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ABSTRACT

Several nonlinear simulation models have been formulated in an attempt
to account for the dynamics of respiratory control, including the etiol-
ogy of Cheyne-Stokes respiration (CSR). Direct experimental validation
of these models has not been performed. Our studies show that in cons-
cious man, the power of the ventilatory transient response (TR) is
indeed a continuous function of the control system loop gain (LG). We
have demonstrated that CSR may be induced by increasing the loop gain,
and can represent an enhancement of the non-sustained oscillations seen
in normal resting breathing. A minimal linear control system model is
described which accurately predicts TR as a function of LG. Using this
model, we have demonstrated that LG is determined by the interaction of
2 dimensionless parameters that each combine several physiologic vari-
ables. By evaluating these dimensionless parameters the relative sta-
bility of any equilibrium point may be readily determined. These find-
ings indicate that mathematical models of respiration can provide an
important tool for determining the etiology of clinically important
phenomena such as periodic breathing in adults or neonates.
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CBAPTER 1

INTRODUCTION

1.

,..-Two facts regarding human respiration have been known for over 150
t'r a -- :- s ve:--F. t'.

years: 1) respiration is regulated by a biological control system, and

2) under certain conditions an unsteady respiratory pattern may occur

which is characterized by larg'e oscillations about the meani"ventilation,

having a period of 15 to 60 seconds. This pattern is known as Cheyne-

Stokes respiration (CSR). The primary hypothesis evaluated in this

thesis is that CSR may be quantitatively accounted for by considering it

to be a manifestation of unstable operation of the biological control

system. A second major hypothesis studied, is that human respiratory

control may exhibit a continuum of relative stabilities in which

unstable or oscillatory behavior represents one extreme.' These

hypotheses are evaluated on both mathematical and experimental grounds.

We shall now develop some of the historical and physiologic background

which motivates the study of these hypotheses.

1.1. Che7vne-Stokes Respiration:

s -A~·; t % A,.; =. H . t~ ' ' 1 Z . t ' t:

While it appears that under normal circumstances, human respiration

is characterized by a steady pattern, even Hipprocrates is believed to

have described an oscillatory breathing pattern (1). The earliest for-

mal description. of Cheyne-Stokes Respiration came from J, A. Cheyne in

1818; "for several days his breathing was irregular; it would entirely

cease for a quarter of a minute, then it would become perceptible,
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though very low, then by degrees it became heaving and quick, and then

it would gradually cease again. This revolution in the state of his

breathing occupied about a minute during which there were about thirty

acts of respiration" (2). This observation was made on a patient in

severe heart failure, a condition which is now commonly associated with

CSR (1,3). Figure 1.1a illustrates a classical CSR pattern as it typi-

cally occurs in patients with severe heart failure. Notice that the

waxing and waning in ventilation occurs over a period of many breaths

and that both rate and depth are oscillating.

It is now known that Cheyne-Stokes oscillations with a period of 20

to 30 seconds may occur in healthy individuals under a variety of cir-

cumstances. Figure 1.lb shows a breathing pattern which may be seen when

normal adults are taken to high altitude (=5,000m). This pattern of ven-

tilation can also be evoked by forcing healthy adults at sea-level to

breathe gasses with abnormally low oxygen (02) concentrations (figure

1.1c). A number of other conditions have also been observed to induce

CSR including; neurologic lesions, metabolic alkalosis, lung deflation,

and increased circulation delays.

1.2. The Etiolovy of Chevne-Stokes Respiration:

Since CSR was first described, its etiology has been debated. An

important early hypothesis was that somewhere in the central nervous

system there exists a self-sustained oscillator which under appropriate

circumstances can dominate respiratory control (4). Though not univer-

sally accepted, contemporary support for this theory does exist

(5,6,7,8). Part of the modern support for the existence of a single iso-

lated oscillator derives from the fact that oscillations of identical
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frequency have been observed in numerous biological parameters such as;

ventilation, heart rate, blood pressure, sympathetic vascular tone, and

splanchnic sympathetic tone.

-;- Virtually-all other theories regarding the etiology of CSR have

been. unified by-'the advent of-control system-modeling of-respiration,

and the suggestion that CSR may be a manifestation of unstable feedback

control-.(1).- This control system hotefieis-has been:t-explored by

numerous investigators in the past 25 years, and many dozen mathematical

models of CSR now exist. To appreciate this hypothesis, it must first

be understood that human respiration is indeed a controlled behavior.

1.3. The Basic Operation of the Respiratory Control System:

The principal function of the human respiratory system is to supply ade-

quate oxygen to the tissues, and to provide for the removal of the

carbon-dioxide formed by cellular metabolism. To accomplish this func-

tion, the lungs are ventilated with fresh air from outside the body

while circulating blood provides gas transport between the lungs and the

tissues. By adjusting the rate of ventilation, the overall gas exchange

requirements of the tissues can be met. It is in this context that

respiration can be thought of as the output of a biological control sys-

tem which detects the changing needs of the body and adjusts accord-

ingly.

The essential elements of the respiratory control system are illus-

trated in figure 1.2a. While this representation is a simplification of

known physiology, it is suitable for illustrating the operation oft the

control system. The respiratory centers of the rostral brainstem may be

regarded as the controller of ventilation. The- brainstem output, the
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neural drive to breath, acts upon the inspiratory musculature to affect

gas convection in the airways of the lungs.

This convection produces "alveolar ventilation" (VA), as it brings

fresh air into the alveoli, which are the gas exchange areas of the

lung. Diffusion equilibrium of oxygen and carbon dioxide (CO2) occurs

between the alveolar gas and the pulmonary capillary blood. This diffu-

sion process allows blood passing through pulmonary capillaries to load

02 and to unload C 2 . The dynamics of this gas exchange determine the

ongoing partial pressures of 02 (PaO and CO2 (PaCO ) in the arterial
2 2

blood.

In order that PaC0O may be regulated to a fixed setpoint, arterial

receptors exist which can detect PaC0 and relay this information neur-

ally to the brainstem. This pathway completes a feedback loop by which

VA may be regulated in order to maintain a relatively fixed PaCO

despite changing metabolic demands or other disturbances. It is impor-

tant to note that the PC0O receptors are not located within the lungs.

They are therefore temporally separated from the gas exchange dynamics

by a circulation transit delay. Thus the control system cannot respond

instantaneously to any disturbance in gas exchange which occurs in the

lungs.

While a number of feedback mechanisms have been described which are

not included here, figure 1.2a illustrates the essential elements of

respiratory control. These elements have been included in all mathemat-

ical models of CSR (9,10,11,12,13,14,15).

Figure 1.2b shows a linear model which may be used to describe

respiratory control. The signal representing PaC0 is detected and com-
2
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pared to a setpoint value S. Their difference is the "error signal"

which is acted upon by the controller, whose output represents VA.

These operations reflect the actions of the receptors, the brainstem

centers,; nd the inspiratory musclesof the-biological syste: -- A single

controlled system element describes the -gas exchange -processes. - The

output of this element represents P aCO. A pure delay element is used

to model the biological circulation transit time.

Each of' these model elements may be characterized by a transfer

function; a complex quantity representing the gain and effective delay

between input and output. The gain (r magnitude) of the controller

transfer function is;

dV
magnitude of A(f) = IA(f)I = a

aC. .................. - S)

For the controlled system;

dP g

dVA

The pure delay has no effect on the signal amplitude such that;

ITC(f)I = 1

The normal operation of this model is such that an equilibrium is

achieved which is characterized by unchanging VA and P C0. As indi-

cated in figure 1.2b, disturbances to this equilibrium may occur. For

-?ape , , w:. - , ,: .....
example, sighing and breath holding could be modeled as transient dis-

turbances added to the controller output. Following a disturbance, a

corrective action would be mediated by the control system in an attempt
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to maintain the original equilibrium. The dynamics of this response are

determined by the system stability, which we shall now define.

1.4. Stability Criteria

The model of figure 1.2b is said to be absolutely stable if for any
bounded disturbance, the system response is also bounded. The condi-

tions under which this model will display absolute stability may be

defined mathematically in terms of the system loop gain, LG(f);

LG(f) = A(f)B(f)T (f)
c

Loop gain is thus a complex quantity.

The relationship between LG(f) and absolute stability is provided

by the Nyquist criteria;

if at some critical frequency f , LG(f ) is a negative real

number, then;

ILG(f )l < 1 absolutely stable

ILG(f )l > 1 unstable

That LG(f ) is negative and real requires that the angle of LG(f )
c c

(<LG(f )) is -180° . Unstable operation is characterized by oscillations
c

in V and PaCO at a frequency of f with an amplitude which increases

with time. Thus the system response becomes unbounded. It is in this

context that the sustained oscillations of CSR have been hypothesized to

reflect unstable control system operation.

The binary concept of absolutely stable versus unstable model

operation may be extended by asking; if the model operation is stable,

how close is it to being unstable? To answer this question we may
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define relative stability as a continuous measure of system behavior,

one extreme of which is unstable operation. A number of measures of

relative stability have been developed to describe physical control sys-

tems. :~A common technique is to use a feature of the system response to

an impulsive disturbance as a continuousmeasure-of relative stability.

This technique is used in this thesis to characterize the relative sta-

bility of both mathematical and biological control systems.

For mathematical models, a fixed quantitative relationship exists

between the loop gain and any impulse response measure of relative sta-

bility. For this reason, ILG(f )I itself is often used as a measure of

relative stability in mathematical models. The full range of relative

stability is defined by;

0 < ILG(f ) < 1

ILG(f c) = 0 implies an absence of feedback and ILG(fc)I > 1 implies

unstable operation.

1.5. Mathematical Models of CSR: The State of the Art

As noted above, several mathematical models of CSR exist. These

models have provided a single framework by which virtually all known

causes of CSR may be -interpreted. A potential mechanism has been

described by which each cause of CSR could destabilize the control sys-

tem, potentially creating oscillations. An excellent demonstration of

this approach is provided in the model of Khoo et. al. published in 1982

(15). In many ways, the Khoo model represents the state of the art in

modeling CSR. It is a single general model which can qualitatively

account for the range of conditions under which CSR is known to occur.
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It is also typical of existing models in many ways.

Figure 1.3 is a block diagram of the Khoo model. This model struc-

ture is considerably more complex than the one previously described.

Note that multiple nested control loops and many system elements exist.

In fact the transfer functions of some of these elements are dependent

upon the signal values within the system. This level of complexity is

typical of other CSR models (14,16,12,10). In addition, these models

contain large numbers of parameters (e.g. Khoo et. al. = 18, Grodins

et. al. > 30) which must be specified in order to constrain the model

operation. Two significant problems derive from the complexity of these

models; 1) the essential conceptual framework underlying the model sta-

bility may not be readily apparent and 2) they have not been quantita-

tively validated by direct experimental evidence.

1.5.1. Model Validation

The complexity of existing models of CSR makes it difficult or

impossible to measure all model parameters in a single subject, in a

single experimental setting. It is largely for this reason that quanti-

tative comparisons between model behavior and experimental observations

of CSR have been performed by employing "population normal" values for

each model parameter. It is by this technique that mathematical models

have been shown to exhibit unstable oscillations under conditions "typi-

cally" observed to induce CSR in "normal" adults.

The major problem with this approach is that the range of values

seen in normal adults is significant for several important parameters.

For this reason, employing normal parameter values does not constrain

the model behavior sufficiently to allow a quantitative prediction of
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respiratory control in any "normal" individual. No existing model of

CSR has been validated by predicting the stability of respiration in a

series of individuals.

In addition, the evaluation of existing models has focussed only on

the unstable oscillations; -under what conditions oscillations will-:occur

and at what frequency. No-systematic-compa'rison of relative stabilities

has been- made -;betien'-mathematical models and- human respiration.

Indeed, no systematic data exist regarding--. the relative stability of

respiration under various conditions.

Evidence does exist which suggests that the tendency of the human

respiratory control system to exhibit oscillations is a graded rather

than an all-or-nothing phenomenon. For example, damped oscillations

with a period similar to CSR are commonly observed following sighs in

neonates(17,18) and adults at altitude (19). In addition, the strength

of these oscillations depends on the operation of the control system

(19). In that a sigh acts as an impulsive disturbance to the biological

control system, these observations suggest that human respiration may

exhibit a graded range of relative stabilities.

In addition, several investigators have reported that low amplitude

non-random oscillations at the typical frequency of CSR exist in the

resting breathing of both adults (20,21,22,23) and infants (24,17,18).

It has been suggested that these oscillations reflect self-excitation of

the system by biological noise sources (20,21,22,23,15). The variable

amplitude of these oscillations may also indicate a variable relative

stability of respiration.
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1.6. Statement of the Problem

Two specific questions are answered in this thesis;

1) can a minimal model of human respiratory control be formulated

which may be directly validated by experimental observations?

