduction of a driving force term in the

dynamic equations. The topic is still under investigation.

In this section we will only qualitatively discuss extensions to the damped Duff-

ing oscillator without driving force and thus prepare the way for the interpretation

of numerical studies by Kenkre and Wu [25, 26]. The model under investigation in-

cludes a phenomenological damping term for the vibrational mode Qa in the complete

dynamic equations. Eqn.(3.15) reads now

Qa + YQ + 2 Qa - Pz = 0. (3.91)

Under the assumption 'y > w » it was shown that the number and location of

the stationary points in the Duffing limit are the same for both the damped and

undamped system. Qa reaches the equilibrium position -Pz on a timescale y . The

numerical studies were carried out beyond this limit.

It is easy to see from eqn.(3.28,3.29) that number and location of the stationary

points as well as the value /c = 1 of the bifurcation of the complete system do not

change. Yet the stability of the stationary points and thus the phase portrait on the

Poincar6 sphere is different from the undamped case. Let us assume, for simplicity,

that the Poincar6 sphere is still the proper representation for the charge density

dynamics in the Duffing limit. This assumption is justified if the characteristic time

l/-y is short compared to 1/(.

The Poincar6 sphere shows the following features for the damped system, already

described in the last chapter in Figure 2-19 and Figure 2-20. Since they are crucial

for the following discussion of numerical data let us briefly review the features. For

> 1 there are two stationary points: a stable spiral point at the north pole (1, 0, 0)

and an unstable spiral point at the south pole (-1, 0, 0). For all initial conditions but

the unstable spiral point, the trajectory will converge to the north pole. For nK < 1

there are four stationary points: the saddle at the north pole (1, 0, 0), two stable spiral

points at (, 0, ± -1 - n 2) and an unstable spiral point at the south pole (-1, 0, 0). A
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separatrix originates at the unstable spiral point and leads to the saddle point. The

sphere is split in two basins of attraction, one for each of the stable stationary points.

Thus for any initial condition but the unstable stationary points or the separatrix

the stationary state of Pz will be determined by the location of the stable stationary

points.

We will now list the findings of the two numerical studies in terms of our conven-

tions and definitions and interpret these with the help of the Poincar6 spheres.

The first study [25] was concerned with the changes in the propagation of a pure

state, Pz(0o) = 1 for different values of m.

* At m = " a "static transition" was observed: For m < 1 the stationary state is2 2

located at the north pole (1, 0, 0), for m > at (-n, 0, v1 - K2).

This transition is the bifurcation in Pz discussed in the previous section.

* At m = 1 a "dynamic transition" was observed: For m < 1 the short time

behaviour of Pz is given by the cn evolution, for m > 1 by the dn evolution.

This transition is the self-trapping transition discussed in the previous section.

In the first case, the trajectory has to pass the region embraced by the separatrix

which is wrapped around the south pole of the Poincar6 sphere, in the second

it just circulates in the hemisphere of one of the stable stationary points.

· For < m < 1 there appeared to be a "potentially misleading evolution": After

being initially damped to the value Pz 0 the following evolution led to one of

the stable stationary points.

After having passed the separatrix wrapped around the south pole, the trajec-

tory approaches the north pole and is then further directed in the corresponding

basin of one of the stable stationary points.

* For m > the location of the stationary state depends on the damping rate y.

Different damping rates correspond to different phase portraits, the separatrix

embraces different regions on the Poincare sphere as basins of attraction. Thus
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for fixed initial conditions.of P we have to expect a switching back and forth of

the stationary states between the stationary points as we vary 'y.

The second study [26] was concerned with the changes of the propagation of states

P 0 with varying initial phase differences.

· For initial phase difference 0, i.e. P(0o) = 1, it was found, that P rapidly

converges against one of the stable stationary points. For initial phase difference

7r, i.e. P(0 0 ) = -1, it was observed, that Pz starts oscillating around Pz =

0 with increasing amplitude ("antidamping"), until it eventually shows bias

towards positive or negative values and finally approaches one of the stable

stationary points.

In the first case the trajectory starts near the north pole of the Poincar6 sphere

and consequently circulates towards one of the stable stationary points. In the

second case it starts nearby the south pole. Since the stable stationary points

lie on the northern hemisphere, the trajectory has to overcome the equator.

Depending on the slope of the separatrix along the equator, Pz has to oscillate

with increasing amplitude upon crossing the equator until it will finally converge

to one of the stable stationary points.

