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Dimensionless Groups For Understanding

Free Surface Flows of Complex Fluids

Gareth H. McKinley
Director, Hatsopoulos Microfluids Laboratory
Dept. Mechanical Engineering, M.I.T.
Cambridge MA 02139

Numerous processing operations of complex fluids involve free surface
deformations; examples include spraying and atomization of fertilizers and pesticides,
fiber-spinning operations, paint application, roll-coating of adhesives and food processing
operations such as container- and bottle-filling. Systematically understanding such flows
can be extremely difficult because of the large number of different forces that may be
involved; including capillarity, viscosity, inertia, gravity as well as the additional stresses
resulting from the extensional deformation of the microstructure within the fluid.
Consequently many free-surface phenomena are described by heuristic and poorly-
quantified words such as ‘spinnability’, ‘tackiness’ and ‘stringiness’. Additional
specialized terms used in other industries include ‘pituity’ in lubricious aqueous coatings,
‘body’ and ‘length’ in the printing ink business, ‘ropiness’ in yogurts and ‘long/short
textures’ in starch processing.

A good approach to systematically getting to grips with such problems is through
the tools of dimensional analysis (Bridgman, 1963) and this short note is intended to
review the physics behind some of the plethora of specialized dimensionless groups one
encounters when reading the scientific literature. The dominant balance of forces
controlling the dynamics of any process depends on the relative magnitudes of each
underlying physical effect entering the set of governing equations. In many (but certainly
not all) problems, the dynamics are controlled by no more than two or three different
contributions; and results from disparate experimental observations or numerical studies
which describe different processing regimes or domains of stable/unstable operation can
often be conveniently assembled in terms of processing diagrams such as those sketched
in Figures 1 & 2.

For bulk flows of non-Newtonian fluids the relative importance of inertial effects

and elastic effects with respect to viscous stresses are characterized by the Reynolds



number, Re= pV([n, and the Weissenberg number Wi = AV/[( respectively. Here V and
¢ are characteristic velocity and length scales for the flow of interest and p,7,,A are the
density, viscosity and longest — or characteristic — relaxation time of the test fluid. The
product Wi = AV// may also be interpreted as a Deborah number (Reiner, 1964) as it is a
ratio of the polymeric time scale to a convective timescale ¢,,,, =//V . The debate
around the most appropriate terminology is endless and not terribly helpful; here we shall
stick with the Weissenberg number because we use the Deborah number to describe a

different ratio of timescales below (see Bird et al. (1987) Chp. 2 for further discussion).
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Figure 1: ‘Operating diagram’ showing the key dimensionless parameters characterizing free

surface flows of complex fluids.

Prototypical steady polymer processing operations can be compared by their relative
location in the back-plane of Figure 1. If we consider a particular process operation as a
set of coordinates in this operating space we thus move outwards, away from the origin as
the process throughput (i.e. the characteristic velocity V) is incremented and both the

Reynolds number and the Weissenberg increase. The relative magnitudes of inertial



stresses and elastic stresses can also be compared by taking the ratio of the two groups
represented on the two axes. This parameter is not associated with any particular famous
fluid mechanician or rheologist but is now commonly referred to as the elasticity number
(Denn and Porteous, 1971) or sometimes the first elasticity number (Astarita and

Marrucci, 1974). From the definitions of Re and Wi we obtain

Elasticity Number: El= Wi/ Re=1, /l/ p€2 (1)

It can be seen that this group is independent of the process kinematics (i.e. V) and
only depends on the fluid properties and the geometry of interest. It thus sets the slope of
the trajectory followed through the processing diagram and corresponds to the ratio of the
time scale for stress evolution (4) to the time scale for diffusion of momentum (62/ vV,
where v=1,/p is the kinematic viscosity of the fluid). For example, extrusion of
polymer melts corresponds to El >> 1, whereas processing flows for dilute polymer
solutions (such as spin-casting) typically correspond to El << 1.

