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Abstract

This thesis is concerned with the propagation of waves in a fluid-filled borehole and
their interactions with a surrounding elastic formation. In particular, we focus on
the lowest order borehole mode, the Stoneley wave. The three problems of interest
here are: radiation from the borehole into an anisotropic formation; the interaction of
Stoneley waves with fluid-filled fractures; and the effects of formation nonlinearities on
the propagation of Stoneley waves.

In the first part of the thesis we develop a formalism which represents the borehole
in terms of effective sources for low-frequency radiation into an anisotropic, slowly
varying medium. The method consists of introducing the ratio of borehole radius
to wavelength e as a small parameter and then obtaining an asymptotic solution in
ascending powers of e. In this way we obtain a sequence of problems which are solvable
in a closed form. The first problem is a two-dimensional static elastic problem for the
inflation of a borehole in an arbitrary anisotropic solid. The next problem involves a
one-dimensional hyperbolic system of equations for pressure and longitudinal particle
velocity in the fluid. The coefficients in this system involve the solution to the first

problem. The final step is to find a source of seismic waves in the solid, which is
equivalent to the traveling tube wave (low-frequency limit of the Stoneley wave). That
is, we replace the solid and borehole by an intact solid and construct a moving system
of body-force dipoles concentrated along the location of the centerline of the borehole,
which generates the same seismic radiation as the propagating tube wave in the actual
borehole. By combining the body force distribution with appropriate Green's functions
we obtain the far-field radiation pattern from a source in a borehole. Results are
obtained for situations where the tube wave is either faster or slower than the quasi-
shear waves in the solid. In the former case we identify the existence of (possibly two)
Mach waves and provide explicit solutions for the far-field radiation. The cross-well
geometry, where a source is placed in one borehole and receivers in another, is also
analysed and a solution is obtained in a form which clearly exhibits reciprocity.



In the second part we develop analytical and finite-difference models for study-
ing wave propagation in boreholes surrounded by inhomogeneous elastic media. The
presence of a fluid-filled fracture intersecting the borehole is modelled explicitly and its

effects on Stoneley waves are studied. For instance, we find that elasticity of the forma-

tion tends to increase the reflection coefficient of Stoneley waves. On the other hand,
multiple fractures lead to an interference phenomenon which results in a decrease of the
reflection coefficient when compared to a single fracture with the same total aperture.
The effects of a washout in the presence of a fracture are shown to be negligible at
low frequencies but it strongly dominates the reflectivity at higher frequencies. The

analytical models we have developed can be used to interpret Stoneley wave reflection
data, where the effective fracture aperture can be quantified. The first model consid-
ers the effects of borehole enlargements (e.g., washouts) on the reflection coefficient
of Stoneley waves. By using low-frequency arguments we obtain an expression which
involves the washout volume, which can be obtained from a caliper log. Comparisons
of this model and the finite-difference solutions previously obtained are in good agree-
ment. Next we develop an elastic model which generalizes the rigid formation model
and correctly predicts the effective fracture aperture. We also establish the equivalence
between multiple fractures and a permeable medium.

In the third part we study the effects of formation nonlinearities on the propagation
of Stoneley waves. We motivate the study by recognizing that rocks are much more
nonlinear than homogeneous materials. We then introduce a formalism for studying
small amplitude wave propagation in prestressed media, and develop a perturbation
model that allows the computation of changes in Stoneley wave phase velocity as a
function of borehole pressure. The results obtained indicate that the effects are mea-
surable and that pressurizing the borehole is an effective method of measuring the
in-situ nonlinear properties of rocks.

Thesis Advisor: M. Nafi Toks5z
Title: Professor of Geophysics

Thesis Co-Advisor: R. Burridge
Title: Scientific Advisor
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Chapter 1

Introduction

1.1 Background

In the last 10-15 years the acoustic properties of a fluid-filled cylindrical cavity in an

elastic solid have received a great deal of attention, not least because of its techni-

cal importance in the search for oil reserves. The classic papers by Tsang and Rader

(1979), Cheng and Toks6z (1981), and Kurkjian and Chang (1986) have established

that, depending on the spatial dependence of the sourcing transducer, the acoustic

signal is composed of many different components. Some of these are normal modes

of the system, corresponding to poles in the appropriate Green's function, and others,

"head waves", corresponding to branch points. If the source has an axially symmet-

ric component, it is known that at low frequencies the dominant contribution to the

acoustic signal is due to the lowest order mode in the problem, the "tube wave". It

consists primarily of a longitudinal vibration of the fluid, and it propagates with a

speed depending upon the properties of the fluid and, because of some compliance of

the borehole wall, the geometry of the borehole and the properties of the solid. If the

solid were perfectly rigid, the tube wave speed would be the characteristic acoustic

speed in the fluid.

Because of the compliance of the borehole wall, a tube wave may act as a source

of seismic waves in the surrounding solid. In a fast formation, where the tube wave

is slower than the shear wave in the solid, a steadily moving tube wave produces a



disturbance which is confined to the neighborhood of the borehole, but seismic waves

are excited where the tube wave behaves discontinuously, such as near the source and

as the wave passes through significant interfaces. In a slow formation, where the tube

wave is faster than the shear wave in the solid, in addition, a propagating tube wave

will continuously shed a conical shear wave as it travels.

White and Sengbush (1963) computed the low-frequency far-field radiation from a

point source in a fluid-filled borehole by integrating the contribution from the pressure

wave propagating along the borehole at the tube wave speed. In doing so they used

a result obtained by Heelan (1953) who computed the far-field low-frequency displace-

ments due to a transient pressure applied to a short length of an empty cylindrical

borehole. The far-field low-frequency displacements thus obtained are a generalization

of the results obtained by Lee and Balch (1982) who derived these displacements by

a stationary phase approximation to the exact solution of a point source in a fluid-

filled borehole. White and Sengbush (1963) addressed the cases of both fast and slow

formations.

Based on the results of Lee and Balch (1982), Ben-Menahem and Kostek (1991)

recognized that, under certain circumstances, the far-field low-frequency radiation from

a point source in a fluid-filled borehole was equivalent to that generated by a suitable

combination of a monopole source and a vertical dipole source localized in the formation

in the absence of the borehole. Kurkjian et al. (1992) showed that the exact radiation

pattern was obtained if the mechanism above was allowed to move up and down the

borehole at the tube wave speed.

Recently there has been much interest in cross-well tomography in which sources

are placed in one borehole and receivers in another. The radiation related to the source

well has also been studied by de Bruin and Huizer (1989), Albright and Johnson (1990),

and Meredith (1991), whereas coupling of formation body waves into tube waves was

first treated by White (1953), and later analyzed by Schoenberg (1986). Complicated

couplings from tube waves into channel waves in the source well, and from channel



waves into tube waves at the receiver well has been described by Lines et al. (1992),

Albright and Johnson (1990), and Krohn (1990). Further complications arise if the

formation is anisotropic. Thus, it becomes important to develop a general method for

obtaining equivalent sources in these circumstances.

Tube waves are also important in fracture detection. Reflected tube waves (low-

frequency Stoneley waves) have been used by Hornby et al. (1989) to locate fractures

and estimate their effective aperture by using a simple analytical model. The ap-

proach considers both horizontal as well as inclined parallel-plate models of fractures.

Comparisons with laboratory data show that the simple analytical model tends to un-

derestimate the reflection coefficient of Stoneley waves. To account for the effects of

the wall elasticity, Tang (1990) used a modal solution valid at low frequencies to de-

rive expressions for the reflection and transmission coefficients of Stoneley waves from

a horizontal parallel-plate model of a fluid-filled fracture. The reflection coefficients

resulting from this model are higher in amplitude than the ones predicted with the

rigid formation assumption. Multiple fractures and borehole environmental conditions

also affect tube waves in various ways (Kostek and Randall, 1991). Further modeling

is required in order to extract quantitative information from reflection data.

Finally, nonlinear effects in rocks such as manifested in their pressure dependence

of wave speeds, have been recognized in the past (King, 1966; Toks6z et al., 1976)

but have gained interest only recently (Johnson et al., 1987; Johnson and Shankland,

1989; Johnson et al., 1991; Meegan et al., 1992; Johnson et al., 1992). The microstruc-

ture of the rocks (microcracks, grain-to-grain contacts, etc.) clearly give rise to this

highly nonlinear behaviour. These structural inhomogeneities act as nucleation sites

for failure, whose initial stages are accompanied by the movement of dislocations, the

development of a system of microcracks, the opening of microcracks and pores, the for-

mation of macrocracks, and finally, failure. Laboratory studies (Shkolnik et al., 1990)

showed that higher-order elastic constants are much more sensitive than the linear

constants to detect such inhomogeneities. In-situ formation nonlinearities have never



been measured before with wave propagation techniques. It becomes of interest to

understand the nonlinear effects on tube waves, since they are potentially related to

rock strength.

1.2 Outline

This thesis is concerned with the propagation of waves in a fluid-filled borehole and

their interactions with a surrounding elastic medium. We develop a formalism which

represents the borehole in terms of effective sources for low-frequency radiation into

an anisotropic, slowly varying medium. The fundamental borehole mode which gives

rise to this radiation is the tube wave (low-frequency Stoneley wave). Its interaction

with fluid-filled fractures intersecting the borehole are studied through numerical and

analytical models. The effects of formation nonlinearity on this borehole mode are also

studied.

In Chapter 2 we present the low-frequency asymptotic theory for representing

sources in a fluid-filled borehole. The method consists of introducing the ratio of

borehole radius to wavelength E as a small parameter and then obtaining an asymp-

totic solution in ascending powers of c. In this way we obtain a sequence of problems

which are solvable. The first problem is a two-dimensional static elastic problem for

the inflation of a borehole in an arbitrary anisotropic solid. The next problem arising

in the asymptotic approach involves a one-dimensional hyperbolic system of equations

for pressure and longitudinal particle velocity in the fluid. The coefficients in this sys-

tem involve the solution to the static elastic problem just mentioned. The next and

final step is to find a source of seismic waves in the solid, which is equivalent to the

traveling tube wave. That is, we replace the solid and borehole by an intact solid and

construct a moving system of body-force dipoles concentrated along the location of the

centerline of the borehole, which generates the same seismic radiation as the propagat-

ing tube wave in the actual borehole. Explicit results are obtained for a medium with

orthorhombic symmetry.



In Chapter 3 we quote a form for the far-field Green's function in an anisotropic

medium and then combine it with the body force distribution to calculate the far

field. Results are obtained for situations where the tube wave is either faster or slower

than the quasi-shear waves. In the former case we identify the existence of (possibly

two) Mach waves and provide explicit results for the far-field radiation. The important

cross-well geometry, where a source is placed in one borehole and receivers in another, is

analysed. The solution is obtained in a form which clearly exhibits reciprocity. The far

field is first specialized to a circular borehole in an isotropic medium, and shown to be

identical to those of Lee and Balch (1982) and Ben-Menahem and Kostek (1991). Then,

the nontrivial case of a borehole in a transversely isotropic medium is considered, where

we show the radiation patterns and wavefront surfaces for various situations involving

media with symmetry axis parallel or perpendicular to the borehole axis, and also with

triplication of the quasi-shear wavefront.

Chapter 4 presents a mathematical model and its numerical implementation, for

studying wave propagation in boreholes surrounded by inhomogeneous elastic media.

The presence of a fluid-filled fracture intersecting the borehole is modelled explicitly

and its effects on Stoneley waves are studied. Various situations involving rigid/elastic

formations, single/multiple fractures, and borehole washouts are studied and their

effects on the reflectivity of Stoneley waves are discussed. For instance, we find that

elasticity of the formation tends to increase the reflection coefficient of Stoneley waves.

On the other hand, multiple fractures lead to an interference phenomena which results

in a decrease of the reflection coefficient when compared to a single fracture with

the same total aperture. The effects of a washout in the presence of a fracture are

shown to be negligible at low frequencies but strongly dominates the reflectivity at

higher frequencies. These examples illustrate that better models are needed in order

to obtain quantitative information from reflected Stoneley waves.

In Chapter 5 we develop a series of simple analytical models which can be used to

interpret Stoneley wave reflection data. For instance, the effective fracture aperture



can be quantified. The first model considers the effects of borehole enlargements (e.g.,

washouts) on the reflection coefficient of Stoneley waves. By using low-frequency ar-

guments we obtain an expression which involves the washout volume, which can be

obtained from a caliper log. Comparisons of this model and the finite-difference so-

lutions previously obtained are in good agreement. Next we develop an elastic model

which generalizes the rigid formation model of Hornby et al. (1989). It also agrees with

the finite-difference calculations obtained in the previous chapter. We finally establish

the equivalence between multiple fractures and a permeable medium.

In Chapter 6 we study the effects of formation nonlinearities on the propagation

of Stoneley waves. We motivate the study by recognizing that rocks are much more

nonlinear than homogeneous materials. We then develop the formalism for studying

small amplitude wave propagation in prestressed media, and a perturbation model

that allows the computation of changes in Stoneley wave phase velocity as a function

of borehole pressure. The results obtained indicate that the effects are measurable and

that pressurizing the borehole is an effective method of measuring the in-situ nonlinear

properties of rocks.



Chapter 2

Tube Waves and Effective Sources

2.1 Introduction

An important wave mode which propagates along a fluid-filled borehole is the Stoneley

wave. At low frequencies this mode is usually called a "tube wave", which is primarily

a longitudinal vibration of the fluid. It propagates with a speed depending upon

the properties of the fluid and, because of some compliance of the borehole wall, the

geometry of the hole and the properties of the solid. If the solid were perfectly rigid,

the tube wave speed would be the characteristic acoustic speed in the fluid.

Because of the compliance of the borehole wall, a tube wave may act as a source

of seismic waves in the surrounding solid. In a fast formation, where the tube wave is

slower than the shear wave (S-wave) in the solid, a steadily moving tube wave produces

a disturbance which is confined to the neighborhood of the hole, but seismic waves are

excited where the tube wave behaves discontinuously, such as near the source and as

the wave passes through significant interfaces. In a slow formation, where the tube

wave is faster than the S-wave in the solid, in addition, a propagating tube wave will

continuously shed a conical shear wave as it travels.

Most previous related work has been confined to circular holes in isotropic solids

because wave problems in such a structure can be solved exactly in terms (of infinite

sums and integrals) of Bessel functions and exponentials. See, for instance, Lee and

Balch (1982), where the authors obtain an exact solution and then consider the low-



frequency regime, where the borehole radius is much less than a wavelength.

In view of the difficulty (perhaps impossibility) of solving analytically any but the

most symmetrical dynamical problems, and the difficulty at this time of obtaining

three-dimensional numerical solutions, we have developed a method of obtaining the

low-frequency (or narrow-borehole) approximation directly without first obtaining an

exact solution. The method consists of introducing the ratio of borehole radius to wave-

length c as a small parameter and then obtaining an asymptotic solution in ascending

powers of c. In this way we obtain a sequence of problems which are solvable.

The first problem is a two-dimensional static elastic problem for the inflation of

a hole in an arbitrary anisotropic solid. The relevant theory was developed to study

stress concentrations around holes in plates under tension. See Lekhnitskii (1963) and

Savin (1961). In those works the solution is obtained in terms of stress functions.

For variety, in this thesis, we present the theory in terms of displacement, since this

relates more closely to the physics under consideration. The next problem arising in

the asymptotic approach involves a one-dimensional hyperbolic system of equations for

pressure and longitudinal particle velocity in the fluid. The coefficients in this system

involve the solution to the static elastic problem just mentioned.

The next and final step is to find a source of seismic waves in the solid, which is

equivalent to the traveling tube wave. That is, we replace the solid with a hole by an

intact solid and construct a moving system of body-force dipoles concentrated along

the location of the centerline of the hole, which generates the same seismic radiation

as the propagating tube wave in the actual hole. As final generalizations we allow the

cross-section of the borehole to be elliptical and allow the borehole centerline to be

curved, provided that the radius of curvature is long compared with a wavelength. We

assume the ratio is O(1/e).



2.2 Equations of Motion in Borehole-Centered Co-
ordinates

In this section we define borehole-centered coordinates, which are a curvilinear orthog-

onal system in which one coordinate is arc-length s along the centerline of the hole and

the other two are cartesian coordinates in the plane perpendicular to the borehole at

the point specified by s. As s varies this system does not rotate around the centerline.

The system is singular at the center of curvature of the centerline. The acoustic equa-

tions in the fluid, the elastodynamic equations in the solid, the appropriate interface

conditions on the surface of the borehole, and the conditions at infinity are stated first

in cartesian coordinates and then in the borehole centered coordinates.

2.2.1 Borehole-Centered Coordinates

Let x = (x1, x2, X3) be cartesian coordinates and let

x = X(s) (2.1)

be the equation of the borehole axis parametrized by arclength s. Then

e3(s) = X'(s) (2.2)

is a unit tangent vector to this curve. We complete e3 into an orthonormal triple

{e1, e2, e3} by requiring that as s varies, this frame does not rotate about e3 (s); that

is, the component of its angular velocity about e3(s) is zero. To do this we regard e3 (s)

and es(s) as given and choose e1 (s), e2(s) so that

e'(s) = -[e'(s)-e1(s)]e3(s), (2.3)
e'(s) = -[e'(s)'e2(s)]e3(s).

Then
e'(s) = -aie 3 (S),

e'(s) = -a 2e3 (S), (2.4)

e'(s) = aiei(s) + a 2e2(S),

where

ai = e'(s)'e1 (s), a 2 = e'(s)-e 2(s). (2.5)



We set

x = X(s) + qle1(s) + q2e 2(s). (2.6)

Then qi, q2, s = q3 are borehole-centered coordinates.

dx = [X'(s)+ qe'(s) + q2e'(s)] ds + dq1e1(s) + dq2e 2 (s)

= dq1ei + dq2e 2 + (1 - a1q1 - a 2q2) dq3 e3 , (2.7)

and so

|dxI2 = dq1 + dq + h2 dqi, (2.8)

where

h q(, q2,) = 1 - 1(q3)q1 - a 2 (q3)q2. (2.9)

Thus (q1, q2, Q3) form an orthogonal curvilinear coordinate system. We shall next state

the equations of motion in cartesian coordinates and then rewrite them in borehole-

centered coordinates.

2.2.2 The Equations of Motion in Cartesian Coordinates

The momentum and constitutive equations in the borehole fluid are

Pfv,t + Vp = 0, (2.10)

op,j + V-v = G,t. (2.11)

Here pg and a are the density and bulk compliance of the fluid, p and v are the pressure

and velocity, respectively, and G is a source term representing the production of volume.

Let p be the density, u the particle displacement, w = u,t the particle velocity, and r

the stress in the solid. Then the momentum and constitutive equations in the solid are

pw,j - V.r = 0, (2.12)

r = C : Vu, (2.13)

where c is the fourth rank tensor of elastic constants (stiffnesses). If the medium is

isotropic (2.13) specializes to

r = A(V -u)I + p(Vu + uV), (2.14)



where A and p are the Lam4' constants. Equations (2.13) and (2.14) may be differen-

tiated with respect to t to obtain

r, = c : Vw, (2.15)

r,t = A(V -w)I + p(Vw + wV). (2.16)

Together with (2.12) they form the elastodynamic equations as a first-order hyperbolic

system.

On the interface between the fluid and the solid (the borehole wall) the normal

particle velocity and traction are continuous:

n.(w + w') = n-v, (2.17)

(r + r')-n = -pn. (2.18)

Here n is the unit normal to the interface pointing into the solid; w' and ri are the

particle velocity and stress fields due to an incident wave. They satisfy the homogeneous

elastodynamic equations outside the borehole and enter our equations only through the

interface conditions (2.17) and (2.18). To complete the specification of the problem we

require the boundary condition at infinity that u, w,and r tend to zero as the field

point recedes from the borehole.

2.2.3 The Equations of Motion in Borehole Centered Coor-
dinates

Using the formulae of Subsection 2.2.1 we rewrite the equations of motion as follows.

Equation (2.10) becomes
pfV1,t + P,1 = 0,
Pf V2,t + P,2 = 0, (2.19)

pfV3,i + h- 1p,3 = 0.

Equation (2.11) becomes

o-p,t + V1,1 + V2 ,2 + h-1 (v3 ,3 - a11 - a 2V2 ) = G,t. (2.20)



The interface conditions expressed by Equations (2.17) and (2.18) become

nk(Wk + w') = nkVk, (2.21)

and

(ri + rj')nj = -pni. (2.22)

The boundary condition at infinity becomes

U, w, r-+0 as 2+g2 -+0oo. (2.23)

The momentum equation in the solid becomes

pWi,t = ru1 ,1 + 721,2 + h-1731,3 + h-1 (-airui - a 272 1 + a1 733 ),
pw2,t = 712 ,1 + T22,2 + h-1 r 3 2,3 + h-'(-air12 - a 2 T22 + a 2733 ), (2.24)

PW3,t = T13,1 + 723,2 + h~1r 33 ,3 + 2h-1(-air13 - a 2723 ).