2) can this model accurately predict the relationship between ILG(f )|

and a quantitative measure of relative stability in a series of

normal adults?

1.7. The Minimal Modeling Approach

In Chapter 2, a new model of human respiratory control is defined.

This model is unique in that it represents an attempt to define the sim-

plest mathematical model which is consistent with known physiology and

retains the capacity to exhibit unstable behavior. This has been termed

the "minimal modeling approach" (25) and offers several advantages over

previous modeling attempts. First, only 6 physiologically distinct

parameters are required to constrain the model operation. This greatly

facilitates the validation of the model. In addition, to the extent

that this minimal model can accurately predict the relative stability of

human respiration, it can clearly illustrate the essential mechanisms

which govern respiratory stability. In describing the structure of this

model, expressions are derived for LG(f) and f in terms of the 6 param-

eters. These expressions provide a direct mechanism for interpreting

the effects of changing one or more physiologic parameters on the loop

gain and hence the relative stability of the model. At the end of
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Chapter 2 the quantitative relationship between ILG(fc)l and relative

stability is illustrated. This relationship provides a prediction of

the relationship which will be observed in the respiratory control of

any individual. - :. e s :. s .. I a,<; w

1.8. Validation of the Minimal Model

Chapter 3 describes the experimental studies performed to determine

the relationship between control system loop gain and relative stability

in a series of healthy normal adults. The observed relationship is then

quantitatively compared to that predicted by the minimal model. Despite

the simplicity of the model, it is shown to accurately predict the rela-

tive stability of human respiration over a wide range of loop gains.

The potential significance of this finding is also discussed.

.. . . .~~~~~~~~~~~
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FIGURE CAPTIONS

Figure 1.1: a) Pneumographic recording of CSR illustrating regular wax-

ing and waning of ventilation with periodically placed apneic periods of

approximately equal length. Reproduced from Brown and Plum (3). b)

Impedance plethysmographic recording taken from a sojourner at the 5400m

Everest base camp in August 1981. The vertical bar indicates a 1 liter

calibration and the upper tracing provides the time scale. Cycle dura-

tion is 20 s. Reproduced from Lahiri et. al. (19). c) Impedance

plethysmographic recording from a healthy adult breathing 12% oxygen in

nitrogen at sea level. Vertical scale is liters, time is seconds.

Figure 1.2: Block diagram representations of; a) the essential phy-

siologic elements of the respiratory control system, and b) the

equivalent representation of the linear control systems model.

Figure 1.3: Block diagram of the mathematical model of CSR published by

Khoo and coworkers (15). Note that multiple nested control loops and

many system elements are included in this model.



- 21 -

-- -i- · ·-. · ~Ll i i·*K)P(Z -l~ ii:

Cp·..5· &. - a:;t
n~i·~a

~~agus; 13i'· ~f:7~ridctsaZ1

44-14
if n -l 

.'J U

ILI..ILZL'

!t h it- 4· -
_ AI I r7 1T I lFTI 'fTT 1

l.i.1. . I . . . ...

; .- . -1 - ' " -I '.. 0 1C(C'

FIGURE 1.1

a ;¢.-,

VT I

1.63 -

1.46 -

1.30

1. 14 I

.. ..
40 '

...

I - I �, .. W ! H i WIA- . - - I

II I - 411 1 1 12
r

-I
I

·_ l_ _~~ _ ____ _�__ � _1_ Y·l �
I I f �-- --

- - - - - - -_~' 1 I-'' U

r+t +--t-c+c I I I 2 t 
L - , ft#4r`-"' ~t·'

E . - ..- .
'-f ,rt"'- 1. I . - _. - ..'I l1 1 I ! 171rl[ .I ITT

1 l .ltl ll llII I
I. . .! . l l I !

1 1 1 1 i I 1 I

s0. - l--0 -- r- -- - -i -
0 ,o I .. - 1. - ... . I

i 6 (11 , 



- 22 -

fr1j

H

Id

tmj



- 23 -

+

3

0It

0

C4M
..4



- 24 -

CHAPTER 2

A MINIMAL MODEL OF HUMAN RESPIRATORY CONTROL

2.

2.1. Introduction:

In this chapter a new mathematical model of respiratory control is

described. As noted in the introduction, an important goal has been to

formulate a minimal model which is consistent with the physiology of

respiratory control. For this reason, a number of simplifying assump-

tions and approximations to the physiology have been made and are expli-

citly stated. The expected range of validity for these assumptions is

also discussed. The structure of the model is the single loop system

described in the introduction. The mathematical formulation for the

transfer function of each system element will be developed in terms of

distinct physiologic parameters.

Although the biological control system is inherently non-linear,

the model transfer functions are linear approximations. This lineariza-

tion has two principal goals. First, the definition of absolute stabil-

ity provided by the Nyquist criteria applies only to linear systems.

The stability of the linear model is still quite informative, however.

For the control system operation in the immediate vicinity of any

equilibrium, an important theorem of Liapunov ensures that the underly-

ing non-linear system is stable if and only if the linearized system is

stable (26).

In addition, the formulation of linear transfer functions allows us
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to derive an analytic expression for the loop gain. For this model, we

shall show that LG(f) is a function of 6 parameters which have clear

physiologic counterparts. The analytic expression for LG(f) allows a

direct interpretation of the expected effects on loop gain of altera-

tions in one or more physiologic parameters. The only previous linear

model of CSR is that of Khoo et. al. (15). This group has clearly

demonstrated the conceptual advantages of the linear approach over pre-

vious non-linear simulation models. Khoo et. al., however, made no

attempt to formulate a minimal model which could be experimentally vali-

dated.

The expression for LG(f) developed for the minimal model in this

chapter forms a basis for the estimation of loop gain in human subjects.

The 6 parameters which must be measured in each subject are clearly

defined.

At the end of the chapter, we define the measure of relative sta-

bility employed in this thesis. The relationship between relative sta-

bility and ILG(f ) is illustrated for the model. This model relation-

ship provides a prediction of the same relationship for the human con-

trol system. In addition, a direct comparison is made between the

minimal model and Khoo's model in appendix A 2. The effect of adding an

isolated saturation nonlinearity to the model is described in appendix A

3.

2.2. The Minimal Model:

As indicated in the introduction, figure 2.1a represents the essen-

tial physiologic elements described by the model, while 2.lb is the

minimal model diagram. The controller models the action of the P aCO
2C0
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receptors; the brainstem centers, and the inspiratory musculature and

its output represents continuous alveolar ventilation. The controlled

system of the model represents the airways, gas exchange surfaces, and

vessels of the lungs. The controlled quantity is PaCO and after a
aCO2

delay which models the circulation transit time, a signal proportional

to this quantity is detected by the controller.

2.2·.1. The Controlled System Transfer Function:

Although gas exchange in the lungs is distributed over a large

number of alveoli, in healthy adults the ventilation and perfusion sup-

plied to each alveolus is sufficiently uniform (21) that we may model

the alveoli as a single well mixed gas space, and the pulmonary capil-

lary blood as a single well mixed fluid space. If in addition we assume

that constant temperature, pressure, and humidity are maintained in the

gas compartment, then conservation of mass demands conservation of

volume, yielding the Fick equation for C02;

dV ACO(t)ACO2
dt dt ~ ~ ~ ~ ~t = ((1.1)

Q (t)(CCO (t) -C (t)) + VA(t)(FIo2(t) - AC(t))

where;

VACO (t) = alveolar volume of C02
2

Qc(t) = cardiac output

CvcO (t) = mixed venous C02 concentration

CacO (t) = mixed arterial C02 concentration
22
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Fico (t) = inspired gas CO2 concentration
2 2

FACO (t) = alveolar CO2 concentration

VA(t) = continuous alveolar ventilation

t - time

Several assumptions will be made to simplify equation 1.1:

1) cardiac output is assumed to be constant;

Qc(t) = QC (1.2)

2) the relationship between CO2 partial pressure and C02 concentra-

tion in the blood is assumed to be linear;

C K P + K (1.3)
CO si CO s2

where Ksl and Ks2 are constants

3) PvC0 is assumed to be constant (we shall consider only local
- 2

perturbations about an equilibrium);

PVC(t) = P (1.4)
-2 2

4)diffusion equilibrium occurs as blood traverses the pulmonary

capillaries and no cardiac shunting occurs implying;

PACO (t) = PaC (t) (1.5)
2 2

Combining eqs. 1.1 - 1.4 gives;

dVAC (t)ACO2
2. -c," ::s , ...... *(1.6)

dt
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cKsl(PvC2 - Po(t)) - VA(t)(FACo2(t) - F (t))

In addition, from their definitions we know that;

PACO (t) VACO (t)
2 °2

ACO2(t) (PB - PW mlv

mlv = mean lung volume

PICO (t)
FIC 02 () (1.8)

2ICO (PB - PW

When eqs. 1.5 - 1.8 are combined we get equation 1.9;

dPac02 (t)aCO2

dt

(PB- PW)(QCKs1(PvC0- PACO (t)) - VA(PACO(t) - PICO2(t))
2 2 2 2

mlv

We may obtain the equilibrium expression relating PACO to VA by

setting the time derivative in equation 1.9 equal to zero.

(PB.- ) PW)Ksl P vo APIC
W CO 2 (1.10)

a 2 (PB PW)KSl% + VA

Equation 1.10 provides an equilibrium expression for the relationship

between the controlled system input, VA and its output, PaC0 Even

when P is zero, this relationship is non-linear. Within the localICO2

vicinity of any initial operating point, we may satisfy our requirement

for a linear transfer function by approximating equation 1.10 with the

first two terms of its Taylor series expansion, obtaining;
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Qc(P- Pw)Ksl vCO .

PaCo2 = - 2(V VA° ) + PaC ° (1.11)

(V + QC(PB - PW)Ksl)

where,

VA P aCo 0 initial equilibrium point
2

Thus for incremental changes in equilibrium, the input/output relation-

ship of the controlled system is given by;

dPac0 QC(P B PW)ks lP v CO
aC- C B (1.12)

dV~~iT~ 2

(VA ° + (PB - PW)Ksl )

As demonstrated by Khoo et. al. (15) , assuming typical adult values for

each relevant parameter, if we consider PaCO fluctuations of plus or

minus 5 torr about the normal value of 40 torr, we expect less than a

10% error t o occur in using eq. 112 to approximate the underlying

hyperbolic relationship.

If we consider time varying, rather than steady-state departures

from V,0 0
from A , PaCO ° equation 1.9 indicates that the gasses stored in the

2

controlled system act approximately as a first order system. To obtain

the time ' constant of this element we may solve the homogeneous form of

1.9;

dP (t)
aCO (P _ )K + VA
dt + P (t) Wmlv= 0 (1.13)

To see that;



- 30 -

mlvTo = l . (1.14)
Q(Pb P)Ksl + VAC b W s1'VA

dPaco
It is worth noting that identical results for d 2A and T can be

dV 0

obtained by the LaPlace transform technique if higher than first order

terms are disregarded.

Extending the first order system analogy, we may write the transfer

function for the controlled system as;

IB(f)l = B (1.15)

((2nfT0)
2 + 1)-5

<B(f) = -tan 1(2nfT0) radians (1.16)

2.2.2. The Controller Transfer Function:

The model controller is an instantaneous, linear, proportional con-

troller. The input/output relationship of this controller is described

by;

VA(t) = (P R(t) - S)A (1.17)

where;

A = controller gain

PCR(t) =aC2(t Tc)

is the controller input

TC = the delay magnitude
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In equilibrium we have;

VA (PaC02 S)A (1.18)

And the incremental equilibrium controller gain is;

dV
dPA =A (1.19)

dPa2 -aCO

As the controller is instantaneously acting, its transfer function is

independent of frequency and is described by;

IA(f)l = A (1.20)

<A(f) = 0 (1.21)

In that this model includes only one feedback pathway, it

represents an approximation of the human control system. It is well

known that in man, separate C02 receptors exist in several locations.

1) Aortic Arch receptors exist which detect PaCO and transmit

afferent information through the vagus nerves.

2) Carotid Body receptors detect carotid arterial Pco and PO and
2 2

relay this information through the carotid sinus nerves to the

brainstem.

3) Brainstem receptors exist in the ventral medulla which are believed

to respond to the PCO of the cerebrospinal fluid bathing the

brain.brain.
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The model controller is intended to represent only the concerted

action of the carotid body receptors. The rationale for this is as fol-

lows;

1) careful studies of the response to changing PaC0 with and without
2

intact vagus nerves indicate that aortic chemoreceptors are unim-

portant in human respiratory control.