* For intermediate values of the initial phase difference and P(o) = 0.6 two

phenomena have been observed. First, the location of the stationary state

switches back and forth between the two stable stationary points, second the

"undamping" becomes less explicit as the initial phase difference approaches 7w.

Changing the initial phase difference for fixed Pz(9o) sweeps the initial point

of the trajectory over the two alternating basins of attraction embraced by the

separatrix, thus causing the switching between the stable stationary points as

stationary states. The loss of "undamping" has already been discussed.
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3.3.2 Remarks on the dynamics of molecular vibrations in

the standard adiabatic limit

The standard adiabatic equation eqn.(3.62) has been extensively studied, yet the

analytical solution is not known to our knowledge. We will only briefly line out how

to approximate analytically the solution in the regime of weak coupling of the excess

charge and the molecular vibrations for small amplitudes.

Let us first simplify the notation by dropping the superscript (0). Eqn.(3.62,3.63)

read now

1
62Qa = Qa[l + 1(Q). (3.92)

We will now connect eqn.(3.92) to the result from standard adiabatic theory. Here

one solves for the dynamics of the molecular vibrations under the assumption that the

excess charge occupies an eigenstate for each value of the parameter Qa. Technically,

the Hamiltonian density eqn.(3.19) is brought into diagonal form by a real valued

wavefunction for the excess charge. The two eigenvalues are calculated as functions

of Qa,. One can then obtain the lower and upper adiabatic potential by plotting

separately the lower and the upper of the two eigenvalues versus the vibrational

coordinate Q,. This translates in our derivation into the condition Py(0o) = 0. We

see, that for this condition the timescale analysis and the standard adiabatic theory

yield the same result, which explains, why we called eqn.(3.62) the standard adiabatic

equation.

Yet there is one important difference. If one is interested in the phonon dynamics

for the case that the charge density contains states of the upper and lower adiabatic

potential surface, the potential obtained from standard adiabatic theory is no longer

correct. As easily can be checked, a modification as to forming a coherent super-

position of the two adiabatic eigenstates does not give the factor V' in eqn.(3.63).

The perturbative result eqn.(3.92) is valid only if on the timescale of the phonon

motion the kinetic energy of the charge density motion is on average vanishing, i.e.
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P"' (o) = Py")(7) = 0.

The adiabatic potential is not static but dynamic in the sense that it depends

on the initial momentum of the charge density motion. Thus placing a wavepacket

in one potential well at some energy above the ground state not only reduces the

difference to the top of the barrier by that amount, but also lowers the barrier, so

that in effect the distance to the top of the barrier is further reduced. The zeroth

order perturbative result is no longer sufficient to correctly describe the dynamics.

Let us continue with a discussion of the phonon dynamics. In analogy to the pro-

cedure in the Duffing limit we define the Hamiltonian HL for the molecular vibration

in the standard adiabatic limit by

1.212 3
HL = Qa + T + = -(oQa)2. (3.93)

2 2a a

We identify the kinetic contribution T and the potential contribution V(Qa) to the

total energy EL as

1 2
T = Qa2 (3.94)

2

V: = -Q -[1 + (aQ) 2]. (3.95)

For the lower potential V_ we observe a change from one to three extrema at n = 1.

Self-trapping occurs at EL = 0. Now let us consider the limit of weak coupling

between the excess charge and the molecular vibrations for small amplitudes, i.e.

a = (Qa) 2 << 1. V_ can be approximated to order a2 by

1 1 2 4
V_ + +(1-)Q+ (3.96)

Within this approximation, the dynamics of Qa is governed by the Duffing equation

6Qa = -(1- )Qa - 3 (3.97)
2K t

which can be solved exactly in terms of Jacobian elliptic functions. Note that number
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and stability of the stationary.points as well as the value of n, for the bifurcation

coincide with those of the complete phase space, yet the location is different.

3.4 Conclusion

We have shown a systematic way to explore the dynamical properties of the nonlin-

ear dimer. The exact dynamic equations were directly obtained from the principle

of least action. Phase plane analysis led us to approximations based on time scale

arguments. The bifurcation parameter tn plays a prominent role in several ways. It

shows that charge density motion and molecular vibrations become simultaneously

unstable against localization and indicates the onset of instability regardless of any

assumption about the involved timescales. We conclude that localization is possible

not only in the two limiting cases where the timescales of charge density motion and

molecular vibration can be separated, but also in the intermediate regime. Further-

more, can be used as a guide to assure the qualitative correctness of the analytic

results obtained in the limiting cases. These limiting cases are instructive from a

physical point of view, since the actual mechanism of localization can be understood.