The differentiated constitutive law becomes

rt = c: Vw, (2.25)

where
wi,1 w1,2  h-1 (wi,3 + aiw3)

Vw = w2,1 W2,2  h-1 (w2,3 + a2w3 ) . (2.26)
w3 ,1 w3 ,2 h1 (w 3 ,3 - aiwi - a 2W2 )

Substituting (2.26) into (2.25) and writing the result in full, one obtains

'rj,t= CijkSWk,S + h-c 1C,, 3 (w-y,3 + a,w 3)

+h-icij33(W3,3 - aiwi- a 2 w 2 ), (2.27)

where the repeated Greek subscripts are summed over the values 1,2. When the medium

is isotropic (2.27) specializes to

r1,t = (A + 2p)w1,1 + Aw 2,2 + h-A(w3 ,3 - aiwi - a2W2),

T22,t= Awi,1 + (A + 2t)w2,2 + h-1 A(w3 ,3 - aiwi - a2W2),

=33,= Aw1,1 + Aw2,2 + h-1 (A + 2pL)(w 3,3 - aiwi - a2w2), (2.28)
723,t = pLw 3,2 + h~1 (w 2,3 + a 2ws)],

T31,t = ps[w 3,1 + h-1 (wi,3 + aiw3 )],
rut = pL(w 2,1 + wi,2).



2.3 Asymptotic Analysis

In this section we introduce the small parameter e, assuming the radius of the hole is

0(1), the wavelength is O(1/e), and the radius of curvature of the borehole centerline

is O(1/e 2 ). We then specify that the solution should depend on time t and s only

through T = d and S = es and assume an asymptotic power series in e for each

dependent variable. The leading-order equations tell us that to this order the fluid

motion is longitudinal (along the well) and that the displacement in the solid is related

to the pressure in the fluid by a two-dimensional elastostatic problem. The equations

involving terms of the next order yield the one-dimensional acoustic system for pressure

and longitudinal particle velocity in the fluid, showing how the coefficients depend upon

the solution of the elastostatic problem which arose at the leading order. This one-

dimensional system is then solved for a volume-injection source concentrated at a point

in the borehole.

2.3.1 The Small Parameter E

In this section we shall make some assumptions about the relative sizes of the borehole

radius, the wavelength, the radius of curvature of the centerline of the borehole, and

the length scale on which the material properties vary, in terms of a small parameter

c. We shall assume that, in the units of the coordinates qi, the borehole radius is 0(1)

as c --+ 0. We shall assume that the wavelength is O(1/c). The scale on which the

medium properties vary and the radius of curvature are both 0(1/E2). Under these

assumptions 01 and a2 are O(E2). So, let us write

a; = <2#4, fl, = 0(1), (2.29)

and

h-= (1 - e2 lq _ 2 #2q2) i = 1 + O(e2). (2.30)

Let us introduce new "slow" variables T and S defined by

T=et, S=es. (2.31)



Then

(2.32)8: = Ear, 8, = COS.

We shall suppose that all quantities depend upon t and s only though T and S. Thus

we may rewrite (2.19) to (2.22) as

ePf V1,T + P,1 = 0,
ePf V2,T + P,2 = 0,
PfV3,T + P,S = O(e2).

ECP,T + EV3,S + VI + V2 ,2 - eG,T = O(e 2 ),

no(wo + wI) + Em 3 (W 3 + wI) = nova + eMv 3 ,

(ra + rI)n#+ em3(raa+ 3 ) =-pn

(r 3 +7r3)no + Em 3r33 = -Epm 3,

(2.33)

(2.34)

(2.35)

(2.36)

where the Greek subscripts range over 1,2 only. Because the equation of the borehole

wall depends upon q3 only through S, we have written

n3 = f 2 ms. (2.37)

Next (2.24) becomes

= T11,1 + 721, 2 + ET31,s -

EPW2,T = T12,1 + T2 2 ,2 + E732,S -

= T13,1 + T2 3 ,2 + C733,S -

e2#arai + O(e 3 ),
f2 /0.7.2 + O(e3 ),
2c2/3aT.3 + O(E3),

and (2.25) and (2.26) become

T, = c: Vw,

and

Vw = W2 ,1
W 3 ,1

Then (2.27) yields

ETij,T

wi, 2
W 2 , 2

WIS + E2#1W3

W2,S + F2 /#2W3

W 3 ,2 W 3 ,s - f 2#,Wi _ C2 0 2 W 2 +O(63).
= CijksWk,s + ECijk3Wk,s

+E 2Ci~j,3-YW3 - f2 Cij33#Wa + 0(E 3 ),

EPW1,T

EPWa,T

(2.38)

(2.39)

(2.40)

(2.41)



which, for an isotropic material, specializes to

eT11,T = (A + 2p)w1,1+ Aw2,2 + CAw 3,s + O(e2 ),
ET22,T = AW1,1 + (A + 2pt)w 2,2 + EAW3,S + 0(E 2 ),

e33,T = Aw 1,1 + AW2,2 + E(A + 2pi)w3,s + O(e2), (2.42)
er23,T = p(w 3 ,2 + EW2,S) + O(E 2))

e731,T = p(w 3 ,1 + EW1,S) + O(E 2 ),

er12,T = p(w 2,1 + wi,2).

We shall assume that the field quantities can be expanded in powers of E. However,

they do not all start at the same power. Thus let

v = v() + evO) + O(E2 ),

p = (0) + fp(1) + O(C2),
u = u(O) + eu0) + O(E2 ),

W = EW(O) + E2W(1) + O(e 3 )' (2.43)
r = r(O) + erl) + 0(E 2 ),

U = UI(O) + EUI(1) + 0(E 2 ))

W = EW1(0) + E2WI(1) + O(E3 ),

r - () + rI(1) + 0(E 2 ).

Also

U,W,r -+ 0 as q +gj- oo. (2.44)

2.3.2 The Leading Terms in E and the Elastostatic Problem

We next write (2.33) to (2.41) to leading order in e, using (2.43):

(0) =P1 0,
i2) 0, (2.45)

(0) (0) =0.P1 V3,T + P'S

V() +V() = 0. (2.46)
V1,1 + ,

0 = na{vO). (2.47)

(rT() + r( )n, = -p()n, (2.48)
(r0) + ra 0 ))no = 0.

0 = rT21+T72, (2.49)

0 = 1,+ 23,2

0 (0) (2.50)

Til 1 + Cil 27~y



which may be integrated in T to get

rgi = Cijk-yUky.

The boundary condition gives

u(O) -+ 0 as 0q0 + 2 -+ oo.

Equation (2.45) implies that p(o) is independent of q1 and q2. Thus

p(0) = P(0) (S, T).

Assuming irrotational fluid motion,

V x V = 0,

Equations (2.46) and (2.47) imply that

V(0) = 0, o(0) = 0.

Equations (2.54) and (2.55) imply that

P= 0

(2.51)

(2.52)

(2.53)

(2.54)

(2.55)

(2.56)

so that

(0) = V()(S, T). (2.57)

Equations (2.48), (2.49), (2.51), and (2.52) form a two-dimensional elastostatic problem

for u(0) and 740) with forcing terms rI(0) and p(o) in (2.48). Thus

u(0) and w(o) depend linearly upon (2.58)

2.3.3 Terms of the Next Order in E

We proceed to the next order in e in (2.34) and (2.35), making use of (2.43),

o-pT + V(0) + V(1 + v(, 2 - G = 0.

'rT" + PT).

(2.59)



na(w ) + wI(O)) = naO).

Integrating (2.59) across the borehole, and using the two-dimensional divergence the-

orem with (2.60), we get

oApfo) + Av( - G,T dA = -jnevo,) ds

= - n(w(") + w (O)) ds.

It follows from (2.58) that nowJO) ds depends linearly upon 7- )+I (0)I. Thus

fEnu ds = AN;i, p(q) + pq() ,), (2.62)

say. Then

nou 0) ds = AN(r(O) + p(0)I), (2.63)

where N(r) = Naprpq. Also differentiating (2.63) with respect to T gives

n w4) ds = AN(r )+ p(fI). (2.64)

In (2.61) to (2.64) E is the right cross-section of the borehole at X(S), A is its area,

and aE its boundary. Hence we have

(o+N(I))p + vo = 1JG,rdA -

Because r,(0) =pq cpqjU,j(0) we may write (2.65) as

(o + N(I))p +V = 1fG, dA - [6 ;j - tit3 + (5mn - tmtn)Nmnpqcpqij]uij). 2.66)

2.3.4 The One-Dimensional Acoustic System in the Fluid

Equation (2.65) together with the third equation of (2.45):

(0) + (0) -0,Pf V3,T +,PS (2.67)

form a one-dimensional hyperbolic system for v(o) and p(O) We should remember

that v(0), p(O), W(0), r(o) are related to v, p, w, r by (2.43), and that these are

(2.61)

wI(o) dA - N(r,")). (2.65)

(2.60)



evaluated in the coordinates q1, q2, q3, which have the same physical units as x1 , x 2,

x 3 . Transforming (2.65) and (2.67) back to the variables s, t using (2.31) and (2.32)

we get
(o + N(I))p(O) + v(0) Gt dA - 1- ," dA - N(rI(0)),

't~LJj~ i 3,s =- AlE ~ Ak e';a't dA Nt,) (2.68)

p( 0) + (*) = 0. (2.69)
P 3,t + ,

2.3.5 The One-Dimensional Acoustic Solution

We restate the system (2.68), (2.69):

p( 0) + p(0) = 0, (2.70)

(a + N(I))p(") + = 0 j=JG,t dA = Vg'( t)6(s), (2.71)

specializing to a source concentrated at the origin and supplying accumulated volume

Vog(t) up to time t, and assuming that there is no incident stress field: r(0) = 0. If

the coefficients vary slowly, as we assume, we may solve (2.70), (2.71) by the method

of generalized progressing waves and so we assume a solution in the form

/(0) - Un(s)

= E fn(t - r(s)) (2.72)
p(0) n=o pa(s)

away from the source. Here each fn is one integration step smoother than the previous

one:

fn= fn 1, (2.73)

and travel time r(s), and coefficients V, and P, are to be determined.

On substituting (2.72) into (2.70), (2.71), and then equating the coefficients of the

successive f, to zero, we get for n = -1

pf -Ir' Vo 0

-r' o+N(I) o) ) ( (2.74)

and for n = 0

( a (I ) (P I ) + ) . (2.75)
-r' ~~ ~ o ()p 0 0



Equation (2.74) implies

S= tyT,

where yT is the tube wave slowness given by

YT = pf(o + N(I)).

Then
PO
-= = t(,

where C is the characteristic impedance given by

P+0. + N(I)'

So we may write (o
po

= ao(s) (
where ao is a coefficient to be determined. Using (2.80) in (2.75) and multiplying on

the left by (±(- 2 (1) we find that

Thus, to a first approximation,

p(0)

where a± are constants and

We may now determine ao~fo by expressing (2.70) and (2.71) near the source as

jump conditions:

p(0)(+0, t) - p(O)(-0, t)

V3o)(+0, t) - V01)(-0, t)

= 0,

(2.84)

= 
g'(t).

(2.76)

(2.77)

(2.78)

(2.79)

(2.80)

a' (s) = 0. (2.81)

(iA fo[t - r±(s)], (2.82)

rI = tJYT. (2.83)



Since causality requires the waves to propagate away from the source, we shall assume

that the + or - sign in (2.82) is the same as the sign of s. Using (2.82) in (2.84) we

see that
aofo (t) - a-fj-(t) = 0,

2 (2.85)
a4fo(t) - a+ f-(t) = Vow(0)'t)

0 A(O)

so that

af+(t) = a-f-(t) = 2A(0) (2.86)

Finally we get

/(0) / i(f0)-4(s) 2AO) 0 (0)() () g'[t - sgn(s)] yT(s') ds']. (2.87)
p(0) 2Ao0(0) (2(0( 0s

Isolating p(O) we have

p(0)(s, t) = 2A)(S) g'[t - sgn(s)] yT(s') ds']. (2.88)

This pressure distribution, which is a generalization of a standard result (White, 1983;

p. 147), radiates seismic waves into the formation and will be used later to calculate

an equivalent source body-force distribution in the formation.

2.4 The Line Density of Dipoles

In this section we derive the distribution of body force which, when acting in the intact

solid, would produce the same radiation as the tube wave in the borehole. This turns

out to be a line distribution of dipoles, concentrated along the borehole centerline,

which depends upon linear operators defined by the elastostatic problem.

Let us extend the definition of u and w to the interior of the borehole, defining

them to be zero there. Consider f; defined by

Puitt - (cisk1uk,1),j = fi. (2.89)



Then f; will be an effective source field. To evaluate f;, let us introduce a vector test

function 4; and integrate using the distributional definition of the derivatives:

+00 r +o0

I = 1,00 dt] 4;f; dx = ] dt][pO,tt - (qS, 3cigk),1uk dx. (2.90)

This is an ordinary integral since the integrand is finite everywhere. Also the integrand

vanishes inside the borehole. Thus

+00 f +00

I =] dt ;f; dx = f dt [pP~k,it - (40, 3 cijke),t]uk dx, (2.91)
-o Ve o V

where V, is the region exterior to the borehole.

Now let us use the divergence theorem in V, to get

I= f dtJ [-pq,tuj,t + q;,,cjjkeuk,] dx

(2.92)

+L di"'dt 41,,cijakukne dA,

where BV, is the boundary of V, unit normal n points towards the exterior of the

borehole, and dA indicates an element of area. Integrating once more by parts we get

I = ]__ dt] 4i[puit - (ciskauk,t),j] dx

+f dtf (4;,bcijktukne - 4icijktuk,tnj) dA (2.93)
00o

= ]___0dt] (4i,,cijkeukne - 4;iCijkeUklnj) dA,

because u; satisfies the homogeneous Equation (2.89) in V. Since the borehole is

narrow

dA = ds ds', (2.94)

to leading order in e, where s is arclength along the borehole and s' is arclength around

the circumference OE, of the right cross-section at s. Let us also write for x on the

borehole wall

4;(x) = 4;(X(s)) + [Xm - Xm(S)]4i,m(X(S)) + O(e2),
(2.95)

cijkt(X) = Cijk(X(S)) + O(e2),



where cijak(X(s)) is defined by the elastic constants of the material drilled out to form

the borehole. Then to leading order

I = dt dsiJ {(ki,m(X(S), t) [cimkeukn(~o0 a' (2.96)

-CijktUk,tnj(Xm - Xm(s))] - 4i(X(s), t)cijkeuk,n,} ds'.

But

CijktUk,fnj = -pi, (2.97)

where p is the pressure in the borehole fluid at X(s), which is independent of s',

p = p(O)(s, t), to leading order in e. Thus the last term in (2.96) vanishes and (2.96)

becomes

I = dtJ dsj q,m(X(s), t)[CimktUkfn + p(o) (xm - Xm(s))ni] ds', (2.98)

where in the integrand CimkI is taken to be imkI(X(S)).

Let

gim(s, t) = [cimkI(X(s))uk(X(s), t)ne(s, s')

+p(O)(X(s), t)(xm - Xm(s))nj (s, s')] ds'. (2.99)

We now apply Stokes's theorem to (2.99). But first we write

n = t' x t, n, = pqt't, (2.100)

where t = e3 is the unit tangent to the borehole axis, and t' is the unit tangent to E.,.

Then

p() (Xm - Xm(s))ni ds' = p(O)tr (Xm - Xm(S))Eiqrt' ds'

= p(O)t, Eqnp(xm - Xm(S)),nEiprtq dA

= p(O)A(.qr6ni - ,ib.nr)trtqmn

= p(O)A(6im - titm). (2.101)



The other term in (2.99) must be treated separately since Uk is not continuous up to

the boundary in E,. Let us extend cijke smoothly and define the fictitious displacement

field u* inside the borehole so that

CijktUk,1j = 0 in E, u = Uk in a - (2.102)

Thus u* satisfies the elastic equilibrium equations inside the borehole and has the same

displacement on the boundary as the external field. Hence using Stoke's theorem we

have

j c imkfukn ds' j cimklUkeqrt,t, ds'

= eqpnCimktUk,penrtqtr dA

= j(6,.,qr - 6 , 5 pr)CimktUk,ptqt. dA

= f(trtrCimkUk,t - tetpCimkfUk,p) dA

= CimktUk,p&P tetp) dA

= rI*m dA, (2.103)

where r* is the stress field belonging to the displacement u* inside E,. We have

used the fact that the tangential s-derivative tpu*, is O(e2) at most, and so the term

titCimktU*,, does not contribute. When the borehole is elliptical in cross-section r* is

constant and we may write

/ cimktu*n ds' = Ar;*m. (2.104)

Thus, using (2.101) and (2.104) in (2.99) we obtain

gim = A[r*m + p()(im - titm)]

= Ap(O)[cimpqNpq.(6,. - tt,) + 5 im - titm]

= Ap(O)NE, (2.105)

say. Notice the similarities between the terms in square brackets in (2.66) and (2.105).

In Appendix A it is shown that N,,,. = N,,, and so the square bracketed expressions



are indeed identical. Comparing (2.90) and (2.98) using (2.99) and (2.105) we find that

J 4f; dx = Ji,m(X(s)gim do

= J dxf 4i,m(x, t)6(x - X(s))gim(s, t) ds

= J dxJ - 4;(x, t)6,m(x - X(s))gim(s, t) ds, (2.106)

and since 4; is an arbitrary test function we have

f;(x, t) = - Jgm(s, t)y,m(x - X(s)) ds

= -JA(s)Nim(s)p(O)(s, t)S,m(x - X(s)) ds. (2.107)

The integrand above is a superposition of nine body force dipoles of differing strengths

gim(s, t) depending on position and time. In symmetrical configurations the off diagonal

terms are zero, thus reducing the force system to three mutually orthogonal dipoles

moving along the borehole (see Figure 2.1). As will be shown later, these dipoles move

away from the source at the tube wave speed.

2.5 The Borehole Compliance: The Elastostatic
Problem

In this section we use a complex variable technique to solve that elastostatic problem

and so obtain the linear operators which occur in the expression for the body force

distribution. It is interesting that the linear operator involves the product of three

matrices, one depends upon the elastic constants of the solid, one on the fluid pressure

and any incident stress field, and the third on the profile of the borehole cross-section.

The calculations are analytical except that a sextic equation has to be solved for an

eigensystem.

2.5.1 The Complex Variable Method

In this section we set up the machinery for calculating the operator N and NE of

(2.63) and (2.107). Thus we must solve the elastostatic problem (2.48), (2.49) and



(2.50), which we restate using the displacement u(') instead of the particle velocity

w('). The constitutive equation is

r0) = (0) (2.108)$3j Cijk-yU;,-y*

The equilibrium equation is

r,= 0, (2.109)

where to this order of approximation the solution is (locally) independent of x 3 , the

coordinate parallel to the borehole axis. The boundary condition on the borehole wall

is

r(0),na (r;9" na + p()ng), (2.110)

where n is normal to the borehole wall and n3 = 0. In Equations (2.108), (2.109),

(2.110) Roman subscripts range over 1,2,3, whereas Greek subscripts range over 1,2

only, and the summation convention applies. In solving this system of equations we

use the complex variable method of Lekhnitskii (1963), Savin (1961), and Muskhel-

ishvili (1953). These authors set up their equations in terms of stress functions, which

leads naturally to the use of elastic compliances, and this is most direct when one is

concerned primarily with stress concentration. But we are concerned primarily with

displacements, and in the following development we take the elastic stiffnesses and dis-

placement components as basic. However, a form of stress function will play a minor

role in imposing the boundary conditions. This complex-variable method is also known

as the Stroh formalism and was used by Stroh (1958) and (1962). See also Ting (1990)

for a modern review.

The method requires that we seek the displacement as an analytic function of the

combination

x 1 + r7X2- (2.111)

Substituting (2.108) into (2.109) we get

CiakflUk,aI3 = 0, (2.112)



where we have dropped the superscript (0) on u; we shall continue to drop it on u, r

and p in this section. Then, setting

Uk = Uk(Z) = Uk(Xi + 7X 2 ), (2.113)

Equation (2.112) leads to

P(7)u" = 0, (2.114)

where

Pik(71) = c;1k1 + (cilk2 + Ci2ki) + Ci2k2?2. (2.115)

Thus

det(P(9)) = 0. (2.116)

But this is a sextic in y with real coefficients. So the roots are real or occur as complex

conjugate pairs. Actually it follows from energy considerations that there are no real

roots. Let the six roots be

9n, 1n, !{a?} > 0, n = 1,2,3. (2.117)

From (2.114) it follows that u" is a null vector of P(9n) , and therefore a multiple

of a standard null vector Un.

Uk = An(Zn)Ukn, (2.118)

where Un is a function only of the c; 3ke and not of the coordinates, and An(zn) is a

scalar coefficient depending on x 1, x 2 through

Zn = X1 + lnX2, fn = 1, 2, 3, (2.119)

on which it depends analytically. Because Uk is real, we seek Uk as the real part of a

superposition of such solutions

3

Uk = R{Z UknAn(Zn)}, u = R{UA}. (2.120)
n=1

Here A is the column vector with components An(zn), n = 1, 2, 3 and U is the matrix

whose columns are the null vectors Un, n = 1, 2,3. An(Zn) is an analytic function of



its argument. Since q. and U, are independent of xi and x2, depending only on the

elastic constants cik,31 (2.108) and (2.120) give

3

rij = R{ E(c;jii + Cijk2 71n)UknA'(Zn)}. (2.121)
n=1

Before imposing the boundary conditions (2.110) we shall introduce the stress func-

tions Ti such that

r;1 = -T, 2 , r22 = T, 1, (2.122)

which exist by virtue of (2.109). Let us now consider the XiX 2-plane. The cylindrical

borehole wall cuts this plane in a curve, which we shall call the borehole profile, with

tangent t related to x, and na by

xl,, = ti = -n2, X 2 ,, = t2= ni, (2.123)

where xi,, and x2,, are the derivatives of x1 and X2 with respect to arclength s along

the borehole profile. Then using (2.122), (2.123) in the left member of (2.110) we get

r*ina = 7;1t2 - T;2t1 = -Ti,2X2,. - Tx1,, = -T,, (2.124)

and in the right member

-(r 4an, + pn1 ) = -rh1X 2 ,, + rf 2x 1 ,, - Pz2,,,

-(r'an, + pn 2 ) = -2X2,, + r12X 1 ,s + pXi,., (2.125)

-,r3 n, = -4XjX 2 ,. + _32 X1,s.

