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Abstract

The problems under consideration center around the interpretation of binocular
stereo disparity. In particular, the goal is to establish a set of mappings from stereo
disparity to corresponding three-dimensional scene geometry. Stereo disparity is rep-
resented as a vector field derived from differential projection of a three-dimensiollal
scene onto a pair of two-dimensional imaging surfaces. The resulting disparity field is
analysed with the aid of mathematical tools from classical field theory. This analysis
shows how disparity information can be interpreted in terms of three-dimensiollal
scene properties, such as surface depth, discontinuities and orientation. These tle-
oretical developments have been embodied in a set of computer algorithms for the
recovery of scene geometry from input stereo disparity. The results of applying these
algorithms to several disparity maps are presented. Finally, comparisons are made to
the interpretation of stereo disparity by biological systems.
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STOP! DON'T SWEAT IT. SIMPLY MOVE A FEW INCHES LEFT OR RIGHIT
TO GET A NEW VIEW POINT. Look...

Sometimes a Great Notion, Ken esev
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Chapter 1

Introduction

1.1 Motivation

Humans are quite adept at using visual information to infer the three-dimensionlalitS

of their surrounding world. Interestingly, this inference takes place in face of the

fact that the inputs to the visual system (the retinal projections) are inhereltly

two-dimensional. In order to understand this mapping from the two-dimeinsiolal.

retinal projections to inferences about a three-dimensional world most researchlers

have broken the task into a set of functional modules. For example, one finds studies

of visual motion, binocular stereopsis and the various shape-from-x paradigms (e.g..,

shape from shading, texture, etc.). Following this model for vision research, this

thesis shall be concerned with certain aspects of binocular stereopsis. In particular.

this research is concerned with interpreting the disparity information that results

from the correspondence of two retinal images.

Consider the paradigm within which stereopsis is currently studied: The asic
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Figure 1.1: The basic situation for binocular stereopsis.

situation leading to stereopsis is illustrated in Figure 1.1. Here, an arrangement

of surfaces in the three-dimensional world project differentially onto a pair of two-

dimensional retinae. To understand stereopsis would be to understand how the cor-

responding inverse mapping can take place. That is, given a pair of two-dimensional

projections of a three-dimensional world, how is it possible to exploit the geometllry

of the situation to recover useful properties of the geometry of that world. In our

current state of understanding of stereopsis, it is convenient to break the problem

into two relatively independent parts: (1) the correspondence problem and (2) the

disparity interpretation problem. The correspondence problem consists of matclilng

those elements in the two views that are projections of the same element in the three-

dimensional world. Defining disparity as the difference in projective coordinates of
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matched elements, it is seen that the output of the correspondence process (ca le

considered a disparity map.1 The disparity interpretation problem is to infer from

the disparity map the three-dimensional properties of the viewed scene.

Typically, it has been thought that the difficult part of stereopsis was the solu-

tion of the correspondence problem. With the disparity map recovered, it lhas 1)cell

assumed that (with knowledge of the relative orientation of the two views) the illter-

pretation was a simple matter of triangulation. If the stereo data points are sparse the

triangulated distance values can be interpolated. Such an approach is adequate (ill

theory) to specify the distance from the viewer to every point of the visible surfaces

of the viewed scene. (See e.g., Barnard & Fischler [8] for a review of computational

stereo vision studies within this paradigm.)

Now, consider the following questions: Is the distance to the visible surfaces ill a

scene the only (or even the most) desirable output of stereopsis? In particular, call the

interpretation of the disparity map yield more sophisticated information than ploint

by point distance? As alternatives, consider the possibility of directly interpreting

stereo disparity in terms of surface orientations and surface discontinuities as well as

distance. Intuition suggests that information concerning these latter properties wolil(l

be more useful to subsequent visual processes (e.g., object recognition and passi\e

navigation) than would simple point by point distance from the viewer. With these

possibilities in mind, the goal of this thesis is to take a deeper look at the disparity

interpretation problem.

'The relation between this definition of disparity and the classical angular disparity will be

clarified in Section 2.1 of this thesis.
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The particular approach taken shall be the computational approach (Marr [72]).

Here, one initially attacks a problem as an abstract information processing prlollemn.

This abstraction allows one initially to focus attention on the formal nature of the

problem under consideration and on constraints over its solution space. In the case

of understanding stereo disparity this approach leads to considering the basic matl-e-

matical structure of the disparity map. From this study constraints shall be delivedl

that allow one to make relatively sophisticated inferences about three-dimensional

scene geometry from a corresponding input disparity map.

1.2 Related work

This section provides an overview of computational vision studies related to intepl)ret-

ing stereo disparity. When useful, this survey will also mention studies in interpreting

motion based disparity. Much of this literature can be usefully broken into two cate-

gories: (i) surface fitting and (ii) studies of differential imaging. Also considered wvill

be several miscellaneous studies related to the specific problem of recovering surface

discontinuities from disparity. The section closes with a discussion that serves to

distinguish the research presented in this thesis from other work in disparity inter-

pretation.

1.2.1 Surface fitting

In its simplest form the idea behind the surface fitting approach is to interpolate (ol

approximate) the (possibly sparse) disparity values resulting from the correspondence

10



process with a smooth surface. Technically the disparity values should be first con-

verted to depth values; in practice the disparity values are often employed directll.

The result of such a surface fit is either a point by point depth map or the parameters

of an algebraic surface patch. Such a representation does not necessarily make sr-

face orientation explicit. Also, unless precautions are taken, the approach will allow

surface discontinuities to be smoothed over during the interpolation process.

The surface fitting idea has been instantiated in at least two forms: (i) minimiza-

tion of spline functionals and (ii) directly fitting polynomial based surface patches.

The intuitive idea behind minimizing spline functionals is simple enough: Fit an elas-

tic plate or membrane to the given data points and allow it to achieve equilibritlm.

The resulting representation is of point by point depth. The nontrivial technical cle-

tails of applying this approach to disparity information has been the focus of 1-mucl

research (Blake [11], Boult [16], Grimson [37] and Terzopoulos [121]). The polynomial

based approaches proceed by directly fitting a polynomial to the available depth data.

For example, Eastman & Waxman [25] and Hoff & Ahuja [49] have used least sqlares

to fit low-order (up through quadratic terms) Taylor series to depth data. Otler

polynomial bases could be used for this purpose; apparently this has not been inves-

tigated. However, in the area of interpolating and approximating grey-tone image

intensity, Haralick's "Facet Model" has fostered much experimentation with fitting

various polynomial forms to intensity values (Shapiro, et al. [112]). It is likely that

some of the methods developed within the "Facet Model" could be carried over to

distance interpolation.

Various attempts have been made to extend the surface fitting approach to deal
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with such properties as surface discontinuity, orientation and curvature. Consider

first, studies toward making surface orientation and curvature explicit. Within the

spline based methods two paths have been followed. The first is to operate on the

point by point distance representation and compute orientation and curvature through

numerical differentiation (Brady et al. [17], Medioni & Nevatia [82]). The second path

has been to couple the recovery of orientation and curvature to depth recovery; ia

a cascade of differencing operations that are in effect during the spline minimizatioll

(Harris [47] and Terzopoulos [123]). Recovery of surface orientation and curvatulre

from the polynomial based methods can be accomplished in some cases. For example.

if a Taylor series is used the coefficients may have natural interpretations as surface

gradients and curvatures (Eastman & Waxman [25], Hoff & Ahuja [49]).

Attention has also been given to allowing for discontinuous surfaces. These ex-

tensions can be grouped into two classes. The first class seeks to first interplolate

and then look for likely areas where a discontinuity has been smoothed over. The

second class attempts to recover a piecewise smooth surface while simultaneously al-

lowing for discontinuity formation. Within the "interplolate and look" class several

approaches have appeared: Grimson [38] proposed applying an edge detector (e.g.,

the Canny edge detector [18] or the Marr-Hildreth edge detector [74]) to the interpo-

lated surface to discover discontinuities. This attack met with little empirical success

(Grimson [41]). Terzopoulos [122] proposed the heuristic that points of high tension

in the interpolated surface (marked by inflection points and-or steep gradient) should

be considered for discontinuities. Finally, approaches have also been founded on the

idea that loci of high residual in an approximating surface may indicate an underlying
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discontinuity (Eastman k Waxman [25], Hoff & Ahuja [49], Grimson k Pavlidis [-1:3]

and Lee & Pavlidis [66]).

The joint recovery of surface and discontinuities has also received much attent ion.

The idea is to allow discontinuities to form in a piecewise smooth surface at a penalty

to a global energy functional. The resulting functional to be minimized is nonconvex.

Several approaches to solving this problem have been proposed, both deterministic

(Blake k Zisserman [12]) and probabalistic (Koch et al. [57] and Marroquin [75]) ill

nature. However, these methods are not guaranteed to find a global minimum (if olle

even exists).

1.2.2 Differential imaging

Studies in differential imaging seek to understand the relation between scene geonl-

etry and an infinitesimal change of viewpoint. Analysis proceeds by first specifying

a locally analytic form for a surface and then developing the difference equation for

the surface's projection onto image planes related via an infinitesimal change of coor'-

dinates. The study of the resulting vector field can explicitly relate surface geometry

(e.g., distance, orientation and curvature with respect to the viewer) to the stluctuLe

of projected disparity.

Differential imaging has been studied with reference to optical flow (e.g., IKanatanii

[54], Koenderink & van Doorn [58, 60], Longuet-Higgins & Pradzny [70], Praclzny

[102], Subbaro [120], Waxman & Ullman [131] and Waxman & Wohn [132]) as well

as stereo vision (e.g., Eastman & Waxman [25], Longuet-Higgins [68], Mayhew [78],

Mayhew & Longuet-Higgins [80], Rogers [109], Stevens & Brookes [118] and \ein-
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shall [133]). Most often, this work has limited consideration to recovering surll'acI

geometry only through first order. However, some consideration of surface curvature

has occurred: Waxman and his associates ([131, 132, 25]) have developed algebraic

relations between disparity and curvature. Also, Rogers [109] and Stevens & Brookes

[118] have independently noted that second order differences of stereo disparity yicl(

a surface curvature measure that is (supposedly) independent of distance. The (ltles-

tion of surface discontinuity has received little attention in the differential imaging

paradigms. An exception to this comment is Eastman & Waxman [25] where high

residuals in the fit of difference equations to available data are taken as indication of

surface discontinuity. Unfortunately, the difference equations relating surface geome-

try to disparity are highly nonlinear and the stability of their solution may be suspect

(Barron et al. [9], Koenderink & van Doorn [61] and Wohn & Wu [135]).

Recently, it has been pointed out that similar work has been carried out for soncm

time in the field of photogrammetry (Horn [50, 51] and Manual of Photogrammcetr1y

[71]). It is worth noting that the common thread to these analyses is that they are

based in the application of tensor analysis to the classical field theory of mathematical

physics (see Truesdell & Toupin [126]).

1.2.3 Less related approaches to recovering discontinuities

from disparity

While the material in this thesis is not closely related to any of the approaches de-

scribed below, it is nonetheless useful to provide an overview of alternative approaches

14



to the particular subproblem of recovering surface discontinuites. Four different types

of studies are presented: (i) edge detection, (ii) correlational, (iii) general statistical

and (iv) analysis of occlusions.

There have been some attempts to apply edge detection to disparity fields. Clocksiil

[20] showed the relation between surface discontinuities and discontinuities in a clis-

parity field for the case of a purely translational differential view. This result swas

generalized to arbitrary infinitesimal differential view in Thompson et al [125]. Ill

order to implement these ideas Thompson et al. [124] broke the disparity field illto

x and y scalar fields and convolved each component separately with a Laplacian olp-

erator. Discontinuities were found by combining the component wise Laplacians into

a vector field and searching for the vector analog of a zero-crossing. Scllulnk [111]

discusses interlacing an edge detection procedure with an iterative disparity field Ce-

covery algorithm. These techniques met with success in the analysis of optic flo\vw.

Stevens [118] suggests using a finite difference type mechanism to find discontilnuities

is a stereo disparity map. However, it appears that as yet there has been little at-

tempt to study the feasibility of this idea either through a stability analysis or actual

implementation.

One approach to establishing correspondence is to correlate regions (or featullres)

between two images (e.g., Barnard & Fischler [8] and Moravec [89]). When such a

process attempts to correlate across a discontinuity it is quite likely that the corre-

lation will break down. This idea has been exploited to make surface discontinuites

explicit in the analysis of both stereo (Smitly & Bajcsy [114] and optic flow (Anandan

[2]). Such an approach is capable of making discontinuities explicit very early clur-
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ing the stages of processing. Interestingly, Marr & Poggio [74] discuss how matclllng

statistics should proceed if correspondence is being established properly by their algo-

rithm; however, there apparently has been no attempt to turn their analysis around

to recover likely regions of discontinuity. Along these lines, Nishihara [95] has pro-

vided an error analysis of a stereo matcher (related to the Marr-Poggio algoritlllll)

that could likewise be used for discontinuity detection.

The idea that disparity field statistics should differ across a region correspolnding

to a surface discontinuity has been pursued by Spoerri & Ullman [116]. In this case

the statistics of adjacent regions are compared after the correspondence has beeln

established. These researchers report some success in applying these ideas to bottl

stereo and optic flow based disparity maps.

Finally, consider the following notion: when viewing a discontinuous surface one

eye is likely to see some surface detail that is not visible to the other eye. That is,

due to the geometry of the situation one eye's view is occluded with respect to the

other. This situation has been analysed for optic flow by Mutch & Thompson [90].

Resulting algorithms have been applied to motion sequence images. The application

to stereo disparity is clear and is likely to yield a powerful approach. As yet this

extension has not taken place.
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1.2.4 Distinguishing features of the research presented in

this thesis

The research that is presented in the body of this thesis bears some resemblance to

several of the studies that have just been reviewed. Most of the analytic dclelol)-

ments presented in this thesis are based in differential imaging. Therefore, the closest

relatives to the presented work are naturally found in earlier studies of differential

imaging. However, the current work makes a number of novel contributions to the

disparity interpretation problem. The most significant points of distinction are:

* This thesis emphasizes the recovery of surface geometry (i.e., orientation, curL-

vature, discontinuities, in addition to relative distance) directly from stereo dis-

parity, as opposed to the surface fitting approaches where higher order surface

geometry typically is derived only indirectly from distance information.

* Novel relations between the differentially projected orientation of surface (detail

(e.g., texture) and underlying three-dimensional surface geometry are presen ted.

These relations are used to motivate new and numerically stable methods for re-

covering three-dimensional surface orientation, distance and stereoscopic view-

ing parameters from binocular stereo disparity.

* The analysis of stereo disparity that is developed in this thesis also lends insight

into the recovery of the discontinuties in distance to three-dimensional surfaces

in a viewed scene. In particular, a method for recovering surface discontinuities

founded on local disparity based measurements is proposed, implemented and

17



tested on natural and synthetic stereo data.

* An extensive stability analysis is presented for each of the proposed methods fol

recovering surface geometry from stereo disparity. This type of detailed analytic

stability analysis is uncommon in the computational vision literature.

* The results of the stability analysis indicate not only the requirements for tle

accurate recovery of surface geometry, but also how disparity interpretation

algorithms can monitor the reliability of their own output.

* An empirical psychophysical study is presented that is motivated directly on

the analysis of stereo disparity developed in this thesis.

1.3 Outline of chapters

Chapter 1 has served to motivate the problem of understanding stereo disparity as

well as provide an overview of related work from the computational vision literature.

Chapter 2 unfolds in three sections: The first section (2.1) presents an analysis of

stereo disparity resulting from the differential projection of planar surfaces into a pail

of images. Section 2.2 studies the stability of this analysis. In section 2.3 a computer

program that is based on these analyses is described. The program recovers three-

dimensional surface discontinuities from input disparity maps. Chapter 3 extends

the analyses and results of chapter 2 to curved surfaces; its three sections parallel

those of chapter 2. In chapter 4 some relevant aspects of biological visual systems

are presented and discussed. Chapter 5 provides conclusions. Finally, a series of
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appendices offer some extensions to the proposed theory.
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Chapter 2

Planar surfaces

This chapter is concerned with the analysis of stereo disparity due to the differential

projection of planar surfaces onto a pair of two-dimensional imaging surfaces. The

goal of this analysis is to develop an understanding of the relations between the

geometric structure of a stereo disparity map and the corresponding geometry of

a stereoscopically viewed scene. Ultimately it will be shown how it is possible to

interpret stereo disparity information in terms of three-dimensional scene geometry.

In particular, the stereo information will be used to recover measures of relative

distance, surface orientation and surface discontinuities. The developments unfold in

three main sections: The first section develops a formal understanding of the disparity

field. The second section studies the numerical stability of the relations defined ill

Section 1. Section 3 describes a set of computer algorithms based on these analyses.

The algorithms recover surface discontinuities from stereo disparity. The results ol

applying these algorithms to several disparity maps are presented.

20



2.1 Analysis of disparity

In this section a formal analysis of stereo disparity will be presented. The first l)ait

of the analysis is concerned with understanding the forward process of differentially

projecting a three-dimensional world onto a pair of two-dimensional retinae. This

shall lead to defining in turn the stereo disparity field as well as the stereo dislarlity

gradient tensor. The stereo disparity field is a two-dimensional vector field. Horizonltal

disparity serves to define one component of this field, while vertical disparity serves

to define the second component. Horizontal and vertical disparity will be defined in

terms of the differential horizontal and vertical position of corresponding elements

in the two projected views. The gradient tensor of disparity is a representation of'

the rate of spatial change in a disparity field. This tensor will lead to the definitionl

of a third type of disparity, orientational disparity. Orientational disparity is the

differential orientation of linear elements as imaged in the stereoscopic views.

The latter parts of this section are concerned with the inverse process of recovering

three-dimensional scene geometry given a corresponding disparity field. Methods or

recovering differential viewing parameters, surface depth, orientation and discontinu-

ities will be developed. The recovery methods will employ only measures of horizontal

and orientational disparity. Vertical disparity is not employed due to the fact that its

relatively small magnitude leads to numerical instability (see Appendix A). However,

it is necessary to introduce vertical disparity in the developments as it serves in the

definition of the disparity gradient tensor. Following these formal developments the

section closes with a recapitulation of its main results.

21



Y

Y 

IC R

Figure 2.1: A general infinitesimal change of coordinates is composed of a translation

T = (tr,ty, tz) and a rotation Q = (w,, ,,w). A point R = (X, YZ) undergoes

perspective projection onto a plane located at Z = 1.