In analogous fashion, free surface flows of Newtonian fluids can be characterized
by the magnitude of the Reynolds number and the capillary number Ca =1,V [c (where
o is the surface tension of the fluid), and can be represented on the horizontal plane of
Figure 1. The slope of trajectories in this plane is again independent of the imposed
velocity and corresponds to differing values of a parameter now referred to as the
Ohnesorge number (Ohnesorge, 1936). There is much inconsistency in the use of this
group; in his original work on jet breakup, von Ohnesorge defined this dimensionless
parameter by the term Z =1, / W . However, it is more common nowadays to use the
notation Oh, and the trajectory of interest is given by the inverse square of the Ohnesorge
number, Oh™> ERe/Ca=(p0'£)/ n02 . This group may also be usefully viewed as a
Reynolds number based on a characteristic “capillary velocity’ V,,, = o/ny (i.e. the
velocity at which a viscous thread of fluid such as glycerol or pancake syrup would thin
down and break; see for example Eggers (1997)). Coating operations and jetting/spraying
operations with Newtonian fluids are fully parameterized by the values of Ca and Oh for
the process of interest (for specific results see Quéré (1999) and Basaran (2002)
respectively). However other combinations of these dimensionless parameters may also
be used; for example, studies of high-speed jet breakup are commonly reported in terms

of the Weber number We = Re Ca = pVZE / o and the Ohnesorge number (Becher, 1990).



Inertialess flows of elastic fluids with a free surface are represented by the left-
hand vertical plane. Taking the ratio of the abscissa and ordinate axes gives another
dimensionless parameter measuring the combined importance of elastic and capillary
effects as compared to viscous stresses. This parameter can thus be thought of as an
elasto-capillary number Ec =Wi/Ca= Ac/(1ny¢) and it is again a function only of the
fluid rheology and the geometry. Much less is known about flows in this plane. Bousfield
et al. (1986) were the first to study the nonlinear evolution of viscoelastic fluid jets and
showed that increasing the elastocapillary number (denoted ¢ therein) resulted in strong
stabilization of the jet. More recently, Spiegelberg and McKinley (1996) and Rasmussen
and Hassager (2001) have investigated the effects of changes in Ec on adhesive fingering
instabilities.

The three-dimensional interior of the parameter space shown in Figure 1
corresponds to general visco-elasto-capillary flows. The relative co-ordinates of a
particular process or geometry can then be specified by values of {Re, Ca,Wi}. Since all
three of these parameters vary with the characteristic process speed V, it is preferable to
pick a single dynamical variable (say Re) that scales with V and then specify the other
two coordinates using the material/geometric parameters, Oh and El. The literature in this
area is much less well-developed and a fertile area for future research.

One particularly important subclass of free-surface flows are ‘self-thinning’
processes in which no external driving force is imposed (or in which the internal
dynamics that develop spontaneously in the fluid are much faster than any external
forcing). In such flows the fluid jet, thread, film or sheet thins down and breaks up
naturally under the action of capillary forces. To characterize this breakup process it is
then necessary to seek a different set of dimensionless parameters that do not depend on
the velocity scale V. Such capillary-thinning and break-up processes are governed by (at

least) three characteristic time scales; a viscous time scale 7,,,. ~1,//0 , the polymeric

timescale #,,;,~ A and an inertial or Rayleigh time-scale 75 ~ +/ p£3 / o (Rayleigh, 1879).

poly
The relative balances of these time-scales (and the associated contributions to the total
force in the fluid thread) can thus be represented in terms of two dimensionless

parameters; one of these is the Ohnesorge Number we have seen before;
Oh=t,. [tp ~N o/ . The other parameter is the ratio of the polymeric relaxation
visc/ *R 0 p p poly



time to the Rayleigh time-scale for capillary breakup. This parameter corresponds to an
‘intrinsic’ or ‘natural’ Deborah number for free surface viscoelastic flows and represents
the ratio of the time scale for elastic stress relaxation, to the ‘Rayleigh time scale’ for
inertio-capillary break-up of an inviscid jet:

! A
Intrinsic Deborah Number; De=-L olym _ 2)

IR _\/p£3/6

Note that in contrast to the Weissenberg number defined above, this viscoelastic

parameter does not depend on the imposed kinematics (V). These two dimensionless
parameters can be used to define a two-dimensional ‘operating space’ for instruments
such as capillary-thinning/break-up extensional rheometers and other self-thinning free
surface processes involving non-Newtonian fluids. Such a diagram is sketched in Figure

2 below.
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Figure 2 An ‘operating diagram’ for capillary self-thinning and break-up of
complex fluids; organized in terms of the natural time scales for capillary,
viscous, and elastic phenomena. Sketched are the loci for some common
representative free surface flows of complex fluids.

Successful operation of a capillary thinning instrument or other non-Newtonian free
surface flow typically requires that the fluid is ‘sufficiently viscous’ or has enough
‘spinnability’. Diagrams such as Figure 2 allow us to express such verbal statements in
terms of dimensionless parameters. For example in a capillary thinning test we require

surface tension to drive the thinning and either viscosity or elasticity to resist the necking



process; therefore we need either Oh >1 or De >1 (Rodd, et al., 2005). A ‘low viscosity
elastic’ fluid (Harrison and Boger, 2000) corresponds (at least in a free surface flow) to
! polym > IR > 1yisc OF equivalently De>1>Oh. In such flows, viscous effects are never
important (see, for example, Amarouchene et al. (2001)) and one is interested in the limit
of ‘inviscid elastic fluids’ or more accurately irrotational flows of elastic liquids (Wang,
et al., 2005). Similarly, in operations such as electrospinning it is essential to be able to
form a uniform filament in the absence of beads-on-a-string morphology (Fong, et al.,
1999); hence one needs to design the fluid rheology and geometry to ensure De = Oh > 1.
Conversely in inkjet printing neither long elastic tails nor inertially-induced satellite
drops are desirable; consequently one may seek De = Oh = 1.

For very viscous fluids, the inertial time-scale ¢, of course becomes irrelevant and
the dynamics of the thinning process depends solely on the relative magnitude of the

viscous and elastic time scales. This leads us again to the elasto-capillary number

D t A
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Elastically-dominated and viscously-dominated self-thinning and necking processes (for
example the fibrils that form during decohesion of tacky polymer melts and solutions
(Rasmussen and Hassager, 2001) are thus demarcated by the line E = 1 sketched in
Figure 2.

In this short note I have attempted to provide an overview of some of the
spectrum of dimensionless groups used in describing free surface flows of elastic fluids. I
have not discussed the perturbative effects of gravity explicitly. Consideration of the
gravitational body force leads to a characteristic length scale referred to as the capillary
length (., ~ m . For most fluids /.,,= 1-2mm, and on length scales smaller than
this gravity becomes increasingly unimportant. This length scale can also be substituted
into any of the dimensionless groups defined above to lead to yet another set of
dimensionless groups! It is worth noting that as interest in microscale and nanoscale
manufacturing intensifies, and the characteristic length-scale of a particular process
decreases, the elasticity number, elastocapillary number and intrinsic Deborah number
will all increase. Non-Newtonian effects in the processing of complex fluids will thus

become increasingly prevalent on the microscale. For example, in ‘low viscosity’ and



‘weakly elastic’ fluids, inertial effects often overwhelm the non-Newtonian stresses in the
fluid making both the shear and extensional rheology difficult to measure (see e.g. Linder
et al. (2003)). A consideration of the dimensionless parameters defined above shows that
as the length scale ¢ decreases into the micrometer range, inertial forces in a fluid thread
become progressively less important and viscoelastic forces once again dominate.
Microscale measurements using instruments such as capillary-thinning devices may thus
make excellent micro-rheometers for ‘low viscosity non-Newtonian fluids’ such as

agricultural fertilizers, and inks or paints used in jetting and spraying operations.
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