Using (2.124), (2.125) in (2.110), with the fact that the T, are constant, we obtain

T1 = -'rl2 X1 + (71 + P) X2,

T2 = -(r 2 + p)x 1 + r1x 2 , (2.126)

T3 = -42x1 + 7izX2-

Let us summarize (2.126) as

T; = (7I, + Pbik)Ek.X , (2.127)

where
0 1 0

e= -1 0 0 .(2.128)
(0 0 0)



From (2.121) and (2.122) we have

3

i2= T = R{Z (ci2ki + ci2k2 qn)UknA'(Zn)}, (2.129)
n=1

and so integrating and using (2.127) we get

3

R{Z(ci2k1 + ci2k2 qn)UknAn(zn)} = (Trk + Poik)ekaX (2.130)
n=1

on the borehole profile. Let us define the matrices K 21, K22, and A as follows:

(K21)ik = Ci2ki, (K22)ik = Ci2k2, A = diag{71,772, 7 3 }. (2.131)

Then (2.130) may be rewritten

R{(K 21U + K 22UA)A} = (r' + pL)ex (2.132)

on the borehole profile.

2.5.2 The Elliptical Borehole

Before proceeding further we shall specialize to a borehole having elliptical profile, with

major semi-axis r1, minor semi-axis r2, and whose major axis makes an angle a with

the 1-axis. Then the elliptical profile may be parameterized by ri, r 2, and angle 0

where

z = x 1 + ix 2 = ei"(r1 cos 0 + ir2 sin 0)

= jei"[(r1 + r 2 )e0 + (r1 - r2)e-]. (2.133)

Setting ( = eio, (2.133) becomes

z = x 1 + iX 2 = 1eia"[(ri + r2 )( + (r1 - r2)1] on = 1. (2.134)

But if we allow | > 1, (2.134) is a conformal mapping of the exterior of the unit circle

in the C plane onto the exterior of the ellipse in the z plane, and, because { 7} > 0,

the exterior of the unit circle in C plane is mapped onto the exteriors of ellipses in the



zn-planes. Thus the A.(z,(C)) may be regarded as functions of ( analytic outside the

unit circle, constrained by (2.130) on the unit circle. So, rewriting (2.130)

3

R{ (ci2k +Ci 2k2ln)UknAn(zn(C))} = (rik+poik jelx1(()+(ri'k+p6;A)ek2X2((), (2.135)
n=1

where from (2.133)

x1(() = }[(r1 cos a + ir 2 sin a)C + (r1 cos a - ir2sin a)}],

(2.136)

x 2 (C) = ![(r1 sin a - ir 2 cos a)C + (r1 sin a + ir 2 cos a)}].

and |(|= 1.

We may now use the Schwartz formula for a function F(C), analytic outside the

unit circle, whose real part is given on the unit circle:

1 +(da
F(C) = 2kr f {F(a)} , (2.137)

where the integral is once around the unit circle |al = 1, |(| > 1, and F(C) is analytic

in j( > 1. Applying this to the function in braces on the left of (2.135) we obtain

3 ~1 1 or+(da
E(Ci2ki + Ci2k2T7n)UknAn(Zn(()) - 2r(D c + E -)+Cd

_ (E 1(2.138)

where Di and Ei are the coefficients of ( and } on the right of (2.135) after (2.136) is

used for x1(() and x2((). From (2.138) we see that An(zn(()) is proportional to (, and

referring back to (2.132), we have

A = (K21U+ K2 2 UA)1E 2  (2.139)

Explicitly

r1 cos a - ir2 sin a
2E = (r' + pI)E r1 sin a + ir 2 cos a

0
r1 sin a + ir2 cos a

= (rI + pI) r 1 cos a - ir 2 sin a (2.140)
0



Then from (2.120)

u = R{UA} = R{(K 21 + K 22UAU-1)~1E },

or

u = 3Z{2(K 21 + K22UAU- 1 )~1 E(cos 0 - i sin 0)}

at the point with parameter 0 according to (2.133), i.e.,

u = Rf2(K 21+K 22UAU- 1)-1 E

x xcos a +i sin a) sin a i cos a).}

Thus, using (2.140), we may write the displacement gradient as

Vu* = -R{L(r' + pI)M},

with corresponding strain

= (Vu* + u*V) = R{L(rI + pI)M + MT(rI
2

where

L = (K 21 + K 22UAU- 1 )- 1 ,

and, from (2.140) and (2.143), we see that

i(r2 sin 2 a + r2 cos 2 a)
-rlr2 - i(r? - r2) sin a cos a

0

+ pI)T L T},

rir2 - i(r2 - r 2) sin a cos a
i(r2 cos 2 a + r2 sin 2 a)

0

Equation (2.145) may also be written as

e= Niike(rke + pAtke),

where

Njke = -j-{LikM + LikMei}.
2

(2.148)

(2.149)

The three matrix factors in (2.144) depend respectively on, the elastic constants of

the material, the incident stress field (including the pressure p), and the geometry of

(2.141)

(2.142)

(2.143)

(2.144)

(2.145)

M= 1
ri r2

(2.146)

(2.147)



the borehole profile. The constant tensor Vu* is the uniform displacement gradient

belonging to the interior problem mentioned after (2.103). The corresponding stress

r;* is given by

r;i* = cijkyk, . (2.150)

Thus the operator N of (2.63) is given by

N(r) = R{(LrM).O}, (2.151)

and

N(I) = ,Rf{LyM,,} = -R{tr(LM)}. (2.152)

Taking the borehole axis parallel to the 3-direction, we may now also write down the

operator Ni, of (2.105) and (2.107). Thus

r*, + p( 0 )(6m - 63 i6Sm) = Cimk-yU, + p(O)(6m - 3i3m)

= p(O)[CimkyLkaMy + Sim - 6 3i'3m], (2.153)

and so

Ni, = R{CijmkLkaMa-y + im - 63163m}. (2.154)

2.6 Special Explicitly Solvable Cases

In this section the configuration is specialized so that a plane perpendicular to the

borehole axis is a plane of symmetry for the anisotropic medium. When this is so

the 3 x 3 elastostatic problem of Section 4 decouples into a 2 x 2 and a 1 x 1 system

which may be solved analytically. Further specialization to transverse isotropy with

axis parallel or perpendicular to the borehole, and finally to isotropy, enables one

to calculate analytically the operators giving the coefficients in the one-dimensional

acoustic system and the body-force distribution.



2.6.1 Orthorhombic Symmetry with the Borehole Parallel
to an Axis

The matrix (K 21 + K 22UAU-')-1 is generally too complicated to evaluate in a per-

spicuous form as a function of the elastic constants. However, when the coordinate

planes are planes of material symmetry, the 3 x 3 matrices split into a 2 x 2 and a

1 x 1 diagonal block so that u3 decouples from u1 and u2. The calculation is then

manageable analytically. The Cikl are zero if any index appears an odd number of

times. Thus P of (2.115) reduces to

a + cij2

P~g) = (c + d) 7

0

where

(c + d)7 0

c + b72 0

0 e+f72

(2.155)

a = c1111, b = c222 2, c =c1212

(2.156)
d =cu 22, e-

We see that det(P(q)) factors as

where
Q(7)

R(r7)

det(P(r)) = Q(r;)R(q),

-(a + C7y2)(C + br2) - (C + d)2 2,

=e + fr72

We may set
-(c + d)r71

U = a + cr 2

0

where q1 and 72 are the zeros of Q, and 773

parts. Thus

C1 3 1 3 , f = C2 3 2 3 .

(2.157)

(2.158)

-(c + d)r/2 0

a 2+7cy 0 , (2.159)

0 1)

the zero of R, having positive imaginary

3 = i . (2.160)



We shall not need the explicit forms of r;1 and 772. Inverting (2.159) we get

a + c772

U-1 = 1U

det U

(c+d)72 0

-(c + d 0

0 det U

det U = -(c + d)(9 1 - 7 2)(a - c1 1 7 2).

a(71 + 72)

a - C77 2

(a + crl )(a + cy)
(c + d)(a - Cn1r02 )

0

(c + d)1172
a - c71r 2

-c71972 (1 + 72)

a - C7i712

0 713 /

(2.163)

Since the matrix splits it is advantageous to deal separately with the 2 x 2 and the

1 x 1 blocks.

2.6.2 The 2 x 2 Block

We rewrite the 2 x 2 of (2.163) as

I a(71+ 7r2) (c + d) 1r72 \
1

a - C9 1772 (a + crl2)(a + crl2)

c + d

(2.164)

-c71r71 2 (rli + 712)

Let us reduce the 21 entry by setting

a + Cr2 =.

Then Q(rl) = 0 implies

([c + b(( - a) (c + d)2( - a)=0.
C C

The product of the roots of this quadratic equation in ( is

= (a+ cn12)(a + c72) =a(c + d) 2
1 2 b

where

(2.161)

Thus

(2.162)

UAU- 1 =

UAU-1 =

(2.165)

(2.166)

(2.167)



Thus (2.164) may be rewritten

a(11 + 12)

a(c + d)
b

(c + d)917 2

(2.168)

-C77 1772 (771 + rq2)

From (2.131)

K21 = d
0

Then, retaining only the 2 x 2 block,

K21 + K22UAU- 1 = c
a - C77192

a(1 + 712)

-(a + d7 1772)

a + d7 1772

-b 171 2(71 + 72))

To eliminate r1i, and 72 we need the symmetric functions rn1 + 92 and 71r72.

these are easily obtained from the equation

But

(2.171)

satisfied by 711, and 72. Thus

71 2 = a , (2.172)

and so, because r1 and 'q2 have positive imaginary parts,

711712 = -.

2 2 ab - d2  2
r71 + r72 = bc -b

72) = + rn2 + 271r/n2

ab - d2 2d
= bc b

d

UAU- 1 =
1

a - C?)77 2

c 0\

0 0 ,
0 0

K22=

0 0

b 0

0 f

(2.169)

(2.170)

Also

Hence

(2.173)

(2.174)

-2 .

(2.175)
(771 +



Again, because of the disposition of 91 and 'q2 in the complex plane,

i +ab-d2Il1 + 112 = 7b V c + 2(vab - d).

Thus, after some reduction,

K 21 +K 22UAU-1 = 1
vab + c

i/2 V/a - d vxal+ 2c + d
x

c(v/ab - d)

iv'b JJa - d xv/ a+ 2c + d

L = (K 21 + K 22 UAU- 1)- 1 = 1
v/ab + d

.vb SG E + 2c + d

-Ic \lab - d
x

2.6.3 The 1 x 1 Block

The calculation for the 1 x 1 block is trivial:

UAU- 1 = 773

and

= iI ,

(2.176)

and

(2.177)

)

1

Va y ab+ 2c + d
y c \v ab - d

(2.178)

K21 + K22UAU- = fya = i/,

(K 21 + K 22UAU- 1)~1 =-

(2.179)

(2.180)

(2.181)



Thus finally

-i b(v/i + 2c + d) 10
valb+ d \ c(v/a-b - d) va-b+ d

L -1 -i a(v./2b+ 2c + d) 0 . (2.182)

Vab+ d Vab+ d c(\/ab - d)

-1
0 0

2.6.4 The Body-Force Dipoles

Since we now have both M and L explicitly from (2.147) and (2.182) we may calculate

N(I) and Nm. From (2.152) and (2.154) we see that these depend on L and M only

through the matrix product R{LM}, which we easily find to be

R{LM} = A
Va al+ d 0 1

S sin2 a + r 2cos 2 a b (r2 - r2) sin a cos a

vab+2c+d c rr 2  c rir2

V -d(r - r) sin a cos a ari 2cos2 a + r 2sin 2 a

x c ri r2 VF!c ri r2/-
(2.183)

where we have have presented the leading 2 x 2 block only. Equation (2.152) gives

N(I) as the trace of this:

N(I) = -d 2

vab+ 2c + d (V/Er + v/br)cos2 a + (./r2 + v/r) sin 2 a

+ a - d V/ rir2
(2.184)

The expression for N*m in (2.154) involves contractions of tensors rather than multi-

plication of matrices and so, as a preliminary, we shall write the components of R{LM}

as a 4-vector in the order 11, 12, 21, 22 and the components of cimk, as a 6 x 4 matrix,



and then form the matrix product of these. The order of the components in the matrix

will be
C1 1 1 1

C2211

C3 3 1 1

C2 3 1 1

C3 1 1 1

C1 2 1 1

C1 1 1 2

C2212

C3312

C2 3 1 2

C3112

C1212

01121

C2221

C3321

C2321

C3121

C1221

C1 1 2 2

C2 2 22

C3322

C2322

C3122

C1222

(2.185)

Now we use (2.156) and the fact that the Cim, vanish if any subscript appears an odd

number of times to reduce the matrix to

a
d

C1 1 3 3

0
0
0

d
b

C2 2 3 3

0
0
0

(2.186)

Using (2.182) and (2.186) in (2.154) we find the only non-zero components of Nim are

1 [+ + 2c + d
N* = +I - d 

a L (2.187)

(d/ r 2+ a/br 2) cos 2 a + (av/bri + dy\/ar2) sin 2 a
X (.~r + 2 1r~

- /1+dV/a7-b -b+

V/c r r2

Vab+ 2c+ d

1~
J1

(2.188)

(by/\ir, + dv/br) cos2 a + (d yri + b,/r2) sin 2 a

rir2

1 d [( + 2c + d
N3 = + d I- (C11ss + C2 233 ) + va - d

(C2233v/ar + Cu33v/br) cos2 a + (Cu33v/Ir + C2233v/ar 2) sin 2 a

VE r, r2
(2.189)

V -(v/2 + v/5) Va+ 2c + d (r! - r2) sin a cosa (2.190)
2a+ d \ a-b-d r1 r2

and



2.6.5 Transverse Isotropy:

The only simplification is that

e = C, Cs 3 3 = d, and C2233= b - 2f.

2.6.6 Transverse Isotropy: Axis in the 3-Direction

Here the only relationships between the constants are

a=b, e=f, d=a-2c, and C233 = c1133 = g.

2.6.7 Isotropy

When the medium is isotropic with Lame constants A and p

a=b= A+2p, c = e = f = P, c2233 = c1133 =d=A.

Ga = A+2p, vfa- d = 2p,

(2.194)

v/ai+2c+ d = 2(A + 2t)

N(I) = 1 1
A + p I

+ A + 2 py
2p+

r + r2 ,
ri r2 ]

(2.195)

N* _ A + 2py
2p(A + p)

N* _A + 2p
22~ 2p(A + p)

[Ar2 + (A + 2,)r2] cos2 a + [(A + 2p)r + Ar 2] sin 2 a
ri r2

[(A + 2p)r2 + Ar2] cos 2 a + [Ar2 + (A + 2p)r ] sin 2 a

ri r 2

N* = A 1 +
33 A +

N,* N*1 A + 2p
2 21 A + p

2 2

A + 2p r + r2
2p rir2 ]

r2 - r2 sin a cos a.
ri r2

(2.191)

(2.192)

Then

(2.193)

leading to

and

and

(2.196)

(2.197)

(2.198)

(2.199)

Axis in the 1-Direction



2.6.8 Circular Borehole

When r1 = r2 , (2.184) and (2.187) to (2.190) reduce to

N(I) - -2+
v/a b + d .

and

N* = v -d

_ 1
22 vfa~+d Iv -

v/ab+ 2c + d
\via- - d

v/ab+2c+d
Va -

_1 
vab + 2c + d

N3 = Vab+ d -(C1133+ C2233) + \ v/ab - d

dV/a+ av/-

b.Fa+dV'
, -

c2233v/a+ c1133/

vF , I

and N*2 and N2*1 vanish.

2.6.9 The N(I) and N* for the Isotropic, Circular Case

Specializing (2.195) to (2.199) by setting r1 = r 2 we get

N(I) = , (2.204)

A + 2py

P
0 0

0 A + 2p
y

A
0 -

(2.205)

which may be written as

0 0

0
V

2
8

V 
2

0 0 c -- 2
V 2

3

vab+ 2c + d v/+ vb_

va-b - d Vjc I)
(2.200)

(2.201)

(2.202)

(2.203)

(2.206)



where v, and v, are the compressional and shear wave speeds in the isotropic medium.

They are given by

o = A + 2p1 = . (2.207)C P .9 P

Equations (2.204)-(2.206) agree with the results of previous authors (White, 1983; Lee

and Balch, 1982).

2.7 Discussion and Conclusions

We have set up a formalism for calculating the seismic radiation from a borehole

asymptotically in the limit as the ratio of the borehole diameter to wavelength goes

to zero. In this limit an acoustic source in the borehole acts indirectly as a seismic

source. The source first generates a tube wave, which is an acoustic wave in the fluid

filling the borehole, and the pressure field of the tube wave, by distorting the borehole

wall, in turn generates the seismic wave. The action of the tube wave is equivalent

in the narrow borehole approximation, to a line distribution of body force along the

borehole centerline and acting in the intact elastic solid, i.e., the solid with no borehole

in it. We have found expressions for this source distribution, which turn out to be a

distribution of dipoles.

In previous work the asymptotic limit of a narrow hole was calculated by taking the

low frequency approximation to an exact solution for a circular cylindrical hole in an

isotropic medium. By directly calculating the asymptotic limit, one is able to find these

body-force equivalents and other aspects of the solution in quite general circumstances,

without the need for exact solutions. In fact, we have found the asymptotic solution

for a curved hole with elliptic cross-section in an arbitrary anisotropic medium. When

these results are specialized to right circularly cylindrical holes in an isotropic medium,

they agree with previous work in the literature.



Figure 2.1: Symmetrical distribution of dipoles for a straight borehole, corresponding
to the integrand in equation (2.107).



Chapter 3

Radiation from a Source in a
Borehole

3.1 Introduction

Recently there has been much interest in cross-well tomography in which sources are

placed in one borehole and receivers in another. One may think of the sources acting on

the solid only through a tube wave as an intermediary, and reciprocally, the receivers

reponding to the seismic wave only through intermediate tube waves excited in the

second well. Thus it is important to understand the interaction between the tube

wave and the seismic wave. Moreover, the recent emphasis on anisotropy requires that

the solid not be restricted to isotropy. Also, the existence of horizontal and deviated

wells means that we cannot assume that the borehole has any particularly symmetrical

orientation with respect to the symmetry planes of the anisotropic medium or that the

borehole has a circular cross-section, especially along highly curved sections.

In this chapter we quote a form for the far-field Green's function in an anisotropic

medium, and then combine it with the body force distribution derived in the previous

chapter to calculate the far field. Results are obtained for situations where the tube

wave is either faster or slower than the quasi-shear waves. The case of two boreholes

with a source in one well and a receiver in the other well is also analysed. The solution

is obtained in a form which clearly exhibits reciprocity.

Next, the far field is first specialized to a circular borehole in an isotropic medium,



and shown to be identical to those of Lee and Balch (1982) and Ben-Menahem and

Kostek (1991). Then, the nontrivial case of a borehole in a transversely isotropic

medium is considered, where we show the radiation patterns and wavefront surfaces

for various situations involving media with symmetry axis parallel or perpendicular to

the borehole axis, and also with triplication of the quasi-shear wavefront.

3.2 The Far-Field Radiation Pattern

In this section we shall calculate the seismic far field generated by the pressure field

calculated in Section 2.3.5 for an acoustic volume source in the borehole. We shall need

Ni from (2.154) and the equivalent source distribution of body-force dipoles given in

(2.107), we shall also need the far field Green's function in the anisotropic medium,

and finally we shall integrate the Green's function against the source distribution to

obtain the far field.

3.2.1 The Green's Function

We shall now calculate the seismic field radiated by the source distribution of Equation

(2.107). The far-field Green's function for a uniform anisotropic medium is given in

Burridge (1967). In order to understand that result we shall need some background.

We shall consider plane waves of the form

u = P( )f(t - t -x), (3.1)

where the constant vectors t and P(t) are the wave slowness and the polarization,

respectively. For (3.1) to satisfy the elastic wave equation, t must be restricted to lie

on a 3-sheeted surface S called the slowness surface. Each of the three sheets of S sur-

rounds the origin. The vector P must be an eigenvector of a certain symmetric matrix

whose entries are quadratic polynomials in t with elastic constants as coefficients. We

shall normalize P to be a unit vector. Then in the far field (Burridge, 1976; Section



6), the Green's function G(x, t; x', t') is given by

G 1 (x, t; x', t') = P W - X *[t - '- ( (x - x')]. (3.2)
41r|C(t)|12-X - X'12

For fixed x, t', t and with t increasing from t', each of the planes

t . (x - x') = t - t' (3.3)

in (-space is orthogonal to x - x' and its distance from the origin is

t - t' 
(3.4)

|x -x'|

When t = t' the plane (3.3) passes through the origin and intersects all the sheets of

S. For large t - t' the plane is outside S and does not intersect it. For certain values

of t the plane is tangent to S at certain points t (see Figure 3.1). These are the points

t over which the sum is taken in (3.2). If these points t are points where S is smooth

then they may be characterized as the points where the outward normal to S is parallel

to x - x'. For each such point t, (3.2) yields a singular wavefield arrival with time

dependence

6*[t - - (x - x')], (3.5)

where
b7, if S is convex outward at t;

* -6, if S is saddle shaped at t; (3.6)
-b, if S is concave outward at t.