2) both animal (27,28,29,30) and human (31,32,33,34) have indicated

that brainstem receptors have little or no response to PaC oscil-

lations at the typical frequency of CSR (fc) . Thus the brainstem

receptors are not expected to contribute to ILG(fc)l.

3) Although it includes no explicit description of the influence of

Pa0 on ventilation, the model is appropriate for simulating the

relative stability of respiration in the immediate vicinity of any

equilibrium level of PaO . We feel that the significant decrease

in model complexity justifies this limitation.

2.2.3. The Pure Delay Transfer Function:

The pure time delay has no effect on signal amplitude from input to

output. It does, however, introduce a phase shift which is a linear

function of frequency. The transfer function of this element is given

by;

ITc(f)l = 1 (1.22)
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<Tc (f) = -2nfTc radians (1.23)

By using a fixed model delay, we have assumed that the circulation tran-

sit time remains constant.

2.3. Loon Gain of the Minimal Model -,: -T a :

Recall that for a single loop linear system, the loop gain is

defined as the complex product of the transfer functions around the

loop. In this case;

LG(f) = A(f)B(f)T (f) (1.24)

Equivalently;

ILG(f) -= IA(f) lB(f) Tc(f) (1.25)

(LG(f) = <A(f) + <B(f) + <T c(f) (1.26)

Combining eqs. 1.15, 1.20, 1.22, and 1.25 gives;

ILG(f) = AB (1.27)

((2rnfTO) 2 + 1)5

Combining eqs. 1.16, 1.21, 1.23, and 1.26;

<LG(f) = -2nfTc - tan 1(2nfT) radians (1.28)

2.4. Stability of the Minimal Model:

The absolute stability of the model may be evaluated using the

Nyquist criteria. To do this, ILG(f)I must be evaluated at f = fc,

where f is defined implicitly by;
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_<LG(f) = -180 ° = -n radians

Combining eqst 1.28 and 1.29 yields;

(1.29)

tan (2nf T )
C T C c 0 1 (1.30)

The absolute stability criterion for the model may thus be restated as;

ILG(fc) I = AB

((2fcTO) 1)

Equation 1.31 indicates that ILG(f 0)l is determined by the magni-

tudes of two dimensionless parameters;

AB: which may be regarded as the incremental equilibrium loop gain mag-

nitude

fcTO:which determines the effective attenuation of the loop gain magni-

tude at the critical frequency

In addition, by combining eqs. 1.12, 1.14, 1.19, and 1.22 with eq. 1.31

we obtain the condition which must be satisfied (eq. 1.32) to produce

unstable model behavior;

APvoQCKsl (PB PW)
2

(VA + QCKsl(PB - P )

1

(2nf mlv)2
c

(VA+ QCKsl(PB- PW) )

> 1 (1.32)
.5

+ 1)

In addition;

> 1 UNSTABLE (1.31)

�_ _____ _ __ __ I__ _ ____ _�
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AP vco2QcK l(PB- PW)

AB = (1.33)
2

(VA + CKsl (PB - PW)

f mlv
fcT = f (1.34)

VA + QcKsl(PB Pw)

$A;e~P ;t>O-+ bL e 4 i- T > * 1: a s or e L- d ' a- '£t'' P A eS ^ v 

Equations 1.32 and 1.30 provide the relationships by which we have

estimated ILG(f ) in a series of human subjects, as described in the

next chapter. We can see that in addition to monitoring ventilation, 6

parameters must be measured in each subject;

1) A

2) aC

3) Ksl

4) P C0
2

5) mlv

6) TC

According to this model, these 6 parameters are the essential deter-

minants of the relative stability of respiration. We shall now illus-

trate the relationship between relative stability and ILG(fc)I for the

model.

2.5. Relative Stability vs. Loop Gain:

The model relationship between ILG(fc)l and relative stability is
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illustrated implicitly in figure 2.2. This family of waveforms depicts

the controller output VA, as a function of time, and is parameterized by

ILG(f )l. Each waveform comprises an initial constant VA characteristic
c A

of the equilibrium state, followed by the response to a 2.5s increase in

P CO of 1 torr. It is readily apparent that with increasing ILG(fc)I,
aCO2

both the amplitude and duration of the post-stimulus oscillations also

increase. Note especially that for ILG(fc)l = 1.05 the model is

unstable, and the oscillation amplitude increases from cycle to cycle.

The waveforms of figure 2.2 indicate that for the model, VA is a

continuous positive valued quantity which is constant at equilibrium.

The equilibrium state of human respiration, however, is characterized by

phasic fluctuations in lung volume and therefore VA' The controller

output of the model may be considered a representation of the net alveo-

lar ventilation which occurs with each breath in human respiration. The

lack of a direct analogy between respiration and model output poses a

problem for the following reason;

an important methodological constraint in validating the model

predictions of relative stability is that both model simulations

and experimental waveforms must be analyzed by identical signal

processing techniques.

Experimental recordings of breathing patterns may be converted to

continuous VA estimates of the same form as the model output. To do

this, breath by breath estimates of VA could be computed from the exper-

imental time series. This technique is undesirable for two significant

reasons; 1) information regarding independent oscillations in the rate

and depth of breathing is discarded and 2) the breathing rate is not
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fixed so that the data samples are not uniformly spaced in time. The

first consideration may cause a bias towards accepting model predictions

of experimental observations and the second requires that different con-

siderations be applied to the signal processing of model and experimen-

tal waveforms-_ ... : 

Instead of converting the data to the format of the mondel output,
5so it - -1 a<' -G I aZr, 0 1;;Y ,*-On Cr: Ale i S -t; t i- ` ts' 1 _ i U e Xi .

we have converted the model output to the format of the data. This

conversion in no way alters the functioning of the model; V is

preserved as an internal signal. However, the VA signal is used to gen-

erate an additional output which represent lung volume as a function of

time (v(t)). This id done by decomposing VA into rate and depth com-

ponents. The rate, or breathing frequency is chosen a priori and

remains constant. Any fluctuations in controller output are then

reflected as an amplitude modulation of the v(t) waveform.

Figure 2.3 uses v(t) to illustrate relative stability in the style
o figur. 2.. ahe

of figure 2.2.. -The P aCOdisturbance occurs on the third "breath" of

each waveform. The breathing frequency chosen here is .2 Hz, ehich is

typical of adult respiration. Note that equilibrium is characterized by

a non-sinusoidal waveform. In fact, this "carrier" waveform is the

absolute value of a sine wave with a frequency of .1 Hz. The "absolute

value" sine wave was chosen to provide a phasic pattern more closely

analogous to the physiologic waveform. Although the absolute value

function is a non-linear operation, it is employed solely in the genera-

tion of the lung volume output. It neither introduces a non-linearity

into the control loop, nor invalidates the model expressions derived for

LG(f) and fc.
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2.6. Defining the Measure of Relative Stability:

Figures 1.2 and 1.3 have illustrated the relationship between the

system response to an impulsive disturbance and the value of LG(f )I.

As indicated in the introduction, many specific measures of relative

stability based on the impulse response have been applied to physical

control systems. For example; peak amplitude of the first cycle, time

after disturbance of the first peak, and effective damping coefficient

are commonly used. Because the human control system is not truly a

second order system, and because it contains significant random varia-

bility, or noise, we have sought a more robust measure of relative sta-

bility. We have defined the low frequency power of the impulse response

as our measure of relative stability.

The logic of this measure is illustrated in figure 2.4 which dep-

icts the power density spectrum of the impulse response at ILG(fc)l =

1.05 (figure 2.3). The distribution of power for this waveform is dom-

inated by two peaks. The high frequency peak, centered at .2 Hz arises

from the phasic nature of the equilibrium waveform, and by analogy to

modulation may be regarded as the "carrier peak". The lower frequency

peak, centered at equilibrium waveform. It is the power of the low fre-

quency which is the basis of our measure of relative stability. The

protocol for calculating the relative stability from a transient

response waveform is as follows.

1) Two time series are obtained and sampled at .2s intervals; a) the

prestimulus epoch = 102.4s of ventilation waveform obtained immedi-

ately after the onset of the disturbance, and b) the post-stimulus

epoch = 102.4s of ventilation waveform obtained immediately after
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the onset of the disturbance (which we shall refer to as the

stimulus).

2) The power density spectrum of each waveform is computed using

smoothed periodogram techniques. (See Appendix 1 for a description

stin6fthe' tclinical details-mfid thei-significance) .....

3) The total power of the carrier peak (centered at the mean breathing

frequency) is computed for the pre-stimulus spectrum.

4) Both pre-stimulus and post-stimulus spectra are normalized by the

total power of the pre-stimulus carrier peak. This controls for

the direct effect of carrier power on disturbance induced low fre-

quency power.

5) The normalized pre-stimulus spectrum is subtracted from the normal-

ized post-stimulus spectrum. This difference describes the normal-

ized redistribution of power, or power induced by the stimulus.

6) The power at all frequencies is normalized by the peak magnitude

(in torr) of the disturbance. This controls for the direct influ-

ence of stimulus amplitude on the low frequency power of the system

response.

7) The measure of relative stability, low frequency power, is defined

as;

.1Hz
low frequency power = f power(f)df (1.35)

.01Hz

Here, power(f) is the normalized function of frequency obtained after
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step 6 of the above protocol.

Low frequency power is a measure of relative stability based on the

power of the "envelope" oscillations induced by a transient disturbance.

This measure is robust in that it is relatively insensitive to minor

deviation from linear second order system behavior which may be induced

by random variability or non-linearity in the biological control system.

In addition, as appropriate normalization has been employed, the magni-

tude of low frequency power will be sensitive only to ILG(f )l. Most

importantly, identical signal processing techniques may be employed in

evaluating low frequency power from model and experimental waveforms.

In fact, the numerical values for intersample interval and epoch dura-

tion have been based on experimental constraints as described in the

next chapter.

Figure 2.5 illustrates the relationship between low frequency power

and ILF(f )I (labeled loop gain). Notice the sigmoid nature of this

relationship. For ILF(fc)l less than approximately ILG(fc)I = .5 - .6,

a "knee" occurs and low frequency power increases rapidly with increas-

ing ILG(fc)l. This knee may be regarded as analogous to the transition

from overdamped to underdamped behavior. Only for the underdamped case

is the system response oscillatory.

Figure 2.5 forms a prediction for the same relationship in human

respiration. This prediction is quantitatively validated in the next

chapter. Appendix 2 contains a detailed evaluation of the minimal model

using population normal parameter values. The conceptual value of con-

sidering ILG(f ) in terms of 2 dimensionless parameters is demon-

strated. A detailed comparison to the model of Khoo et. al. (15) is

also provided. Appendix 3 explores the use of describing function
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analysis to allow the analytic description of a single saturation non-

linearity to be included in the model. This saturation is motivated by

the observation that physiologically, VA must be non-negative. Includ-

ing this non-linearity allows fixed amplitude oscillations analogous to

periodic breathing to be modeled for ILG(f ) > 1.
c
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FIGURE CAPTIONS

Figure 2.1: Block diagram representations of; a) the essential phy-

siologic elements of the respiratory control system, and b) the

equivalent representation of the linear control systems model.

Figure 2.2: Illustration of model response to a 2.5s 1 torr disturbance

in PaCO for various values of ILG(fc)I. All waveforms are plotted on a
2

common abscissa. The time scale is provided by the lOs bar. The ordi-

nate for each waveform is VA as scaled by the .51 bar. Note that both

the strength and duration of the oscillations in VA increase with

increasing ILG(fc)l. For ILG(f c) = 1.05, the model is unstable, as

indicated by the growth of the oscillation with time.

Figure 2.3: Implicit illustration of relative stability versus LG(f )i

in the format of figure 2.2. In this case, waveforms represent v(t)

rather than VA. The disturbance occurs on the third "breath" of each

waveform.

Figure 2.4: Power density spectrum of model response to 2.5s 1 torr

disturbance in ~PaC02 for ILG(fc)I. Abscissa is frequency (Hz) and the

ordinate is power density. Note the resolution of the impulse response

into 2 distinct frequency components. The higher frequency peak arises

from the phasic nature of the equilibrium pattern. The lower frequency

peak arises from the modulation of the equilibrium pattern induced by

the disturbance.

Figure 2.5: Relationship between low frequency power and ILG(fc)l for
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the minimal model. Note the sigmoid shape of this function. A 'knee'

exists in the region of ILG(fusbc)l = .5.
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CHAPTER 3

VENTILATORY RESPONSES TO TRANSIENT PERTURBATIONS OF ALVEOLAR

C02 DURING GRADED HYPOXIA IN MAN

3.