2.1.1 Basic differential projection

Given a general change in coordinate systems the corresponding change to a ploit R

can be described as

SR = -T - ( x R) (2.1)

where the symbols are described with reference to Figure 2.1.1 Now, for the case of

stereo vision it is not necessary to deal with the most general change of coordinates

'A few comments on notation: Throughout this presentation bold-font shall be used for vectors.

Upper case letters X, Y and Z will denote world coordinates; while lower case z and y will denote

image coordinates. Subscripts will be used for vector components, not to denote differentiation.
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z

fixation

t,

A

Figure 2.2: A model of stereo viewing geometry.

as described by (2.1). Instead, consideration can be restricted to the model of stereo

geometry as given in figure Figure 2.2. This system is related to a coordinate sstein

defined at the optical center of the left eye. The translation components are conillied

to the plane defined by the view direction and the axis connecting the two eves; ttls.

t = 0. The rotation is confined to rotation about the y-axis; thus, w: = ' 0.

This is not to say that elevation of the eyes is not permitted. Rather, the coordinate

system is simply always moved with the elevation.2 For this situation substitutiol

into (2.1) yields

6R = -(t, + .yZ, O, tz - wXy). (2.2)

Perspective projection serves as the model of how the world projects into an iage

2 From a biological point of view, this model may be considered inadequate as it ignores torsional

movements of the eyes about their optical axes. However, if it is desired to include them thev wolldl

be uniquely defined by the other viewing parameters via Donder's and Listing's laws; see Hel-illloltz

[48].
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plane. The laws of perspective give (with appropriate units)

x = x ' (2.:3)

To understand how a point in space changes in its projective coordinates froml one

view to another let

X (X,Xy) = (x, y). (2.4)

Considering (2.3) it is found that

X 5Z ZY
X = t-- X Z2,' Z - Z 2 (2.5)

Then upon substituting (2.2) into (2.5)

1 2
y = ((.rt - t ) - ( 2 + 1)wy, -(yt) - yy) (2.6)

Equation (2.6) is then the basic first-order relation for horizontal and vertical stereo

disparity.

Notice that the definition of disparity embodied in (2.6) is somewhat different

from the "classical" definition of stereo disparity as presented in, e.g., Ogle [97]. The

geometric relation between these two definitions can be clarified with reference to

Figure 2.3. This figure depicts a stereoscopic observer fixating a point P1. The point

is projected onto the left and right imaging surfaces via the optical nodes 01 and O,.

The optical nodes in Figure 2.3 correspond to the points labeled "left eye" and "right,

eye" in Figure 2.2; the stereo baseline I is also the same in both figures. Now, coilsilder

the point labeled P2 in Figure 2.3. The classical definition of disparity for the point P2

with reference to P1 would be the difference in the angles 2 and l1. In contrast, the

24
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left iIlln", ,llr'fel

.,

Figure 2.3: The geometric relation between the classical definition of stereo dispai itv

and the definition used in this thesis.

25

r Iglt t i iii (igo -it r --c



definition of disparity employed in this thesis would assign the difference in projected

coordinates xl and xr as the horizontal disparity associated with the point P 2.

With the definition of stereo disparity in hand, attention is now directed to tle

gradient of disparity. This study will lead to further relations between the variales

of interest. In particular, from an understanding of the disparity gradient it will

be possible to derive relations that concern the gradient of distance (that will later

allow the recovery of surface orientation). This gradient is a first-order tensor of tle

following form

3X1 ax.
ax ay
Dx ay I (2.7)

ax Dy /

where

a t + (a) (xt - t) - 2wyx
ax 

3
Z ax Z D

ax- f -' } (x1, - (2.S

ax = (a) (ytz) - wy

dy =Z +(y a) (yt) - wyx.

To further interpret the relations (2.8) it is necessary to decide upon a representation

for the depth parameter, Z. Recalling that the current developments are restricting

attention to planar surfaces, consider the standard first-order representation

Z = pX + qY+r (2.9)

where (p, q) = VZ is the surface gradient and r is the distance along the Z-axis. In

terms of image coordinates, (x, y), equation (2.9) becomes

1 1 - px - qy (.10)
Z I
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and therefore

a I - __- a 1 - - (2.11)
TX: VZy r ay Z r

Upon substituting (2.11) into relations (2.8) and retaining only first-order ternis it is

now found that

ax-r P xZ t - t) - 2 zax Z r

aoX__ -_(Xt, - t)

y (ytz) -

As a final step in simplifying the representation of X' it is useful to choose a coordinate

system that is oriented such that the Z-axis is oriented along the line of regard. In

this system x = y = 0 while Z = r.3 Therefore, the disparity gradient tensor can be

written as

(2.12)
( (Pt + tz) Itr

X=

Recalling that an eventual goal is the recovery of useful

geometric surface parameters p, q and r, it is pleasing to

the final form of X' given in (2.12).

3Notice that the appropriate change of coordinates is given in t,

forming the original system according to

cosOcosX cos0sin4 -sinO

- sin cos 0

sin 0 cos sin 0 sin cos a

where 0 and X are the spherical polar coordinates of the point of rege

& Korn [64].

relations involving planar

see these terms appear in

erms of Euler angles by trans-

ard; see, Goldstein [36] or Korn
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For purposes of analysis it is convenient to split X' into its symmetric, ,X '. a1l

antisymmetric, y', parts. This gives

XI'= · + _ + - 1

Physically, y+ describes the nonrigid change in shape as an object is differelltiallv

projected; while X' describes how an object is rigidly rotated through differential

imaging. This interpretation follows directly from the Cauchy-Stokes decomposition

theorem of tensor analysis (Aris [6]). For most of the rest of this paper, attention will

be restricted to the properties of X+ as it has proven to give the most insight into

interpreting the disparity field.

In order to understand the nature of X+ it is useful to perform an eigen-decompositionl.

(Intuitively speaking, this analysis will yield information about the direction and mag-

nitude of the nonrigid transformation embodied in 4X+.) The characteristic equationl,

det(x+ - AI) = 0 (where I is the identity matrix), corresponding to is

1 2 (qt.) 2

A2 (Pt + 2t,) + t2 (t) )= 0
r PX ZIKP Zz 4

the roots of which, and hence the eigenvalues, are

A = -[pt. + 2tz + (p2 + q2)]. (2.13)
2r

For each eigenvalue, A, the equation ( - AI)Ji = 0 yields the corresponding eigeIn-

vector i. This yields

= [p+(p + q), q] (14
(p + q2)2

as the eigenvector corresponding to the positive root of (2.13). The eigenvector cor-

responding to the negative root is found to be orthogonal to (2.14). This completes
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0U

Figure 2.4: The difference of the eigenvalues, a, of the symmetric part of the clisl)arity

gradient tensor, 4+, corresponds to a nonconformal but area preserving transforilla-

tion.

the algebra of the eigen-decomposition. The standard interpretation of such resullts

says that X+ operates on an object by stretching it an amount Xi along the directioil

specified by .

Should the two values assigned to A by (2.13) be unequal the deformation elnlodl-

ied by y is nonisotropic. To make this notion precise define

-(p + q2).1)
r

Physically, accounts for an area-preserving, but nonconformal transformatioll I)e-

tween differentially projected images. It may be interpreted as a contraction alolng

the direction of one of the eigenvectors, (2.14), with a corresponding expansion alolng

the other eigenvector, see figure 2.4. Most interestingly for present concerns is that

(2.15) is the product of the magnitude of the surface gradient, (p2 + q2), andl lthe
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depth scaled view translation along the X-axis, . (Similar results are reporte( ill

Koenderink & van Doorn [60].)

For the final series of developments in this section, consider the following intuition:

In so far as or is a nonconformal transformation, it should be possible to relate it,

explicitly to a change in how angles appear in the differential projections. This vwoull

clearly be a desirable result as a change in angles should be directly measurable flrom-l

a pair of images. Now, the change in orientation of a linear segment is due to the

operation of X'. To understand this it is helpful to express X' as

I 0 r z j 1 A A l I

where ,i are the normalized eigenvectors. Next, suppose that the normalized eigeil-

vectors are represented in terms of an angle 0 that represents their orientation with

reference to the image coordinates. Then 2 X' can be written as

+ . (2.16)( 0 -t + ( cosO-i1 ( cos sin cos
-t 0 sin 0 cos0 0 A2 sin0 cos 0

Now, to obtain a relation concerning how a linear segment changes orientation be-

tween views: First, apply (2.16) to an oriented segment (cos 4, sin g,). Second, take

the cross-product of the result with the same oriented segment. After some amount

of algebraic manipulation it is found that to first order the sine of the angle between

the initial segment and the transformed segment is

-l[a sin2( - 0) - qtx]. (2.17)

Relation 2.17 serves as the definition of orientational disparity, the difference in the

orientation of a linear element between two projected views. By taking the difference

30



of two such measurements, that is a difference in projected angles, the effects ol'

the rigid rotation, qt,, are discounted. Thus, the suspicion that a change in agles

mediated by differential projection should directly reflect the effects of Oa is confirlnled.

Finally, consider the relation of the vector quantities i to disparity based ncea-

surements. Following through on the difference of two orientational disparities as

defined in (2.17) yields

[cos 0(sin 1 - sin 0 2) + sin 0(cos I 2 - coS 1)] ('2.8)

where as before (cos 0, sin 0) specifies the direction of the axes (i and (cos snj, sill 'j),

j = 1, 2, specify the directions of the two differentially projected oriented segments.

Notice that only the directions of the i are important. Therefore, an additional pair

of orientational disparities allows the unique determination of the eigenvectors (i.

This section has outlined several derivations involving stereo disparity and its

gradient. Before proceeding it is useful to pause and emphasize several points:

* Three different types of disparity have been defined: horizontal disparity (2.6),

vertical disparity (2.6) and orientational disparity (2.17).

* These disparity mesures along with equations (2.10), (2.14), (2.15) and (2.18)

provide relations between stereo disparity, stereo viewing parameters and geo-

metric surface parameters p, q and r.

* In following developments, these key results will lead to relatively straigllt-

forward methods for recovering three-dimensional scene geometry given stereo

disparity information.

31



The presentation now turns to deriving these recovery methods.

2.1.2 Recovering view

This subsection presents an approach to recovering the differential viewing parame-

ters t, t and wy which relate a pair of stereo views. The formulation shall exploit

horizontal and orientational but not vertical disparity. The restriction from using vel-

tical disparity is motivated by the suspicion that it will not be possible to accurately

recover their extremely small values in a real world imaging situation (see, Appendix

A). The presented method works with the assumption that the magnitude of the

interocular separation is a known value, say .4 In the end, the method recovers the

viewing parameters only up to an arbitrary scaling factor. This is due to the fact that

the distance to some point in the world is assigned an arbitrary value in the corlllse

of the solution.

To begin these developments, substitute (2.10) into the horizontal disparity rela-

tion from (2.6) to obtain

= (1-p y (t -t)(X2 + ) (2.19)

Now, notice that at the fixation point (x, y) = (0, 0) equation (2.19) reduces to

1
0 = -(-t) - Wy

r

4 The assumption that this quantity is known a priori is not justified for the general "second

view problem". However, for a machine stereo system it is a one time measurable and thus seems

reasonable to assume it to be a known quantity.
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or

-tx
WY = 

/
(2.20)

Substitution of (2.20) into (2.19) allows for the elimination of one of the view param-

eters, y,.

The next step is to use orientational disparity to eliminate the surface orlientatiol

parameters p and q from (2.19). To accomplish this goal notice that (2.14) iiil)lies

that the ray defined by 1 is half way between the rays defined by (p, ) and the

X-axis. (Speaking more generally, ~1 is half way between (p, q) and the angular part

of T, Tang.) This observation leads one to note that

(1, 0) (pq) 2 2
(p2 2) -

and

(1, 0) x (,' ) = -2zy
(P2 + q2)½

or

(2.21)(p, ) = ( y 2lly)
(p2 + q2)½

where 1 = (x, ly) is 1 normalized.5 Now rewriting (2.15) as

(p 2 + q2) =r,+ q2 -tX

allows substitution into (2.21) for the term (p 2 + q2)½ with the result that the surface

orientation parameters, p and q, can be substituted for in (2.19) as

p = (L - (2.22))

q = (2~lx:ly)to

5Notice that in three-dimensions the operation x, the cross product of two vectors, yields a vector

quantity. However, here in the two-dimensional case x is the rotational; it yields a scalar quantity.
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fixation

left eve right eve

I sin 7

Figure 2.5: The definition of 

Now, the viewing parameters t and t can be related in a relatively simple equa-

tion with one further manipulation: allow for an arbitrary depth scale and set tile

remaining surface parameter, r, to an arbitrary value of unity. This yields a relation

of the form

t
ao = al t. + a2tz + a3 (2.2:3)

where the ai consist entirely of known (or measurable) values. Explicitly,

a0 = Xx - a[X(~ri - Siy) + 2y~lly]

a l = X2

a2 = x

a 3 = -a[ 2 (y - i~y) + 2XY~,.xy1.

Relation (2.23) could be used to solve for the desired parameters t and t i a

number of ways. Here, the system is solved by making use of several substitutiolIs

and a small angle approximation. Let y be defined as shown in Figure 2.5. i0From
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figure 2.4 it is clear that

t = I cos 7

tz = I siny (2.21)

t = tan3y

Substituting (2.24) into (2.23) results in

ao = al I cos y + a21 sin y + a3 tan . (2.25)

The next step is to take standard first-order trigonometric substitutions so that ^r

may be solved for as

a0 - a1 1
` -rl (.26)

a3 + a2I

with I known.6 With -y recovered the original view parameters t,, tz and my are easily

obtained with reference to (2.24) and (2.20).

Reviewing these results, it is found that the view parameters have been recovered

using only a single horizontal disparity and a pair of orientational disparities.

2.1.3 Recovering geometric surface parameters

With the viewing parameters recovered consideration can be turned to recoveling

the geometric surface parameters p, q and r. Notice with the viewing param-neters

recovered the Z value of any point can be easily recovered by consideration of either

of the relations from equation (2.6). Now adopt a change of coordinates such that the

new Z-axis points toward the point of consideration (as discussed in section 2.1.1).

6Notice that under the vast majority of real world viewing conditions (e.g., observer fixating ot

too eccentrically and at a moderate distance), y will in fact be small.
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In this new coordinate system the recovered Z value can be interpreted as 7'. It fow

remains to recover only p and q. But of course, the necessary relations are alreacly

in hand. Equations (2.22) derived to eliminate p and q for the recovery of v iewing

parameters can (now that the view has been recovered) be used to recover these same

values. Thus, minimal requirements for the recovery of the surface parameters , q

and r are the observation of a single horizontal disparity as well as three orientatiollal

disparities which all derive from the same surface patch.

2.1.4 Recovering surface discontinuities

Suppose that the geometric surface parameters corresponding to two adjacent surface

patches have been recovered as (p, q1, rl) and (P2, q2, r2), respectively. Then there is

a trivial test for surface discontinuities for the case of planar surfaces: Specifically,

require that

(pi,ql,rl) = (p 2 , q2 , r2 ). (2.27)

If the test (2.27) fails a surface discontinuity is necessarily present. Notice tllat,

strictly speaking, any triad of surface parameters computed by the methods propose(l

earlier in this section are actually defined only in a local coordinate system. Tlhis

system was taken with the Z-axis pointing along the corresponding line of regard.

In order to actually make sensible computations involving parameters derived ['or

separate systems the triads must be appropriately rotated into a common coordinate

system. Use of the inverse of the matrix presented in footnote 3 is appropriate.
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2.1.5 Recapitulation

This section has presented an analysis of stereo disparity due to the differential pl)o-

jection of a three-dimensional scene onto a pair of two-dimensional imaging surfaces.

The developments have been restricted to the projection of planar surfaces arrange(l

in three-space.

The section began by developing the basic relations for differential projection. III

this light, results relating horizontal and vertical disparity to stereo viewing paranm-

eters and three-dimensional depth were derived, equation (2.6). The second major

development was to derive relations involving surface gradient, the gradient of clis-

parity and orientational disparity. These relations are embodied in equations (2.14),

(2.15) and (2.17). With these basic results in hand it was possible to turn attention to

inverting the disparity information to recover properties of the differentially projected

world. Specifically, relations were derived for recovering the differential viewing pa-

rameters, surface depth, gradient and discontinuity. Equation (2.26) was derived for

the recovery of surface viewing parameters from horizontal and orientational disparli-

ties. Equations (2.22) were derived for recovering surface gradient. Finally, relations

defined with reference to (2.27) gave a method for recovering surface discontinuities

from disparity. The key to the strong results obtained for recovering three-dimensional

properties from disparity lay in first developing an understanding of the disparity field

itself.
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2.2 Stability analysis

At this point it is useful to analyze the numerical properties of the proposed recov-

ery methods. In turn, this section shall consider degenerate sets of measurlemellts

sensitivity to measurement errors and an approach to operating in the face of noise

corrupted data. Finally, the section closes with a recapitulation of the main results.

2.2.1 Degeneracies

It is possible that certain combinations of measured disparities and image coordillates

will lead to situations where the proposed recovery methods will be undefined. Scil

situations shall be referred to as degenerate. In this subsection these situations Awdill

be analyzed. Of particular interest shall be those data combinations which lead to 

ratio becoming undefined as its denominator tends to zero.

Consider first the key relation for defining the viewing parameters, (2.23). Relation

(2.23) will become undefined as its denominator approaches zero. Thus, it is necessary

to consider the condition

0 = a3 + a2 I

or, upon appropriate substitution

O = Xl - U[X 2 (. - Y) + 2zyiiriy]-

Examination of this quantity indicates that the image line x = 0 is degenerate.

Continuing by making the substitutions implied by (2.15) and (2.19) and cancelling
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appropriately yields

t.
0 = I - (px + qy)

r

or

tx(px + qy) (2.2$)
Ir

as a degenerate condition. In words: The numerator of (2.28) is the product of two

factors: The first factor, t, is the projection of the stereo baseline on the X-axis.

The second factor, (px + qy), is the radial distance from the point of regard to the

Z-intercept of the corresponding plane. The denominator of (2.28) is the prodclct of'

the stereo baseline and the Z-intercept of the surface of regard. These two qulanltities

must be equal for the viewing solution (2.23) to be undefined. It is quite unlikely

that such a configuration should occur generically. For intuition, notice that in typical

viewing conditions Iltll - III. Therefore, the degenerate condition demands thliat

the surface of regard is viewed at a point where it is approximately the same radial

distance from its Z-intercept as the Z-intercept is from the viewer. See figure 2.6.