Here R is the Hilbert transform. The quantity C(t) in (3.2) is the Gaussian curvature

of S at t. It is respectively positive, negative, and positive in the three cases of (3.6).

Formula (3.2) does not apply when C(t) = 0 at any of the t. Then a further more

complicated expression for that particular term is required, which we shall not describe.

It corresponds to a cuspidal edge on the wavefront and is akin to the expression for

the wavefield near a caustic. Such points arise when the sheets of S fail to be convex.

Notice that each term of (3.2) has the form

Gi1(x, t; x', t') = Fij(x, x')6[t - t' - (x - x')], (3.7)



where Fi, is a smooth function of x, x' away from x = x', which never holds in the far

field. If the medium is not homogeneous then Gii has a similar structure in the ray

theoretical approximation when no ray focussing occurs:

G;(x, t; x', t') = F;i(x,x')6[t - t' - T(x, x')], (3.8)

where F;, and T are smooth functions, T being the characteristic travel time along

the ray joining x and x'. Since (2.107) is a distribution of dipoles we shall need the

gradient of G with respect to x':

G;,4 (x, t; x', t') = ax Gi(x, t; x', t') = -F;,(x, x')T,46'[t - t' - T(x, x')]. (3.9)

But -T4 is just the wave slowness for the ray at x'. Let us write

-T . (3.10)

Then

G;;,4t = Fi '[t - t' - T(x, x')]. (3.11)

3.2.2 The Far Field

The far field radiated by the source of (2.107) may be written as a sum of terms like

S(x, t) = ff,(x', t')Gi,4(x, t; x', t') dx'dt'

= JJJ A(s)Njm(s)p(o)(s, t')6,m[x' - X(s)] ds G;,4(x, t; x', t') dx' dt'

= JJA(s)Njm(s)p(O)(s, t')Fi,[x, X(s)](' 6'[t - t' - T(x, X(s))] ds dt',

(3.12)

where we have performed the x' integration and used (3.11). Now the superscript (

labels the different ray contributions. Performing the t' integral we obtain

u4 (x, t) = JA(s)N*m(s)p(O)[s, t - T(x, X(s))]Fi,[x, X(s)](' ds, (3.13)



and then using (2.88) we get

(x, t) =)N*m(s)(j(0)( (s)u~ (, t)- I2A(O)

xg"[t - sgn(s)jyT(s') ds' - T(x, X(s))]F 3 [x, X(s)]C ds. (3.14)

It is convenient to write this integral in the form

j G(s)g"[t - O(s)] ds = L G(s)6[t - 4(s)] ds *, g"(t)

= IMt *t g"1(t), (3.15)

say. We shall now investigate I(t), which appears to represent the response to g"(t) =

6(t), i.e. g(t) = tH(t), where H is the Heaviside step function. However, because of

the restriction to slow time variation, (3.15) is only relevant when g varies slowly and

smoothly in time. Because of the occurrence of 6 in I we may evaluate the integral

I(t) = JG(s)6[t - 4(s)] ds

= z G(s)E G(s)I (3.16)
{S1O(.)=t} 1s

where the sum extends over all values of s for which O(s) = t. We shall assume for

simplicity that O(s) has only one local minimum so. We shall distinguish two cases:

SO = 0, and so # 0, in which case we shall assume for definiteness that so > 0. In fast

formations, for which -yT > t'- t, so = 0. In slow formations this inequality may fail for

some positions of the receiver, and at s = 0 we may have yr < t'- t. We shall consider

these two cases separately. We shall see that when so = 0 the only geometrical wave

arrival emanates from the source point s = 0. When so > 0 there are two arrivals,

one of which emanates from the source, but there is an earlier "conical" wave arrival

corresponding to the point so.

Let us now examine the function 4

(s) = sgn(s)J 7T(s') ds' + T(x, X(s))
o 1(3.17)

= 41i(s) + 'p2(S),



say. Thus

d'(s) = sgn(s)-fr(s), '(s) = t. (3.18)

For a fast formation -YT > t at s = 0, so that 4 = 41 + 42 has the form shown in

Figure 3.2. In this case O(s) has a unique minimum at s = 0 with

4'(-0) = -[r + ' - t],=o < 0,
(3.19)

4'(+0) = [T - ' - t],=o > 0.

Thus for t < 0(0) there are no terms in the sum (3.16) and I(t) = 0. When t > 4(0)

there are two values, si < 0 and S2 > 0, of s for which O(s) = t, and from (3.16) we

may write

I(t) = + G(s 2 ) (3.20)
rT(si) + (s1)' - t(si) +T(S2) - t(2)' -t(2)(

At t = 0(0) + 0

I~) ( 1 1I(t) = G(0) (T(0) + (0)' - t(0) + YT(O) - (0)'- ))
(3.21)

2G(0)yT(0)

^yT(0) 2 - (((0)' . t(0))2

and so I(t) jumps by this amount at t = 0(0) and is smooth elsewhere. I(t) therefore

has a graph as shown in Figure 3.3. In a slow formation, let us suppose that for the

field point under consideration so > 0. The graph of 4 is as in Figure 3.4. Then

4(so) < 0(0) and for t < O(so) there are no s for which O(s) = t, and so the sum (3.16)

is vacuous. For t > 4(so) there are two such s, si < so and S2 > So. When t - 4(so) > 0

is small then Is; - sol, i = 1, 2, are both small and we have approximately

q(si) - 4(so) = }"(so)(si - so)2,
(3.22)

q'(s1) = q"(so)(si - so).

Then approximately for i = 1, 2

4'(si) = sgn(s; - so) 24"'(so)[4(si) - 4(so)]. (3.23)

Thus for t > q(so), I(t) has a reciprocal square-root singularity

I(t) = qY'(so)t- 0()]G(so) + O([t - 4(so)]2). (3.24)



At t = 0(0) - 0, s = +0 and

|4'(+0)| = ((0)' t(0) - YT(0). (3.25)

At t = 0(0) + 0, s = -0 and

|4'(-0)| = (O)' -t() + 7T(0). (3.26)

Thus at t = 0(0), I(t) jumps by

I(0(0) + 0) - I(0(0) - 0) = G(O) Yr + ((0)' t(O) + -r (0()'(-.27)
(7T 0),- W 7T 0) - tO)) (3.27)

2G(0)7<yr
tj - (t(0)' - t(0)) 2

The graph of I(t) is now as shown in Figure 3.5.

We notice that formulae (3.21) and (3.27) are identical. Thus in all cases there

is an arrival corresponding to the jump discontinuity, which seems to emanate from

the source point. On referring back to (3.14) we identify G(0) and then, interpreting

convolution with a step function as integration, we obtain

u;(x, t) = Eu; (x, t) = f Vo N (0) Fi) m [t - T(x, 0)]. (3.28)

For a uniform medium we may identify Fi1  by comparing (3.7) and (3.2). Thus

F;,(x, 0) = ,pIC Wt - 'x =Cm, (3.29)
47r pC(t)|J12'X2m

and so the wave arrival which emanates from the source is

u,(x~) = pfVONJm(0)Pi(( )P(()( -~ x,'30
U;(x, t) = E . t] g [t - T(x, 0)]. (3.30)

41rpJC(t)|'-lXJ2[72 -( -t2

In addition, in slow formations and at certain positions of the source, there will

be an arrival corresponding to the stationary point so with a pulse shape which is the

fractional derivative of order 1 of the g' appearing in (3.30). This pulse shape arises by



convolution of g" with the reciprocal square root. In the isotropic case this arrival has

a circular conical wave front. Explicitly we may write this contribution in the form

VoA(so)Nj(so)(i(O)Ci(so)Pi(t)Pi(t)t - x m 2
u(x, t) = 8rpA(O)IC(t)|Ix|2 4"(so)

(3.31)

xJ 1 1 g"(t') dt'.
[t - t' - 4(So)]2

The slowness ( must be evaluated at the point s = so and the quantity 4"(so) may

be evaluated explicitly for isotropic media and will then be proportional to |x|-'. The

sum in (3.31) is over only those t for which t(O)' -t(O) - -YT(O) > 0. Typically this will

only happen for the (quasi-)S waves.

3.2.3 The Two-Borehole Problem

We consider now the problem of a source in one well and a receiver in another well.

The source is of a volume injection type, supplying accumulated volume Vog(t) up to

time t, and the receiver is sensitive to pressure. For simplicity, we will assume that

the medium surrounding the boreholes is homogeneous but anisotropic. The boreholes

need not be straight, and the distance between them is O(1/e 2 ). The one-dimensional

acoustic system in the receiver borehole follows from (2.66), (2.68), and (2.69), with

the source term G set to zero. This leads to

(aR + NR(I))P ) + v(O) = -[si(-t)t ± (6 - tN ,] (3.32)
Vt3 ,s 88 -ttj+(m tmtn) N~npqCpqij1JjjT7

pf v3,t + P(,)s 0 (3.33)

where s is the arclength along the receiver borehole, and the superscript R indicates

quantities related to the receiver as opposed to the source. We will use the superscript S

in relation to the source. The incident field ui(O)(x(s), t) in the case of a fast formation

(with respect to the source borehole) is as given by (3.30), which we repeat here

1 o ~~pSVoN!f (0)P(t(s ))Pj(t(s ))((s ) -x(s ) m(s ),
uf ()(x(s), t) = 3 g [t - T1(x(s), 0)],

t(s) 4xpIC(t(s))IlIx(s)2[Cy,)2 - (((s) -ts)2]
(3.34)



where C(s) is such that C(s)-x(s) = t, and T1(x(s),0) is the travel time from the source

to the point x(s) which is along the receiver borehole.

Following (2.105) and the reciprocity relation (A.10) from the Appendix A, Equa-

tion (3.32) can be rewritten as

(,R + NR())p(,) + v(0) = -N*Rs "(x), t). (3.35)

The solution of (3.33) and (3.35) follows from the results of Section 2.3. The pressure

is thus given by

p(0) (s, t) =

+00 pjVoN*S (0)N,R(s')Pi(C(s'))Pk((s'))m( s')(3(s')C(s) . x(s)[CR( s')(R(S)] 2

1-00 C81rpC(t(s'))|I1x(s')|2[(y)2 - (C(s) -ts)2)

x 6(t - T1(x(s'), 0) - T2 (s, s')) *t g1'(t) ds', (3.36)

where T2(s, s') is the tube wave travel time from s' to s in the receiver borehole. Using

the result obtained in (3.15) and (3.16) for the integral over s', we finally obtain

P(0 S, t) p pfVON (0)N,*(s)Pi(s))Pk((S)))m(S) (S)(S) x(s)

C 4xpC((s))|1lx(s)|2[(kd)2 - (C(s) . ts)2][(yg) 2 - ((s) .tR)2

xg"(t - Ti(x(s), 0)). (3.37)

If the tube wave in either borehole is faster than the body wave under consideration,

then there will be additional "conical" wave arrivals which we shall not treat here. If

the slowness surface is not convex at C, however, we may replace g" by g*" where, in

keeping with (3.6),

(g, if S is convex outward at C;
g = -Hg, if S is saddle shaped at C; (3.38)

1-g, if S is concave outward at C.

3.3 Some Examples

In this section we shall illustrate the results obtained in the previous sections with

examples of boreholes in isotropic and transversely isotropic homogeneous formations.



3.3.1 Circular Borehole in a Homogeneous Isotropic Medium

We consider a straight borehole of circular cross section of radius ro penetrating a

homogeneous isotropic formation characterized by a volume density of mass p and

Lam6 parameters A and p. The compressional and shear wave speeds in the solid are

ve and v,, as given in (2.207). The density of the fluid in the borehole is pg and its

wave speed vf is given by

- = pfo*, (3.39)

[see (2.10) and (2.11)]. Under these conditions, the expression for the equivalent body

force system [Equation (2.107)] reduces to

(3.40)f;(x,t) = -AN*m p(O) (x, t)6,m(x - X(x'))dx',

where A = grro, the borehole axis is taken as X(X3 ) = (0,0, X3 ), and the tensor N* is

given in (2.206), which we repeat here:

v 2/V2 0 0

N= 0 o2 /v, 0). (3.41)
0 0 v2/V2 - 2

The far-field displacements can be computed from (3.30). We first notice that due

to the homogeneity of the medium we have ( = ('. Furthermore, due to isotropy

there are only two t vectors, namely te = x/vclxl and t, = x/v,Ix. The Gaussian

curvatures associated with these vectors are C((c) = 1/v and C(t,) = 1/v2, and the

polarization vectors are P(tc) = x/lxl and P(t,) = y/|yj where y = x x (e 3 x x).

The third polarization corresponding to SH-waves is not excited due to the circular

symmetry of the borehole. Finally from (2.77), (2.204), and (3.39) we have yT =

1/VT = 1/vj + pf /pv. The far-field displacements are then given by

u,(X, t) =
pfyVOY 1 (v2/v2 - 2 cos 2 V) g'(t - |x|/ve)

4 irp Lve (cos2 /V -1/v2) lx|
1 (N - V/V + 2 cos2 V) g'(t - IxI/v.,)
+ c2 / -/V) |x| I

(3.42)



where the summation convention is suppressed for underlined indices, and y = x -

e; (i = 1, 2,3) with 73 = cos <p. The far-field displacements in terms of spherical

coordinates (R, p, 0) can be computed from

UR = U+1

tLW = t+ U2 ^ 3 - U3 -3~

(3.43)

(3.44)

resulting in the following expressions

UR(R,< p, 0, t)

u((R, p, 0, t)

p1 v V0 (1 - 2V2 cos 2 p/v2) g'(t - R/v)
=4pvev2 (1 -v cos2 p/v) R (3.45)

pfvT Vo sin p cosp g'(t - R/v)346
2irpv (1 -v2 cos 2 p/vI) R

where R = (x . x)1/ 2. These expressions agree with the ones given by Lee

(1982), who derived them by using a stationary phase approximation to

integral expression for the displacements induced by a point source inside a

borehole.

and Balch

the exact

fluid-filled

3.3.2 Distributed Versus Localized Sources Along the Bore-

hole

The equivalent force system given by (3.40) consists of three mutually orthogonal

dipoles moving along the borehole axis at the tube wave speed. Carrying out the

integration indicated in (3.40) we obtain

N*11 p(O)(X3, t)6'(Xi)6(x2)
f(x, t) = -irr( N2*2 p()(Xzt)6(Xl)6'(x2) . (3.47)

N33 p 3 (X3, t)S(x 1 )6(x 2)

The pressure field p(O) (X3 , t) can be further expanded in terms of multipoles by testing

it with a scalar function 4(X3) and using the distributional definition of the derivatives

I = L p(o)(X, t)4(X3) dx3

p(O)(X3 , t) (n)(0)x3) dXa.
-" n=0 n

(3.48)



From (2.88) we obtain

pO(za, t) = pyor t , J ), (3.49)
2A VT

which substituted into (3.48) gives

+00 Xn 13
I = O(n)(0) g(t - -) dX3

2A o -o n. VT
_pj VT VoO ' ~ VT2mX

- T 0 g(2m)(0) [ 3 g'(t - ) dX3A _= Jo (2m)! VT

= A _ mojm+1_(2m)(0) J y g'(t - y) dy. (3.50)

The first term in the above expansion corresponding to m = 0 is simply given by

1(0) = A (0)g(t)

= + ApjVo g(t)6(X3 )(X3) dX3 , (3.51)

which when compared to (3.48) gives the following approximation for p(O)(X3, t)

p()(X3 , t) ~ A g(t)6(X3). (3.52)

Similarly, a multipole expansion of p(3) (X 3, t) can be carried out resulting in the follow-

ing approximation

P(,3) (A3, t) ~ AA g(t)b'(za). (3.53)

Under these approximations, the force system in (3.40) has been localized at the ori-

gin. It consists of three mutually orthogonal dipoles, or equivalently, a monopole

with moment Mo = pjVVoV /V and a dipole in the X3-direction with moment M =

-2(V2/V )Mo. This same result was obtained by Ben-Menahem and Kostek (1991),

whose analysis assumed from the outset that a point monopole source in a fluid-

filled borehole could be replaced by a localized mechanism in an infinite homogeneous

medium.

To investigate the consequences of this approximation we compute, as before, the

far-field displacements induced by such a localized force system. The far-field displace-



ments can be computed as in (3.30) giving the following displacements

-p Voi (v2/v2 - 2 cos 2 (p) g'(t -| xI/ve)
4rp e |x|
(Ng - v /v2 + 2 cos2 V) g'(t -IxI/v.)

V3. (3.54)
+a |x I

Using expressions (3.43) and (3.44) we can express the far-field displacements in terms

of spherical coordinates as

pf VVo (1 - 2vi cos 2 <p/v) g'(t - R/ve)
UR(R, <P, 0, t) = i (p -2 R ,' (3.55)

4rpve V. R

pfv jVo sin p cos <p g'(t - R/v.)
u,(R,<p, 0, 0) = v V2 . (3.56)

27rpo, R

Comparing these expressions with the ones derived earlier we notice that the bracketed

term in the denominator of (3.45) and (3.46) is missing in both of these expressions.

That term in the radiation pattern originates from the motion of the three mutually

orthogonal dipole sources, as pointed out by Kurkjian et al. (1992). The numerical

results in Ben-Menahem and Kostek (1991), for both the point source in a fluid-filled

borehole and the above localized mechanism in an infinite solid medium, are in good

agreement because their particular choice of parameters was such that 7r/4 < < 37r/4

and VT < V,.

3.3.3 Borehole in a transversely isotropic medium

We consider now a circular borehole in a transversely isotropic medium with symme-

try axis along the X3-direction, i.e., the borehole axis. The particular medium has

the elastic properties of Cotton-Valley shale (Thomsen, 1986). In Table 3.1 we list

its properties as well as those of the fluid-filled borehole. The elastic constants are

expressed in terms of a local reference system, where the x3-direction is taken along

the symmetry axis of the material.

Using (3.27) we computed the radiation patterns of quasi-P (qP) and quasi-SV

(qSV) waves generated by the tube wave in the borehole. These are shown in Figures

3.6 and 3.10, while their corresponding wavefront surfaces are shown in Figures 3.7



and 3.11. For comparison we also show the radiation patterns of P- and SV-waves in

an isotropic medium (Figures 3.8 and 3.12, respectively), with the same density as the

transversely isotropic medium defined above but with compressional and shear wave

speeds given by v =- c33 /p and v2 = c44/p, respectively. The corresponding wavefront

surfaces are shown in Figures 3.9 and 3.13. These radiation patterns could have also

been obtained by the same technique as employed by Lee and Balch (1982), since the

problem is amenable to analytical calculations due to the symmetry.

A case which cannot be analyzed by their technique is, for instance, that of a

transversely isotropic medium with symmetry axis perpendicular to the borehole axis.

We take the symmetry axis along the x-direction. In Figures 3.14 and 3.18 we show

the qP- and qSV-wave radiation patterns. The corresponding wavefront surfaces

are shown in Figures 3.15 and 3.19. Here, the qSV polarization is such that the

particle motion is in planes containing the x-axis. For comparison, we also show the

P and SV radiation patterns for the isotropic medium defined above (Figures 3.16

and 3.20, respectively). The P-wave radiation patterns shown in Figures 3.12 and

3.16 are the same, but the SV radiation patterns in Figures 3.12 and 3.20 are different

because of the different definitions of the SV polarization in both cases. The wavefront

surfaces for the P and SV waves in the isotropic medium are shown in Figures 3.17

and 3.21, respectively. Finally, we show the SH radiation pattern in Figure 3.22 with

the corresponding wavefront surface shown in Figure 3.23. We also show in Figures

3.24 and 3.25 the radiation pattern and wavefront surface for the isotropic medium,

with the definition that the polarization vector is perpendicular to planes containing

the xl-axis.

We next consider a transversely isotropic (TI) medium with a cuspidal qSV wave-

front. It consists of a mixture of fine layers involving two components (Miller, 1992)

whose properties are listed in Table 3.2. The two components are mixed in a 19:1 ratio.

This leads to an equivalent TI medium with properties given in Table 3.3. We first

consider the case where the symmetry axis is parallel to the borehole axis (x3 ). The



properties of the fluid-filled borehole are given in Table 3.1. In Figure 3.26 we show

the qP wavefront surface, where we have cut out one quarter of the surface to better

reveal its shape. The indicated axes form a right-handed system, with the vertical axis

being X3 . The surface is color coded linearly according to the magnitude of the far-field

displacement. Figure 3.27 shows the qSV wavefront surface. Again the color represents

the magnitude of the far-field displacement, with red and blue being high amplitude

but with negative and positive Gaussian curvature of the slowness surface, respectively.

In (3.30) we should replace g' by its Hilbert transform for arrivals corresponding to the

red zones in Figure 3.27.

We now consider the case where the symmetry axis is perpendicular to the borehole

axis. The wavefront surfaces for the qP-, qSV-, and SH-waves are shown in Figures

3.28, 3.29, and 3.30, respectively. The color coding for the first two of these figures is

similar to the case above. In Figure 3.30 (SH wavefront) the color red is actually zero.

It is interesting to note that in Figure 3.29 (qSV wavefront), the displacement in the

XiX 2-plane is only zero along the axes, whereas for an isotropic medium it would be

zero on the entire plane.

3.4 Discussion and Conclusions

In this chapter we have considered the radiation problem from the equivalent source

distribution in both fast and slow formations and have provided far-field expressions

for the displacements. In slow (anisotropic) formations there can be either one or

two "conical" waves arriving earlier than the direct wave from source to receiver. We

have illustrated our results by plotting radiation patterns for quasi-P, quasi-SV, and

SH-waves in isotropic and transversely isotropic media and the corresponding wave-

front surfaces. We illustrate the cases where the borehole axis and the TI axis are

parallel, and also when they are perpendicular. These two cases can be completely

solved analytically. More general situations may require the numerical solution of sex-

tic equations. It is interesting that the expression for the body-force distribution in



the equivalent source is obtained as a product of two matrices, one a function of the

material properties of the (anisotropic) medium, including its orientation relative to

the borehole, and the other a function of the parameters of the elliptical cross-section

of the borehole.