In the Duffing limit the charge density dynamics can be mapped on the dynamics

on a classical Duffing oscillator, yet with the difference that the potential is not

static but dynamic since in the electronic coordinates it depends on the electronic

momentum. In particular, it can change upon decrease of initial kinetic energy from

a single well potential to a double well potential. Localization can then occur in one

of the wells. We have devised two graphical representations of the charge density

dynamics that allow the complete overview of all possible dynamical behaviors in the

Duffing limit and proved to be especially useful in the interpretation of numerical

results for the damped dimer. There, the kinetic energy of the charge density motion

is decreasing, a potential barrier is forming, and the final extent of charge density

localization is decreased with increasing coupling X.

In the standard adiabatic limit the dynamical analysis showed, that the adiabatic

procedure is valid only for stationary charge densities. With increasing initial kinetic
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energy of the charge density motion the adiabatic potential barrier becomes more and

more transparent. In the weak coupling limit, the dynamics of molecular vibrations

can be approximated by a Duffing oscillator.

In terms of the quasiparticle language, the Duffing limit produces an electronic ex-

citation that is accompanied by an instantaneously adjusting distortion of the molec-

ular equilibrium configuration and the standard adiabatic limit produces a vibrational

excitation that is accompanied by an instantaneously adjusting charge density config-

uration. If the quasiparticle excitation of the nonlinear dimer becomes localized in one

potential well of the double well forms of the dynamical potentials, the system takes

a ground state that does not carry the site exchange symmetry of the Lagrangian.

Then dynamical symmetry breaking occurs in the nonlinear dimer.

Let us finish with a brief comment on the relevance for the phenomenon of collapse

of a wave packet. It has been argued [2, 3], that the localization of the charge density

is due to the classical nature of the associated phonon coordinate. Our own numerical

calculations show, that for the quantum mechanical phonon, localization occurs as

well, yet the transition is shifted to smaller values of NIJ. This can be explained from

the fact that the potential barrier has to be high enough to allow a bound state of

the phonon. If this is the case, then it can be shown in analogy to the treatment of

the quantum mechanical Darling-Dennison system, that the system is susceptible to

fluctuations in form of symmetry breaking perturbations that lead to largely localized

eigenstates.
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Appendix A

Discrete fourier analysis of

dynamical systems

The dynamical systems studied in this thesis are non-chaotic. However, it is instruc-

tive to apply some of the diagnostic tools that are commonly used to detect chaotic

dynamics and to extrapolate to their performance for more complex systems. There

are three major categories of such tools: Fourier transform methods, Lyapunov ex-

ponents and entropy measures [1]. Here we will deal only with the Fourier transform

method and demonstrate that results obtained from it are quite ambiguous for the

studied systems.

We begin with a brief account of the method. Fourier analysis of a time depen-

dent real valued function f(t) reveals its frequency components and associated power

spectrum. It became practically relevant after the implementation as the fast Fourier

transform algorithm on computers. Since the fast Fourier transform is a discrete

method, let us denote the value of f(tk) at the instant tk = kAt by fk where At is a

uniform time interval.

We expand each element fk, k = 1, 2,..., n of the set of points {fk} as

1n
= - iexp (-27rikl/n). (A.1)

]f is then called the discrete Fourier transform of the set {fk}. It is straightforward
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to show that
n

Ik = Z fl exp (2rikl/n), (A.2)
1=1

i.e. fk and f form a discrete Fourier transform pair. In order to extract the de-

sired frequencies wl = 2rl/nAt and associated powers f12 that constitute the power

spectrum of the set fk}, we define the autocorrelation function

n

Gm = E fkfk+m, (A.3)
k=l

which after some calculation can be shown to form a discrete Fourier transform pair

with the powers [f1 2, i.e.

n

Gm 1 1 1fl2 exp (-2riml/n), (A.4)
n 1=1
n

f,2 = E Gmexp(27riml/n). (A.5)
m=1

This result is know as the Wiener-Kintchin theorem. It states that one can obtain

the power spectrum of the set {fk} from its autocorrelation function and vice versa.

The time interval At and number of elements n influence the shape of the power

spectrum. According to the sampling theorem, the Nyquist critical frequency wc =

r/At must be larger than the bandwidth of f(t) in order to allow the accurate deter-

mination of power spectrum. If this is not the case there results a distortion, called

aliasing, that gives too large weight to the low frequency components. In addition,

frequency components whose periods become comparable to nAt tend to distort the

power spectrum towards the low frequency components.