3.1. Introduction:

As described in the introduction, under certain conditions,

the breathing of healthy adults can follow an oscillatory pattern which

closely resembles Cheyne-Stokes respiration (CSR). For example, this

type of CSR may occur; 1) following voluntary hyperventilation (35) , 2)

at high altitude (36,19,37) and 3) during sleep (38). A common link

between these conditions is a degree of arterial hypoxemia; and indeed

hypoxemia has been postulated as a potent cause of CSR

(35,19,37,38,1,39,36).

Control systems modeling of respiration has provided the insight

that an increase in sensitivity of the CO2 control mechanism caused by

hypoxemia (40,41,42,19,43,44,45,31,46) may cause an instability in

respiratory control (39) demonstrated by oscillatory breathing. In

fact, simulation studies have shown that mathematical models of respira-

tory control can qualitatively account for virtually all conditions

known to induce CSR in animals (47,16) and humans (9,14,12,15,16). The

implication of this finding is that whenever CSR occurs, it is a man-

ifestation of instability in the biological control system. The

behavior of these models also suggests that human respiration may be
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characterized by a continuous relative stability, one extreme of which

represents unstable operation.

While these implications are quite provocative, no mathematical

model of CSR has been quantitatively validated. As previously

described, it is the complexity of these models which has prevented

their direct validation. In the previous chapter, a minimal model of

respiratory control was described. The loop gain (LG(f)) and hence the

relative stability of this model is constrained by 6 physiologically

distinct parameters. In addition, the low frequency power was defined

as a measure of relative stability which could be applied to human

respiration. Finally, the model relationship between low frequency

power and loop gain magnitude (ILG(fC)I) was demonstrated. This rela-

tionship forms a prediction of the relative stability of respiration in

any individual based on the ILG(f ) for his control system.

In this chapter, we shall describe the methods by which we have

determined the relationship between relative stability and ILG(f c) in

15 healthy normal adults. In each study, measurements were made of each

parameter necessary to characterize ILG(fc )I. In addition, a series of

transient disturbances were induced in order to assess the low frequency

power. These measurements of ILG(f ) and low frequency power were

repeated at several levels of background hypoxia. The objective of this

protocol was to characterize the relative stability of respiration at

several loop gains in each subject by taking advantage of the well known

hypoxic potentiation of the CO2 sensitivity (and hence LG(fc)l).

Finally we demonstrate that the observed relationship between rela-

tive stability and loop gain is quantitatively predicted by the minimal

mathematical model. The implications of this finding are discussed.
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3.2. METHODS

3.2.1. Apparatus:

The experimental apparatus used in these studies has two basic

roles; 1)to manipulate the inspired gas composition-in order to induce

steady-state changes in'PaC o2 P and short duratioa,- impulsive
aCO2 ao2

disturbances in PaC and 2V)to record all relevant baseline and
2.

respiratory response data. The first function is served by seating the

subject in a comfortable armchair and positioning a hood over his head

to the shoulder level (figure 3.1). A known mixture of 02, N2, and C02

is passed first through a humidifier (cascade; Bennet), and then into

the upper end of the hood. The total gas flow rate is maintained at a

minimum value of 2.0 ls - 1 and a baffle is used to distribute this flow

uniformly over the cross section of the hood. The 02 concentration of

the mixture is continuously monitored at the inlet to hood (model 5575;

Ventronics).

It is our interest in studying the pattern oof ventilation which has

motivated the use of this gas delivery system rather than the more com-

mon face-mask or mouthpiece apparatus. Direct evidence exists which

demonstrates dramatic alterations in the steady-state breathing pattern

when adults at rest breathe via masks or mouthpieces(48).- It is

believed that this may be a result of oral mucosal stimulation and or

mechanical loading of the respiratory system. Both of these situations

are obviated by the use of the hood, although slight trigeminal stimula-

tion may be caused by gas convection. a;; :Fz-;:; -...
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Four signals are recorded simultaneously on a polygraph (model 78D;

Grass) and on a magnetic tape (3968A Instrumentation Recorder; Hewlett

Packard) later replayed for analysis by digital computer (VAX-11/750;

Digital Equipment); ECG, airway Po , transcutaneous P02, and instan-

taneous lung volume. The electrocardiographic activity is monitored

using silver silver-chloride electrodes in a lead I configuration. Air-

way Po is monitored by infrared absorption (model PM-20NR; Cavitron).

The response time of this instrument (< 150 ms) is suitable for monitor-

ing end-tidal gasses in adults. A transcutaneous P electrode (TCM-2;

Radiometer) is placed in the left supraclavicular fossa. Respiration is

monitored by inductive plethysmography (Respitrace Corp.) using both

thoracic and abdominal transducers. Numerous quantitative validations

of this technique have been published (49,50,51). This instrument is

calibrated for each study, employing the simultaneous equation technique

of Watson(52). This calibration is checked in a sitting position before

the hood is placed and again at the end of each study. For recording

purposes, we select a final 1 volt per liter signal level.

3.2.2. Experimental Protocol:

We have performed the following protocol on each of 15 adult male

volunteers (age = 24.3 + 1.7) from whom full informed consent had been

obtained. The health of each subject was established by a negative his-

tory for neurologic and cardiovascular disease and chronic or acute

respiratory disease. In addition, performance on standard flow-volume

maneuvers was evaluated. The functional residual capacity of each sub-

ject was measured by whole-body plethysmography (body plethysmography
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system; Warren E. Collins).

At the start of each study the subject was comfortably seated (as

in figure 3.1) and allowed to rest quietly. A CO2 sampling cannula was

positioned superficially in one of the ala nasi. After the end-tidal

CO2 partial pressure has stabilized (visual inspection of the polygraph

redco'd) 2 Z minu tsof--quetbreathing were recorded ii"brdert charac-

terize the resting minute ventilation, PACO and CO excretion.
ACO 2 2

The remainder of the experimental protocol is illustrated in figure

3.2; where time is shown on the abscissa and the inspired gas composi-

tion is indicated by the ordinates. At the start of each study, the

subject breathed room air (21% 02 and 0% C02) and a series of measure-

ments was made in order characterize the equilibrium gain and time con-

stant of the controlled system (B and T, respectively). Recall from

equations 1.12 and 1.14, that in order to evaluate B and T, the follow-

ing parameters must be measured; cardiac output, mixed venous PC0 2, the

mean lung volume, the solubility of CO2 in blood, and the water vapor

pressure in the alveolar gasses.

The following rebreathing maneuver allowed P C0 and QC to be

estimated. With a nose-clip in place, the subject breathed deeply and

rapidly through a mouthpiece into a closed, 800 ml bag for 30 seconds.

During this interval, no C02 excretion occurred, and the gasses of the

lungs and the bag equilibrated with mixed venous blood. By measuring

the PCO of the bag before significant recirculation from the tissues

occurred, we obtained an indirect measure of P . This maneuver
vCO2

represents only a slight modification of the rebreathing technique of
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Campbell and Howell (53). Figure 3.3 illustrates the maneuver and the

corresponding CO2 waveform seen in the bag. As we shall later

describe, the equilibrium Fick equation for C02 was then used to provide

an indirect measure of cardiac output.

The hood was next positioned over the subject's head and ventilated

with room air. The subject was asked to relax using the hood as a

head-rest. Miniature headphones were provided for listening to soft

classical music. The remainder of the protocol required approximately

90 minutes.

A minimum of 10 minutes was allowed for the subject to reach a

steady-state breathing pattern under the hood, in a bias flow of room

air. The inspiratory C02 concentration was then briefly elevated to a

peak of approximately 4%. This created a transient disturbance in the

equilibrium between VA and P C02 The response to this disturbance was

used to characterize the relative stability of respiration as described

in Chapter 2. Figure 3.4 illustrates a typical transient response

sequence. The first half of this record represents normal resting

breathing and will be referred to as the pre-stimulus epoch. The post-

stimulus epoch begins with the first inhalation of elevated PO and

also lasts 102.4s. The direct effect of the stimulus lasts from 2 to 5

breaths, and creates a peak elevation in end tidal P of 2 to 10 torr.

A minimum of 2 minutes following the post-stimulus epoch was allowed for

respiration to return to baseline. This transient stimulation was per-

formed from 2 to 4 times. No stimulus was applied at a time when sus-

tained ventilatory oscillations could be observed on the polygraph
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record.

Following the final transient response, the CO2 sensitivity was

determined as a measure of the subject's controller gain. To do this,

the inspired CO2 concentration was raised to approximately 4%. This

FICO was maintained for 3 minutes. The final 2 minutes of this period

were used to characterize the CO response. This CO response measure-2 2

ment is similar to rebreathing techniques in that 3 minutes is insuffi-

cient time for the body tissues to equilibrate with the elevated FIC0

For this reason, PC and hence-PaCO rise slowly during the final 2

minutes of this protocol. The rate of this rise, however, is slow with

respect to the speed of response of the arterial chemoreceptors

(54,55,56,57). The adequacy of this technique to provide an appropriate

measure of chemosensitivity for the study of transient responses is

demonstrated in the discussion section of this chapter.

The challenges and measurements described thus far are sufficient

to allow both the loop gain of the control system, and the relative sta-

bility of respiration to be estimated. Both the transient and steady-

state CO2 responses were then repeated at FIO 's of 15% and 12%, with2 Iosponse2

the objective of measuring relative stability at higher loop gain magni-

tudes. A 10 minute equilibration period was allowed after each change

in FIo before a new series of CO2 responses was recorded following the

protocol outlined above. After the final steady-state CO2 response

recording, the hood was once again ventilated with room air for 10

minutes and the protocol was terminated.
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3.2.3. Analysis Procedures:

The data were digitized by replaying the tape through a 6 pole

Butterworth filter (corner frequency = 10 Hz), and sampling at 40 per

second. The digitized data were then convolved with a 31 point finite

impulse response low pass filter (corner frequency = 2 Hz), and every

8th sample was stored. The effective sampling rate is 5 per second. The

digital filtering in the final step was non-causal and the only phase

shift appeared in the form of a pure delay which affected all signals

uniformly. Calibration information recorded at the time of the study

provided the scaling factors for the airway Pco (torr) and instantane-

ous lung volume (liters) signals.

3.2.3.1. Loon Gain Calculations:

Recall from Chapter 2 that we wish to determine the relationship

between ILG(fo)j and relative stability for each subject. In this sec-

tion, we describe the calculations by which ILG(fc)I was estimated.

3.2.3.1.1. The Controlled System:

We shall now describe the method by which the controlled system

gain was estimated, where;

vCO2QC sl( P B W) 12
1B(f)I =

C I 2 ' .5
(VA + QCKl(P P W)) (27nfmlv)2

+ 1)

(VA + QCKsl (P B - ))

The recordings necessary to evaluate this expression were made at the
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start of each study. Two minutes of resting breathing were used to

estimate; V and V V and the dead space volume, VD were
2co 

estimated using a modification of the Douglas-bag technique:

Ten liters of exhalatory gas were collected at the beginning of the

2 minute interval, and the total collection time was noted. The

CO2 volume fraction (Fco0) of this gas was measured in order to

calculate Vco by;
Co2

Co2 -1
co2 collection time (s) ls

In addition, the end-expiratory Pco was determined for each breath

in the collection interval by visual inspection of the airway Pco

record. The mean PAC was estimated as the mean end-expiratory
2

PCo for all breaths during the collection. The mean expiratory
2

tidal volume (VT ) was taken as 10/N liters, where N was the number

of breaths. The dead space was estimated as;

PCO
VD V (1- 2

D = VT(1 PACO)

Finally, the mean VA was calculated as;

V
lOx(1 -V

VT- 1 -
VA 'collection time-s

The rebreathing protocol described above was used to estimate

c (K)sl as;



- 58 -

V

_K -~Vco 2
Cs' ACOCsl (PVC02- PACO2)

2 2

As cardiac output and CO2 solubility always appear together as a pro-

duct, we have no need to estimate them independently.

The barometric pressure was measured by mercury manometer at the

time of each study. The water vapor pressure of the alveolar gasses was

assumed to have a normal value of 47 torr. From the measurements out-

lined above, we calculated B(.044Hz)l, where .044Hz was the mean criti-

cal frequency observed over all subjects. IB(.044Hz)I was assumed to be

constant throughout each individual study. To complete complete the

estimate of ILG(.044Hz)I, the controller gain, A was evaluated.

3.2.3.1.2. The Controller:

The value of A was measured from the response to steady-state C02

breathing at each FiO in each study. Breath by breath analyses of 2

data epochs were performed for each response; 1) a 2 minute control

epoch ending at the onset of increased FICO , and 2) a 2 minute response

epoch beginning 1 minute after the onset of increased FICO . The value
2

of A was calculated as;

C

V i_ V
A A =A A

PAC - PR PC
ACO2 PACO2 ACO2

superscript R = response epoch

superscript C = control epoch

These values of A were combined with the controlled system calculations
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to obtain estimates of ILG(.044)I at each level of hypoxia in each

study.