Finally, we considered the problem of computing the pressure field in one borehole

induced by a volume injection source in another borehole. The far-field solution is

obtained in closed form, and in particular it clearly shows the reciprocal nature of the

problem.



p 2640 kg/m3
c1 1  74.73 GPa

C1 2 14.75 GPa
c 1 3 25.29 GPa
c33 58.84 GPa
c4 4 22.05 GPa
c66 29.99 GPa

pf 1000 kg/m 3
Tb 3500 m/s
ro 0.1 m

Table 3.1: Parameters for the Cotton-Valley shale and the fluid-filled borehole.

medium 1 medium 2
p 2500 kg/m 3 1000 kg/m 3

oc 2700 m/s 1500 m/s
v. 1500 m/s 450 m/s

Table 3.2: Parameters for the layered medium.

p 2425 kg/m 3

cu, 17.02 GPa

c12  6.32 GPa
c13  5.44 GPa
c33 13.45 GPa
C4 4  2.40 GPa
C66 5.35 GPa

Table 3.3: Equivalent TI parameters for a layered medium composed of two components

(see Table 2.2) mixed in a 19:1 ratio.
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X 2 9

Figure 3.1: qP and qSV slowness surfaces for a TI medium with symmetry axis along
the x3-direction. The indicated points on the two slowness sheets (touched by the
planes perpendicular to x) give the most singular contribution at x in the far field.
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Figure 3.2: Phase function O(s) = 01(s) + 02(s) for a fast formation. At s = 0, O(s)

has a finite jump discontinuity in its first derivative.
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Figure 3.3: Graph of I(t) for a fast formation. The arrow indicates the arrival time of

a ray emanating directly from the source.
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Figure 3.4: Phase function O(s) = 41 (s) + 0 2 (s) for a slow formation. At s = 0, O(s)
has a finite jump discontinuity in its first derivative. The stationary point (a minimum)
is shown at s = so.
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Figure 3.5: Graph of I(t) for a slow formation. The first arrow indicates the arrival time
of the "conical" wave. The second arrow indicates the arrival time of a ray emanating
directly from the source.
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Figure 3.6: Radiation pattern of the qP-wave for symmetry axis along the X3-direction
(parallel to borehole axis).
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Figure 3.7: Wavefront surface of the qP-wave for symmetry axis along the X3-direction
(parallel to borehole axis).
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Figure 3.8: Radiation pattern of the P-wave for isotropic medium with v2 = ca3/p and
=c

V.2 = C4 4/P.

X2

Figure 3.9: Wavefront surface of the P-wave for isotropic medium with v2 = cas/p and
=c

V.2 = C4 4 /P.
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Figure 3.10: Radiation pattern of the qSV-wave for symmetry axis along the X3 -
direction (parallel to borehole axis).
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Figure 3.11: Wavefront surface of the qSV-wave for symmetry axis along the X3 -
direction (parallel to borehole axis).



Figure 3.12: Radiation pattern of the SV-wave for isotropic medium with v2 = c3/p
and v2 = c44/p.

X2

Figure 3.13: Wavefront surface of the P-wave for isotropic medium with v2 = caa/p
and v. = c44/p.
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Figure 3.14: Radiation pattern of the qP-wave for symmetry axis along the x-direction
(perpendicular to borehole axis).

X3

X2

x1

Figure 3.15: Wavefront surface of the qP-wave for symmetry axis along the x-direction
(perpendicular to borehole axis).
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Figure 3.16: Radiation pattern of the P-wave for isotropic medium with v2 = c3/p
and v. = c44/p.
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Figure 3.17: Wavefront surface of the P-wave for isotropic medium with v2 = caa/p
and v. = c4 4 /p.
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Figure 3.18: Radiation pattern of the qSV-wave for symmetry axis along the x-
direction (perpendicular to borehole axis).
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Figure 3.19: Wavefront surface of the qSV-wave for symmetry axis along the x1-
direction (perpendicular to borehole axis).
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Figure 3.20: Radiation pattern of the SV-wave for isotropic medium with v' = cs/p
and v. = c44/p.
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Figure 3.21: Wavefront surface of the SV-wave for isotropic medium with v2 = ca/p
and v2 = c44 /p.
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X2

Figure 3.22: Radiation pattern of the SH-wave for symmetry axis along the xi-
direction (perpendicular to borehole axis).
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Figure 3.23: Wavefront surface of the SH-wave for symmetry axis along the xi-direction
(perpendicular to borehole axis).
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Figure 3.24: Radiation pattern of the SH-wave for isotropic medium with v2 = c3/p
and v2 = c4 4 /p.
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Figure 3.25: Wavefront surface
and v2 = c44/p.

of the SH-wave for isotropic medium with v2 = c3/p
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Figure 3.26: Wavefront surface of the qP-wave for symmetry axis along the x3-direction
(parallel to borehole axis). The color represents the magnitude of the displacement for
this wave type, where red is low and blue is high.
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Figure 3.27: Wavefront surface of the qSV-wave for symmetry axis along the x 3-
direction (parallel to borehole axis). The color represents the magnitude of the dis-
placement for this wave type, where green is zero, red represents high magnitudes and
negative Gaussian curvature of the slowness surface, and blue represents high ampli-
tudes and positive Gaussian curvature.
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Figure 3.28: Wavefront surface of the qP-wave for symmetry axis along the xi-direction
(perpendicular to borehole axis). The color represents the magnitude of the displace-
ment for this wave type, where red is low and blue is high.
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Figure 3.29: Wavefront surface of the qSV-wave for symmetry axis along the xz-
direction (perpendicular to borehole axis). The color represents the magnitude of the
displacement for this wave type, where green is zero, red represents high magnitudes
and negative Gaussian curvature of the slowness surface, and blue represents high
amplitudes and positive Gaussian curvature.
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Figure 3.30: Wavefront surface of the SH-wave for symmetry axis along the xj-direction
(perpendicular to borehole axis). The color represents the magnitude of the displace-
ment for this wave type, where red is zero and blue is high.



Chapter 4

Borehole Fractures: Numerical
Models

4.1 Introduction

A Stoneley wave is an interfacial wave between two dissimilar elastic materials. In a

fluid-filled borehole the Stoneley wave appears as a guided mode which, at low fre-

quencies, is confined primarily to the fluid. When it encounters a permeable fracture, it

sees this as a sharp impedance contrast and part of the energy is reflected backwards.

Reflected tube waves (low-frequency Stoneley waves) have been used by Hornby et

al. (1989) to locate fractures and estimate their effective aperture by using a simple

analytical model. The approach considers horizontal as well as inclined parallel-plate

models of fractures. Comparisons with laboratory data show that the simple analytical

model tends to underestimate the reflection coefficient of Stoneley waves. The discrep-

ancy probably results from the purely hydraulic model, which assumes the formation

is rigid.

To account for the effects of the wall elasticity, Tang (1990) used a modal solution

valid at low frequencies to derive expressions for the reflection and transmission coeffi-

cients of Stoneley waves from a horizontal parallel-plate model of a fluid-filled fracture.

The reflection coefficients resulting from this model are higher than the ones predicted

with the rigid formation assumption.

Modeling the effects of horizontal fractures in acoustic waveform logs was attempted



by Stephen et al. (1985) who used a finite-difference (FD) method to integrate the

equations of motion. In their work gradient zones were artificially introduced above

and below the fracture because their technique could not account for discontinuities in

the elastic properties such as fluid-solid interfaces. They considered a single fracture

with an aperture of 8 cm. Stoneley wave reflections were observed, but their amplitudes

were mainly controlled by the gradient zones rather than by the fracture itself.

In this chapter we present a mathematical model to account for the presence of

horizontal fractures intersecting a fluid-filled borehole. The model is easily implemented

with finite differences and allows for the simulation of fractures in general axi-symmetric

inhomogeneous media. We concentrate on the effects of fractures on Stoneley waves

and compare simulation results with existing analytical models.

4.2 The Fluid-Filled Borehole Model

In this section we restate the relevant equations of elastodynamics governing the prop-

agation of waves in an elastic medium such as the fluid-filled borehole environment.

We rewrite Equations (2.12) and (2.16) as

av
p = V-, (4.1)

- = A(V - v)I + p(Vv + vV), (4.2)
49t

where v is the particle velocity. Equations (4.1) and (4.2) form a first-order hyperbolic

system, which can be easily discretized by an explicit finite-difference scheme (Virieux,

1986). The main advantage of working with this first-order system rather than the

second-order one in terms of displacements is that the stability relation is indepen-

dent of Poisson's ratio, which allows for complex fluid-solid interfaces to be modeled

implicitly just by setting the shear rigidity to zero in the fluid.

The discretized form of Equations (4.1) and (4.2) in cylindrical coordinates, ap-

plicable to the case of axial symmetry are presented in Appendix B. At the edges of



the computational grid the finite-difference equations must be augmented by boundary

conditions (refer to Figure B.1). The left (r = 0) edge of the grid is always a symmetry

axis. At the right, upper, and lower edges of the grid, absorbing boundary conditions

are applied (Kostek, 1991).

4.3 The Dynamic Fracture Model

We consider a fluid-filled axi-symmetric fracture intersecting a borehole. The fracture

can be of variable aperture and of finite extent. Figure 4.1 shows a sketch of the

borehole and fracture on the (r, z) plane. Considering the dynamics of two small

elements connected with the upper and lower parts of the fracture, we obtain the

following approximate equilibrium equations

& (puvu"+plvo\ _ rzu n*(43
2 z (4.3)at 2 Az'

a (pUv" - vpIv \ rz + z + 2p

z ) (4.4)Bt 2 Az '

where the superscripts 1 and u refer to the lower and upper parts of the fracture,

respectively; Az is the height of the two volume elements (the grid spacing in the

vertical direction); and p is the pressure in the fluid inside the fracture, taken here as

constant across the aperture. Equation (4.3) expresses the vertical motion of the center

of mass of the two elements, while Equation (4.4) considers their relative motion.

Regarding the motion of the (ideal) fluid inside the fracture, we derive the following

equation for the pressure

a2 p g2p 1ap 1dhap 2 a (V"-Vz (4.5
h2 2 r 5r h dr or -p t h

where pf and vf are the density and the acoustic wave velocity of the fluid, respectively,

and h(r) is the fracture aperture. The last term on the right-hand side of (4.5) accounts

for the pressure changes due to the relative motion of the upper and lower surfaces of

the fracture. The remaining terms form a one-dimensional acoustic wave equations



in cylindrical coordinates, for a fracture in a rigid formation with a slowly varying

aperture.

4.4 Finite-Difference Implementation

The time evolution of the velocity and stress variables is carried out by using the

discretized version of Equations (4.1) and (4.2), namely Equations (B.3)-(B.8) of Ap-

pendix B, ignoring the presence of the fractures. The stresses are then corrected by

using properly discretized versions of Equations (4.3)-(4.5). In Figure 4.2 we show the

layout of the grid upon the computational domain, and the location of the various

quantities on the grid. The fracture is vertically positioned at k = k1 and extends ra-

dially from j = jb to j = jf. All quantities referring to the fluid inside the fracture are

identified by either a superscript or a subscript "f". The actual algorithm is described

next.

Velocities are updated first followed by the stresses,

v n+1 _ v", (4.6)

rn+3/ 2  _ n+1/2 (4.7)

The radial component of the particle velocity of the fluid in the fracture is updated by

using the equation of motion

vr 1  pf r k n+ /_ n+1/2). (4.8)

The stresses in the borehole next to the fracture are corrected by subtracting a uniform

pressure induced by the squirting of fluid from the fracture,

r+3/2 3/2 - Ap/2, (4.9)

+3/2 n+3/2- Ap/2, (4.10)

rzn+3/2 _ n+3/2 - Ap/2, (4.11)

where f n+1

Ap = Vp,.1At - _ ' jf (4.12)Az 2jf - 1 Ar



This last expression approximates the constitutive relation in the fluid, Op/Ot =

-pf v V v.

Introducing the following quantities related to the fracture region

Vn I n

V + n P+1/2," . +1/2 + Pj+1/2 z 1+1/2 (4.13)
z j+1/2 2Pj+1/2

V-- _ P+1/2V, +1/2 - P3+1/2Vz+1/2 (4.14)
z 1+1/2 - 2P1+1/2

-. _ P1+1/2 + PI+1/2 (4.15)P,+1/2 2

where jb j jf - 1, we can approximate Equations (4.3) and (4.4) as

+ n+1 + n At u n+1/ 2 - 1n+1/2 (4.16)
z j1 z j+ z+1/2 +1/2 zz j+1/2 zz j+1/2

PI+l/2 AZ

n+1 n At u n+1/2 I n+1/2 + n+1/ 2  4.17
z j+1/2 z j+1/2 PI+1/ 2 AZ z11zz j1/2 / +

and thus obtain the updated velocities along the upper and lower faces of the fracture,

u n+1 _ P1+1/2 (V+ n+1 + - n+1 )(4.18)
z j1 z j+\ 1/2 + z j+1/2) (

Pj+1/2

I n+1 = Pi+1/2 -V+ n+1 - n+1
z j+1/2 z j+1/2 Vz j+1/2) (4.19)

P3+1/2

Using these velocities we recompute the normal stresses in the region around the frac-

ture by means of Equations (B.5)-(B.7). Also, we set rn+ /2 = 0 for jb j .

The pressure in the fluid inside the fracture is updated by discretizing Equation

(4.5). First, we express the last term on the right hand side of that equation in terms

of the axial stresses and fluid pressure by manipulating Equations (4.3) and (4.4) to

give

pf V 2-z + --z + p). (4.20 )f -at h hAz pu pI pu p

In the case of constant fracture aperture, Equations (4.5) and (4.20) are approximated

by



n+3/2 n+1/2 n-1/2
Pj+1/ 2 ~ j+1/2 + 1j+1/2 ~

t2 /n+1/2 n+1/2
(f 2 n+1/2 n+1/2 n+1/2 Pj+3/2 Pj-1/2

Ar (Pi+3/2 - 2P1+1/2 + 1 -1/2 (2j + 1)

[ ( u n+1/2 I n+3/2 II + P1/2 + Pj+12 n+3/2
z zz 1+1/2 + Pz +1/2 P+ 1/2P_+1/2

z pj+ 1/2  P+1/2 P+1/2Pj+1/2 /

( u n-1/2 I n-1/2

j+1/2 Tj+1/2 Pj+1/2 + Pj+1/ 2 n-1/2+ + P+1/2+12P~i](.1

where y is a relaxation ("implicitness") parameter. We have used y = 0.51 in all

simulations presented in this paper. Equation (4.21) cannot be used to update the

pressure at j = jf - 1/2. We use a simple one-way approximation of (4.5) for this

purpose.

This completes the updating of all the quantities related to the fracture and at the

same time corrects the stresses around the fracture such that they can be propagated

with the normal finite-difference scheme, which ignores the presence of the fracture.

4.5 Numerical Simulations

In this section we present the results of simulations for various situations of interest

involving fractures. The attention is primarily on Stoneley wave interaction with frac-

tures. Effects due to the elasticity of the formation, multiple fractures, and fractures

in the presence of washouts are studied.

4.5.1 Borehole in a Homogeneous Formation

To validate the borehole finite-difference model, we simulate the simple situation of

a circular borehole in a homogeneous formation (see Figure 4.3). The borehole and

formation parameters are listed in Table 4.1. The excitation is from a point monopole



source on the axis, with a time variation given by the second derivative of the Blackman-

Harris window centered at 10 kHz (Harris, 1978). The offset of the first receiver from

the point source is 1 m, and the inter-receiver spacing is 0.2 m. The finite-difference

and real axis integration (RAI) method (Tsang and Rader, 1979) waveforms for this

model are shown in Figure 4.4, where the compressional, shear, and Stoneley wave

arrivals are clearly seen.

The excellent match between the analytical and numerical waveforms validates the

borehole propagation portion of the model. The very small differences, most noticeable

at the largest offset, are due to plotting interpolation, finite-difference grid dispersion,

and to numerical approximations made in the RAI computations. The absence of

spurious artificial edge reflections is indicative of the good performance of the absorbing

boundary conditions.

4.5.2 Static Fracture Displacement

To illustrate some of the capabilities of the model, we carried out a computation of

the static displacements induced by a uniform pressure distribution in the borehole in

the presence of a finite-size fracture (refer to Figure 4.5). To model this situation with

the explicit finite-difference scheme we apply a constant pressure to the surfaces of the

borehole and fracture and evolve the equations in time until they relax to the final

static solution. To check the results we also computed the displacements by a direct

finite-element (FE) solution of the Lame equations of static elasticity theory. The

upper and outer radial boundaries were placed far enough from the fracture region

that the displacements on these boundaries could be specified as those occurring in an

infinite medium in the absence of the fracture. The radial and vertical displacements

along the upper surface of the fracture are presented in Figure 4.6. The two methods

are in good agreement.



4.5.3 Single Horizontal Fracture

Under the assumption of a rigid formation, Hornby et al. (1989) derived the following

expression for the complex reflection coefficient of a tube wave propagating along a

borehole in the presence of an infinite horizontal fracture

R(w) = ih,(ka)/aH,1 k (4.22)
1+ ihH(')(ka)/aH(1 )(ka)'

where k = w/vf is the wave number of the tube wave, a is the borehole radius, and

h is the fracture aperture (refer to Figure 4.7). Implicit in Equation (4.22) is the fact

that the fracture aperture h must be small with respect to the wavelength of the tube

wave. We will rederive this equation in the next chapter.

In order to simulate a rigid formation with the finite-difference scheme, we arti-

ficially boost the density of the elastic medium while keeping the compressional and

shear velocities the same. This has the advantage of increasing the stiffness of the

medium and at the same time preserving the finite-difference stability relation. In

Figures 4.8 and 4.9 we show the waveforms for the rigid and elastic cases, respectively.

The parameters for the borehole and formation are listed in Table 4.2. The fracture

aperture in both cases is h = 0.5 cm. The inter-receiver spacing is 0.5 m, and the

distance between the point source and the first receiver is 2 m. To simulate the rigid

case the density of the formation was increased by a factor of 1000. The point source

time pulse is as in the previous case but with a center frequency of 1 kHz. At these

frequencies the compressional and shear head waves are not very well excited, therefore

their amplitudes are not visible in any of the responses. Only the direct and reflected

Stoneley waves are seen. The phase change of the reflected wavelet is evident.

To estimate the magnitude of the reflection coefficient, we time window the direct

and reflected Stoneley waves and compute their spectral ratio. In Figure 4.10 we show

the magnitude of the Stoneley wave reflection coefficient computed from the finite-

difference waveforms as well as from Equation (4.22). Notice the good agreement

obtained for the rigid case. As expected, the reflection coefficient in the elastic model



is higher than the one from the rigid model. This fact will be further explored in the

next chapter.

4.5.4 Double Fractures

When multiple fractures are present, it is possible to distinguish their reflections if

they are far apart. However, if they are closely spaced it is not obvious whether they

behave additively as a single fracture even when the wavelength is much larger than

the distance between the fractures. To study this problem we simulated the presence

of two 0.25 cm fractures spaced 7 cm apart (refer to Figure 4.11). The borehole and

formation parameters are as in Table 4.2. Figure 4.12 shows the waveforms for a rigid

formation, where the source function is the same as in the previous case but with a

center frequency of 3.1 kHz. The borehole parameters are given in Table 4.2. The

inter-receiver spacing is 0.25 m, and the distance between the point source and the

first receiver is 1 m. The magnitudes of the reflection coefficients estimated from the

waveforms for the cases of a single fracture with aperture h = 0.5 cm and double

fractures, each with an aperture of h = 0.25 cm, are shown in Figure 4.13. Also shown

are the low-frequency approximation given by Equation (4.22) for a single fracture and

a similar result for double fractures (Spring and Dudley, 1992). Again, we see good

agreement between numerical and analytical results. At low frequencies (below 1 kHz)

the two fractures behave as a single one with double the aperture. Above 1 kHz we

see an increasing separation between the two sets of curves, with the double fracture

showing a lower reflection coefficient. Notice that the separation occurs at wavelengths

on the order of 1.5 m, which is much greater than the separation between the fractures.

4.5.5 Fractures in the Presence of a Washout

In real situations the fracture region around the borehole is enlarged by washouts of

cave-ins caused by the drilling process. This is bound to change the character of the

reflected Stoneley signals. To study this effect we model a fracture which intersects the

borehole at a washout of rectangular cross section (refer to Figure 4.14). The formation



is assumed to be rigid and the borehole parameters are given in Table 4.2. The material

parameters are the same as in the previous example. The source center frequency is

1 kHz, the inter-receiver spacing is 0.5 m, and the first receiver is offset 2 m from the

source. The fracture offset is 5.5 m from the source. The parameters of the washout

are b = 6 cm and c = 4 cm. The corresponding waveforms are shown in Figure

4.15. The magnitude of the reflection coefficient estimated from a single waveform

is plotted in Figure 4.16, together with the low-frequency approximation given by

Equation (4.22). Also shown in this figure is the magnitude of the reflection coefficient

given by R(w) ~ iwV/27rvoa 2 for a washout of volume V. At very low frequencies the

washout-fracture system behaves as if there was no washout. At frequencies above 650

Hz the system behaves as if there were only a washout, with the fluid contained in its

volume controlling the reflection of Stoneley waves.