Different dynamic regimes of the sets {fk} are to be distinguished on the basis of

the corresponding power spectra:

* periodic motion results in power spectra that show distinct peaks at commen-

surate frequencies,

* quasiperiodic motion results in power spectra that show distinct peaks at non-

commensurate frequencies and
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* chaotic motion results in continuous noisy power spectra with bias towards low

frequencies. This bias is due to the appearance of periods comparable of the

size of the analysed set.

However, due to the discreteness of the computational transform the distinction be-

tween quasiperiodic and chaotic motion is academic, i.e. they can produce essentially

the same characteristic discrete power spectra. Nevertheless, a large number of con-

tributing frequencies often serves as an indicator of chaotic motion and was used in

the context of the discrete self-trapping equation [2].

We will now show that this indicator is misleading for the systems discussed in this

thesis and related systems. The analytic solutions for the complex mode amplitudes

involve elliptic functions and are dependent on the frame of reference trigonometric

functions (see e.g. eqn.(2.79,2.81)). The elliptic functions can be expanded in terms

of trigonometric functions as [3]

27r o q + l /2

dn(ulm) = K 1 + q2n cos 2n + )v, (A.7)

2/K +=K' 1 + q2 o,
nd(uIm) = _ + / --)2(--A-os2nv, (A.7)2K n=1 q

with the nome q = exp r K'/K), the argument v = u/2, the q uarter periodsv (A8)

with the nome q = exp (K'/K), the argument v = 7wu/2K, the quarter periods

K(m) = K'(1 - m) and the parameter m. Now, it can be shown that as m -+ 1,

i.e. where the normal to local mode transition or trapping transition occur, K -+

oc, q -+ 1 and v -+ 0. This implies for the cn function that close to m = 1 many

low frequency components begin to contribute with an exponential bias towards the

lowest frequencies, and the power spectrum becomes very dense in that region. The

discrete Fourier transform with its additional distortions discussed above will therefore

not be able to distinguish the perfectly periodic behaviour of the elliptic functions

from quasiperiodic or chaotic dynamics, especially if non-commensurate trigonometric

functions are additionally involved due to different reference frames.

Obviously the situation becomes worse for more complex systems, such as higher
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dimensional discrete self-trapping equations [2]. Here discrete Fourier transforms

have been applied to study different dynamical regimes. The observed changes in the

power spectra may result from the effect described above and are most probably not

due to chaotic dynamics.
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Appendix B

The spectroscopic condition

number

The eigenvalue problem of the Darling-Dennison Hamiltonian HDD exhibits the pe-

culiarity that some eigenstates are extremely sensitive to symmetry breaking pertur-

bations whereas others are not. The eigenvalues however do not show this sensitivity.

One is tempted to state that somehow the problem of finding the eigenstates is "ill-

conditioned" whereas the one of finding the eigenvalues is "well-conditioned".

Computational problems are called ill-conditioned if the values to be computed

are very sensitive to small changes in the data. In algebraic eigenvalue problems

the degree to which an eigenvalue problem is ill-conditioned is quantified in terms

of a single parameter, called the spectral condition number. Although in general this

number labels the behaviour of a particular matrix under diagonalization it does

not indicate the particularly sensitive eigenvalues or their number. Neither does it

imply that eigenvectors corresponding to sensitive eigenvalues are sensitive or that

insensitive eigenvalues correspond to insensitive eigenvalues.

Let us briefly introduce the concept of the spectral condition number and then

show why this number does not help us to detect the encountered instability in the

Darling-Dennison Hamiltonian. This should make ultimately clear that the suscepti-

bilities are not "just a trivial consequence of the near degeneracy of the eigenvalues"

as a critic put it. We follow an exposition by Wilkinson [1].
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The spectroscopic condition number

Consider the matrix R that under the similarity transformation by the matrix of its

eigenvectors T takes the diagonal normal form

T-'RT = diag(Ai). (B.1)

We introduce some erratic elements S, e being a parameter, into R according to

R = R + ES, (B.2)

such that R is diagonalizable and has an eigenvalue A -Ai. Then we may write

T-1(f - AI)T = diag(Ai - A)[I + ediag(Ai - A)- 1T-1ST]. (B.3)

Since by construction the matrix on the left is singular, the matrix on the right must

be singular also and therefore have a vanishing determinant.