Now, turn attention to degeneracies related to the recovery of the components of'

the surface gradient VZ = (p, q) defined in (2.19). Two conditions present themselves.

First, should the plane of consideration pass throught the origin (i.e., the optical

center of the left eye) the solution will not apply. In this situation the plane appears

as a line to the left eye. Second, should t = 0 then (2.19) is undefined. For stereo

vision this a mechanical impossibility as it requires one eye to be directly behind (alnd

hence see through) the other eye. Recalling that the method for recovering surface

discontinuities (2.27) is directly related to (2.19), leads to the conclusion that it sharles
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7

S

Figure 2.6: A geometric configuration of surface and viewer leading to a degeneracy

of the proposed method for recovering view and surface geometry. An observer, o,

views a point, p, on a planar surface, S. Suppose that S intercepts the Z-axis at 7'.

The degenerate condition is llorl = Ilprll. The points o and p must lie on a circle

centered at r.
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the same degeneracies.

Happily, it is possible to draw positive conclusions concerning the degeneracies of

the proposed recovery methods. Specifically:

* The degenerate conditions of the solution methods embodied in (2.19) and (2.27)

are either unlikely to occur or impossible for a binocular stereo system.

* The degeneracy of practical importance for (2.23) is the image line x = 0. This

condition can be easily diagnosed during the recovery process.

2.2.2 Error analysis

Now consider the effects of applying perturbations to the data upon which the tlhree-

dimensional recovery methods operate. The general approach shall be to outline

those conditions and choices of image measurements which lead to especially stable

or unstable solutions. As a measure of stability the "generalized error-propagation

formula" (Dahlquist & Bj6rk [21]) will be used. This measure, which tells the local

rate of change of a solution with respect to perturbed data, can be written

AyE08(n Oy

and hence,

nay
IlaYII < E IIx (X)|| 11/Xx, ( 

where

y = y(x)

X = (X 2, ,... , )
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and the perturbation to xi is Axi resulting in

Xi = xi + Axi

-R= ( 1, ,..., - -)

Ay = y(k) - y(x).

Clearly, small values for 1jAyll correspond to stable solutions.

Imaging perturbations

Consider the effects of error perturbations applied in the disparity map to the mea-

sures X, a and .7 The general approach shall be to derive the form of the general

error propagation formula (2.29) for each of the recovery methods. With the deriva-

tion in hand, each term in the summation can be examined separately for stable

conditions (which correspond to small magnitude). The intersection of these coll(i-

tions for all the terms will be stable for the combined form.

First, turn attention to the stability of the view recovery method (2.26). Thenl

the parameters of (2.29) become x = (xx, ,O) and = x + (Ax,Aau,), A, ith

(cos 0, sin 0) specifying the direction of J. Considering (2.29), the goal is to understanlll

the conditions where

~~jjyII H ±&Y a I·) . I l+(2.30)

is small. To begin, notice that trivially (2.30) can have arbitrarily small magnitude as

(AX, Au, AO, ) - (0, 0, 0). More realistically, the perturbations, (AyX, Act, AO), need
7 To make the error analysis managable it shall be assumed that errors in the assessment of the

visual directions (i.e., (x,y)) are negligible as compared to those in the disparity measuremenlts.

Hence, the following developments will only consider perturbations to the disparity measures.
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to be small compared to the denominators of the corresponding partial deriva ii\Ves.

These denominators shall now be examined in some detail. The term 3 (k) call b('

expanded (with the aid of double angle formulas) as

-x[(x, y) (cos 20, sin 20) + I]-1

or

- x[all(x, y)l cos + I] - 1 (2.31)

where O is the angle between (x,y) and (cos 2, sin20). From (2.31) it can be coin-

cluded that the error due to the first term of (2.30) can be made small given three

conditions: (i) , the magnitude of stereoscopic shear, is large, (ii) I, the magnitt(Ie

of the stereo baseline, is large, (iii) (x,y) is chosen in the direction of twice 0 (i.e.,

twice the directions of the a-axis, ). Using similar procedures and nomenclatullre.

the second term of (2.30) can be written

JI(x, y)[I cos O[X - I(1 + x2) - 2I(x,y)ll cos] v3

x(ll(x, Y)ll cos + I)2

By inspection it is possible to conclude that (2.32) has small magnitude when r and I

are relatively large. In the limit, as 11(x,y)l - oc l'Hopital's rule (Korn k Iorn [64])

suggests that taking (x,y) in the direction 20 is useful provided that a is relatively

large. For more moderate ll(x,y)l case analyses still suggest this is the appropriate

direction for (x,y), particularly for :x m -[&ll(x,y)II + 1(1 + x2 )]. The last term of

(2.30) can be written

2all(x, y)lI sin b[, - I(1 + x2)]- 4&11(x, y)112 sin 2 (
x[IIl(x, y)ll cos + ]2
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Consideration of (2.33) reveals that a and I large with (x,y) chosen in the cilrectiol

20 leads to its small magnitude. It is also useful for Xx - -I(1 + x2 ). Notice ill

particular that the numerator of (2.33) contains terms of sin +. This heightens the

importance of choosing (x, y) in the direction 20.

Thus, it is possible to conclude that three conditions are particularly impoltalnt

for (2.30) to have stable solutions:

* The magnitude of stereoscopic shear, , should be relatively large. In telills of

world conditions this condition (i), implies that the magnitude of the surface

gradient is large while the viewing distance is not too great. This is just a notllel

way of saying that the differential perspective information must be salient.

* The image coordinates, (x,y), should be chosen in the direction of twice 0 (i.e.,

twice the directions of the a-axis, ). In the world this means that the im;.g(

coordinates should be chosen in the direction of VZ, see (2.21). Intuitively,

the data points are best when chosen in the direction of the projection of the

surface gradient.

* The magnitude of the stereo baseline, I, should be relatively large. Againl, this

condition is related to making the disparity information as salient as possible.

Notice that the final condition can be satisfied as a one time design constraint on a

stereo system. Similarly notice that the first two conditions can be monitored by all

intelligent disparity processing algorithm. This last observation deserves emphasis:

* This analysis indicates that the view recovery method can guide its own behavior

in order to recover a stable solution given input disparity information.
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Now, consider how errors in the measurements affect the recovery of the local

depth parameter, r. By an appropriate local transformation (e.g., the matrix o'

footnote 4) r is recovered in terms of Z. Therefore, the appropriate relation is (2.6).

For the following analysis the potential sources of error will be in the horizonlltal

disparity, X, as well as the previously recovered view parameters t,, tz and wY. Thus

the parameters of (2.29) become x = ( , t,, tz,w ) and xt = x+(A X, At, At,_ Awk,).

Specializing (2.29) with respect to (2.6) leads to

Z( ( IAX-1+ Z ( )(xll H HAtI! + ) I I IAt + az ()II llH Aw 11. (2.3 4)

The term -z (x) evaluates to

tx - xtz

[Xz + (x2 + 1)wy]2 (5)

Inspection of (2.35) shows that its contribution to (2.34) will be small if three con-

ditions are met: (i) the horizontal disparity, Xx, is relatively large, (ii) the rotation

about the Y-axis, wy is relatively large and (iii) the difference of the two relative

view translations, t and t, is relatively small. Intuitively, these observations suggest

that stable situations result from those viewing conditions that tend to maximize the

difference in the two stereo views. Similarly, the -z (x) term of (2.34) evaluates to

tx(x 2 + 1) - t(x 3 + x)

[Xx + (X2 + 1)Wy] 2

which can be seen to have the same conditions for small magnitude as does (2.35).

Finally, z2(x) and " (x) yield

-[Xx + (x 2 + 1)wv] - 1
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and

X[Xx + ( 2 + 1)wyl - ,

respectively. For these last two cases only the conditions that both X. ancd 0C are

relatively large are necessary for stability. On the whole it can be concluded that tilhe

magnitude (2.34) can be kept small (and hence the recovery of r stable) provided tlat,

viewing conditions are chosen to make the difference in the two stereo views saliellt.

The final developments of this section consider the stability of the surface orieinta-

tion measures as embodied in (2.22). For these cases the parameters of (2.29) become

x = (o, 0, r, t) and x = x + (a, A0, Ar, At.). (As earlier (cos 0, sin 0) specifies the

direction of the eigenvector .) The measure of stability for p can be written

Op (p :k ) p Op1IaIP(R) oj + Ia() i\HI[ + 11ap() IAr[l+H-() +t 3 H. () 1 At. 2.36)

The terms of interest in (2.36) evaluate to

O (x) = cos 20

22(x) = -2 sin 2 t
aB tx

P(R) = cos 26

at(X)= cos 2t

Similarly, the relation for q substituted into (2.29) leads to consideration of

IA ()ll. OI + 11.l + (kaq ). 11,r1r + l-a ()11 IlAtH (2.37)
aoo (x Or atx
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For (2.37) it is found that

aq () = sin 2 

O (x) = 2 cos 2 

2(k)= sin 2*

tar,) = - sin20t7
Examining the expansions of the terms in (2.36) and (2.37) leads to the conclusion that

stable solutions are reached when r is relatively small while t is relatively large. The

requirement that t have relatively large magnitude is consistent with earlier results

on the importance of keeping the stereoscopic differences salient. The importance o'

r not being too large reflects the fact that differences in relative surface orientation

become less salient as viewing distance increases.

The observations made on the stable recovery of the geometric surface paranle-

ters are in accord with the earlier stability results. The general conclusion is worthl

highlighting:

* The key conditions leading to stable recovery of both view and surface geometry

center around making the differential viewing information salient; good stereo

viewing conditions lead to good solutions.

Three-dimensional perturbations

Implicit in the developments up to this point has been the assumption that the

disparity measurements (horizontal and orientational) derive from the differential

projection of surface detail that lies upon the surface of concern (e.g., the stripes

of an animal lie upon the animal's surface). In many real world situations surface
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texture may extend away from the underlying surface (e.g., the quills of a porcutilile

extend away from the animal's surface). It is reasonable to ask if this sort of three-

dimensional perturbation can be considered in the light of image perturbations. Tile

answer hinges upon how adequate it is to express the effects of the three-dimenlsional

perturbations as simple additive error components to the disparity measurements.

Consider in turn the effects of such perturbations on horizontal and orientational

disparity.

The effects of adding a three-dimensional perturbation to horizontal dlisparity,

x, can be conceptualized as follows: Suppose that a point along a texture element

projects into the images to give rise to a horizontal disparity. Let AZ be the amoulnt

that the point of consideration extends away from its surface, Z. Recalling (2.6) the

perturbed horizontal disparity can be written

,' = z +1 z(xtz - t) - (1 + xz2 )w.

Expressing this as a sum of the unperturbed disparity and a component due to the

three-dimensional perturbation, AZ, yields

X + X = (t - t) - (1 + X2) + Z(t z) (2.3S)

Equation (2.38) shows that the three-dimensional perturbation interacts in a nonlin-

ear fashion with parameters which are to be recovered, t and Z.

Now consider the effects of three-dimensional perturbations on orientational dis-

parity. Suppose that a texture element extends from a plane P = (p, q, r). This ele-

ment can be considered as embedded in a plane related to P as P = P + (Ap, Aq, A).

Next, recall that the differentially projected orientation of a linear element (cos 7/n, sin ?I/)
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is due to the operation of the disparity gradient tensor y'. The effects of the tlre-

dimensional perturbations on orientational disparity can be formalized by using the

parameters of P to form X' and applying the result to (cos 4,, sin 0). With the aid of

(2.12) this results in an orientation of

+ ([(p + Ap)t, + t] cos 0 + (q + Aq)t, sin 4, t, sin ,) .

This can be usefully rewritten as a sum of two terms. The first term is entirely (lue

to the effects of an element lying on the plane P. The second term is due to the

perturbation AP. Specifically, the first term is

- [(ptz + t) cos 4' + qt, sin 4, t, sinll ]

while the second (error) term is

((cos 0, sin 4,) [t(rAp - pAr) + t,(r - Ar), t(rAq - qAr)], t,Ar sin l') .
r( + 7)

(2.39)

Again, the results of writing the effects of three-dimensional perturbations as sutll of'

unperturbed and perturbed terms results in a nonlinear error term. Significantly, the

nonlinearities of the error involve not only the perturbations, but also the variables

to be recovered.

Thus, even in the raw disparities, (2.38) and (2.39), three-dimensional pertuiba-

tions combine in a nonlinear fashion with the parameters to be recovered. Froml this

observation two conclusions can be drawn:

* Three-dimensional perturbations can not be adequately characterized as anal-

ogous to additive image perturbations.
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· Three-dimensional perturbations can well lead to unstable performance in algo-

rithms that operate on horizontal and orientational disparities. The nonlinear

nature of perturbations in the disparity data will only be compounded as these

values are operated upon.

An algorithmic approach to dealing with three-dimensional texture could attempt

to infer an underlying surface in a piecemeal fashion by locally fitting surface patches

(with, e.g., least-squares) to the endpoints of the texture elements. However, sucli

an approach goes against the main philosophy of the present approach: the recovelry

of higher-order surface geometry directly from stereo disparity. A deeper approacl

would be founded in a theory of three-dimensional texture. The development of such

a theory of three-dimensional texture is beyond the scope of this thesis. However, if'

an algorithm based on the theory presented in this thesis is to exhibit robust behavior

in the real world it must take account of such perturbations in some fashion. These

problems are considered in the following subsection.

2.2.3 Operating in the face of perturbed data

Having developed a feel for the behavior of the recovery methods in the face of per-

turbed data, it is useful to develop strategies for the recovery of the desired parameters

in spite of such perturbations. Given that the implementation reported in section 3

concentrates on recovering view and surface discontinuities, this subsection shall be

limited to considering those cases. Specifically, approaches to combining redundant

data shall be considered as well as the selection of thresholds in the detection of
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surface discontinuities.

Recovering view parameters

The recovery of viewing parameters via (2.23) does not require the selection of any

thresholds. The issue is how to combine redundant sensing measures. That is, suppose

it is possible to acquire multiple measures of horizontal disparity, X,, stereoscopic

shear, a, as well as the a-axis, . While only one set of measures is needed to define a

solution for 7, it is desirable to combine multiple measures for the sake of robustness.

Several paths are possible.

Perhaps the most well founded approach would be to derive optimal filters to

minimize the noise of the disparity data values. Two facts make this an impractical

goal: First, the nonlinear fashion in which the data measures interact make much of

standard estimation theory nonapplicable (but see, Oppenheim et al. [99]). Second,

due to the complex effects of three-dimensional texture based noise it is not possible

to invoke the typical assumptions of estimation theory (e.g., stationary noise, etc).

At the other extreme of sophistication might be to apply a pseudo-inverse based

solution (Albert [1]). (For the following discussion define a = a3, + a2 I and /3i =

aoi- alii with the a's defined as in (2.20). Also, let the subscript i representing the

ith measurement set of the disparities.) Briefly, the idea is to minimize the sum of

the squared errors

Ei = yai -P
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which can be written in matrix form as

/ \

a1

Ca2

Cfn ,

12

On

61

62

6n
/

and more concisely as AF = B + . The solution, in terms of the pseudo-invetrse

At = (ATA)-'AT is

r = At(B +)

The problem with this solution is that it implicitly assumes that there is only error

in the terms fl. For the present problem it is at least as likely that the terms a are

noise corrupted. This assumption seems too naive for present concerns. The approach

also makes rather simple assumptions about the distribution of the error (zero-mean,

Gaussian, random noise) that are probably not appropriate.

The approach adopted here is to use an eigenvector-value based approach to com-

bining multiple data sets. This approach as implemented makes the same (naive) as-

sumptions with regard to the distribution of errors as does the pseudo-inverse method.

However, this method is more appropriate in that it recognizes the possibility of error

in both the ai and the 3 terms. In this case, the squared error is minimized along the

direction rT, with r being (, -1) normalized. Correspondingly, the error becomes

M zya -

Minimizing the sum of such squared errors leads to consideration of the matrix equa-
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which can be rewritten as

DrT = .

It can be shown (e.g., Koopmans [63]) that the summed squared error is minimized by

selecting F as the eigenvector corresponding to the smallest eigenvalue of DTD. This

is the method of estimating that shall be used. It is seen as a compromise between

the prohibitive cost of the nonlinear estimation problem and the simple pseudo-inverse

method. Intuitively, the chosen measure is minimizing the perpendicular distance of

a line plotted through the values (ai, i). It is worth noting that the nonlinear forms

of the data may not be too nonlinear given that the values for cr and should vary

minimally for a local neighborhood from a planar surface.

Recovering surface geometry

The issues surrounding the recovery of surface discontinuities in the face of noise per-

turbed data are more difficult than the recovery of view. This is due to the fact that

not only is it necessary to combine redundant data, but also thresholds must be set

in the comparisons of adjacent regions of the disparity map. It would be possible to

apply the eigen approach of the previous subsection to combine data. However, due

to the nature of the error term its interpretation in terms of a threshold would be du-
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bious. On the other hand, a nonlinear optimal estimation approach is prollibitively

complex. In the face of unknown three-dimensional texture perturbations, it 1lla\

not be possible at all unless ad hoc assumptions are made about the correspondilng

noise distributions. A principled approach to combining redundant data and estab-

lishing thresholds while making minimal assumptions about the form of the error

and data can be found in nonparametric statistical methods. In this subsection an

approach is developed based on histogramming local measurements and applying tlec

nonparametric method of Kolmogorev-Smirnov (Siegel [113]).

The Kolmogorev-Smirnov method is a two-sample test of whether two samples

have been drawn from the same source. A large deviation between two sample cuLniu-

lative distributions is taken as evidence that the samples were drawn from distilnct

sources. More precisely: Let xl < 2 < ... < x, and Yl < Y2 < .. < y, be the

ordered samples from two sources that have continuous cumulative distribution func-

tions F(z) and G(z). Also, let S(z) = k with k the number of samples less than orn

equal to z for the set xi. Similarly, let Sy(z) = m for the set y. Then the measure

D = max IlSZ(z) - S (z)l (2.40)

can be used to decide if F(z) G(z). For small sample size and n = m the probability

that D < h, h = max lk - ill, can be derived via a set of recurrence relations. Tile

results of this computation are commonly available in sources such as Siegel [113]

or Korn & orn [64]. The Kolmogorev-Smirnov test is a particularly good tool for

dealing with small sample sizes. It can be shown that compared to the t-test it has

a power-efficiency of 96 per cent for small values of n (Dixon [23]). Power in the
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face of small sample size is important in the current application to recovering stirface

discontinuities. If measures that have been derived locally can be compared witll

confidence, then the ability to accurately localize differences will be improved.