4.6 Discussion and Conclusions

In this chapter we have developed a model which accounts for all interactions between

borehole waves and an intersecting fluid-filled fracture. The model lends itself to ef-

ficient numerical implementation, e.g., finite-difference method. Since actual fracture

apertures are on the order of few millimeters, it is computationally prohibitive to ac-

commodate for an accurate discretization of the fracture region and at the same time

propagate the wavefields to actual ranges of interest. Our model, however, does not

suffer from this problem since the smaller the fracture aperture the more accurate the

model becomes.

Although we have concentrated on the effects of fractures on Stoneley waves, the

model is general enough that it can be used to study the effects of fractures and other

inhomogeneities on head waves and borehole modes. Comparisons with analytic so-

lutions for the interaction of a Stoneley wave with a fluid-filled fracture in a rigid

formation show that the scheme is very effective in modeling thin fractures. The nu-

merical simulations show that the magnitude of the Stoneley wave reflection coefficient



is larger for an elastic formation when compared to that for a rigid one. This result

is important since it indicates that an interpretation of the Stoneley wave reflectivity

according to (4.22) would lead to an overestimation of the fracture aperture h, and

thus of the fracture conductivity. Simulations of double fractures show that the inter-

action between the two fractures has an appreciable effect on the Stoneley reflectivity

even when the distance between the fractures is small compared to the wavelength.

Here the effect is contrary to that of the elasticity of the formation, therefore Equation

(4.22) underestimates the total fracture aperture. Finally, we simulated the effects of a

washout-fracture system and showed that at low enough frequencies the effects of the

washout can be neglected, since the reflectivity is totally dominated by the fracture

characteristics. At higher frequencies, however, the effects of the washout are signifi-

cant and would lead to a grossly overestimated fracture aperture, if not properly taken

into account.



a 0.1 m

pg 1000 kg/m
vf 1500 m/s
p 2500 kg/rm
ve 4000 m/s
v., 2310 m/s

Table 4.1: Parameters for the borehole in a homogeneous formation.

a 0.1 m
pf 1000 kg/m 3

vf 1500 m/s
p 2500 kg/M 3

vc 5000 m/s
v. 3000 m/s

Table 4.2: Borehole and formation parameters for the fracture cases.
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Figure 4.1: Dynamic fluid-filled fracture model.
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Figure 4.2: Staggered finite-difference grid showing the placement of field variables and

elastic parameters. The horizontal fluid-filled fracture is shown at z = kg Az.
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Figure 4.3: Fluid-filled borehole in a homogeneous formation.
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Figure 4.4: Finite-difference (solid) and RAI (dashed) waveforms for the homogeneous
formation.
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Figure 4.5: Opening of a finite sized fracture due to a static pressure in the borehole.
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Figure 4.6: Static fracture displacements. The dot-dashed curve corresponds to the ra-

dial displacement given by u,(r) = pa2 /2pr, due to a uniform pressure on the borehole
wall in the absence of the fracture.
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Figure 4.7: Horizontal fluid-filled fracture intersecting a borehole (a =10 cm, h =0.5

cm).
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Figure 4.8: Borehole finite-difference waveforms for a rigid formation. The arrow
indicates the location of the fluid-filled fracture (h = 0.5 cm).
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Figure 4.9: Borehole finite-difference waveforms for an elastic formation. The arrow

indicates the location of the fluid-filled fracture (h = 0.5 cm).
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Figure 4.10: Magnitude of the Stoneley wave reflection coefficient for a 0.5 cm aperture

fluid-filled fracture.
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Figure 4.11: Horizontal fluid-filled fractures intersecting a borehole (a = 10 cm, h =

0.25 cm, H = 7 cm).
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Figure 4.12: Borehole finite-difference waveforms for a rigid formation. The arrow

indicates the location of the midpoint between the two fluid-filled fractures (h = 0.25

cm).
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Figure 4.14: Horizontal fluid-filled fracture intersecting a borehole at a washout (a = 10
cm, b = 6 cm, c = 4 cm, h = 0.5 cm).
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Figure 4.15: Borehole finite-difference waveforms for a rigid formation. The arrow

indicates the location of the washout and fluid-filled fracture (h = 0.5 cm).
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Figure 4.16: Magnitude of the Stoneley wave reflection coefficient for the combined
washout and fluid-filled fracture. The straight line starting at the origin is the magni-
tude of the reflection coefficient of the washout itself, IR(f) I ~ fV/v a2 (low-frequency
approximation), where V is the volume of the washout.
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Chapter 5

Borehole Fractures: Analytical
Models

5.1 Introduction

In the previous chapter we presented numerical simulation results that showed a variety

of important effects on the propagation of Stoneley waves and their interactions with

fluid-filled fractures intersecting a borehole. In particular we focussed on the reflec-

tion phenomenon which arises when a Stoneley wave encounters a permeable fracture.

Similarly, borehole enlargements (e.g., washouts) give reflections that are qualitatively

indistinguishable from fracture reflections. In combination with open fractures, bore-

hole enlargements can severely alter the Stoneley wave reflection coefficient. While our

numerical fracture model can treat the realistic geometries of fractures and washouts,

it is of limited use as a practical model for obtaining fracture parameters from data

such as the reflectivity of Stoneley waves, since it is computationally intensive. We

have also shown that the formation elasticity significantly changes the reflection co-

efficient of Stoneley waves from a fluid-filled fracture, thus rendering Equation (4.22)

inapplicable for most cases of interest.

Multiple fractures also complicate the interpretation of Stoneley wave reflections.

Figure 5.1 shows data collected from a well drilled in crystalline rocks. On the left part

of that figure two images corresponding to the reflected amplitude from a borehole

televiewer (BHTV) and the formation microscanner are shown. It is clear from these
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images that the zone between 610-615 feet is highly fractured, whereas at a depth of

approximately 607 feet, two individual horizontal fractures are present. The question

thus arises of how Stoneley waves would interact with such features, and furthermore

what kind of information can be extracted from the reflectivity.

In the next sections we develop analytical models which incorporate knowledge

such as the volume of the washout and the formation elastic properties to predict the

reflectivity of Stoneley waves from fractures. We also establish the equivalence between

fractured and permeable zones insofar as they affect Stoneley wave propagation. It is

thus suggested, following Tang and Cheng (1993), that the fundamental parameter of

interest in highly fractured zones is the effective permeability rather than the total

fracture aperture.

5.2 Borehole Washouts and Fractures

We assume that the fracture is perpendicular to the borehole axis and that the region

where the fracture intersects the borehole is enlarged, such as shown in Figure 4.14.

The shape of the enlarged region, heretofore referred generically as a "washout", is

arbitrary and with a characteristic diameter of L. We assume that L and the borehole

radius (a) are both smaller than the characteristic wavelength. Let V be the volume of

the washout and d the radius of the region where the fracture intersects the washout.

We will further assume that the formation is rigid and that the frequency is low enough

such that the tube wave is the dominant mode. Designating the borehole region above

the fracture by (I) and that below by (II), with the fracture being located at z = 0, we

can express the tube wave pressure in these regions as

pI = eikz + R(w)e-ikz, (5.1)

p"H = T(w)eikz, (5.2)

where k = w/vy and R(w) and T(w) are the reflection and transmisssion coefficients

of the fracture-washout system. In the long wavelength approximation the pressure
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in the washout region is uniform and equals that at z = 0. Therefore the following

continuity equation for the borehole pressure can be written

pI = pH", at z =0. (5.3)

Compatible with the assumptions we have made, the continuity of fluid mass can be

expressed as

A(v, - vI) = q(w), at z = 0, (5.4)

where A = 7ra 2 is the cross sectional area of the borehole, vi'i are the vertical particle

velocities, and q is given by

q(w) = -v- ndS

ikV 2irdh H(1)(kd)

P+ 1Pfvf H1)(kd) A (5.5)

where the integration is over the surface of the washout. In Equation (5.5), the first

term inside the brackets represents the effect of the compressibility of the fluid in the

washout volume, whereas the second represents the flow into the fracture. The pressure

p in that equation is taken at z = 0.

Combining Equations (5.1)-(5.5) and solving for the reflection coefficient we obtain

_ i[kV/2ra2_-_dhHl)(kd)/a2H (kd)|
1 - i[kV/2ira 2 - dhH( )(kd)/a2 Hi)(kd)(

This expression is simple enough that it can be used as a model to predict the effective

fracture aperture. The parameters such as V and d can be obtained from caliper logs.

In Figure 5.2 we show the magnitude of the reflection coefficient as obtained from (5.6)

as well as that obtained from the finite-difference fracture model (same as in Figure

4.16). The parameters for this model are the same as those of Section 4.5.5. The good

agreement between the two models show that Equation (5.6) captures the essential

features of the fracture-washout system. Obviously the analytic model is applicable

only at low frequencies as assumed above where, to lowest order, only the volume of the
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washout is considered. Shape dependent factors would obviously have to be considered

in order to extend this model to higher frequencies.

5.3 Formation Elasticity Effects

In this section we will develop a model of a borehole-fracture system that allows for

the elasticity of the formation. In Figure 5.3 we show the geometry of this problem. At

low enough frequencies the Stoneley wave in the borehole can be approximated by a

tube wave with uniform pressure distribution across the borehole, as we have shown in

Chapter 1. The pressure field in region (I) below the fracture consists of the incident

and reflected fields

pI = eikTz + R(w)e-ikTz, (5.7)

and that of region (II) above the fracture is

p H = T(w)eikTz, (5.8)

where kT = w/vT. The tube wave velocity, VT, is as given in Section 3.3.1. The

Stoneley wave in an elastic medium is not very dispersive, thus justifying the use of

the low frequency limit for its phase velocity.

As the tube wave interacts with the fluid-filled fracture it will couple energy into

a mode which propagates outward into the fracture. In Appendix C we derive the

dispersion relation for axi-symmetric modes in a fluid-filled fracture. In terms of the

dimensionless radial wave number (k, = kh) and frequency (W = wh/vj) this disper-

sion relation takes the following form

1- ~ , k I(~/E) 2]2
- IA

coth(- I - 2)+2 4k 2  _ ( =0, (5.9)
2P1 (Pc 8 /E) 4  Ic -(JEc/e)

2  r

where f, c, and ., are defined in Appendix C. The fundamental mode which exists for

all wavelengths has a phase velocity which is smaller than the acoustic wave velocity of

the fluid. At high frequencies this mode becomes the Stoneley wave propagating along

the fluid-solid interfaces. This mode is the two-dimensional analogue of the Stoneley
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wave in a fluid-filled borehole. At low frequencies, however, there is a fundamental

difference between this mode and the tube wave. The compliance of the formation

under a static pressure increase in the borehole is finite and equals p-1. In the fluid-

filled fracture case the compliance of the two half spaces due to a static pressure in

the fluid is infinite, thus leading to a phase velocity which approaches zero in the low

frequency limit. From (5.9) it can be shown that

2 2

lim . = 2 2 (

(2 pg e Ie2 2 -

X 2p~i- ( "2 -2_( 1). (5.10)

In Figure 5.4 we show the phase velocity of this fundamental mode for a formation

with properties as given in Table 4.2. The fracture aperture is taken as h = 0.5 cm.

Notice that (5.10) is a good approximation for exact dispersion obtained by numerically

tracking the roots of (5.9).

The pressure field in the fracture thus takes the form of an outgoing cylindrical

wave given by

py(r, w) = p H((a, w) H ) (5.11)
H ~l(k,.a)

where p1 (a, w) is the pressure at the borehole wall and taken the same as p(z = 0, w).

Notice we have assumed that the pressure is uniform across the fracture aperture, since

the wavelength is much larger than the aperture. We can now set up the problem as

in the previous section and express the continuity conditions at z = 0 as

PI -P1  = 0, (5.12)

A(o- vi) = q(w). (5.13)

The flow into the fracture is given by

q(w) = - v -ndS

27rahkr Hl)(kra)

=~ L - p,)(ra (5.14)
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where p = p(z = 0, w), and (w, k,) satisfy Equation (5.9). From Equations (5.7), (5.8),

(5.12)-(5.13) we can solve for the reflection and transmission coefficients, thus obtaining

ihkHl)(ka)/aH(')(ka)
R(w) = I r 0(5.15)

kT + ihkH'(ka)/aH(')(ka)'

T (w) = kr. (5.16)
kT + ihkHrI'(kra)/aH 1 l(kra)(

If the formation is rigid, then k, = kT = w/vy and Equations (5.15) and (5.16) reduce

to those obtained by Hornby et al. (1989).

In Figure 5.5 we show the magnitude of the reflection coefficient for a fracture

with an aperture of 0.5 cm. The borehole and formation properties are given in Ta-

ble 4.2. For the purpose of comparison we also plot in that figure the results of the

finite-difference computation performed in the previous chapter. Notice the good agree-

ment between the finite-difference estimates of the reflection coefficient versus Equation

(5.15). The predictions from Equation (5.15) are virtually indistinguishable whether

we use the exact [Equation (5.9)] or the approximate [Equation (5.10)] dispersion re-

lations.

5.4 Fractured and Permeable Zones

As illustrated in Figure 5.1, the occurrence of multiple fractures is not rare but actually

quite common, such as in carbonate formations. Their effects on the reflection and/or

transmission of tube waves is important and we will develop some simple analytical

models to better understand these effects. We will, however, assume that the formation

is rigid for simplicity.

For a single fracture we can simply set kr = kT = k = w/v 1 in (5.15) and (5.16) to

get

ihH 1 )(ka)/a.H 1)(ka)
R(w) = - (1) (1)' (5.17)
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1
T(w) = 1 (5.18)

1 + ihH l)(ka)/aH1)(ka)

In Figure 5.6 we show the magnitudes of the reflection and transmission coefficients for

a fracture with h = 0.5 cm. Notice that as w -+ 0 we have R(w) -+ -1 for an inviscid

fluid since the fracture acts as a pressure release surface. We will next build upon this

model by including multiple fractures and the viscosity of the fluid.

5.4.1 Multiple Fractures

Referring to Figure 5.7, let us focus our attention at the pressure field above and below

a particular fracture located at z = z, (i = 1, ... , N). The pressure field in region

zi- 1 < z < z, is given by

p( ei(kz-wt) ei(-kz-wt) U() (5.19)

and that in the region z, < z < zj+1 is

P(i+i) = ei(kz-wt) ei(-kz-wt) U(41) (5.20)

where U(w) and D(w) are the amplitude of the upgoing and downgoing waves, respec-

tively.

The continuity conditions at the fracture locations z = zi are expressed as

PO - p(i+) = 0, (5.21)

A (of) - q+) ((), (5.22)

where

q(')(w) = - j v -ndS

21rah, H14)(ka)
= - p. (5.23)
ipvf H1 1 1 )(ka)

In (5.23) pi is the borehole pressure at z = z;. The upgoing and downgoing amplitudes

are related by the reflection coefficient as

D(')(w) = R(')(w) U((w), (i = 1, ..., N). (5.24)
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The system of equations (5.21)-(5.24) can be solved recursively by starting at the

uppermost region (N + 1) where

R(N+1)(w) 0. (5.25)

In the next section we will show results from such a calculation.

5.4.2 Viscous Effects

In all previous models the effects of fluid viscosity have been neglected since the viscous

skin depth 6 = 2i/pyw was small when compared to h (7 is the fluid viscosity). When

we consider fractured zones such as shown in Figure 5.1 it may be necessary to consider

these effects as the fracture apertures become of the order of tens of pm. Also, from

a theoretical viewpoint it is useful to describe the medium as a porous permeable

medium (Biot, 1956, 1962; Johnson, 1986), characterized by a permeability K0 , and

where viscosity effects become significantly important.

Our intention is to generalize the procedure of the previous section but with the

inclusion of viscous effects in the fracture. We will do so by starting from a general

formalism for acoustics in porous media such as developed in Johnson et al. (1987).

Let v be a macroscopically averaged fluid velocity, defined in such a way that #v -nA is

the amount of fluid crossing a macroscopic surface of area A having an outward normal

n; # is the porosity of the medium. The fluid velocity and the macroscopic pressure

gradient driving the flow are related through

a(w)pf - =-Vp, (5.26)
at

Ov = - Vp, (5.27)

where a(w) and c(w) are the dynamic tortuosity and permeability, respectively. From

(5.26) and (5.27) we get the relationship between these two quantities

a(w) = i~o-. (5.28)
K(W)wpf
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The constitutive relation for the fluid is given by

=P -py V -V. (5.29)

Assuming eiwt dependence for all variables, we get from Equations (5.26)-(5.29) the

following equation for the pressure

V 2p + a(w) k2 p = 0, (5.30)

where k = w/vj. We notice that Equation (5.30) is the same as that obtained for an

inviscid fluid, but with a renormalized fluid speed if = vf/ Fa(w).

Returning to the problem of a single fracture filled with a viscous fluid, we can

express the pressure disturbance in the fracture, as excited by the tube wave in the

borehole, in the following form

HO~l)( kr)
pf (r, w) = pf (a, w)L) (a ) (5.31)

H' k( Ia)

where k = Qa(w) w/vy, and p1 (a, w) is the pressure at the borehole wall taken the same

as p(z = 0, w). The frequency dependent tortuosity given by Johnson et al. (1987) can

be expressed in terms of the parameters for a planar fracture of constant aperture h as

12iiyI ih2wp, 1/2a(w) =1+ h 2 p 1 - .1/2 (5.32)
h2w pf 3677

The formalism used in the previous section can now be generalized by simply replacing

the expression obtained for the flow into the fracture [Equation (5.23)] by that derived

from (5.31). For a single fracture we thus get

R(wo) = ihH 1 (ka)/a a(w)H1 (ka)
1 + ihH(1 (Ika)/a a(w)H 1 (ka)

1
T(w) = (5.34)

1 + ihHl)(ka)/aC a(w)H1 (ka)

To illustrate these results we consider a fracture zone of width H = 1.524 m (5 feet)

with N uniformly spaced fractures, all with the same aperture hi = h (i = 1, ... , N).
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The total fracture aperture is taken as h = 5.6 mm. In Figure 5.8 we show

the magnitude of the tube wave reflection coefficient for the cases where the number

of fractures is N = 21,41,61,81, and 101. The notches in this figure correspond

to frequencies w7, at which nA7, /2 = H (n = 1,3,...), where A, is the wavelength

at frequency wn. Notice that as frequency increases, the viscous effects become less

important (6 < h) and all curves tend to overlay. In Figure 5.9 we show the magnitude

of the tube wave reflection coefficient for a single fracture with an aperture of 5.6 mm

and for a collection of 101 fractures with the same total aperture. In this latter case

we computed the reflection coefficient with and without viscous effects. At very low

frequencies the single and the inviscid multiple fracture cases give the same results as

expected, where the tube wave sees only the total aperture. At higher frequencies,

however, there are significant differences between these two cases since it will depend

on how the total aperture is distributed in the borehole. The two models for the

multiple fractures (viscous and non-viscous) give the same reflection coefficient at high

frequencies, since the viscous skin depth becomes much smaller than the individual

fracture aperture. At low frequencies they give drastically different results since now

the viscous skin depth becomes comparable to the fracture aperture.

5.4.3 Permeable Zone

In this section we will compare the results obtained for the multiple fractures with

viscous effects taken into account and that for a permeable layer of thickness H and

permeability tco (refer to Figure 5.10). This latter problem can be formulated just as the

multiple fracture case by assuming that in the borehole region opposite the permeable

layer there are upgoing and downgoing waves propagating with wavenumber k*. We will

take k* as that arising from an infinite permeable medium surrounding the borehole.

It is easy to show that an approximate form for k* is given by

k2 k r;V 1 H([a(w) - 1]12 k a)* = k2 _- [a(w) - ) 1 (5.35)
\ )([a(w) - 1]i k a)
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This equation agrees with that obtained by Tang and Cheng (1993). The frequency

dependent tortuosity is given by (Johnson et al., 1987)

a(w) = a, + ( (5.36)oW Pf r7 A2(52

where a. is the high frequency limit of the tortuosity which can be obtained from

electrical conductivity measurements, and A is a characteristic length related to the

dynamically connected pore sizes (Johnson et al., 1986). To compare with the multiple

fracture cases we take A = h, Ko/4 = h 2/12, and a, = 1. In Figure 5.11 we show

the tube wave reflection coefficient for the multiple fracture case (N = 101) and the

permeable layer. The good agreement shows the equivalence of the two approaches.

Obviously at high frequencies the small differences come from the intrinsic discreteness

of the fractures when compared to the continuous porous permeable layer.

5.5 Discussion and Conclusions

Inasmuch as open fluid-filled fractures reflect impinging tube waves, other factors such

as the environmental condition of the borehole also give rise to reflections. Furthermore,

the elasticity of the formation as well as the presence of multiple fractures will affect the

actual magnitude of the reflection. Simple models which ignore these factors cannot

be used for quantitative interpretation based on reflection/transmission of tube waves.

In this chapter we have developed a series of models, which, due to their analytic

nature, lend themselves to practical implementation. In this vein, we obtained a model

for interpreting the tube wave reflection coefficient when the borehole region near the

fracture has been washed out or caved in. An estimate of the volume of this region

is needed, and can be obtained independently from caliper logs. A frequent problem

which leads to false fracture identification is caused by regions where only washouts

or caves exist, since by themselves they cause tube wave reflections. We have shown

that the behaviour of the reflection coefficient versus frequency can be used to identify

these cases.
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The elasticity of the formation also affects the reflection of tube waves. The simple

analytical model we have developed uses information from the head wave arrivals,i.e.,

the compressional and shear wave speeds, to predict the reflectivity of tube waves. It

can be used to invert for the fracture aperture, which otherwise would be overestimated

by a model based on a rigid formation assumption.