3.2.3.2. Relative Stability Calculations:

As' previously indicatedthe responses to tra-is ient distu rbances in

P <were uased'to characterize therelative stability of respiration in
aCO

these studies. All transient responses were identified and analyzed

according to the methods described in Chapter 1, subject to the follow-

ing exclusion criterion; neither the pre-stimulus nor the post-stimulus

epoch of any transient response was coincident with those of any other

transient response. Such coincidence was not a problem for the planned

disturbances. However, spontaneous sighs also induce transient distur-

bances on PaCO with a magnitude similar to those induced as part of the

protocol. ' Both induced and spontaneous transient responses were

analyzed 'subject tb theZ abov~ xlusion criterion. -Each acceptable

response was analyzed in order to determine the power(f) function and

the low frequency power. The signal processing techniques employed in

these calculations are precisely the same as those employed in analyzing

the model responses in Chapter 2. These methods are described in detail

in Appendix 1. Eighty five transient responses have been analyzed from

the 15 studies.

In order to illustrate the average characteristics of power(f)

obtained from these 85 responses, one additional step has been taken.

For each response, the frequency axis of power(f) is normalized by the

mean breathing frequency of its own pre-stimulus epoch. All 85 power(f)

functions were rank ordered by their corresponding values of

1
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ILG(.044Hz) and divided into six ranges. The average power(f) was then

computed for each range.

3.3. Results:

3.3.1. Baseline Results:

Table 2.1 presents the values of the baseline parameter estimates

obtained from each subject during resting breathing of room air. The

range across subjects of each parameter and of ILG(.044Hz)I is typical

of normal adults. These results are presented primarily for comparison

to previous work.

3.3.2. Power(f) versus ILG(f )I: Model Results

Figure 3.5 presents the normalized power density spectrum of the

phasic model output observed during the pre-stimulus or equilibrium

state. This figure is a 3 dimensional projection plot of power density

against loop gain magnitude and normalized frequency. The 6 values of

ILG(fc)l correspond to the means of the six groups of experimental

responses. It is readily observed in figure 3.5 that the relative dis-

tribution of power in frequency is not a function of ILG(f )l. At each

loop gain, the spectrum is dominated by a single peak. This peak is

centered at a normalized frequency of 1 due to the normalization.

Figure 3.6 illustrates the distribution of power in the post-

stimulus model output. In contrast to figure 3.5, note the presence of

substantial power at frequencies of less than half the mean breathing

frequency. This power arises from the low frequency oscillations in

�s�
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ventilation following the disturbance, and increases with increasing

loop gain. Only at the highest loop gain does any obvious redistribu-

tion of power occur in the vicinity of the control breathing frequency.

The actual change in power distribution between pre- and post-stimulus

epochs is defined by the power(f) function, which is presented in figure

3.7. This figure clearly demonstrates that significant low frequency

power is added to the model output in the post-stimulus epoch. This

power increases with loop gain magnitudes of greater than approximately

.5. For lower loop gains, no significant redistribution of power occurs

at any frequency.

3.3.3. Power(f) versus ILG(.044Hz)I: Experimental Results

Eighty five transient responses have been analyzed. In order to

present the average response characteristics as a function of loop gain,

these transients have been pooled into loop gain ranges as indicated in

figure 3.8. The cutoffs of each range are noted at the top of the fig-

ure. The histogram of individual loop gains within each range is

presented in the middle of the figure, and the descriptive statistics

for each range are listed below the histograms.

Figure 3.9 presents the average pre-stimulus spectra as a function

of loop gain. As for the model, the average power spectrum is not sys-

tematically dependent on the average loop gain. Each of the 6 average

spectra is characterized by a single carrier peak. No significant power

exists aside from this peak. In addition, the morphology of this peak

shows no obvious dependence on loop gain.
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The dependence of the average post-stimulus spectrum on loop gain

is seen in figure 3.10. A major difference between pre- and post-

stimulus spectra is that significant low frequency power exists in the

post stimulus spectra, which increases with loop gain magnitude. There

also exists a significant carrier peak at each loop gain. These peaks

are not centered precisely at unity, but the location does not appear to

be systematically dependent upon loop gain. The width of the peak is

broader than the corresponding pre-stimulus peak at all loop gains.

Inspection of individual spectra reveals that this broadening results

primarily from a variable location of the carrier peak in the post-

stimulus spectra. Averaging the individual spectra then creates the

broadening seen in figure 3.10. In addition, note that the carrier

peaks at the two highest loop gains contain significantly more power

than their corresponding pre-stimulus peaks.

Figure 3.11 presents the average power(f). At low loop gains, lit-

tle power has been added to the ventilation spectra by the perturba-

tions. Deviations from baseline for loop gains less than .5 represent

minor changes in the morphology of the carrier peak. As the loop gain

increases further, significant, systematic spectrum changes do occur,

however. The same unit of perturbation adds significant power to the

spectrum. This power appears at dimensionless frequencies; 1) below .4,

and 2) in the immediate vicinity of 1. The power added in each of these

regions increases with increasing loop gain. This figure provides

direct evidence that the power of the ventilatory response to transient

PaCO perturbations is; graded, frequency specific, and strongly depen-

dent on loop-gain. In addition, a comparison of figures 3.7 and 3.11

indicates that each of these features is as predicted by the behavior of
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the minimal model. It should again be emphasized that identical signal

analysis techniques were employed in analyzing both model and experimen-

tal waveforms. This 3 dimensional format is useful for illustrating one

additional point; the distribution of-power in resting ventilation as a

function of LG(.044Hz). ;'-. r -- -; .

3.3.4. Power Density Spectra of Resting Ventilation:

In addition to the transient responses just described, 13 epochs of

sustained spontaneous oscillation were identified. The operational

definition of these epochs was; at least 10 visible cycles in ventila-

tion must occur, for which the mean peak to trough change in minute ven-

tilation for the last 5 cycles must be as great as the mean for the

first 5 cycles. Seven epochs of sustained oscillation occurred during

resting ventilation, including 2 epochs with Fio = 21%. The remaining

6 epochs were triggered by transient perturbations. These six epochs

have been included in the analysis of transient perturbations. If we

include the 7 control epochs of sustained oscillation with the set of

pre-stimulus epochs, the result is depicted in figure 3.12. This figure

presents the tendency of the system to display self-excited oscillations

at different loop gains. In contrast to figure 3.9, note the signifi-

cant increase in low frequency power with increasing loop gain. This

result indicates that the occurrence of spontaneous oscillations may

indeed be regarded as the result of self-excitation, and that their

power may be understood in terms of the relative stability of the con-

trol system.

The three dimensional plots described above afford an excellent
..... :: F... . .,.N. .. .

�II _I_
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means of examining the distribution of ventilatory power as a function

of loop gain. They provide a direct visual basis for making feature

comparisons between model and experimental responses. However, only

average experimental behavior is illustrated. In addition, it is diffi-

cult to illustrate quantitative comparisons in this three dimensional

format. As defined in Chapter 2, the low frequency power is a more suit-

able quantitative basis of comparison.

3.3.5. Low Frequency Power versus ILG(f )|:

A plot of low frequency power vs loop gain for all 85 transients is

presented in figure 3.13. Transients from different studies are coded

by different letters. -Coincident points are plotted as asterisks.

Treating all points equally, a correlation coefficient of R = .83 is

obtained between low frequency power and the loop gain estimates at .045

Hz. This verifies a significant relationship between these two quanti-

ties even when no averaging is performed. In addition, performing a

linear regression yields an intercept of -.07 and a slope of .23, as a

description of this relationship.

Figure 3.14 highlights the correlation between low frequency power

and loop gain within each experiment. To obtain this plot from figure

3.13, a single point was computed for each gain estimate in any experi-

ment. The value of low frequency power for each such point was taken

as the average low frequency power of all transients analysed from that

hypoxic steady-state. Points from each study are connected by line seg-

ments. This slight degree of averaging improves the correlation to R =

.88 without changing the regression significantly (p .05). Note also

~~1~~~ 1~~~ 1- 
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that low frequency power tends to increase with increased loop gain

within each study as well as over the entire data set. A one-way

analysis of variance on the six data groups described in figure 3.8,

also indicates -that low frequency power is significantly dependent on

loop gain magnitude (P < .0001). .

Figure 3.15 presents the model prediction, superimposed on figure

3.14. Good agreement is seen between the model behavior and the data

points. In fact, an inflection point in the data is suggested by the

knee in the model curve. In order to test the degree of fit between the

model prediction and the experimental data, the residual errors were

examined. Analysis of variance indicates that the mean error is not a

function of loop gain magnitude. The mean error over all loop gains,

however, has a value of .039 and is significantly greater than zero (p >

.05). This error represents approximately 10% of the low frequency

power observed at the highest loop-gains.

3.4. Discussion:

The results just described provide the first direct evidence that

the tendency of the respiratory control system to oscillate under both

free and forced excitation is quantitatively linked and in a graded

fashion, to the relative stability of the equilibrium operating point.

Although it has long been known that transients such as sighs may pre-

cipitate oscillations, this is the first systematic demonstration that

such induced periodic breathing is only an extreme case of the response

to transient CO2 disturbances which occurs under conditions of low rela-

tive stablility. These results indicate that both spontaneous and

P - --
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induced oscillations in respiration may be quantitatively accounted for

by the dynamic operation of the control system. While our findings do

not exclude the existence of self-contained oscillators in the central

nervous system (5,7,4) , they do indicate that such oscillators need not

exist in order to account for ventilatory oscillations induced by

hypoxia. In addition to these major conclusions, several specific

points merit further discussion.

3.4.1. FI versus Controller Gain:

Table 2.1 describes the average controller sensitivity to Co2 for

Fio of 21%, 15%, and 12%. The hypoxic potentiation of A indicated in
2

this table is consistent with many previous observations, but the magni-

tude of the sensitivity at each Fo is approximately half of the typi-

cal values reported by Edelman et. al. (46). There are several possible

sources for this discrepancy. First, the sensitivities reported in fig-

ure 3.5 are for changes in alveolar ventilation, while the values

reported by others are typically for changes in expiratory ventilation.

However, we have computed expiratory sensitivities as well, and this

factor accounts for only 30% of the discrepancy.

Another factor is that we have not determined true steady-state

sensitivities. Our response epoch is taken from the second and third

minutes of C02 breathing. While this time is sufficient for alveolar

equilibration, it is insufficient for tissue equilibration(58,59,10,15).

In fact, Khoo et. al. (15) estimate that the normal time constant for

equilibration in brain tissue is 80 seconds. Thus at the time we begin

I�·lOllisllB--·-·rs�----··----·------�- -
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our response measurement, the brainstem chemoreceptors are not contri-

buting their full steady-state response. This may be an important fac-

tor, as the central chemoreceptors are believed to contribute greater

than 50% of the normal C02 sensitivity even under mild hypoxia (31,32).

The sensitivity- measurements reported by Edelman and others have allowed

sufficient time for full equilibrium responses to occur. s..

Another factor which could decrease the magnitude of our measured

sensitivity is that isoxic conditions were not rigidly maintained during

CO 2 breathing. Although the mean PAC elevation was less than 5 torr,

the increased alveolar ventilation creates a slight increase in PAO
2

This elevation in PaCO should reduce the measured response somewhat.

We cannot quantitatively evaluate this effect as direct monitoring of

PaO was not available.

One final factor which may have influenced the sensitivities we

measured is the gas distribution system. An important design criterion

of this system was that that no mechanical contact with the airways be

imposed. Such contact is known to influence steady-state breathing pat-

terns (48) and may also influence steady-state sensitivity. Any such

influence would be absent from our measurements.

Of the factors outlined above, the most significant is probably the

fact that in our protocol, the central receptors reach only a fraction

of their equilibrium response. For our purposes, however, this is

desireable. " v In characterizing the ability of the controller to support

self-sustained oscillations, we need to know the sensitivity to oscilla-

tions which occur every 20 seconds. The speed of response of the



- 68 -

central receptors is so slow that they undoubtedly contribute little

sensitivity to such oscillations. If our arterial steady-state sensi-

tivity measurements contain any significant portion of central response,

we might expect them to overestimate the appropriate sensitivity.

Indeed, several studies have shown that the controller sensitivity at

frequencies of several per minute is significantly less than the full

steady-state sensitivity (34,33,31).

In order to assess the validity of using arterial steady-state

responses to characterize the controller response to an oscillatory

PACO , we developed a technique of estimating the controller sensitivity

at the frequency of the oscillation for each transient response

analysed. The basis of this technique is as follows;

1) breath by breath sequences for end-tidal PC0o and VA are computed.