In order to proceed from here let us define the spectral norm II X II, of a matrix

X as its largest possible eigenvalue. If I + X is singular, II X II,> 1 must be true;

otherwise the determinant of I + X cannot vanish. Therefore we may write

e II diag(Ai - A)-T-1 ST Ils> 1, (B.4)

and after some manipulation

e 11 T -1 Ilsll T IlslI S Is> minlAi - Al. (B.5)

Thus there is at least one eigenvalue Ai of R for which

IAi - A1 < p(T) II S I1,, (B.6)

p(T) = T - 1 sll T lIs . (B.7)
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p is called the spectral condition number. The larger p is the larger the upper bound

on the deviation of the erroneous A from the actual A turns out to be. Note that for

normal R

p(T) =1l T - '1 sl T I>lt T-1 T II,= 1. (B.8)

This is certainly true for unitary or orthonormal T, i.e. hermitian or symmetric R.

In those cases the condition number takes its smallest possible value p = 1. This

implies that all quantum mechanical eigenvalue problems are well conditioned due to

the hermiticity of the Hamiltonian.

Still, that seems surprising considering the Darling-Dennison system with its

miniscule splittings between successive eigenvalues within a polyad. However, we

have to bear in mind that each of those eigenvalues of a split pair can be obtained

from a different block of the Hamiltonian in a symmetry adapted representation.

Within those blocks all eigenvalues appear well separated. Therefore, in principle, we

may separately determine those eigenvalues to any accuracy.

Instability of the eigenvector calculation for well-conditioned problems

Even if the eigenvalue problem is well conditioned the eigenvector problem may not

be. This phenomenon appears in many algebraic eigenvalue problems. Wilkinson

identifies as the most notorious case tridiagonal matrices with varying diagonal ele-

ments which appear in almost every field of physics. He offers an explanation which

requires to go into some detail without trying to be pretentious.

Consider a real symmetric tridiagonal matrix R with diagonal elements dl, d 2,

... ,d, and off-diagonal elements 02, 03,..., o,. The eigenvalue problem is readily

formulated for the components a, a 2, a,n of the eigenvector a and the eigenvalue

A as follows

(dl-A)al + o 2a 2 = 0, (B.9)

oai + (di - A)ai + oi+lai+l = 0, i = 2, 3,..., n - 1 (B.10)

onan 1 + (dn - A)a = o. (B.11)

190



Let us suppose that we possess knowledge only of an approximate eigenvalue A close

to A and try to solve for the components ai. This is equivalent to having small errors

in all the diagonal elements di and solving for the components ai using the correct

eigenvalue A of R. Now we use A to solve the system of eqn.(B.9,B.1O,B.11) except

one equation, say the rth, 1 < r < n, that by assumption cannot obey eqn.(B.10).

Without loss of generality we set the error to 1 and write in matrix notation

(R-AI)a = ur, (B.12)

where ur is the rth unit vector. Since (R - AI) is by assumption regular we can solve

for a by inversion

a = (R - AI)-u1 . (B.13)

Since R is symmetric its eigenvalue problem is well conditioned and in order to make

clear that the instability we are about to encounter is not due to degeneracies in the

eigenvalue spectrum we assume all eigenvalues Al, A2 ,.. , An to be well separated. We

chose A close to Ak and therefore well separated from all other eigenvalues.

Now we expand u, in the basis of normalized eigenvectors t, t 2,..., tr to R

n

Ur = Z citi. (B.14)
i=l

Together with eqn.(B.13) we find that

Oatk ___iti

a= k + A iA (B.15)

We conclude that a is a good approximation to tk only if ak/(Ak - A) is much larger

than the sum of all other terms ai/(Ai - A), i k. By assumption the denominator

(Ak - A) is much smaller than any other denominator (Ai - A). However, we have no

guarantee that ak is not much smaller than (Ak - A) and therefore much smaller than

the sum of all other i, i $ k. If this is the case the approximate eigenvector a will
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be nearly orthogonal to Uk. This is the case when

ak = tUr, (B.16)

i.e. the rth component of the true eigenvector tk is almost vanishing. Surprisingly,

this appears to be very common and is the case for the Darling-Dennison Hamiltonian

with its eigenstates that show strong bias towards particular components.