Finally we showed the equivalence between a fractured zone and a layer composed of

a permeable material characterized by a permeability Ko. The question of when to use a

single equivalent fracture versus a distributed multiple fracture model (or its equivalent)

can be addressed by the character of the reflection coefficient versus frequency. Notches

in the response curve indicate that a finite thickness zone is present. Alternatively,

this question can be answered readily if borehole scans (ultrasonic or electrical) are

available.
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Figure 5.1: Display of the ultrasonic borehole scan (BHTV), the electrical borehole
scan, and the fracture-aperture and fracture-porosity computation from the borehole
scan [from Hornby et al. (1992)].
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Figure 5.3: Horizontal fluid-filled fracture intersecting a borehole in an elastic forma-
tion. Incident, transmitted, and reflected waves are indicated.
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Figure 5.6: Magnitude of the Stoneley wave reflection (a) and transmission (b) coeffi-
cients for a 0.5 cm aperture fluid-filled fracture.
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Figure 5.7: Horizontal fluid-filled fractures intersecting a borehole. Incident, transmit-
ted, and reflected waves are indicated.
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Chapter 6

Nonlinear Effects

6.1 Introduction

The simple fact that a solid expands when its temperature is raised shows the anhar-

monicity of the interatomic potential. In fact, first-order asymmetry of interatomic

forces manifests itself macroscopically in terms of the so-called third-order elastic con-

stants. Measuring these constants allows for the evaluation of first-order anharmonic

terms of the interatomic potential, which has many applications in solid-state physics.

In addition, the microstructure of the solid, such as dislocations, micropores, micro-

crevices, etc., also gives rise to an additional nonlinear behaviour which can often

dominate the effect due to asymmetry of interatomic forces.

The third-order elastic constants [see Brugger (1964) for a thermodynamic defini-

tion] can be determined from velocity measurements on small amplitude sound waves

in statically stressed media (Hughes and Kelly, 1953). Sedimentary rocks can have

enormously large values of the third-order elastic constants. To illustrate this fact

we consider the dependence of the compressional (ve) and shear (v,) wave speeds on

confining pressure. These are best expressed in terms of the dimensionless parameters

given by (Hughes and Kelly, 1953; Toupin and Bernstein, 1961)
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dv 7A + 10p + cin + 2cu 2

dP 3A + 2p

(6.1)
dO9 3A + 6p + cim/2 - C1s/2

dP 3A+2 '1

where ci, cu2, and c123 are the so-called third-order elastic constants for an isotropic

solid, and po is its density in the undeformed state. The relationship between these

constants and others which have appeared in the literature is shown in Table D.1

of Appendix D. In Table 6.1 we list some values of the dimensionless quantities in

Equation (6.1) for a variety of materials.

In Figure 6.1 we plot the compressional and shear wave speeds for a dry Boise

sandstone (Toks6z et al., 1976) as a function of pressure. The solid lines are simply

smooth curves constructed for the purposes of differentiation, according to (6.1). The

results are plotted in Figure 6.2 where we see that for this rock the size of the non-

linear parameters relative to the linear can be orders of magnitude larger than for the

materials listed in Table 6.1. Indeed nonlinear phenomena seem to be easily observed

in rocks (Johnson et al., 1987; Johnson and Shankland, 1989; Johnson et al., 1991;

Meegan et al., 1992; Johnson et al., 1992).

The microstructure of the rocks (microcracks, grain-to-grain contacts, etc.) clearly

give rise to this highly nonlinear behaviour. These structural inhomogeneities act as

nucleation sites for failure, whose initial stages are accompanied by the movement

of dislocations, the development of a system of microcracks, the opening of the mi-

crocracks and pores, the formation of macrocracks, and finally, failure. Laboratory

studies (Shkolnik et al., 1990) showed that higher-order elastic constants are much

more sensitive than the linear constants to detect such inhomogeneities. Thus, there

is the possibility of directly assessing the mechanical behaviour of rocks, which is very

important for predicting borehole stability during drilling, hydraulic fracturing, and

sanding during production (Holt et al., 1989).

As a means of measuring in-situ rock nonlinearity, we study in this chapter the
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effects of prestressing the formation around the borehole and its effects on the phase

velocity of borehole modes. The formalism is general and valid for all borehole modes,

but we concentrate on the effects on Stoneley waves.

In the following sections we derive the relevant equations for small amplitude wave

propagation in a prestressed medium, and a perturbation theory for computing the

change in modal phase velocity. We show computational results for a borehole in a

moderately nonlinear formation.

6.2 Small on Large Theory

In this section we will develop the relevant equations that govern wave propagation

under prestress. Previous work related to crystals can be found in Tiersten (1978),

Sinha and Tiersten (1979), and Sinha (1982). In the usual manner, we define three

states of the material: the undeformed, the intermediate, and the dynamic. In the

undeformed or reference condition the material is unstressed with position vector X.

The intermediate or initial state corresponds to the stressed but static configuration,

with associated position vector x. We are interested in the dynamic or present state

in which there is further deformation above and beyond that due to the stress. Let y

denote the positions in the dynamic state, and define the associated displacements w

and u by

x(X) = X + w(X), (6.2)

y(X, t) = X + w(X) + u(X, t), (6.3)

X and y are sometimes referred to as Lagrangian and Eulerian coordinates, respec-

tively. The equations for motion are (Eringen and Suhubi, 1974)

Po a2 - Vx - S. (6.4)

Here, po is the density in the reference state, and S is the Piola- Kirchhoff stress tensor

of the first kind. The subscript in Vx means that partial differentiations are with
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respect to the reference coordinates X. Assuming the existence of a strain energy

function U per unit mass, then it may be shown that (Eringen and Suhubi, 1974)

B9U
SMi = Po Yi,N ,E' (6.5)8 EMN'

where " ,N " denotes d/8XN, and the summation convention on repeated subscripts is

assumed (i, N, M = 1, 2, 3). The Lagrangian (Green) strain tensor is given by

1
EMN = 1(Yi,M Yi,N - bMN)- (6.6)

Note that the Piola-Kirchhoff stress tensor is not symmetric, SMi f SiM.

We now make the "small on large" assumption that

u < w, (6.7)

and that the associated deformation gradients are similarly related, Ou/dX < 9w/aX.

Then it is possible to expand quantities for the dynamic state about their values in the

intermediate state. Expanding Equations (6.5) and (6.6) for small-on-large deforma-

tions yields

SMi = S + GMiQku,+... , (6.8)

where the superscript "'' "denotes quantities in the intermediate state, i.e., with u = 0,

and

GMiQk = 9Smi (6.9)
9 U,q 1

Using Equations (6.2), (6.5), and (6.6), we find

GMiQ;ka + PO (iN + wi,N)(kP + Wk,P)
OEMQ 1 EMNOEQP 1

aU 82U
PO OEmQ ik + P OEMidEQk

8 2U 02U
+ P0 OEO Wk,P + PO wai w, (6.10)

iEEp , aEMPaEgk 1
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where we have ignored terms of quadratic or higher order in wi,p. We next assume

that U can be expanded as

1 1
poU = -CABCDEABECD + -CABCDEFEABECDEEF + - (6.11)

2 6

Then it is straightforward to show, using (6.10), (6.11), and EAB = (WA,B + WB,A) +

that

GMiQk = CMiQk + CMQPl Wl,P Oik

+CMiQP Wk,P + CMPQk wi,p + CMiQkpl w1,P. (6.12)

The most general form of the stress is thus

SMi = Si| 1I + GMiQk Uk,Q + O(ukQ). (6.13)

The effective linear elastic moduli depend upon the prestrain according to

GMiQk = CMiQk + BMiQkPI Wl,P , (6.14)

where the second-order moduli CMiQk are independent of the prestrain and satisfy the

usual symmetries for anisotropic linear elasticity,

CABCD = CBACD, CABCD = CCDAB. (6.15)

Also,

BMiQkPj = CMiQkPj + CMQPl 6 k + CMiQP Oi + CMPQk Oil, (6.16)

where CMiQkPL are the third-order moduli, with symmetries

CABCDEF = CBACDEF, CABCDEF = CCDABEF = CEFCDAB- (6.17)

In general the effective moduli GMiQk possess none of the symmetries given in (6.15).

We conclude this subsection by noting that the equilibrium equations for the small

deformation follows from (6.4) and the fact that the intermediate state is one of static

equilibrium, as

Po 02 = (GMiQk Uk,Q),M- (6.18)
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These equations are expressed in terms of the reference or Lagrangian coordinates,

X, as distinct from both the initial (intermediate) coordinates x and the present or

Eulerian coordinates, y.

6.3 Modal Perturbation Theory

We now consider the effects of the prestress on modes in a borehole. Our analysis

follows that of Sinha et al. (1992). The stressed medium is viewed as a perturbation

of the original material. Formal perturbation methods can be used if we introduce a

small parameter, < 1, such that

GMiQk = CMiQk + ACMiQk

= CMiQk + 6 ACMiQk (6.19)

Note that the unperturbed moduli CMiQk satisfy the symmetries (6.15) but the per-

turbed moduli ACMiQk do not. The modes and the resonance frequencies are expanded

as

u = u(O) +Eu +..., (6.20)

W = W(O) + ()+ ... . (6.21)

For simplicity, we have not labelled these variables with an index for the modal order,

m = 0,1,2,.... We then substitute these expansions into the equations of motion

(6.18), assuming time dependence of the form e- . Comparing terms of similar powers

in c implies a sequence of equations, the first two of which are

0(1)(: CMiQkU M+ Po (()) 2 (0 = 0 (6.22)

0(e) : CMiQk UkQM + P0 () 1) = ~ [ MQk uk ,M

+2 po w(0) w(l) 40)] . (6.23)

Thus, u(0) is the mode for the unstressed medium, and w(o) is the associated frequency.
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We next multiply the O(e) equation by u(0) and integrate by parts over the entire

volume. In simplifying the integral we use the fact that the Piola-Kirchhoff stress due

to the dynamic motion is, from (6.13),

PM; = GMQk u( +...Pmi Gmi~kUk,Q+

= P~ 0 +eP~+ ... (6.24)

The interface contitions are that the traction associated with P is everywhere con-

tinuous, and hence the tractions due to P(O) and P) are each continuous across the

interface. Also, the condition at infinity requires that the fields decay to zero, implying

that both the leading order and O(e) fields behave likewise. Focusing on the O(e)

tractions, we see that

U() CMiQk u,9M + (ACMiQk UkO),M] dV

= u(P)P1) dV

= uo P(9dV

= f u (CMiQk ukQ + A _M1 Qk dV, (6.25)

where dV = dX 1dX 2dX 3 is the volume in the reference configuration. Using this and

the 0(1) equation for u(O), we find from the O(e) equation that

_fV ACMiOk U4?Q U(0) dV
w(1) _ () () . (6.26)

2w(0) fv po u(,M u(, dV

We can eliminate the explicit dependence upon the perturbation parameter, and rewrite

this in physical form as

fv ACMiQk U ( u dV
Ao= ( (0) (6.27)

2w(O) fy po ujM uM dV

The frequency perturbations Aw are added to the eigen-frequency w(") for various

values of the wavenumber along the borehole axis, k2, to obtain the final dispersion

curves for the prestressed state. The fractional change in phase velocity is given by

V. Aw (6.28)
V O(0)
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6.4 Stoneley Waves in a Pressurized Borehole

In this section we consider the effects on the Stoneley wave due to a pressurization

of the borehole (see Figure 6.3). This is perhaps the only available method to induce

changes in the stresses around the borehole in order to probe the nonlinearity of the

formation. Although the method developed in the previous section is valid for all

modes, we will only consider the Stoneley mode (m = 0).

An important feature of Equation (6.27) is that the volume integral in the numerator

can be separated into two independent contributions coming from the borehole fluid

and formation. By subtracting the borehole fluid induced velocity change from the total

velocity change, we can obtain the acousto-elastic response of the formation which is of

primary interest in this study. We will assume that the formation is initially isotropic

and thus characterized by two second-order elastic constants (cu = A + 2p,c1636 = p)

and three third-order elastic constants (c1u,Cu12,c123), where we use the abbreviated

Voigt notation for these constants.

6.4.1 The Intermediate Stressed State

When the borehole pressure is increased by PO, the deformations of the borehole fluid

and formation are governed by the static equations of equilibrium, and continuity of

radial component of particle displacement and radial stress at the borehole wall. The

static deformation of the surrounding formation yields the following displacements,

stresses, and strains
Poa2

WR = ,aR2 wz = 0, (6.29)
2c66 R

Poa2  Poa2

TRR R2, Too R=2a Tzz =0, (6.30)

PRa2 PR2

ERR =- ,a2  Eo = a2  Ezz = 0, (6.31)
2c66R 2 ' 2c66 R 2

where (R, Z) are the radial and axial coordinates in the reference state, and we have

defined T = S1 and E = E'. The borehole radius in the reference state is a. Note that,

in this particular situation, the assumption of either plane stress or plane strain leads
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to the same results. Figure 6.4 shows the radial (TRR) and circumferential (TOe) stress

distributions away from the borehole. Both of these stresses exhibit R 2 dependence,

implying that the formation will have less influence on the Stoneley wave at low fre-

quencies. The corresponding displacements, stresses, and strains in the borehole fluid

take the following form

f Po R _ Po(c66 + ci)Z (6.32)
wR- = z=R 2c66 c66c

Tf =Tf Tf - RP0  (6.33)
TRR 0 ZZ = P,1-3

ER = , E , Ez - PO(Cc ,+C1) (6.34)
RH-2c661"0 2c66 c66c1f

where c 1 is the bulk modulus of the fluid. This completes the definition of the stressed

state of the medium.

6.4.2 Computational Results

In this section we will present the results of the Stoneley wave dispersion before and

after pressurization of a fluid-filled borehole surrounded by an isotropic nonlinear for-

mation. The borehole radius is taken as a = 0.1 m. The density and elastic properties

of the fluid (water) and formation (Boise sandstone) are listed in Table 6.2. The non-

linear behavior of the fluid is usually expressed in terms of the parameters A and B

appearing in the equation of state (Beyer, 1960). Recently, a relationship between the

third-order elastic constants of a fluid and its parameter A and B has been established

by Kostek et al. (1993), whose derivation can be found in Appendix D.

In Figure 6.5 we show the Stoneley wave dispersion curves before and after the

pressurization (solid lines). The dashed line denotes the contribution of the borehole

fluid to the total velocity change. Notice that in the low frequency limit the change

in the tube wave speed after pressurization is solely due to the acousto-elastic effect of

the borehole fluid. This observation is in agreement with an independent calculation

of the tube wave speed. An asymptotic analysis (w -+ 0) for the fractional change in

the tube wave velocity due to the formation only, in the presence of principal stresses
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TRR, T0,, and Tzz, (w -+ 0) leads to

AVT pOa 27r d oo dR

VT )form 81rcL6 ] R3

X (1 - v)(cui - cu 2) - - c123 ) + C66 (TRR + TOe)
(1 + v)c66 2

+ (cu2 - c123) - v(cui - cu 2 ) - Vce TZZ}, (6.35)

where v = (cu - 2ces)/2(cu - c66 ) is the formation Poisson's ratio. From (6.30) we

see that, due to this particular prestress system, the fractional change in the velocity

due to the formation is (AVT/VT)form = 0, in accordance with our numerical results.

Therefore, at low frequencies the only contribution to the change in the tube wave

velocity comes from the pressure effect on the nonlinear fluid. Figure 6.6 illustrates

the fractional change in the Stoneley wave phase velocity as a function of frequency.

As expected from the stress distribution shown in Figure 6.4, Av/v increases with

frequency. However, the acousto-elastic contribution from the borehole fluid decreases

with increasing frequency. At 8 kHz we find that the total change in the Stoneley wave

velocity before and after pressurization of 13.79 MPa (2000 psi) is approximately 3.0%.

The liquid contribution is about 1.7%.

6.5 Discussions and Conclusion

In this chapter we have developed a perturbation model to study the velocity changes

in borehole modes which incorporates nonlinear contributions due to prestresses, in

particular, the effects of a static increase in the borehole pressure. We have shown that

at low frequencies, stress induced velocity change is basically controlled by the borehole

fluid but at higher frequencies there is a significant contribution from the formation.

By estimating the nonlinearity of the fluid at low frequencies we can thus separate the

contributions at higher frequencies, and have a direct measure of the nonlinearity of
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the formation. Therefore, by running acoustic logs before and after pressurization we

can get a direct measure of the nonlinearity of the rock.

The wave speed changes that we report in this paper are obviously dependent on the

degree of nonlinearity of the formation. The parameters that we have used are typical

of some consolidated rocks, but there is evidence that they could be much higher for

weaker rocks, or even strong rocks but at high stresses such as found around boreholes.
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Table 6.1: Dimensionless dependence
materials.

of sound speed on pressure for some common

a Coppens et al. (1965)
b Hughes and Kelly (1953)
c Asay et al. (1969)
d Bogardus (1965)
e Schreiber and Anderson (1966)

f Smith et al. (1966)
g Crecroft (1962)
h Graham et al. (1968)

' Montgomery et al. (1967)
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Material podo, /dP podVo/dP

Water' 0 5.0
Benzenea 0 9.0
Polystyrene 1.6 11.6
PMMAc 3.0 15.0
Pyrexb -2.8 -8.6
Fused Silicad -1.4 -4.3
Alumina" 1.1 4.5
Aluminumf 2.9 12.4
Nickel-Steelg 1.6 2.8
Armco-Ironb 5.7 9.3
Steel (Hecla)f 1.5 7.5
Molybdenumf 1.1 3.5
Tungstenf 0.7 4.6
Magnesiumf 1.5 6.9
Niobiumh 0.3 6.2
Gold' 0.9 6.4



fluid solid

po 1000 kg/m 3  2135 kg/m 3

c11  2.25 GPa 19.5 GPa
C66  - 6.5 GPa

cui, -22.5 GPa -3467 GPa
c112 -13.5 GPa -1155 GPa
C123 -9.0 GPa -1541 GPa

Table 6.2: Parameters for water and Boise sandstone.
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Figure 6.1: Compressional (a) and shear (b) wave speeds for a dry Boise Sandstone as

a function of pressure (from Toks5z et al., 1976). The solid curves are simple analytic
functions constructed to fit the data.
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Figure 6.2: The dimensionless quantities podv 2 /dP for compressional (a) and shear (b)
wave speeds in the Boise Sandstone of Figure 6.1. The derivative was taken from the
analytic curves in Figure 6.1.
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Figure 6.3: Schematic diagram of a pressurized borehole.
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Figure 6.4: Radial and tangential stress distributions around a pressurized borehole.
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Figure 6.5: Velocity dispersion of Stoneley waves before and after pressurization [Po =
13.79 MPa (2000 psi)]. The dashed curve shows the fluid contribution to the total
velocity change.
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Figure 6.6: Fractional velocity changes of Stoneley wave. The solid curve represents
the total change after pressurization, whereas the dashed curve shows only the fluid
contribution.
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Chapter 7

Conclusions

In this thesis we have set up a formalism for calculating the seismic radiation from

a borehole in the limit as the ratio of the borehole diameter to wavelength goes to

zero. In this limit an acoustic source in the borehole acts indirectly as a seismic source.

The source first generates a tube wave, which is an acoustic wave in the fluid filling

the borehole, and the pressure field of the tube wave, by distorting the borehole wall,

in turn generates the seismic wave. The action of the tube wave is equivalent in the

narrow borehole approximation, to a line distribution of body force along the borehole

centerline and acting in the intact elastic solid, i.e., the solid with no borehole in it. We

have found expressions for this source distribution, which turn out to be a distribution

of dipoles.

In previous work the asymptotic limit of a narrow borehole was calculated by tak-

ing the low frequency approximation to an exact solution for a circular cylindrical

borehole in an isotropic medium. By directly calculating the asymptotic limit, one

is able to find these body-force equivalents and other aspects of the solution in quite

general circumstances, without the need for exact solutions. In fact, we have found

the asymptotic solution for a curved borehole with elliptic cross-section in an arbitrary

anisotropic medium. When these results are specialized to right circularly cylindrical

boreholes in an isotropic medium, they agree with previous work in the literature.

These equivalent force systems when combined with general wave propagation codes

become a very powerful technique which avoids modeling the source and receiver bore-
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holes, and yet includes all tube wave related effects. Thus, it renders long-range prop-

agation feasible.

We have also considered the radiation problem from the equivalent source distribu-

tion in both fast and slow formations and have provided far-field expressions for the

displacements. In slow (anisotropic) formations there can be either one or two "conical"

waves arriving earlier than the direct wave from source to receiver. We have illustrated

our results by plotting radiation patterns for quasi-P, quasi-SV, and SH-waves in

isotropic and transversely isotropic media and the corresponding wavefront surfaces.

We illustrate the cases where the borehole axis and the TI axis are parallel, and also

when they are perpendicular. These two cases can be completely solved analytically.

More general situations may require the numerical solution of sextic equations. It is

interesting that the expression for the body-force distribution in the equivalent source

is obtained as a product of two matrices, one is a function of the material properties

of the (anisotropic) medium, including its orientation relative to the borehole, and the

other is a function of the parameters of the elliptical cross-section of the borehole.

Finally, we considered the problem of computing the pressure field in one borehole

induced by a volume injection source in another borehole. The far-field solution is

obtained in closed form, and in particular it clearly shows the reciprocal nature of the

problem.