2) These sequences are then expanded back to real time by according

each value a number of points equal to the duration of that breath

in the original time series.

3) The relative delay from C02 waveform to ventilation waveform which

maximizes the positive cros-correlation is determined. This delay

is usually between one and two breaths, and is inferred to be equal

to the circulation delay.

4) After applying this delay, the cross and auto spectra are computed

and employed to determine the transfer function between PACO and
VA, assuming ventilation to be the dependent variable.

VA. assuming ventilation to be the dependent variable.
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5) The magnitude of the transfer function at the frequency of tran-

sient ringing is taken to be the controller sensitivity.

6) This controller gain estimate may then be combined with B0 and TO

to obtain the appropriate loop gain estimate.

Figure 3.16 is a plot of this cross correlation loop gain estimate

(cclg) is plotted against the corresponding steady-state loop gain esti-

mate (sslg) for all 85 transients analyzed. The correlation coefficient

between the two estimators is .95. The linear regression has a slope

which is not significantly different from unity (p > .05), and an inter-

cept which is not significantly different from 0 (p > .05). Thus, for

the purposes of estimating the transient response sensitivities, sslg

and cclg are equivalent estimators. Given this result, there are two

major advantages to our use of the steady-state estimates to describe

the data.

First, from a methods viewpoint, it is superior to use the steady-

state estimates. In this way, one set of experimental procedures is

performed to constrain the model and a completely separate set of pro-

cedures is performed to evaluate its predictive capacity. Using the

cross correlation technique entails estimating a model parameter and

then evaluating the ability of the model to account for the same data.

The second advantage to using the steady-state sensitivity esti-

mates is statistical. the estimation uncertainty associated with cross

correlation estimator may be substantial. It is straight forward to

show that when this technique is used to estimate transfer functions,

the relative uncertainty in the magnitude is proportional to (1 - c2),
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where c is the coherence between the two signals (60). For a linear

transfer function in a deterministic system, c is unity. However, in

biological systems, c may be reduced by both nonlinear system behavior,

and the presence of random variability. For the transient epochs

analyzed here, the range of c2 is .13 to .91. This is similar to the

experience of others (18,61). For the epoch in which c2 is .13, the 75%

confidence interval is 150% of the estimate. Although the steady-state

technique provides no frequency specific information, the estimation

uncertainty is considerably smaller.

The conclusion of this analysis is that despite certain uncon-

trolled factors which may affect the steady-state sensitivity, this

technique provides a good estimate of the controller sensitivity to

transient excitation. This finding strongly reenforces the conclusion

that the minimal linear model evaluated, accurately predicts the

response to experimental transients. Let us now turn to a discussion of

the response spectrum data.

3.4.2. Interpretation of Power as a Function of Loop Gain:

The frequency domain was chosen to describe the experimental data

because we are considering inherently oscillatory phenomena. It should

be noted, however, that the frequency resolution is limited to + .0049

Hz. The oscillations we are describing have a characteristic frequency

of approximately .05 Hz. Although it would otherwise be desireable,

higher resolution can be obtained only by analyzing longer data epochs.

This is not practical in this study for two reasons; 1) if we apply

local perturbations, only at the highest loop gains studied do the

responses last even 2 minutes, and 2) especially at low Fio movement,
i 2
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coughing, sighing, and other behavioral responses occur with sufficient

frequency that it is difficult to obtain artifact-free responses many

minutes in duration.

Because of the limited low frequency resolution, response epochs

following sighs begin with the breath immediately after the sigh. As a

large ventilatory transient, if the sigh is included, it introduces low

frequency power beyond the resolution of the analysis. This power

"leaks" into the frequency range which is analyzed, corrupting out spec-

trum estimates at the frequencies of greatest interest. Several other

points must be made regarding the interpretation of figure 3.10.

Consider the distribution of power between frequencies of .4 and

1.0. In contrast to the model behavior (figure 3.7) the power in this

range is non-zero. It has already been noted that part of this power

derives from the variable distribution of the post-stimulus carrier

peaks. A second consideration is that if the location of the low fre-

quency peak is uncorrelated to the location of the control epoch carrier

peak, some smearing of the low frequency power will occur due to the

frequency normalization. This will tend to broaden the low frequency

peak in the average spectra. A third influence, especially at high loop

gains, is the possible occurrence of modulation induced side lobes about

the carrier peak in the post-stimulus spectrum. Such additional peaks

do in fact occur in a few individual spectra, but this phenomenon is not

resolved in the average spectra.

3.4.3. Model Simulations:

Consider the equilibrium waveform of the phasic model output (fig-
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ure 2.4). This waveform is obtained by taking the absolute value of a

sine-wave at one half of the mean breathing frequency. This has the

effect of creating an asymmetric one-sided" modulation based on the

controller output. This type of modulation is in fact analogous to the

physiologic situation in which tidal volume oscillates above a rela-

tively fixed functional residual capacity. Making the model carrier

correspond to the this situation has a significant impact on the spec-

tral characteristics of the model transient responses.

Simple modulation theory shows that if a .25 Hz sine wave is multi-

plicatively (amplitude) modulated by a .05 Hz sine wave, the spectrum of

the resulting waveform will contain power only at .2 Hz and .3 Hz. The

absolute value function has the effect of demodulating the waveform in

order to recover the 2 original frequencies. This implies that the low

frequency power seen in physiologic transient responses is linked to

this asymmetric modulation. The principal value of deriving this output

from the linear model is that identical analysis techniques may then be

applied to both simulated and experimental responses. This greatly

facilitates the quantitative comparison between model predictions and

the data.

3.4.. Comparing Model Prediction and Experimental Observations:

We have performed a comparison between model behavior and experi-

mental data based on low frequency power; the normalized power between

.01 and .10 Hz. This is desireable as it reduces the estimation error

associated with the computed power density at any single frequency.

This parameter also has the benefit of being relatively insensitive to

the precise period of the oscillation.
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As described above, our only estimates of the circulation delay

derive indirectly from optimizing the cross-correlation between the

PACO and VA waveforms of each transient. For this reason, we have not
2 A

employed the model relationship (eq. 1.30) to predict the critical fre-

quency in our studies. Instead,-we ave employed the mean oscillation

frequency over all 85 transients-of .045Hz as-the critical frequency in

aicases. his is justifie bi tihe fact that if we evaluate the loca-

tion of the low frequency peak as a functionibof either, loop gain or

Fi , no significant correlation is found (p < .05).

The important conclusions to be drawn from comparing the model

predictions to the experimental observations are that;

1) a significant relationship exist between the relative stability of

human respiration -and the loop gain of the respiratory control

s ystem; and

2) a minimal linear control system model can completely account for

the dynamics of this relationship

3.4.5. Implications for Other Models:

Much of the value in this model's ability to predict transient

response behavior stems from its minimal implementation. Under condi-

tions of steady-state hypoxia, this model provides analytic relation-

ships to describe the relative stability which are sufficient to predict

the conditions under which transient and sustained yentilatgry oscilla-

tions will occur on an individual basis.
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As our model is based on the same basic principles as most existing

models of CSR, these models may also successfully account for the exper-

imental data presented here. Some caution is well advised in making

this conclusion, however. Our model incorporates what we consider to be

a minimum set of elements essential in modeling relative stability. We

describe only one control loop, one single pole ow pass element and one

pure delay. As more elements and pathways are added, the resulting

model may predict response features which are not supported by the data.

For example, the linear model Khoo et. al. (15) includes a circula-

tion delay which is dependent upon PACO . Due to this dependence, they

predict a normal adult oscillation period of 30s for Fi0 2 = 21% and 21s

for F = 12%. Our data, as shown in figure 3.24 demonstrates a mean

cycle time of 22.13s for Fio = 21% and 22.6s for FiO2 = 12%; a differ-

ence does not achieve statistical significance. Thus the more compli-

cated model would erroneously predict a decreasing cycle time with pro-

gressive hypoxia. This dependence of cycle time does appear to be con-

sistent with the observations of Waggener et. al.(37) on spontaneous

oscillations at altitude. It may be that when sustained CSR is allowed

to develop, interaction between PAO and cycle time becomes more pre-

valent.

3.5. Conclusions:

The experimental results reported in this chapter provide direct

evidence that under conditions of progressive hypoxia, the power of ven-

tilatory oscillations induced by transient disturbances provides a meas-

ure of relative stability which is strongly correlated to the loop gain
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of the control system. This characterization can be extended to include

both spontaneous and transient induced oscillations. Sustained oscilla-

tions may be understood and predicted on a basis of control system ins-

tability. The smooth increase in low frequency power with increasing

loop gain magnitude coupled with the observation that transient distur-

bances can initiate sustained oscillations at high loop gains indicates

that sustained oscillations represent an extreme case of the transient

response, rather than a separate phenomenon.

In addition, we have shown that a minimal control system model can

account for the behavior described above. This model accurately

predicts the low frequency power in the transient responses of a series

of individuals over a range of relative stabilities spanning more than

an order of magnitude. This predictive ability further supports the

hypothesis that both damped and sustained respiratory oscillations are a

reflection of control system dynamics. In addition, this model provides

analytic expressions...describing the relative stability of the control

system which accurately account for the experimental data.

3.5.1. Significance of Results:

The results and conclusions described above indicate that models of

respiratory control can provide an effective means of distinguishing

between ventilatory oscillations which reflect control system operation

from those which do not. This fact may have clinical significance in

several regards. For example, sleeping infants commonly exhibit

periodic breathing (24,1;i7,i,2,63). It is believed, however, that this

periodic may have multiple etiologies -and abnormalities in periodic

* - ~~~~~~~~~~~~* . ... a a ...o
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breathing- have been linked with the sudden infant death syndrome

(62,63). In addition, adult sleep apnea syndromes often present

periodic ventilatory events of uncertain etiology. The minimal

mathematical model described in this thesis may be useful in distin-

guishing periodic apneas which are a result of excessive loop gain from

those which are not.

The findings of this thesis are also of significance to our general

understanding of respiratory physiology. They indicate that while human

respiration contains significant random variability, the deterministic

aspects of respiratory dynamics are indeed dominated by the action of

the feedback system under physiologic conditions.

3.5.2. Suggestions for Future Work:

Several direct extensions of this work are suggested by the results

presented in this thesis. First, given that the minimal model accu-

rately predicts the relative stability of human respiration indicates

that the analytic expression for loop gain derived in Chapter 1 is a

valid approximation under physiologic conditions. This expression then

forms the basis of precise predictions of the effects varying one or

more physiologic parameters on the relative stability of respiration.

The range of validity for these predictions may be rigorously evaluated

with the use of suitable animal models. Clinical studies designed to

investigate the etiology of periodic apnea could also be framed around

the minimal model. We are currently beginning a study of periodic

breathing and apnea in patients with familial dysautonomia, a disease

which effects general autonomic function.

Additional modeling work is also suggested by our results. A
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significant limitation in the utility of the minimal model in investi-

gating the etiology of various oscillatory phenomena is related to the

controller characterization. A large body of evidence indicates that no

discrete control element exists in the body which directly regulates

alveolar ventilation. Instead, it appears that inspiratory effort,

inspiratory duration, and expiratory duration are all regulated on a

breath tobreath basis based:on-a dynamic interaction of peripheral and

central elements. -Amathematical which emulated the known pathways in

this physiologic control schema more directly may be of significantly

greater potential utility in evaluating the etiology of oscillatory

phenomena. We have formulated and are currently evaluating such a

model, which is the first of its kind. While the simulation behavior of

this model may provide important insights, its complexity is comparable

to previous models of CSR. It may prove possible, however, to quantita-

tively validate this model through the use of appropriate animal stu-

dies.
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FIGURE CAPTIONS

Figure 3.1: Schematic representation of the gas delivery system used in

these studies. The subject rests in a lounge chair and the open ended

hood is positioned his head. This hood is ventilated with a bias flow

of the desired composition. The inspiratory gasses of the subject are

drawn from the bias flow, and have the same composition. The expiratory

gasses are also cleared by the bias flow. The bias flow composition is

manipulated by jet mixing of oxygen, nitrogen, and carbon-dioxide. This

mixture is humidified before entering the hood.

Figure 3.2: Schematic illustration of the experimental protocol. Time

is illustrated in minutes on the abscissa, and inspiratory gas composi-

tion is given by the ordinates for FO and FC.
2 C 2

Figure 3.3: a) This figure illustrates the rebreathing maneuver per-

formed to estimate the mixed venous carbon-dioxide tension. Starting

from quiet breathing, the subject makes a normal inspiration and then

exhales to fill a closed .8 liter bag. He then breathes from this

closed system for a minimum of 30 seconds. b) The typical C02 waveform

obtained from the sampling cannula in the mouthpiece. Note that the

first exhalation illustrates the resting alveolar carbon-dioxide ten-

sion. As rebreathing continues, the alveolar gas equilibrates with

venous blood, and the respiratory oscillations disappear from the

waveform. This plateau reflects the mixed venous carbon-dioxide ten-

sion.