Let us briefly illustrate how the eigenstates to the lowest lying eigenvalues of

Darling-Dennison Hamiltonian for the water molecules, I = 10, react onto a pertur-

bation of a single element far off the diagonal. To be specific, we chose the element

cl". The order parameter diagram is shown in Figure B-1. The perturbation appears

to have no effect up to magnitudes comparable to the size of the harmonic couplings

as can be seen from (a). Note however the two dots at log(e) ~ -7, i.e. a possi-

ble instability as predicted from the susceptibilities in chapter 2. We magnify the

interval -7.770735 < log (e) < -7.770715 and see in (b) that the order parameter

shows full response for the eigenstates 'J1o, i, 0 >, as we expected from the discus-

sion in chapter 2. Further magnification of the positive ordinate region (c) shows

a quite complicated pattern of response . A look at the lowest lying eigenvalues

(d) shows that they scatter statistically over the last digit available for computation,

i.e. the round off error causes fluctuations (O(10-12 cm- 1) in the energy eigenvalues

(O(103cm-1 )). These tiny fluctuations are responsible for the observed pattern in the

order parameter. Physically, we can interpret these tiny fluctuations as arising from

the coupling of the molecule to its environment.

Near degeneracy of eigenvalues of tridiagonal matrices

As a final aside let us show that if the eigenvector tk has a pronounced minimum

around 1 < r < n, then there are at least two nearly degenerate eigenvalues. Note

1This pattern was independently exposed to some test persons that unanimously identified it as
an angel. Upon exposure several times the statement "God is in the details" was heard. However,
no agreement could be reached on one of the tantalizing questions of scholastics: what is the sex of
an angel ?
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Figure B-I: Sensitivity of the I'0o, ±, 0 > states for water to a symmetry breaking
perturbation.
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that the Darling-Dennison Hamiltonian in the local representation tends to have

eigenvectors like this in the low energy end of each polyad. This can be explained from

the quadratic regression followed by quadratic progression of the diagonal elements.

The idea is to show that if three consecutive components of an eigenvector to a

tridiagonal matrix are small, then there are at least two almost degenerate eigenvalues.

This is obviously true if those elements are zero and consequently the eigenvalues are

exactly degenerate.

It is straightforward to quantify this as follows. Assume that the components of

the eigenvector are minimal around 1 < r < n, i.e.

tk = t = (tl, t2 , .. , tr-l, tr, tr+l, ... , tn-l, t)T, (B.17)

and the components tr, tri± are much smaller than any other component. The eigen-

value equation

Rtk - Aktk = o (B.18)

is exactly obeyed. Now we seek only approximate solutions sl, s2 ,..., sn of eqn.(B.18).

By inspection we try

S1 = (tl, t2 , ... , tr-2,0, , * (B.19)

s2 = (0,.., 0, tr+2,... tn--, tn)T . (B.20)

The approximate eigenvalue equations then read

(AkI - R)S 1 = (0, ... , Or-ltr-l, (dr- - Ak)tr-l + Ortr, 0, . .O)T (B.21)

(AkI - R)S 2 = (0,... ,0, Or+ltr + (dr+l- Ak)tr+l, Or+2tr+l, O,. .,O)T . (B.22)

Based on the assumption on the magnitude of t, tr±1 we conclude that Ak is close to

a pair of nearly degenerate eigenvalues, because sI, s2 fulfill the eigenvalue equation

(B.18) to O(tr, tr±i). The approximate eigenvectors sl, s2 are orthogonal. From s1, s2

we can construct tk and the almost degenerate tlAk to O(tr, tr±1) that are deficient in
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their components r - 1, r, r + 1.
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Appendix C

The discrete self-trapping

equation

The dynamics of the two model systems studied in this thesis, i.e. the Darling-

Dennison system and the nonlinear dimer in the Duffing limit, have as common

mathematical root a particular type of nonlinear Schr6dinger equation: the discrete

self-trapping equation (DSE). The equations of motion for a variety of quasiparticles

in condensed systems like a polaron, soliton, conformon or local mode can be brought

into into the form of the DSE. All those systems have the common physical feature

that an excitation moves in a medium that responds to the presence of the excita-

tion. In turn, the excitation responds to the induced change in physical properties

of the medium. To wit, the medium mediates the interaction of the excitation with

itself. Therefore the formation of those quasiparticles is sometimes referred to as

self-trapping. The particular mechanisms for a local mode and a small polaron are

explained in this thesis. In this appendix we will discuss the DSE and show how it can

be derived from the Hamiltonians of the model systems under study. Furthermore,

we will establish the connection of localization on a microscopic scale to localization

of excitation on a macroscopic scale in form of solitary waves.
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Formal introduction

This formal introduction of the DSE follows essentially an exposition by Eilbeck et

al. [1]. First, let us have a look at the explicit form of the DSE and then show some

possible derivations.