Thus, the proposed method for recovering surface discontinuities from inaccurate

data is to use the Kolmogorev-Smirnov method to compare locally histogrammedll

values of the surface parameters p, q and r. Interestingly, if the same confilence

level is used for comparing all three histogram pairs the local differences in distance,

r, will be judged as more important than local differences in surface gradient, l

and q. This result seems to be in accord with intuition on the relative importance

of these parameters in recovering surface (distance) discontinuities. The differential

weighting falls out of the fact that distance can be recovered via disparate points ,

while orientation is recovered via disparate linear segments. Thus, the observatiol

of one segment would always allow for the observation of multiple points. Therefore,

for a given area of the disparity map the count in the distance histogram would be

greater than that in either component of the gradient.

As the final consideration in this section, turn attention to the confidence measure

D. This measure serves to set the threshold for discontinuity detection. In this thesis

the value of D will remain as a free parameter in the recovery of surface discontinl-

ities. However, it is worth noting three possible approaches to setting the value of D

in a more well founded fashion. First, suppose the error in the disparity measures was

assumed to have a known and simple distribution (e.g., a simple exponential distribu-

tion). In this case it might be possible to derive the value of D from residual measurles

of disparity. Unfortunately, from a theoretical stand it is not at all clear what the
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form of disparity errors should be. Further, it appears unlikely that any reasonlaly

simple distribution will adequately capture stereo disparity errors. Second, it might,

be possible to derive values for D by bounding the likely disparity errors. However,

this type of approach often leads to a result where even tight and conservative bounds

on the input yield weak bounds in the computed error (e.g., Grimson [42]). Finally,

the possibility exists that appropriate values for D could be derived by empirical

study of the discontinuity recovery method in the face of natural stereo data. \N'hile

this last approach does not yield a first principles solution, it might yield the most

practical results.

2.2.4 Recapitulation

This section has focused on developing an understanding of how the proposed ap-

proach to the disparity interpretation problem can be expected to behave in the face

of imperfect data. The discussion began by considering the possibility of degenerate

sets of image measurements that would not allow the computations to be defined. It

was concluded that for general stereo viewing, degenerate conditions are quite lim-

ited and easily diagnosed or avoided. The second set of developments considered the

numerical stability of the proposed computations. For this purpose the "General-

ized Error Propagation Formula" was used to understand the extent that error in

the input disparity measurements will result in error in the recovered parameters of

view and surface geometry. This analysis resulted in the intuitively pleasing result

that stereo viewing conditions that make disparity salient will lead to good stabil-

ity in the recovery methods. Significantly, these results indicate that an algorithm
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for recovering scene geometry from stereo disparity can practically monitor its owll

performance. Finally, approaches to combining redundant data and thresholding fol

discontinuity recovery were presented. Redundant data is exploited via eigenvector

analysis for viewing parameters and via histogramming for discontinuities. Thresh-

olding for discontinuity detection is based on the nonparametric Kolmogorev-Smirllov

method.

2.3 Computer implementation

This section describes the computer implementation and testing of an aspect of the

proposed theory for disparity interpretation. In particular, the proposed method

for recovering the discontinuities of planar surfaces has been embedded in a set of

computer algorithms that have been applied to stereo disparity data. The discussion

unfolds in three parts: First, the algorithms are described. Second, the results of

applying the algorithms to synthetic stereo data are presented. The final section

provides a brief recapitulation.

2.3.1 Description of algorithm and implementation

The proposed method for recovering the discontinuities of planar surfaces has been

instantiated in a set of algorithms. In turn, these algorithms have been the subject

of corresponding software implementations. The remainder of this subsection pro-

vides an overview of these developments. It will be seen that the algorithms and

implementations proceed from the earlier developments of this chapter in a most
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straightforward fashion.

At a coarse grain of analysis the algorithm for recovering surface discontinuities

has the following three steps:

Algorithm for recovering surface discontinuities

1. Recover the local values of the geometric surface parameters p, q and r from an

input disparity map.

2. Combine the recovered values of p, q and r into separate local histograms aiicl

smooth.

3. Compare adjacent histograms for each surface parameter with the Kolmogorev-

Smirnov test. If the value of the test exceeds a specified value then assert a

discontinuity in the region between the histograms.

This description of the algorithm clearly leaves quite a bit of detail to the imaginationl.

In the ensuing discussion each step will be specified at a finer grain of analysis.

To begin, consider Step 1 of the proposed algorithm. Step 1 itself decomposes into

three subparts: First, locally select three pairs of horizontal and orientational dispar-

ity measures to serve as input to the p, q and r recovery. A simple approach based on

eight-connectivity serves to define these local groupings of disparity measures: Scan

by rasters until a line segment is located in the left image; define the line's position by

its top left pixel. Then search the eight-connectivity neighborhood pixels for another

line segment. If no more segments are found scan the eight-connected neighbors of

the last scanned set, and so on until the desired number of inputs, 3, are acquired.
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Figure 2.7: A simple algorithm for selecting local regions for input to the surface

parameter and histogram computations: Expand eight-connectivity regions about a

central pixel until the desired number of inputs have been scanned. In this example,

it takes two iterations of the algorithm to locate the second line segment. For this

figure, line segments are depicted with black; expanding serach regions are depicted

with grey.
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See Figure 2.7. Now, consider the second part of Step 1. In this part the three local

orientational disparity measures are used as input to relation (2.18). This allows ot

the local recovery of a and its axis of contraction 1. Finally, part three of Stel) 1

is to use the recovered values of a and l, along with local measures of horizol-ltal

disparity, X,, as input to relations (2.6) and (2.22). This specifies the local values o'

p, q and r.

Now turn attention to Step 2 of the algorithm for recovering surface discontinuities.

The formation of the histograms is a relatively straightforward task. The selection of

the measures serving as input to a local triad of histograms ( one each for p, q adl

r ) employs the same algorithm used to define local inputs to the surface parameter

computation. Specifically, scan for the first p, q and r (located at the position of the

first line element). Then, iterate the eight-connectivity scheme until n such points are

located, where n is the histogram size. In forming subsequent histograms, points that

have already been scanned are excluded. When all the local histograms have beenl

formed, the disparity map will be divided into n regions, where m is the number of1'

line elements in the disparity map. The values in the histogram are then smoothed by

forming the serial products of the histogram buckets with the one-dimensional mask

[0.5,1.0,0.5]. This smoothing operation helps to reduce discretization errors that are

due to the noncontinuous nature of the histogram buckets.

Finally, consider Step 3 of the algorithm: Test for the significance of differing i,.

q and r between adjacent histogrammed regions. This step consists of applying the

Kolmogorev-Snirnov test to the neighboring histograms. For each histogram: First,

form a cumulative distribution. Second, compute the maximum difference, D, be-
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tween neighboring cumulative distributions corresponding to each surface parameter.

Third, if any value of D exceeds the specified level of significance then assert a cliscon-

tinuity. For present purposes a discontinuity is asserted to lie in the region between

the support areas of the neighboring histograms. Neighboring regions are again se-

lected using the eight-connectivity approach. The specification of significance level

and other parameters, being empirical matters, will be delayed until the next portion

of this report: experiments with the algorithm.

This completes the description of the algorithm for recovering surface disconti-

nuities from horizontal and orientational stereo disparity. The entire algorithm 1has

been the subject of a software implementation in Zetalisp running on a Symbolics

Lisp Machine. The result of applying this implementation to several disparity maps

is documented in the next subsection of this report.

2.3.2 Experiments

The described algorithm and implementation have been applied to both synthetic andc

natural image disparity maps. The results of these experiments are the subject of this

subsection. The first part of the discussion focuses on the results for the synthetic

test cases; the second part presents the results for applying the method to a natural

image stereo disparity map.

Experiments with synthetic stereo data

To begin this discussion, the particular parameters employed for the IKolmogorev-

Smirnov test as applied to the synthetic images are now delineated: The histograms
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n h=1 h=2 h=3 h=4 h=5 h=6

1 1.0000

2 0.6667 1.0000

3 0.4000 0.9000 1.0000

4 0.2286 0.7714 0.9714 1.0000

5 0.1270 0.6428 0.9206 0.9921 1.0000

6 0.0693 0.5260 0.8571 0.9740 0.9978 1.0000

Table 2.1: Probability that D < h for the Kolmogorev-Smirnov statistic.

are formed to be of size n = 5. The histogram bucket width is ±1 pixel about

the fixation for r and recovered values of 0.3 for p and q. For intuition, notice e.g.,

that p = 0 is a fronto-parallel plane while p = 1 is a plane rotated 45° about the

vertical. The performance of the algorithm is demonstrated on all the displays %with

a significance level of D = .6428. To examine the effect of increasing the significance

level, one display is also tested with D = .9206. For reference, the relevant portion

of a table giving values of D for small n is given in Table 2.1.

The implementation with these parameter settings has been tested on five syn-

thetic stereo disparity maps. Each disparity map corresponds to a random line stere-

ogram created by randomly tossing 700 lines of dimension 20 x 1 pixels on one of a

pair of 512 x 512 pixel arrays. The second array is generated from the first by dif-

ferentially projecting the line segments to correspond to a simple three-dimensional

scene. See, e.g., the top half of Figure 2.7. The horizontal and orientational disparity
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corresponding to each line is made available to the algorithm. The position of 1wt(

line segment is indexed on the basis of its upper left hand corner.

The particular "scenes" that served as input to the algorithm are depicted via

random line stereograms in the top halves of Figures 2.8-2.12. A description of each

scene is provided in the caption to the figure. The scenes were selected to illustrate tile

algorithms performance in a number of interestingly different situations. In particular.

different magnitudes and direction of surface gradient and distance are illustrated in

each case. Also, the performance of the algorithm when applied to the same data

but with differing values of D is demonstrated in Figure 2.10. The bottom half of

each figure shows the regions of discontinuity that were recovered by the algorithm ill

each case. The relative distance of the forward most surface along the discontinuity

is coded in terms of grey level. The coding has areas of increasing intensity as closet

to the viewer.

Several observations can be made about the performance of the algorithm:

* In general, it is clear that the algorithm performs well in all of the tested cases.

* The algorithm is not at loss when operating in the face of only p or only q

differences, Figures 2.8 and 2.9.

* The algorithm is capable of recovering surface discontinuities in the face of both

large and small surface gradients. Figures 2.10 and 2.11.

* The performance of the algorithm on these noise free examples is not dependent

on the value of the significance level D, Figure 2.10.
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* When faced with a slightly more complex scene, the algorithm still pIerblllrs

adequately, Figure 2.12.

Experiment with natural stereo data

The algorithm and implementation for recovering the discontinuities of planar surfaces

has also been applied to a natural image disparity map: The top half of Figure 2.13

shows a pair of stereoscopic aerial photos of the University of British Columbia.. A

disparity map corresponding to these photographs was provided by Eric Grimson of

the MIT AI lab. The bottom left panel of Figure 2.13 shows the linear segments that

were used to derive the horizontal and orientational disparity for input to the surface

discontinuity recovery process. This particular disparity map is a difficult case or

the discontinuity algorithm for several reasons: First, the density of texture ill tle

data is low. This challenges the algorithm as it requires several linear segments for

each local area where it performs the discontinuity computation. Second, the overall

disparity range present in the disparity map is rather compressed. This naturally

leads to a poor signal to noise ratio in the data that is used to drive the algorithlm.

Finally, it is important to note that a simple threshold based on absolute disparity

would fail to find many of the interesting discontinuities for this test case; the data.

does not simply correspond to a set of fronto-parallel planes arranged at various

distances from the viewer. Examination of the disparity data shows that there is

strong gradient of disparity across the map (roughly from the lower left corner to

the upper right corner). (This gradient corresponds to the fact that the buildings in

this stereo pair are actually situated on a hill.) Thus, any attempts to set an overall

64



disparity threshold would lead to either a high miss rate in regions where the avlage

disparity has small magnitude or a high false alarm rate in regions where tle average

disparity has a large magnitude.

The parameters used in applying the discontinuity algorithm to the natural image

test case were identical to those used for the synthetic image test case, with two

exceptions: In order to cope with the low texture density and the poor signal to

noise ration, the number of local regions used to form the histograms was reductice

from 5 to 3 and the significance level was set at D = .90. The result of applying the

algorithm to the test data is displayed in the lower right panel of Figure 2.13. As

earlier, the recovered depth along the discontinuities is rendered in terms of grey levels

with lighter regions corresponding to points that are nearer the observer. Inspection

of these results allows for several observations:

* The important discontinuities in distance that are present in the disparity data.

are recoverd by the algorithm. Further, there are few false alarms signaled by

the algorithm.

* Certain regions of discontinuity that e.g., a human might infer from the stereo

pair are not recovered by the algorithm. However, the data used to drive the

algorithm does not derive directly from the stereo pair, but rather from the

disparity associated with the edge image shown in the lower left panel. In this

regard, it is seen that "missing" regions of discontinuity (e.g., parts of the outline

of the central building) correspond to regions of the disparity map that provide

little or no information input to the algorithm. Thus, the limitation does riot
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lie with the algorithm; rather, the limitation is in the data made available to

the algorithm.

* Certain of the recovered discontinuities do not neatly outline a contour of dis-

continuity. For example, the tops of some of the buildings are not outlinecl,

but rather are signaled by a single patch of discontinuity. This result can bc

accounted for by the lack in the texture density at the corresponding regions of

the disparity map. There are not enough disparity measures available to drive

the several separate patch comparisions that would be needed to outline the

entire contour. Again, the limitation is not in the algorithm per se, but rather

in the low density of information that has been provided to the algorithm.

* The recovery of relative depth along the discontinuities (as coded by grey level)

is in good accord with the corresponding percept resulting from stereoscopic

viewing of the stereo pair.

2.3.3 Recapitulation

This section has documented the results of computer based experiments with an

aspect of the proposed theory for disparity interpretation. The particular aspect of

the theory that has been studied is the method for recovering the discontinuities of

planar surfaces. The first part of the section described the details of instantiating the

method in an algorithm and corresponding implementation. The latter part of the

section described a series of experiments with the algorithm and its implementation.

The experiments centered around the performance of the algorithm in the face of
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synthetic disparity maps. The results of the experiments are positive; the algorithm

performs well in recovering the surface discontinuities for all the presented cases.
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Figure 2.8: Results of a computer experiment with the proposed method for recovering the disconti-

nuities of planar surfaces. The top half of the figure displays a random line stereogram corresponding

to the input disparity information. The disparity corresponds to a central planar region that has

been rotated about a vertical axis by 45 °. The bottom half of the figure shows the recovered regions

of discontinuity. The recovered depth from the viewer is displayed in terms of grey levels with black

the furthest and white the closest.
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Figure 2.9: Results of a computer experiment with the proposed method for recovering the disconti-

nuities of planar surfaces. The top half of the figure displays a random line stereogram corresponding

to the input disparity information. The disparity corresponds to a central planar region that has

been rotated about a horizontal axis by 45 °. The bottom half of the figure shows the recovered

regions of discontinuity. The recovered depth from the viewer is displayed in terms of grey levels

with black the furthest and white the closest.
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Figure 2.10: Results of a computer experiment with the proposed method for recovering the dis-

continuities of planar surfaces. The top half of the figure displays a random line stereogram corre-

sponding to the input disparity information. The disparity corresponds to a central planar region

that has been rotated about an oblique axis by > 45 ° . The bottom half of the figure shows the

recovered regions of discontinuity. The bottom left and right panels show results for D = .6428

and .9206, respectively. The recovered depth from the viewer is displayed in terms of grey levels

with black the furthest and white the closest.
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Figure 2.11: Results of a computer experiment with the proposed method for recovering the dis-

continuities of planar surfaces. The top half of the figure displays a random line stereogram corre-

sponding to the input disparity information. The disparity corresponds to a central planar region

that has been rotated about an oblique axis by < 45 °. The bottom half of the figure shows the

recovered regions of discontinuity. The recovered depth from the viewer is displayed in terms of

grey levels with black the furthest and white the closest.
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Figure 2.12: Results of a computer experiment with the proposed method for recovering the dis-

continuities of planar surfaces. The top half of the figure displays a random line stereogram cor-

responding to the input disparity information. The disparity corresponds to a pair of concentric

planar regions that have been differentially rotated about oblique axes. The bottom half of the fig-

ure shows the recovered regions of discontinuity. The recovered depth from the viewer is displayed

in terms of grey levels with black the furthest and white the closest.
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Figure 2.13: Results of a computer eperilent with te rolpose Iletliot for recocveriw, die ic isi

continuities of planar surfaces. The top hlf of the fignre tlisplayls a. iiatiiral imigegc stereo p airi. I'lle

bottom left panel shows te corresponding linear segmnents ronl \lic te lio~izoiitali an(j oriciaaI.

tional disparity information was derived. Te bottom right panel showms te re~covere( re.-imis o'

discontinuity. The recovered depth from the viewer is tisplayed i termls o grey levels with Mackicl

the furthest and white the closest.
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Chapter 3

Curved surfaces

This chapter presents an extension of the results presented in Chapter 2. Specifically.

the results for recovering surface discontinuities from stereo disparity are extenle(l

toward dealing with discontinuous curved surfaces. The organization is as follows:

The first section presents the basic theoretical extensions. The second section studies

the numerical stability of the relations defined in Section 1. Section 3 describes a set,

of computer algorithms for recovering the discontinuities of curved surfaces lescli lbed

by disparity. These algorithms are then applied to several disparity maps.

3.1 Analysis of disparity

In this section an approach is developed for recovering the discontinuities of cul\rved

surfaces from stereo disparity. The approach builds in a straightforward fashion oil

the results obtained in the previous chapter for planar surfaces. The proposal is

based on approximating a curved surface by a collection of planar patches. In this
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Figure 3.1: A curved surface can be approximated by a collection of planar patches.

Neighboring patches intersect along dihedral edges.

representation, neighboring planar patches will intersect along an edge in space. More

specifically, the neighboring patches will come together along a dihedral edge. See

Figure 3.1. The remainder of this section discusses and expands upon these notions.