Figure 3.4: Lungvolume and airway PCO waveforms from a typical induced
2

The transient begins at time = 100s. Thetransient perturbation.
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direct effects of the perturbation last 4 - 5 breaths, but visible ring-

ing in both lung volume and end-tidal Pco continue through the end of

the record.

Figure 3.5: Three dimensional projection plot of the power density

spectrum for the model pre-stimulus, or equilibrium breathing pattern as

a function of loop gain. The baseline table is tipped toward the viewer,

and is formed by the loop gain (.21 - 1.54) axis and the frequency (O -

2.8) axis. The vertical axis is normalized power density (see text for

details regarding the computation of these spectra). Hidden lines are

not removed. Note that the spectrum morphology is independent of loop

gain due to the normalization by the area of the carrier peak (see

text).

Figure 3.6: The spectrum characteristics of the model post-stimulus

breathing epoch as a function of loop gain. Notice the addition of sig-

nificant low frequency power at high loop gains.

Figure 3.7: The power spectrum response of the model as a function of

loop gain. Note that no significant change in the carrier peak occurs,

but that a separate low frequency peak arises for loop gains greater

than approximately .6.

Figure 3.8: Side by side histograms and descriptive statistics indicat-

ing the division of the transient epochs into loop gain ranges, for

averaging purposes.

Figure 3.9: Three dimensional projection plot of the average spectrum

characteristics for 85 transient perturbations. This surface represents

the average power spectrum of the control epochs in each loop gain
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range. Note the similar morphology of the carrier peak at each loop

gain.

Figure 3.10: Three dimensional projection plot on the same coordinates

as figure 3,9. This surface represents the average spectrum charac-

teristics of the post-stimulus epochs within each loop-gain range. Note

the somewhat variable position and increased width of the carrier peaks

with respect to the spectra of the control epochs. In addition, note

the presence of significant low frequency power, especially at high loop

gains.

Figure 3.11: Three dimensional surface representing the average power

spectrum response in each loop gain range. No significant response is

seen at any frequency for loop gains below approximately .6. For

greater loop gains, power is added in the region of the carrier peak,

and in a separate low frequency peak.

Figure 3.12: Three dimensional projection plot the the average spectrum

characteristics of the control epochs of the 85 transients. In addi-

tion, 7 epochs of spontaneous, sustained oscillatory ventilation have

been included in the data set. Note that for loop gains greater than

approximately .8, significant low frequency power exists.

Figure 3.13: A scatter plot of the low frequency power versus the loop

gain magnitude for 85 transients. A significant correlation exists

between these two parameters. The linear regression equation is also

provided below the plot.

Figure 3.14: Same axes as figure 3.13. One point is plotted for each

unique value of loop gain for each study. The average low frequency
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power is plotted for each loop gain magnitude within each study. Solid

lines connect the points from each study. Note that the correlation

between these two parameters exists within each study, not only in the

pooled data.

Figure 3.15: Scatter plot of the same data as figure 3.14. The solid

line represents the minimal model prediction of this relationship.

Figure 3.16: Scatter plot of cross-correlation loop gain estimates

versus steady-state loop gain estimates, for 85 transients. A correla-

tion of R = .95 exists between these 2 estimators.
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APPENDIX 1

COMPUTATION OF POWER DENSITY SPECTRA

Resolution of the technique:

The power spectral density (PSD) functions described in this study

have been computed using fast Fourier transform (FFT) techniques. This

transformation converts a set of N consecutive time domain samples to a

set of N/2 frequency domain samples such that;

T = NI

where,

N = number of samples

I = inter-sample interval

T = total duration of sampling

and

FI = 1
FMAX = i
FI = frequency spacing

FMAX = maximum frequency

The resolution in the frequency domain is directly proportional to

the temporal duration of the waveform analyzed. In these studies, each

of the epochs analyzed consisted of 512 samples spaced at .2 second

intervals. In order to improve the frequency resolution, 512 zeroes have

been appended to each of these time series. It is well known that this

doubles the density of points in the frequency domain without changing
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the PSD estimates at the original frequencies (60). The FFT of each

"padded" epoch consisted of 512 complex valued points spaced at .0049 Hz

intervals. The raw power spectral density function (or periodogram) was

computed as the magnitude of each complex value divided by the frequency

spacing (.0049 Hz). Thus, the units of the PSD were magnitude squared

per cycle per second.

Estimation Error in the Computed PSD

Because the ventilation waveforms analyzed in this study contain

both random and deterministic components, the above technique provides

only a statistical estimate of the "true" PSD. If we model the random

component of the waveform as uncorrelated Gaussian noise, the mean

square error of the raw PSD is unity (60). In other words, the coeffi-

cient of variation for each point of the raw PSD waveform is unity. Two

common techniques used to reduce this estimation error are; 1) averaging

multiple periodograms and 2) smoothing the periodogram.

To use the averaging technique, the periodograms must come from

separate time series which may be expected to have identical power

spectra. We have employed this technique by defining narrow loop gain

ranges, and averaging the normalized spectra from separate transients

within each range. This is most appropriate for the control and

response spectra, as the perturbation magnitude is not a factor. When

averaging M periodograms, the standard error of the estimate decreases

to (1/M) 5 .

We have also employed the smoothing technique to decrease the esti-

mation error associated with each raw PSD. This smoothing was performed



- 100 -

by computing a weighted average of each periodogram value with its M

nearest neighbors. We have employed a raised cosine weighting function

to average each value with its four nearest neighbors. The bandwidth

covered by this averaging is .0245 Hz. Thus, the effective resolution

of the PSD is decreased by the smoothing >:-technique. Smoothing over M

nearest: neighbors decreases the standard error of the PSD estimate to

5
(1/M)5 = .5.

The Effect of Spectrum Normalization:

Two separate normalizations have been performed on the smoothed

periodograms obtained from the 85 transients analyzed in this study; 1)

control, post-stimulus, and response spectra from each transient have

been normalized by the area of the carrier peak in the control epoch,

and 2) the response spectrum from each transient has been normalized by

the perturbation magnitude. We shall assume that the uncertainty in

calculating the perturbation magnitude is negligible. This normaliza-

tion is then equivalent to a simple scaling operation, and the coeffi-

cient of variation for the periodogram is unaffected. Normalizing by

the area of the control peak does have a statistical effect, however.

If we return to our assumption that the random component of the

ventilation waveforms may be modeled as uncorrelated Gaussian noise, the

uncertainty associated with each periodogram value is described by a

Chi-square distribution with 2M 8 degrees of freedom. In performing

the normalization, this uncertainty is divided by the area of the con-

trol peak. The magnitude of the area, however, is computed from the

control PSD, and therefore represents only an estimate of the true area.

In fact, the uncertainty associated with this estimate is described by a



- 101 -

Chi-square distribution with 2MK degrees of freedom; where K is the

number of PSD points spanned by the control peak. Thus the uncertainty

in each normalized PSD value is given by the ratio of 2 Chi-square dis-

tributed errors. This ratio is given by the F distribution which is

characterized by a numerator degrees of freedom (= 2M) and a denominator

degrees of freedom (= 2MK). In this case, 2M = 8 and 2MK is typically

160. The effective standard error for these values is approximately

.75. This inherent uncertainty provides strong motivation for averaging

the spectra of transients obtained at similar loop gains, as described

above.
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APPENDIX 2

The goal of this section is to demonstrate the relative stability of the

"normal" operating point, as defined by typical population values. In

addition, the effect of congestive heart failure (CHF) is simulated. No

attempt is made to determine if the model can quantitatively account for

all conditions known to induce CSR in humans. .

Table A2.1 lists the physiologic parameter "norms" we have used to

characterize the awake, resting adult at sea-level. These values result

in the following;

B = -74 torr liter-ls - 1

T0 = 6.4 s

f = .05 Hz

AlB(f )J == .54

Thus we would predict that the "normal operating point of the control

system is indeed stable, with a relative gain margin of approximately 2.

It is interesting to note the excellent agreement with the observations

of Cherniack et. al. (64) who found that doubling the loop gain induced

sustained oscillations in approximately one third of their experimental

animals.

The relative stability of this normal operating point is graphi-

cally illustrated in figure A2.1. This Nyquist diagram is a phase-plane

plot describing the complex loop gain with frequency (or period) used as

a parameter. At any given frequency, LG(f)l is represented as the mag-

nitude of a vector and (LG(f) is given by the angle () of the same vec-

tor. The "unit circle" provides the scale for ILG(f) and the cartesian

---- - - ~- - - I - - - -- -
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axes provide the scale for (LG(f). The solid curve is the trace made by

the tip of the vector as the frequency is altered.

The stability criteria can be conveniently translated to the

Nyquist plot. If and only if the vector tip crosses the 0 = 1800 axis

inside the unit circle, the system is stable. In addition, the Nyquist

plot provides a geometric illustration of the relative margin of stabil-

ity, or gain margin. This gain margin is represented by the distance of

the 1800 axis crossing from the unit circle. Thus by illustrating the

curves associated with different operating points we may conveniently

compare their relative stabilities. For example, if we simulate the

experiment of Cherniack et. al. (64) and double the controller gain,

the effect is shown in figure A2.2. We see clearly that this new

operating point just meets the criterion for sustained oscillations.

Also note that the period at which the oscillations occur is 20.5s.

This agrees well with observations of CSR in healthy adults (37).

The result of simulating congestive heart failure (CHF) is illus-

trated in figure A2.3. We have assumed that the only significant change

in equilibrium conditions found in CHF may be modeled by decreasing the

cardiac output and increasing the circulation delay, each by a factor of

3 (3,65). These changes have the following effect;

Pv02 = 58.6 torrvCO2

B = -175.7 torr liter s-1

To = 14.2 s

TC = 18.6 s

fc = .018 Hz (period = 55.2 s)

ILG(f )I = 1.53
c

-- --- - - ____ I- - . -
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The model is unstable with this operating point, and oscillates with a

period of 55.2 seconds. This period is in good agreement with CSR

observed in CF (3,65,1) , including the classic observations of . A.

Cheyne (2) who described oscillations which "occupied about a minute".

Two factors act to destabilize the CHF operating point; 1) the increase

in B -which results directly from the decreased QC' and 2) the decrease

in f which results from increases: in both:-Tc and T ; Although a

ceteras parabis increase in T would tend to decrease IB(fc) and sta-

bilize the system, the decrease in fc accompanying the increased TC

counterbalances this effect in the CHF simulation.

The foregoing analysis demonstrates several points. Despite the

simplicity of the present model, it agrees admirably with our expecta-

tions based on both experimental observations, and previous modeling

work. The model is seen to produce oscillations of appropriate frequency

when either increased controller gain or CHF is simulated.

At this point, we must re-emphasize the significance of the minimal

modeling approach. The goal of this approach is to clearly define one

or more measures of model performance, and a set of conditions under

which this performance should be tested. The value of a model is then

measured not solely by its performance but also by its complexity. The

optimal condition would be to discover the simplest model which performs

as well as all more complicated models. We have focussed on two

metrics of model performance; 1) the ability of a model to accurately

predict the relative stability of any equilibrium operating point, and

2) its ability to predict oscillations of the correct frequency. It

should be noted that these performance measures are consistent with
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those employed in previous modeling work (15,9,14,10,12,16,13).

In order to minimize the complexity of this model with regard to

previous models, we have made certain sacrifices regarding the condi-

tions under which the model behavior may validly be considered. First,

the model describes only the local stability about an equilibrium

operating point. It cannot simulate the effects of non-local perturba-

tions or transitions from one equilibrium to another. These were the

two conditions which allowed us to linearize the hyperbolic function

describing the physiologic controlled system. A third limitation is

that we have not explicitly included the effect of hypoxemia in our

model. It is known that hypoxemia has the effect of increasing the con-

troller gain, A. However, as we are only modeling the behavior about

equilibria, we can account for steady-state changes in arterial oxygen

tension as equivalent changes in the equilibrium controller gain. For

example, employing the formulation of Cherniack et. al. (16) for the

effect of hypoxia on A, we would predict a gain increase of 100% to

cause oscillations if PICo were reduced to 116 torr. This prediction

is also supported by the controlled observations of Waggener et. al.

(37). Within these constraints, the benefits of minimal modeling are

substantial.