The dynamics of an excitation in a medium with the specified loci 1 < j < 1 that

responds instantaneously to its presence can be approximated by the following set of

ordinary differential equations with modular quadratic nonlinearities

(idt - rj)a + 6diag(al 12, la212, , a 2)a + eMa = 0. (C.1)

Here

a= (al, a2, ... , al) (C.2)

contains the probability amplitudes aj of finding the excitation at the locus j in the

medium.

The connectivity of the loci is recorded in the real symmetric connectivity I x 

matrix M = mjk, the coupling strength between those loci is e.

The time evolution of the probability amplitude aj is linear in ak, k j, i.e. the

excitation can be periodically transferred between the loci j and k.

The time evolution is also linear in the probability densities lajl2 (to be explicit,

bilinear in the probability amplitudes and densities), i.e. the transfer of the excitation

from locus j is either retarded or accelerated, dependent on whether the proportion-

ality factor 6 is positive or negative. This can be seen if we view 77 - 61ajl2 as the

resonance frequency at locus j that depends on the amount of excitation being present

there.

Therefore the constant 6 reflects the tendency of localization, whereas the constant

e reflects the tendency of transfer.

Formally the DSE can be derived from the Lagrangian density L and the varia-
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tional principle.

L = { [ia*aj + (ia aj)*]- . 7)aj 2 aj4 + E mjkaak}, (3)
2 (C.3)

j=1 kcj

AL OL
0 = dtaL - (C.4)

dL AL
0 = dt (C.5)

daj daj

Note the gauge invariance under the transformation aj - aj exp (iojt) that allows the

elimination of the corresponding term -aj from the DSE.

It may be more convenient to consider the Hamiltonian density H defined by

1 
H = 2[iajj + (iajaj)*] - L, (C.6)

H = (71 aj 2 - aj I'- EMjkaja) (C.7)j=l
j=1 k$j

Then the DSE follows directly from Hamilton's canonical equations where aj and iaj

are conjugate

DH
a; =

iaj*

ia = --. H (C.8)
daj

Furthermore, let us define the numbers

nj = aj 2 , (C.9)

n= Enj. (C.10)
j=1

Then it is is straightforward to show that H and n are dynamic invariants, i.e.

H = N = O, (C.11)

which implies that the DSE conserves energy and the total amount of excitation.
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In the following, we will briefly connect to the studied model systems and then

show an interesting implication of the DSE for the behavior of a highly excited chain

of coupled Morse oscillators.

Dynamics of the Darling-Dennison system

We begin with the classical Darling-Dennison Hamiltonian that can be written in the

form

HDD = wn + (n 2 + n + 2n12n2 + (aa 2 + ala*), (C.12)
2

using the notation introduced in the second chapter. A straightforward application

of Hamilton's equations (C.8) together with eqn.(C.10) and 4 X = a - a1 2 yields

[idt - (w + Nal2)]al - 4lall2al - a2 = 0, (C.13)

[idt - (w + Nal2)]a2 - 4Xla212a2 - (al = 0. (C.14)

Comparing with the DSE (C.1), 1 = 2,mll = = 0,ml12 = m21 = 1, we see

that Tr = w + Na 12, 6 = -4X, e = -. We conclude that the tendency to localize a

vibrational excitation is related to the sum of the anharmonic contributions 4 X =

a - a 1 2. The transfer tendency is given by the coupling (.

Dynamics of the nonlinear dimer in the Duffing limit

Next, let us consider the nonlinear dimer. The Hamiltonian can be written as

H = 2 2 + + W2(Q2 + Q2)] - x(Qla, 12 + Q21a212) - (ata2 + ala*), (C.15)

using the notation introduced in the third chapter. Note that here X is the electron-

phonon coupling constant. Assuming that w > we employ the adiabatic approxi-

mation in the Duffing limit, i.e. we neglect the kinetic energy of the oscillators and

minimize H over the coordinates (Q1, Q2). The result is

Qad = X ai 12,i = 1, 2. (C.16)
jW2
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Then we eliminate the oscillator coordinates from H to obtain the adiabatic Hamil-

tonian

Had _ w2 (lal + la2
4 ) _ ((a'a 2 + ala2). (C.17)

In order to obtain the equations of motion for the amplitudes al, a 2 we use Hamilton's

equations (C.8). The result is

X2idtal + X a 2 al + a2 = 0, (C.18)
/W2

2
idta2 + 2 a2

2a2 + (a = 0. (C.19)

Comparing with the DSE (C.1), = 2, m1l = m22 = 0, m1 2 = m21 = 1, we see that

77 = 0, 6 = X2//lw 2 , e = (. We conclude that the tendency to localize the electron is

given by the ratio of the square of the electron-phonon coupling constant X and the

force constant of the oscillators k = /pw2. The tendency to transfer the electron is

given by the electronic coupling (.