The developments unfold in two parts: The first part defines the dihedral edge wlere

adjacent surface patches meet. The definition is given in terms of the geometric

parameters used to define the surface patches. Following this definition, an analysis of

how the dihedral edge projects into an image will be presented. The second part of this

section turns this analysis around to show how conditions on surface discontinuities

can be recast as conditions on dihedral edges and their differential projections.

3.1.1 Recovering surface discontinuities

Suppose that a curved surface is approximated by a collection of planar patches as

illustrated in Figure 3.1. Let the distance (e.g., with respect to an observer) along
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two neighboring patches be denoted as Z1 and Z 2. Using the standard represelltat iOII

of a planar surface patch, these two distance values can be expanded as

Z 1 =plX + qlY +rl

and

Z2 = p 2X + q2Y + r 2,

where r is the radial distance to patch i while (Pi, qi) are the corresponding sllurface

gradient terms. This representation of a planar surface patch is the same as that.

presented in Chapter 2, equation (2.9). Now, for a continuous surface these adjacent

patches meet along a dihedral edge. Along this edge the distance values of the two

neighboring patches are clearly the same. That is to say

Z1 = Z2-

This relation can be expanded in terms of the proposed representation for planar

patches to yield

p 1X + qY + r = p2X + q2 Y + r 2. (3.1)

Equation (3.1) defines a line in three-space where the planes embedding the patchIes

meet. The definition of the line has followed from the structure of the chosen repre-

sentation for curved surfaces.

The ultimate goal of the current developments is to effect the recovery of three-

dimensional surface information from stereoscopically imaged information. Thelre'ore,

attention is now turned to the imaging properties of approximating planar patches

as well as their dihedral edges of intersection defined in (3.1). Recall that image
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coordinates are related to world coordinates by (x, y) = (, z) and and appropriate units.

Then (3.1) can be rewritten in image coordinates as

1 - px - qly 1 - p2 - q 2 (3.2)
rl r2

While (3.2) defines a line in the image plane, it is somewhat difficult to interpret dclue

to its nonstandard form. This line can be recast into a more useful form by simple

algebraic manipulation. By setting y = 0 it is seen that the x-intercept of the line is

r 2 - 1

r 2 p1 - rlp2

Similarly, setting x = 0 shows that the y-intercept of the line can be written as

r 2 - r 1

r 2q - rl1q2

Further algebraic manipulation shows that the equation of the line can be writte11 ill

the standard form

ax + by + c = 0 (3.3)

where a = r2pl - rl p2, b = r 1q2 - r2ql and c = rl-r2. This parameterization is related

to the familiar normal form of a line, x cos 0 + y sin 0 - p = 0, where p is the length of

the directed perpendicular from the origin to the line and 0 is the counterclockwise

angle between this perpendicular and the positve x-axis, see Figure 3.2. In terms of

(3.3), p "= while (cos 0, sin 0) = (,b
(a2+b2) (a2+b2)

It is worth emphasizing the interpretation of equation (3.3): Suppose a continuous

curved surface is approximated by a collection of planar patches. Then (3.3) describes

the image projection of the dihedral edge where a pair of adjacent approximatinlg

patches meet.
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Figure 3.2: A straight line can be described by the equation z cos 0 + y sin 0 - p = 0.

This representation avoids the singularities of the more common slope-intercept forms

for a line.

The foregoing analysis has been concerned with the piecewise planar approxi-

mation to continuous curved surfaces. However, the results of this analysis call l e

exploited in developing an approach to recovering the discontinuities of curved sur-

faces from stereo disparity. Just as a continuous surface will have its approximating

planar patches meet in a dihedral edge, a discontinuous surface can be taken to be

implicated by adjacent patches that fail to meet along such an edge. Notice o\v-

ever, that the planes embedding the patches will intersect somewhere. Therefore, two

patches failing to satisfy the image (3.3) cannot be the entire constraint on recoverillng

discontinuities. The added observation that does allow for the recovery of discontinu-

ities is simple enough: The projected line of intersection (3.3) must project between

the projections of the two patches that defined it. If the projection is not between

the patches, the surface is discontinuous.
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If a projected line of intersection, (3.3), fails to fall between the two patches tlhat

defined it then the corresponding surface must be discontinuous. However, is it trle

that if the line projects between the patches then the surface must be continuous'?

Unfortunately, the answer to this question is no; there are possible miss" situatious.

One potential difficulty arises if the local patches do not extend fully into the region

between the patches. This situation is not too serious because without evidelnce to

the contrary (e.g., a luminance edge) it is reasonable to enforce an extrapolatioll

into the region between the patches (c.f., Grimson [40]). It is also possible that

certain configurations of surface patches and viewer can define a line that wold

project between the surface patches, even in the discontinuous case (more study of

this situation is needed). The possibilty of these "miss" situations is an acknowledged

limitation of the proposed approach to recovering surface discontinuities.

The proposed method for recovering the discontinuities of curved surfaces call

now be stated as follows: First, recover the approximating planar surface paraineters

(p, q, r) of adjacent patches of the disparity map via the methods of chapter 2. Second,

combine the surface parameters into an equation of the form (3.3). Third, check to see

if the line that has been defined passes between the adjacent regions of the disparity

map. If not, assert a discontinuity as lying in that region. It is clear that this al)proacll

builds directly on the method described in Chapter 2 for planar surfaces.
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3.2 Stability analysis

This section focuses attention on the numerical properties of the proposed scllene

for recovering the discontinuities of curved surfaces. The developments parallel those

in the corresponding section of chapter 2. Specifically, attention shall be given to

degenerate sets of measurements, sensitivity to noise corrupted data and a method

for operating in the face of noisy data.

3.2.1 Degeneracies

Consider those situations where the proposed method for recovering surface cliscon-

tinuites is undefined. To begin, recall that the method for curved surfaces begins by

recovering the local planar parameters of local depth, r, and surface gradient, (p, q),

via the method of Chapter 2. Therefore, the method for curved surfaces inherits

the degeneracies of the method for planar surfaces. Specifically, (as noted in Section

2.2.1) there are two conditions of practical concern: (i) Disparities that are measured

along the left image line z = 0 will lead to an undefined solution to the recovery of the

differential viewing parameters. (ii) If the corresponding planar approximation to the

surface passes through the optical node of the left view (the origin of the cyclopean

coordinate system) then it is not possible to recover the surface gradient. Notice that

in this condition the plane under consideration degenerates to a line as seen from the

left vantage point.

Next, consider if there are any new degenerate conditions introduced by the ex-

tension to curved surfaces. This matter can be considered by turning attention to the
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constraint equation for curved surfaces (3.3). Three conditions of interest arise: (i) If

'1 = r2 = 0 then the left side will be identically zero irrespective of the surface ga-

dients. However, this degeneracy does not add anything new because the constrainlt

that solutions require ri 7 0 was also present for planar surfaces. (ii) If the magnitltde

of both surface gradients is zero, (3.3) does not apply. This degeneracy correspollls

to the fact that the potential line of intersection for the two such planar patches wvili

not project into the image plane (i.e., the line is at projective infinity). Practically.

this condition can be handled by not checking equation (3.3) if the recovered sulface

gradients are all zero. Instead, a simple comparison of the values of r will serve to

diagnose discontinuities. (iii) If (pl,q, ri) = (p2, q2,r 2) then the left hand side of

(3.3) is again identically zero. This makes intuitive sense as all lines in the plane will

indeed be lines of intersection of a single plane. Should this condition arise, recourse

to the method for planar surfaces is appropriate.

In summary, consideration of degenerate conditions in recovering the discolltinl-

ites of curved surfaces has led to positive conclusions:

* No degeneracies of practical concern have been discovered that were not already

known for the planar solution.

* While certain new degenerate conditions were noted, they are not of practical

importance as simple diagnostics and solutions for these situations have been

presented.
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3.2.2 Error analysis

Attention is now focused on studying the stability of the discontinuity recovery

method in the face of noise perturbed data. Following the approach to studying nu-

merical stability that was employed in Chapter 2, the "generalized error-propagatiol

formula" (2.29) is again used as a tool in understanding how perturbations inll the

input to the discontinuity recovery method effect the corresponding output. For cut-

rent concerns: The inputs are two sets of planar surface parameters (pl, ql, rl) and

(P2, q2, r2 ); the output is the image projection of the dihedral edge where the local

planar approximations to the surface meet. Insofar as this method relies on )aral.me-

ters (pi, qi, ri) that are derived from disparity measures, its stability will in turn est

on the stable recovery of these parameters from disparity. The stable recovery of

planar surface parameters has been addressed elsewhere in this thesis and will not be

reconsidered here. Rather, the present investigation will concentrate on how errors

in the recovered parameters (pi, qi,ri) lead to errors in the discontinuity constraint

equation (3.3).

The discontinuity constraint equation (3.3) is defined by the three parameters a,

b and c. Therefore, in order to understand how errors in the derived parameters p, q

and r effect the accuracy of equation (3.3) the generalized error-propagation formulla.

(2.29) is now employed in the following fashion: Let the errors in pi, q and 7ri be Api;,

Aqi and Ari, respectively. Then, with regard to (2.29), let x = (pl,ql,rl,p2,2, q,r 2 ).

Applying the generalized error-propagation formula to a, b and c then yields

a a Oa aa +a
II II Ap I 11+ 11 I · I/Xq + 11 0a 11,Arl 1 a I I I aP211 + 113-aq 1 · II aq llap, a, ar, aP2 aq2
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O a

I A +api 1 + H- 11 bAqlifl -+ Sl 11 1Arill + p || Il-P211 + IH 11 I
_jP_ Oqi Or, Ta2 q2

+ 11 II Ar2I
r2

and

Oc 1 A I I 11 l 1 11 Aq, 1 + 1 Oc 11 11 rl 1 + 1 Oc 11 IIAP211 + 1 Oc 11 II Aq2Ic

+11 II · Ilar~=l,

respectively. The correpsonding evaluation of these forms leads to

lIP21 IIA lar + IIP1I II/Ar2ll + IIr2 I LAp ll + 11 I r 11 .I AP2, (3.4)

Ilq211 IIz\rill + 11q1 1 II H Ar2 + 1IIr2H Izi qlll + Ir11 IIAq2 j (3..5)

and

IArIH1 + IIAr2 II (3.6)

as the results for the parameters a, b and c, respectively. Now, recall that small

magnitudes in the generalized error-propagation indicate stable solutions. For present

concerns it is important to understand how to attain small magnitudes in (3.4), (3.5)

and (3.6). Clearly, these equations have small magnitude when the magnitude of'

the errors Api qi and Ari are small. Further, the magnitudes of (3.4) and (3.5)

are dependent on the uncorrupted planar parameters, pi, qi and ri. In particular,

relatively small absolute values of the planar parameters lead to small magnitudes

in (3.4) and (3.5). In other words, recovery of the parameters a, b and c is most

stable when the viewed surface has surface gradient of small magnitude and is not
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too distant from the viewer. Correspondingly, these are the conditions that allow fol

the robust recovery of the discontinuity constraint equation (3.3).

This investigation of the numerical stability of the discontinuity constraint eclqua-

tion suggest that the proposed method for recovering discontinuities can be of pra.c-

tical use. However, in evaluating the claims for stability it is important to kee l) ill

mind that the robust recovery of the planar surface parameters from disparity Ilnca-

sures must be assured first.

3.2.3 Operating in the face of perturbed data

In practice there will always be some amount of error in the recovered values of' thec

surface parameters that are used to define equation (3.3). Therefore, it is important

to propose a method for combining local measures in a fashion that will allow the

effects of these errors to be minimized. The most popular approach to this type

of problem is to use a least-squares based approach. However, this approach is ilot

overly appropriate for the matter at hand. As pointed out in Chapter 2, the nmalllner

that errors in the input disparity interact in the recovered surface parameters inakles

application of the least-squares approach rather dubious. As an alternative a simple

histogramming approach is used. Specifically, local histograms are separately com-

piled for values of p, q and r as recovered via the methods of Chapter 2. The peaks of

the smoothed histograms are then used for subsequent computation. For the matter

at hand, peak values of the surface parameters from adjacent regions of the clisparity

map are used to specify equation (3.3). As previously discussed, if the line so defined

passes between the corresponding regions, the surface is taken as locally continuous.
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If the line passes outside this region, the surface is taken as locally discontinluoLs.

This constitutes the proposed method for combining local measures in order to offset

the effects of inaccuracies in the recovered surface parameters.

3.2.4 Recapitulation

This section has considered the stability of the proposed method for recovering the

discontinuities of curved surfaces. With regard to degeneracies of the solution metl-lod,

it was concluded that little is different from the case of purely planar surfaces. Coii-

sideration of robustness in the face of noise perturbed data led to positive findings

provided two types of conditions are met: First, all the considerations previoulsly

outlined for planar surfaces must be met. Second, it is best if the magnitude of the

locally planar surface parameters are relatively small. Finally, a simple histogram-

ming method has been outlined for combating noise corrupted data.

3.3 Computer implementation

This section describes the results of embedding the proposed method for recoverilng

the discontinuities of curved surfaces in computer algorithms and implementations.

The discussion unfolds in three parts: First, the algorithms are described. Secocld,

the results of applying the algorithms to both synthetic and natural image stereo data

are presented. The final section provides a brief recapitulation.
1In practice it may be neccesary to allow surfaces to be regarded as continuous if the line defined

by (3.3) simply passes "near-by" the region under consideration. Currently, a good analysis of what

constitutes near-by is lacking in the proposed method.
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3.3.1 Description of algorithm and implementation

The proposed method for recovering the discontinuities of curved surfaces has l)e>ll

instantiated as a set of algorithms. In turn, these algorithms have been the subject of

corresponding software implementations. The remainder of this subsection provides

an overview of these developments. It will be seen that the algorithms and implenen-

tations follow from the earlier developments of this chapter in a fairly straighitforward

fashion.

The algorithm for recovering the discontinuties of curved surfaces can be seen to

have the following four basic steps:

Algorithm for recovering surface discontinuities

1. Recover local values of the first-order surface parameters p, q and r from all

input disparity map.

2. Combine the recovered values of p, q and r into separate local histograms and

smooth.

3. Use the peaks of adjacent histograms to define the line of intersection of the

corresponding first-order surface fits.

4. Check to see if the line of intersection projects into the region between the

two local histograms. If not, assert a discontinuity in the region between the

histograms.

To be of use this algorithm must be specified more precisely. The following discussion

presents the required details.
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To begin, notice that Steps 1 and 2 of this algorithm correspond exactly to Stels I

and 2 of the algorithm presented in Section 2.3. The details are also the sa-me and(l will

not be repeated here. Now, consider Step 3 of the current algorithm. With the values

of the surface parameters in hand this is simply a matter of plugging in the values to

(3.3). The ensuing computation yields the parameters describing the desired line of'

intersection. Finally, consider Step 4 of the algorithm. The crucial point of this step

is to have a method for determining if a line passes between two regions in a plane.

In solving this problem it is useful to exploit the geometric structure of the histogram

support regions. Recall that due to the algorithm used to search for members of a

histogram, the support region will be rectangular (square in fact). Interestingly, a line

passing between two rectangular regions must intersect both segments joining nearest

corners between the regions. To allow for slack in the exact location of the intervening

line, the endpoints of the segments can move away from the nearest corners along the

edges of the regions. See Figure 3.3. The algorithm can be instantiated numerically

as the solution to two sets of constrained linear systems. Each system solves for the

potential intersection of the line defined by equation (3.3) and one of the segments 

or f shown in Figure 3.3. If there is no solution then a discontinuity is asserted in

the region of the disparity map between the support of the two histograms.

This completes the description of the algorithm for recovering surface discontinu-

ities from stereo disparity. The complete algorithm has been the subject of a software

implementation in Zetalisp running on a Symbolics Lisp Machine. The result of

applying this implementation to several disparity maps is outlined in the following

subsection.
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Figure 3.3: An approach to determining if a line passes between two regions. (a) A

line passing between the gap that separates region A and region B must intersect botli

line segments e and f. (b) To allow for inaccuracies the endpoints of the segmelnts

can be allowed to extend along the edges of the regions.
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3.3.2 Experiments

The described algorithm and implementation have been applied to several synttleti

disparity maps.2 The results of these experiments provide the focus for this subsec-

tion. To begin this discussion, the parameter values of the implementation are now

noted. For the synthetic disparity data the histograms are formed with the same pa-

rameters used in Chapter 2. Specifically, the histogram size is n = 5 and the b)ucket

widths are 0.3 for p and q and ±1 pixel about the fixation for r. A liberal threshold

is adopted for defining the region where a line of intersection can fall and still be

indicative of a continuous surface. Specifically, the line can pass anywhere between

or within the support regions of the histograms.

The implementation with these parameter settings has been applied to a set of

four synthetic disparity maps. As in experiments described in Chapter 2, the disparitv

maps correspond to random line stereograms. The stereograms are defined over 512 x

512 pixel arrays. The disparate elements are 700 randomly distributed lines with

dimensions 20 x 1 pixels. Both the horizontal and orientational disparity from each

line serves as input to the algorithm.

2 Preliminary attempts to test the algorithm and implementation in the face of natural inmage

stereo data have met with limited success. Unfortunately, these studies have been hampered by the

limited availability of test data that are appropriate for the curved surface algorithm. In particular,

only the data for the aerial view of the UBC campus (shown in Figure 2.13) has been available for

testing. This is a poor test case for three reasons: First, the surfaces in the image are largely planar,

while the algorithm is based on curved surfaces. Second, the density of the texture data needle

to drive the algorithm is quite low. Third, the disparity range of the UBC disparity map is rather

compressed. This leads to difficulties in the signal to noise ratio.
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The particular synthetic scenes used to test the algorithm correspond to four basic

types of curved surface patches: planar, cylindrical, elliptic and hyperbolic. These

surfaces are rendered as random line stereograms in the top halves of Figures :3.4-3.7,

respectively. The bottom half of each figure shows the regions of discontinuity that

were recovered by the algorithm. The relative depth of the forward most part of

the surface along the discontinuity is coded in terms of grey level intensity. Areas of'

higher intensity correspond to regions that are closer to the viewer.

Several observations can be made concerning the results of these experiments with

synthetic stereo data.

* In general, the algorithm performs well on all the synthetic examples.

* The differences in the type of curved surface (e.g., hyperbolic vs. elliptic) make

little difference in the performance of the algorithm.

* Even in the face of a surface with zero curvature, the algorithm recovers the

regions of discontinuity, Figure 3.4.