We next studied the interaction of Stoneley waves with fluid-filled fractures inter-

secting a borehole. We first developed a dynamic fracture model which was imple-

mented numerically with finite differences. This model handles correctly all possible

interactions between borehole waves and the fracture. We demonstrated the valid-

ity of the model by comparisons with other independent solutions. In our study of

Stoneley wave interactions with fractures, we have found that the magnitude of the

Stoneley wave reflection coefficient is larger for an elastic formation when compared to

that for a rigid one. This result is important since it indicates that an interpretation

of the Stoneley wave reflectivity according to a rigid formation model will lead to an
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overestimation of the fracture aperture h, and thus of the fracture conductivity. Sim-

ulations of double fractures show that the interaction between the two fractures has

an appreciable effect on the Stoneley reflectivity even when the distance between the

fractures is small compared to the wavelength. Here the effect is contrary to that of

the elasticity of the formation. Finally, we simulated the effects of a washout-fracture

system and showed that at low enough frequencies the effects of the washout can be

neglected, since the reflectivity is totally dominated by the fracture characteristics. At

higher frequencies, however, the effects of the washout are significant and would lead

to a grossly overestimated fracture aperture, if not properly taken into account.

Next, we developed various approximate analytic fracture models which addressed

some of the effects described above. Their advantage is that they are simple and can be

used effectively in interpreting data. In this vein, we obtained a model for interpreting

the tube wave reflection coefficient when the borehole region near the fracture has been

washed out or caved in. An estimate of the volume of this region is needed, and can

be obtained independently from caliper logs. A frequent problem which leads to false

fracture identification is caused by regions where only washouts or caves exist, since

by themselves they cause tube wave reflections. We have shown that the behaviour

of the reflection coefficient versus frequency can be used to identify these cases. The

elasticity of the formation also affects the reflection of tube waves. The analytical model

we have developed uses information from the head wave arrivals,i.e., the compressional

and shear wave speeds, to predict the reflectivity of tube waves. It can be used to invert

for the fracture aperture, which otherwise would be overestimated by a model based on

a rigid formation assumption. Finally, we showed the equivalence between a fractured

zone and a layer composed of a permeable material characterized by a permeability

Ko. The question of when to use a single equivalent fracture versus a distributed

multiple fracture model (or its equivalent) can be addressed by the character of the

reflection coefficient versus frequency. Notches in the response curve indicate that a

finite thickness zone is present. Alternatively, this question can be answered readily if
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borehole scans (ultrasonic or electrical) are available.

Finally, we have developed a perturbation model to study the velocity changes in

borehole modes which incorporates nonlinear contributions due to prestresses, in par-

ticular, the effects of a static increase in the borehole pressure. We have shown that at

low frequencies, stress induced velocity changes of the Stoneley wave are basically con-

trolled by the borehole fluid but at higher frequencies there is a significant contribution

from the formation. By estimating the nonlinearity of the fluid at low frequencies, we

can thus separate the contributions at higher frequencies, and have a direct measure of

the nonlinearity of the formation. Therefore, by running acoustic logs before and after

pressurization we can get a direct measure of the nonlinearity of the rock.
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Appendix A

A Reciprocity Relation

Consider a borehole of elliptic cross-section with axis in the direction t, t| = 1. Suppose

that the surface of the borehole is acted on by a traction r -n derivable from a constant

stress r. Suppose, moreover, that there is no extension in the direction t. (This is the

anisotropic equivalent of plane strain.) Then it is known that the displacement u on

the borehole wall is, up to a rigid body motion, a linear function of position:

Ui = O'ikX. (A.1)

Here the matrix o may be taken to be such that

aiktk = 0- (A.2)

We shall consider reciprocity between two such stress states {u(1), m(1,r(1)} and

{u(2), f(2), ir(2)} for the same borehole in the same anisotropic elastic medium. Betti's

reciprocity theorem (Love, 1927; p. 173) implies that, in the notation of Section 2.4,

u(') On ds' = I u)9nj ds', (A.3)

where 49E is the perimeter of a right cross-section E of the borehole, n is the unit

normal to the borehole wall, and ds' is the element of arclength along aE. Let the

constant stress fields r(1) and r(2) be extended as constant functions of position into

the interior of the borehole, and the displacement fields u(1) and U(2) as the linear

functions of (A.1). Using Equation (2.100):

nj = Ejpqt, tq (A.4)
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in the left member of (A.3), and then applying Stokes's theorem we get

u( )Tr(?)nj ds' =u( li(?)ec,,t't, ds'

= (1)r?)f ,,t t dA
u, rnnds',n~i jpq qr

= ~ ~ ~ ~ ~ -? jtn1,~, tjp tq tAd

= j(,,.qr6n - 6q,6nr )t. dA

AoP) (2) (A.5)

by (A.2). Applying a similar calculation to the right member of (A.3) and equating

the two we obtain
S(2) (2) (1) (A.6)

But i- is a linear function of r, say

ij = NijpqTpq. (A.7)

Then using (A.7) in (A.6) we obtain

N; ,r(,), ?) = Nr(2)r(1. (A.8)
tjpq pq 13 - 3 s pq ~ 13

The tensors r(1) and r(2) are symmetric but otherwise arbitrary, and so

Nijpq = Npqij, (A.9)

and we may assume N has the symmetries

Nijpq =Njipq =Nijqp. (A.10)
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Appendix B

Finite-Difference Equations for the
Fluid-Filled Borehole Model

In this Appendix we present a stable and accurate finite-difference discretization of

Equations (4.1) and (4.2), which govern the behaviour of isotropic elastic media. In

particular these equations are used to model wave propagation in a fluid-filled borehole

surrounded by an isotropic elastic medium in the absence of any fractures. Figure B.1

shows the layout of the grid used in the computational domain, and the location of

the various quantities on the grid. The spatial and temporal staggering of the velocity

and stresses is necessary in order that all finite-difference approximations be properly

centered.

Let us introduce the forward difference and forward average operators

6rf(rj) = 6rfj = fj+1 - fj, (B.1)

Uf(rj) = of 3 = (fj+1 + fj)/2, (B.2)

with similar definitions for 6,z, 6t, oz, and ut. Approximations to Equations (4.1) and

(4.2) may be written as

(rPi-1/2,k+1/2)( rU, j,k+1/2 = r (ryn+1/2)-1/2,k+1/2

1 _n+1/2

1y n+1/2 Z z' 'k (B3.3)Or 0 0 _-1/2,k+1/2+ Az '

b n1 6r(7r; 2)~ zn+1/2tz j+1/2,k r zz 1/2,k-1/2)
(O'zPj+1/2,k-1/2) At - rj.1/2 Ar + Az (B.-
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6tr"+ /2&1216(ror),9k+/ 8zvz +/,1 /2k+1/2 = Aj+1/2,k+1/2 1/ r)k+/ 2 + z +1/2,k

At r3 +1 /2  Ar AZ
6

r ,r j,k+1/2
+ 2 pj+1/2,k+1/2 r , (B.5)

btT,"+ /2,k+1/2 1 br (rVj 3 ,k+1/2 z z"n+1/2,k

At = Aj+1/2,k+1/2 r Ar + Az ]

+j z j+1/2 r jk-1/2

1/ z /,k1 2 / v k 2,kat +12k+/ = Aj+1/2,k+1/2 r+/ r k 2+ Az +

At~zv r+1/2,k A

+2prj+1/2,+/1/2 z Ar Az, (B.7)

"t +1/2 6 n" bzVn
6Trz j,k- r z p01/,-2 H z j-1/2,k z r j,k-1/2 ,(B.-8)

where the harmonic average operator is defined as a'f(r1 ) = 2(1/fj+1 + 1/fj)- 1, and

rj = jAr. Harmonic rather than arithmetic averaging of stiffnesses is proper because

the wavelength is much larger than the grid size, A > , where f = O(Ar) = O(Az). In

this long wavelength (low frequency) regime, the compliances should be arithmetically

averaged rather than the stifnesses. This problem is analogous to finding the effective

elastic constant of a collection of springs connected in series. Furthermore, if the

particular point of interest lies on a fluid-solid interface, then the effective shear rigidity

p will vanish automatically and the shear stress will also vanish according to (B.8).

Thus, this scheme automatically accomodates irregular fluid-solid interfaces.

The stability of this system is guaranteed provided the following relation is satisfied

[F1 111/2

VmaxAt [ + ( < 1, (B.9)
"sx (Ar)2 (Az)2

where vmax is the maximum compressional velocity on the grid. The stability condition

is independent of both the shear wave velocity, and the Poisson's ratio. The scheme is

second-order accurate in space and time, and thus f ; O(Am.n/10) in order to minimize

numerical grid dispersion. Here Amin is the minimum wavelength travelling on the grid.
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Figure B.1: Staggered finite-difference grid showing the placement of field variables
and elastic parameters. The thicker lines represent a fluid-solid interface.

167



Appendix C

Dispersion Relation for an Infinite
Fluid-Filled Fracture

In this Appendix we derive the dispersion relation for axisymmetric modes propagating

along an infinite fluid-filled fracture. In Figure C.1 we show the geometry of the problem

and the relevant parameters. The fluid-filled fracture is assumed to be confined between

two elastic half spaces. Our derivation follows that of Ferrazzini and Aki (1987), but

differs in the sense that we consider axisymmetric modes.

The particle displacement in the fluid is given in terms of a displacement potential,

of, as

U= V4 1, (C.1)

which satisties the following wave equation

oft = V2 qS1 , (C.2)

where Vf is the acoustic wave speed of the fluid. The pressure in the fluid is given by

p = -pfq4'- (C.3)

Separation of variables leads to the following solution for the potential

Of = A(k, w)H') (kr) (ekrfr-_1 z + e-krV7 -z) e-i*t, (C.4)

where

e =(C.5)
vf k,
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In (C.4) we consider only outgoing cylindrical waves and we assume that e < 1, which

corresponds to modes with phase velocities smaller that the fluid velocity. The wall

impedance is thus given by

-(z = = sgn(z) coth(kV"2 _ h). (C.6)U2 2 k,.V2 _ 1 2

The displacement in the solid half spaces can be expressed in terms of two potentials

as

u = V4+ V x (iee), (C.7)

where 4 is associated with compressional motion and # with vertically polarized shear

motion. The equation of motion in terms of the displacement is

up = v V(V. u) - v2V x (V x u), (C.8)

where vc and v, are the compressional and shear wave speeds of the solid, respectively.

The two potentials satisfy appropriate scalar wave equations wich yield the following

solutions

4 = B(k, w) Hl (k,.r) e-,II etit, (C.9)

4' = C(kr, w) H(1 (kr) e-kII e-4i, (C.10)

where

C W2

kk.2 - (C.11)

k= k2 - 2. (C.12)

The vanishing of the shear stress rrz at z = th/2 yields the following relationship

between the coefficients B and C

B _(2- 2

sgn(z) 2 - ) e(k,-kI)h/2, (C.13)
C 2 1 - ,e2C
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where

E= (C.14)
vek,

E, = --- (C.15)

As in the fluid, we can express the wall impedance as

zh 2 [(2- 2 _2

- (z = = sgn(z) C4 - 4 1 (C.16)

Finally, we can make use of the continuity conditions at z = ±h/2 for the normal

particle displacements and normal stresses, which take the following concise form

(rzz/uz)..i = (-p /uz)fl. - (C.17)

Substituting (C.6) and (C.16) into (C.17) gives the dispersion relation for slow axisym-

metric modes in the infinite fluid-filled fracture

- p I (D_ 2 [I2 _C 2]2
1 2 P 2k E

coth(- k2 _ D2) + - - 4I 2 k2 _ (Cj =)2 0,
2 r P1 (wE8/C)4 |I 2 _ r 2

(C.18)

where Icr = kh and W = wh/vj are dimensionless radial wavenumber and frequency,

respectively.
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Figure C.1: Fluid-filled fracture bounded by two elastic half spaces.
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Appendix D

Third-Order Elastic Constants for
an Inviscid Fluid

Nonlinear problems in the acoustics of fluids are usually formulated in terms of an

Eulerian description of the wave motion (Beyer, 1984). The elastodynamic of solids

on the other hand, is mostly formulated in terms of a Lagrangian description (Eringen

and Suhubi, 1974). Also, the choice of fundamental (or primitive) variables is different

depending on the type of media. Pressure and density are usually used in adiabatic

processes in fluids, whereas stress (Cauchy or Piola-Kirchhoff) and strain (Green or

Almansi) are normally used for solids. Therefore the material constants which describe

the constitutive behavior of such media will depend on the particular choices of the

description and fundamental variables. In dealing with problems involving both fluids

and solids it is desirable to use the same description throughout. We next present a

derivation for the relation between third-order elastic constants of an inviscid fluid,

and the more common parameters, A and B, appearing in the Taylor expansion of the

equation of state.

The adiabatic equation of state for a fluid, p = p(p), can be expanded in a Taylor

series about a given state, and is usually presented in the following form (Beyer, 1960),

p=po+APP0 + p-Po +0 ( Po)), (D.1)
PO ) 2 po PO

where p and p are pressure and density, respectively, with po and po being their reference

values, A = podp/dp(po) and B = pod 2p/dp2(po). In terms of this pressure, the Cauchy
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stress tensor is given by

r=-pI, (D.2)

where I is the second-rank identity tensor. Equations (D.1) and (D.2) define the

constitutive relation for an inviscid fluid.

In a stressed configuration, particles originally at X (XK, K = 1, 2, 3) are displaced

to x (Xk, k = 1, 2, 3), such that we can define the displacement vector as

u = x - X. (D.3)

The deformation gradient is defined as

F a =I+ -- (D.4)8X ax'
and the Lagrangian (Green) strain tensor is given by

E = - (F TF - I) . (D.5)
2

The density in the stressed configuration can be expressed in terms of its value in the

unstressed (reference) configuration through

P- = 1 = (1 + 21E + 411E + 811E) 1 / 2 , (D.6)
PO det F

where IE, ME, and IIE are the principal invariants of the Lagrangian strain tensor

(Eringen and Suhubi, 1974), and are given by

IE = trE, IIE = 1 [(tr E)2 - trE2], 'INE = det E. (D.7)

Expanding (D.6) to second order in strain, and substituting the result into (D.1) yields

p = -AIE + 1(3A + B) Ik - 2A IIE + O(E3), (D.8)

which upon substitution into (D.2) gives

rii = A Ebij - (3A + B) IEb + 2A IIEbij. (D.9)

173



Assuming the fluid is "hyperelastic", we can postulate the existence of a strain

energy density function U, defined per unit mass in the reference or Lagrangian de-

scription. The strain energy is assumed to be a function of the deformation gradient

tensor. Consequently (Eringen and Suhuby, 1974) it depends solely on the strain, and

as such admits the following expansion

po U(E) = CKLMNEKLEMN + -CKLMNPQEKLEMNEPQ + O(E 4 ), (D.10)
2 6

where CKLMN and CKLMNPQ are, respectively, the second- and third-order adiabatic

elastic coefficients evaluated at zero strain (Eringen and Suhubi, 1974; Thurston and

Brugger, 1964). These possess the symmetries CKLMN = CLKMN = CMNKL and

CKLMNPQ = CLKMNPQ = CMNKLPQ = CKLPQMN. The adiabatic Piola-Kirchhoff

stress tensor of the second kind, TKL, is defined by

TKL = PO -E (D.11)
IOEKL

The Cauchy and Piola-Kirchhoff stress tensors are related through

rij = A-FiKFLTKL. (D.12)
PO

Making use of Equations (D.10) through (D.12), we can rewrite the latter as

1
T3 = (1 - IE + ---)(OiK + Ui,K)( 8 jL + Uj,L)(CKLMNEMN + -CKLMNPQEMNEPQ)2

1
= CijKLEKL + -CijKLMNEKLEMN - CijKLEKLIE

+(Ui,KCKjMN + Uj,LCiLMN + Ui,KUj,LCKLMN)EMN. (D.13)

Comparing the terms linear in E in (D.9) and (D.13) we get

A IE Oij = CijKLEKL- (D.14)

Assuming CKLMN to be isotropic, i.e.,

CKLMN = AOKLOMN + P(OKMOLN + OKNOLM), (D.15)
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leads to

A=A, and p=O. (D.16)

Equating the nonlinear terms in (D.9) and (D.13), and using (D.16) gives the fol-

lowing identity

1 CijKLMNEKLEMN- A I4 Oij + (ui,j + Uj,i + Ui,KUj,K) A IE

= - [(3A+B)Iik- 2AIIE] ij. (D.17)

The quantity (U;, + U3 ,; + Ui,KUj,K)/2 = Ej can be rewritten as

E = E+ 2F( F - FFT)

= E + (0E - El) + O(E 2 ), (D.18)

where 0 = (F - FT)/2 is the infinitesimal rotation tensor. However, in deriving both

sides of (D.17) we have implicitly neglected terms of order E 20 and smaller. We

will say more about this below, but note for the present that to the same degree of

approximation (D.17) becomes

2CijKLMNEKLEMN = -2AIEEij + [2AIIE - 2(A + B)I] Obij. (D.19)

Again, if we assume that CKLMNPQ is isotropic, we can express it as

CKLMNPQ = aOKLOMNOPQ

+0 [0KL(OMPONQ + OMQ0NP)

+bMN(OKP 6 LQ + OKQOLP) + OPQ(OKMOLN + OLMOKN)]

+-Y [OLM(OKPONQ + OKQONP) + OKM(OLPONQ + OLQ0NP

+6 KN(OLP0MQ + OLQ0MP) + OLN(OKPOMQ + OKQ0MP)] , (D.20)

where

a = C112233 = C123 ,

1 1
# = _(C111122 - C112233) = -(c12 - c 1 23 ), (D.21)

1 1
y = (C11u - 3C11122 + 2C12233) = -(cil - 3cU1 2 + 2c3),

8 8
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and CKLM is the tensor of elastic constants in the abbreviated Voigt notation. Substi-

tuting (D.20) into (D.19) gives the following

1cI23 IE KL + cu2 - c123)(tr E 26KL + 2IEEKL)

+ (cui - 3c 1 2 + 2cl2 3)EKPEPL
12

- (A + B)IE2SKL + 2 AIIEbKL - 2AIEEKL. (D.22)
2

Using the second equation in (D.7) to eliminate tr E2, and equating the coefficients of

similar terms on the left and right hand sides of (D.22) we get

Cu2 = -(A + B),

-(Cu2 - c123) = 2A, (D.23)

ci - 3c 1 2 + 2 cu3 = 0.

Notice that the second equation in (D.23) is obtained twice in this process, thus ascer-

taining the consistency of the derivation. We thus obtain

ci = -(5A + B), c112 = -(A + B), c1 23 = A - B. (D.24)

We note that had we retained terms of order E20 in the expansion of (D.13), it can be

shown, using eqs. (D.15) through (D.18), and the isotropic form of CKLMNPQ in (D.20),

that they contribute (2A + cu - c1 23 ) IE (fE - Efl) to the Cauchy stress. However, it

is clear from (D.23) 2 that this contribution vanishes. Hence, we have shown that the

hyperelastic and equation of state derivations are consistent, neglecting terms of order

E3 ,

The first of relations (D.24) was derived in Thurston and Shapiro (1967) [see Equa-

tion (43)] by comparing the one-dimensional nonlinear equations of motion derived

from the Eulerian and Lagrangian descriptions. Table 1 relates these constants to

other sets of constants which appear in the literature (Murnaghan, 1951; Toupin and

Bernstein, 1961; Landau and Lifshitz, 1986).
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For water (Beyer, 1960; Coppens et al., 1965), B/A = 5 and A = 2.25 GPa, giving

the following third-order elastic constants

Cm = -22.5 GPa, C12 = -13.5 GPa, C1s = -9.0 GPa.

Table D.1: Relation between third-order elastic constants for isotropic solids.

The adiabatic wave speed c is given by (Beyer, 1960)

c 2(P) =dp,
dp

which for a fluid with equation of state given by (D.1) is

A B
2(P)= + - (p P -p

PO po

The natural wave speed co is thus given by

c2 = c2(po) = .
PO

A measure of the nonlinearity of the fluid is given by the dimensionless parameter

podc 2 /dp, which by using (D.1) and (D.26) gives

dc2  BPO- = . (D.29)
dp A
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For isotropic solids there are two parameters which measure the degree of nonlinearity

and are given by (Toupin and Bernstein, 1961; Hughes and Kelly, 1953)

dV 7A + 10p + cin + 2c,12
Pd 3A + 2p

(D.30)

dV 2 3A + 6pL + cin/ 2 - Cus/2

POd = 3A + 21p

where vc and v. are the speeds of compressional and shear waves, respectively. If we

substitute in these expressions the elastic constants given as in (D.16) and (D.24) we

get

dv B
p = A,

(D.31)

dv2
PO .= 0,

dp

which are in agreement with (D.29) and the fact that inviscid fluids do not support

shear waves.

The approach taken here compares the Cauchy stress tensor according to the equa-

tion of state and from the hyperelastic strain energy density. Alternatively, one can

start from the equation of state and find the strain energy, from which the third- and

higher-order elastic coefficients could be determined. Thus, eqs. (D.2), (D.5), (D.11),

and (D.12), imply

gO - PO p (I + 2E)~1. (D.32)
(9EKa P

Integration then yields

po U = J p tr (I+ 2E)-dE

=- JE p P d [log det(I+ 2E)]. (D.33)
2 Jo p

Then using eqs. (D.5) and (D.6) this reduces to the familiar form

U = - pdp- 1. (D.34)
JP0
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The integral could then be evaluated using eq. (D.1), and subsequently expanded in

terms of the invariants of E, using (D.6). The elastic moduli are then "read off" by

comparing the strain energy with eq. (D.10).
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