Localization on a macroscopic scale: solitary waves

It it interesting to see that the tendency to localize excitation in the discussed systems

is not only present on the microscopic scale of two sites but prevails over larger

scales. We will demonstrate this by sketching the behaviour of an infinite chain of

harmonically coupled Morse oscillators in a highly excited state. The mathematical

aspects are discussed along the lines of Davidov's work [2] on solitary excitons in

proteins and Holstein's work [3] on polaron motion.

The Hamiltonian can be written as a generalization of the classical Darling-

Dennison Hamiltonian.

H = wn + [n k + ((aka+l + akak+l)]. (C.20)
k=l1

Here we assume nearest neighbour coupling and can neglect the diagonal couplings

of the form nknk+l without loss of generality since they lead only to a modification

of the parameters in the DSE. The equation of motion for the kth component can be
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obtained from Hamilton's equations (C.8)

(idt - w)ak - ak 2ak - ((ak-1 + ak+l) = 0. (C.21)

We introduce the dimensionless distance coordinate p = r/(rk+l - rk), where r is a

distance coordinate along the chain and rk+1 - rk is the distance of the equilibrium

points kth and (k + 1)th unexcited oscillators. Now we take the continuum limit, i.e.

ak -+ a(p), (C.22)

&2a(p)
ak+l - 2 ak + ak-1 -+ 2 (C.23)

Then eqn.(C.21) takes the form

ia(p, t) - ( a( t) &-a(p, t) - ala(p, t) 2 a(p, t) = 0, (C.24)ap2

where = w - 2. This is type of equation has been extensively studied and its

solution is called a solitary wave, i.e. a wave that moves without loosing coherence.

We try as ansatz the normalized function

a = -expi[A(p - Po) - Bt]sech[C(p - Po) - Dt], (C.25)

such that

/(a*a)dp = n(C.26)

and find

2D
A = , (C.27)

an

(an)2 4D 2 (
B = w-2 + () ) ( (C.28)

an
C = (C.29)

4(Let us have a look at the energy B of the moving excitation where we introduce the

Let us have a look at the energy B of the moving excitation where we introduce the
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velocity v of the excitation as v. = D/C = 4(D/an and find

1(-)2 1 1 
B = w - 2 + 2 2( 22 (C.30)

2 2( 22~

Typically the coupling between oscillators lowers the total energy of the chain. There-

fore, we may assume to be negative. Then we may interpret the last term in

eqn.(C.30) as an increase in the energy of the solitary wave due to the kinetic en-

ergy of the excitation with the inertia 2 and the term before the last as decrease

in energy due to the distortion of the chain according to the anharmonicity of the

single oscillators. The excitation becomes "heavier" by distorting the chain. This is

in complete agreement with the intuitive picture outlined in the introductory chapter

of this thesis.

What is particularly surprising is that the particle like excitation is not due to the

presence of a non vibrational degree of freedom like an electron, hole, spin, dots, but

arises from the anharmonicity of the single oscillators, i.e. a property of the medium

itself.

However, we can save the picture of an excitation that distorts the medium it is

moving in by interpreting the Morse oscillator as a harmonic oscillator whose reso-

nance frequency is a linear function of the amount of excitation being present.

What remains is to state the conditions for the formation of such an excitation.

We estimate the density of solitary excitation to be significant if the width Ap around

the center obeys the condition ApC ~ 0(1). The continuum limit can be justified

if Ap > 0(1) and thus C < 1, i.e. C > an. Comparing this to the condition for

localization on the Darling-Dennison dimer, = /2xI < 1, X = (a - a12)/4 we

see that the conditions for formation of a "small" localized excitation and a "large"

localized excitation are complementary, i.e. if the localization does not occur on the

microscopic scale it still can happen on a macroscopic scale. Then the halfwidth

should certainly not extend over the entire system, i.e. Ap < L/(rk+l - rk) must

be true, where L is the length of the chain. Therefore the lower limit on a to allow

localization on a macroscopic scale is given by 1/C < L/(rk+l - rk), i.e. an >
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((rk+l - rk)/L. Therefore we can state the following approximate conditions: the

macroscopic solitary excitation is forming if ((rk+l - rk)/L < an < and a local

mode on a single oscillator is forming if on > .
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