3.3.3 Recapitulation

This section has documented the results of computer based experiments with the

proposed approach to recovering the discontinuites of curved surfaces. The first part

of the section specified the details of instantiating the method in an algorithm and

a corresponding implementation. The latter part of the section described a series

of experiments with the algorithm and its implementation. The experiments tested

the algorithm's performance in the face of synthetic stereo data. The results of the
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experiments are positive; the algorithm performs adequately in recovering the surface

discontinuities for all the presented cases.
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Figure 3.4: Results of a computer experiment with the proposed method for recovering the dis-

continuities of curved surfaces. The top half of the figure displays a random line stereogram

corresponding to the input disparity information. The disparity corresponds to a central planar

region that has been rotated about an oblique axis by < 450. The bottom half of the figure shows

the recovered regions of discontinuity. The recovered depth from the viewer is displayed in terms

of grey levels with black the furthest and white the closest.
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Figure 3.5: Results of a computer experiment with the proposed method for recovering the dis-

continuities of curved surfaces. The top half of the figure displays a random line stereogram cor-

responding to the input disparity information. The disparity corresponds to a central cylindrical

region. The bottom half of the figure shows the recovered regions of discontinuity. The recovered

depth from the viewer is displayed in terms of grey levels with black the furthest and white the

closest.
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Figure 3.6: Results of a computer experiment with the proposed method for recovering the dis-

continuities of curved surfaces. The top half of the figure displays a random line stereogram

corresponding to the input disparity information. The disparity corresponds to a central spherical

region. The bottom half of the figure shows the recovered regions of discontinuity. The recovered

depth from the viewer is displayed in terms of grey levels with black the furthest and white the

closest.
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Figure 3.7: Results of a computer experiment with the proposed method for recovering the dis-

continuities of curved surfaces. The top half of the figure displays a random line stereogram cor-

responding to the input disparity information. The disparity corresponds to a central hyperbolic

region. The bottom half of the figure shows the recovered regions of discontinuity. The recovered

depth from the viewer is displayed in terms of grey levels with black the furthest and white the

closest.
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Chapter 4

Biological considerations

This chapter is concerned with issues surrounding the interpretation of stereo dis-

parity by biological systems. Attention will be given to both psychophysical and(

neurophysiological studies. The first section of the chapter presents an overview of

the relevant literature. The second section presents a new psychophysical study that

has been motivated by the theory presented in this thesis.

4.1 Literature

This section provides a brief review of psychophysical and neurophysiological studies

relevant to the interpretation of stereo disparity. For the most part, consideration

will be limited to biological data that can be brought to bear fairly directly on the

theory presented in this thesis. Two general issues will serve to focus the discussion:

(i) To what extent is there evidence that biological stereo vision systems make use

of horizontal, vertical and orientational disparity? (ii) What can be said about how
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biological systems make use of the disparity that they do measure to recover tllree-

dimensional scene geometry?

There have been many psychophysical studies that focused on horizontal disparity

as an input to the human stereo vision system. Currently, there is little debate over the

fact that horizontal disparity is a strong stimulus for stereopsis. Sources such as Ogle

[97], Kaufman [56], Julesz [53] and Gulick & Lawson [44] (among others) copliolsl'

document the fact that differential projection along the horizontal dimension call

lead to an impression of depth in a binocular viewer. There are also a nulll)bel

of studies that document neural sensitivity to horizontal disparity. For exalmple:

Barlow, Blakemore & Pettigrew [7], Ferster [26] and Ohzawa k Freeman [98] all report.

recording from cells in cat visual cortex that are sensitive to differential horizontal

projection to the two eyes. In monkey, Hubel & Wiesel [52], Poggio & Fischler [101].

Fischler k Poggio [27] and Poggio [100] report on cells in both striate and prestriate

cortex that are sensitive to binocular horizontal disparity. Some of the evidence froml

monkey recordings also indicates that disparity is neurally coded into three coarIse

categories: cells selective for the locus of zero disparity (the horopter), cells selective

for disparity that would arise from an object beyond the fixation (far cells) and cells

selective for disparity that would arise from an object in front of the fixation (near

cells). Interestingly, Richards [105] has reported evidence that human observers can

be selectively "stereo blind" to zero, far or near disparity, thus supporting this type

of coding scheme in humans.

While it is fairly clear that horizontal disparity provides some type of input to

biological stereopsis, exactly how that information is used to yield a sense of three-
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dimensionality is far less clear. With regard to the theory presented in this thesis.

the following question is of particular interest: What is the relationship betw:ell

horizontal disparity and local estimates of depth? Psychophysical studies suggest that

while there is a relation between horizontal disparity and perceived depth, the relation

is not overly straightforward. In particular, many studies show that when observelrs

are presented with binocular horizontal disparity the resulting perception is not wxllal

would be predicted if the stereo system was performing a simple triangulation with all

the viewing parameters known in advance; a constant binocular disparity correspollds

neither to a constant perceived depth nor to a constant perceived distance ratio (see,

e.g., Leibovic, Balslev k Mathieson [67] and Foley [29]). Much of this data. can be

accounted for by hypothesizing a scaling factor in the disparity to depth computtation.

There is some evidence that the setting of the scaling factor is related to extra. retillal

eye vergence information (Foley [29] and Foley & Richards [30]). However, at least

two pieces of evidence suggest that vergence is not the only factor influencing dleptl

scale: First, monocular cues can effect the apparent depth scale (Richards [106]).

Second, the relative configuration of disparate elements in a given stereo disl)lay

can effect the depth scale (Mitchison & Westheimer [84]). While there is no direct.

neurophysiological data available on depth scaling, it has been suggested that the

necessary computation could be at least partially carried out by the lateral geniculate

of the thalamus (Richards [104]).

Overall, there is currently not enough data available to specify the exact relation

between horizontal disparity and perceived depth for biological systems. (Perhaps the

best psychophysical review to date is provided in Foley [29].) However, the available
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data is consistent with two notions put forth in the theoretical analysis of this thesis:

First, local estimates of depth are related (in some fashion) to horizontal dislparity.

Second, the disparity to depth computation is not absolute, but involves a scaling

factor. The suggestion in Chapter 2 of this thesis that the scale can be set arbitrarily

is probably at odds with the available psychophysical data. Notice, however, that ii

an estimate of scale were availabe from some other source (e.g., vergence) it could be

incorporated and used to set the scale in a nonarbitrary fashion.

At this point, attention is directed to issues surrounding the use of vertical biiioc-

ular disparity in biological stereo vision. The theory proposed in this thesis does not

exploit vertical disparity due to the suspicion that its relatively small magnitudes canll

not be accurately measured (see Appendix A). Nevertheless, there has been consid-

erable controversy surrounding its use in the psychophysical literature. Therefore,

it is appropriate to consider vertical disparity in this review. Most of the evidence

in support of a role for vertical disparity comes from the so called "induced effect".

Originally reported in Ogle [96], this phenomenon refers to the apparent slant of a

frontal plane surface about a vertical axis resulting from the vertical magnification of

the image to one eye. This general result has been replicated many times (see, e.g..

Rigaudiere [108], Stenton, Mayhew & Frisby [117] and Gillam, Chambers k Law-

ergren [35]). Certain researchers have argued that vertical disparity can lead to the

induced effect by establishing an inappropriate depth scale (see, e.g., Longuet-Higgins

[69], Mayew & Longuet-Higgins [80] and Gillam & Lawergren [32]). However, a. e-

cent study that directly addressed the effects of vertical disparity on the scaling of

horizontal disparity found no measurable effect (Fox, Cormack & Norman [28]). One
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alternative explanation of the induced effect has been based in the observation tliat

the differential vertical magnification of oblique lines will lead to horizontal dispari ies

that can in turn be exploited. (See, Arditi, Kaufman & Movshon [5] and Arditi [-I] lo,

a discussion of this analysis as well as Mayhew & Frisby [78] for a rebuttal.) A similar

argument can be made with the aid of the theory presented in this thesis: It appears

that all of the experimental preparations used for the induced effect lead to not olll\

vertical, but also orientational disparities. Thus, it is possible that the induced effect

may have at its root the use of orientational disparity. The crucial experiment to date

was reported in Westheimer [134]. In this study it was shown that vertical disparity

in the absence of orientational disparity does not produce the induced effect, and ill

fact has no measurable effect on the available horizontal disparity.

It thus appears that the burden of proof for the use of vertical disparity in biologi-

cal stereo vision is on those who would advocate its use. Before closing the discussion

of vertical disparity two further points are worth noting: There is some evidence that

biological systems are capable of at least detecting vertical disparity (Duwaer & vain

der Brink [24]). Finally, there is evidence that accurate stereopsis is actually difficult

to obtain in the face of vertical disparity (Nielsen & Poggio [92]).

The final type of disparity measure considered in this thesis is orientational dispar-

ity. A number of psychophysical studies can be cited that implicate the processing

of orientational disparities in humans. First, studies have demonstrated that it is

possible to induce a tilt aftereffect in depth by adaptation to lines that appear clif-

ferentially oriented to the two eyes (DeValois, von der Heydt, Adorjani & DeValois

[22], von der Heydt [128]). While it is tempting to try and account for this result
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using pointwise horizontal disparities, one observation makes this difficult: The at-

tereffect generalizes well to tilted patterns at other distances relative to the fixation.

In another pertinent study (von der Heydt & Dursteller [130]), a binocular pattern

of dynamic tilted random lines was presented to observers. Since the lines in the two

eyes were randomly related to each other, the positional disparities were random ill

direction and amount. However, the lines were of different orientations in the two

eyes and thus had a consistent orientation disparity. The pattern was perceived as

tilted. Finally, studies that separately manipulate the orientational disparity and

horizontal disparity at the end points of line segments find that orientational rather

than horizontal disparity is more effective in conveying depth slant information (Ninio

[93, 94]). Turning to the neurophysiological literature leads to a less clear situation.

Blakemore, Fiorentini & Maffei [13] reported on cells in cat visual cortex that were

selective for binocular orientational disparity. Due to the high variability of response

in these cells, the result has been criticized as simply due to random errors of mea-

surement (Nelson, Kato & Bishop [91] and Bishop [10]). However, a recent report

on differential orientation tuning in monkey binocular cortical cells appears to be on

firmer ground (Hainny, von der Heydt & Poggio [46], see also von der Heydt, Adorjani

k Hinny [129]).

The theoretical analysis of orientational disparity presented in this thesis has em-

phasized its potential usefulness in recovering surface orientation. The psychophysical

studies that have been noted in support of the general notion of orientational disparity

also clearly support its role in computing surface orientation. However, other reports

question the strength of binocular cues that correspond soley to a surface slanted ill
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depth. For example, there is psychophysical evidence that this type of stimulation

can lead to percepts that build up very slowly over time (Gillam, Chambers & Rutsso

[34]) and are easily overriden by competing cues, such as perspective (Gillam [:31]

and Stevens [118, 117]). Another type of result is worth mentioning with regard to

orientational disparity: In two sources (Ninio [93] and Richards [107]) it is shown that

differentially projected linear elements to two eyes' views can lead to a strong per-

cept of three-dimensional quill-like textures. Interestingly, it is difficult for humans to

recover the underlying surface geometry in such displays. There is also evidence fol

individual differences in the abilities of observers when faced with this type of display.

Similarly, recall that the method proposed in this thesis for exploiting orientational

disparity in recovering surface geometry is predicted to face difficulties in the face of

three-dimensional texture.

In summary of this discussion of orientational disparity: It appears safe to con-

clude that orientational disparity plays some role in biological perception. It also

appears that the theory presented in this thesis is in general accord with known data.

from biology.

The final set of results reviewed in this section center around the recovery of three-

dimensional surface discontinuities from stereo disparity. In general, there is evidence

that stereoscopic stimuli corresponding to discontinuities in depth are powerful stim-

uli for biological systems (Gillam et al. [33], Gillam, Chambers & Russo [34], Stevens

[118, 117]). Unfortunately, the details concerning how this facility is accomplished

are much less clear. The above cited authors argue in favor of something akin to

discontinuity recovery based on finding discontinuities directly in the disparity infor-
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mation. However, their evidence does not directly implicate this type of strategy.

Rather, it is simply supportive of the general notion that the stereoscopic projection

of three-dimensional discontinuities is important.

Now, recall that the theory presented in this thesis is based on the local recovery

of planar surface patches from disparity. There is some evidence in support of this

idea: Mitchison [83] has studied how ambiguous stereoscopic depth segmentation

is accomplished using simple repetitively patterned dot stereograms. He conclules

that the segmentation is based on fitting locally planar surfaces to the endpoint

disparities. Further evidence along these lines has also been reported (Mitchison c

McKee [85, 86, 87]). Another interesting psychophysical study in the recovery of

discontinuities from disparity can be found in Anstis, Howard & Rogers [3]. Here

observers were shown two flat vertical textured surfaces in the frontoparallel plane

that met at a vertical boundary. At the boundary one surface curved slightly forwar(ld,

while the other slightly backward. Even though the flat portions were equiidistanl

from the observer, the entire curved forward side of the display appeared to be closer.

In fact, the entire forward surface tends to cling to the front most edge. (In analogy

with a similar "illusion" in luminance the authors refer to this as a Craik-O'Brien-

Cornsweet illusion for depth.) This percept is interestingly similar to the way the

discontinuity recovery algorithm returns a locally planar patch that clings to the locus

of the discontinuity in three-space. Additional reports that the human depth illusion

is anisotropic (Rogers & Graham [110]) are not explained by the model proposed in

this thesis. In conclusion, the method for recovering depth discontinuities that has

been proposed in this thesis is generally consistent with the known psychophysical
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data.l

In summary, several points should be stressed:

* The bulk of the evidence concerning vertical disparity rules against its use by

biological systems.

* There is both psychophysical and physiological evidence in favor of biological

systems exploiting orientational disparity.

* There is psychophysical evidence for individual differences between observers

and for anomolous stereo observers.

* The theory that has been proposed in this thesis for the recovery of surface

discontinuities is consistent with psychophysical evidence on discontinuity re-

covery.

Finally, there are no available experiments to directly contrast the use of curvature vs.

approximating planes in the recovery of surface discontinuities. The theory proposed

in thesis predicts the use of planar information. The next section of this chapter

presents a psychophysical study that directly tests this prediction.

1Evidence of a rather different kind is also available for the human recovery of surface discointilu-

ties from binocular displays: Lawson & Gulick [65] have developed binocular stimuli that contain

the type of monocular occlusions typical of viewing in the vicinity of a depth discontinuity. These

investigators demonstrate that the occlusion information by itself can lead to a vivid impression of

a discontinuous planar surface in depth.
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4.2 Experiment

This section presents a study that tests the psychological validity of the method o-

posed in this thesis for recovering the discontinuities of curved surfaces from stereo

disparity. Recall that the proposed method operates in two stages: First, it recovers

the three-dimensional planar approximation that corresponds to local disparity in-

formation. Second, it checks to see if neighboring planar approximations intersect ill

the intervening region of the disparity map. If they do not intersect in this neighbor-

hood then the viewed surface is taken as locally discontinuous. Guided by this theory

it is relatively easy to construct stereoscopic displays that should or should not be

perceived as continuous. It is also easy to contrast these predictions with those of' a

likely rival theory: Curved surface discontinuities are recovered by comparing neigh-

boring surface curvature measures. Specifically, then, the experiments test whether

discontinuities in distance are perceived using planar or curvature information.

A set of seven stimuli have been devised to test the proposed theory and to

contrast it with a potential theory based directly on surface curvature. In this stuldy

consideration has been limited to surfaces that are singly curved, e.g., cylinders. The

stimuli are shown as left and right stereograms in figures 4.1-7 at the end of this

chapter. Notice that each figure has three panels rather than the minimal two needed

to render the stimulus. This is done so that an observer can view the stimuli using

either crossed or uncrossed stereo fusing. That is, the left most panel can be viewed

by the left eye with the middle panel viewed by the right eye to yield one version of

the stimulus; similarly, by viewing the middle panel with the left eye and the right
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most panel with the right eye all the depth relations are reversed. Each stimulus is 

random line stereogram made up of 350 randomly placed and oriented lines that have

been differentially projected to correspond to a singly curved surface in depth. A cross

section in depth of each stimulus is shown in the column labelled "configuration" ill

Tables 4.1 and 4.2. The displays all have the same slant in depth corresponding to

the upper left hand corner of the display slanting away from the viewer. Each clisl)lal

has a blanked out diagonal region. The experimental task involves determining i'

the depicted surface is discontinuous or smooth within this blank region. The blank

region is employed to rule out the possible confounds due to abrupt changes in the

disparity where two surfaces meet.

The differential surface curvature used to generate the displays is the distinguisl-1-

ing feature that allows for a test of the proposed theory. Consider these stimuli

one-by-one, refering to the "configuration" column in Table 4.1. Stimulus 1 corre-

sponds to a purely planar surface that is discontinuous across the gap. It is includlec

in order to get a crude discrimination assessment and ensure that observers are ca-

pable of performing the task. Stimulus 2 corresponds to curved surfaces of the salme

sign that are discontinuous across the gap. A theory based on either local planar

geometry or curvature would assert a discontinuity in this case. Stimulus 3 is a case

where the same signed curvatures of the two surfaces will meet across the gap while

the extrapolated tangent planes will not meet. Stimulus 4 is an example where the

same signed curvatures will not meet across the gap while their extrapolated tangent

planes will. In stimulus 5 the same signed curvatures will not meet and while the pla-

nar extrapolations will meet, they will not meet in the region of the gap. In stimulus
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6 the opposite sign curvatures meet across the gap while the planar extrapolationls

do not. Finally, stimulus 7 is the converse of stimulus 6.

In the experiment the stimuli were presented as red-green anaglyphs displayed on

a Conrac color monitor in a darkened room while the observers wore red-green colored

glasses. The polarity of the disparity in the experiment was the same as viewing tlhe

figures with the left and right eyes fixating the left and middle panels, respectively.

(One observer, B in the tables of results, viewed the displays in this configuration as

well as reversed. His reported perceptions were the same in either case.) The stimuli

were viewed at two distances in order to address the possible role of spatial integration

in this task. The far and near viewing conditions had the observers seated at eye level

with the monitor at distances of 6 and 2.15 meters, respectively. The upper and lower

triangular regions of the displays each measured 25.4 cm. along both the horizontal

and vertical dimensions on the monitor. The diagonal separation of the upper and

lower regions (i.e., the gap width) was 6.35 cm. on the monitor. The line elements

that were used to comprise the display measured .8mm on the screen. In terms of'

degrees of visual angle, the width x height of the overall display was 8.53 x 6.7:3 and

3.15 x 2.42 in the near and far conditions, respectively.