As previously noted, an immediate benefit to linearizing the model

is that relationships between variables may be stated explicitly and

analytically. Khoo et. al. (15) recently published the first and only

linear model of CSR. These authors clearly appreciated the potential

benefits of linear modeling. However, while they showed that their

I
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model predicted instability under a variety of conditions known to

induce oscillations in some individuals, they made no attempt to follow

a true minimal modeling approach.

The Khoo model contains three controllers; one dependent on 02, one

dependent on C02, and one dependent on 02 and C2. They also include

two separate circulation delays with magnitudes which are functions of

the arterial oxygen partial pressure. Finally, in modeling the fre-

quency response of the controlled system, they include the effect of

mechanical mixing of the blood within the circulatory system. From the

results described here, we see that these complexities may not be neces-

sary in order to accurately characterize the relative stability of the

biological control system at important operating points.

As the model of Khoo has been the most successful and thorough in

accounting for CSR in humans, we characterized the "normal" operating

point of our model using parameter values taken from Khoo (15) , where

appropriate. The stability of the normal operating points of these two

models is compared in figure A2.4. Both operating points are stable.

However, the margin of stability for the Khoo model is 600% as opposed

to 200% for our model. This quantitative difference motivates the fol-

lowing question; given the normal ranges of the model parameters, are

the gain margins of these two models significantly different?

Table A2.2 presents the normal values and ranges for the parameters

required to characterize our model. Table A2.3 demonstrates the range

of relative stabilities which can be obtained for this model using only

"normal" parameter values. The value of AB(f ) spans more than an

order of magnitude. Approximately one third of this range is accounted
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for by variability in the magnitude of the controller gain, while

approximately two thirds is a result of variability in B(fc)l.

In performing these calculations we do not attempt to rigorously

account for the correlations which may occur between parameter values

within individuals. Rather, the intent is to evaluate the expected

range of normal breathing stability based on model predictions. The

conclusion is that the range of relative stabilities spanned by normal

parameter ranges encompasses a wide range of breathing behaviors; both

stable and unstable.

This finding is certainly not proof that the model structure is

inappropriate or inadequate. It is an illustration of two points; 1) if

the model accurately predicts human respiratory control, then the cross

section of breathing patterns which may be seen in normal resting adults

is very broad and will include observations of sustained oscillations;

and 2) in order to quantitatively validate the predictive ability of

this or any more complex model of respiratory stability, the comparisons

must be made in a series of individuals rather than on population norms.

This point deserves additional discussion.

It may be argued that despite the fact that the range of normal

stabilities may indeed be broad, by looking at "average" parameter

values, the average conditions under which oscillations will occur can

be predicted. If the predictions are accurate, the model is validated.

Several problems exist in this approach. First, as previously noted,

there may be no clear consensus regarding the correct "average" parame-

ter values. For example, even for the solubility coefficient of CO2 in

blood, which can be directly measured, the "normal" value employed in

different models ranges from .00425 (11,14,59) to .0065(16,15) and .0066
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(9).

Second, even knowing the "true" population norms, it may be very

difficult to define the "average" conditions under which normal adults

may exhibit oscillatory breathing..- ;Good data -regarding the value of

each parameter under conditions of oscillations may not be available.

This fact also raises the'issue that there may exist no "normal"-indivi-

dual- characterized --by a set of population'-normal parameter values who

will exhibit oscillations under a set of average conditions. Thus test-

ing a model on this population basis leaves open at least some question

regarding its ability to account for the breathing control of any single

individual.

Returning to the comparison between our model and the model of

Khoo, it is clear that we cannot claim a quantitative distinction

between the two normal operating points. This is not to say that the

two models are eqiivalent; only that 'they characterize the normal

operating point of resting adults equally well. Having- demonstrated

this equivalence, it is worth noting that the Khoo model requires 18

rather than 6 parameters to characterize an operating point. It is thus

associated with an even wider range of normal operation than is our

model.

By following a minimal modeling approach we have derived analytic

relationships which define the model stability in dimensionless terms

and also predict the frequency of unstable oscillations. The behavior

of the minimal model when constrained by "population normal" parameter

values is in good agreement with both experimental observations of CSR

and previous non-minimal models of CSR. The desire to quantitatively
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validate the predictions of the minimal model for the relative stability

of human respiration provides substantial motivation for the experimen-

tal work described in chapter 2.
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TABLE A2.1

Parameter Units

is-1

Value

.10

.0065

1

s

torr

torr

is-1

ls torr - 1

torr

3.2

6.1

46.2.

40

.071

.0165

760

PW

Ks1

frc

Tc

PVC0aC02

PaCO

V 0

A

A

- -

torr 47
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TABLE A2.2

Parameter

ac

Ki
Ksl

frc

Tc

PC 02

PaCO2

A

A

Units

-1
Is

1

s

torr

torr

-1

Is- torr- 1

Value

.10

.0065

3.2

6.1

46.2

40

.071

.0165

Rang e

.05 - .15

.004 - .007

2-5

4-8

45 - 52

38 - 42

.04 - .10

.0125 - .03
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TABLE A2.3

Minimal "Normal" Loop gain

(.15(713)(.007) + 1045)
(.15(713)(.007) + .10) 2

5
.15(713)(.007) + .10)

= -40.11

= 5.89s

.077Hz IB(f )I - 13.28 AIB(f )l
C

Maximal "Normal" Loop Gain

_ - .0(.004)(713)(50)
(.05(.004)(713) + .04)2

= -213.39

T = .05(.004)(713) + .10 - 10.9s
0 .05(.004)(713) + .10

IB(f ) 8s f = .038Hz
C

B0

Tc = 4s f
C

= .16

B0

=75.77 AIB(f )ITc
= 2.27
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FIGURE CAPTIONS

Figure A2.1: Nyquist diagram representation of the "normal adult"

operating point of the linear model. In this plot, both LGM(f) and

LPS(f) are plotted using T = 1/f as a parameter. For any oscillation

period, these two quantities are represented as a single vector with a

Euclidean length of LGM(f) and an angular orientation of LPS(f). The

'unit' circle illustrates the length of a vector with a length of unity,

as shown is the figure. The cartesian coordinates provide the scale in

degrees for the value of LPS(f). The solid curve is the trace of the

vector tip as the period is altered. The labeled asterisks indicate the

value of the period seconds. The stability criterion may be stated: if

the curve representing an operating point crosses the 180 degree axis

inside the unit circle, the operating point is locally stable. Note

that the distance from the unit circle at which this axis crossing

occurs provides a geometric interpretation of the 'relative' stability

of any operating point. This figure indicates that the "normal" operat-

ing point is indeed stable, with a gain margin of 200%.

Figure A2.2: Illustrates the effect of doubling the normal controller

gain, cetaris parabis. This new operating point just fails to meet the

stability criterion, and the model will oscillate at a period of approx-

imately 20 s.

Figure A2.3: Simulated operating point of congestive heart failure.

Represents and increased circulation delay and decreased cardiac output,

each by a factor of 3. With this operating point, the model is
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unstable; oscillating with a period of approximately 56 s.

Figure A2.4: Comparison of the "normal" operating points of our model

and the linear model of Khoo et. al. (15). Identical parameter values

were used in both models, where appropriate. Both models are stable;

the Khoo model being relatively more stable by a factor of 3.
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APPENDIX 3

Describing Function Analysis and the Minimal Model

Describing functions provide a method for the analysis of nonlinear

systems that is closely related to the linear-system techniques involv-

ing Nyquist, or gain-phase plots. It is possible to use this type of

analysis to determine if constant amplitude periodic oscillations (limit

cycles) are possible for a given system. We shall use this technique to

explore the effects of adding a physiologic saturation nonlinearity to

the controller description. The following discussion presents the

derivation of the expressions needed to discover if this nonlinearity

will allow the minimal control model of breathing to produce limit cycle

behavior analogous to Cheyne-Stokes respiration.

Derivation of the Describing Function

A describing function describes the behavior of a nonlinear element

for purely sinusoidal excitation. Thus the input signal applied to the

nonlinear controller to determine its describing function is;

VI = Dsin(2nfdt) (A3.1)

The output of the nonlinear element can be expanded in a Fourier series

of the form;

VO = Al(D,2nfd)cos( 2nfdt) + B(D,27nf)sin(2nfdt) (A3.2)
+ A(D,2nf )cos( 2 nfdt) + B2 (D,2nfd)sin(2nfdt) + . +

The describing function for the controller is then defined as;



- 120 -

'(D (A1(D-2nfd + B(D, 2nfd)) A (D,2nfd )

A '2nfd) 
= 1( D 2n f d ) (A3.3)

The describing function indicates the relative amplitude and phase

angle of the fundamental component of the output of a nonlinear element

when the element is excited with a. sinusoid..-: In contrast to the case

with linear elements, these quantities can be dependent on the amplitude

as ell as~-the-- frequencyof- the excitation. 

The describing function of the controller element

Using the general results developed above, we shall derive the

expression used in the text for the gain of the controller element.

Once again, the response of this element to sinusoidal excitation is

illustrated in figure A3.2. If the amplitude of the input to the

saturation is less than VA the operation of the controller remains

linear .with .a gain:of_.. A. . .When the input amplitude exceeds V, the

effective controller gain is less than A and we must determine its

amplitude by solving equation A3.3. In this derivation, we shall employ

the notation illustrated in figure A3.2;

V0

R =
D

a = sin (R)

2n = total cycle duration

A = linear controller gain

Thus we have;

+a 1 27-aA I f ADsin(2nfdt)cos( 2nfdt)d27fd t + f AV c ftd2fdt
0 dr7T+a
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2n
+ - f ADsin(2rfdt)cos(2nfdt)d2nfdt

2r-a

= AD((sin2(n+a)-sin2(0)) + (sin2(2n)-sin2(2-a))

A (sin(2-a)-sin(pi-a)) = 0

This result could have been predicted from symmetry agraments, as well.

For B1 we obtain;

1
n 4 a 2 2n-a 

B n f ADsin (2nfdt)d2 fdt + - f -AVAsin(2nfdt)d2f dt

+ 1 f ADsin (2nfdt)d2rf dt
2n-a d d

=AD
-A(n+a-sin(n+a)cos(+a)-sin(O)cos(O)-O)

+ A2 (2n-sin(2n)cos(2,)-2+a-sin(2n-a)cos(2n-a)

+ - (sin(2n-a)-sin(n+a))

Which reduces to;

B1 = AD(sin- R + R(1-R 2 5 +)

Which gives;

A' = A(sin-lR + R(1-R2).5 + )
7 2

This is the expression which has.been used in the text. It should be

noted that due to the non-symmetric nature of the nonlinearity employed,

the controller output will have a net increase in its mean output during

limit cycle behavior. The effect of this phenomenon on the controlled

system is to drive the mean arterial PCco to a lower value. The lower
2
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mean P will in effect cause the controller to clip an even smaller

sine wave. Thus, the "effective" gain expression calculated above may

be a relative overestimate. However, even when the loop gain is tri-

pled, eliciting the strong oscillations shown in figure A3.3c, the value

of R obtained by solving equation 1.25 is only 8% higher than the value

observed in simulation (.25 vs .23). Due to the non-linear relationship

between the apneic fraction and R, the error in this prediction is even

smaller (2%; .42 vs .41). Thus the analytic relationships provided by

describing function analysis are indeed an accurate and valuable means

of characterizing the model behavior.-

One final point is illustrated by the above comparison between the

predictions of equations 1.25 and 1.26 and the simulation behavior of

the model. Remember that the describing function technique is based on

obtaining the effective gain for the controller when it is excited by a

pure sinusoid. The close correlation between describing function pred-

ictions and simulation results indicate that the PaCO is close to

sinusoidal. This may be seen visually by inspecting the PaCo

waveform in figure A3.3.

. . . d~~~~~~~~~~~~~~~~
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FIGURE CAPTIONS

Figure A3.1: Input-output relationship of the controller containing a

saturation nonlinearity. This saturation corresponds to the physical

constraint that alveolar ventilation must be a non-negative quantity.

The breakpoint occurs at an arterial Pco equal to the setpoint valueCO2

for the controller. The equilibrium operating point is indicated by

( 0aCO

Figure A3.2: Illustrates the sinusoidal method of the testing the

operation of the non-linear controller. When the arterial drive to the

controller would command a negative ventilation, the saturation clamps

the output at zero. Upper sinusoid is the excitation for the nonlinear-

ity, the lower curve is the output.

Figure A3.3: a) Illustrate the genesis of a constant amplitude oscilla-

tion. This oscillation is created by suddenly doubling the normal loop

gain. Note that the amplitude of the oscillation does not stabilize

until the controller output includes periodic apnea, and is thus operat-

ing in its nonlinear range. b) and c) illustrate the effect of progres-

sively increasing the loop gain.
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FIGURE A3.1
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