The stimuli were always presented in the same order 1-7. The head and eve

movements of the observers were not constrained in any way. Observers were asked

to make two judgements upon viewing the displays. First, they were instructed to give

their first impression as to whether the viewed surface was discontinuous or smooth

within the blanked region. Second, the observer was to say if they saw the surface

as extending into the gap as planar or curved. Four observers participated in the
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Table 4.1: Results for the far viewing condition.

experiment. None of the observers were completely naive as to the purpose of the

experiment. Subject D was only able to take part in the near condition.

The results of the four observers are presented in Table 4.1 for the far viewing

condition and Table 4.2 for the near viewing condition. To interpret the tables note

that an "x" under "disc." means that the observer reported the display as discontiln-

uous in the gapped region. An "x" under "planar" means that the observer reported

that the surface under consideration extended into the gap as a plane. As an aid to

understanding the results, responses that are inconsistent with the planar theory, as

proposed in this thesis, have been cross-hatched in the two tables. The notation "a"
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stimulus configuration response

disc. planar

observer observer

A B C D A B C D

1 - x x x na x x x na

2 x x na x x x na

3 x x x na x x x na

4 " na x x x na

5 f x x x na x x x na

6 x x x na x x x na

7 1 na x x x na



stimulus configuration response

disc. planar

observer observer

A B C D A B C D

1 _x _ x x x x x x x

2 ' " . . x x x x x x

13 XX X X
4 x x x x

5 x x x x x x x x

6 x x x x x x x x

7 x x

Table 4.2: Results for the near viewing condition.
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means data not available.

Consider the results for the far viewing condition as shown in Table 4.1. The

overriding result in this case is that all observers reported seeing the extension ol'

the patches into the blanked regions as planar. All but one of the responses ill the

discontinuity judgement are in accord with the proposed theory. (This response is

highlighted by cross-hatching in Table 4.1.) However, the response that conflicts

with the planar theory also conflicts with a curvature based theory of discontiInui

detection. The observer reported that in this condition the entire display appeared to

flatten out. Under this perception it is not surprizing that the display was reported

as continuous.

Now, consider the results for the near viewing condition as shown in Table 4.2.

Notice that in this condition the stimulus is larger and a given area of the display -no

maps to a larger region of visual integration (this follows directly from the geometry

of the situation). Therefore, it is not surprizing that there are more reports of seeing

curvature in the blanked out regions of the displays. However, despite this situation

observers C and D still report only planar percepts in the blank regions. Similarly,

observers C and D make all their discontinuity judgements in accord with the plaiiar

theory.

The results for observers A and B are slightly more complex. To begin, notice that

for stimuli 1 and 4-6 these observers also report planar percepts; their judgements oft'

discontinuity are in exact accord with the planar theory in these cases. Stimulus 2,

while reported as curved in the blanked region cannot distinguish between the planar

and curvature approaches to recovering discontinuity; both methods predict the salne
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observed responses. The cases of most interest are the reports of A and B for stimnutli

3 and 7. As shown by cross-hatching in Table 4.2, three out of four of these responses

are in conflict with the planar theory. These three responses can be interpreted as

evidence for a curvature based scheme for recovering discontinuities.

While three of the judgements in Table 4.2 can be taken as contrast to the theory

that has been proposed in this thesis, it is not clear that the judgements are based oll

curvature information per se. It is also possible that the measures are based on tlhe

change of the tangent planes to the perceived surfaces. That is, the responses could

be based on the change in the first order (planar) information rather than directly on

second order (curvature) information. This hypothesis is strengthened by recalling

that there is no evidence for curvature based judgements in the far viewing condition.

In the far condition the area of visual integration for a given region of the display

is smaller; thus, change of tangent plane becomes less salient. Unfortunately, the

present set of displays does not adequately separate out the issues of curvature s.

change of tangent planes. The proper control is to check and see if the same absolute

curvature in the far condition will interpolate the same as in the near condition.

Drawing together these results, several conclusions can be drawn:

* Strikingly, out of forty-eight potential curvature responses only three responses

can be interpreted in terms of a curvature based mechanism for recovering

surface discontinuities from stereo disparity. All but one of the remaining forty-

five cases support the planar theory of discontinuity recovery.

* In all but one case, when the interpolated blank region is seen as planar the
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discontinuity judgement is also in accord with a planar theory of discontinlitx

recovery.

* There are three judgements that are consistent with a curvature based meclla-

nism. However, there is evidence that these judgements are actually based oil

change of tangent plane.

* Finally, it is interesting to note that the results indicate individual differences

between observers. In the review section of this chapter, other evidence for

individual differences in stereoscopic perception was noted (Richards [105] alld

Ninio [93]).

4.3 Recapitulation

This chapter was divided into two main parts. The first section provided a. brief r'e-

view of psychophysical and neurophysiological studies regarding the interpretation of'

stereo disparity. During the course of this presentation it was noted that the theory

of stereo disparity interpretation that has been developed in this thesis is generally

compatible with the reviewed data. The second part of the chapter presented a ew

psychophysical study addressing a specific aspect of the proposed theory. In partic-

ular, the study compared human performance on the recovery of the discontinuities

of curved surfaces with predictions from the theory. The results of the experiment

demonstrate that discontinuity measures can be based on first order surface geome-

try. These results leave open the question of whether curvature information is ever

directly used in this task, as opposed to basing judgements on the change of first
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order (i.e., planar) information.
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Chapter 5

Conclusions and suggestions for

further research

5.1 Summary and conclusions

This thesis has sought to develop an understanding of binocular stereo disparity. lMoLe

specifically, the goal has been to develop an analysis within which one can derive 

set of mappings from stereo disparity to useful descriptors of three-dimensional scelie

geometry. To this end, it has been shown how it is possible to recover surface dlepth.

orientation and discontinuities directly from stereo disparity. Previous studies of 1t,1i

disparity interpretation problem have not explicitly related stereo disparity to surface

orientation and discontinuities. A key to the success of the current study has beell

delaying attempts to recover three-dimensional information from disparity until a.

rigorous analysis of disparity itself was in hand.

Chapter 2 began the developments by considering the special case of planar sltl-
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faces. Stereo disparity was presented as a vector field resulting from the projectioll

of a three-dimensional scene onto a pair of imaging surfaces related via an infiiiitesi-

mal change of coordinates. With this representation in hand it was possible to mllakc

use of analytic techniques from classical field theory to effect the recovery of surft'ace

depth, orientation and discontinuities. Next, the resulting relations were studclied l'o

numerical stability. The stability analysis also provided the basis for understal(lding

how to set thresholds for operations in the face of noise perturbed data. C'haltel 9

closed by describing a set of computer algorithms for the recovery of surface cliscon-

tinuities from stereo disparity. The algorithms were based on the theory proposed ill

this thesis. The results of applying the algorithms to several images were reported.

Chapter 3 presented an extension of the theory for planar surfaces to curved

surfaces. The particular extension that is developed is the recovery of surface (lis-

continuities for curved surfaces. The analysis was based on approximating a curtve(l

surface with locally planar patches. The key constraint on surface discontinuity e-

covery was derived by considering the projection of dihedral edges. Specifically: if'

the edge which would connect adjacent patches does not project between the patches

then the surface is discontinuous. Following this analysis, the approach was studie(l

for stability and a method for operating with inexact data was developed. Finally, a

corresponding set of computer algorirthms and their results applied to disparity fields

were described.

Chapter 4 presented relevant empirical data from visual psychophysics and neuro-

physiology. The chapter began by briefly reviewing the psychological and biological

literature concerned with disparity interpretation. In general, the theory present in
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this thesis is not at odds with the known literature. The second part of the chapteCr

presented a new psychophysical study that supports the theory of surface clisconlti-

nuity recovery presented in this thesis. Specifically, human observers presented witl

random line stereograms of cylindrical surfaces may base their judgments of suLrac

discontinuity on depth and first-order surface geometry rather than on second-older

surface geometry.

At this point it is important to step back and ask about the significance and

status of the research that has been presented in this thesis. Several points should be

emphasized:

* The purely theoretical sections of the thesis have presented an indepth analysis

of the stereo disparity interpretation problem. The relations between stereo

disparity and first order scene geometry have been precisely defined.

* Extensive numerical analysis of the disparity relations shows that they are tp-

ically quite stable. Significantly, this analysis indicates how algorithms based

on these relations can monitor the stability of their own behavior.

* The understanding of stereo disparity gained from these analyses has led to a

method for attacking an important problem in the processing of visual infor-

mation: Recovering the discontinuities in distance to the surfaces in a. viewel

scene. This method has been implemented in computer algorithms and success-

fully tested on synthetic and natural stereo disparity data.

* The method for recovering surface discontinuities could be put to practical use

as an integral part of a vision system. The early recovery of surface disconlti-
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nuities can serve as useful information for a number of vision tasks: (i) Surfalc

reconstruction, where discontinuities serve to define boundary conditions; (ii)

Passive naviagation, where discontinuities provide information about the coiifig-

urations of obstacles in the world; (iii) Shape recognition, where disconltilluities

can cluster data belonging to a single object and (if precise enough) define the

outline of an object.

* The understanding of binocular stereopsis that has been gained in this sttl(ly

can be used to make precise psychophysical predictions. This can motivate

both psychological and neurophysiological investigations. An example of sucl

a psychology experiment was presented in Chapter 4.

* The approach that has been developed to studying disparity is quite general and

could be used to investigate other types of disparity information, e.g., motionl.

5.2 Suggestions for further research

Several directions for further research can be discerned. Consider in turn (i) further

theoretical developments and (ii) further empirical research.

One possibility is to reconsider the analysis of disparity due to the projection of

planar surfaces. In particular, note that not all of the information available in the

disparity gradient tensor has been exploited. In fact, only that portion due to the

untraced part of the symmetric component has been used (i.e., equations (2.14) alnd

(2.15)). It would be interesting to study the information available in the unsymmetric

portion (a curl) and in the traced part of the symmetric portion (a divergence) of the
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disparity gradient. Both these components have interesting interpretations in terlnis

of the differential imaging of surface detail. The curl can be captured via the relative

rotation of corresponding elements; the divergence as a relative isotropic expansion

of elements.

A second set of theoretical developments can be motivated by giving further atteii-

tion to the disparity due to the projection of curved surfaces. An interesting researchl

problem would be to attempt the recovery of surface curvature from disparity. Several

paths present themselves: Rodgers [109] has suggested that surface curvature can be

recovered as the second differential of disparity; however, this proposal seems suspect

in the light of sparse and noisy data. Keeping within the framework followed ill thiis

thesis, it may be interesting to study the relations between surface curvature and tile

disparity curvature tensor. Still another approach would be to attempt to recover

surface curvature by extending the local geometry manifest in the disparity gradient

tensor. This can be done in a well founded fashion via the connection equations of

differential geometry (Prakash [103] and Spivak [115]). Of particular use for this case

would be the Gauss-Weingarten equations of classical surface theory. These eqlluations

relate local first-order geometry to the coefficients of the first and second fundamental

forms of a curved surface. (Koenderink & Richards [62] have used a similar approach

to derive stable two-dimensional curvature operators.) It is also interesting to thilnkl

in more qualitative terms for the recovery of curved surface properties. For example:

Is it possible to map the disparity information directly into qualitative descriptors of

surface geometry (e.g., the differential geometer's parabolic, elliptic and hyperbolic

patches (Prakash [103] and Spivak [115]) or the topographist's watersheds, hills and
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dales (Cayley [19] and Maxwell [77])). As an initial attack it may be possible to

effect such a qualitative recovery through the study of the residuals of disparity to

the planar analysis of chapter 2.

Another future theoretical development would reconsider the recovery of surface

discontinuities for the case of curved surfaces. The analysis presented in this thesis is

founded in approximating polyhedra and difference geometry. This analysis caln e)(

naturally extended by letting the difference equations pass to the limit and become

differential equations. It would be interesting to couple the resulting equations wittl

the Mainardi-Codazzi equations of integrability (Prakash [103] and Spivak [11.5]) to

see what new insights could be derived. For example, violations of the lMainlrdli-

Codazzi equations would indicate that a surface discontinuity was present.

Future research could also serve to further the stability analysis of the recovery

methods. In particular, it would be useful to consider the relationship between the

stability of a method and the actual expected errors that might arise in application.

This leads into a need to develop an understanding of stereo matching errors. (There

is some existing work on this topic, e.g., Blostein & Huang [15, 14], McVey k Lee

[81], Mohan, Medioni & Nevatia [88], Nishihara [95], Verri & Torre [127].) A bet-

ter understanding of these errors would also be of use in setting thresholds for the

discontinuity recovery method.

Finally, much consideration should be given to further empirical testing of the

current version of the theory as well as any future developments. Of particular inter-

est is to further test the theory with corresponding computer algorithms applied to

natural image data. The performance of a computational vision theory in the face of
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natural imagery is in a sense the "acid test" for the discipline. Its importance sholl(l

not be underestimated.
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Appendix A

Recovering view

This appendix presents four additional approaches to recovering the differential view-

ing parameters t,, t and wy which relate the two stereo views. All methods work \vitll

the assumption that the magnitude of the interocular separation is a known value,

say I. The first two methods recover the viewing parameters only up to an arbitrary

depth scaling factor. The third and fourth methods recover the viewing parameters

without resorting to an arbitrary scaling factor.

A.1 Full perspective method

This method is called the "full perspective method" in that it exploits the information

in the full disparity field, both horizontal and vertical disparity. Recall equation (2.6).

Now, if the solution is to allow for an arbitrary depth scaling factor it is permissible to

set the depth value of some point arbitrarily. For convenience, suppose that this value

is set to unity. Then at some point equation (2.6) provides a set of two equations ill
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the three unknown viewing parameters t, t and wy. That is,

Xx = xtZ - t - (x2 + 1)wy (A.I)

Xy = Y t z - Xywy. (A.2)

A third constraint can be derived with regard to the known magnitude of the stereo

base-line, I. Specifically,

I2 = t2 + tz

Together, relations (A.1), (A.2) and (A.3) allow for the recovery of the unknown

viewing parameters t, tz and wy from the measurable horizontal and vertical lis-

parities, X and Xy up to a sign ambiguity. The sign ambiguity can be resolved by

considering another image point and the corresponding disparity values. In this case,

checking to make sure that the same value of Z is derived from consideration of botl

the horizontal and vertical disparities allows the sign ambiguity to be checked. Thus,

the viewing parameters can be recovered (up to a scale factor) by consideration of the

horizontal and vertical disparities at two points. (c.f., Longuett-Higgins [68] where

the simultaneous observation of seven horizontal and vertical disparities are used to

recover relative viewing parameters without an arbitrary scale, if the magnitude I is

known.)

A.2 Orthographic approximation

The orthographic approximation derives from a special case analysis of the restricted

perspective method. Specifically, suppose it is known, or the viewer is willing to
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assume that the angle y is equal to zero. That is to say, the observer is lookillg

straight ahead. In this case relation (2.25) is found to simplify to

I(px + qy) (A.L)

Again, assuming I is known and setting the depth scale arbitrarily allows for the

relative surface orientation to be recovered directly (assuming that x and y are chosen

to ensure linear independence for the system).

This method of recovery is not as general a model of the physical situation as

are the methods of full or restricted perspective projection. For this reason it shall

not receive much further attention in the main body of this thesis (although it shall

be reconsidered in the appendix). However, three points are worth commenting on:

First, (A.4) side steps the issue of recovering viewing parameters. Second, it is 

reasonable approximation for many real world viewing conditions when an observer

is looking approximately straight ahead. Third, formulation (A.4) may hold particular

interest from a psychological stand point. This is due to the fact that use of equatiol

(A.4) will lead to a systematic error in the visual periphery. Interestingly, humans are

increasingly inaccurate in processing stereoscopic information in the periphery (Foley

[29] and Helmholtz [48]).

A.3 Recovering view with absolute scale

Consider now the possibility of recovering view without an arbitrary scale factor, bIut

while still restricting consideration to only horizontal and orientational disparity. In

the three previous formulations for recovering view the scale was set arbitrarily by
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assigning a depth value (e.g., unity) to some point. In the present analysis, tile d(lel)l 1

value will be cancelled by dividing horizontal and orientational disparities at a p)oinlt.

Two formulations shall be presented. One of these formulations will require that tlhe

view parameters, t, t and cy,, are recovered in tandem with the surface orientation

parameters, p and q, for a single planar patch.

Both formulations begin by noticing that substituting (2.20) into (2.19) and llak-

ing the substitutions implied by (2.24) allow for horizontal disparity to be written

as

X· = ( [( 1 -px-qy)(x tan?- 1) + ( + x)]. (A.5)

Next, similar geometric substitution allows (2.15) to become

a = ((p 2 + q 2). (A.6)
r

Then, dividing (A.5) by (A.6) (roughly, dividing horizontal by orientational disparity)

yields

X = (p2+ q2) [(1px - qy)(x tany -1) + (1 + x2)] (A.7)

This manipulation has accomplished the goal of eliminating the depth parameter .

The first attack on solving (A.7) for view and surface orientation proceeds as

follows: Relation (A.7) can be forced into a quasi-linear equation relating tan -y p

and q with one final substitution. Specifically, using the relation between p and

(p2 + q2) implied by (2.21) allows the form

b = xal + ya2 + xya 3 + 2a 4 (A.8)
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with

b X2 -a ___ ty

tan y
P

a2 = p (A .9)
P

a3 - tan p

a4 = p-1 _ tan 7.

This system can be solved by observing the horizontal and orientational disparities at

four points. The original variables of interest, tan , p and q, can be recovered usi-ng

the relations involving al - a3 and saving a 4 as added constraint.

Such a nonlinear solution leads naturally to a question of multiple solutions. Ge-

ometric reasoning applied to the (tan y, q, p)-solution space is of use: Notice that the

relation involving a3 constrains the solutions to lie on a saddle-like surface in the

(tan y,q)-plane. Also notice that the relations involving al and a2 jointly definle a

line in this space. Further thought shows that the line will pierce the saddle in a

single point (and thus make for a unique solution) with two exceptions: (i) If both

p and q vanish the line will intersect the saddle in a line, which allows for arbitrary

tan y. (ii) If both p and tan'y vanish the line again intersects the saddle in a line, tis

time allowing for arbitrary q.

A second solution to (A.7) without arbitrary scale solves for only tan y. For this

solution, substitute into (A.7) the values for p and q implied by (2.21). Then letting

a = ^X( '2 .2 9Y~ .2
a = [x(xl - y2) + 2yxiIy ] and rearranging yields

X-a ]2= x1 V ZK - xa tan y + x tan V Z . (A.1)

With two sets of observations Iv Zl- 1 can be eliminated from (A.10). Then the value
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of tan can be recovered as a solution to a quadratic equation. There is, of course.

a two way ambiguity inherent in this solution. Consideration should be given to the

possibility of ruling out one of the solutions on the basis of e.g., the reasonableness

of the resulting viewing parameters.

A.4 Considerations of stability

The numerical stability of the full perspective method for recovering view and surtface

parameters has been investigated empirically. This investigation was conducted by

implementing the system of equations (A.1), (A.2) and (A.3) in a simple computei

program. The program operates in two stages. First, input horizontal and vertical

disparity values to recover the viewing parameters. Second, the recovered viewing

parameters are used to solve for the surface parameters p, q and r. To accomplish

this secoond step, the usual planar relation, Z = 1-p'-qy is used. In order to asses

the effects of noise on the recovery method the input horizontal and vertical disparity

measures have been systematically corrupted by error. Although it is common to

conduct such studies by adding noise as some percentage of the "true" data. value,

this is not the tack taken here. It does not seem that noise proportional to data is a

good model of how noise is likely to enter into this set of computations. Rather, it

seems that noise should be of a similar magnitude as applied to the relatively large

values of horizontal disparity as to the relatively large values of vertical disparity.

That is to say, there is no reason to believe that a system should have better vertical

than horizontal acuity. Therefore, the numerical experiments reported here apply
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noise of equal magnitude to all disparity values.

The results of two numerical experiments are now reported. For these cases te

noise to the disparity values has been incremented in a linear fashion. The error is

reported as error in the recovered surface parameters p, q and r. The error is reported(l

as a percentage of the baseline error. For the sake of comparison, the results of the

same testing of the method proposed in Chapter 2 are also presented. Recall that,

the method presented in Chapter 2 recovers view and surface geometry while using

only horizontal and orientational disparity. Since this method is restricted from usilig

vertical disparity it will be referred to as the restricted perspective method.

For the first experiment the simulated viewer is fixated at a point on a planar

surface 50 cm. away. The view is radians off center and the surface makes an angle

of radians with respect to the line of regard. The results of the full and restricte(l

perspective methods are shown in Figures A.l.a and A.l.b, respectively. Begin by

considering the results of the experiment as applied to the full perspective recovery

method. Two observations can be made. First, the error trend is of higher than

linear order. Second, the experiment rapidly reaches a point where the error in the

computation becomes very large. In contrast, the method of restricted perspective

shows error that increases approximately linearly with input noise to the data. For

the second experiment the simulated viewer is fixating a point on a planar surlface

200 cm. away. The view is 0 radians off center and the surface makes an angle of

~1s radians with respect to the line of regard. The results for the full and restricted

perspective method are shown in Figures A.2.a and A.2.b, respectively. The results

are seen to be quite similar to those of experiment 1. Again, the method of full
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perspective leads to rather unstable solutions; the method of restricted perspective is

relatively stable.

The result that the restricted perspective method exhibits good numerical stability

in these empirical tests should come as no surprize. A formal analysis was presentcd

in Chapter 2 that indicated the stability of this system. The instability of the full

perspective method can be explained as follows: It is a basic result of numerical

analysis that the most stable systems of equations are those whose coefficients all

have roughly the same magnitude. However, the vertical disparities used in the full

perspective method are of much smaller magnitude than either the horizontal or

orientational disparities, this leads to very unstable behavior. From the results of

these experiments it is concluded that the method of full perspective will not lead to

algorithms that are able to recover local surface geometry in a robust fashion.
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(a)

l0
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Figure A.1: Results of an empirical numerical study. (a) The full perspective method

leads to error that grows rapidly as noise is added to the input data. (b) The restricted 

perspective method demonstrates relative stability. The horizontal axis is marked ill

units of noise in vertical disparity units. The vertical axis shows percent error in the

surface parameters: triangles symbolize orientation while squares symbolize relative

depth.
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Figure A.2: Results of an empirical numerical study. (a) The full perspective metho(l

leads to error that grows rapidly as noise is added to the input data. (b) The restricte(d

perspective method demonstrates relative stability. The horizontal axis is marked in

units of noise in vertical disparity units. The vertical axis shows percent error ill the

surface parameters: triangles symbolize orientation while squares symbolize relative

depth.
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Appendix B

The decomposition of

discontinuous disparity fields

In general, discontinuities of surfaces in the world will differentially project into dlis-

continuities in a disparity field. If the disparity information is very dense, it may be

possible to detect these discontinuities directly in the disparity field. Along these lines

several researchers have proposed applying edge-detection techniques to both stereo

(Stevens [118]) and motion (Thompson, Mutch & Berzins [124], Schunk [111]) based

disparity fields. In this regard one needs to decide how to perform edge-detection in a

vector field. In chapter 1, the work of Thompson, Mutch and Berzins [124] was givell

as an example. Recall that these researchers looked for the edges in the separate x

and y scalar components of the vector field and then combined the results. In this

appendix, another pair of scalar fields are noted to be useful for representing vector

field discontinuities. In particular, it is shown that the divergence and rotational fields

of a two-dimensional vector field capture the discontinuites of the original field. A
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Figure B.1: The field \ in the neighborhood of a discontinuity.

representation in terms of divergence and rotational has the nice property of havillg

coordinate system independent geometric interpretations. The divergence captulres

the local degree of expansion; the rotational gives a local measure of rotation.

Before presenting the analysis it is necessary to introduce some terminology as \\(11

as a classical result of Hadamard [45]. Consider the field ¥(x, y) in the neighborhood

of a discontinuity as depicted in Figure B.1. Assume lat ,y is continuous ill the

regions + and ?-, but discontinuous on the boundary curve, . Let n be tile

normal to (a function of position along ¢ ) and take its positive sense as pointing

into R+. Further, assume that Xy approaches definite limiting values as it approachies

either side of (. Denote the limiting values of from R+ and M- as + and \-.

respectively. Also, denote the jump across as X+ - X- = [y]. Finally, inorder to

justify the ensuing calculations the following result is required:

Lemma B.1 (Hadamard) Let y be defined and continuously differentiable in th

interior of a region 3R+ with smooth boundary , and let X and iX approach finilc

limits y+ and oiX+ as ( is approached upon paths interior to R+. Let x = x(() be 
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smooth curve upon (, and assume that X+ is differentiable on this path. Then

dx+ dxi
de X d '

In essence, the lemma states that the theorem of the total differential (see, e.g. orl 

& Korn [64]) holds as is approached from one side only. The reader is referred to

Hadamard [45] for a proof.

With the considerations of the previous paragraph in hand it easy to show thalt:

(i) The normal component of [X] is preserved in the divergence of X, V X. (ii) The

transverse component of [X] is preserved in the rotational of X, V x y. To show thlat

these claims are true, consider a small area, A, of X centered about a point along i.

For the first assertion, recall that the two-dimensional Divergence Theorem (see, e.g..

Korn & Korn [64]) states that for a vector field X

a N.x = I vx (B.1)

with A the boundary of A and N the normal along this boundary. Hadamard's

Lemma allows the evaluation of the integrals in (B.1) to proceed independently ill

the regions R+ and R-. As A tends to an infinitesimal area it is found that

V X = n. [X] (B.2)

Thus, the normal component of the jump [X] is present in the divergence V .

Similarly for the second assertion, recall that Green's Theorem (Korn k Korn [64-])

can be stated:

JaA = JIAV X x. (B.:3)
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Again appealing to Hadamard's Lemma and allowing the region of integration to

become vanishingly small shows that (B.3) evaluates to

V xX = n x [X]. (B.4)

Relation (B.4) has established the second of the desired results: The transverse coll-

ponent of [X] is present in the rotational V x X.

In this appendix it has been shown that the normal and tangential jumps of a

discontinuous two-dimensional vector field are preserved in the divergence and rota-

tional of the field. It is suggested that this representation may prove useful for further

investigations aimed at recovering the discontinuities of visual disparity fields. Te

appeal of this representation is based in its coordinate system independent geometric

interpretations. The ultimate usefulness of this analysis may be limited by the abil-

ity to recover the divergence and rotational components of X for the case of visual

disparity.
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Appendix C

Surface curvature from disparity

This appendix provides preliminary results on the recovery of three-dimensional sur-

face curvature from stereo disparity. In particular, it will be shown that the differen-

tially imaged curvature of surface markings can be used to recover three-dimensional

surface curvature. For the purposes of these developments several simplifying as-

sumptions will be exploited: First, it is assumed that the optical axes are pointed

straight ahead and parallel to one another. Thus, retaining the nomenclature of ea.l-

lier developments, Q = (w,wyzw) = (0,0,0) and T = (t, ty,tz) = (I, 0, 0), where 

is the stereo baseline. Under these conditions the basic disparity relations reduce to

X = (XX, X) = (z ,o) (C. 1)

The second set of assumptions deal with the geometry of the viewed surface: The

analysis focuses on the differential projection of surface detail (e.g., contours, tex-

ture or markings on the surface) in the neighborhood of the fixation point, image

coordinates (x,y) = (0,0). Further, it is assumed that the surface normal a.t thlis
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point of regard is alligned with the optical axis'. Thus, the surface gradient has zero

magnitude, VZ = (0, 0). Then, given that the surface is curved, it call be locally

represented in world coordinates (X, Y, Z) in terms of a Taylor series evaluated at t lI(

origin

1 1
Z = r + KXYX + ±ixx + K c Y2 (C.2)

where r is the radial distance from the viewer while

K 2 Z(0,0) _ 02 z(O,O) a Z(0,0)
Y - aXaY' -- 3X 2 YY -= y2

are surface curvature terms. In image coordinates (C.2) becomes

1 1 1 2 1 2
Z- -- K yXY - 2 -- K; y2 (C. 3)

For the remainder of this appendix consideration will be limited to those restricted

viewing and surface geometrys that are embodied in (C.1) and (C.3).

Attention is now directed to an analysis of the differentially projected curvaturel

of surface markings. Consider the case where a point along a curved surface contour

is fixated. In the left image coordinate system let this contour be described as a

biquadratic that passes through the origin

= y + ax + bxy + cy 2 + dx2. (C.)

In order to simplify the calculation of the imaged curvature, consider a rotation of

the image coordinate system that aligns the tangent at the origin with the x-axis.

Let the new coordinate system (u,v) be related to the old by

x = ucosa - vsin 
(c. 5)

y = u sin a + v cos a
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with a the counterclockwise angle of rotation. Substituting into (C.4) and rearraingi 

in terms of u and v yields

O = (a cos a + sin a)u + (cosa - asina)v +(coscos2 a - sin2 a) + 2(c- d) sin a cos ]ii t

+(bsinacosa + dcos2 + csin2 a)u 2 + (-bsinacosca + dsin2 + ccos2 )1v2.

The desired rotation requires that

0 = (a cos a + sin a)

or

- a = tan a. (C.7)

Now, in this new coordinate system, the imaged curvature at the point of fixation,

(x,y) = (0, 0), can be conveniently calculated from (C.6) by evaluating the curvattlre

formula

= 3 (C.8)[i + (dy)2 (

and computing the required derivatives implicitly. Some amount of calculation shows

that

= 2 cos ca(bsin a cos a + dcos2 a + csin2 a) (C.9)

is the resulting imaged curvature.

Now, consider how the contour (C.4) appears in the other image. In order to

understand this transformation it is useful to adopt an Eulerian viewpoint (Goldstein

[36]): Consider a new coordinate system (t, v) that is the same as the old (, y)

system except now the contour is viewed after it has been deformed by the operations
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of differential projection (c.f., Waxman & Wohn [132] where the Eulerian viewpointll

is exploited to analyze motion parallax). The relation between points (x, y) on the

original contour (C.4) and points (, v) on the deformed contour is specified by

(it, v) = (x + Ax,(x, y), y + Ay(x, y)) (C. 0)

where A = (,,Ay) specifies the operation of disparate projection. For current

purposes it is convenient to represent A in terms of a Taylor series expansion of

disparity. Thus,

(C.11)
A = X + + Xx + a2 X + 1 a2 X2 X2 + 02JA=-x a+ ay ay 2 -+ 2 2dy aY 2

AY X + axy X + a-o, + y2XY X + 1 c3a2 X 2 a2X + 0 2

Xy x2+ IY 2 axy XY 0a Y

where 02 represent terms that involve second and higher powers of the stereo baseline,

I.

This specialization of the Eulerian viewpoint analysis can now be used to uder-

stand how the contour (C.4) deforms between the two stereo images. Applying (C.10)

to (C.4) allows equating

v + alI + bv + cv2 + dit2 (C. 12)

and

(y+Ay)+a(x+A)+b(xy+xAy,+yAx)+c(y2 +2yAy)+d(x 2 + 2xAx)+0 2. (C.1:3)

Also, recalling the original form of (C.4) shows that (C.13) can be reduced to

Ay + aA, + b(xAy + yAx) + 2cyAy + 2dxAx + 02. (C.14)

'This type of analysis was originally developed as a tool for understanding fluid flow. I tlhat

case the variable separating views is time and the deforming objects are patches of flow.
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Equations (C.12) and (C.14) can be combined into a more useful form by noticilng

that to 02: xAr = /~A, yAy = Ay X, xAy = pAy and yA, = vA. Making these

substitutions in (C.14) and combining the results with (C.12) yields

O = (v-A) +a(v-A)+b(llv-,Ly-Ax) +c(v - y)+d(L2 _ 2djA. ). ((.1.5)

The final steps in developing the differentially projected version of (C.4) are to: (i)

regroup (C.15) in terms of ji and v and (ii) evaluate the terms of (C.11) in light of

the viewing and surface geometrys (C.1) and (C.3). To second-order the resulting

contour is

= + a + (b- aKxy)tzo + (c - aryy)v2 + (d- a^'xx)P2. (C.16)

The imaged curvature of (C.16) can be evaluated at the fixation (, v) = (0, 0)

in the same manner used for the original contour (C.4). For the sake of brevity

the procedure is simply stated and followed by the result: First, rotate the (t, V)

coordinate system so that the tl-axis is aligned with the tangent to (C.16) at (0,0).

Second, use the curvature formula (C.8) to evaluate curavature in the rotated systenm.

Following through on the prescribed operations shows that the new curvature measure

is

' = 2cos a[(b - aI,,y) sin a cos a + (d - al,,) cos 2 Ca + (c - aIcyy) sin 2 a] (C'.17T)

where, as earlier, tan a = -a.

At this point image curvature measures have been derived for two different projec-

tions of a contour on a three-dimensionally curved surface. These measures are given

by relations (C.9) and (C.17). However, recall that the original goal was to develop an
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analysis that showed how to use differentially projected curvature to recover surflace

curvature. This goal is in hand: Subtracting (C.9) from (C.17) yields the following

pleasing result

- = -2I sin a(cr, sin a cosa - r cos2 c at - C sin 2 a). (C 8)

Under the assumptions that the stereo baseline, I, is known and the tangent to the

projected contour is measurable in the image, relation (C.18) provides one equation ill

the three unknown surface curvatures, ,cY, icX and iy. Provided three differentially

projected surface curves can be so measured the surface curvatures can be recovered.

In summary, this appendix has provided an analysis of how it is possible to recover

three-dimensional surface curvatures from two-dimensional differentially imaged culr-

vatures. The analysis has considered only the restricted case where a stereoscopic

viewer is looking straight ahead with the optical axes parallel. Further, it has been

assumed that the view of the surface is along the surface normal. Under these condi-

tions it has been shown that it is (theoretically) possible to recover surface curvatt-re

by observing three differentially projected surface contours.
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Appendix D

Extension to motion based

disparity

In the main body of this thesis the techniques of vector and tensor analysis were

exploited to develop an understanding of binocular stereo disparity. Infact, these

ideas can be extended to any area of visual information processing where the inplut

representation can be characterized as a vector field. An obvious candidate for sucl

an analysis is the interpretation of disparity due to motion parallax. This appendlix

will sketch the extension of the stereo disparity analysis to the case of motion parallax.

Recall that a general infinitesimal change in coordinate systems changes the co-

ordinates of a point R by

6R = -T- ( x R) (D.1)

where the symbols are defined with reference to Figure 2.1. For the case of stereo

vision it was possible to equate some of the components of T and Q to zero and thus
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simplify the ensuing derivations. For the case of general motion of a viewer ill all

otherwise stationary environment this type of simplification is not allowed. Followilng

throught the derivations of Section 2.1, but now allowing for the full generallity o'

(D.1) leads to

*=(··~··,=( t, tx t t
X ( yS Xy) -z -Y - z- U - wy + Wy +),-- + W - ,zx - y( .)

(D.2)

as the motion parallax disparity relations.

It is also a straight forward matter to derive the gradient tensor of disparity

/ Dx y 

axy axy
ax ay 

For the case of a planar surface patch projecting along the line of regard (D.3)

uates to

! ( I (ptx + tz) qtr
X =

(qty + tz) pt 

As earlier, in order to gain greater insight into X' it

X+, and antisymmetric, X', parts. This yields

D.:3)

Cval-

+ w)

(D.4)

is useful to split it into symnetric,

1 ( (ptx + t) ptyq 1 1 ( o qt-pty +r r r rX X X = ·
pty+qt qt,+t, pt-qt zt pty ~z y-qtx _

(Recall that X' describes the rigid rotation that an object undergoes as it is differell-

tially projected; while X+ describes a nonrigid deformation.) The axis and magnitudcle

of the nonrigid operation of X+ can be recovered via an eigen-decomposition. In this

case it is found that the axis of contraction (an eigenvector) is in the direction specified
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by

= (p, q)ll(t., t) + (t., ty)II(p, q)
II(p, q) Ill(t , t)II

while the magnitude of deformation (i.e., the magnitude of the difference of the eigen-

values) is

(txr, ty) Il(p, q)ll
r

It is worth noting that this description of the motion parallax field is similar to that

first presented in Koenderink & van Doorn [58].

The relations derived in this appendix for motion parallax parallel those derived

for binocular stereo derived in Chapter 2. It has again been possible to express the

disparity information in terms of parameters of differential viewing, T and , adll

first-order surface geometry, p, q and r. With these basic relations in hand furthler

study will be able to indicate how to invert the disparity information for the recovery

of the geometric parameters of interest.
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